1 //===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the X86MCCodeEmitter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "MCTargetDesc/X86BaseInfo.h"
14 #include "MCTargetDesc/X86FixupKinds.h"
15 #include "MCTargetDesc/X86MCTargetDesc.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/MC/MCCodeEmitter.h"
18 #include "llvm/MC/MCContext.h"
19 #include "llvm/MC/MCExpr.h"
20 #include "llvm/MC/MCFixup.h"
21 #include "llvm/MC/MCInst.h"
22 #include "llvm/MC/MCInstrDesc.h"
23 #include "llvm/MC/MCInstrInfo.h"
24 #include "llvm/MC/MCRegisterInfo.h"
25 #include "llvm/MC/MCSubtargetInfo.h"
26 #include "llvm/MC/MCSymbol.h"
27 #include "llvm/Support/Casting.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <cassert>
31 #include <cstdint>
32 #include <cstdlib>
33 
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "mccodeemitter"
37 
38 namespace {
39 
40 class X86MCCodeEmitter : public MCCodeEmitter {
41   const MCInstrInfo &MCII;
42   MCContext &Ctx;
43 
44 public:
45   X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
46       : MCII(mcii), Ctx(ctx) {}
47   X86MCCodeEmitter(const X86MCCodeEmitter &) = delete;
48   X86MCCodeEmitter &operator=(const X86MCCodeEmitter &) = delete;
49   ~X86MCCodeEmitter() override = default;
50 
51   void emitPrefix(const MCInst &MI, raw_ostream &OS,
52                   const MCSubtargetInfo &STI) const override;
53 
54   void encodeInstruction(const MCInst &MI, raw_ostream &OS,
55                          SmallVectorImpl<MCFixup> &Fixups,
56                          const MCSubtargetInfo &STI) const override;
57 
58 private:
59   unsigned getX86RegNum(const MCOperand &MO) const;
60 
61   unsigned getX86RegEncoding(const MCInst &MI, unsigned OpNum) const;
62 
63   /// \param MI a single low-level machine instruction.
64   /// \param OpNum the operand #.
65   /// \returns true if the OpNumth operand of MI  require a bit to be set in
66   /// REX prefix.
67   bool isREXExtendedReg(const MCInst &MI, unsigned OpNum) const;
68 
69   void emitImmediate(const MCOperand &Disp, SMLoc Loc, unsigned ImmSize,
70                      MCFixupKind FixupKind, uint64_t StartByte, raw_ostream &OS,
71                      SmallVectorImpl<MCFixup> &Fixups, int ImmOffset = 0) const;
72 
73   void emitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
74                         raw_ostream &OS) const;
75 
76   void emitSIBByte(unsigned SS, unsigned Index, unsigned Base,
77                    raw_ostream &OS) const;
78 
79   void emitMemModRMByte(const MCInst &MI, unsigned Op, unsigned RegOpcodeField,
80                         uint64_t TSFlags, bool HasREX, uint64_t StartByte,
81                         raw_ostream &OS, SmallVectorImpl<MCFixup> &Fixups,
82                         const MCSubtargetInfo &STI,
83                         bool ForceSIB = false) const;
84 
85   bool emitPrefixImpl(unsigned &CurOp, const MCInst &MI,
86                       const MCSubtargetInfo &STI, raw_ostream &OS) const;
87 
88   void emitVEXOpcodePrefix(int MemOperand, const MCInst &MI,
89                            raw_ostream &OS) const;
90 
91   void emitSegmentOverridePrefix(unsigned SegOperand, const MCInst &MI,
92                                  raw_ostream &OS) const;
93 
94   bool emitOpcodePrefix(int MemOperand, const MCInst &MI,
95                         const MCSubtargetInfo &STI, raw_ostream &OS) const;
96 
97   bool emitREXPrefix(int MemOperand, const MCInst &MI,
98                      const MCSubtargetInfo &STI, raw_ostream &OS) const;
99 };
100 
101 } // end anonymous namespace
102 
103 static uint8_t modRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) {
104   assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
105   return RM | (RegOpcode << 3) | (Mod << 6);
106 }
107 
108 static void emitByte(uint8_t C, raw_ostream &OS) { OS << static_cast<char>(C); }
109 
110 static void emitConstant(uint64_t Val, unsigned Size, raw_ostream &OS) {
111   // Output the constant in little endian byte order.
112   for (unsigned i = 0; i != Size; ++i) {
113     emitByte(Val & 255, OS);
114     Val >>= 8;
115   }
116 }
117 
118 /// Determine if this immediate can fit in a disp8 or a compressed disp8 for
119 /// EVEX instructions. \p will be set to the value to pass to the ImmOffset
120 /// parameter of emitImmediate.
121 static bool isDispOrCDisp8(uint64_t TSFlags, int Value, int &ImmOffset) {
122   bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX;
123 
124   int CD8_Scale =
125       (TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift;
126   if (!HasEVEX || CD8_Scale == 0)
127     return isInt<8>(Value);
128 
129   assert(isPowerOf2_32(CD8_Scale) && "Unexpected CD8 scale!");
130   if (Value & (CD8_Scale - 1)) // Unaligned offset
131     return false;
132 
133   int CDisp8 = Value / CD8_Scale;
134   if (!isInt<8>(CDisp8))
135     return false;
136 
137   // ImmOffset will be added to Value in emitImmediate leaving just CDisp8.
138   ImmOffset = CDisp8 - Value;
139   return true;
140 }
141 
142 /// \returns the appropriate fixup kind to use for an immediate in an
143 /// instruction with the specified TSFlags.
144 static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
145   unsigned Size = X86II::getSizeOfImm(TSFlags);
146   bool isPCRel = X86II::isImmPCRel(TSFlags);
147 
148   if (X86II::isImmSigned(TSFlags)) {
149     switch (Size) {
150     default:
151       llvm_unreachable("Unsupported signed fixup size!");
152     case 4:
153       return MCFixupKind(X86::reloc_signed_4byte);
154     }
155   }
156   return MCFixup::getKindForSize(Size, isPCRel);
157 }
158 
159 enum GlobalOffsetTableExprKind { GOT_None, GOT_Normal, GOT_SymDiff };
160 
161 /// Check if this expression starts with  _GLOBAL_OFFSET_TABLE_ and if it is
162 /// of the form _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on
163 /// ELF i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
164 /// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start of a
165 /// binary expression.
166 static GlobalOffsetTableExprKind
167 startsWithGlobalOffsetTable(const MCExpr *Expr) {
168   const MCExpr *RHS = nullptr;
169   if (Expr->getKind() == MCExpr::Binary) {
170     const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
171     Expr = BE->getLHS();
172     RHS = BE->getRHS();
173   }
174 
175   if (Expr->getKind() != MCExpr::SymbolRef)
176     return GOT_None;
177 
178   const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
179   const MCSymbol &S = Ref->getSymbol();
180   if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
181     return GOT_None;
182   if (RHS && RHS->getKind() == MCExpr::SymbolRef)
183     return GOT_SymDiff;
184   return GOT_Normal;
185 }
186 
187 static bool hasSecRelSymbolRef(const MCExpr *Expr) {
188   if (Expr->getKind() == MCExpr::SymbolRef) {
189     const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
190     return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
191   }
192   return false;
193 }
194 
195 static bool isPCRel32Branch(const MCInst &MI, const MCInstrInfo &MCII) {
196   unsigned Opcode = MI.getOpcode();
197   const MCInstrDesc &Desc = MCII.get(Opcode);
198   if ((Opcode != X86::CALL64pcrel32 && Opcode != X86::JMP_4 &&
199        Opcode != X86::JCC_4) ||
200       getImmFixupKind(Desc.TSFlags) != FK_PCRel_4)
201     return false;
202 
203   unsigned CurOp = X86II::getOperandBias(Desc);
204   const MCOperand &Op = MI.getOperand(CurOp);
205   if (!Op.isExpr())
206     return false;
207 
208   const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Op.getExpr());
209   return Ref && Ref->getKind() == MCSymbolRefExpr::VK_None;
210 }
211 
212 unsigned X86MCCodeEmitter::getX86RegNum(const MCOperand &MO) const {
213   return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
214 }
215 
216 unsigned X86MCCodeEmitter::getX86RegEncoding(const MCInst &MI,
217                                              unsigned OpNum) const {
218   return Ctx.getRegisterInfo()->getEncodingValue(MI.getOperand(OpNum).getReg());
219 }
220 
221 /// \param MI a single low-level machine instruction.
222 /// \param OpNum the operand #.
223 /// \returns true if the OpNumth operand of MI  require a bit to be set in
224 /// REX prefix.
225 bool X86MCCodeEmitter::isREXExtendedReg(const MCInst &MI,
226                                         unsigned OpNum) const {
227   return (getX86RegEncoding(MI, OpNum) >> 3) & 1;
228 }
229 
230 void X86MCCodeEmitter::emitImmediate(const MCOperand &DispOp, SMLoc Loc,
231                                      unsigned Size, MCFixupKind FixupKind,
232                                      uint64_t StartByte, raw_ostream &OS,
233                                      SmallVectorImpl<MCFixup> &Fixups,
234                                      int ImmOffset) const {
235   const MCExpr *Expr = nullptr;
236   if (DispOp.isImm()) {
237     // If this is a simple integer displacement that doesn't require a
238     // relocation, emit it now.
239     if (FixupKind != FK_PCRel_1 && FixupKind != FK_PCRel_2 &&
240         FixupKind != FK_PCRel_4) {
241       emitConstant(DispOp.getImm() + ImmOffset, Size, OS);
242       return;
243     }
244     Expr = MCConstantExpr::create(DispOp.getImm(), Ctx);
245   } else {
246     Expr = DispOp.getExpr();
247   }
248 
249   // If we have an immoffset, add it to the expression.
250   if ((FixupKind == FK_Data_4 || FixupKind == FK_Data_8 ||
251        FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
252     GlobalOffsetTableExprKind Kind = startsWithGlobalOffsetTable(Expr);
253     if (Kind != GOT_None) {
254       assert(ImmOffset == 0);
255 
256       if (Size == 8) {
257         FixupKind = MCFixupKind(X86::reloc_global_offset_table8);
258       } else {
259         assert(Size == 4);
260         FixupKind = MCFixupKind(X86::reloc_global_offset_table);
261       }
262 
263       if (Kind == GOT_Normal)
264         ImmOffset = static_cast<int>(OS.tell() - StartByte);
265     } else if (Expr->getKind() == MCExpr::SymbolRef) {
266       if (hasSecRelSymbolRef(Expr)) {
267         FixupKind = MCFixupKind(FK_SecRel_4);
268       }
269     } else if (Expr->getKind() == MCExpr::Binary) {
270       const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr *>(Expr);
271       if (hasSecRelSymbolRef(Bin->getLHS()) ||
272           hasSecRelSymbolRef(Bin->getRHS())) {
273         FixupKind = MCFixupKind(FK_SecRel_4);
274       }
275     }
276   }
277 
278   // If the fixup is pc-relative, we need to bias the value to be relative to
279   // the start of the field, not the end of the field.
280   if (FixupKind == FK_PCRel_4 ||
281       FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
282       FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load) ||
283       FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax) ||
284       FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax_rex) ||
285       FixupKind == MCFixupKind(X86::reloc_branch_4byte_pcrel)) {
286     ImmOffset -= 4;
287     // If this is a pc-relative load off _GLOBAL_OFFSET_TABLE_:
288     // leaq _GLOBAL_OFFSET_TABLE_(%rip), %r15
289     // this needs to be a GOTPC32 relocation.
290     if (startsWithGlobalOffsetTable(Expr) != GOT_None)
291       FixupKind = MCFixupKind(X86::reloc_global_offset_table);
292   }
293   if (FixupKind == FK_PCRel_2)
294     ImmOffset -= 2;
295   if (FixupKind == FK_PCRel_1)
296     ImmOffset -= 1;
297 
298   if (ImmOffset)
299     Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(ImmOffset, Ctx),
300                                    Ctx);
301 
302   // Emit a symbolic constant as a fixup and 4 zeros.
303   Fixups.push_back(MCFixup::create(static_cast<uint32_t>(OS.tell() - StartByte),
304                                    Expr, FixupKind, Loc));
305   emitConstant(0, Size, OS);
306 }
307 
308 void X86MCCodeEmitter::emitRegModRMByte(const MCOperand &ModRMReg,
309                                         unsigned RegOpcodeFld,
310                                         raw_ostream &OS) const {
311   emitByte(modRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)), OS);
312 }
313 
314 void X86MCCodeEmitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base,
315                                    raw_ostream &OS) const {
316   // SIB byte is in the same format as the modRMByte.
317   emitByte(modRMByte(SS, Index, Base), OS);
318 }
319 
320 void X86MCCodeEmitter::emitMemModRMByte(const MCInst &MI, unsigned Op,
321                                         unsigned RegOpcodeField,
322                                         uint64_t TSFlags, bool HasREX,
323                                         uint64_t StartByte, raw_ostream &OS,
324                                         SmallVectorImpl<MCFixup> &Fixups,
325                                         const MCSubtargetInfo &STI,
326                                         bool ForceSIB) const {
327   const MCOperand &Disp = MI.getOperand(Op + X86::AddrDisp);
328   const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
329   const MCOperand &Scale = MI.getOperand(Op + X86::AddrScaleAmt);
330   const MCOperand &IndexReg = MI.getOperand(Op + X86::AddrIndexReg);
331   unsigned BaseReg = Base.getReg();
332 
333   // Handle %rip relative addressing.
334   if (BaseReg == X86::RIP ||
335       BaseReg == X86::EIP) { // [disp32+rIP] in X86-64 mode
336     assert(STI.hasFeature(X86::Is64Bit) &&
337            "Rip-relative addressing requires 64-bit mode");
338     assert(IndexReg.getReg() == 0 && !ForceSIB &&
339            "Invalid rip-relative address");
340     emitByte(modRMByte(0, RegOpcodeField, 5), OS);
341 
342     unsigned Opcode = MI.getOpcode();
343     unsigned FixupKind = [&]() {
344       // Enable relaxed relocation only for a MCSymbolRefExpr.  We cannot use a
345       // relaxed relocation if an offset is present (e.g. x@GOTPCREL+4).
346       if (!(Disp.isExpr() && isa<MCSymbolRefExpr>(Disp.getExpr())))
347         return X86::reloc_riprel_4byte;
348 
349       // Certain loads for GOT references can be relocated against the symbol
350       // directly if the symbol ends up in the same linkage unit.
351       switch (Opcode) {
352       default:
353         return X86::reloc_riprel_4byte;
354       case X86::MOV64rm:
355         // movq loads is a subset of reloc_riprel_4byte_relax_rex. It is a
356         // special case because COFF and Mach-O don't support ELF's more
357         // flexible R_X86_64_REX_GOTPCRELX relaxation.
358         assert(HasREX);
359         return X86::reloc_riprel_4byte_movq_load;
360       case X86::ADC32rm:
361       case X86::ADD32rm:
362       case X86::AND32rm:
363       case X86::CMP32rm:
364       case X86::MOV32rm:
365       case X86::OR32rm:
366       case X86::SBB32rm:
367       case X86::SUB32rm:
368       case X86::TEST32mr:
369       case X86::XOR32rm:
370       case X86::CALL64m:
371       case X86::JMP64m:
372       case X86::TAILJMPm64:
373       case X86::TEST64mr:
374       case X86::ADC64rm:
375       case X86::ADD64rm:
376       case X86::AND64rm:
377       case X86::CMP64rm:
378       case X86::OR64rm:
379       case X86::SBB64rm:
380       case X86::SUB64rm:
381       case X86::XOR64rm:
382         return HasREX ? X86::reloc_riprel_4byte_relax_rex
383                       : X86::reloc_riprel_4byte_relax;
384       }
385     }();
386 
387     // rip-relative addressing is actually relative to the *next* instruction.
388     // Since an immediate can follow the mod/rm byte for an instruction, this
389     // means that we need to bias the displacement field of the instruction with
390     // the size of the immediate field. If we have this case, add it into the
391     // expression to emit.
392     // Note: rip-relative addressing using immediate displacement values should
393     // not be adjusted, assuming it was the user's intent.
394     int ImmSize = !Disp.isImm() && X86II::hasImm(TSFlags)
395                       ? X86II::getSizeOfImm(TSFlags)
396                       : 0;
397 
398     emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), StartByte, OS,
399                   Fixups, -ImmSize);
400     return;
401   }
402 
403   unsigned BaseRegNo = BaseReg ? getX86RegNum(Base) : -1U;
404 
405   // 16-bit addressing forms of the ModR/M byte have a different encoding for
406   // the R/M field and are far more limited in which registers can be used.
407   if (X86_MC::is16BitMemOperand(MI, Op, STI)) {
408     if (BaseReg) {
409       // For 32-bit addressing, the row and column values in Table 2-2 are
410       // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with
411       // some special cases. And getX86RegNum reflects that numbering.
412       // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A,
413       // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only
414       // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order,
415       // while values 0-3 indicate the allowed combinations (base+index) of
416       // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI.
417       //
418       // R16Table[] is a lookup from the normal RegNo, to the row values from
419       // Table 2-1 for 16-bit addressing modes. Where zero means disallowed.
420       static const unsigned R16Table[] = {0, 0, 0, 7, 0, 6, 4, 5};
421       unsigned RMfield = R16Table[BaseRegNo];
422 
423       assert(RMfield && "invalid 16-bit base register");
424 
425       if (IndexReg.getReg()) {
426         unsigned IndexReg16 = R16Table[getX86RegNum(IndexReg)];
427 
428         assert(IndexReg16 && "invalid 16-bit index register");
429         // We must have one of SI/DI (4,5), and one of BP/BX (6,7).
430         assert(((IndexReg16 ^ RMfield) & 2) &&
431                "invalid 16-bit base/index register combination");
432         assert(Scale.getImm() == 1 &&
433                "invalid scale for 16-bit memory reference");
434 
435         // Allow base/index to appear in either order (although GAS doesn't).
436         if (IndexReg16 & 2)
437           RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1);
438         else
439           RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1);
440       }
441 
442       if (Disp.isImm() && isInt<8>(Disp.getImm())) {
443         if (Disp.getImm() == 0 && RMfield != 6) {
444           // There is no displacement; just the register.
445           emitByte(modRMByte(0, RegOpcodeField, RMfield), OS);
446           return;
447         }
448         // Use the [REG]+disp8 form, including for [BP] which cannot be encoded.
449         emitByte(modRMByte(1, RegOpcodeField, RMfield), OS);
450         emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, OS, Fixups);
451         return;
452       }
453       // This is the [REG]+disp16 case.
454       emitByte(modRMByte(2, RegOpcodeField, RMfield), OS);
455     } else {
456       assert(IndexReg.getReg() == 0 && "Unexpected index register!");
457       // There is no BaseReg; this is the plain [disp16] case.
458       emitByte(modRMByte(0, RegOpcodeField, 6), OS);
459     }
460 
461     // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases.
462     emitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, StartByte, OS, Fixups);
463     return;
464   }
465 
466   // Check for presence of {disp8} or {disp32} pseudo prefixes.
467   bool UseDisp8 = MI.getFlags() & X86::IP_USE_DISP8;
468   bool UseDisp32 = MI.getFlags() & X86::IP_USE_DISP32;
469 
470   // We only allow no displacement if no pseudo prefix is present.
471   bool AllowNoDisp = !UseDisp8 && !UseDisp32;
472   // Disp8 is allowed unless the {disp32} prefix is present.
473   bool AllowDisp8 = !UseDisp32;
474 
475   // Determine whether a SIB byte is needed.
476   if (// The SIB byte must be used if there is an index register or the
477       // encoding requires a SIB byte.
478       !ForceSIB && IndexReg.getReg() == 0 &&
479       // The SIB byte must be used if the base is ESP/RSP/R12, all of which
480       // encode to an R/M value of 4, which indicates that a SIB byte is
481       // present.
482       BaseRegNo != N86::ESP &&
483       // If there is no base register and we're in 64-bit mode, we need a SIB
484       // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
485       (!STI.hasFeature(X86::Is64Bit) || BaseReg != 0)) {
486 
487     if (BaseReg == 0) { // [disp32]     in X86-32 mode
488       emitByte(modRMByte(0, RegOpcodeField, 5), OS);
489       emitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, StartByte, OS, Fixups);
490       return;
491     }
492 
493     // If the base is not EBP/ESP/R12/R13 and there is no displacement, use
494     // simple indirect register encoding, this handles addresses like [EAX].
495     // The encoding for [EBP] or[R13] with no displacement means [disp32] so we
496     // handle it by emitting a displacement of 0 later.
497     if (BaseRegNo != N86::EBP) {
498       if (Disp.isImm() && Disp.getImm() == 0 && AllowNoDisp) {
499         emitByte(modRMByte(0, RegOpcodeField, BaseRegNo), OS);
500         return;
501       }
502 
503       // If the displacement is @tlscall, treat it as a zero.
504       if (Disp.isExpr()) {
505         auto *Sym = dyn_cast<MCSymbolRefExpr>(Disp.getExpr());
506         if (Sym && Sym->getKind() == MCSymbolRefExpr::VK_TLSCALL) {
507           // This is exclusively used by call *a@tlscall(base). The relocation
508           // (R_386_TLSCALL or R_X86_64_TLSCALL) applies to the beginning.
509           Fixups.push_back(MCFixup::create(0, Sym, FK_NONE, MI.getLoc()));
510           emitByte(modRMByte(0, RegOpcodeField, BaseRegNo), OS);
511           return;
512         }
513       }
514     }
515 
516     // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
517     // Including a compressed disp8 for EVEX instructions that support it.
518     // This also handles the 0 displacement for [EBP] or [R13]. We can't use
519     // disp8 if the {disp32} pseudo prefix is present.
520     if (Disp.isImm() && AllowDisp8) {
521       int ImmOffset = 0;
522       if (isDispOrCDisp8(TSFlags, Disp.getImm(), ImmOffset)) {
523         emitByte(modRMByte(1, RegOpcodeField, BaseRegNo), OS);
524         emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, OS, Fixups,
525                       ImmOffset);
526         return;
527       }
528     }
529 
530     // Otherwise, emit the most general non-SIB encoding: [REG+disp32].
531     // Displacement may be 0 for [EBP] or [R13] case if {disp32} pseudo prefix
532     // prevented using disp8 above.
533     emitByte(modRMByte(2, RegOpcodeField, BaseRegNo), OS);
534     unsigned Opcode = MI.getOpcode();
535     unsigned FixupKind = Opcode == X86::MOV32rm ? X86::reloc_signed_4byte_relax
536                                                 : X86::reloc_signed_4byte;
537     emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), StartByte, OS,
538                   Fixups);
539     return;
540   }
541 
542   // We need a SIB byte, so start by outputting the ModR/M byte first
543   assert(IndexReg.getReg() != X86::ESP && IndexReg.getReg() != X86::RSP &&
544          "Cannot use ESP as index reg!");
545 
546   bool ForceDisp32 = false;
547   bool ForceDisp8 = false;
548   int ImmOffset = 0;
549   if (BaseReg == 0) {
550     // If there is no base register, we emit the special case SIB byte with
551     // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
552     BaseRegNo = 5;
553     emitByte(modRMByte(0, RegOpcodeField, 4), OS);
554     ForceDisp32 = true;
555   } else if (Disp.isImm() && Disp.getImm() == 0 && AllowNoDisp &&
556              // Base reg can't be EBP/RBP/R13 as that would end up with '5' as
557              // the base field, but that is the magic [*] nomenclature that
558              // indicates no base when mod=0. For these cases we'll emit a 0
559              // displacement instead.
560              BaseRegNo != N86::EBP) {
561     // Emit no displacement ModR/M byte
562     emitByte(modRMByte(0, RegOpcodeField, 4), OS);
563   } else if (Disp.isImm() && AllowDisp8 &&
564              isDispOrCDisp8(TSFlags, Disp.getImm(), ImmOffset)) {
565     // Displacement fits in a byte or matches an EVEX compressed disp8, use
566     // disp8 encoding. This also handles EBP/R13 base with 0 displacement unless
567     // {disp32} pseudo prefix was used.
568     emitByte(modRMByte(1, RegOpcodeField, 4), OS);
569     ForceDisp8 = true;
570   } else {
571     // Otherwise, emit the normal disp32 encoding.
572     emitByte(modRMByte(2, RegOpcodeField, 4), OS);
573     ForceDisp32 = true;
574   }
575 
576   // Calculate what the SS field value should be...
577   static const unsigned SSTable[] = {~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3};
578   unsigned SS = SSTable[Scale.getImm()];
579 
580   unsigned IndexRegNo = IndexReg.getReg() ? getX86RegNum(IndexReg) : 4;
581 
582   emitSIBByte(SS, IndexRegNo, BaseRegNo, OS);
583 
584   // Do we need to output a displacement?
585   if (ForceDisp8)
586     emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, OS, Fixups,
587                   ImmOffset);
588   else if (ForceDisp32)
589     emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
590                   StartByte, OS, Fixups);
591 }
592 
593 /// Emit all instruction prefixes.
594 ///
595 /// \returns true if REX prefix is used, otherwise returns false.
596 bool X86MCCodeEmitter::emitPrefixImpl(unsigned &CurOp, const MCInst &MI,
597                                       const MCSubtargetInfo &STI,
598                                       raw_ostream &OS) const {
599   uint64_t TSFlags = MCII.get(MI.getOpcode()).TSFlags;
600   // Determine where the memory operand starts, if present.
601   int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
602   // Emit segment override opcode prefix as needed.
603   if (MemoryOperand != -1) {
604     MemoryOperand += CurOp;
605     emitSegmentOverridePrefix(MemoryOperand + X86::AddrSegmentReg, MI, OS);
606   }
607 
608   // Emit the repeat opcode prefix as needed.
609   unsigned Flags = MI.getFlags();
610   if (TSFlags & X86II::REP || Flags & X86::IP_HAS_REPEAT)
611     emitByte(0xF3, OS);
612   if (Flags & X86::IP_HAS_REPEAT_NE)
613     emitByte(0xF2, OS);
614 
615   // Emit the address size opcode prefix as needed.
616   if (X86_MC::needsAddressSizeOverride(MI, STI, MemoryOperand, TSFlags) ||
617       Flags & X86::IP_HAS_AD_SIZE)
618     emitByte(0x67, OS);
619 
620   uint64_t Form = TSFlags & X86II::FormMask;
621   switch (Form) {
622   default:
623     break;
624   case X86II::RawFrmDstSrc: {
625     // Emit segment override opcode prefix as needed (not for %ds).
626     if (MI.getOperand(2).getReg() != X86::DS)
627       emitSegmentOverridePrefix(2, MI, OS);
628     CurOp += 3; // Consume operands.
629     break;
630   }
631   case X86II::RawFrmSrc: {
632     // Emit segment override opcode prefix as needed (not for %ds).
633     if (MI.getOperand(1).getReg() != X86::DS)
634       emitSegmentOverridePrefix(1, MI, OS);
635     CurOp += 2; // Consume operands.
636     break;
637   }
638   case X86II::RawFrmDst: {
639     ++CurOp; // Consume operand.
640     break;
641   }
642   case X86II::RawFrmMemOffs: {
643     // Emit segment override opcode prefix as needed.
644     emitSegmentOverridePrefix(1, MI, OS);
645     break;
646   }
647   }
648 
649   // REX prefix is optional, but if used must be immediately before the opcode
650   // Encoding type for this instruction.
651   uint64_t Encoding = TSFlags & X86II::EncodingMask;
652   bool HasREX = false;
653   if (Encoding)
654     emitVEXOpcodePrefix(MemoryOperand, MI, OS);
655   else
656     HasREX = emitOpcodePrefix(MemoryOperand, MI, STI, OS);
657 
658   return HasREX;
659 }
660 
661 /// AVX instructions are encoded using a opcode prefix called VEX.
662 void X86MCCodeEmitter::emitVEXOpcodePrefix(int MemOperand, const MCInst &MI,
663                                            raw_ostream &OS) const {
664   const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
665   uint64_t TSFlags = Desc.TSFlags;
666 
667   assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX.");
668 
669   uint64_t Encoding = TSFlags & X86II::EncodingMask;
670   bool HasEVEX_K = TSFlags & X86II::EVEX_K;
671   bool HasVEX_4V = TSFlags & X86II::VEX_4V;
672   bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
673 
674   // VEX_R: opcode externsion equivalent to REX.R in
675   // 1's complement (inverted) form
676   //
677   //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
678   //  0: Same as REX_R=1 (64 bit mode only)
679   //
680   uint8_t VEX_R = 0x1;
681   uint8_t EVEX_R2 = 0x1;
682 
683   // VEX_X: equivalent to REX.X, only used when a
684   // register is used for index in SIB Byte.
685   //
686   //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
687   //  0: Same as REX.X=1 (64-bit mode only)
688   uint8_t VEX_X = 0x1;
689 
690   // VEX_B:
691   //
692   //  1: Same as REX_B=0 (ignored in 32-bit mode)
693   //  0: Same as REX_B=1 (64 bit mode only)
694   //
695   uint8_t VEX_B = 0x1;
696 
697   // VEX_W: opcode specific (use like REX.W, or used for
698   // opcode extension, or ignored, depending on the opcode byte)
699   uint8_t VEX_W = (TSFlags & X86II::VEX_W) ? 1 : 0;
700 
701   // VEX_5M (VEX m-mmmmm field):
702   //
703   //  0b00000: Reserved for future use
704   //  0b00001: implied 0F leading opcode
705   //  0b00010: implied 0F 38 leading opcode bytes
706   //  0b00011: implied 0F 3A leading opcode bytes
707   //  0b00100: Reserved for future use
708   //  0b00101: VEX MAP5
709   //  0b00110: VEX MAP6
710   //  0b00111-0b11111: Reserved for future use
711   //  0b01000: XOP map select - 08h instructions with imm byte
712   //  0b01001: XOP map select - 09h instructions with no imm byte
713   //  0b01010: XOP map select - 0Ah instructions with imm dword
714   uint8_t VEX_5M;
715   switch (TSFlags & X86II::OpMapMask) {
716   default:
717     llvm_unreachable("Invalid prefix!");
718   case X86II::TB:
719     VEX_5M = 0x1;
720     break; // 0F
721   case X86II::T8:
722     VEX_5M = 0x2;
723     break; // 0F 38
724   case X86II::TA:
725     VEX_5M = 0x3;
726     break; // 0F 3A
727   case X86II::XOP8:
728     VEX_5M = 0x8;
729     break;
730   case X86II::XOP9:
731     VEX_5M = 0x9;
732     break;
733   case X86II::XOPA:
734     VEX_5M = 0xA;
735     break;
736   case X86II::T_MAP5:
737     VEX_5M = 0x5;
738     break;
739   case X86II::T_MAP6:
740     VEX_5M = 0x6;
741     break;
742   }
743 
744   // VEX_4V (VEX vvvv field): a register specifier
745   // (in 1's complement form) or 1111 if unused.
746   uint8_t VEX_4V = 0xf;
747   uint8_t EVEX_V2 = 0x1;
748 
749   // EVEX_L2/VEX_L (Vector Length):
750   //
751   // L2 L
752   //  0 0: scalar or 128-bit vector
753   //  0 1: 256-bit vector
754   //  1 0: 512-bit vector
755   //
756   uint8_t VEX_L = (TSFlags & X86II::VEX_L) ? 1 : 0;
757   uint8_t EVEX_L2 = (TSFlags & X86II::EVEX_L2) ? 1 : 0;
758 
759   // VEX_PP: opcode extension providing equivalent
760   // functionality of a SIMD prefix
761   //
762   //  0b00: None
763   //  0b01: 66
764   //  0b10: F3
765   //  0b11: F2
766   //
767   uint8_t VEX_PP = 0;
768   switch (TSFlags & X86II::OpPrefixMask) {
769   case X86II::PD:
770     VEX_PP = 0x1;
771     break; // 66
772   case X86II::XS:
773     VEX_PP = 0x2;
774     break; // F3
775   case X86II::XD:
776     VEX_PP = 0x3;
777     break; // F2
778   }
779 
780   // EVEX_U
781   uint8_t EVEX_U = 1; // Always '1' so far
782 
783   // EVEX_z
784   uint8_t EVEX_z = (HasEVEX_K && (TSFlags & X86II::EVEX_Z)) ? 1 : 0;
785 
786   // EVEX_b
787   uint8_t EVEX_b = (TSFlags & X86II::EVEX_B) ? 1 : 0;
788 
789   // EVEX_rc
790   uint8_t EVEX_rc = 0;
791 
792   // EVEX_aaa
793   uint8_t EVEX_aaa = 0;
794 
795   bool EncodeRC = false;
796 
797   // Classify VEX_B, VEX_4V, VEX_R, VEX_X
798   unsigned NumOps = Desc.getNumOperands();
799   unsigned CurOp = X86II::getOperandBias(Desc);
800 
801   switch (TSFlags & X86II::FormMask) {
802   default:
803     llvm_unreachable("Unexpected form in emitVEXOpcodePrefix!");
804   case X86II::MRMDestMem4VOp3CC: {
805     //  MemAddr, src1(ModR/M), src2(VEX_4V)
806     unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
807     VEX_B = ~(BaseRegEnc >> 3) & 1;
808     unsigned IndexRegEnc =
809         getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
810     VEX_X = ~(IndexRegEnc >> 3) & 1;
811 
812     CurOp += X86::AddrNumOperands;
813 
814     unsigned RegEnc = getX86RegEncoding(MI, ++CurOp);
815     VEX_R = ~(RegEnc >> 3) & 1;
816 
817     unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
818     VEX_4V = ~VRegEnc & 0xf;
819     break;
820   }
821   case X86II::MRM_C0:
822   case X86II::RawFrm:
823   case X86II::PrefixByte:
824     break;
825   case X86II::MRMDestMemFSIB:
826   case X86II::MRMDestMem: {
827     // MRMDestMem instructions forms:
828     //  MemAddr, src1(ModR/M)
829     //  MemAddr, src1(VEX_4V), src2(ModR/M)
830     //  MemAddr, src1(ModR/M), imm8
831     //
832     unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
833     VEX_B = ~(BaseRegEnc >> 3) & 1;
834     unsigned IndexRegEnc =
835         getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
836     VEX_X = ~(IndexRegEnc >> 3) & 1;
837     if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
838       EVEX_V2 = ~(IndexRegEnc >> 4) & 1;
839 
840     CurOp += X86::AddrNumOperands;
841 
842     if (HasEVEX_K)
843       EVEX_aaa = getX86RegEncoding(MI, CurOp++);
844 
845     if (HasVEX_4V) {
846       unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
847       VEX_4V = ~VRegEnc & 0xf;
848       EVEX_V2 = ~(VRegEnc >> 4) & 1;
849     }
850 
851     unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
852     VEX_R = ~(RegEnc >> 3) & 1;
853     EVEX_R2 = ~(RegEnc >> 4) & 1;
854     break;
855   }
856   case X86II::MRMSrcMemFSIB:
857   case X86II::MRMSrcMem: {
858     // MRMSrcMem instructions forms:
859     //  src1(ModR/M), MemAddr
860     //  src1(ModR/M), src2(VEX_4V), MemAddr
861     //  src1(ModR/M), MemAddr, imm8
862     //  src1(ModR/M), MemAddr, src2(Imm[7:4])
863     //
864     //  FMA4:
865     //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
866     unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
867     VEX_R = ~(RegEnc >> 3) & 1;
868     EVEX_R2 = ~(RegEnc >> 4) & 1;
869 
870     if (HasEVEX_K)
871       EVEX_aaa = getX86RegEncoding(MI, CurOp++);
872 
873     if (HasVEX_4V) {
874       unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
875       VEX_4V = ~VRegEnc & 0xf;
876       EVEX_V2 = ~(VRegEnc >> 4) & 1;
877     }
878 
879     unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
880     VEX_B = ~(BaseRegEnc >> 3) & 1;
881     unsigned IndexRegEnc =
882         getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
883     VEX_X = ~(IndexRegEnc >> 3) & 1;
884     if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
885       EVEX_V2 = ~(IndexRegEnc >> 4) & 1;
886 
887     break;
888   }
889   case X86II::MRMSrcMem4VOp3: {
890     // Instruction format for 4VOp3:
891     //   src1(ModR/M), MemAddr, src3(VEX_4V)
892     unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
893     VEX_R = ~(RegEnc >> 3) & 1;
894 
895     unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
896     VEX_B = ~(BaseRegEnc >> 3) & 1;
897     unsigned IndexRegEnc =
898         getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
899     VEX_X = ~(IndexRegEnc >> 3) & 1;
900 
901     VEX_4V = ~getX86RegEncoding(MI, CurOp + X86::AddrNumOperands) & 0xf;
902     break;
903   }
904   case X86II::MRMSrcMemOp4: {
905     //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
906     unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
907     VEX_R = ~(RegEnc >> 3) & 1;
908 
909     unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
910     VEX_4V = ~VRegEnc & 0xf;
911 
912     unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
913     VEX_B = ~(BaseRegEnc >> 3) & 1;
914     unsigned IndexRegEnc =
915         getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
916     VEX_X = ~(IndexRegEnc >> 3) & 1;
917     break;
918   }
919   case X86II::MRM0m:
920   case X86II::MRM1m:
921   case X86II::MRM2m:
922   case X86II::MRM3m:
923   case X86II::MRM4m:
924   case X86II::MRM5m:
925   case X86II::MRM6m:
926   case X86II::MRM7m: {
927     // MRM[0-9]m instructions forms:
928     //  MemAddr
929     //  src1(VEX_4V), MemAddr
930     if (HasVEX_4V) {
931       unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
932       VEX_4V = ~VRegEnc & 0xf;
933       EVEX_V2 = ~(VRegEnc >> 4) & 1;
934     }
935 
936     if (HasEVEX_K)
937       EVEX_aaa = getX86RegEncoding(MI, CurOp++);
938 
939     unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
940     VEX_B = ~(BaseRegEnc >> 3) & 1;
941     unsigned IndexRegEnc =
942         getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
943     VEX_X = ~(IndexRegEnc >> 3) & 1;
944     if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
945       EVEX_V2 = ~(IndexRegEnc >> 4) & 1;
946 
947     break;
948   }
949   case X86II::MRMSrcReg: {
950     // MRMSrcReg instructions forms:
951     //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
952     //  dst(ModR/M), src1(ModR/M)
953     //  dst(ModR/M), src1(ModR/M), imm8
954     //
955     //  FMA4:
956     //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
957     unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
958     VEX_R = ~(RegEnc >> 3) & 1;
959     EVEX_R2 = ~(RegEnc >> 4) & 1;
960 
961     if (HasEVEX_K)
962       EVEX_aaa = getX86RegEncoding(MI, CurOp++);
963 
964     if (HasVEX_4V) {
965       unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
966       VEX_4V = ~VRegEnc & 0xf;
967       EVEX_V2 = ~(VRegEnc >> 4) & 1;
968     }
969 
970     RegEnc = getX86RegEncoding(MI, CurOp++);
971     VEX_B = ~(RegEnc >> 3) & 1;
972     VEX_X = ~(RegEnc >> 4) & 1;
973 
974     if (EVEX_b) {
975       if (HasEVEX_RC) {
976         unsigned RcOperand = NumOps - 1;
977         assert(RcOperand >= CurOp);
978         EVEX_rc = MI.getOperand(RcOperand).getImm();
979         assert(EVEX_rc <= 3 && "Invalid rounding control!");
980       }
981       EncodeRC = true;
982     }
983     break;
984   }
985   case X86II::MRMSrcReg4VOp3: {
986     // Instruction format for 4VOp3:
987     //   src1(ModR/M), src2(ModR/M), src3(VEX_4V)
988     unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
989     VEX_R = ~(RegEnc >> 3) & 1;
990 
991     RegEnc = getX86RegEncoding(MI, CurOp++);
992     VEX_B = ~(RegEnc >> 3) & 1;
993 
994     VEX_4V = ~getX86RegEncoding(MI, CurOp++) & 0xf;
995     break;
996   }
997   case X86II::MRMSrcRegOp4: {
998     //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
999     unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
1000     VEX_R = ~(RegEnc >> 3) & 1;
1001 
1002     unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
1003     VEX_4V = ~VRegEnc & 0xf;
1004 
1005     // Skip second register source (encoded in Imm[7:4])
1006     ++CurOp;
1007 
1008     RegEnc = getX86RegEncoding(MI, CurOp++);
1009     VEX_B = ~(RegEnc >> 3) & 1;
1010     VEX_X = ~(RegEnc >> 4) & 1;
1011     break;
1012   }
1013   case X86II::MRMDestReg: {
1014     // MRMDestReg instructions forms:
1015     //  dst(ModR/M), src(ModR/M)
1016     //  dst(ModR/M), src(ModR/M), imm8
1017     //  dst(ModR/M), src1(VEX_4V), src2(ModR/M)
1018     unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
1019     VEX_B = ~(RegEnc >> 3) & 1;
1020     VEX_X = ~(RegEnc >> 4) & 1;
1021 
1022     if (HasEVEX_K)
1023       EVEX_aaa = getX86RegEncoding(MI, CurOp++);
1024 
1025     if (HasVEX_4V) {
1026       unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
1027       VEX_4V = ~VRegEnc & 0xf;
1028       EVEX_V2 = ~(VRegEnc >> 4) & 1;
1029     }
1030 
1031     RegEnc = getX86RegEncoding(MI, CurOp++);
1032     VEX_R = ~(RegEnc >> 3) & 1;
1033     EVEX_R2 = ~(RegEnc >> 4) & 1;
1034     if (EVEX_b)
1035       EncodeRC = true;
1036     break;
1037   }
1038   case X86II::MRMr0: {
1039     // MRMr0 instructions forms:
1040     //  11:rrr:000
1041     //  dst(ModR/M)
1042     unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
1043     VEX_R = ~(RegEnc >> 3) & 1;
1044     EVEX_R2 = ~(RegEnc >> 4) & 1;
1045     break;
1046   }
1047   case X86II::MRM0r:
1048   case X86II::MRM1r:
1049   case X86II::MRM2r:
1050   case X86II::MRM3r:
1051   case X86II::MRM4r:
1052   case X86II::MRM5r:
1053   case X86II::MRM6r:
1054   case X86II::MRM7r: {
1055     // MRM0r-MRM7r instructions forms:
1056     //  dst(VEX_4V), src(ModR/M), imm8
1057     if (HasVEX_4V) {
1058       unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
1059       VEX_4V = ~VRegEnc & 0xf;
1060       EVEX_V2 = ~(VRegEnc >> 4) & 1;
1061     }
1062     if (HasEVEX_K)
1063       EVEX_aaa = getX86RegEncoding(MI, CurOp++);
1064 
1065     unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
1066     VEX_B = ~(RegEnc >> 3) & 1;
1067     VEX_X = ~(RegEnc >> 4) & 1;
1068     break;
1069   }
1070   }
1071 
1072   if (Encoding == X86II::VEX || Encoding == X86II::XOP) {
1073     // VEX opcode prefix can have 2 or 3 bytes
1074     //
1075     //  3 bytes:
1076     //    +-----+ +--------------+ +-------------------+
1077     //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
1078     //    +-----+ +--------------+ +-------------------+
1079     //  2 bytes:
1080     //    +-----+ +-------------------+
1081     //    | C5h | | R | vvvv | L | pp |
1082     //    +-----+ +-------------------+
1083     //
1084     //  XOP uses a similar prefix:
1085     //    +-----+ +--------------+ +-------------------+
1086     //    | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
1087     //    +-----+ +--------------+ +-------------------+
1088     uint8_t LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
1089 
1090     // Can we use the 2 byte VEX prefix?
1091     if (!(MI.getFlags() & X86::IP_USE_VEX3) && Encoding == X86II::VEX &&
1092         VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
1093       emitByte(0xC5, OS);
1094       emitByte(LastByte | (VEX_R << 7), OS);
1095       return;
1096     }
1097 
1098     // 3 byte VEX prefix
1099     emitByte(Encoding == X86II::XOP ? 0x8F : 0xC4, OS);
1100     emitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, OS);
1101     emitByte(LastByte | (VEX_W << 7), OS);
1102   } else {
1103     assert(Encoding == X86II::EVEX && "unknown encoding!");
1104     // EVEX opcode prefix can have 4 bytes
1105     //
1106     // +-----+ +--------------+ +-------------------+ +------------------------+
1107     // | 62h | | RXBR' | 0mmm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa |
1108     // +-----+ +--------------+ +-------------------+ +------------------------+
1109     assert((VEX_5M & 0x7) == VEX_5M &&
1110            "More than 3 significant bits in VEX.m-mmmm fields for EVEX!");
1111 
1112     emitByte(0x62, OS);
1113     emitByte((VEX_R << 7) | (VEX_X << 6) | (VEX_B << 5) | (EVEX_R2 << 4) |
1114                  VEX_5M,
1115              OS);
1116     emitByte((VEX_W << 7) | (VEX_4V << 3) | (EVEX_U << 2) | VEX_PP, OS);
1117     if (EncodeRC)
1118       emitByte((EVEX_z << 7) | (EVEX_rc << 5) | (EVEX_b << 4) | (EVEX_V2 << 3) |
1119                    EVEX_aaa,
1120                OS);
1121     else
1122       emitByte((EVEX_z << 7) | (EVEX_L2 << 6) | (VEX_L << 5) | (EVEX_b << 4) |
1123                    (EVEX_V2 << 3) | EVEX_aaa,
1124                OS);
1125   }
1126 }
1127 
1128 /// Emit REX prefix which specifies
1129 ///   1) 64-bit instructions,
1130 ///   2) non-default operand size, and
1131 ///   3) use of X86-64 extended registers.
1132 ///
1133 /// \returns true if REX prefix is used, otherwise returns false.
1134 bool X86MCCodeEmitter::emitREXPrefix(int MemOperand, const MCInst &MI,
1135                                      const MCSubtargetInfo &STI,
1136                                      raw_ostream &OS) const {
1137   uint8_t REX = [&, MemOperand]() {
1138     uint8_t REX = 0;
1139     bool UsesHighByteReg = false;
1140 
1141     const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
1142     uint64_t TSFlags = Desc.TSFlags;
1143 
1144     if (TSFlags & X86II::REX_W)
1145       REX |= 1 << 3; // set REX.W
1146 
1147     if (MI.getNumOperands() == 0)
1148       return REX;
1149 
1150     unsigned NumOps = MI.getNumOperands();
1151     unsigned CurOp = X86II::getOperandBias(Desc);
1152 
1153     // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
1154     for (unsigned i = CurOp; i != NumOps; ++i) {
1155       const MCOperand &MO = MI.getOperand(i);
1156       if (MO.isReg()) {
1157         unsigned Reg = MO.getReg();
1158         if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH ||
1159             Reg == X86::DH)
1160           UsesHighByteReg = true;
1161         if (X86II::isX86_64NonExtLowByteReg(Reg))
1162           // FIXME: The caller of determineREXPrefix slaps this prefix onto
1163           // anything that returns non-zero.
1164           REX |= 0x40; // REX fixed encoding prefix
1165       } else if (MO.isExpr() && STI.getTargetTriple().isX32()) {
1166         // GOTTPOFF and TLSDESC relocations require a REX prefix to allow
1167         // linker optimizations: even if the instructions we see may not require
1168         // any prefix, they may be replaced by instructions that do. This is
1169         // handled as a special case here so that it also works for hand-written
1170         // assembly without the user needing to write REX, as with GNU as.
1171         const auto *Ref = dyn_cast<MCSymbolRefExpr>(MO.getExpr());
1172         if (Ref && (Ref->getKind() == MCSymbolRefExpr::VK_GOTTPOFF ||
1173                     Ref->getKind() == MCSymbolRefExpr::VK_TLSDESC)) {
1174           REX |= 0x40; // REX fixed encoding prefix
1175         }
1176       }
1177     }
1178 
1179     switch (TSFlags & X86II::FormMask) {
1180     case X86II::AddRegFrm:
1181       REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
1182       break;
1183     case X86II::MRMSrcReg:
1184     case X86II::MRMSrcRegCC:
1185       REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
1186       REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
1187       break;
1188     case X86II::MRMSrcMem:
1189     case X86II::MRMSrcMemCC:
1190       REX |= isREXExtendedReg(MI, CurOp++) << 2;                        // REX.R
1191       REX |= isREXExtendedReg(MI, MemOperand + X86::AddrBaseReg) << 0;  // REX.B
1192       REX |= isREXExtendedReg(MI, MemOperand + X86::AddrIndexReg) << 1; // REX.X
1193       CurOp += X86::AddrNumOperands;
1194       break;
1195     case X86II::MRMDestReg:
1196       REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
1197       REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
1198       break;
1199     case X86II::MRMDestMem:
1200       REX |= isREXExtendedReg(MI, MemOperand + X86::AddrBaseReg) << 0;  // REX.B
1201       REX |= isREXExtendedReg(MI, MemOperand + X86::AddrIndexReg) << 1; // REX.X
1202       CurOp += X86::AddrNumOperands;
1203       REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
1204       break;
1205     case X86II::MRMXmCC:
1206     case X86II::MRMXm:
1207     case X86II::MRM0m:
1208     case X86II::MRM1m:
1209     case X86II::MRM2m:
1210     case X86II::MRM3m:
1211     case X86II::MRM4m:
1212     case X86II::MRM5m:
1213     case X86II::MRM6m:
1214     case X86II::MRM7m:
1215       REX |= isREXExtendedReg(MI, MemOperand + X86::AddrBaseReg) << 0;  // REX.B
1216       REX |= isREXExtendedReg(MI, MemOperand + X86::AddrIndexReg) << 1; // REX.X
1217       break;
1218     case X86II::MRMXrCC:
1219     case X86II::MRMXr:
1220     case X86II::MRM0r:
1221     case X86II::MRM1r:
1222     case X86II::MRM2r:
1223     case X86II::MRM3r:
1224     case X86II::MRM4r:
1225     case X86II::MRM5r:
1226     case X86II::MRM6r:
1227     case X86II::MRM7r:
1228       REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
1229       break;
1230     case X86II::MRMr0:
1231       REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
1232       break;
1233     case X86II::MRMDestMemFSIB:
1234       llvm_unreachable("FSIB format never need REX prefix!");
1235     }
1236     if (REX && UsesHighByteReg)
1237       report_fatal_error(
1238           "Cannot encode high byte register in REX-prefixed instruction");
1239     return REX;
1240   }();
1241 
1242   if (!REX)
1243     return false;
1244 
1245   emitByte(0x40 | REX, OS);
1246   return true;
1247 }
1248 
1249 /// Emit segment override opcode prefix as needed.
1250 void X86MCCodeEmitter::emitSegmentOverridePrefix(unsigned SegOperand,
1251                                                  const MCInst &MI,
1252                                                  raw_ostream &OS) const {
1253   // Check for explicit segment override on memory operand.
1254   if (unsigned Reg = MI.getOperand(SegOperand).getReg())
1255     emitByte(X86::getSegmentOverridePrefixForReg(Reg), OS);
1256 }
1257 
1258 /// Emit all instruction prefixes prior to the opcode.
1259 ///
1260 /// \param MemOperand the operand # of the start of a memory operand if present.
1261 /// If not present, it is -1.
1262 ///
1263 /// \returns true if REX prefix is used, otherwise returns false.
1264 bool X86MCCodeEmitter::emitOpcodePrefix(int MemOperand, const MCInst &MI,
1265                                         const MCSubtargetInfo &STI,
1266                                         raw_ostream &OS) const {
1267   const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
1268   uint64_t TSFlags = Desc.TSFlags;
1269 
1270   // Emit the operand size opcode prefix as needed.
1271   if ((TSFlags & X86II::OpSizeMask) ==
1272       (STI.hasFeature(X86::Is16Bit) ? X86II::OpSize32 : X86II::OpSize16))
1273     emitByte(0x66, OS);
1274 
1275   // Emit the LOCK opcode prefix.
1276   if (TSFlags & X86II::LOCK || MI.getFlags() & X86::IP_HAS_LOCK)
1277     emitByte(0xF0, OS);
1278 
1279   // Emit the NOTRACK opcode prefix.
1280   if (TSFlags & X86II::NOTRACK || MI.getFlags() & X86::IP_HAS_NOTRACK)
1281     emitByte(0x3E, OS);
1282 
1283   switch (TSFlags & X86II::OpPrefixMask) {
1284   case X86II::PD: // 66
1285     emitByte(0x66, OS);
1286     break;
1287   case X86II::XS: // F3
1288     emitByte(0xF3, OS);
1289     break;
1290   case X86II::XD: // F2
1291     emitByte(0xF2, OS);
1292     break;
1293   }
1294 
1295   // Handle REX prefix.
1296   assert((STI.hasFeature(X86::Is64Bit) || !(TSFlags & X86II::REX_W)) &&
1297          "REX.W requires 64bit mode.");
1298   bool HasREX = STI.hasFeature(X86::Is64Bit)
1299                     ? emitREXPrefix(MemOperand, MI, STI, OS)
1300                     : false;
1301 
1302   // 0x0F escape code must be emitted just before the opcode.
1303   switch (TSFlags & X86II::OpMapMask) {
1304   case X86II::TB:        // Two-byte opcode map
1305   case X86II::T8:        // 0F 38
1306   case X86II::TA:        // 0F 3A
1307   case X86II::ThreeDNow: // 0F 0F, second 0F emitted by caller.
1308     emitByte(0x0F, OS);
1309     break;
1310   }
1311 
1312   switch (TSFlags & X86II::OpMapMask) {
1313   case X86II::T8: // 0F 38
1314     emitByte(0x38, OS);
1315     break;
1316   case X86II::TA: // 0F 3A
1317     emitByte(0x3A, OS);
1318     break;
1319   }
1320 
1321   return HasREX;
1322 }
1323 
1324 void X86MCCodeEmitter::emitPrefix(const MCInst &MI, raw_ostream &OS,
1325                                   const MCSubtargetInfo &STI) const {
1326   unsigned Opcode = MI.getOpcode();
1327   const MCInstrDesc &Desc = MCII.get(Opcode);
1328   uint64_t TSFlags = Desc.TSFlags;
1329 
1330   // Pseudo instructions don't get encoded.
1331   if (X86II::isPseudo(TSFlags))
1332     return;
1333 
1334   unsigned CurOp = X86II::getOperandBias(Desc);
1335 
1336   emitPrefixImpl(CurOp, MI, STI, OS);
1337 }
1338 
1339 void X86MCCodeEmitter::encodeInstruction(const MCInst &MI, raw_ostream &OS,
1340                                          SmallVectorImpl<MCFixup> &Fixups,
1341                                          const MCSubtargetInfo &STI) const {
1342   unsigned Opcode = MI.getOpcode();
1343   const MCInstrDesc &Desc = MCII.get(Opcode);
1344   uint64_t TSFlags = Desc.TSFlags;
1345 
1346   // Pseudo instructions don't get encoded.
1347   if (X86II::isPseudo(TSFlags))
1348     return;
1349 
1350   unsigned NumOps = Desc.getNumOperands();
1351   unsigned CurOp = X86II::getOperandBias(Desc);
1352 
1353   uint64_t StartByte = OS.tell();
1354 
1355   bool HasREX = emitPrefixImpl(CurOp, MI, STI, OS);
1356 
1357   // It uses the VEX.VVVV field?
1358   bool HasVEX_4V = TSFlags & X86II::VEX_4V;
1359   bool HasVEX_I8Reg = (TSFlags & X86II::ImmMask) == X86II::Imm8Reg;
1360 
1361   // It uses the EVEX.aaa field?
1362   bool HasEVEX_K = TSFlags & X86II::EVEX_K;
1363   bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
1364 
1365   // Used if a register is encoded in 7:4 of immediate.
1366   unsigned I8RegNum = 0;
1367 
1368   uint8_t BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
1369 
1370   if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow)
1371     BaseOpcode = 0x0F; // Weird 3DNow! encoding.
1372 
1373   unsigned OpcodeOffset = 0;
1374 
1375   uint64_t Form = TSFlags & X86II::FormMask;
1376   switch (Form) {
1377   default:
1378     errs() << "FORM: " << Form << "\n";
1379     llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
1380   case X86II::Pseudo:
1381     llvm_unreachable("Pseudo instruction shouldn't be emitted");
1382   case X86II::RawFrmDstSrc:
1383   case X86II::RawFrmSrc:
1384   case X86II::RawFrmDst:
1385   case X86II::PrefixByte:
1386     emitByte(BaseOpcode, OS);
1387     break;
1388   case X86II::AddCCFrm: {
1389     // This will be added to the opcode in the fallthrough.
1390     OpcodeOffset = MI.getOperand(NumOps - 1).getImm();
1391     assert(OpcodeOffset < 16 && "Unexpected opcode offset!");
1392     --NumOps; // Drop the operand from the end.
1393     [[fallthrough]];
1394   case X86II::RawFrm:
1395     emitByte(BaseOpcode + OpcodeOffset, OS);
1396 
1397     if (!STI.hasFeature(X86::Is64Bit) || !isPCRel32Branch(MI, MCII))
1398       break;
1399 
1400     const MCOperand &Op = MI.getOperand(CurOp++);
1401     emitImmediate(Op, MI.getLoc(), X86II::getSizeOfImm(TSFlags),
1402                   MCFixupKind(X86::reloc_branch_4byte_pcrel), StartByte, OS,
1403                   Fixups);
1404     break;
1405   }
1406   case X86II::RawFrmMemOffs:
1407     emitByte(BaseOpcode, OS);
1408     emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1409                   X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1410                   StartByte, OS, Fixups);
1411     ++CurOp; // skip segment operand
1412     break;
1413   case X86II::RawFrmImm8:
1414     emitByte(BaseOpcode, OS);
1415     emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1416                   X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1417                   StartByte, OS, Fixups);
1418     emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, StartByte,
1419                   OS, Fixups);
1420     break;
1421   case X86II::RawFrmImm16:
1422     emitByte(BaseOpcode, OS);
1423     emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1424                   X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1425                   StartByte, OS, Fixups);
1426     emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, StartByte,
1427                   OS, Fixups);
1428     break;
1429 
1430   case X86II::AddRegFrm:
1431     emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++)), OS);
1432     break;
1433 
1434   case X86II::MRMDestReg: {
1435     emitByte(BaseOpcode, OS);
1436     unsigned SrcRegNum = CurOp + 1;
1437 
1438     if (HasEVEX_K) // Skip writemask
1439       ++SrcRegNum;
1440 
1441     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1442       ++SrcRegNum;
1443 
1444     emitRegModRMByte(MI.getOperand(CurOp),
1445                      getX86RegNum(MI.getOperand(SrcRegNum)), OS);
1446     CurOp = SrcRegNum + 1;
1447     break;
1448   }
1449   case X86II::MRMDestMem4VOp3CC: {
1450     unsigned CC = MI.getOperand(8).getImm();
1451     emitByte(BaseOpcode + CC, OS);
1452     unsigned SrcRegNum = CurOp + X86::AddrNumOperands;
1453     emitMemModRMByte(MI, CurOp + 1, getX86RegNum(MI.getOperand(0)), TSFlags,
1454                     HasREX, StartByte, OS, Fixups, STI, false);
1455     CurOp = SrcRegNum + 3; // skip reg, VEX_V4 and CC
1456     break;
1457   }
1458   case X86II::MRMDestMemFSIB:
1459   case X86II::MRMDestMem: {
1460     emitByte(BaseOpcode, OS);
1461     unsigned SrcRegNum = CurOp + X86::AddrNumOperands;
1462 
1463     if (HasEVEX_K) // Skip writemask
1464       ++SrcRegNum;
1465 
1466     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1467       ++SrcRegNum;
1468 
1469     bool ForceSIB = (Form == X86II::MRMDestMemFSIB);
1470     emitMemModRMByte(MI, CurOp, getX86RegNum(MI.getOperand(SrcRegNum)), TSFlags,
1471                      HasREX, StartByte, OS, Fixups, STI, ForceSIB);
1472     CurOp = SrcRegNum + 1;
1473     break;
1474   }
1475   case X86II::MRMSrcReg: {
1476     emitByte(BaseOpcode, OS);
1477     unsigned SrcRegNum = CurOp + 1;
1478 
1479     if (HasEVEX_K) // Skip writemask
1480       ++SrcRegNum;
1481 
1482     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1483       ++SrcRegNum;
1484 
1485     emitRegModRMByte(MI.getOperand(SrcRegNum),
1486                      getX86RegNum(MI.getOperand(CurOp)), OS);
1487     CurOp = SrcRegNum + 1;
1488     if (HasVEX_I8Reg)
1489       I8RegNum = getX86RegEncoding(MI, CurOp++);
1490     // do not count the rounding control operand
1491     if (HasEVEX_RC)
1492       --NumOps;
1493     break;
1494   }
1495   case X86II::MRMSrcReg4VOp3: {
1496     emitByte(BaseOpcode, OS);
1497     unsigned SrcRegNum = CurOp + 1;
1498 
1499     emitRegModRMByte(MI.getOperand(SrcRegNum),
1500                      getX86RegNum(MI.getOperand(CurOp)), OS);
1501     CurOp = SrcRegNum + 1;
1502     ++CurOp; // Encoded in VEX.VVVV
1503     break;
1504   }
1505   case X86II::MRMSrcRegOp4: {
1506     emitByte(BaseOpcode, OS);
1507     unsigned SrcRegNum = CurOp + 1;
1508 
1509     // Skip 1st src (which is encoded in VEX_VVVV)
1510     ++SrcRegNum;
1511 
1512     // Capture 2nd src (which is encoded in Imm[7:4])
1513     assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
1514     I8RegNum = getX86RegEncoding(MI, SrcRegNum++);
1515 
1516     emitRegModRMByte(MI.getOperand(SrcRegNum),
1517                      getX86RegNum(MI.getOperand(CurOp)), OS);
1518     CurOp = SrcRegNum + 1;
1519     break;
1520   }
1521   case X86II::MRMSrcRegCC: {
1522     unsigned FirstOp = CurOp++;
1523     unsigned SecondOp = CurOp++;
1524 
1525     unsigned CC = MI.getOperand(CurOp++).getImm();
1526     emitByte(BaseOpcode + CC, OS);
1527 
1528     emitRegModRMByte(MI.getOperand(SecondOp),
1529                      getX86RegNum(MI.getOperand(FirstOp)), OS);
1530     break;
1531   }
1532   case X86II::MRMSrcMemFSIB:
1533   case X86II::MRMSrcMem: {
1534     unsigned FirstMemOp = CurOp + 1;
1535 
1536     if (HasEVEX_K) // Skip writemask
1537       ++FirstMemOp;
1538 
1539     if (HasVEX_4V)
1540       ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
1541 
1542     emitByte(BaseOpcode, OS);
1543 
1544     bool ForceSIB = (Form == X86II::MRMSrcMemFSIB);
1545     emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
1546                      TSFlags, HasREX, StartByte, OS, Fixups, STI, ForceSIB);
1547     CurOp = FirstMemOp + X86::AddrNumOperands;
1548     if (HasVEX_I8Reg)
1549       I8RegNum = getX86RegEncoding(MI, CurOp++);
1550     break;
1551   }
1552   case X86II::MRMSrcMem4VOp3: {
1553     unsigned FirstMemOp = CurOp + 1;
1554 
1555     emitByte(BaseOpcode, OS);
1556 
1557     emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
1558                      TSFlags, HasREX, StartByte, OS, Fixups, STI);
1559     CurOp = FirstMemOp + X86::AddrNumOperands;
1560     ++CurOp; // Encoded in VEX.VVVV.
1561     break;
1562   }
1563   case X86II::MRMSrcMemOp4: {
1564     unsigned FirstMemOp = CurOp + 1;
1565 
1566     ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
1567 
1568     // Capture second register source (encoded in Imm[7:4])
1569     assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
1570     I8RegNum = getX86RegEncoding(MI, FirstMemOp++);
1571 
1572     emitByte(BaseOpcode, OS);
1573 
1574     emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
1575                      TSFlags, HasREX, StartByte, OS, Fixups, STI);
1576     CurOp = FirstMemOp + X86::AddrNumOperands;
1577     break;
1578   }
1579   case X86II::MRMSrcMemCC: {
1580     unsigned RegOp = CurOp++;
1581     unsigned FirstMemOp = CurOp;
1582     CurOp = FirstMemOp + X86::AddrNumOperands;
1583 
1584     unsigned CC = MI.getOperand(CurOp++).getImm();
1585     emitByte(BaseOpcode + CC, OS);
1586 
1587     emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(RegOp)),
1588                      TSFlags, HasREX, StartByte, OS, Fixups, STI);
1589     break;
1590   }
1591 
1592   case X86II::MRMXrCC: {
1593     unsigned RegOp = CurOp++;
1594 
1595     unsigned CC = MI.getOperand(CurOp++).getImm();
1596     emitByte(BaseOpcode + CC, OS);
1597     emitRegModRMByte(MI.getOperand(RegOp), 0, OS);
1598     break;
1599   }
1600 
1601   case X86II::MRMXr:
1602   case X86II::MRM0r:
1603   case X86II::MRM1r:
1604   case X86II::MRM2r:
1605   case X86II::MRM3r:
1606   case X86II::MRM4r:
1607   case X86II::MRM5r:
1608   case X86II::MRM6r:
1609   case X86II::MRM7r:
1610     if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1611       ++CurOp;
1612     if (HasEVEX_K) // Skip writemask
1613       ++CurOp;
1614     emitByte(BaseOpcode, OS);
1615     emitRegModRMByte(MI.getOperand(CurOp++),
1616                      (Form == X86II::MRMXr) ? 0 : Form - X86II::MRM0r, OS);
1617     break;
1618   case X86II::MRMr0:
1619     emitByte(BaseOpcode, OS);
1620     emitByte(modRMByte(3, getX86RegNum(MI.getOperand(CurOp++)),0), OS);
1621     break;
1622 
1623   case X86II::MRMXmCC: {
1624     unsigned FirstMemOp = CurOp;
1625     CurOp = FirstMemOp + X86::AddrNumOperands;
1626 
1627     unsigned CC = MI.getOperand(CurOp++).getImm();
1628     emitByte(BaseOpcode + CC, OS);
1629 
1630     emitMemModRMByte(MI, FirstMemOp, 0, TSFlags, HasREX, StartByte, OS, Fixups,
1631                      STI);
1632     break;
1633   }
1634 
1635   case X86II::MRMXm:
1636   case X86II::MRM0m:
1637   case X86II::MRM1m:
1638   case X86II::MRM2m:
1639   case X86II::MRM3m:
1640   case X86II::MRM4m:
1641   case X86II::MRM5m:
1642   case X86II::MRM6m:
1643   case X86II::MRM7m:
1644     if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1645       ++CurOp;
1646     if (HasEVEX_K) // Skip writemask
1647       ++CurOp;
1648     emitByte(BaseOpcode, OS);
1649     emitMemModRMByte(MI, CurOp,
1650                      (Form == X86II::MRMXm) ? 0 : Form - X86II::MRM0m, TSFlags,
1651                      HasREX, StartByte, OS, Fixups, STI);
1652     CurOp += X86::AddrNumOperands;
1653     break;
1654 
1655   case X86II::MRM0X:
1656   case X86II::MRM1X:
1657   case X86II::MRM2X:
1658   case X86II::MRM3X:
1659   case X86II::MRM4X:
1660   case X86II::MRM5X:
1661   case X86II::MRM6X:
1662   case X86II::MRM7X:
1663     emitByte(BaseOpcode, OS);
1664     emitByte(0xC0 + ((Form - X86II::MRM0X) << 3), OS);
1665     break;
1666 
1667   case X86II::MRM_C0:
1668   case X86II::MRM_C1:
1669   case X86II::MRM_C2:
1670   case X86II::MRM_C3:
1671   case X86II::MRM_C4:
1672   case X86II::MRM_C5:
1673   case X86II::MRM_C6:
1674   case X86II::MRM_C7:
1675   case X86II::MRM_C8:
1676   case X86II::MRM_C9:
1677   case X86II::MRM_CA:
1678   case X86II::MRM_CB:
1679   case X86II::MRM_CC:
1680   case X86II::MRM_CD:
1681   case X86II::MRM_CE:
1682   case X86II::MRM_CF:
1683   case X86II::MRM_D0:
1684   case X86II::MRM_D1:
1685   case X86II::MRM_D2:
1686   case X86II::MRM_D3:
1687   case X86II::MRM_D4:
1688   case X86II::MRM_D5:
1689   case X86II::MRM_D6:
1690   case X86II::MRM_D7:
1691   case X86II::MRM_D8:
1692   case X86II::MRM_D9:
1693   case X86II::MRM_DA:
1694   case X86II::MRM_DB:
1695   case X86II::MRM_DC:
1696   case X86II::MRM_DD:
1697   case X86II::MRM_DE:
1698   case X86II::MRM_DF:
1699   case X86II::MRM_E0:
1700   case X86II::MRM_E1:
1701   case X86II::MRM_E2:
1702   case X86II::MRM_E3:
1703   case X86II::MRM_E4:
1704   case X86II::MRM_E5:
1705   case X86II::MRM_E6:
1706   case X86II::MRM_E7:
1707   case X86II::MRM_E8:
1708   case X86II::MRM_E9:
1709   case X86II::MRM_EA:
1710   case X86II::MRM_EB:
1711   case X86II::MRM_EC:
1712   case X86II::MRM_ED:
1713   case X86II::MRM_EE:
1714   case X86II::MRM_EF:
1715   case X86II::MRM_F0:
1716   case X86II::MRM_F1:
1717   case X86II::MRM_F2:
1718   case X86II::MRM_F3:
1719   case X86II::MRM_F4:
1720   case X86II::MRM_F5:
1721   case X86II::MRM_F6:
1722   case X86II::MRM_F7:
1723   case X86II::MRM_F8:
1724   case X86II::MRM_F9:
1725   case X86II::MRM_FA:
1726   case X86II::MRM_FB:
1727   case X86II::MRM_FC:
1728   case X86II::MRM_FD:
1729   case X86II::MRM_FE:
1730   case X86II::MRM_FF:
1731     emitByte(BaseOpcode, OS);
1732     emitByte(0xC0 + Form - X86II::MRM_C0, OS);
1733     break;
1734   }
1735 
1736   if (HasVEX_I8Reg) {
1737     // The last source register of a 4 operand instruction in AVX is encoded
1738     // in bits[7:4] of a immediate byte.
1739     assert(I8RegNum < 16 && "Register encoding out of range");
1740     I8RegNum <<= 4;
1741     if (CurOp != NumOps) {
1742       unsigned Val = MI.getOperand(CurOp++).getImm();
1743       assert(Val < 16 && "Immediate operand value out of range");
1744       I8RegNum |= Val;
1745     }
1746     emitImmediate(MCOperand::createImm(I8RegNum), MI.getLoc(), 1, FK_Data_1,
1747                   StartByte, OS, Fixups);
1748   } else {
1749     // If there is a remaining operand, it must be a trailing immediate. Emit it
1750     // according to the right size for the instruction. Some instructions
1751     // (SSE4a extrq and insertq) have two trailing immediates.
1752     while (CurOp != NumOps && NumOps - CurOp <= 2) {
1753       emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1754                     X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1755                     StartByte, OS, Fixups);
1756     }
1757   }
1758 
1759   if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow)
1760     emitByte(X86II::getBaseOpcodeFor(TSFlags), OS);
1761 
1762   assert(OS.tell() - StartByte <= 15 &&
1763          "The size of instruction must be no longer than 15.");
1764 #ifndef NDEBUG
1765   // FIXME: Verify.
1766   if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
1767     errs() << "Cannot encode all operands of: ";
1768     MI.dump();
1769     errs() << '\n';
1770     abort();
1771   }
1772 #endif
1773 }
1774 
1775 MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
1776                                             MCContext &Ctx) {
1777   return new X86MCCodeEmitter(MCII, Ctx);
1778 }
1779