1 //===-- X86MCTargetDesc.cpp - X86 Target Descriptions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides X86 specific target descriptions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86MCTargetDesc.h"
14 #include "TargetInfo/X86TargetInfo.h"
15 #include "X86ATTInstPrinter.h"
16 #include "X86BaseInfo.h"
17 #include "X86IntelInstPrinter.h"
18 #include "X86MCAsmInfo.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/DebugInfo/CodeView/CodeView.h"
22 #include "llvm/MC/MCDwarf.h"
23 #include "llvm/MC/MCInstrAnalysis.h"
24 #include "llvm/MC/MCInstrInfo.h"
25 #include "llvm/MC/MCRegisterInfo.h"
26 #include "llvm/MC/MCStreamer.h"
27 #include "llvm/MC/MCSubtargetInfo.h"
28 #include "llvm/MC/MachineLocation.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/Host.h"
31 #include "llvm/Support/TargetRegistry.h"
32 
33 using namespace llvm;
34 
35 #define GET_REGINFO_MC_DESC
36 #include "X86GenRegisterInfo.inc"
37 
38 #define GET_INSTRINFO_MC_DESC
39 #define GET_INSTRINFO_MC_HELPERS
40 #include "X86GenInstrInfo.inc"
41 
42 #define GET_SUBTARGETINFO_MC_DESC
43 #include "X86GenSubtargetInfo.inc"
44 
45 std::string X86_MC::ParseX86Triple(const Triple &TT) {
46   std::string FS;
47   // SSE2 should default to enabled in 64-bit mode, but can be turned off
48   // explicitly.
49   if (TT.isArch64Bit())
50     FS = "+64bit-mode,-32bit-mode,-16bit-mode,+sse2";
51   else if (TT.getEnvironment() != Triple::CODE16)
52     FS = "-64bit-mode,+32bit-mode,-16bit-mode";
53   else
54     FS = "-64bit-mode,-32bit-mode,+16bit-mode";
55 
56   return FS;
57 }
58 
59 unsigned X86_MC::getDwarfRegFlavour(const Triple &TT, bool isEH) {
60   if (TT.getArch() == Triple::x86_64)
61     return DWARFFlavour::X86_64;
62 
63   if (TT.isOSDarwin())
64     return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic;
65   if (TT.isOSCygMing())
66     // Unsupported by now, just quick fallback
67     return DWARFFlavour::X86_32_Generic;
68   return DWARFFlavour::X86_32_Generic;
69 }
70 
71 bool X86_MC::hasLockPrefix(const MCInst &MI) {
72   return MI.getFlags() & X86::IP_HAS_LOCK;
73 }
74 
75 void X86_MC::initLLVMToSEHAndCVRegMapping(MCRegisterInfo *MRI) {
76   // FIXME: TableGen these.
77   for (unsigned Reg = X86::NoRegister + 1; Reg < X86::NUM_TARGET_REGS; ++Reg) {
78     unsigned SEH = MRI->getEncodingValue(Reg);
79     MRI->mapLLVMRegToSEHReg(Reg, SEH);
80   }
81 
82   // Mapping from CodeView to MC register id.
83   static const struct {
84     codeview::RegisterId CVReg;
85     MCPhysReg Reg;
86   } RegMap[] = {
87       {codeview::RegisterId::AL, X86::AL},
88       {codeview::RegisterId::CL, X86::CL},
89       {codeview::RegisterId::DL, X86::DL},
90       {codeview::RegisterId::BL, X86::BL},
91       {codeview::RegisterId::AH, X86::AH},
92       {codeview::RegisterId::CH, X86::CH},
93       {codeview::RegisterId::DH, X86::DH},
94       {codeview::RegisterId::BH, X86::BH},
95       {codeview::RegisterId::AX, X86::AX},
96       {codeview::RegisterId::CX, X86::CX},
97       {codeview::RegisterId::DX, X86::DX},
98       {codeview::RegisterId::BX, X86::BX},
99       {codeview::RegisterId::SP, X86::SP},
100       {codeview::RegisterId::BP, X86::BP},
101       {codeview::RegisterId::SI, X86::SI},
102       {codeview::RegisterId::DI, X86::DI},
103       {codeview::RegisterId::EAX, X86::EAX},
104       {codeview::RegisterId::ECX, X86::ECX},
105       {codeview::RegisterId::EDX, X86::EDX},
106       {codeview::RegisterId::EBX, X86::EBX},
107       {codeview::RegisterId::ESP, X86::ESP},
108       {codeview::RegisterId::EBP, X86::EBP},
109       {codeview::RegisterId::ESI, X86::ESI},
110       {codeview::RegisterId::EDI, X86::EDI},
111 
112       {codeview::RegisterId::EFLAGS, X86::EFLAGS},
113 
114       {codeview::RegisterId::ST0, X86::FP0},
115       {codeview::RegisterId::ST1, X86::FP1},
116       {codeview::RegisterId::ST2, X86::FP2},
117       {codeview::RegisterId::ST3, X86::FP3},
118       {codeview::RegisterId::ST4, X86::FP4},
119       {codeview::RegisterId::ST5, X86::FP5},
120       {codeview::RegisterId::ST6, X86::FP6},
121       {codeview::RegisterId::ST7, X86::FP7},
122 
123       {codeview::RegisterId::MM0, X86::MM0},
124       {codeview::RegisterId::MM1, X86::MM1},
125       {codeview::RegisterId::MM2, X86::MM2},
126       {codeview::RegisterId::MM3, X86::MM3},
127       {codeview::RegisterId::MM4, X86::MM4},
128       {codeview::RegisterId::MM5, X86::MM5},
129       {codeview::RegisterId::MM6, X86::MM6},
130       {codeview::RegisterId::MM7, X86::MM7},
131 
132       {codeview::RegisterId::XMM0, X86::XMM0},
133       {codeview::RegisterId::XMM1, X86::XMM1},
134       {codeview::RegisterId::XMM2, X86::XMM2},
135       {codeview::RegisterId::XMM3, X86::XMM3},
136       {codeview::RegisterId::XMM4, X86::XMM4},
137       {codeview::RegisterId::XMM5, X86::XMM5},
138       {codeview::RegisterId::XMM6, X86::XMM6},
139       {codeview::RegisterId::XMM7, X86::XMM7},
140 
141       {codeview::RegisterId::XMM8, X86::XMM8},
142       {codeview::RegisterId::XMM9, X86::XMM9},
143       {codeview::RegisterId::XMM10, X86::XMM10},
144       {codeview::RegisterId::XMM11, X86::XMM11},
145       {codeview::RegisterId::XMM12, X86::XMM12},
146       {codeview::RegisterId::XMM13, X86::XMM13},
147       {codeview::RegisterId::XMM14, X86::XMM14},
148       {codeview::RegisterId::XMM15, X86::XMM15},
149 
150       {codeview::RegisterId::SIL, X86::SIL},
151       {codeview::RegisterId::DIL, X86::DIL},
152       {codeview::RegisterId::BPL, X86::BPL},
153       {codeview::RegisterId::SPL, X86::SPL},
154       {codeview::RegisterId::RAX, X86::RAX},
155       {codeview::RegisterId::RBX, X86::RBX},
156       {codeview::RegisterId::RCX, X86::RCX},
157       {codeview::RegisterId::RDX, X86::RDX},
158       {codeview::RegisterId::RSI, X86::RSI},
159       {codeview::RegisterId::RDI, X86::RDI},
160       {codeview::RegisterId::RBP, X86::RBP},
161       {codeview::RegisterId::RSP, X86::RSP},
162       {codeview::RegisterId::R8, X86::R8},
163       {codeview::RegisterId::R9, X86::R9},
164       {codeview::RegisterId::R10, X86::R10},
165       {codeview::RegisterId::R11, X86::R11},
166       {codeview::RegisterId::R12, X86::R12},
167       {codeview::RegisterId::R13, X86::R13},
168       {codeview::RegisterId::R14, X86::R14},
169       {codeview::RegisterId::R15, X86::R15},
170       {codeview::RegisterId::R8B, X86::R8B},
171       {codeview::RegisterId::R9B, X86::R9B},
172       {codeview::RegisterId::R10B, X86::R10B},
173       {codeview::RegisterId::R11B, X86::R11B},
174       {codeview::RegisterId::R12B, X86::R12B},
175       {codeview::RegisterId::R13B, X86::R13B},
176       {codeview::RegisterId::R14B, X86::R14B},
177       {codeview::RegisterId::R15B, X86::R15B},
178       {codeview::RegisterId::R8W, X86::R8W},
179       {codeview::RegisterId::R9W, X86::R9W},
180       {codeview::RegisterId::R10W, X86::R10W},
181       {codeview::RegisterId::R11W, X86::R11W},
182       {codeview::RegisterId::R12W, X86::R12W},
183       {codeview::RegisterId::R13W, X86::R13W},
184       {codeview::RegisterId::R14W, X86::R14W},
185       {codeview::RegisterId::R15W, X86::R15W},
186       {codeview::RegisterId::R8D, X86::R8D},
187       {codeview::RegisterId::R9D, X86::R9D},
188       {codeview::RegisterId::R10D, X86::R10D},
189       {codeview::RegisterId::R11D, X86::R11D},
190       {codeview::RegisterId::R12D, X86::R12D},
191       {codeview::RegisterId::R13D, X86::R13D},
192       {codeview::RegisterId::R14D, X86::R14D},
193       {codeview::RegisterId::R15D, X86::R15D},
194       {codeview::RegisterId::AMD64_YMM0, X86::YMM0},
195       {codeview::RegisterId::AMD64_YMM1, X86::YMM1},
196       {codeview::RegisterId::AMD64_YMM2, X86::YMM2},
197       {codeview::RegisterId::AMD64_YMM3, X86::YMM3},
198       {codeview::RegisterId::AMD64_YMM4, X86::YMM4},
199       {codeview::RegisterId::AMD64_YMM5, X86::YMM5},
200       {codeview::RegisterId::AMD64_YMM6, X86::YMM6},
201       {codeview::RegisterId::AMD64_YMM7, X86::YMM7},
202       {codeview::RegisterId::AMD64_YMM8, X86::YMM8},
203       {codeview::RegisterId::AMD64_YMM9, X86::YMM9},
204       {codeview::RegisterId::AMD64_YMM10, X86::YMM10},
205       {codeview::RegisterId::AMD64_YMM11, X86::YMM11},
206       {codeview::RegisterId::AMD64_YMM12, X86::YMM12},
207       {codeview::RegisterId::AMD64_YMM13, X86::YMM13},
208       {codeview::RegisterId::AMD64_YMM14, X86::YMM14},
209       {codeview::RegisterId::AMD64_YMM15, X86::YMM15},
210       {codeview::RegisterId::AMD64_YMM16, X86::YMM16},
211       {codeview::RegisterId::AMD64_YMM17, X86::YMM17},
212       {codeview::RegisterId::AMD64_YMM18, X86::YMM18},
213       {codeview::RegisterId::AMD64_YMM19, X86::YMM19},
214       {codeview::RegisterId::AMD64_YMM20, X86::YMM20},
215       {codeview::RegisterId::AMD64_YMM21, X86::YMM21},
216       {codeview::RegisterId::AMD64_YMM22, X86::YMM22},
217       {codeview::RegisterId::AMD64_YMM23, X86::YMM23},
218       {codeview::RegisterId::AMD64_YMM24, X86::YMM24},
219       {codeview::RegisterId::AMD64_YMM25, X86::YMM25},
220       {codeview::RegisterId::AMD64_YMM26, X86::YMM26},
221       {codeview::RegisterId::AMD64_YMM27, X86::YMM27},
222       {codeview::RegisterId::AMD64_YMM28, X86::YMM28},
223       {codeview::RegisterId::AMD64_YMM29, X86::YMM29},
224       {codeview::RegisterId::AMD64_YMM30, X86::YMM30},
225       {codeview::RegisterId::AMD64_YMM31, X86::YMM31},
226       {codeview::RegisterId::AMD64_ZMM0, X86::ZMM0},
227       {codeview::RegisterId::AMD64_ZMM1, X86::ZMM1},
228       {codeview::RegisterId::AMD64_ZMM2, X86::ZMM2},
229       {codeview::RegisterId::AMD64_ZMM3, X86::ZMM3},
230       {codeview::RegisterId::AMD64_ZMM4, X86::ZMM4},
231       {codeview::RegisterId::AMD64_ZMM5, X86::ZMM5},
232       {codeview::RegisterId::AMD64_ZMM6, X86::ZMM6},
233       {codeview::RegisterId::AMD64_ZMM7, X86::ZMM7},
234       {codeview::RegisterId::AMD64_ZMM8, X86::ZMM8},
235       {codeview::RegisterId::AMD64_ZMM9, X86::ZMM9},
236       {codeview::RegisterId::AMD64_ZMM10, X86::ZMM10},
237       {codeview::RegisterId::AMD64_ZMM11, X86::ZMM11},
238       {codeview::RegisterId::AMD64_ZMM12, X86::ZMM12},
239       {codeview::RegisterId::AMD64_ZMM13, X86::ZMM13},
240       {codeview::RegisterId::AMD64_ZMM14, X86::ZMM14},
241       {codeview::RegisterId::AMD64_ZMM15, X86::ZMM15},
242       {codeview::RegisterId::AMD64_ZMM16, X86::ZMM16},
243       {codeview::RegisterId::AMD64_ZMM17, X86::ZMM17},
244       {codeview::RegisterId::AMD64_ZMM18, X86::ZMM18},
245       {codeview::RegisterId::AMD64_ZMM19, X86::ZMM19},
246       {codeview::RegisterId::AMD64_ZMM20, X86::ZMM20},
247       {codeview::RegisterId::AMD64_ZMM21, X86::ZMM21},
248       {codeview::RegisterId::AMD64_ZMM22, X86::ZMM22},
249       {codeview::RegisterId::AMD64_ZMM23, X86::ZMM23},
250       {codeview::RegisterId::AMD64_ZMM24, X86::ZMM24},
251       {codeview::RegisterId::AMD64_ZMM25, X86::ZMM25},
252       {codeview::RegisterId::AMD64_ZMM26, X86::ZMM26},
253       {codeview::RegisterId::AMD64_ZMM27, X86::ZMM27},
254       {codeview::RegisterId::AMD64_ZMM28, X86::ZMM28},
255       {codeview::RegisterId::AMD64_ZMM29, X86::ZMM29},
256       {codeview::RegisterId::AMD64_ZMM30, X86::ZMM30},
257       {codeview::RegisterId::AMD64_ZMM31, X86::ZMM31},
258       {codeview::RegisterId::AMD64_K0, X86::K0},
259       {codeview::RegisterId::AMD64_K1, X86::K1},
260       {codeview::RegisterId::AMD64_K2, X86::K2},
261       {codeview::RegisterId::AMD64_K3, X86::K3},
262       {codeview::RegisterId::AMD64_K4, X86::K4},
263       {codeview::RegisterId::AMD64_K5, X86::K5},
264       {codeview::RegisterId::AMD64_K6, X86::K6},
265       {codeview::RegisterId::AMD64_K7, X86::K7},
266       {codeview::RegisterId::AMD64_XMM16, X86::XMM16},
267       {codeview::RegisterId::AMD64_XMM17, X86::XMM17},
268       {codeview::RegisterId::AMD64_XMM18, X86::XMM18},
269       {codeview::RegisterId::AMD64_XMM19, X86::XMM19},
270       {codeview::RegisterId::AMD64_XMM20, X86::XMM20},
271       {codeview::RegisterId::AMD64_XMM21, X86::XMM21},
272       {codeview::RegisterId::AMD64_XMM22, X86::XMM22},
273       {codeview::RegisterId::AMD64_XMM23, X86::XMM23},
274       {codeview::RegisterId::AMD64_XMM24, X86::XMM24},
275       {codeview::RegisterId::AMD64_XMM25, X86::XMM25},
276       {codeview::RegisterId::AMD64_XMM26, X86::XMM26},
277       {codeview::RegisterId::AMD64_XMM27, X86::XMM27},
278       {codeview::RegisterId::AMD64_XMM28, X86::XMM28},
279       {codeview::RegisterId::AMD64_XMM29, X86::XMM29},
280       {codeview::RegisterId::AMD64_XMM30, X86::XMM30},
281       {codeview::RegisterId::AMD64_XMM31, X86::XMM31},
282 
283   };
284   for (unsigned I = 0; I < array_lengthof(RegMap); ++I)
285     MRI->mapLLVMRegToCVReg(RegMap[I].Reg, static_cast<int>(RegMap[I].CVReg));
286 }
287 
288 MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(const Triple &TT,
289                                                   StringRef CPU, StringRef FS) {
290   std::string ArchFS = X86_MC::ParseX86Triple(TT);
291   assert(!ArchFS.empty() && "Failed to parse X86 triple");
292   if (!FS.empty())
293     ArchFS = (Twine(ArchFS) + "," + FS).str();
294 
295   if (CPU.empty())
296     CPU = "generic";
297 
298   return createX86MCSubtargetInfoImpl(TT, CPU, /*TuneCPU*/ CPU, ArchFS);
299 }
300 
301 static MCInstrInfo *createX86MCInstrInfo() {
302   MCInstrInfo *X = new MCInstrInfo();
303   InitX86MCInstrInfo(X);
304   return X;
305 }
306 
307 static MCRegisterInfo *createX86MCRegisterInfo(const Triple &TT) {
308   unsigned RA = (TT.getArch() == Triple::x86_64)
309                     ? X86::RIP  // Should have dwarf #16.
310                     : X86::EIP; // Should have dwarf #8.
311 
312   MCRegisterInfo *X = new MCRegisterInfo();
313   InitX86MCRegisterInfo(X, RA, X86_MC::getDwarfRegFlavour(TT, false),
314                         X86_MC::getDwarfRegFlavour(TT, true), RA);
315   X86_MC::initLLVMToSEHAndCVRegMapping(X);
316   return X;
317 }
318 
319 static MCAsmInfo *createX86MCAsmInfo(const MCRegisterInfo &MRI,
320                                      const Triple &TheTriple,
321                                      const MCTargetOptions &Options) {
322   bool is64Bit = TheTriple.getArch() == Triple::x86_64;
323 
324   MCAsmInfo *MAI;
325   if (TheTriple.isOSBinFormatMachO()) {
326     if (is64Bit)
327       MAI = new X86_64MCAsmInfoDarwin(TheTriple);
328     else
329       MAI = new X86MCAsmInfoDarwin(TheTriple);
330   } else if (TheTriple.isOSBinFormatELF()) {
331     // Force the use of an ELF container.
332     MAI = new X86ELFMCAsmInfo(TheTriple);
333   } else if (TheTriple.isWindowsMSVCEnvironment() ||
334              TheTriple.isWindowsCoreCLREnvironment()) {
335     if (Options.getAssemblyLanguage().equals_insensitive("masm"))
336       MAI = new X86MCAsmInfoMicrosoftMASM(TheTriple);
337     else
338       MAI = new X86MCAsmInfoMicrosoft(TheTriple);
339   } else if (TheTriple.isOSCygMing() ||
340              TheTriple.isWindowsItaniumEnvironment()) {
341     MAI = new X86MCAsmInfoGNUCOFF(TheTriple);
342   } else {
343     // The default is ELF.
344     MAI = new X86ELFMCAsmInfo(TheTriple);
345   }
346 
347   // Initialize initial frame state.
348   // Calculate amount of bytes used for return address storing
349   int stackGrowth = is64Bit ? -8 : -4;
350 
351   // Initial state of the frame pointer is esp+stackGrowth.
352   unsigned StackPtr = is64Bit ? X86::RSP : X86::ESP;
353   MCCFIInstruction Inst = MCCFIInstruction::cfiDefCfa(
354       nullptr, MRI.getDwarfRegNum(StackPtr, true), -stackGrowth);
355   MAI->addInitialFrameState(Inst);
356 
357   // Add return address to move list
358   unsigned InstPtr = is64Bit ? X86::RIP : X86::EIP;
359   MCCFIInstruction Inst2 = MCCFIInstruction::createOffset(
360       nullptr, MRI.getDwarfRegNum(InstPtr, true), stackGrowth);
361   MAI->addInitialFrameState(Inst2);
362 
363   return MAI;
364 }
365 
366 static MCInstPrinter *createX86MCInstPrinter(const Triple &T,
367                                              unsigned SyntaxVariant,
368                                              const MCAsmInfo &MAI,
369                                              const MCInstrInfo &MII,
370                                              const MCRegisterInfo &MRI) {
371   if (SyntaxVariant == 0)
372     return new X86ATTInstPrinter(MAI, MII, MRI);
373   if (SyntaxVariant == 1)
374     return new X86IntelInstPrinter(MAI, MII, MRI);
375   return nullptr;
376 }
377 
378 static MCRelocationInfo *createX86MCRelocationInfo(const Triple &TheTriple,
379                                                    MCContext &Ctx) {
380   // Default to the stock relocation info.
381   return llvm::createMCRelocationInfo(TheTriple, Ctx);
382 }
383 
384 namespace llvm {
385 namespace X86_MC {
386 
387 class X86MCInstrAnalysis : public MCInstrAnalysis {
388   X86MCInstrAnalysis(const X86MCInstrAnalysis &) = delete;
389   X86MCInstrAnalysis &operator=(const X86MCInstrAnalysis &) = delete;
390   virtual ~X86MCInstrAnalysis() = default;
391 
392 public:
393   X86MCInstrAnalysis(const MCInstrInfo *MCII) : MCInstrAnalysis(MCII) {}
394 
395 #define GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS
396 #include "X86GenSubtargetInfo.inc"
397 
398   bool clearsSuperRegisters(const MCRegisterInfo &MRI, const MCInst &Inst,
399                             APInt &Mask) const override;
400   std::vector<std::pair<uint64_t, uint64_t>>
401   findPltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
402                  uint64_t GotSectionVA,
403                  const Triple &TargetTriple) const override;
404 
405   bool evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size,
406                       uint64_t &Target) const override;
407   Optional<uint64_t> evaluateMemoryOperandAddress(const MCInst &Inst,
408                                                   uint64_t Addr,
409                                                   uint64_t Size) const override;
410 };
411 
412 #define GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS
413 #include "X86GenSubtargetInfo.inc"
414 
415 bool X86MCInstrAnalysis::clearsSuperRegisters(const MCRegisterInfo &MRI,
416                                               const MCInst &Inst,
417                                               APInt &Mask) const {
418   const MCInstrDesc &Desc = Info->get(Inst.getOpcode());
419   unsigned NumDefs = Desc.getNumDefs();
420   unsigned NumImplicitDefs = Desc.getNumImplicitDefs();
421   assert(Mask.getBitWidth() == NumDefs + NumImplicitDefs &&
422          "Unexpected number of bits in the mask!");
423 
424   bool HasVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::VEX;
425   bool HasEVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX;
426   bool HasXOP = (Desc.TSFlags & X86II::EncodingMask) == X86II::XOP;
427 
428   const MCRegisterClass &GR32RC = MRI.getRegClass(X86::GR32RegClassID);
429   const MCRegisterClass &VR128XRC = MRI.getRegClass(X86::VR128XRegClassID);
430   const MCRegisterClass &VR256XRC = MRI.getRegClass(X86::VR256XRegClassID);
431 
432   auto ClearsSuperReg = [=](unsigned RegID) {
433     // On X86-64, a general purpose integer register is viewed as a 64-bit
434     // register internal to the processor.
435     // An update to the lower 32 bits of a 64 bit integer register is
436     // architecturally defined to zero extend the upper 32 bits.
437     if (GR32RC.contains(RegID))
438       return true;
439 
440     // Early exit if this instruction has no vex/evex/xop prefix.
441     if (!HasEVEX && !HasVEX && !HasXOP)
442       return false;
443 
444     // All VEX and EVEX encoded instructions are defined to zero the high bits
445     // of the destination register up to VLMAX (i.e. the maximum vector register
446     // width pertaining to the instruction).
447     // We assume the same behavior for XOP instructions too.
448     return VR128XRC.contains(RegID) || VR256XRC.contains(RegID);
449   };
450 
451   Mask.clearAllBits();
452   for (unsigned I = 0, E = NumDefs; I < E; ++I) {
453     const MCOperand &Op = Inst.getOperand(I);
454     if (ClearsSuperReg(Op.getReg()))
455       Mask.setBit(I);
456   }
457 
458   for (unsigned I = 0, E = NumImplicitDefs; I < E; ++I) {
459     const MCPhysReg Reg = Desc.getImplicitDefs()[I];
460     if (ClearsSuperReg(Reg))
461       Mask.setBit(NumDefs + I);
462   }
463 
464   return Mask.getBoolValue();
465 }
466 
467 static std::vector<std::pair<uint64_t, uint64_t>>
468 findX86PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
469                   uint64_t GotPltSectionVA) {
470   // Do a lightweight parsing of PLT entries.
471   std::vector<std::pair<uint64_t, uint64_t>> Result;
472   for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) {
473     // Recognize a jmp.
474     if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0xa3) {
475       // The jmp instruction at the beginning of each PLT entry jumps to the
476       // address of the base of the .got.plt section plus the immediate.
477       uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
478       Result.push_back(
479           std::make_pair(PltSectionVA + Byte, GotPltSectionVA + Imm));
480       Byte += 6;
481     } else if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
482       // The jmp instruction at the beginning of each PLT entry jumps to the
483       // immediate.
484       uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
485       Result.push_back(std::make_pair(PltSectionVA + Byte, Imm));
486       Byte += 6;
487     } else
488       Byte++;
489   }
490   return Result;
491 }
492 
493 static std::vector<std::pair<uint64_t, uint64_t>>
494 findX86_64PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents) {
495   // Do a lightweight parsing of PLT entries.
496   std::vector<std::pair<uint64_t, uint64_t>> Result;
497   for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) {
498     // Recognize a jmp.
499     if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
500       // The jmp instruction at the beginning of each PLT entry jumps to the
501       // address of the next instruction plus the immediate.
502       uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
503       Result.push_back(
504           std::make_pair(PltSectionVA + Byte, PltSectionVA + Byte + 6 + Imm));
505       Byte += 6;
506     } else
507       Byte++;
508   }
509   return Result;
510 }
511 
512 std::vector<std::pair<uint64_t, uint64_t>> X86MCInstrAnalysis::findPltEntries(
513     uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
514     uint64_t GotPltSectionVA, const Triple &TargetTriple) const {
515   switch (TargetTriple.getArch()) {
516     case Triple::x86:
517       return findX86PltEntries(PltSectionVA, PltContents, GotPltSectionVA);
518     case Triple::x86_64:
519       return findX86_64PltEntries(PltSectionVA, PltContents);
520     default:
521       return {};
522     }
523 }
524 
525 bool X86MCInstrAnalysis::evaluateBranch(const MCInst &Inst, uint64_t Addr,
526                                         uint64_t Size, uint64_t &Target) const {
527   if (Inst.getNumOperands() == 0 ||
528       Info->get(Inst.getOpcode()).OpInfo[0].OperandType != MCOI::OPERAND_PCREL)
529     return false;
530   Target = Addr + Size + Inst.getOperand(0).getImm();
531   return true;
532 }
533 
534 Optional<uint64_t> X86MCInstrAnalysis::evaluateMemoryOperandAddress(
535     const MCInst &Inst, uint64_t Addr, uint64_t Size) const {
536   const MCInstrDesc &MCID = Info->get(Inst.getOpcode());
537   int MemOpStart = X86II::getMemoryOperandNo(MCID.TSFlags);
538   if (MemOpStart == -1)
539     return None;
540   MemOpStart += X86II::getOperandBias(MCID);
541 
542   const MCOperand &SegReg = Inst.getOperand(MemOpStart + X86::AddrSegmentReg);
543   const MCOperand &BaseReg = Inst.getOperand(MemOpStart + X86::AddrBaseReg);
544   const MCOperand &IndexReg = Inst.getOperand(MemOpStart + X86::AddrIndexReg);
545   const MCOperand &ScaleAmt = Inst.getOperand(MemOpStart + X86::AddrScaleAmt);
546   const MCOperand &Disp = Inst.getOperand(MemOpStart + X86::AddrDisp);
547   if (SegReg.getReg() != 0 || IndexReg.getReg() != 0 || ScaleAmt.getImm() != 1 ||
548       !Disp.isImm())
549     return None;
550 
551   // RIP-relative addressing.
552   if (BaseReg.getReg() == X86::RIP)
553     return Addr + Size + Disp.getImm();
554 
555   return None;
556 }
557 
558 } // end of namespace X86_MC
559 
560 } // end of namespace llvm
561 
562 static MCInstrAnalysis *createX86MCInstrAnalysis(const MCInstrInfo *Info) {
563   return new X86_MC::X86MCInstrAnalysis(Info);
564 }
565 
566 // Force static initialization.
567 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86TargetMC() {
568   for (Target *T : {&getTheX86_32Target(), &getTheX86_64Target()}) {
569     // Register the MC asm info.
570     RegisterMCAsmInfoFn X(*T, createX86MCAsmInfo);
571 
572     // Register the MC instruction info.
573     TargetRegistry::RegisterMCInstrInfo(*T, createX86MCInstrInfo);
574 
575     // Register the MC register info.
576     TargetRegistry::RegisterMCRegInfo(*T, createX86MCRegisterInfo);
577 
578     // Register the MC subtarget info.
579     TargetRegistry::RegisterMCSubtargetInfo(*T,
580                                             X86_MC::createX86MCSubtargetInfo);
581 
582     // Register the MC instruction analyzer.
583     TargetRegistry::RegisterMCInstrAnalysis(*T, createX86MCInstrAnalysis);
584 
585     // Register the code emitter.
586     TargetRegistry::RegisterMCCodeEmitter(*T, createX86MCCodeEmitter);
587 
588     // Register the obj target streamer.
589     TargetRegistry::RegisterObjectTargetStreamer(*T,
590                                                  createX86ObjectTargetStreamer);
591 
592     // Register the asm target streamer.
593     TargetRegistry::RegisterAsmTargetStreamer(*T, createX86AsmTargetStreamer);
594 
595     TargetRegistry::RegisterCOFFStreamer(*T, createX86WinCOFFStreamer);
596 
597     // Register the MCInstPrinter.
598     TargetRegistry::RegisterMCInstPrinter(*T, createX86MCInstPrinter);
599 
600     // Register the MC relocation info.
601     TargetRegistry::RegisterMCRelocationInfo(*T, createX86MCRelocationInfo);
602   }
603 
604   // Register the asm backend.
605   TargetRegistry::RegisterMCAsmBackend(getTheX86_32Target(),
606                                        createX86_32AsmBackend);
607   TargetRegistry::RegisterMCAsmBackend(getTheX86_64Target(),
608                                        createX86_64AsmBackend);
609 }
610 
611 MCRegister llvm::getX86SubSuperRegisterOrZero(MCRegister Reg, unsigned Size,
612                                               bool High) {
613   switch (Size) {
614   default: return X86::NoRegister;
615   case 8:
616     if (High) {
617       switch (Reg.id()) {
618       default: return getX86SubSuperRegisterOrZero(Reg, 64);
619       case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
620         return X86::SI;
621       case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
622         return X86::DI;
623       case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
624         return X86::BP;
625       case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
626         return X86::SP;
627       case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
628         return X86::AH;
629       case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
630         return X86::DH;
631       case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
632         return X86::CH;
633       case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
634         return X86::BH;
635       }
636     } else {
637       switch (Reg.id()) {
638       default: return X86::NoRegister;
639       case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
640         return X86::AL;
641       case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
642         return X86::DL;
643       case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
644         return X86::CL;
645       case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
646         return X86::BL;
647       case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
648         return X86::SIL;
649       case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
650         return X86::DIL;
651       case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
652         return X86::BPL;
653       case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
654         return X86::SPL;
655       case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
656         return X86::R8B;
657       case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
658         return X86::R9B;
659       case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
660         return X86::R10B;
661       case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
662         return X86::R11B;
663       case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
664         return X86::R12B;
665       case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
666         return X86::R13B;
667       case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
668         return X86::R14B;
669       case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
670         return X86::R15B;
671       }
672     }
673   case 16:
674     switch (Reg.id()) {
675     default: return X86::NoRegister;
676     case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
677       return X86::AX;
678     case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
679       return X86::DX;
680     case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
681       return X86::CX;
682     case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
683       return X86::BX;
684     case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
685       return X86::SI;
686     case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
687       return X86::DI;
688     case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
689       return X86::BP;
690     case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
691       return X86::SP;
692     case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
693       return X86::R8W;
694     case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
695       return X86::R9W;
696     case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
697       return X86::R10W;
698     case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
699       return X86::R11W;
700     case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
701       return X86::R12W;
702     case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
703       return X86::R13W;
704     case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
705       return X86::R14W;
706     case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
707       return X86::R15W;
708     }
709   case 32:
710     switch (Reg.id()) {
711     default: return X86::NoRegister;
712     case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
713       return X86::EAX;
714     case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
715       return X86::EDX;
716     case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
717       return X86::ECX;
718     case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
719       return X86::EBX;
720     case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
721       return X86::ESI;
722     case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
723       return X86::EDI;
724     case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
725       return X86::EBP;
726     case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
727       return X86::ESP;
728     case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
729       return X86::R8D;
730     case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
731       return X86::R9D;
732     case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
733       return X86::R10D;
734     case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
735       return X86::R11D;
736     case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
737       return X86::R12D;
738     case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
739       return X86::R13D;
740     case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
741       return X86::R14D;
742     case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
743       return X86::R15D;
744     }
745   case 64:
746     switch (Reg.id()) {
747     default: return 0;
748     case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
749       return X86::RAX;
750     case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
751       return X86::RDX;
752     case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
753       return X86::RCX;
754     case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
755       return X86::RBX;
756     case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
757       return X86::RSI;
758     case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
759       return X86::RDI;
760     case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
761       return X86::RBP;
762     case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
763       return X86::RSP;
764     case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
765       return X86::R8;
766     case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
767       return X86::R9;
768     case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
769       return X86::R10;
770     case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
771       return X86::R11;
772     case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
773       return X86::R12;
774     case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
775       return X86::R13;
776     case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
777       return X86::R14;
778     case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
779       return X86::R15;
780     }
781   }
782 }
783 
784 MCRegister llvm::getX86SubSuperRegister(MCRegister Reg, unsigned Size, bool High) {
785   MCRegister Res = getX86SubSuperRegisterOrZero(Reg, Size, High);
786   assert(Res != X86::NoRegister && "Unexpected register or VT");
787   return Res;
788 }
789 
790 
791