1//===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This describes the calling conventions for the X86-32 and X86-64
10// architectures.
11//
12//===----------------------------------------------------------------------===//
13
14/// CCIfSubtarget - Match if the current subtarget has a feature F.
15class CCIfSubtarget<string F, CCAction A>
16    : CCIf<!strconcat("static_cast<const X86Subtarget&>"
17                       "(State.getMachineFunction().getSubtarget()).", F),
18           A>;
19
20/// CCIfNotSubtarget - Match if the current subtarget doesn't has a feature F.
21class CCIfNotSubtarget<string F, CCAction A>
22    : CCIf<!strconcat("!static_cast<const X86Subtarget&>"
23                       "(State.getMachineFunction().getSubtarget()).", F),
24           A>;
25
26/// CCIfIsVarArgOnWin - Match if isVarArg on Windows 32bits.
27class CCIfIsVarArgOnWin<CCAction A>
28    : CCIf<"State.isVarArg() && "
29           "State.getMachineFunction().getSubtarget().getTargetTriple()."
30           "isWindowsMSVCEnvironment()",
31           A>;
32
33// Register classes for RegCall
34class RC_X86_RegCall {
35  list<Register> GPR_8 = [];
36  list<Register> GPR_16 = [];
37  list<Register> GPR_32 = [];
38  list<Register> GPR_64 = [];
39  list<Register> FP_CALL = [FP0];
40  list<Register> FP_RET = [FP0, FP1];
41  list<Register> XMM = [];
42  list<Register> YMM = [];
43  list<Register> ZMM = [];
44}
45
46// RegCall register classes for 32 bits
47def RC_X86_32_RegCall : RC_X86_RegCall {
48  let GPR_8 = [AL, CL, DL, DIL, SIL];
49  let GPR_16 = [AX, CX, DX, DI, SI];
50  let GPR_32 = [EAX, ECX, EDX, EDI, ESI];
51  let GPR_64 = [RAX]; ///< Not actually used, but AssignToReg can't handle []
52                      ///< \todo Fix AssignToReg to enable empty lists
53  let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7];
54  let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7];
55  let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7];
56}
57
58class RC_X86_64_RegCall : RC_X86_RegCall {
59  let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
60             XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15];
61  let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
62             YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15];
63  let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7,
64             ZMM8, ZMM9, ZMM10, ZMM11, ZMM12, ZMM13, ZMM14, ZMM15];
65}
66
67def RC_X86_64_RegCall_Win : RC_X86_64_RegCall {
68  let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R10B, R11B, R12B, R14B, R15B];
69  let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R10W, R11W, R12W, R14W, R15W];
70  let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R10D, R11D, R12D, R14D, R15D];
71  let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R10, R11, R12, R14, R15];
72}
73
74def RC_X86_64_RegCall_SysV : RC_X86_64_RegCall {
75  let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R12B, R13B, R14B, R15B];
76  let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R12W, R13W, R14W, R15W];
77  let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R12D, R13D, R14D, R15D];
78  let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R12, R13, R14, R15];
79}
80
81// X86-64 Intel regcall calling convention.
82multiclass X86_RegCall_base<RC_X86_RegCall RC> {
83def CC_#NAME : CallingConv<[
84  // Handles byval parameters.
85    CCIfSubtarget<"is64Bit()", CCIfByVal<CCPassByVal<8, 8>>>,
86    CCIfByVal<CCPassByVal<4, 4>>,
87
88    // Promote i1/i8/i16/v1i1 arguments to i32.
89    CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
90
91    // Promote v8i1/v16i1/v32i1 arguments to i32.
92    CCIfType<[v8i1, v16i1, v32i1], CCPromoteToType<i32>>,
93
94    // bool, char, int, enum, long, pointer --> GPR
95    CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
96
97    // long long, __int64 --> GPR
98    CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
99
100    // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
101    CCIfType<[v64i1], CCPromoteToType<i64>>,
102    CCIfSubtarget<"is64Bit()", CCIfType<[i64],
103      CCAssignToReg<RC.GPR_64>>>,
104    CCIfSubtarget<"is32Bit()", CCIfType<[i64],
105      CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
106
107    // float, double, float128 --> XMM
108    // In the case of SSE disabled --> save to stack
109    CCIfType<[f32, f64, f128],
110      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
111
112    // long double --> FP
113    CCIfType<[f80], CCAssignToReg<RC.FP_CALL>>,
114
115    // __m128, __m128i, __m128d --> XMM
116    // In the case of SSE disabled --> save to stack
117    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
118      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
119
120    // __m256, __m256i, __m256d --> YMM
121    // In the case of SSE disabled --> save to stack
122    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
123      CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
124
125    // __m512, __m512i, __m512d --> ZMM
126    // In the case of SSE disabled --> save to stack
127    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
128      CCIfSubtarget<"hasAVX512()",CCAssignToReg<RC.ZMM>>>,
129
130    // If no register was found -> assign to stack
131
132    // In 64 bit, assign 64/32 bit values to 8 byte stack
133    CCIfSubtarget<"is64Bit()", CCIfType<[i32, i64, f32, f64],
134      CCAssignToStack<8, 8>>>,
135
136    // In 32 bit, assign 64/32 bit values to 8/4 byte stack
137    CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
138    CCIfType<[i64, f64], CCAssignToStack<8, 4>>,
139
140    // MMX type gets 8 byte slot in stack , while alignment depends on target
141    CCIfSubtarget<"is64Bit()", CCIfType<[x86mmx], CCAssignToStack<8, 8>>>,
142    CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
143
144    // float 128 get stack slots whose size and alignment depends
145    // on the subtarget.
146    CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
147
148    // Vectors get 16-byte stack slots that are 16-byte aligned.
149    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
150      CCAssignToStack<16, 16>>,
151
152    // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
153    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
154      CCAssignToStack<32, 32>>,
155
156    // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
157    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
158      CCAssignToStack<64, 64>>
159]>;
160
161def RetCC_#NAME : CallingConv<[
162    // Promote i1, v1i1, v8i1 arguments to i8.
163    CCIfType<[i1, v1i1, v8i1], CCPromoteToType<i8>>,
164
165    // Promote v16i1 arguments to i16.
166    CCIfType<[v16i1], CCPromoteToType<i16>>,
167
168    // Promote v32i1 arguments to i32.
169    CCIfType<[v32i1], CCPromoteToType<i32>>,
170
171    // bool, char, int, enum, long, pointer --> GPR
172    CCIfType<[i8], CCAssignToReg<RC.GPR_8>>,
173    CCIfType<[i16], CCAssignToReg<RC.GPR_16>>,
174    CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
175
176    // long long, __int64 --> GPR
177    CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
178
179    // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
180    CCIfType<[v64i1], CCPromoteToType<i64>>,
181    CCIfSubtarget<"is64Bit()", CCIfType<[i64],
182      CCAssignToReg<RC.GPR_64>>>,
183    CCIfSubtarget<"is32Bit()", CCIfType<[i64],
184      CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
185
186    // long double --> FP
187    CCIfType<[f80], CCAssignToReg<RC.FP_RET>>,
188
189    // float, double, float128 --> XMM
190    CCIfType<[f32, f64, f128],
191      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
192
193    // __m128, __m128i, __m128d --> XMM
194    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
195      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
196
197    // __m256, __m256i, __m256d --> YMM
198    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
199      CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
200
201    // __m512, __m512i, __m512d --> ZMM
202    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
203      CCIfSubtarget<"hasAVX512()", CCAssignToReg<RC.ZMM>>>
204]>;
205}
206
207//===----------------------------------------------------------------------===//
208// Return Value Calling Conventions
209//===----------------------------------------------------------------------===//
210
211// Return-value conventions common to all X86 CC's.
212def RetCC_X86Common : CallingConv<[
213  // Scalar values are returned in AX first, then DX.  For i8, the ABI
214  // requires the values to be in AL and AH, however this code uses AL and DL
215  // instead. This is because using AH for the second register conflicts with
216  // the way LLVM does multiple return values -- a return of {i16,i8} would end
217  // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
218  // for functions that return two i8 values are currently expected to pack the
219  // values into an i16 (which uses AX, and thus AL:AH).
220  //
221  // For code that doesn't care about the ABI, we allow returning more than two
222  // integer values in registers.
223  CCIfType<[v1i1],  CCPromoteToType<i8>>,
224  CCIfType<[i1],  CCPromoteToType<i8>>,
225  CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>,
226  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
227  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
228  CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>,
229
230  // Boolean vectors of AVX-512 are returned in SIMD registers.
231  // The call from AVX to AVX-512 function should work,
232  // since the boolean types in AVX/AVX2 are promoted by default.
233  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
234  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
235  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
236  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
237  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
238  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
239
240  // Vector types are returned in XMM0 and XMM1, when they fit.  XMM2 and XMM3
241  // can only be used by ABI non-compliant code. If the target doesn't have XMM
242  // registers, it won't have vector types.
243  CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64],
244            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
245
246  // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3
247  // can only be used by ABI non-compliant code. This vector type is only
248  // supported while using the AVX target feature.
249  CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64],
250            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
251
252  // 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3
253  // can only be used by ABI non-compliant code. This vector type is only
254  // supported while using the AVX-512 target feature.
255  CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64],
256            CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
257
258  // MMX vector types are always returned in MM0. If the target doesn't have
259  // MM0, it doesn't support these vector types.
260  CCIfType<[x86mmx], CCAssignToReg<[MM0]>>,
261
262  // Long double types are always returned in FP0 (even with SSE),
263  // except on Win64.
264  CCIfNotSubtarget<"isTargetWin64()", CCIfType<[f80], CCAssignToReg<[FP0, FP1]>>>
265]>;
266
267// X86-32 C return-value convention.
268def RetCC_X86_32_C : CallingConv<[
269  // The X86-32 calling convention returns FP values in FP0, unless marked
270  // with "inreg" (used here to distinguish one kind of reg from another,
271  // weirdly; this is really the sse-regparm calling convention) in which
272  // case they use XMM0, otherwise it is the same as the common X86 calling
273  // conv.
274  CCIfInReg<CCIfSubtarget<"hasSSE2()",
275    CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
276  CCIfSubtarget<"hasX87()",
277    CCIfType<[f32, f64], CCAssignToReg<[FP0, FP1]>>>,
278  CCIfNotSubtarget<"hasX87()",
279    CCIfType<[f32], CCAssignToReg<[EAX, EDX, ECX]>>>,
280  CCIfType<[f16], CCAssignToReg<[XMM0,XMM1,XMM2]>>,
281  CCDelegateTo<RetCC_X86Common>
282]>;
283
284// X86-32 FastCC return-value convention.
285def RetCC_X86_32_Fast : CallingConv<[
286  // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
287  // SSE2.
288  // This can happen when a float, 2 x float, or 3 x float vector is split by
289  // target lowering, and is returned in 1-3 sse regs.
290  CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
291  CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
292
293  // For integers, ECX can be used as an extra return register
294  CCIfType<[i8],  CCAssignToReg<[AL, DL, CL]>>,
295  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
296  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
297
298  // Otherwise, it is the same as the common X86 calling convention.
299  CCDelegateTo<RetCC_X86Common>
300]>;
301
302// Intel_OCL_BI return-value convention.
303def RetCC_Intel_OCL_BI : CallingConv<[
304  // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3.
305  CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
306            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
307
308  // 256-bit FP vectors
309  // No more than 4 registers
310  CCIfType<[v8f32, v4f64, v8i32, v4i64],
311            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
312
313  // 512-bit FP vectors
314  CCIfType<[v16f32, v8f64, v16i32, v8i64],
315            CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
316
317  // i32, i64 in the standard way
318  CCDelegateTo<RetCC_X86Common>
319]>;
320
321// X86-32 HiPE return-value convention.
322def RetCC_X86_32_HiPE : CallingConv<[
323  // Promote all types to i32
324  CCIfType<[i8, i16], CCPromoteToType<i32>>,
325
326  // Return: HP, P, VAL1, VAL2
327  CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>>
328]>;
329
330// X86-32 Vectorcall return-value convention.
331def RetCC_X86_32_VectorCall : CallingConv<[
332  // Floating Point types are returned in XMM0,XMM1,XMMM2 and XMM3.
333  CCIfType<[f32, f64, f128],
334            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
335
336  // Return integers in the standard way.
337  CCDelegateTo<RetCC_X86Common>
338]>;
339
340// X86-64 C return-value convention.
341def RetCC_X86_64_C : CallingConv<[
342  // The X86-64 calling convention always returns FP values in XMM0.
343  CCIfType<[f16], CCAssignToReg<[XMM0, XMM1]>>,
344  CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
345  CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
346  CCIfType<[f128], CCAssignToReg<[XMM0, XMM1]>>,
347
348  // MMX vector types are always returned in XMM0.
349  CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>,
350
351  // Pointers are always returned in full 64-bit registers.
352  CCIfPtr<CCCustom<"CC_X86_64_Pointer">>,
353
354  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
355
356  CCDelegateTo<RetCC_X86Common>
357]>;
358
359// X86-Win64 C return-value convention.
360def RetCC_X86_Win64_C : CallingConv<[
361  // The X86-Win64 calling convention always returns __m64 values in RAX.
362  CCIfType<[x86mmx], CCBitConvertToType<i64>>,
363
364  // GCC returns FP values in RAX on Win64.
365  CCIfType<[f32], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i32>>>,
366  CCIfType<[f64], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i64>>>,
367
368  // Otherwise, everything is the same as 'normal' X86-64 C CC.
369  CCDelegateTo<RetCC_X86_64_C>
370]>;
371
372// X86-64 vectorcall return-value convention.
373def RetCC_X86_64_Vectorcall : CallingConv<[
374  // Vectorcall calling convention always returns FP values in XMMs.
375  CCIfType<[f32, f64, f128],
376    CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
377
378  // Otherwise, everything is the same as Windows X86-64 C CC.
379  CCDelegateTo<RetCC_X86_Win64_C>
380]>;
381
382// X86-64 HiPE return-value convention.
383def RetCC_X86_64_HiPE : CallingConv<[
384  // Promote all types to i64
385  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
386
387  // Return: HP, P, VAL1, VAL2
388  CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>>
389]>;
390
391// X86-64 WebKit_JS return-value convention.
392def RetCC_X86_64_WebKit_JS : CallingConv<[
393  // Promote all types to i64
394  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
395
396  // Return: RAX
397  CCIfType<[i64], CCAssignToReg<[RAX]>>
398]>;
399
400def RetCC_X86_64_Swift : CallingConv<[
401
402  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
403
404  // For integers, ECX, R8D can be used as extra return registers.
405  CCIfType<[v1i1],  CCPromoteToType<i8>>,
406  CCIfType<[i1],  CCPromoteToType<i8>>,
407  CCIfType<[i8] , CCAssignToReg<[AL, DL, CL, R8B]>>,
408  CCIfType<[i16], CCAssignToReg<[AX, DX, CX, R8W]>>,
409  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX, R8D]>>,
410  CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX, R8]>>,
411
412  // XMM0, XMM1, XMM2 and XMM3 can be used to return FP values.
413  CCIfType<[f32], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
414  CCIfType<[f64], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
415  CCIfType<[f128], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
416
417  // MMX vector types are returned in XMM0, XMM1, XMM2 and XMM3.
418  CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
419  CCDelegateTo<RetCC_X86Common>
420]>;
421
422// X86-64 AnyReg return-value convention. No explicit register is specified for
423// the return-value. The register allocator is allowed and expected to choose
424// any free register.
425//
426// This calling convention is currently only supported by the stackmap and
427// patchpoint intrinsics. All other uses will result in an assert on Debug
428// builds. On Release builds we fallback to the X86 C calling convention.
429def RetCC_X86_64_AnyReg : CallingConv<[
430  CCCustom<"CC_X86_AnyReg_Error">
431]>;
432
433
434defm X86_32_RegCall :
435	 X86_RegCall_base<RC_X86_32_RegCall>;
436defm X86_Win64_RegCall :
437     X86_RegCall_base<RC_X86_64_RegCall_Win>;
438defm X86_SysV64_RegCall :
439     X86_RegCall_base<RC_X86_64_RegCall_SysV>;
440
441// This is the root return-value convention for the X86-32 backend.
442def RetCC_X86_32 : CallingConv<[
443  // If FastCC, use RetCC_X86_32_Fast.
444  CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
445  CCIfCC<"CallingConv::Tail", CCDelegateTo<RetCC_X86_32_Fast>>,
446  // CFGuard_Check never returns a value so does not need a RetCC.
447  // If HiPE, use RetCC_X86_32_HiPE.
448  CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>,
449  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_32_VectorCall>>,
450  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_32_RegCall>>,
451
452  // Otherwise, use RetCC_X86_32_C.
453  CCDelegateTo<RetCC_X86_32_C>
454]>;
455
456// This is the root return-value convention for the X86-64 backend.
457def RetCC_X86_64 : CallingConv<[
458  // HiPE uses RetCC_X86_64_HiPE
459  CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>,
460
461  // Handle JavaScript calls.
462  CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<RetCC_X86_64_WebKit_JS>>,
463  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_X86_64_AnyReg>>,
464
465  // Handle Swift calls.
466  CCIfCC<"CallingConv::Swift", CCDelegateTo<RetCC_X86_64_Swift>>,
467  CCIfCC<"CallingConv::SwiftTail", CCDelegateTo<RetCC_X86_64_Swift>>,
468
469  // Handle explicit CC selection
470  CCIfCC<"CallingConv::Win64", CCDelegateTo<RetCC_X86_Win64_C>>,
471  CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<RetCC_X86_64_C>>,
472
473  // Handle Vectorcall CC
474  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_64_Vectorcall>>,
475
476  CCIfCC<"CallingConv::X86_RegCall",
477          CCIfSubtarget<"isTargetWin64()",
478                        CCDelegateTo<RetCC_X86_Win64_RegCall>>>,
479  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_SysV64_RegCall>>,
480
481  // Mingw64 and native Win64 use Win64 CC
482  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,
483
484  // Otherwise, drop to normal X86-64 CC
485  CCDelegateTo<RetCC_X86_64_C>
486]>;
487
488// This is the return-value convention used for the entire X86 backend.
489let Entry = 1 in
490def RetCC_X86 : CallingConv<[
491
492  // Check if this is the Intel OpenCL built-ins calling convention
493  CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<RetCC_Intel_OCL_BI>>,
494
495  CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
496  CCDelegateTo<RetCC_X86_32>
497]>;
498
499//===----------------------------------------------------------------------===//
500// X86-64 Argument Calling Conventions
501//===----------------------------------------------------------------------===//
502
503def CC_X86_64_C : CallingConv<[
504  // Handles byval parameters.
505  CCIfByVal<CCPassByVal<8, 8>>,
506
507  // Promote i1/i8/i16/v1i1 arguments to i32.
508  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
509
510  // The 'nest' parameter, if any, is passed in R10.
511  CCIfNest<CCIfSubtarget<"isTarget64BitILP32()", CCAssignToReg<[R10D]>>>,
512  CCIfNest<CCAssignToReg<[R10]>>,
513
514  // Pass SwiftSelf in a callee saved register.
515  CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R13]>>>,
516
517  // A SwiftError is passed in R12.
518  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
519
520  // Pass SwiftAsync in an otherwise callee saved register so that calls to
521  // normal functions don't need to save it somewhere.
522  CCIfSwiftAsync<CCIfType<[i64], CCAssignToReg<[R14]>>>,
523
524  // For Swift Calling Conventions, pass sret in %rax.
525  CCIfCC<"CallingConv::Swift",
526    CCIfSRet<CCIfType<[i64], CCAssignToReg<[RAX]>>>>,
527  CCIfCC<"CallingConv::SwiftTail",
528    CCIfSRet<CCIfType<[i64], CCAssignToReg<[RAX]>>>>,
529
530  // Pointers are always passed in full 64-bit registers.
531  CCIfPtr<CCCustom<"CC_X86_64_Pointer">>,
532
533  // The first 6 integer arguments are passed in integer registers.
534  CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
535  CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
536
537  // The first 8 MMX vector arguments are passed in XMM registers on Darwin.
538  CCIfType<[x86mmx],
539            CCIfSubtarget<"isTargetDarwin()",
540            CCIfSubtarget<"hasSSE2()",
541            CCPromoteToType<v2i64>>>>,
542
543  // Boolean vectors of AVX-512 are passed in SIMD registers.
544  // The call from AVX to AVX-512 function should work,
545  // since the boolean types in AVX/AVX2 are promoted by default.
546  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
547  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
548  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
549  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
550  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
551  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
552
553  // The first 8 FP/Vector arguments are passed in XMM registers.
554  CCIfType<[f16, f32, f64, f128, v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64],
555            CCIfSubtarget<"hasSSE1()",
556            CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
557
558  // The first 8 256-bit vector arguments are passed in YMM registers, unless
559  // this is a vararg function.
560  // FIXME: This isn't precisely correct; the x86-64 ABI document says that
561  // fixed arguments to vararg functions are supposed to be passed in
562  // registers.  Actually modeling that would be a lot of work, though.
563  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64],
564                          CCIfSubtarget<"hasAVX()",
565                          CCAssignToReg<[YMM0, YMM1, YMM2, YMM3,
566                                         YMM4, YMM5, YMM6, YMM7]>>>>,
567
568  // The first 8 512-bit vector arguments are passed in ZMM registers.
569  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64],
570            CCIfSubtarget<"hasAVX512()",
571            CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]>>>>,
572
573  // Integer/FP values get stored in stack slots that are 8 bytes in size and
574  // 8-byte aligned if there are no more registers to hold them.
575  CCIfType<[i32, i64, f16, f32, f64], CCAssignToStack<8, 8>>,
576
577  // Long doubles get stack slots whose size and alignment depends on the
578  // subtarget.
579  CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
580
581  // Vectors get 16-byte stack slots that are 16-byte aligned.
582  CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64], CCAssignToStack<16, 16>>,
583
584  // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
585  CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64],
586           CCAssignToStack<32, 32>>,
587
588  // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
589  CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64],
590           CCAssignToStack<64, 64>>
591]>;
592
593// Calling convention used on Win64
594def CC_X86_Win64_C : CallingConv<[
595  // FIXME: Handle varargs.
596
597  // Byval aggregates are passed by pointer
598  CCIfByVal<CCPassIndirect<i64>>,
599
600  // Promote i1/v1i1 arguments to i8.
601  CCIfType<[i1, v1i1], CCPromoteToType<i8>>,
602
603  // The 'nest' parameter, if any, is passed in R10.
604  CCIfNest<CCAssignToReg<[R10]>>,
605
606  // A SwiftError is passed in R12.
607  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
608
609  // Pass SwiftSelf in a callee saved register.
610  CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R13]>>>,
611
612  // Pass SwiftAsync in an otherwise callee saved register so that calls to
613  // normal functions don't need to save it somewhere.
614  CCIfSwiftAsync<CCIfType<[i64], CCAssignToReg<[R14]>>>,
615
616  // The 'CFGuardTarget' parameter, if any, is passed in RAX.
617  CCIfCFGuardTarget<CCAssignToReg<[RAX]>>,
618
619  // 128 bit vectors are passed by pointer
620  CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64], CCPassIndirect<i64>>,
621
622  // 256 bit vectors are passed by pointer
623  CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64], CCPassIndirect<i64>>,
624
625  // 512 bit vectors are passed by pointer
626  CCIfType<[v64i8, v32i16, v16i32, v32f16, v16f32, v8f64, v8i64], CCPassIndirect<i64>>,
627
628  // Long doubles are passed by pointer
629  CCIfType<[f80], CCPassIndirect<i64>>,
630
631  // The first 4 MMX vector arguments are passed in GPRs.
632  CCIfType<[x86mmx], CCBitConvertToType<i64>>,
633
634  // If SSE was disabled, pass FP values smaller than 64-bits as integers in
635  // GPRs or on the stack.
636  CCIfType<[f32], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i32>>>,
637  CCIfType<[f64], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i64>>>,
638
639  // The first 4 FP/Vector arguments are passed in XMM registers.
640  CCIfType<[f16, f32, f64],
641           CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
642                                   [RCX , RDX , R8  , R9  ]>>,
643
644  // The first 4 integer arguments are passed in integer registers.
645  CCIfType<[i8 ], CCAssignToRegWithShadow<[CL  , DL  , R8B , R9B ],
646                                          [XMM0, XMM1, XMM2, XMM3]>>,
647  CCIfType<[i16], CCAssignToRegWithShadow<[CX  , DX  , R8W , R9W ],
648                                          [XMM0, XMM1, XMM2, XMM3]>>,
649  CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
650                                          [XMM0, XMM1, XMM2, XMM3]>>,
651
652  // Do not pass the sret argument in RCX, the Win64 thiscall calling
653  // convention requires "this" to be passed in RCX.
654  CCIfCC<"CallingConv::X86_ThisCall",
655    CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8  , R9  ],
656                                                     [XMM1, XMM2, XMM3]>>>>,
657
658  CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8  , R9  ],
659                                          [XMM0, XMM1, XMM2, XMM3]>>,
660
661  // Integer/FP values get stored in stack slots that are 8 bytes in size and
662  // 8-byte aligned if there are no more registers to hold them.
663  CCIfType<[i8, i16, i32, i64, f16, f32, f64], CCAssignToStack<8, 8>>
664]>;
665
666def CC_X86_Win64_VectorCall : CallingConv<[
667  CCCustom<"CC_X86_64_VectorCall">,
668
669  // Delegate to fastcall to handle integer types.
670  CCDelegateTo<CC_X86_Win64_C>
671]>;
672
673
674def CC_X86_64_GHC : CallingConv<[
675  // Promote i8/i16/i32 arguments to i64.
676  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
677
678  // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
679  CCIfType<[i64],
680            CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>,
681
682  // Pass in STG registers: F1, F2, F3, F4, D1, D2
683  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
684            CCIfSubtarget<"hasSSE1()",
685            CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>,
686  // AVX
687  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
688            CCIfSubtarget<"hasAVX()",
689            CCAssignToReg<[YMM1, YMM2, YMM3, YMM4, YMM5, YMM6]>>>,
690  // AVX-512
691  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
692            CCIfSubtarget<"hasAVX512()",
693            CCAssignToReg<[ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6]>>>
694]>;
695
696def CC_X86_64_HiPE : CallingConv<[
697  // Promote i8/i16/i32 arguments to i64.
698  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
699
700  // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3
701  CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>,
702
703  // Integer/FP values get stored in stack slots that are 8 bytes in size and
704  // 8-byte aligned if there are no more registers to hold them.
705  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>
706]>;
707
708def CC_X86_64_WebKit_JS : CallingConv<[
709  // Promote i8/i16 arguments to i32.
710  CCIfType<[i8, i16], CCPromoteToType<i32>>,
711
712  // Only the first integer argument is passed in register.
713  CCIfType<[i32], CCAssignToReg<[EAX]>>,
714  CCIfType<[i64], CCAssignToReg<[RAX]>>,
715
716  // The remaining integer arguments are passed on the stack. 32bit integer and
717  // floating-point arguments are aligned to 4 byte and stored in 4 byte slots.
718  // 64bit integer and floating-point arguments are aligned to 8 byte and stored
719  // in 8 byte stack slots.
720  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
721  CCIfType<[i64, f64], CCAssignToStack<8, 8>>
722]>;
723
724// No explicit register is specified for the AnyReg calling convention. The
725// register allocator may assign the arguments to any free register.
726//
727// This calling convention is currently only supported by the stackmap and
728// patchpoint intrinsics. All other uses will result in an assert on Debug
729// builds. On Release builds we fallback to the X86 C calling convention.
730def CC_X86_64_AnyReg : CallingConv<[
731  CCCustom<"CC_X86_AnyReg_Error">
732]>;
733
734//===----------------------------------------------------------------------===//
735// X86 C Calling Convention
736//===----------------------------------------------------------------------===//
737
738/// CC_X86_32_Vector_Common - In all X86-32 calling conventions, extra vector
739/// values are spilled on the stack.
740def CC_X86_32_Vector_Common : CallingConv<[
741  // Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
742  CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64],
743           CCAssignToStack<16, 16>>,
744
745  // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned.
746  CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64],
747           CCAssignToStack<32, 32>>,
748
749  // 512-bit AVX 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
750  CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64],
751           CCAssignToStack<64, 64>>
752]>;
753
754/// CC_X86_Win32_Vector - In X86 Win32 calling conventions, extra vector
755/// values are spilled on the stack.
756def CC_X86_Win32_Vector : CallingConv<[
757  // Other SSE vectors get 16-byte stack slots that are 4-byte aligned.
758  CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64],
759           CCAssignToStack<16, 4>>,
760
761  // 256-bit AVX vectors get 32-byte stack slots that are 4-byte aligned.
762  CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64],
763           CCAssignToStack<32, 4>>,
764
765  // 512-bit AVX 512-bit vectors get 64-byte stack slots that are 4-byte aligned.
766  CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64],
767           CCAssignToStack<64, 4>>
768]>;
769
770// CC_X86_32_Vector_Standard - The first 3 vector arguments are passed in
771// vector registers
772def CC_X86_32_Vector_Standard : CallingConv<[
773  // SSE vector arguments are passed in XMM registers.
774  CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64],
775                CCAssignToReg<[XMM0, XMM1, XMM2]>>>,
776
777  // AVX 256-bit vector arguments are passed in YMM registers.
778  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64],
779                CCIfSubtarget<"hasAVX()",
780                CCAssignToReg<[YMM0, YMM1, YMM2]>>>>,
781
782  // AVX 512-bit vector arguments are passed in ZMM registers.
783  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64],
784                CCAssignToReg<[ZMM0, ZMM1, ZMM2]>>>,
785
786  CCIfIsVarArgOnWin<CCDelegateTo<CC_X86_Win32_Vector>>,
787  CCDelegateTo<CC_X86_32_Vector_Common>
788]>;
789
790// CC_X86_32_Vector_Darwin - The first 4 vector arguments are passed in
791// vector registers.
792def CC_X86_32_Vector_Darwin : CallingConv<[
793  // SSE vector arguments are passed in XMM registers.
794  CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64],
795                CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,
796
797  // AVX 256-bit vector arguments are passed in YMM registers.
798  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64],
799                CCIfSubtarget<"hasAVX()",
800                CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>,
801
802  // AVX 512-bit vector arguments are passed in ZMM registers.
803  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64],
804                CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>>,
805
806  CCDelegateTo<CC_X86_32_Vector_Common>
807]>;
808
809/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
810/// values are spilled on the stack.
811def CC_X86_32_Common : CallingConv<[
812  // Handles byval/preallocated parameters.
813  CCIfByVal<CCPassByVal<4, 4>>,
814  CCIfPreallocated<CCPassByVal<4, 4>>,
815
816  // The first 3 float or double arguments, if marked 'inreg' and if the call
817  // is not a vararg call and if SSE2 is available, are passed in SSE registers.
818  CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
819                CCIfSubtarget<"hasSSE2()",
820                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,
821
822  CCIfNotVarArg<CCIfInReg<CCIfType<[f16], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
823
824  // The first 3 __m64 vector arguments are passed in mmx registers if the
825  // call is not a vararg call.
826  CCIfNotVarArg<CCIfType<[x86mmx],
827                CCAssignToReg<[MM0, MM1, MM2]>>>,
828
829  CCIfType<[f16], CCAssignToStack<4, 4>>,
830
831  // Integer/Float values get stored in stack slots that are 4 bytes in
832  // size and 4-byte aligned.
833  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
834
835  // Doubles get 8-byte slots that are 4-byte aligned.
836  CCIfType<[f64], CCAssignToStack<8, 4>>,
837
838  // Long doubles get slots whose size and alignment depends on the subtarget.
839  CCIfType<[f80], CCAssignToStack<0, 0>>,
840
841  // Boolean vectors of AVX-512 are passed in SIMD registers.
842  // The call from AVX to AVX-512 function should work,
843  // since the boolean types in AVX/AVX2 are promoted by default.
844  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
845  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
846  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
847  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
848  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
849  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
850
851  // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
852  // passed in the parameter area.
853  CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
854
855  // Darwin passes vectors in a form that differs from the i386 psABI
856  CCIfSubtarget<"isTargetDarwin()", CCDelegateTo<CC_X86_32_Vector_Darwin>>,
857
858  // Otherwise, drop to 'normal' X86-32 CC
859  CCDelegateTo<CC_X86_32_Vector_Standard>
860]>;
861
862def CC_X86_32_C : CallingConv<[
863  // Promote i1/i8/i16/v1i1 arguments to i32.
864  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
865
866  // The 'nest' parameter, if any, is passed in ECX.
867  CCIfNest<CCAssignToReg<[ECX]>>,
868
869  // On swifttailcc pass swiftself in ECX.
870  CCIfCC<"CallingConv::SwiftTail",
871         CCIfSwiftSelf<CCIfType<[i32], CCAssignToReg<[ECX]>>>>,
872
873  // The first 3 integer arguments, if marked 'inreg' and if the call is not
874  // a vararg call, are passed in integer registers.
875  CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
876
877  // Otherwise, same as everything else.
878  CCDelegateTo<CC_X86_32_Common>
879]>;
880
881def CC_X86_32_MCU : CallingConv<[
882  // Handles byval parameters.  Note that, like FastCC, we can't rely on
883  // the delegation to CC_X86_32_Common because that happens after code that
884  // puts arguments in registers.
885  CCIfByVal<CCPassByVal<4, 4>>,
886
887  // Promote i1/i8/i16/v1i1 arguments to i32.
888  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
889
890  // If the call is not a vararg call, some arguments may be passed
891  // in integer registers.
892  CCIfNotVarArg<CCIfType<[i32], CCCustom<"CC_X86_32_MCUInReg">>>,
893
894  // Otherwise, same as everything else.
895  CCDelegateTo<CC_X86_32_Common>
896]>;
897
898def CC_X86_32_FastCall : CallingConv<[
899  // Promote i1 to i8.
900  CCIfType<[i1], CCPromoteToType<i8>>,
901
902  // The 'nest' parameter, if any, is passed in EAX.
903  CCIfNest<CCAssignToReg<[EAX]>>,
904
905  // The first 2 integer arguments are passed in ECX/EDX
906  CCIfInReg<CCIfType<[ i8], CCAssignToReg<[ CL,  DL]>>>,
907  CCIfInReg<CCIfType<[i16], CCAssignToReg<[ CX,  DX]>>>,
908  CCIfInReg<CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>>,
909
910  // Otherwise, same as everything else.
911  CCDelegateTo<CC_X86_32_Common>
912]>;
913
914def CC_X86_Win32_VectorCall : CallingConv<[
915  // Pass floating point in XMMs
916  CCCustom<"CC_X86_32_VectorCall">,
917
918  // Delegate to fastcall to handle integer types.
919  CCDelegateTo<CC_X86_32_FastCall>
920]>;
921
922def CC_X86_32_ThisCall_Common : CallingConv<[
923  // The first integer argument is passed in ECX
924  CCIfType<[i32], CCAssignToReg<[ECX]>>,
925
926  // Otherwise, same as everything else.
927  CCDelegateTo<CC_X86_32_Common>
928]>;
929
930def CC_X86_32_ThisCall_Mingw : CallingConv<[
931  // Promote i1/i8/i16/v1i1 arguments to i32.
932  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
933
934  CCDelegateTo<CC_X86_32_ThisCall_Common>
935]>;
936
937def CC_X86_32_ThisCall_Win : CallingConv<[
938  // Promote i1/i8/i16/v1i1 arguments to i32.
939  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
940
941  // Pass sret arguments indirectly through stack.
942  CCIfSRet<CCAssignToStack<4, 4>>,
943
944  CCDelegateTo<CC_X86_32_ThisCall_Common>
945]>;
946
947def CC_X86_32_ThisCall : CallingConv<[
948  CCIfSubtarget<"isTargetCygMing()", CCDelegateTo<CC_X86_32_ThisCall_Mingw>>,
949  CCDelegateTo<CC_X86_32_ThisCall_Win>
950]>;
951
952def CC_X86_32_FastCC : CallingConv<[
953  // Handles byval parameters.  Note that we can't rely on the delegation
954  // to CC_X86_32_Common for this because that happens after code that
955  // puts arguments in registers.
956  CCIfByVal<CCPassByVal<4, 4>>,
957
958  // Promote i1/i8/i16/v1i1 arguments to i32.
959  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
960
961  // The 'nest' parameter, if any, is passed in EAX.
962  CCIfNest<CCAssignToReg<[EAX]>>,
963
964  // The first 2 integer arguments are passed in ECX/EDX
965  CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
966
967  // The first 3 float or double arguments, if the call is not a vararg
968  // call and if SSE2 is available, are passed in SSE registers.
969  CCIfNotVarArg<CCIfType<[f32,f64],
970                CCIfSubtarget<"hasSSE2()",
971                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
972
973  // Doubles get 8-byte slots that are 8-byte aligned.
974  CCIfType<[f64], CCAssignToStack<8, 8>>,
975
976  // Otherwise, same as everything else.
977  CCDelegateTo<CC_X86_32_Common>
978]>;
979
980def CC_X86_Win32_CFGuard_Check : CallingConv<[
981  // The CFGuard check call takes exactly one integer argument
982  // (i.e. the target function address), which is passed in ECX.
983  CCIfType<[i32], CCAssignToReg<[ECX]>>
984]>;
985
986def CC_X86_32_GHC : CallingConv<[
987  // Promote i8/i16 arguments to i32.
988  CCIfType<[i8, i16], CCPromoteToType<i32>>,
989
990  // Pass in STG registers: Base, Sp, Hp, R1
991  CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>>
992]>;
993
994def CC_X86_32_HiPE : CallingConv<[
995  // Promote i8/i16 arguments to i32.
996  CCIfType<[i8, i16], CCPromoteToType<i32>>,
997
998  // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2
999  CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>,
1000
1001  // Integer/Float values get stored in stack slots that are 4 bytes in
1002  // size and 4-byte aligned.
1003  CCIfType<[i32, f32], CCAssignToStack<4, 4>>
1004]>;
1005
1006// X86-64 Intel OpenCL built-ins calling convention.
1007def CC_Intel_OCL_BI : CallingConv<[
1008
1009  CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>,
1010  CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8,  R9 ]>>>,
1011
1012  CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>,
1013  CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>,
1014
1015  CCIfType<[i32], CCAssignToStack<4, 4>>,
1016
1017  // The SSE vector arguments are passed in XMM registers.
1018  CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
1019           CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
1020
1021  // The 256-bit vector arguments are passed in YMM registers.
1022  CCIfType<[v8f32, v4f64, v8i32, v4i64],
1023           CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>,
1024
1025  // The 512-bit vector arguments are passed in ZMM registers.
1026  CCIfType<[v16f32, v8f64, v16i32, v8i64],
1027           CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>,
1028
1029  // Pass masks in mask registers
1030  CCIfType<[v16i1, v8i1], CCAssignToReg<[K1]>>,
1031
1032  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
1033  CCIfSubtarget<"is64Bit()",       CCDelegateTo<CC_X86_64_C>>,
1034  CCDelegateTo<CC_X86_32_C>
1035]>;
1036
1037//===----------------------------------------------------------------------===//
1038// X86 Root Argument Calling Conventions
1039//===----------------------------------------------------------------------===//
1040
1041// This is the root argument convention for the X86-32 backend.
1042def CC_X86_32 : CallingConv<[
1043  // X86_INTR calling convention is valid in MCU target and should override the
1044  // MCU calling convention. Thus, this should be checked before isTargetMCU().
1045  CCIfCC<"CallingConv::X86_INTR", CCCustom<"CC_X86_Intr">>,
1046  CCIfSubtarget<"isTargetMCU()", CCDelegateTo<CC_X86_32_MCU>>,
1047  CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>,
1048  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win32_VectorCall>>,
1049  CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>,
1050  CCIfCC<"CallingConv::CFGuard_Check", CCDelegateTo<CC_X86_Win32_CFGuard_Check>>,
1051  CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>,
1052  CCIfCC<"CallingConv::Tail", CCDelegateTo<CC_X86_32_FastCC>>,
1053  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>,
1054  CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>,
1055  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_32_RegCall>>,
1056
1057  // Otherwise, drop to normal X86-32 CC
1058  CCDelegateTo<CC_X86_32_C>
1059]>;
1060
1061// This is the root argument convention for the X86-64 backend.
1062def CC_X86_64 : CallingConv<[
1063  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>,
1064  CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>,
1065  CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<CC_X86_64_WebKit_JS>>,
1066  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_X86_64_AnyReg>>,
1067  CCIfCC<"CallingConv::Win64", CCDelegateTo<CC_X86_Win64_C>>,
1068  CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<CC_X86_64_C>>,
1069  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win64_VectorCall>>,
1070  CCIfCC<"CallingConv::X86_RegCall",
1071    CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_RegCall>>>,
1072  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_SysV64_RegCall>>,
1073  CCIfCC<"CallingConv::X86_INTR", CCCustom<"CC_X86_Intr">>,
1074
1075  // Mingw64 and native Win64 use Win64 CC
1076  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
1077
1078  // Otherwise, drop to normal X86-64 CC
1079  CCDelegateTo<CC_X86_64_C>
1080]>;
1081
1082// This is the argument convention used for the entire X86 backend.
1083let Entry = 1 in
1084def CC_X86 : CallingConv<[
1085  CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<CC_Intel_OCL_BI>>,
1086  CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>,
1087  CCDelegateTo<CC_X86_32>
1088]>;
1089
1090//===----------------------------------------------------------------------===//
1091// Callee-saved Registers.
1092//===----------------------------------------------------------------------===//
1093
1094def CSR_NoRegs : CalleeSavedRegs<(add)>;
1095
1096def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
1097def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>;
1098
1099def CSR_64_SwiftError : CalleeSavedRegs<(sub CSR_64, R12)>;
1100def CSR_64_SwiftTail : CalleeSavedRegs<(sub CSR_64, R13, R14)>;
1101
1102def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>;
1103def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>;
1104
1105def CSR_Win64_NoSSE : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15)>;
1106
1107def CSR_Win64 : CalleeSavedRegs<(add CSR_Win64_NoSSE,
1108                                     (sequence "XMM%u", 6, 15))>;
1109
1110def CSR_Win64_SwiftError : CalleeSavedRegs<(sub CSR_Win64, R12)>;
1111def CSR_Win64_SwiftTail : CalleeSavedRegs<(sub CSR_Win64, R13, R14)>;
1112
1113// The function used by Darwin to obtain the address of a thread-local variable
1114// uses rdi to pass a single parameter and rax for the return value. All other
1115// GPRs are preserved.
1116def CSR_64_TLS_Darwin : CalleeSavedRegs<(add CSR_64, RCX, RDX, RSI,
1117                                             R8, R9, R10, R11)>;
1118
1119// CSRs that are handled by prologue, epilogue.
1120def CSR_64_CXX_TLS_Darwin_PE : CalleeSavedRegs<(add RBP)>;
1121
1122// CSRs that are handled explicitly via copies.
1123def CSR_64_CXX_TLS_Darwin_ViaCopy : CalleeSavedRegs<(sub CSR_64_TLS_Darwin, RBP)>;
1124
1125// All GPRs - except r11 and return registers.
1126def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI,
1127                                              R8, R9, R10)>;
1128
1129// All registers - except r11 and return registers.
1130def CSR_64_RT_AllRegs     : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
1131                                                 (sequence "XMM%u", 0, 15))>;
1132def CSR_64_RT_AllRegs_AVX : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
1133                                                 (sequence "YMM%u", 0, 15))>;
1134
1135def CSR_64_MostRegs : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10,
1136                                           R11, R12, R13, R14, R15, RBP,
1137                                           (sequence "XMM%u", 0, 15))>;
1138
1139def CSR_32_AllRegs     : CalleeSavedRegs<(add EAX, EBX, ECX, EDX, EBP, ESI,
1140                                              EDI)>;
1141def CSR_32_AllRegs_SSE : CalleeSavedRegs<(add CSR_32_AllRegs,
1142                                              (sequence "XMM%u", 0, 7))>;
1143def CSR_32_AllRegs_AVX : CalleeSavedRegs<(add CSR_32_AllRegs,
1144                                              (sequence "YMM%u", 0, 7))>;
1145def CSR_32_AllRegs_AVX512 : CalleeSavedRegs<(add CSR_32_AllRegs,
1146                                                 (sequence "ZMM%u", 0, 7),
1147                                                 (sequence "K%u", 0, 7))>;
1148
1149def CSR_64_AllRegs     : CalleeSavedRegs<(add CSR_64_MostRegs, RAX)>;
1150def CSR_64_AllRegs_NoSSE : CalleeSavedRegs<(add RAX, RBX, RCX, RDX, RSI, RDI, R8, R9,
1151                                                R10, R11, R12, R13, R14, R15, RBP)>;
1152def CSR_64_AllRegs_AVX : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
1153                                                   (sequence "YMM%u", 0, 15)),
1154                                              (sequence "XMM%u", 0, 15))>;
1155def CSR_64_AllRegs_AVX512 : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
1156                                                      (sequence "ZMM%u", 0, 31),
1157                                                      (sequence "K%u", 0, 7)),
1158                                                 (sequence "XMM%u", 0, 15))>;
1159
1160// Standard C + YMM6-15
1161def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12,
1162                                                  R13, R14, R15,
1163                                                  (sequence "YMM%u", 6, 15))>;
1164
1165def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI,
1166                                                     R12, R13, R14, R15,
1167                                                     (sequence "ZMM%u", 6, 21),
1168                                                     K4, K5, K6, K7)>;
1169//Standard C + XMM 8-15
1170def CSR_64_Intel_OCL_BI       : CalleeSavedRegs<(add CSR_64,
1171                                                 (sequence "XMM%u", 8, 15))>;
1172
1173//Standard C + YMM 8-15
1174def CSR_64_Intel_OCL_BI_AVX    : CalleeSavedRegs<(add CSR_64,
1175                                                  (sequence "YMM%u", 8, 15))>;
1176
1177def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RSI, R14, R15,
1178                                                  (sequence "ZMM%u", 16, 31),
1179                                                  K4, K5, K6, K7)>;
1180
1181// Register calling convention preserves few GPR and XMM8-15
1182def CSR_32_RegCall_NoSSE : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
1183def CSR_32_RegCall       : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE,
1184                                           (sequence "XMM%u", 4, 7))>;
1185def CSR_Win32_CFGuard_Check_NoSSE : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE, ECX)>;
1186def CSR_Win32_CFGuard_Check       : CalleeSavedRegs<(add CSR_32_RegCall, ECX)>;
1187def CSR_Win64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP,
1188                                              (sequence "R%u", 10, 15))>;
1189def CSR_Win64_RegCall       : CalleeSavedRegs<(add CSR_Win64_RegCall_NoSSE,
1190                                              (sequence "XMM%u", 8, 15))>;
1191def CSR_SysV64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP,
1192                                               (sequence "R%u", 12, 15))>;
1193def CSR_SysV64_RegCall       : CalleeSavedRegs<(add CSR_SysV64_RegCall_NoSSE,
1194                                               (sequence "XMM%u", 8, 15))>;
1195