1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a DAG pattern matching instruction selector for X86,
10 // converting from a legalized dag to a X86 dag.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "X86.h"
15 #include "X86MachineFunctionInfo.h"
16 #include "X86RegisterInfo.h"
17 #include "X86Subtarget.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/MachineModuleInfo.h"
21 #include "llvm/CodeGen/SelectionDAGISel.h"
22 #include "llvm/Config/llvm-config.h"
23 #include "llvm/IR/ConstantRange.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/IntrinsicsX86.h"
28 #include "llvm/IR/Type.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include <cstdint>
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "x86-isel"
38 #define PASS_NAME "X86 DAG->DAG Instruction Selection"
39 
40 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
41 
42 static cl::opt<bool> AndImmShrink("x86-and-imm-shrink", cl::init(true),
43     cl::desc("Enable setting constant bits to reduce size of mask immediates"),
44     cl::Hidden);
45 
46 static cl::opt<bool> EnablePromoteAnyextLoad(
47     "x86-promote-anyext-load", cl::init(true),
48     cl::desc("Enable promoting aligned anyext load to wider load"), cl::Hidden);
49 
50 extern cl::opt<bool> IndirectBranchTracking;
51 
52 //===----------------------------------------------------------------------===//
53 //                      Pattern Matcher Implementation
54 //===----------------------------------------------------------------------===//
55 
56 namespace {
57   /// This corresponds to X86AddressMode, but uses SDValue's instead of register
58   /// numbers for the leaves of the matched tree.
59   struct X86ISelAddressMode {
60     enum {
61       RegBase,
62       FrameIndexBase
63     } BaseType = RegBase;
64 
65     // This is really a union, discriminated by BaseType!
66     SDValue Base_Reg;
67     int Base_FrameIndex = 0;
68 
69     unsigned Scale = 1;
70     SDValue IndexReg;
71     int32_t Disp = 0;
72     SDValue Segment;
73     const GlobalValue *GV = nullptr;
74     const Constant *CP = nullptr;
75     const BlockAddress *BlockAddr = nullptr;
76     const char *ES = nullptr;
77     MCSymbol *MCSym = nullptr;
78     int JT = -1;
79     Align Alignment;            // CP alignment.
80     unsigned char SymbolFlags = X86II::MO_NO_FLAG;  // X86II::MO_*
81     bool NegateIndex = false;
82 
83     X86ISelAddressMode() = default;
84 
85     bool hasSymbolicDisplacement() const {
86       return GV != nullptr || CP != nullptr || ES != nullptr ||
87              MCSym != nullptr || JT != -1 || BlockAddr != nullptr;
88     }
89 
90     bool hasBaseOrIndexReg() const {
91       return BaseType == FrameIndexBase ||
92              IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr;
93     }
94 
95     /// Return true if this addressing mode is already RIP-relative.
96     bool isRIPRelative() const {
97       if (BaseType != RegBase) return false;
98       if (RegisterSDNode *RegNode =
99             dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
100         return RegNode->getReg() == X86::RIP;
101       return false;
102     }
103 
104     void setBaseReg(SDValue Reg) {
105       BaseType = RegBase;
106       Base_Reg = Reg;
107     }
108 
109 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
110     void dump(SelectionDAG *DAG = nullptr) {
111       dbgs() << "X86ISelAddressMode " << this << '\n';
112       dbgs() << "Base_Reg ";
113       if (Base_Reg.getNode())
114         Base_Reg.getNode()->dump(DAG);
115       else
116         dbgs() << "nul\n";
117       if (BaseType == FrameIndexBase)
118         dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n';
119       dbgs() << " Scale " << Scale << '\n'
120              << "IndexReg ";
121       if (NegateIndex)
122         dbgs() << "negate ";
123       if (IndexReg.getNode())
124         IndexReg.getNode()->dump(DAG);
125       else
126         dbgs() << "nul\n";
127       dbgs() << " Disp " << Disp << '\n'
128              << "GV ";
129       if (GV)
130         GV->dump();
131       else
132         dbgs() << "nul";
133       dbgs() << " CP ";
134       if (CP)
135         CP->dump();
136       else
137         dbgs() << "nul";
138       dbgs() << '\n'
139              << "ES ";
140       if (ES)
141         dbgs() << ES;
142       else
143         dbgs() << "nul";
144       dbgs() << " MCSym ";
145       if (MCSym)
146         dbgs() << MCSym;
147       else
148         dbgs() << "nul";
149       dbgs() << " JT" << JT << " Align" << Alignment.value() << '\n';
150     }
151 #endif
152   };
153 }
154 
155 namespace {
156   //===--------------------------------------------------------------------===//
157   /// ISel - X86-specific code to select X86 machine instructions for
158   /// SelectionDAG operations.
159   ///
160   class X86DAGToDAGISel final : public SelectionDAGISel {
161     /// Keep a pointer to the X86Subtarget around so that we can
162     /// make the right decision when generating code for different targets.
163     const X86Subtarget *Subtarget;
164 
165     /// If true, selector should try to optimize for minimum code size.
166     bool OptForMinSize;
167 
168     /// Disable direct TLS access through segment registers.
169     bool IndirectTlsSegRefs;
170 
171   public:
172     static char ID;
173 
174     X86DAGToDAGISel() = delete;
175 
176     explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOptLevel OptLevel)
177         : SelectionDAGISel(ID, tm, OptLevel), Subtarget(nullptr),
178           OptForMinSize(false), IndirectTlsSegRefs(false) {}
179 
180     bool runOnMachineFunction(MachineFunction &MF) override {
181       // Reset the subtarget each time through.
182       Subtarget = &MF.getSubtarget<X86Subtarget>();
183       IndirectTlsSegRefs = MF.getFunction().hasFnAttribute(
184                              "indirect-tls-seg-refs");
185 
186       // OptFor[Min]Size are used in pattern predicates that isel is matching.
187       OptForMinSize = MF.getFunction().hasMinSize();
188       assert((!OptForMinSize || MF.getFunction().hasOptSize()) &&
189              "OptForMinSize implies OptForSize");
190 
191       SelectionDAGISel::runOnMachineFunction(MF);
192       return true;
193     }
194 
195     void emitFunctionEntryCode() override;
196 
197     bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
198 
199     void PreprocessISelDAG() override;
200     void PostprocessISelDAG() override;
201 
202 // Include the pieces autogenerated from the target description.
203 #include "X86GenDAGISel.inc"
204 
205   private:
206     void Select(SDNode *N) override;
207 
208     bool foldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
209     bool matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM,
210                             bool AllowSegmentRegForX32 = false);
211     bool matchWrapper(SDValue N, X86ISelAddressMode &AM);
212     bool matchAddress(SDValue N, X86ISelAddressMode &AM);
213     bool matchVectorAddress(SDValue N, X86ISelAddressMode &AM);
214     bool matchAdd(SDValue &N, X86ISelAddressMode &AM, unsigned Depth);
215     SDValue matchIndexRecursively(SDValue N, X86ISelAddressMode &AM,
216                                   unsigned Depth);
217     bool matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
218                                  unsigned Depth);
219     bool matchVectorAddressRecursively(SDValue N, X86ISelAddressMode &AM,
220                                        unsigned Depth);
221     bool matchAddressBase(SDValue N, X86ISelAddressMode &AM);
222     bool selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
223                     SDValue &Scale, SDValue &Index, SDValue &Disp,
224                     SDValue &Segment);
225     bool selectVectorAddr(MemSDNode *Parent, SDValue BasePtr, SDValue IndexOp,
226                           SDValue ScaleOp, SDValue &Base, SDValue &Scale,
227                           SDValue &Index, SDValue &Disp, SDValue &Segment);
228     bool selectMOV64Imm32(SDValue N, SDValue &Imm);
229     bool selectLEAAddr(SDValue N, SDValue &Base,
230                        SDValue &Scale, SDValue &Index, SDValue &Disp,
231                        SDValue &Segment);
232     bool selectLEA64_32Addr(SDValue N, SDValue &Base,
233                             SDValue &Scale, SDValue &Index, SDValue &Disp,
234                             SDValue &Segment);
235     bool selectTLSADDRAddr(SDValue N, SDValue &Base,
236                            SDValue &Scale, SDValue &Index, SDValue &Disp,
237                            SDValue &Segment);
238     bool selectRelocImm(SDValue N, SDValue &Op);
239 
240     bool tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
241                      SDValue &Base, SDValue &Scale,
242                      SDValue &Index, SDValue &Disp,
243                      SDValue &Segment);
244 
245     // Convenience method where P is also root.
246     bool tryFoldLoad(SDNode *P, SDValue N,
247                      SDValue &Base, SDValue &Scale,
248                      SDValue &Index, SDValue &Disp,
249                      SDValue &Segment) {
250       return tryFoldLoad(P, P, N, Base, Scale, Index, Disp, Segment);
251     }
252 
253     bool tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
254                           SDValue &Base, SDValue &Scale,
255                           SDValue &Index, SDValue &Disp,
256                           SDValue &Segment);
257 
258     bool isProfitableToFormMaskedOp(SDNode *N) const;
259 
260     /// Implement addressing mode selection for inline asm expressions.
261     bool SelectInlineAsmMemoryOperand(const SDValue &Op,
262                                       InlineAsm::ConstraintCode ConstraintID,
263                                       std::vector<SDValue> &OutOps) override;
264 
265     void emitSpecialCodeForMain();
266 
267     inline void getAddressOperands(X86ISelAddressMode &AM, const SDLoc &DL,
268                                    MVT VT, SDValue &Base, SDValue &Scale,
269                                    SDValue &Index, SDValue &Disp,
270                                    SDValue &Segment) {
271       if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
272         Base = CurDAG->getTargetFrameIndex(
273             AM.Base_FrameIndex, TLI->getPointerTy(CurDAG->getDataLayout()));
274       else if (AM.Base_Reg.getNode())
275         Base = AM.Base_Reg;
276       else
277         Base = CurDAG->getRegister(0, VT);
278 
279       Scale = getI8Imm(AM.Scale, DL);
280 
281       // Negate the index if needed.
282       if (AM.NegateIndex) {
283         unsigned NegOpc = VT == MVT::i64 ? X86::NEG64r : X86::NEG32r;
284         SDValue Neg = SDValue(CurDAG->getMachineNode(NegOpc, DL, VT, MVT::i32,
285                                                      AM.IndexReg), 0);
286         AM.IndexReg = Neg;
287       }
288 
289       if (AM.IndexReg.getNode())
290         Index = AM.IndexReg;
291       else
292         Index = CurDAG->getRegister(0, VT);
293 
294       // These are 32-bit even in 64-bit mode since RIP-relative offset
295       // is 32-bit.
296       if (AM.GV)
297         Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
298                                               MVT::i32, AM.Disp,
299                                               AM.SymbolFlags);
300       else if (AM.CP)
301         Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, AM.Alignment,
302                                              AM.Disp, AM.SymbolFlags);
303       else if (AM.ES) {
304         assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
305         Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
306       } else if (AM.MCSym) {
307         assert(!AM.Disp && "Non-zero displacement is ignored with MCSym.");
308         assert(AM.SymbolFlags == 0 && "oo");
309         Disp = CurDAG->getMCSymbol(AM.MCSym, MVT::i32);
310       } else if (AM.JT != -1) {
311         assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
312         Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
313       } else if (AM.BlockAddr)
314         Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
315                                              AM.SymbolFlags);
316       else
317         Disp = CurDAG->getTargetConstant(AM.Disp, DL, MVT::i32);
318 
319       if (AM.Segment.getNode())
320         Segment = AM.Segment;
321       else
322         Segment = CurDAG->getRegister(0, MVT::i16);
323     }
324 
325     // Utility function to determine whether we should avoid selecting
326     // immediate forms of instructions for better code size or not.
327     // At a high level, we'd like to avoid such instructions when
328     // we have similar constants used within the same basic block
329     // that can be kept in a register.
330     //
331     bool shouldAvoidImmediateInstFormsForSize(SDNode *N) const {
332       uint32_t UseCount = 0;
333 
334       // Do not want to hoist if we're not optimizing for size.
335       // TODO: We'd like to remove this restriction.
336       // See the comment in X86InstrInfo.td for more info.
337       if (!CurDAG->shouldOptForSize())
338         return false;
339 
340       // Walk all the users of the immediate.
341       for (const SDNode *User : N->uses()) {
342         if (UseCount >= 2)
343           break;
344 
345         // This user is already selected. Count it as a legitimate use and
346         // move on.
347         if (User->isMachineOpcode()) {
348           UseCount++;
349           continue;
350         }
351 
352         // We want to count stores of immediates as real uses.
353         if (User->getOpcode() == ISD::STORE &&
354             User->getOperand(1).getNode() == N) {
355           UseCount++;
356           continue;
357         }
358 
359         // We don't currently match users that have > 2 operands (except
360         // for stores, which are handled above)
361         // Those instruction won't match in ISEL, for now, and would
362         // be counted incorrectly.
363         // This may change in the future as we add additional instruction
364         // types.
365         if (User->getNumOperands() != 2)
366           continue;
367 
368         // If this is a sign-extended 8-bit integer immediate used in an ALU
369         // instruction, there is probably an opcode encoding to save space.
370         auto *C = dyn_cast<ConstantSDNode>(N);
371         if (C && isInt<8>(C->getSExtValue()))
372           continue;
373 
374         // Immediates that are used for offsets as part of stack
375         // manipulation should be left alone. These are typically
376         // used to indicate SP offsets for argument passing and
377         // will get pulled into stores/pushes (implicitly).
378         if (User->getOpcode() == X86ISD::ADD ||
379             User->getOpcode() == ISD::ADD    ||
380             User->getOpcode() == X86ISD::SUB ||
381             User->getOpcode() == ISD::SUB) {
382 
383           // Find the other operand of the add/sub.
384           SDValue OtherOp = User->getOperand(0);
385           if (OtherOp.getNode() == N)
386             OtherOp = User->getOperand(1);
387 
388           // Don't count if the other operand is SP.
389           RegisterSDNode *RegNode;
390           if (OtherOp->getOpcode() == ISD::CopyFromReg &&
391               (RegNode = dyn_cast_or_null<RegisterSDNode>(
392                  OtherOp->getOperand(1).getNode())))
393             if ((RegNode->getReg() == X86::ESP) ||
394                 (RegNode->getReg() == X86::RSP))
395               continue;
396         }
397 
398         // ... otherwise, count this and move on.
399         UseCount++;
400       }
401 
402       // If we have more than 1 use, then recommend for hoisting.
403       return (UseCount > 1);
404     }
405 
406     /// Return a target constant with the specified value of type i8.
407     inline SDValue getI8Imm(unsigned Imm, const SDLoc &DL) {
408       return CurDAG->getTargetConstant(Imm, DL, MVT::i8);
409     }
410 
411     /// Return a target constant with the specified value, of type i32.
412     inline SDValue getI32Imm(unsigned Imm, const SDLoc &DL) {
413       return CurDAG->getTargetConstant(Imm, DL, MVT::i32);
414     }
415 
416     /// Return a target constant with the specified value, of type i64.
417     inline SDValue getI64Imm(uint64_t Imm, const SDLoc &DL) {
418       return CurDAG->getTargetConstant(Imm, DL, MVT::i64);
419     }
420 
421     SDValue getExtractVEXTRACTImmediate(SDNode *N, unsigned VecWidth,
422                                         const SDLoc &DL) {
423       assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
424       uint64_t Index = N->getConstantOperandVal(1);
425       MVT VecVT = N->getOperand(0).getSimpleValueType();
426       return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
427     }
428 
429     SDValue getInsertVINSERTImmediate(SDNode *N, unsigned VecWidth,
430                                       const SDLoc &DL) {
431       assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
432       uint64_t Index = N->getConstantOperandVal(2);
433       MVT VecVT = N->getSimpleValueType(0);
434       return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
435     }
436 
437     SDValue getPermuteVINSERTCommutedImmediate(SDNode *N, unsigned VecWidth,
438                                                const SDLoc &DL) {
439       assert(VecWidth == 128 && "Unexpected vector width");
440       uint64_t Index = N->getConstantOperandVal(2);
441       MVT VecVT = N->getSimpleValueType(0);
442       uint64_t InsertIdx = (Index * VecVT.getScalarSizeInBits()) / VecWidth;
443       assert((InsertIdx == 0 || InsertIdx == 1) && "Bad insertf128 index");
444       // vinsert(0,sub,vec) -> [sub0][vec1] -> vperm2x128(0x30,vec,sub)
445       // vinsert(1,sub,vec) -> [vec0][sub0] -> vperm2x128(0x02,vec,sub)
446       return getI8Imm(InsertIdx ? 0x02 : 0x30, DL);
447     }
448 
449     SDValue getSBBZero(SDNode *N) {
450       SDLoc dl(N);
451       MVT VT = N->getSimpleValueType(0);
452 
453       // Create zero.
454       SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32);
455       SDValue Zero = SDValue(
456           CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, std::nullopt), 0);
457       if (VT == MVT::i64) {
458         Zero = SDValue(
459             CurDAG->getMachineNode(
460                 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
461                 CurDAG->getTargetConstant(0, dl, MVT::i64), Zero,
462                 CurDAG->getTargetConstant(X86::sub_32bit, dl, MVT::i32)),
463             0);
464       }
465 
466       // Copy flags to the EFLAGS register and glue it to next node.
467       unsigned Opcode = N->getOpcode();
468       assert((Opcode == X86ISD::SBB || Opcode == X86ISD::SETCC_CARRY) &&
469              "Unexpected opcode for SBB materialization");
470       unsigned FlagOpIndex = Opcode == X86ISD::SBB ? 2 : 1;
471       SDValue EFLAGS =
472           CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS,
473                                N->getOperand(FlagOpIndex), SDValue());
474 
475       // Create a 64-bit instruction if the result is 64-bits otherwise use the
476       // 32-bit version.
477       unsigned Opc = VT == MVT::i64 ? X86::SBB64rr : X86::SBB32rr;
478       MVT SBBVT = VT == MVT::i64 ? MVT::i64 : MVT::i32;
479       VTs = CurDAG->getVTList(SBBVT, MVT::i32);
480       return SDValue(
481           CurDAG->getMachineNode(Opc, dl, VTs,
482                                  {Zero, Zero, EFLAGS, EFLAGS.getValue(1)}),
483           0);
484     }
485 
486     // Helper to detect unneeded and instructions on shift amounts. Called
487     // from PatFrags in tablegen.
488     bool isUnneededShiftMask(SDNode *N, unsigned Width) const {
489       assert(N->getOpcode() == ISD::AND && "Unexpected opcode");
490       const APInt &Val = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
491 
492       if (Val.countr_one() >= Width)
493         return true;
494 
495       APInt Mask = Val | CurDAG->computeKnownBits(N->getOperand(0)).Zero;
496       return Mask.countr_one() >= Width;
497     }
498 
499     /// Return an SDNode that returns the value of the global base register.
500     /// Output instructions required to initialize the global base register,
501     /// if necessary.
502     SDNode *getGlobalBaseReg();
503 
504     /// Return a reference to the TargetMachine, casted to the target-specific
505     /// type.
506     const X86TargetMachine &getTargetMachine() const {
507       return static_cast<const X86TargetMachine &>(TM);
508     }
509 
510     /// Return a reference to the TargetInstrInfo, casted to the target-specific
511     /// type.
512     const X86InstrInfo *getInstrInfo() const {
513       return Subtarget->getInstrInfo();
514     }
515 
516     /// Return a condition code of the given SDNode
517     X86::CondCode getCondFromNode(SDNode *N) const;
518 
519     /// Address-mode matching performs shift-of-and to and-of-shift
520     /// reassociation in order to expose more scaled addressing
521     /// opportunities.
522     bool ComplexPatternFuncMutatesDAG() const override {
523       return true;
524     }
525 
526     bool isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const;
527 
528     // Indicates we should prefer to use a non-temporal load for this load.
529     bool useNonTemporalLoad(LoadSDNode *N) const {
530       if (!N->isNonTemporal())
531         return false;
532 
533       unsigned StoreSize = N->getMemoryVT().getStoreSize();
534 
535       if (N->getAlign().value() < StoreSize)
536         return false;
537 
538       switch (StoreSize) {
539       default: llvm_unreachable("Unsupported store size");
540       case 4:
541       case 8:
542         return false;
543       case 16:
544         return Subtarget->hasSSE41();
545       case 32:
546         return Subtarget->hasAVX2();
547       case 64:
548         return Subtarget->hasAVX512();
549       }
550     }
551 
552     bool foldLoadStoreIntoMemOperand(SDNode *Node);
553     MachineSDNode *matchBEXTRFromAndImm(SDNode *Node);
554     bool matchBitExtract(SDNode *Node);
555     bool shrinkAndImmediate(SDNode *N);
556     bool isMaskZeroExtended(SDNode *N) const;
557     bool tryShiftAmountMod(SDNode *N);
558     bool tryShrinkShlLogicImm(SDNode *N);
559     bool tryVPTERNLOG(SDNode *N);
560     bool matchVPTERNLOG(SDNode *Root, SDNode *ParentA, SDNode *ParentB,
561                         SDNode *ParentC, SDValue A, SDValue B, SDValue C,
562                         uint8_t Imm);
563     bool tryVPTESTM(SDNode *Root, SDValue Setcc, SDValue Mask);
564     bool tryMatchBitSelect(SDNode *N);
565 
566     MachineSDNode *emitPCMPISTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
567                                 const SDLoc &dl, MVT VT, SDNode *Node);
568     MachineSDNode *emitPCMPESTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
569                                 const SDLoc &dl, MVT VT, SDNode *Node,
570                                 SDValue &InGlue);
571 
572     bool tryOptimizeRem8Extend(SDNode *N);
573 
574     bool onlyUsesZeroFlag(SDValue Flags) const;
575     bool hasNoSignFlagUses(SDValue Flags) const;
576     bool hasNoCarryFlagUses(SDValue Flags) const;
577   };
578 }
579 
580 char X86DAGToDAGISel::ID = 0;
581 
582 INITIALIZE_PASS(X86DAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false)
583 
584 // Returns true if this masked compare can be implemented legally with this
585 // type.
586 static bool isLegalMaskCompare(SDNode *N, const X86Subtarget *Subtarget) {
587   unsigned Opcode = N->getOpcode();
588   if (Opcode == X86ISD::CMPM || Opcode == X86ISD::CMPMM ||
589       Opcode == X86ISD::STRICT_CMPM || Opcode == ISD::SETCC ||
590       Opcode == X86ISD::CMPMM_SAE || Opcode == X86ISD::VFPCLASS) {
591     // We can get 256-bit 8 element types here without VLX being enabled. When
592     // this happens we will use 512-bit operations and the mask will not be
593     // zero extended.
594     EVT OpVT = N->getOperand(0).getValueType();
595     // The first operand of X86ISD::STRICT_CMPM is chain, so we need to get the
596     // second operand.
597     if (Opcode == X86ISD::STRICT_CMPM)
598       OpVT = N->getOperand(1).getValueType();
599     if (OpVT.is256BitVector() || OpVT.is128BitVector())
600       return Subtarget->hasVLX();
601 
602     return true;
603   }
604   // Scalar opcodes use 128 bit registers, but aren't subject to the VLX check.
605   if (Opcode == X86ISD::VFPCLASSS || Opcode == X86ISD::FSETCCM ||
606       Opcode == X86ISD::FSETCCM_SAE)
607     return true;
608 
609   return false;
610 }
611 
612 // Returns true if we can assume the writer of the mask has zero extended it
613 // for us.
614 bool X86DAGToDAGISel::isMaskZeroExtended(SDNode *N) const {
615   // If this is an AND, check if we have a compare on either side. As long as
616   // one side guarantees the mask is zero extended, the AND will preserve those
617   // zeros.
618   if (N->getOpcode() == ISD::AND)
619     return isLegalMaskCompare(N->getOperand(0).getNode(), Subtarget) ||
620            isLegalMaskCompare(N->getOperand(1).getNode(), Subtarget);
621 
622   return isLegalMaskCompare(N, Subtarget);
623 }
624 
625 bool
626 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
627   if (OptLevel == CodeGenOptLevel::None)
628     return false;
629 
630   if (!N.hasOneUse())
631     return false;
632 
633   if (N.getOpcode() != ISD::LOAD)
634     return true;
635 
636   // Don't fold non-temporal loads if we have an instruction for them.
637   if (useNonTemporalLoad(cast<LoadSDNode>(N)))
638     return false;
639 
640   // If N is a load, do additional profitability checks.
641   if (U == Root) {
642     switch (U->getOpcode()) {
643     default: break;
644     case X86ISD::ADD:
645     case X86ISD::ADC:
646     case X86ISD::SUB:
647     case X86ISD::SBB:
648     case X86ISD::AND:
649     case X86ISD::XOR:
650     case X86ISD::OR:
651     case ISD::ADD:
652     case ISD::UADDO_CARRY:
653     case ISD::AND:
654     case ISD::OR:
655     case ISD::XOR: {
656       SDValue Op1 = U->getOperand(1);
657 
658       // If the other operand is a 8-bit immediate we should fold the immediate
659       // instead. This reduces code size.
660       // e.g.
661       // movl 4(%esp), %eax
662       // addl $4, %eax
663       // vs.
664       // movl $4, %eax
665       // addl 4(%esp), %eax
666       // The former is 2 bytes shorter. In case where the increment is 1, then
667       // the saving can be 4 bytes (by using incl %eax).
668       if (auto *Imm = dyn_cast<ConstantSDNode>(Op1)) {
669         if (Imm->getAPIntValue().isSignedIntN(8))
670           return false;
671 
672         // If this is a 64-bit AND with an immediate that fits in 32-bits,
673         // prefer using the smaller and over folding the load. This is needed to
674         // make sure immediates created by shrinkAndImmediate are always folded.
675         // Ideally we would narrow the load during DAG combine and get the
676         // best of both worlds.
677         if (U->getOpcode() == ISD::AND &&
678             Imm->getAPIntValue().getBitWidth() == 64 &&
679             Imm->getAPIntValue().isIntN(32))
680           return false;
681 
682         // If this really a zext_inreg that can be represented with a movzx
683         // instruction, prefer that.
684         // TODO: We could shrink the load and fold if it is non-volatile.
685         if (U->getOpcode() == ISD::AND &&
686             (Imm->getAPIntValue() == UINT8_MAX ||
687              Imm->getAPIntValue() == UINT16_MAX ||
688              Imm->getAPIntValue() == UINT32_MAX))
689           return false;
690 
691         // ADD/SUB with can negate the immediate and use the opposite operation
692         // to fit 128 into a sign extended 8 bit immediate.
693         if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB) &&
694             (-Imm->getAPIntValue()).isSignedIntN(8))
695           return false;
696 
697         if ((U->getOpcode() == X86ISD::ADD || U->getOpcode() == X86ISD::SUB) &&
698             (-Imm->getAPIntValue()).isSignedIntN(8) &&
699             hasNoCarryFlagUses(SDValue(U, 1)))
700           return false;
701       }
702 
703       // If the other operand is a TLS address, we should fold it instead.
704       // This produces
705       // movl    %gs:0, %eax
706       // leal    i@NTPOFF(%eax), %eax
707       // instead of
708       // movl    $i@NTPOFF, %eax
709       // addl    %gs:0, %eax
710       // if the block also has an access to a second TLS address this will save
711       // a load.
712       // FIXME: This is probably also true for non-TLS addresses.
713       if (Op1.getOpcode() == X86ISD::Wrapper) {
714         SDValue Val = Op1.getOperand(0);
715         if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
716           return false;
717       }
718 
719       // Don't fold load if this matches the BTS/BTR/BTC patterns.
720       // BTS: (or X, (shl 1, n))
721       // BTR: (and X, (rotl -2, n))
722       // BTC: (xor X, (shl 1, n))
723       if (U->getOpcode() == ISD::OR || U->getOpcode() == ISD::XOR) {
724         if (U->getOperand(0).getOpcode() == ISD::SHL &&
725             isOneConstant(U->getOperand(0).getOperand(0)))
726           return false;
727 
728         if (U->getOperand(1).getOpcode() == ISD::SHL &&
729             isOneConstant(U->getOperand(1).getOperand(0)))
730           return false;
731       }
732       if (U->getOpcode() == ISD::AND) {
733         SDValue U0 = U->getOperand(0);
734         SDValue U1 = U->getOperand(1);
735         if (U0.getOpcode() == ISD::ROTL) {
736           auto *C = dyn_cast<ConstantSDNode>(U0.getOperand(0));
737           if (C && C->getSExtValue() == -2)
738             return false;
739         }
740 
741         if (U1.getOpcode() == ISD::ROTL) {
742           auto *C = dyn_cast<ConstantSDNode>(U1.getOperand(0));
743           if (C && C->getSExtValue() == -2)
744             return false;
745         }
746       }
747 
748       break;
749     }
750     case ISD::SHL:
751     case ISD::SRA:
752     case ISD::SRL:
753       // Don't fold a load into a shift by immediate. The BMI2 instructions
754       // support folding a load, but not an immediate. The legacy instructions
755       // support folding an immediate, but can't fold a load. Folding an
756       // immediate is preferable to folding a load.
757       if (isa<ConstantSDNode>(U->getOperand(1)))
758         return false;
759 
760       break;
761     }
762   }
763 
764   // Prevent folding a load if this can implemented with an insert_subreg or
765   // a move that implicitly zeroes.
766   if (Root->getOpcode() == ISD::INSERT_SUBVECTOR &&
767       isNullConstant(Root->getOperand(2)) &&
768       (Root->getOperand(0).isUndef() ||
769        ISD::isBuildVectorAllZeros(Root->getOperand(0).getNode())))
770     return false;
771 
772   return true;
773 }
774 
775 // Indicates it is profitable to form an AVX512 masked operation. Returning
776 // false will favor a masked register-register masked move or vblendm and the
777 // operation will be selected separately.
778 bool X86DAGToDAGISel::isProfitableToFormMaskedOp(SDNode *N) const {
779   assert(
780       (N->getOpcode() == ISD::VSELECT || N->getOpcode() == X86ISD::SELECTS) &&
781       "Unexpected opcode!");
782 
783   // If the operation has additional users, the operation will be duplicated.
784   // Check the use count to prevent that.
785   // FIXME: Are there cheap opcodes we might want to duplicate?
786   return N->getOperand(1).hasOneUse();
787 }
788 
789 /// Replace the original chain operand of the call with
790 /// load's chain operand and move load below the call's chain operand.
791 static void moveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
792                                SDValue Call, SDValue OrigChain) {
793   SmallVector<SDValue, 8> Ops;
794   SDValue Chain = OrigChain.getOperand(0);
795   if (Chain.getNode() == Load.getNode())
796     Ops.push_back(Load.getOperand(0));
797   else {
798     assert(Chain.getOpcode() == ISD::TokenFactor &&
799            "Unexpected chain operand");
800     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
801       if (Chain.getOperand(i).getNode() == Load.getNode())
802         Ops.push_back(Load.getOperand(0));
803       else
804         Ops.push_back(Chain.getOperand(i));
805     SDValue NewChain =
806       CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops);
807     Ops.clear();
808     Ops.push_back(NewChain);
809   }
810   Ops.append(OrigChain->op_begin() + 1, OrigChain->op_end());
811   CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops);
812   CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
813                              Load.getOperand(1), Load.getOperand(2));
814 
815   Ops.clear();
816   Ops.push_back(SDValue(Load.getNode(), 1));
817   Ops.append(Call->op_begin() + 1, Call->op_end());
818   CurDAG->UpdateNodeOperands(Call.getNode(), Ops);
819 }
820 
821 /// Return true if call address is a load and it can be
822 /// moved below CALLSEQ_START and the chains leading up to the call.
823 /// Return the CALLSEQ_START by reference as a second output.
824 /// In the case of a tail call, there isn't a callseq node between the call
825 /// chain and the load.
826 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
827   // The transformation is somewhat dangerous if the call's chain was glued to
828   // the call. After MoveBelowOrigChain the load is moved between the call and
829   // the chain, this can create a cycle if the load is not folded. So it is
830   // *really* important that we are sure the load will be folded.
831   if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
832     return false;
833   auto *LD = dyn_cast<LoadSDNode>(Callee.getNode());
834   if (!LD ||
835       !LD->isSimple() ||
836       LD->getAddressingMode() != ISD::UNINDEXED ||
837       LD->getExtensionType() != ISD::NON_EXTLOAD)
838     return false;
839 
840   // Now let's find the callseq_start.
841   while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
842     if (!Chain.hasOneUse())
843       return false;
844     Chain = Chain.getOperand(0);
845   }
846 
847   if (!Chain.getNumOperands())
848     return false;
849   // Since we are not checking for AA here, conservatively abort if the chain
850   // writes to memory. It's not safe to move the callee (a load) across a store.
851   if (isa<MemSDNode>(Chain.getNode()) &&
852       cast<MemSDNode>(Chain.getNode())->writeMem())
853     return false;
854   if (Chain.getOperand(0).getNode() == Callee.getNode())
855     return true;
856   if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
857       Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
858       Callee.getValue(1).hasOneUse())
859     return true;
860   return false;
861 }
862 
863 static bool isEndbrImm64(uint64_t Imm) {
864 // There may be some other prefix bytes between 0xF3 and 0x0F1EFA.
865 // i.g: 0xF3660F1EFA, 0xF3670F1EFA
866   if ((Imm & 0x00FFFFFF) != 0x0F1EFA)
867     return false;
868 
869   uint8_t OptionalPrefixBytes [] = {0x26, 0x2e, 0x36, 0x3e, 0x64,
870                                     0x65, 0x66, 0x67, 0xf0, 0xf2};
871   int i = 24; // 24bit 0x0F1EFA has matched
872   while (i < 64) {
873     uint8_t Byte = (Imm >> i) & 0xFF;
874     if (Byte == 0xF3)
875       return true;
876     if (!llvm::is_contained(OptionalPrefixBytes, Byte))
877       return false;
878     i += 8;
879   }
880 
881   return false;
882 }
883 
884 static bool needBWI(MVT VT) {
885   return (VT == MVT::v32i16 || VT == MVT::v32f16 || VT == MVT::v64i8);
886 }
887 
888 void X86DAGToDAGISel::PreprocessISelDAG() {
889   bool MadeChange = false;
890   for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
891        E = CurDAG->allnodes_end(); I != E; ) {
892     SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues.
893 
894     // This is for CET enhancement.
895     //
896     // ENDBR32 and ENDBR64 have specific opcodes:
897     // ENDBR32: F3 0F 1E FB
898     // ENDBR64: F3 0F 1E FA
899     // And we want that attackers won’t find unintended ENDBR32/64
900     // opcode matches in the binary
901     // Here’s an example:
902     // If the compiler had to generate asm for the following code:
903     // a = 0xF30F1EFA
904     // it could, for example, generate:
905     // mov 0xF30F1EFA, dword ptr[a]
906     // In such a case, the binary would include a gadget that starts
907     // with a fake ENDBR64 opcode. Therefore, we split such generation
908     // into multiple operations, let it not shows in the binary
909     if (N->getOpcode() == ISD::Constant) {
910       MVT VT = N->getSimpleValueType(0);
911       int64_t Imm = cast<ConstantSDNode>(N)->getSExtValue();
912       int32_t EndbrImm = Subtarget->is64Bit() ? 0xF30F1EFA : 0xF30F1EFB;
913       if (Imm == EndbrImm || isEndbrImm64(Imm)) {
914         // Check that the cf-protection-branch is enabled.
915         Metadata *CFProtectionBranch =
916           MF->getMMI().getModule()->getModuleFlag("cf-protection-branch");
917         if (CFProtectionBranch || IndirectBranchTracking) {
918           SDLoc dl(N);
919           SDValue Complement = CurDAG->getConstant(~Imm, dl, VT, false, true);
920           Complement = CurDAG->getNOT(dl, Complement, VT);
921           --I;
922           CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Complement);
923           ++I;
924           MadeChange = true;
925           continue;
926         }
927       }
928     }
929 
930     // If this is a target specific AND node with no flag usages, turn it back
931     // into ISD::AND to enable test instruction matching.
932     if (N->getOpcode() == X86ISD::AND && !N->hasAnyUseOfValue(1)) {
933       SDValue Res = CurDAG->getNode(ISD::AND, SDLoc(N), N->getValueType(0),
934                                     N->getOperand(0), N->getOperand(1));
935       --I;
936       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
937       ++I;
938       MadeChange = true;
939       continue;
940     }
941 
942     // Convert vector increment or decrement to sub/add with an all-ones
943     // constant:
944     // add X, <1, 1...> --> sub X, <-1, -1...>
945     // sub X, <1, 1...> --> add X, <-1, -1...>
946     // The all-ones vector constant can be materialized using a pcmpeq
947     // instruction that is commonly recognized as an idiom (has no register
948     // dependency), so that's better/smaller than loading a splat 1 constant.
949     //
950     // But don't do this if it would inhibit a potentially profitable load
951     // folding opportunity for the other operand. That only occurs with the
952     // intersection of:
953     // (1) The other operand (op0) is load foldable.
954     // (2) The op is an add (otherwise, we are *creating* an add and can still
955     //     load fold the other op).
956     // (3) The target has AVX (otherwise, we have a destructive add and can't
957     //     load fold the other op without killing the constant op).
958     // (4) The constant 1 vector has multiple uses (so it is profitable to load
959     //     into a register anyway).
960     auto mayPreventLoadFold = [&]() {
961       return X86::mayFoldLoad(N->getOperand(0), *Subtarget) &&
962              N->getOpcode() == ISD::ADD && Subtarget->hasAVX() &&
963              !N->getOperand(1).hasOneUse();
964     };
965     if ((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
966         N->getSimpleValueType(0).isVector() && !mayPreventLoadFold()) {
967       APInt SplatVal;
968       if (X86::isConstantSplat(N->getOperand(1), SplatVal) &&
969           SplatVal.isOne()) {
970         SDLoc DL(N);
971 
972         MVT VT = N->getSimpleValueType(0);
973         unsigned NumElts = VT.getSizeInBits() / 32;
974         SDValue AllOnes =
975             CurDAG->getAllOnesConstant(DL, MVT::getVectorVT(MVT::i32, NumElts));
976         AllOnes = CurDAG->getBitcast(VT, AllOnes);
977 
978         unsigned NewOpcode = N->getOpcode() == ISD::ADD ? ISD::SUB : ISD::ADD;
979         SDValue Res =
980             CurDAG->getNode(NewOpcode, DL, VT, N->getOperand(0), AllOnes);
981         --I;
982         CurDAG->ReplaceAllUsesWith(N, Res.getNode());
983         ++I;
984         MadeChange = true;
985         continue;
986       }
987     }
988 
989     switch (N->getOpcode()) {
990     case X86ISD::VBROADCAST: {
991       MVT VT = N->getSimpleValueType(0);
992       // Emulate v32i16/v64i8 broadcast without BWI.
993       if (!Subtarget->hasBWI() && needBWI(VT)) {
994         MVT NarrowVT = VT.getHalfNumVectorElementsVT();
995         SDLoc dl(N);
996         SDValue NarrowBCast =
997             CurDAG->getNode(X86ISD::VBROADCAST, dl, NarrowVT, N->getOperand(0));
998         SDValue Res =
999             CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT),
1000                             NarrowBCast, CurDAG->getIntPtrConstant(0, dl));
1001         unsigned Index = NarrowVT.getVectorMinNumElements();
1002         Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast,
1003                               CurDAG->getIntPtrConstant(Index, dl));
1004 
1005         --I;
1006         CurDAG->ReplaceAllUsesWith(N, Res.getNode());
1007         ++I;
1008         MadeChange = true;
1009         continue;
1010       }
1011 
1012       break;
1013     }
1014     case X86ISD::VBROADCAST_LOAD: {
1015       MVT VT = N->getSimpleValueType(0);
1016       // Emulate v32i16/v64i8 broadcast without BWI.
1017       if (!Subtarget->hasBWI() && needBWI(VT)) {
1018         MVT NarrowVT = VT.getHalfNumVectorElementsVT();
1019         auto *MemNode = cast<MemSDNode>(N);
1020         SDLoc dl(N);
1021         SDVTList VTs = CurDAG->getVTList(NarrowVT, MVT::Other);
1022         SDValue Ops[] = {MemNode->getChain(), MemNode->getBasePtr()};
1023         SDValue NarrowBCast = CurDAG->getMemIntrinsicNode(
1024             X86ISD::VBROADCAST_LOAD, dl, VTs, Ops, MemNode->getMemoryVT(),
1025             MemNode->getMemOperand());
1026         SDValue Res =
1027             CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT),
1028                             NarrowBCast, CurDAG->getIntPtrConstant(0, dl));
1029         unsigned Index = NarrowVT.getVectorMinNumElements();
1030         Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast,
1031                               CurDAG->getIntPtrConstant(Index, dl));
1032 
1033         --I;
1034         SDValue To[] = {Res, NarrowBCast.getValue(1)};
1035         CurDAG->ReplaceAllUsesWith(N, To);
1036         ++I;
1037         MadeChange = true;
1038         continue;
1039       }
1040 
1041       break;
1042     }
1043     case ISD::LOAD: {
1044       // If this is a XMM/YMM load of the same lower bits as another YMM/ZMM
1045       // load, then just extract the lower subvector and avoid the second load.
1046       auto *Ld = cast<LoadSDNode>(N);
1047       MVT VT = N->getSimpleValueType(0);
1048       if (!ISD::isNormalLoad(Ld) || !Ld->isSimple() ||
1049           !(VT.is128BitVector() || VT.is256BitVector()))
1050         break;
1051 
1052       MVT MaxVT = VT;
1053       SDNode *MaxLd = nullptr;
1054       SDValue Ptr = Ld->getBasePtr();
1055       SDValue Chain = Ld->getChain();
1056       for (SDNode *User : Ptr->uses()) {
1057         auto *UserLd = dyn_cast<LoadSDNode>(User);
1058         MVT UserVT = User->getSimpleValueType(0);
1059         if (User != N && UserLd && ISD::isNormalLoad(User) &&
1060             UserLd->getBasePtr() == Ptr && UserLd->getChain() == Chain &&
1061             !User->hasAnyUseOfValue(1) &&
1062             (UserVT.is256BitVector() || UserVT.is512BitVector()) &&
1063             UserVT.getSizeInBits() > VT.getSizeInBits() &&
1064             (!MaxLd || UserVT.getSizeInBits() > MaxVT.getSizeInBits())) {
1065           MaxLd = User;
1066           MaxVT = UserVT;
1067         }
1068       }
1069       if (MaxLd) {
1070         SDLoc dl(N);
1071         unsigned NumSubElts = VT.getSizeInBits() / MaxVT.getScalarSizeInBits();
1072         MVT SubVT = MVT::getVectorVT(MaxVT.getScalarType(), NumSubElts);
1073         SDValue Extract = CurDAG->getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT,
1074                                           SDValue(MaxLd, 0),
1075                                           CurDAG->getIntPtrConstant(0, dl));
1076         SDValue Res = CurDAG->getBitcast(VT, Extract);
1077 
1078         --I;
1079         SDValue To[] = {Res, SDValue(MaxLd, 1)};
1080         CurDAG->ReplaceAllUsesWith(N, To);
1081         ++I;
1082         MadeChange = true;
1083         continue;
1084       }
1085       break;
1086     }
1087     case ISD::VSELECT: {
1088       // Replace VSELECT with non-mask conditions with with BLENDV/VPTERNLOG.
1089       EVT EleVT = N->getOperand(0).getValueType().getVectorElementType();
1090       if (EleVT == MVT::i1)
1091         break;
1092 
1093       assert(Subtarget->hasSSE41() && "Expected SSE4.1 support!");
1094       assert(N->getValueType(0).getVectorElementType() != MVT::i16 &&
1095              "We can't replace VSELECT with BLENDV in vXi16!");
1096       SDValue R;
1097       if (Subtarget->hasVLX() && CurDAG->ComputeNumSignBits(N->getOperand(0)) ==
1098                                      EleVT.getSizeInBits()) {
1099         R = CurDAG->getNode(X86ISD::VPTERNLOG, SDLoc(N), N->getValueType(0),
1100                             N->getOperand(0), N->getOperand(1), N->getOperand(2),
1101                             CurDAG->getTargetConstant(0xCA, SDLoc(N), MVT::i8));
1102       } else {
1103         R = CurDAG->getNode(X86ISD::BLENDV, SDLoc(N), N->getValueType(0),
1104                             N->getOperand(0), N->getOperand(1),
1105                             N->getOperand(2));
1106       }
1107       --I;
1108       CurDAG->ReplaceAllUsesWith(N, R.getNode());
1109       ++I;
1110       MadeChange = true;
1111       continue;
1112     }
1113     case ISD::FP_ROUND:
1114     case ISD::STRICT_FP_ROUND:
1115     case ISD::FP_TO_SINT:
1116     case ISD::FP_TO_UINT:
1117     case ISD::STRICT_FP_TO_SINT:
1118     case ISD::STRICT_FP_TO_UINT: {
1119       // Replace vector fp_to_s/uint with their X86 specific equivalent so we
1120       // don't need 2 sets of patterns.
1121       if (!N->getSimpleValueType(0).isVector())
1122         break;
1123 
1124       unsigned NewOpc;
1125       switch (N->getOpcode()) {
1126       default: llvm_unreachable("Unexpected opcode!");
1127       case ISD::FP_ROUND:          NewOpc = X86ISD::VFPROUND;        break;
1128       case ISD::STRICT_FP_ROUND:   NewOpc = X86ISD::STRICT_VFPROUND; break;
1129       case ISD::STRICT_FP_TO_SINT: NewOpc = X86ISD::STRICT_CVTTP2SI; break;
1130       case ISD::FP_TO_SINT:        NewOpc = X86ISD::CVTTP2SI;        break;
1131       case ISD::STRICT_FP_TO_UINT: NewOpc = X86ISD::STRICT_CVTTP2UI; break;
1132       case ISD::FP_TO_UINT:        NewOpc = X86ISD::CVTTP2UI;        break;
1133       }
1134       SDValue Res;
1135       if (N->isStrictFPOpcode())
1136         Res =
1137             CurDAG->getNode(NewOpc, SDLoc(N), {N->getValueType(0), MVT::Other},
1138                             {N->getOperand(0), N->getOperand(1)});
1139       else
1140         Res =
1141             CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1142                             N->getOperand(0));
1143       --I;
1144       CurDAG->ReplaceAllUsesWith(N, Res.getNode());
1145       ++I;
1146       MadeChange = true;
1147       continue;
1148     }
1149     case ISD::SHL:
1150     case ISD::SRA:
1151     case ISD::SRL: {
1152       // Replace vector shifts with their X86 specific equivalent so we don't
1153       // need 2 sets of patterns.
1154       if (!N->getValueType(0).isVector())
1155         break;
1156 
1157       unsigned NewOpc;
1158       switch (N->getOpcode()) {
1159       default: llvm_unreachable("Unexpected opcode!");
1160       case ISD::SHL: NewOpc = X86ISD::VSHLV; break;
1161       case ISD::SRA: NewOpc = X86ISD::VSRAV; break;
1162       case ISD::SRL: NewOpc = X86ISD::VSRLV; break;
1163       }
1164       SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1165                                     N->getOperand(0), N->getOperand(1));
1166       --I;
1167       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1168       ++I;
1169       MadeChange = true;
1170       continue;
1171     }
1172     case ISD::ANY_EXTEND:
1173     case ISD::ANY_EXTEND_VECTOR_INREG: {
1174       // Replace vector any extend with the zero extend equivalents so we don't
1175       // need 2 sets of patterns. Ignore vXi1 extensions.
1176       if (!N->getValueType(0).isVector())
1177         break;
1178 
1179       unsigned NewOpc;
1180       if (N->getOperand(0).getScalarValueSizeInBits() == 1) {
1181         assert(N->getOpcode() == ISD::ANY_EXTEND &&
1182                "Unexpected opcode for mask vector!");
1183         NewOpc = ISD::SIGN_EXTEND;
1184       } else {
1185         NewOpc = N->getOpcode() == ISD::ANY_EXTEND
1186                               ? ISD::ZERO_EXTEND
1187                               : ISD::ZERO_EXTEND_VECTOR_INREG;
1188       }
1189 
1190       SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1191                                     N->getOperand(0));
1192       --I;
1193       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1194       ++I;
1195       MadeChange = true;
1196       continue;
1197     }
1198     case ISD::FCEIL:
1199     case ISD::STRICT_FCEIL:
1200     case ISD::FFLOOR:
1201     case ISD::STRICT_FFLOOR:
1202     case ISD::FTRUNC:
1203     case ISD::STRICT_FTRUNC:
1204     case ISD::FROUNDEVEN:
1205     case ISD::STRICT_FROUNDEVEN:
1206     case ISD::FNEARBYINT:
1207     case ISD::STRICT_FNEARBYINT:
1208     case ISD::FRINT:
1209     case ISD::STRICT_FRINT: {
1210       // Replace fp rounding with their X86 specific equivalent so we don't
1211       // need 2 sets of patterns.
1212       unsigned Imm;
1213       switch (N->getOpcode()) {
1214       default: llvm_unreachable("Unexpected opcode!");
1215       case ISD::STRICT_FCEIL:
1216       case ISD::FCEIL:      Imm = 0xA; break;
1217       case ISD::STRICT_FFLOOR:
1218       case ISD::FFLOOR:     Imm = 0x9; break;
1219       case ISD::STRICT_FTRUNC:
1220       case ISD::FTRUNC:     Imm = 0xB; break;
1221       case ISD::STRICT_FROUNDEVEN:
1222       case ISD::FROUNDEVEN: Imm = 0x8; break;
1223       case ISD::STRICT_FNEARBYINT:
1224       case ISD::FNEARBYINT: Imm = 0xC; break;
1225       case ISD::STRICT_FRINT:
1226       case ISD::FRINT:      Imm = 0x4; break;
1227       }
1228       SDLoc dl(N);
1229       bool IsStrict = N->isStrictFPOpcode();
1230       SDValue Res;
1231       if (IsStrict)
1232         Res = CurDAG->getNode(X86ISD::STRICT_VRNDSCALE, dl,
1233                               {N->getValueType(0), MVT::Other},
1234                               {N->getOperand(0), N->getOperand(1),
1235                                CurDAG->getTargetConstant(Imm, dl, MVT::i32)});
1236       else
1237         Res = CurDAG->getNode(X86ISD::VRNDSCALE, dl, N->getValueType(0),
1238                               N->getOperand(0),
1239                               CurDAG->getTargetConstant(Imm, dl, MVT::i32));
1240       --I;
1241       CurDAG->ReplaceAllUsesWith(N, Res.getNode());
1242       ++I;
1243       MadeChange = true;
1244       continue;
1245     }
1246     case X86ISD::FANDN:
1247     case X86ISD::FAND:
1248     case X86ISD::FOR:
1249     case X86ISD::FXOR: {
1250       // Widen scalar fp logic ops to vector to reduce isel patterns.
1251       // FIXME: Can we do this during lowering/combine.
1252       MVT VT = N->getSimpleValueType(0);
1253       if (VT.isVector() || VT == MVT::f128)
1254         break;
1255 
1256       MVT VecVT = VT == MVT::f64   ? MVT::v2f64
1257                   : VT == MVT::f32 ? MVT::v4f32
1258                                    : MVT::v8f16;
1259 
1260       SDLoc dl(N);
1261       SDValue Op0 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
1262                                     N->getOperand(0));
1263       SDValue Op1 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
1264                                     N->getOperand(1));
1265 
1266       SDValue Res;
1267       if (Subtarget->hasSSE2()) {
1268         EVT IntVT = EVT(VecVT).changeVectorElementTypeToInteger();
1269         Op0 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op0);
1270         Op1 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op1);
1271         unsigned Opc;
1272         switch (N->getOpcode()) {
1273         default: llvm_unreachable("Unexpected opcode!");
1274         case X86ISD::FANDN: Opc = X86ISD::ANDNP; break;
1275         case X86ISD::FAND:  Opc = ISD::AND;      break;
1276         case X86ISD::FOR:   Opc = ISD::OR;       break;
1277         case X86ISD::FXOR:  Opc = ISD::XOR;      break;
1278         }
1279         Res = CurDAG->getNode(Opc, dl, IntVT, Op0, Op1);
1280         Res = CurDAG->getNode(ISD::BITCAST, dl, VecVT, Res);
1281       } else {
1282         Res = CurDAG->getNode(N->getOpcode(), dl, VecVT, Op0, Op1);
1283       }
1284       Res = CurDAG->getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Res,
1285                             CurDAG->getIntPtrConstant(0, dl));
1286       --I;
1287       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1288       ++I;
1289       MadeChange = true;
1290       continue;
1291     }
1292     }
1293 
1294     if (OptLevel != CodeGenOptLevel::None &&
1295         // Only do this when the target can fold the load into the call or
1296         // jmp.
1297         !Subtarget->useIndirectThunkCalls() &&
1298         ((N->getOpcode() == X86ISD::CALL && !Subtarget->slowTwoMemOps()) ||
1299          (N->getOpcode() == X86ISD::TC_RETURN &&
1300           (Subtarget->is64Bit() ||
1301            !getTargetMachine().isPositionIndependent())))) {
1302       /// Also try moving call address load from outside callseq_start to just
1303       /// before the call to allow it to be folded.
1304       ///
1305       ///     [Load chain]
1306       ///         ^
1307       ///         |
1308       ///       [Load]
1309       ///       ^    ^
1310       ///       |    |
1311       ///      /      \--
1312       ///     /          |
1313       ///[CALLSEQ_START] |
1314       ///     ^          |
1315       ///     |          |
1316       /// [LOAD/C2Reg]   |
1317       ///     |          |
1318       ///      \        /
1319       ///       \      /
1320       ///       [CALL]
1321       bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
1322       SDValue Chain = N->getOperand(0);
1323       SDValue Load  = N->getOperand(1);
1324       if (!isCalleeLoad(Load, Chain, HasCallSeq))
1325         continue;
1326       moveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
1327       ++NumLoadMoved;
1328       MadeChange = true;
1329       continue;
1330     }
1331 
1332     // Lower fpround and fpextend nodes that target the FP stack to be store and
1333     // load to the stack.  This is a gross hack.  We would like to simply mark
1334     // these as being illegal, but when we do that, legalize produces these when
1335     // it expands calls, then expands these in the same legalize pass.  We would
1336     // like dag combine to be able to hack on these between the call expansion
1337     // and the node legalization.  As such this pass basically does "really
1338     // late" legalization of these inline with the X86 isel pass.
1339     // FIXME: This should only happen when not compiled with -O0.
1340     switch (N->getOpcode()) {
1341     default: continue;
1342     case ISD::FP_ROUND:
1343     case ISD::FP_EXTEND:
1344     {
1345       MVT SrcVT = N->getOperand(0).getSimpleValueType();
1346       MVT DstVT = N->getSimpleValueType(0);
1347 
1348       // If any of the sources are vectors, no fp stack involved.
1349       if (SrcVT.isVector() || DstVT.isVector())
1350         continue;
1351 
1352       // If the source and destination are SSE registers, then this is a legal
1353       // conversion that should not be lowered.
1354       const X86TargetLowering *X86Lowering =
1355           static_cast<const X86TargetLowering *>(TLI);
1356       bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
1357       bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
1358       if (SrcIsSSE && DstIsSSE)
1359         continue;
1360 
1361       if (!SrcIsSSE && !DstIsSSE) {
1362         // If this is an FPStack extension, it is a noop.
1363         if (N->getOpcode() == ISD::FP_EXTEND)
1364           continue;
1365         // If this is a value-preserving FPStack truncation, it is a noop.
1366         if (N->getConstantOperandVal(1))
1367           continue;
1368       }
1369 
1370       // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
1371       // FPStack has extload and truncstore.  SSE can fold direct loads into other
1372       // operations.  Based on this, decide what we want to do.
1373       MVT MemVT = (N->getOpcode() == ISD::FP_ROUND) ? DstVT : SrcVT;
1374       SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
1375       int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex();
1376       MachinePointerInfo MPI =
1377           MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI);
1378       SDLoc dl(N);
1379 
1380       // FIXME: optimize the case where the src/dest is a load or store?
1381 
1382       SDValue Store = CurDAG->getTruncStore(
1383           CurDAG->getEntryNode(), dl, N->getOperand(0), MemTmp, MPI, MemVT);
1384       SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store,
1385                                           MemTmp, MPI, MemVT);
1386 
1387       // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
1388       // extload we created.  This will cause general havok on the dag because
1389       // anything below the conversion could be folded into other existing nodes.
1390       // To avoid invalidating 'I', back it up to the convert node.
1391       --I;
1392       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
1393       break;
1394     }
1395 
1396     //The sequence of events for lowering STRICT_FP versions of these nodes requires
1397     //dealing with the chain differently, as there is already a preexisting chain.
1398     case ISD::STRICT_FP_ROUND:
1399     case ISD::STRICT_FP_EXTEND:
1400     {
1401       MVT SrcVT = N->getOperand(1).getSimpleValueType();
1402       MVT DstVT = N->getSimpleValueType(0);
1403 
1404       // If any of the sources are vectors, no fp stack involved.
1405       if (SrcVT.isVector() || DstVT.isVector())
1406         continue;
1407 
1408       // If the source and destination are SSE registers, then this is a legal
1409       // conversion that should not be lowered.
1410       const X86TargetLowering *X86Lowering =
1411           static_cast<const X86TargetLowering *>(TLI);
1412       bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
1413       bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
1414       if (SrcIsSSE && DstIsSSE)
1415         continue;
1416 
1417       if (!SrcIsSSE && !DstIsSSE) {
1418         // If this is an FPStack extension, it is a noop.
1419         if (N->getOpcode() == ISD::STRICT_FP_EXTEND)
1420           continue;
1421         // If this is a value-preserving FPStack truncation, it is a noop.
1422         if (N->getConstantOperandVal(2))
1423           continue;
1424       }
1425 
1426       // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
1427       // FPStack has extload and truncstore.  SSE can fold direct loads into other
1428       // operations.  Based on this, decide what we want to do.
1429       MVT MemVT = (N->getOpcode() == ISD::STRICT_FP_ROUND) ? DstVT : SrcVT;
1430       SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
1431       int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex();
1432       MachinePointerInfo MPI =
1433           MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI);
1434       SDLoc dl(N);
1435 
1436       // FIXME: optimize the case where the src/dest is a load or store?
1437 
1438       //Since the operation is StrictFP, use the preexisting chain.
1439       SDValue Store, Result;
1440       if (!SrcIsSSE) {
1441         SDVTList VTs = CurDAG->getVTList(MVT::Other);
1442         SDValue Ops[] = {N->getOperand(0), N->getOperand(1), MemTmp};
1443         Store = CurDAG->getMemIntrinsicNode(X86ISD::FST, dl, VTs, Ops, MemVT,
1444                                             MPI, /*Align*/ std::nullopt,
1445                                             MachineMemOperand::MOStore);
1446         if (N->getFlags().hasNoFPExcept()) {
1447           SDNodeFlags Flags = Store->getFlags();
1448           Flags.setNoFPExcept(true);
1449           Store->setFlags(Flags);
1450         }
1451       } else {
1452         assert(SrcVT == MemVT && "Unexpected VT!");
1453         Store = CurDAG->getStore(N->getOperand(0), dl, N->getOperand(1), MemTmp,
1454                                  MPI);
1455       }
1456 
1457       if (!DstIsSSE) {
1458         SDVTList VTs = CurDAG->getVTList(DstVT, MVT::Other);
1459         SDValue Ops[] = {Store, MemTmp};
1460         Result = CurDAG->getMemIntrinsicNode(
1461             X86ISD::FLD, dl, VTs, Ops, MemVT, MPI,
1462             /*Align*/ std::nullopt, MachineMemOperand::MOLoad);
1463         if (N->getFlags().hasNoFPExcept()) {
1464           SDNodeFlags Flags = Result->getFlags();
1465           Flags.setNoFPExcept(true);
1466           Result->setFlags(Flags);
1467         }
1468       } else {
1469         assert(DstVT == MemVT && "Unexpected VT!");
1470         Result = CurDAG->getLoad(DstVT, dl, Store, MemTmp, MPI);
1471       }
1472 
1473       // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
1474       // extload we created.  This will cause general havok on the dag because
1475       // anything below the conversion could be folded into other existing nodes.
1476       // To avoid invalidating 'I', back it up to the convert node.
1477       --I;
1478       CurDAG->ReplaceAllUsesWith(N, Result.getNode());
1479       break;
1480     }
1481     }
1482 
1483 
1484     // Now that we did that, the node is dead.  Increment the iterator to the
1485     // next node to process, then delete N.
1486     ++I;
1487     MadeChange = true;
1488   }
1489 
1490   // Remove any dead nodes that may have been left behind.
1491   if (MadeChange)
1492     CurDAG->RemoveDeadNodes();
1493 }
1494 
1495 // Look for a redundant movzx/movsx that can occur after an 8-bit divrem.
1496 bool X86DAGToDAGISel::tryOptimizeRem8Extend(SDNode *N) {
1497   unsigned Opc = N->getMachineOpcode();
1498   if (Opc != X86::MOVZX32rr8 && Opc != X86::MOVSX32rr8 &&
1499       Opc != X86::MOVSX64rr8)
1500     return false;
1501 
1502   SDValue N0 = N->getOperand(0);
1503 
1504   // We need to be extracting the lower bit of an extend.
1505   if (!N0.isMachineOpcode() ||
1506       N0.getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG ||
1507       N0.getConstantOperandVal(1) != X86::sub_8bit)
1508     return false;
1509 
1510   // We're looking for either a movsx or movzx to match the original opcode.
1511   unsigned ExpectedOpc = Opc == X86::MOVZX32rr8 ? X86::MOVZX32rr8_NOREX
1512                                                 : X86::MOVSX32rr8_NOREX;
1513   SDValue N00 = N0.getOperand(0);
1514   if (!N00.isMachineOpcode() || N00.getMachineOpcode() != ExpectedOpc)
1515     return false;
1516 
1517   if (Opc == X86::MOVSX64rr8) {
1518     // If we had a sign extend from 8 to 64 bits. We still need to go from 32
1519     // to 64.
1520     MachineSDNode *Extend = CurDAG->getMachineNode(X86::MOVSX64rr32, SDLoc(N),
1521                                                    MVT::i64, N00);
1522     ReplaceUses(N, Extend);
1523   } else {
1524     // Ok we can drop this extend and just use the original extend.
1525     ReplaceUses(N, N00.getNode());
1526   }
1527 
1528   return true;
1529 }
1530 
1531 void X86DAGToDAGISel::PostprocessISelDAG() {
1532   // Skip peepholes at -O0.
1533   if (TM.getOptLevel() == CodeGenOptLevel::None)
1534     return;
1535 
1536   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
1537 
1538   bool MadeChange = false;
1539   while (Position != CurDAG->allnodes_begin()) {
1540     SDNode *N = &*--Position;
1541     // Skip dead nodes and any non-machine opcodes.
1542     if (N->use_empty() || !N->isMachineOpcode())
1543       continue;
1544 
1545     if (tryOptimizeRem8Extend(N)) {
1546       MadeChange = true;
1547       continue;
1548     }
1549 
1550     // Look for a TESTrr+ANDrr pattern where both operands of the test are
1551     // the same. Rewrite to remove the AND.
1552     unsigned Opc = N->getMachineOpcode();
1553     if ((Opc == X86::TEST8rr || Opc == X86::TEST16rr ||
1554          Opc == X86::TEST32rr || Opc == X86::TEST64rr) &&
1555         N->getOperand(0) == N->getOperand(1) &&
1556         N->getOperand(0)->hasNUsesOfValue(2, N->getOperand(0).getResNo()) &&
1557         N->getOperand(0).isMachineOpcode()) {
1558       SDValue And = N->getOperand(0);
1559       unsigned N0Opc = And.getMachineOpcode();
1560       if ((N0Opc == X86::AND8rr || N0Opc == X86::AND16rr ||
1561            N0Opc == X86::AND32rr || N0Opc == X86::AND64rr) &&
1562           !And->hasAnyUseOfValue(1)) {
1563         MachineSDNode *Test = CurDAG->getMachineNode(Opc, SDLoc(N),
1564                                                      MVT::i32,
1565                                                      And.getOperand(0),
1566                                                      And.getOperand(1));
1567         ReplaceUses(N, Test);
1568         MadeChange = true;
1569         continue;
1570       }
1571       if ((N0Opc == X86::AND8rm || N0Opc == X86::AND16rm ||
1572            N0Opc == X86::AND32rm || N0Opc == X86::AND64rm) &&
1573           !And->hasAnyUseOfValue(1)) {
1574         unsigned NewOpc;
1575         switch (N0Opc) {
1576         case X86::AND8rm:  NewOpc = X86::TEST8mr; break;
1577         case X86::AND16rm: NewOpc = X86::TEST16mr; break;
1578         case X86::AND32rm: NewOpc = X86::TEST32mr; break;
1579         case X86::AND64rm: NewOpc = X86::TEST64mr; break;
1580         }
1581 
1582         // Need to swap the memory and register operand.
1583         SDValue Ops[] = { And.getOperand(1),
1584                           And.getOperand(2),
1585                           And.getOperand(3),
1586                           And.getOperand(4),
1587                           And.getOperand(5),
1588                           And.getOperand(0),
1589                           And.getOperand(6)  /* Chain */ };
1590         MachineSDNode *Test = CurDAG->getMachineNode(NewOpc, SDLoc(N),
1591                                                      MVT::i32, MVT::Other, Ops);
1592         CurDAG->setNodeMemRefs(
1593             Test, cast<MachineSDNode>(And.getNode())->memoperands());
1594         ReplaceUses(And.getValue(2), SDValue(Test, 1));
1595         ReplaceUses(SDValue(N, 0), SDValue(Test, 0));
1596         MadeChange = true;
1597         continue;
1598       }
1599     }
1600 
1601     // Look for a KAND+KORTEST and turn it into KTEST if only the zero flag is
1602     // used. We're doing this late so we can prefer to fold the AND into masked
1603     // comparisons. Doing that can be better for the live range of the mask
1604     // register.
1605     if ((Opc == X86::KORTESTBrr || Opc == X86::KORTESTWrr ||
1606          Opc == X86::KORTESTDrr || Opc == X86::KORTESTQrr) &&
1607         N->getOperand(0) == N->getOperand(1) &&
1608         N->isOnlyUserOf(N->getOperand(0).getNode()) &&
1609         N->getOperand(0).isMachineOpcode() &&
1610         onlyUsesZeroFlag(SDValue(N, 0))) {
1611       SDValue And = N->getOperand(0);
1612       unsigned N0Opc = And.getMachineOpcode();
1613       // KANDW is legal with AVX512F, but KTESTW requires AVX512DQ. The other
1614       // KAND instructions and KTEST use the same ISA feature.
1615       if (N0Opc == X86::KANDBrr ||
1616           (N0Opc == X86::KANDWrr && Subtarget->hasDQI()) ||
1617           N0Opc == X86::KANDDrr || N0Opc == X86::KANDQrr) {
1618         unsigned NewOpc;
1619         switch (Opc) {
1620         default: llvm_unreachable("Unexpected opcode!");
1621         case X86::KORTESTBrr: NewOpc = X86::KTESTBrr; break;
1622         case X86::KORTESTWrr: NewOpc = X86::KTESTWrr; break;
1623         case X86::KORTESTDrr: NewOpc = X86::KTESTDrr; break;
1624         case X86::KORTESTQrr: NewOpc = X86::KTESTQrr; break;
1625         }
1626         MachineSDNode *KTest = CurDAG->getMachineNode(NewOpc, SDLoc(N),
1627                                                       MVT::i32,
1628                                                       And.getOperand(0),
1629                                                       And.getOperand(1));
1630         ReplaceUses(N, KTest);
1631         MadeChange = true;
1632         continue;
1633       }
1634     }
1635 
1636     // Attempt to remove vectors moves that were inserted to zero upper bits.
1637     if (Opc != TargetOpcode::SUBREG_TO_REG)
1638       continue;
1639 
1640     unsigned SubRegIdx = N->getConstantOperandVal(2);
1641     if (SubRegIdx != X86::sub_xmm && SubRegIdx != X86::sub_ymm)
1642       continue;
1643 
1644     SDValue Move = N->getOperand(1);
1645     if (!Move.isMachineOpcode())
1646       continue;
1647 
1648     // Make sure its one of the move opcodes we recognize.
1649     switch (Move.getMachineOpcode()) {
1650     default:
1651       continue;
1652     case X86::VMOVAPDrr:       case X86::VMOVUPDrr:
1653     case X86::VMOVAPSrr:       case X86::VMOVUPSrr:
1654     case X86::VMOVDQArr:       case X86::VMOVDQUrr:
1655     case X86::VMOVAPDYrr:      case X86::VMOVUPDYrr:
1656     case X86::VMOVAPSYrr:      case X86::VMOVUPSYrr:
1657     case X86::VMOVDQAYrr:      case X86::VMOVDQUYrr:
1658     case X86::VMOVAPDZ128rr:   case X86::VMOVUPDZ128rr:
1659     case X86::VMOVAPSZ128rr:   case X86::VMOVUPSZ128rr:
1660     case X86::VMOVDQA32Z128rr: case X86::VMOVDQU32Z128rr:
1661     case X86::VMOVDQA64Z128rr: case X86::VMOVDQU64Z128rr:
1662     case X86::VMOVAPDZ256rr:   case X86::VMOVUPDZ256rr:
1663     case X86::VMOVAPSZ256rr:   case X86::VMOVUPSZ256rr:
1664     case X86::VMOVDQA32Z256rr: case X86::VMOVDQU32Z256rr:
1665     case X86::VMOVDQA64Z256rr: case X86::VMOVDQU64Z256rr:
1666       break;
1667     }
1668 
1669     SDValue In = Move.getOperand(0);
1670     if (!In.isMachineOpcode() ||
1671         In.getMachineOpcode() <= TargetOpcode::GENERIC_OP_END)
1672       continue;
1673 
1674     // Make sure the instruction has a VEX, XOP, or EVEX prefix. This covers
1675     // the SHA instructions which use a legacy encoding.
1676     uint64_t TSFlags = getInstrInfo()->get(In.getMachineOpcode()).TSFlags;
1677     if ((TSFlags & X86II::EncodingMask) != X86II::VEX &&
1678         (TSFlags & X86II::EncodingMask) != X86II::EVEX &&
1679         (TSFlags & X86II::EncodingMask) != X86II::XOP)
1680       continue;
1681 
1682     // Producing instruction is another vector instruction. We can drop the
1683     // move.
1684     CurDAG->UpdateNodeOperands(N, N->getOperand(0), In, N->getOperand(2));
1685     MadeChange = true;
1686   }
1687 
1688   if (MadeChange)
1689     CurDAG->RemoveDeadNodes();
1690 }
1691 
1692 
1693 /// Emit any code that needs to be executed only in the main function.
1694 void X86DAGToDAGISel::emitSpecialCodeForMain() {
1695   if (Subtarget->isTargetCygMing()) {
1696     TargetLowering::ArgListTy Args;
1697     auto &DL = CurDAG->getDataLayout();
1698 
1699     TargetLowering::CallLoweringInfo CLI(*CurDAG);
1700     CLI.setChain(CurDAG->getRoot())
1701         .setCallee(CallingConv::C, Type::getVoidTy(*CurDAG->getContext()),
1702                    CurDAG->getExternalSymbol("__main", TLI->getPointerTy(DL)),
1703                    std::move(Args));
1704     const TargetLowering &TLI = CurDAG->getTargetLoweringInfo();
1705     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
1706     CurDAG->setRoot(Result.second);
1707   }
1708 }
1709 
1710 void X86DAGToDAGISel::emitFunctionEntryCode() {
1711   // If this is main, emit special code for main.
1712   const Function &F = MF->getFunction();
1713   if (F.hasExternalLinkage() && F.getName() == "main")
1714     emitSpecialCodeForMain();
1715 }
1716 
1717 static bool isDispSafeForFrameIndex(int64_t Val) {
1718   // On 64-bit platforms, we can run into an issue where a frame index
1719   // includes a displacement that, when added to the explicit displacement,
1720   // will overflow the displacement field. Assuming that the frame index
1721   // displacement fits into a 31-bit integer  (which is only slightly more
1722   // aggressive than the current fundamental assumption that it fits into
1723   // a 32-bit integer), a 31-bit disp should always be safe.
1724   return isInt<31>(Val);
1725 }
1726 
1727 bool X86DAGToDAGISel::foldOffsetIntoAddress(uint64_t Offset,
1728                                             X86ISelAddressMode &AM) {
1729   // We may have already matched a displacement and the caller just added the
1730   // symbolic displacement. So we still need to do the checks even if Offset
1731   // is zero.
1732 
1733   int64_t Val = AM.Disp + Offset;
1734 
1735   // Cannot combine ExternalSymbol displacements with integer offsets.
1736   if (Val != 0 && (AM.ES || AM.MCSym))
1737     return true;
1738 
1739   CodeModel::Model M = TM.getCodeModel();
1740   if (Subtarget->is64Bit()) {
1741     if (Val != 0 &&
1742         !X86::isOffsetSuitableForCodeModel(Val, M,
1743                                            AM.hasSymbolicDisplacement()))
1744       return true;
1745     // In addition to the checks required for a register base, check that
1746     // we do not try to use an unsafe Disp with a frame index.
1747     if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
1748         !isDispSafeForFrameIndex(Val))
1749       return true;
1750     // In ILP32 (x32) mode, pointers are 32 bits and need to be zero-extended to
1751     // 64 bits. Instructions with 32-bit register addresses perform this zero
1752     // extension for us and we can safely ignore the high bits of Offset.
1753     // Instructions with only a 32-bit immediate address do not, though: they
1754     // sign extend instead. This means only address the low 2GB of address space
1755     // is directly addressable, we need indirect addressing for the high 2GB of
1756     // address space.
1757     // TODO: Some of the earlier checks may be relaxed for ILP32 mode as the
1758     // implicit zero extension of instructions would cover up any problem.
1759     // However, we have asserts elsewhere that get triggered if we do, so keep
1760     // the checks for now.
1761     // TODO: We would actually be able to accept these, as well as the same
1762     // addresses in LP64 mode, by adding the EIZ pseudo-register as an operand
1763     // to get an address size override to be emitted. However, this
1764     // pseudo-register is not part of any register class and therefore causes
1765     // MIR verification to fail.
1766     if (Subtarget->isTarget64BitILP32() && !isUInt<31>(Val) &&
1767         !AM.hasBaseOrIndexReg())
1768       return true;
1769   }
1770   AM.Disp = Val;
1771   return false;
1772 }
1773 
1774 bool X86DAGToDAGISel::matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM,
1775                                          bool AllowSegmentRegForX32) {
1776   SDValue Address = N->getOperand(1);
1777 
1778   // load gs:0 -> GS segment register.
1779   // load fs:0 -> FS segment register.
1780   //
1781   // This optimization is generally valid because the GNU TLS model defines that
1782   // gs:0 (or fs:0 on X86-64) contains its own address. However, for X86-64 mode
1783   // with 32-bit registers, as we get in ILP32 mode, those registers are first
1784   // zero-extended to 64 bits and then added it to the base address, which gives
1785   // unwanted results when the register holds a negative value.
1786   // For more information see http://people.redhat.com/drepper/tls.pdf
1787   if (isNullConstant(Address) && AM.Segment.getNode() == nullptr &&
1788       !IndirectTlsSegRefs &&
1789       (Subtarget->isTargetGlibc() || Subtarget->isTargetAndroid() ||
1790        Subtarget->isTargetFuchsia())) {
1791     if (Subtarget->isTarget64BitILP32() && !AllowSegmentRegForX32)
1792       return true;
1793     switch (N->getPointerInfo().getAddrSpace()) {
1794     case X86AS::GS:
1795       AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1796       return false;
1797     case X86AS::FS:
1798       AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1799       return false;
1800       // Address space X86AS::SS is not handled here, because it is not used to
1801       // address TLS areas.
1802     }
1803   }
1804 
1805   return true;
1806 }
1807 
1808 /// Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes into an addressing
1809 /// mode. These wrap things that will resolve down into a symbol reference.
1810 /// If no match is possible, this returns true, otherwise it returns false.
1811 bool X86DAGToDAGISel::matchWrapper(SDValue N, X86ISelAddressMode &AM) {
1812   // If the addressing mode already has a symbol as the displacement, we can
1813   // never match another symbol.
1814   if (AM.hasSymbolicDisplacement())
1815     return true;
1816 
1817   bool IsRIPRelTLS = false;
1818   bool IsRIPRel = N.getOpcode() == X86ISD::WrapperRIP;
1819   if (IsRIPRel) {
1820     SDValue Val = N.getOperand(0);
1821     if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
1822       IsRIPRelTLS = true;
1823   }
1824 
1825   // We can't use an addressing mode in the 64-bit large code model.
1826   // Global TLS addressing is an exception. In the medium code model,
1827   // we use can use a mode when RIP wrappers are present.
1828   // That signifies access to globals that are known to be "near",
1829   // such as the GOT itself.
1830   CodeModel::Model M = TM.getCodeModel();
1831   if (Subtarget->is64Bit() &&
1832       ((M == CodeModel::Large && !IsRIPRelTLS) ||
1833        (M == CodeModel::Medium && !IsRIPRel)))
1834     return true;
1835 
1836   // Base and index reg must be 0 in order to use %rip as base.
1837   if (IsRIPRel && AM.hasBaseOrIndexReg())
1838     return true;
1839 
1840   // Make a local copy in case we can't do this fold.
1841   X86ISelAddressMode Backup = AM;
1842 
1843   int64_t Offset = 0;
1844   SDValue N0 = N.getOperand(0);
1845   if (auto *G = dyn_cast<GlobalAddressSDNode>(N0)) {
1846     AM.GV = G->getGlobal();
1847     AM.SymbolFlags = G->getTargetFlags();
1848     Offset = G->getOffset();
1849   } else if (auto *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
1850     AM.CP = CP->getConstVal();
1851     AM.Alignment = CP->getAlign();
1852     AM.SymbolFlags = CP->getTargetFlags();
1853     Offset = CP->getOffset();
1854   } else if (auto *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
1855     AM.ES = S->getSymbol();
1856     AM.SymbolFlags = S->getTargetFlags();
1857   } else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) {
1858     AM.MCSym = S->getMCSymbol();
1859   } else if (auto *J = dyn_cast<JumpTableSDNode>(N0)) {
1860     AM.JT = J->getIndex();
1861     AM.SymbolFlags = J->getTargetFlags();
1862   } else if (auto *BA = dyn_cast<BlockAddressSDNode>(N0)) {
1863     AM.BlockAddr = BA->getBlockAddress();
1864     AM.SymbolFlags = BA->getTargetFlags();
1865     Offset = BA->getOffset();
1866   } else
1867     llvm_unreachable("Unhandled symbol reference node.");
1868 
1869   if (foldOffsetIntoAddress(Offset, AM)) {
1870     AM = Backup;
1871     return true;
1872   }
1873 
1874   if (IsRIPRel)
1875     AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
1876 
1877   // Commit the changes now that we know this fold is safe.
1878   return false;
1879 }
1880 
1881 /// Add the specified node to the specified addressing mode, returning true if
1882 /// it cannot be done. This just pattern matches for the addressing mode.
1883 bool X86DAGToDAGISel::matchAddress(SDValue N, X86ISelAddressMode &AM) {
1884   if (matchAddressRecursively(N, AM, 0))
1885     return true;
1886 
1887   // Post-processing: Make a second attempt to fold a load, if we now know
1888   // that there will not be any other register. This is only performed for
1889   // 64-bit ILP32 mode since 32-bit mode and 64-bit LP64 mode will have folded
1890   // any foldable load the first time.
1891   if (Subtarget->isTarget64BitILP32() &&
1892       AM.BaseType == X86ISelAddressMode::RegBase &&
1893       AM.Base_Reg.getNode() != nullptr && AM.IndexReg.getNode() == nullptr) {
1894     SDValue Save_Base_Reg = AM.Base_Reg;
1895     if (auto *LoadN = dyn_cast<LoadSDNode>(Save_Base_Reg)) {
1896       AM.Base_Reg = SDValue();
1897       if (matchLoadInAddress(LoadN, AM, /*AllowSegmentRegForX32=*/true))
1898         AM.Base_Reg = Save_Base_Reg;
1899     }
1900   }
1901 
1902   // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
1903   // a smaller encoding and avoids a scaled-index.
1904   if (AM.Scale == 2 &&
1905       AM.BaseType == X86ISelAddressMode::RegBase &&
1906       AM.Base_Reg.getNode() == nullptr) {
1907     AM.Base_Reg = AM.IndexReg;
1908     AM.Scale = 1;
1909   }
1910 
1911   // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
1912   // because it has a smaller encoding.
1913   // TODO: Which other code models can use this?
1914   switch (TM.getCodeModel()) {
1915     default: break;
1916     case CodeModel::Small:
1917     case CodeModel::Kernel:
1918       if (Subtarget->is64Bit() &&
1919           AM.Scale == 1 &&
1920           AM.BaseType == X86ISelAddressMode::RegBase &&
1921           AM.Base_Reg.getNode() == nullptr &&
1922           AM.IndexReg.getNode() == nullptr &&
1923           AM.SymbolFlags == X86II::MO_NO_FLAG &&
1924           AM.hasSymbolicDisplacement())
1925         AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
1926       break;
1927   }
1928 
1929   return false;
1930 }
1931 
1932 bool X86DAGToDAGISel::matchAdd(SDValue &N, X86ISelAddressMode &AM,
1933                                unsigned Depth) {
1934   // Add an artificial use to this node so that we can keep track of
1935   // it if it gets CSE'd with a different node.
1936   HandleSDNode Handle(N);
1937 
1938   X86ISelAddressMode Backup = AM;
1939   if (!matchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1940       !matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1941     return false;
1942   AM = Backup;
1943 
1944   // Try again after commutating the operands.
1945   if (!matchAddressRecursively(Handle.getValue().getOperand(1), AM,
1946                                Depth + 1) &&
1947       !matchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth + 1))
1948     return false;
1949   AM = Backup;
1950 
1951   // If we couldn't fold both operands into the address at the same time,
1952   // see if we can just put each operand into a register and fold at least
1953   // the add.
1954   if (AM.BaseType == X86ISelAddressMode::RegBase &&
1955       !AM.Base_Reg.getNode() &&
1956       !AM.IndexReg.getNode()) {
1957     N = Handle.getValue();
1958     AM.Base_Reg = N.getOperand(0);
1959     AM.IndexReg = N.getOperand(1);
1960     AM.Scale = 1;
1961     return false;
1962   }
1963   N = Handle.getValue();
1964   return true;
1965 }
1966 
1967 // Insert a node into the DAG at least before the Pos node's position. This
1968 // will reposition the node as needed, and will assign it a node ID that is <=
1969 // the Pos node's ID. Note that this does *not* preserve the uniqueness of node
1970 // IDs! The selection DAG must no longer depend on their uniqueness when this
1971 // is used.
1972 static void insertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
1973   if (N->getNodeId() == -1 ||
1974       (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
1975        SelectionDAGISel::getUninvalidatedNodeId(Pos.getNode()))) {
1976     DAG.RepositionNode(Pos->getIterator(), N.getNode());
1977     // Mark Node as invalid for pruning as after this it may be a successor to a
1978     // selected node but otherwise be in the same position of Pos.
1979     // Conservatively mark it with the same -abs(Id) to assure node id
1980     // invariant is preserved.
1981     N->setNodeId(Pos->getNodeId());
1982     SelectionDAGISel::InvalidateNodeId(N.getNode());
1983   }
1984 }
1985 
1986 // Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if
1987 // safe. This allows us to convert the shift and and into an h-register
1988 // extract and a scaled index. Returns false if the simplification is
1989 // performed.
1990 static bool foldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
1991                                       uint64_t Mask,
1992                                       SDValue Shift, SDValue X,
1993                                       X86ISelAddressMode &AM) {
1994   if (Shift.getOpcode() != ISD::SRL ||
1995       !isa<ConstantSDNode>(Shift.getOperand(1)) ||
1996       !Shift.hasOneUse())
1997     return true;
1998 
1999   int ScaleLog = 8 - Shift.getConstantOperandVal(1);
2000   if (ScaleLog <= 0 || ScaleLog >= 4 ||
2001       Mask != (0xffu << ScaleLog))
2002     return true;
2003 
2004   MVT XVT = X.getSimpleValueType();
2005   MVT VT = N.getSimpleValueType();
2006   SDLoc DL(N);
2007   SDValue Eight = DAG.getConstant(8, DL, MVT::i8);
2008   SDValue NewMask = DAG.getConstant(0xff, DL, XVT);
2009   SDValue Srl = DAG.getNode(ISD::SRL, DL, XVT, X, Eight);
2010   SDValue And = DAG.getNode(ISD::AND, DL, XVT, Srl, NewMask);
2011   SDValue Ext = DAG.getZExtOrTrunc(And, DL, VT);
2012   SDValue ShlCount = DAG.getConstant(ScaleLog, DL, MVT::i8);
2013   SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Ext, ShlCount);
2014 
2015   // Insert the new nodes into the topological ordering. We must do this in
2016   // a valid topological ordering as nothing is going to go back and re-sort
2017   // these nodes. We continually insert before 'N' in sequence as this is
2018   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2019   // hierarchy left to express.
2020   insertDAGNode(DAG, N, Eight);
2021   insertDAGNode(DAG, N, NewMask);
2022   insertDAGNode(DAG, N, Srl);
2023   insertDAGNode(DAG, N, And);
2024   insertDAGNode(DAG, N, Ext);
2025   insertDAGNode(DAG, N, ShlCount);
2026   insertDAGNode(DAG, N, Shl);
2027   DAG.ReplaceAllUsesWith(N, Shl);
2028   DAG.RemoveDeadNode(N.getNode());
2029   AM.IndexReg = Ext;
2030   AM.Scale = (1 << ScaleLog);
2031   return false;
2032 }
2033 
2034 // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
2035 // allows us to fold the shift into this addressing mode. Returns false if the
2036 // transform succeeded.
2037 static bool foldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
2038                                         X86ISelAddressMode &AM) {
2039   SDValue Shift = N.getOperand(0);
2040 
2041   // Use a signed mask so that shifting right will insert sign bits. These
2042   // bits will be removed when we shift the result left so it doesn't matter
2043   // what we use. This might allow a smaller immediate encoding.
2044   int64_t Mask = cast<ConstantSDNode>(N->getOperand(1))->getSExtValue();
2045 
2046   // If we have an any_extend feeding the AND, look through it to see if there
2047   // is a shift behind it. But only if the AND doesn't use the extended bits.
2048   // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
2049   bool FoundAnyExtend = false;
2050   if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
2051       Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
2052       isUInt<32>(Mask)) {
2053     FoundAnyExtend = true;
2054     Shift = Shift.getOperand(0);
2055   }
2056 
2057   if (Shift.getOpcode() != ISD::SHL ||
2058       !isa<ConstantSDNode>(Shift.getOperand(1)))
2059     return true;
2060 
2061   SDValue X = Shift.getOperand(0);
2062 
2063   // Not likely to be profitable if either the AND or SHIFT node has more
2064   // than one use (unless all uses are for address computation). Besides,
2065   // isel mechanism requires their node ids to be reused.
2066   if (!N.hasOneUse() || !Shift.hasOneUse())
2067     return true;
2068 
2069   // Verify that the shift amount is something we can fold.
2070   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
2071   if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
2072     return true;
2073 
2074   MVT VT = N.getSimpleValueType();
2075   SDLoc DL(N);
2076   if (FoundAnyExtend) {
2077     SDValue NewX = DAG.getNode(ISD::ANY_EXTEND, DL, VT, X);
2078     insertDAGNode(DAG, N, NewX);
2079     X = NewX;
2080   }
2081 
2082   SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, DL, VT);
2083   SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
2084   SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
2085 
2086   // Insert the new nodes into the topological ordering. We must do this in
2087   // a valid topological ordering as nothing is going to go back and re-sort
2088   // these nodes. We continually insert before 'N' in sequence as this is
2089   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2090   // hierarchy left to express.
2091   insertDAGNode(DAG, N, NewMask);
2092   insertDAGNode(DAG, N, NewAnd);
2093   insertDAGNode(DAG, N, NewShift);
2094   DAG.ReplaceAllUsesWith(N, NewShift);
2095   DAG.RemoveDeadNode(N.getNode());
2096 
2097   AM.Scale = 1 << ShiftAmt;
2098   AM.IndexReg = NewAnd;
2099   return false;
2100 }
2101 
2102 // Implement some heroics to detect shifts of masked values where the mask can
2103 // be replaced by extending the shift and undoing that in the addressing mode
2104 // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
2105 // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
2106 // the addressing mode. This results in code such as:
2107 //
2108 //   int f(short *y, int *lookup_table) {
2109 //     ...
2110 //     return *y + lookup_table[*y >> 11];
2111 //   }
2112 //
2113 // Turning into:
2114 //   movzwl (%rdi), %eax
2115 //   movl %eax, %ecx
2116 //   shrl $11, %ecx
2117 //   addl (%rsi,%rcx,4), %eax
2118 //
2119 // Instead of:
2120 //   movzwl (%rdi), %eax
2121 //   movl %eax, %ecx
2122 //   shrl $9, %ecx
2123 //   andl $124, %rcx
2124 //   addl (%rsi,%rcx), %eax
2125 //
2126 // Note that this function assumes the mask is provided as a mask *after* the
2127 // value is shifted. The input chain may or may not match that, but computing
2128 // such a mask is trivial.
2129 static bool foldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
2130                                     uint64_t Mask,
2131                                     SDValue Shift, SDValue X,
2132                                     X86ISelAddressMode &AM) {
2133   if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
2134       !isa<ConstantSDNode>(Shift.getOperand(1)))
2135     return true;
2136 
2137   // We need to ensure that mask is a continuous run of bits.
2138   unsigned MaskIdx, MaskLen;
2139   if (!isShiftedMask_64(Mask, MaskIdx, MaskLen))
2140     return true;
2141   unsigned MaskLZ = 64 - (MaskIdx + MaskLen);
2142 
2143   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
2144 
2145   // The amount of shift we're trying to fit into the addressing mode is taken
2146   // from the shifted mask index (number of trailing zeros of the mask).
2147   unsigned AMShiftAmt = MaskIdx;
2148 
2149   // There is nothing we can do here unless the mask is removing some bits.
2150   // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
2151   if (AMShiftAmt == 0 || AMShiftAmt > 3) return true;
2152 
2153   // Scale the leading zero count down based on the actual size of the value.
2154   // Also scale it down based on the size of the shift.
2155   unsigned ScaleDown = (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
2156   if (MaskLZ < ScaleDown)
2157     return true;
2158   MaskLZ -= ScaleDown;
2159 
2160   // The final check is to ensure that any masked out high bits of X are
2161   // already known to be zero. Otherwise, the mask has a semantic impact
2162   // other than masking out a couple of low bits. Unfortunately, because of
2163   // the mask, zero extensions will be removed from operands in some cases.
2164   // This code works extra hard to look through extensions because we can
2165   // replace them with zero extensions cheaply if necessary.
2166   bool ReplacingAnyExtend = false;
2167   if (X.getOpcode() == ISD::ANY_EXTEND) {
2168     unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
2169                           X.getOperand(0).getSimpleValueType().getSizeInBits();
2170     // Assume that we'll replace the any-extend with a zero-extend, and
2171     // narrow the search to the extended value.
2172     X = X.getOperand(0);
2173     MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
2174     ReplacingAnyExtend = true;
2175   }
2176   APInt MaskedHighBits =
2177     APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
2178   if (!DAG.MaskedValueIsZero(X, MaskedHighBits))
2179     return true;
2180 
2181   // We've identified a pattern that can be transformed into a single shift
2182   // and an addressing mode. Make it so.
2183   MVT VT = N.getSimpleValueType();
2184   if (ReplacingAnyExtend) {
2185     assert(X.getValueType() != VT);
2186     // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
2187     SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
2188     insertDAGNode(DAG, N, NewX);
2189     X = NewX;
2190   }
2191 
2192   MVT XVT = X.getSimpleValueType();
2193   SDLoc DL(N);
2194   SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
2195   SDValue NewSRL = DAG.getNode(ISD::SRL, DL, XVT, X, NewSRLAmt);
2196   SDValue NewExt = DAG.getZExtOrTrunc(NewSRL, DL, VT);
2197   SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
2198   SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewExt, NewSHLAmt);
2199 
2200   // Insert the new nodes into the topological ordering. We must do this in
2201   // a valid topological ordering as nothing is going to go back and re-sort
2202   // these nodes. We continually insert before 'N' in sequence as this is
2203   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2204   // hierarchy left to express.
2205   insertDAGNode(DAG, N, NewSRLAmt);
2206   insertDAGNode(DAG, N, NewSRL);
2207   insertDAGNode(DAG, N, NewExt);
2208   insertDAGNode(DAG, N, NewSHLAmt);
2209   insertDAGNode(DAG, N, NewSHL);
2210   DAG.ReplaceAllUsesWith(N, NewSHL);
2211   DAG.RemoveDeadNode(N.getNode());
2212 
2213   AM.Scale = 1 << AMShiftAmt;
2214   AM.IndexReg = NewExt;
2215   return false;
2216 }
2217 
2218 // Transform "(X >> SHIFT) & (MASK << C1)" to
2219 // "((X >> (SHIFT + C1)) & (MASK)) << C1". Everything before the SHL will be
2220 // matched to a BEXTR later. Returns false if the simplification is performed.
2221 static bool foldMaskedShiftToBEXTR(SelectionDAG &DAG, SDValue N,
2222                                    uint64_t Mask,
2223                                    SDValue Shift, SDValue X,
2224                                    X86ISelAddressMode &AM,
2225                                    const X86Subtarget &Subtarget) {
2226   if (Shift.getOpcode() != ISD::SRL ||
2227       !isa<ConstantSDNode>(Shift.getOperand(1)) ||
2228       !Shift.hasOneUse() || !N.hasOneUse())
2229     return true;
2230 
2231   // Only do this if BEXTR will be matched by matchBEXTRFromAndImm.
2232   if (!Subtarget.hasTBM() &&
2233       !(Subtarget.hasBMI() && Subtarget.hasFastBEXTR()))
2234     return true;
2235 
2236   // We need to ensure that mask is a continuous run of bits.
2237   unsigned MaskIdx, MaskLen;
2238   if (!isShiftedMask_64(Mask, MaskIdx, MaskLen))
2239     return true;
2240 
2241   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
2242 
2243   // The amount of shift we're trying to fit into the addressing mode is taken
2244   // from the shifted mask index (number of trailing zeros of the mask).
2245   unsigned AMShiftAmt = MaskIdx;
2246 
2247   // There is nothing we can do here unless the mask is removing some bits.
2248   // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
2249   if (AMShiftAmt == 0 || AMShiftAmt > 3) return true;
2250 
2251   MVT XVT = X.getSimpleValueType();
2252   MVT VT = N.getSimpleValueType();
2253   SDLoc DL(N);
2254   SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
2255   SDValue NewSRL = DAG.getNode(ISD::SRL, DL, XVT, X, NewSRLAmt);
2256   SDValue NewMask = DAG.getConstant(Mask >> AMShiftAmt, DL, XVT);
2257   SDValue NewAnd = DAG.getNode(ISD::AND, DL, XVT, NewSRL, NewMask);
2258   SDValue NewExt = DAG.getZExtOrTrunc(NewAnd, DL, VT);
2259   SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
2260   SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewExt, NewSHLAmt);
2261 
2262   // Insert the new nodes into the topological ordering. We must do this in
2263   // a valid topological ordering as nothing is going to go back and re-sort
2264   // these nodes. We continually insert before 'N' in sequence as this is
2265   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2266   // hierarchy left to express.
2267   insertDAGNode(DAG, N, NewSRLAmt);
2268   insertDAGNode(DAG, N, NewSRL);
2269   insertDAGNode(DAG, N, NewMask);
2270   insertDAGNode(DAG, N, NewAnd);
2271   insertDAGNode(DAG, N, NewExt);
2272   insertDAGNode(DAG, N, NewSHLAmt);
2273   insertDAGNode(DAG, N, NewSHL);
2274   DAG.ReplaceAllUsesWith(N, NewSHL);
2275   DAG.RemoveDeadNode(N.getNode());
2276 
2277   AM.Scale = 1 << AMShiftAmt;
2278   AM.IndexReg = NewExt;
2279   return false;
2280 }
2281 
2282 // Attempt to peek further into a scaled index register, collecting additional
2283 // extensions / offsets / etc. Returns /p N if we can't peek any further.
2284 SDValue X86DAGToDAGISel::matchIndexRecursively(SDValue N,
2285                                                X86ISelAddressMode &AM,
2286                                                unsigned Depth) {
2287   assert(AM.IndexReg.getNode() == nullptr && "IndexReg already matched");
2288   assert((AM.Scale == 1 || AM.Scale == 2 || AM.Scale == 4 || AM.Scale == 8) &&
2289          "Illegal index scale");
2290 
2291   // Limit recursion.
2292   if (Depth >= SelectionDAG::MaxRecursionDepth)
2293     return N;
2294 
2295   EVT VT = N.getValueType();
2296   unsigned Opc = N.getOpcode();
2297 
2298   // index: add(x,c) -> index: x, disp + c
2299   if (CurDAG->isBaseWithConstantOffset(N)) {
2300     auto *AddVal = cast<ConstantSDNode>(N.getOperand(1));
2301     uint64_t Offset = (uint64_t)AddVal->getSExtValue() * AM.Scale;
2302     if (!foldOffsetIntoAddress(Offset, AM))
2303       return matchIndexRecursively(N.getOperand(0), AM, Depth + 1);
2304   }
2305 
2306   // index: add(x,x) -> index: x, scale * 2
2307   if (Opc == ISD::ADD && N.getOperand(0) == N.getOperand(1)) {
2308     if (AM.Scale <= 4) {
2309       AM.Scale *= 2;
2310       return matchIndexRecursively(N.getOperand(0), AM, Depth + 1);
2311     }
2312   }
2313 
2314   // index: shl(x,i) -> index: x, scale * (1 << i)
2315   if (Opc == X86ISD::VSHLI) {
2316     uint64_t ShiftAmt = N.getConstantOperandVal(1);
2317     uint64_t ScaleAmt = 1ULL << ShiftAmt;
2318     if ((AM.Scale * ScaleAmt) <= 8) {
2319       AM.Scale *= ScaleAmt;
2320       return matchIndexRecursively(N.getOperand(0), AM, Depth + 1);
2321     }
2322   }
2323 
2324   // index: sext(add_nsw(x,c)) -> index: sext(x), disp + sext(c)
2325   // TODO: call matchIndexRecursively(AddSrc) if we won't corrupt sext?
2326   if (Opc == ISD::SIGN_EXTEND && !VT.isVector() && N.hasOneUse()) {
2327     SDValue Src = N.getOperand(0);
2328     if (Src.getOpcode() == ISD::ADD && Src->getFlags().hasNoSignedWrap() &&
2329         Src.hasOneUse()) {
2330       if (CurDAG->isBaseWithConstantOffset(Src)) {
2331         SDValue AddSrc = Src.getOperand(0);
2332         auto *AddVal = cast<ConstantSDNode>(Src.getOperand(1));
2333         uint64_t Offset = (uint64_t)AddVal->getSExtValue();
2334         if (!foldOffsetIntoAddress(Offset * AM.Scale, AM)) {
2335           SDLoc DL(N);
2336           SDValue ExtSrc = CurDAG->getNode(Opc, DL, VT, AddSrc);
2337           SDValue ExtVal = CurDAG->getConstant(Offset, DL, VT);
2338           SDValue ExtAdd = CurDAG->getNode(ISD::ADD, DL, VT, ExtSrc, ExtVal);
2339           insertDAGNode(*CurDAG, N, ExtSrc);
2340           insertDAGNode(*CurDAG, N, ExtVal);
2341           insertDAGNode(*CurDAG, N, ExtAdd);
2342           CurDAG->ReplaceAllUsesWith(N, ExtAdd);
2343           CurDAG->RemoveDeadNode(N.getNode());
2344           return ExtSrc;
2345         }
2346       }
2347     }
2348   }
2349 
2350   // index: zext(add_nuw(x,c)) -> index: zext(x), disp + zext(c)
2351   // index: zext(addlike(x,c)) -> index: zext(x), disp + zext(c)
2352   // TODO: call matchIndexRecursively(AddSrc) if we won't corrupt sext?
2353   if (Opc == ISD::ZERO_EXTEND && !VT.isVector() && N.hasOneUse()) {
2354     SDValue Src = N.getOperand(0);
2355     unsigned SrcOpc = Src.getOpcode();
2356     if (((SrcOpc == ISD::ADD && Src->getFlags().hasNoUnsignedWrap()) ||
2357          CurDAG->isADDLike(Src)) &&
2358         Src.hasOneUse()) {
2359       if (CurDAG->isBaseWithConstantOffset(Src)) {
2360         SDValue AddSrc = Src.getOperand(0);
2361         auto *AddVal = cast<ConstantSDNode>(Src.getOperand(1));
2362         uint64_t Offset = (uint64_t)AddVal->getZExtValue();
2363         if (!foldOffsetIntoAddress(Offset * AM.Scale, AM)) {
2364           SDLoc DL(N);
2365           SDValue Res;
2366           // If we're also scaling, see if we can use that as well.
2367           if (AddSrc.getOpcode() == ISD::SHL &&
2368               isa<ConstantSDNode>(AddSrc.getOperand(1))) {
2369             SDValue ShVal = AddSrc.getOperand(0);
2370             uint64_t ShAmt = AddSrc.getConstantOperandVal(1);
2371             APInt HiBits =
2372                 APInt::getHighBitsSet(AddSrc.getScalarValueSizeInBits(), ShAmt);
2373             uint64_t ScaleAmt = 1ULL << ShAmt;
2374             if ((AM.Scale * ScaleAmt) <= 8 &&
2375                 (AddSrc->getFlags().hasNoUnsignedWrap() ||
2376                  CurDAG->MaskedValueIsZero(ShVal, HiBits))) {
2377               AM.Scale *= ScaleAmt;
2378               SDValue ExtShVal = CurDAG->getNode(Opc, DL, VT, ShVal);
2379               SDValue ExtShift = CurDAG->getNode(ISD::SHL, DL, VT, ExtShVal,
2380                                                  AddSrc.getOperand(1));
2381               insertDAGNode(*CurDAG, N, ExtShVal);
2382               insertDAGNode(*CurDAG, N, ExtShift);
2383               AddSrc = ExtShift;
2384               Res = ExtShVal;
2385             }
2386           }
2387           SDValue ExtSrc = CurDAG->getNode(Opc, DL, VT, AddSrc);
2388           SDValue ExtVal = CurDAG->getConstant(Offset, DL, VT);
2389           SDValue ExtAdd = CurDAG->getNode(SrcOpc, DL, VT, ExtSrc, ExtVal);
2390           insertDAGNode(*CurDAG, N, ExtSrc);
2391           insertDAGNode(*CurDAG, N, ExtVal);
2392           insertDAGNode(*CurDAG, N, ExtAdd);
2393           CurDAG->ReplaceAllUsesWith(N, ExtAdd);
2394           CurDAG->RemoveDeadNode(N.getNode());
2395           return Res ? Res : ExtSrc;
2396         }
2397       }
2398     }
2399   }
2400 
2401   // TODO: Handle extensions, shifted masks etc.
2402   return N;
2403 }
2404 
2405 bool X86DAGToDAGISel::matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
2406                                               unsigned Depth) {
2407   SDLoc dl(N);
2408   LLVM_DEBUG({
2409     dbgs() << "MatchAddress: ";
2410     AM.dump(CurDAG);
2411   });
2412   // Limit recursion.
2413   if (Depth >= SelectionDAG::MaxRecursionDepth)
2414     return matchAddressBase(N, AM);
2415 
2416   // If this is already a %rip relative address, we can only merge immediates
2417   // into it.  Instead of handling this in every case, we handle it here.
2418   // RIP relative addressing: %rip + 32-bit displacement!
2419   if (AM.isRIPRelative()) {
2420     // FIXME: JumpTable and ExternalSymbol address currently don't like
2421     // displacements.  It isn't very important, but this should be fixed for
2422     // consistency.
2423     if (!(AM.ES || AM.MCSym) && AM.JT != -1)
2424       return true;
2425 
2426     if (auto *Cst = dyn_cast<ConstantSDNode>(N))
2427       if (!foldOffsetIntoAddress(Cst->getSExtValue(), AM))
2428         return false;
2429     return true;
2430   }
2431 
2432   switch (N.getOpcode()) {
2433   default: break;
2434   case ISD::LOCAL_RECOVER: {
2435     if (!AM.hasSymbolicDisplacement() && AM.Disp == 0)
2436       if (const auto *ESNode = dyn_cast<MCSymbolSDNode>(N.getOperand(0))) {
2437         // Use the symbol and don't prefix it.
2438         AM.MCSym = ESNode->getMCSymbol();
2439         return false;
2440       }
2441     break;
2442   }
2443   case ISD::Constant: {
2444     uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
2445     if (!foldOffsetIntoAddress(Val, AM))
2446       return false;
2447     break;
2448   }
2449 
2450   case X86ISD::Wrapper:
2451   case X86ISD::WrapperRIP:
2452     if (!matchWrapper(N, AM))
2453       return false;
2454     break;
2455 
2456   case ISD::LOAD:
2457     if (!matchLoadInAddress(cast<LoadSDNode>(N), AM))
2458       return false;
2459     break;
2460 
2461   case ISD::FrameIndex:
2462     if (AM.BaseType == X86ISelAddressMode::RegBase &&
2463         AM.Base_Reg.getNode() == nullptr &&
2464         (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
2465       AM.BaseType = X86ISelAddressMode::FrameIndexBase;
2466       AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
2467       return false;
2468     }
2469     break;
2470 
2471   case ISD::SHL:
2472     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
2473       break;
2474 
2475     if (auto *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
2476       unsigned Val = CN->getZExtValue();
2477       // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
2478       // that the base operand remains free for further matching. If
2479       // the base doesn't end up getting used, a post-processing step
2480       // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
2481       if (Val == 1 || Val == 2 || Val == 3) {
2482         SDValue ShVal = N.getOperand(0);
2483         AM.Scale = 1 << Val;
2484         AM.IndexReg = matchIndexRecursively(ShVal, AM, Depth + 1);
2485         return false;
2486       }
2487     }
2488     break;
2489 
2490   case ISD::SRL: {
2491     // Scale must not be used already.
2492     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
2493 
2494     // We only handle up to 64-bit values here as those are what matter for
2495     // addressing mode optimizations.
2496     assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
2497            "Unexpected value size!");
2498 
2499     SDValue And = N.getOperand(0);
2500     if (And.getOpcode() != ISD::AND) break;
2501     SDValue X = And.getOperand(0);
2502 
2503     // The mask used for the transform is expected to be post-shift, but we
2504     // found the shift first so just apply the shift to the mask before passing
2505     // it down.
2506     if (!isa<ConstantSDNode>(N.getOperand(1)) ||
2507         !isa<ConstantSDNode>(And.getOperand(1)))
2508       break;
2509     uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
2510 
2511     // Try to fold the mask and shift into the scale, and return false if we
2512     // succeed.
2513     if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
2514       return false;
2515     break;
2516   }
2517 
2518   case ISD::SMUL_LOHI:
2519   case ISD::UMUL_LOHI:
2520     // A mul_lohi where we need the low part can be folded as a plain multiply.
2521     if (N.getResNo() != 0) break;
2522     [[fallthrough]];
2523   case ISD::MUL:
2524   case X86ISD::MUL_IMM:
2525     // X*[3,5,9] -> X+X*[2,4,8]
2526     if (AM.BaseType == X86ISelAddressMode::RegBase &&
2527         AM.Base_Reg.getNode() == nullptr &&
2528         AM.IndexReg.getNode() == nullptr) {
2529       if (auto *CN = dyn_cast<ConstantSDNode>(N.getOperand(1)))
2530         if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
2531             CN->getZExtValue() == 9) {
2532           AM.Scale = unsigned(CN->getZExtValue())-1;
2533 
2534           SDValue MulVal = N.getOperand(0);
2535           SDValue Reg;
2536 
2537           // Okay, we know that we have a scale by now.  However, if the scaled
2538           // value is an add of something and a constant, we can fold the
2539           // constant into the disp field here.
2540           if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
2541               isa<ConstantSDNode>(MulVal.getOperand(1))) {
2542             Reg = MulVal.getOperand(0);
2543             auto *AddVal = cast<ConstantSDNode>(MulVal.getOperand(1));
2544             uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
2545             if (foldOffsetIntoAddress(Disp, AM))
2546               Reg = N.getOperand(0);
2547           } else {
2548             Reg = N.getOperand(0);
2549           }
2550 
2551           AM.IndexReg = AM.Base_Reg = Reg;
2552           return false;
2553         }
2554     }
2555     break;
2556 
2557   case ISD::SUB: {
2558     // Given A-B, if A can be completely folded into the address and
2559     // the index field with the index field unused, use -B as the index.
2560     // This is a win if a has multiple parts that can be folded into
2561     // the address. Also, this saves a mov if the base register has
2562     // other uses, since it avoids a two-address sub instruction, however
2563     // it costs an additional mov if the index register has other uses.
2564 
2565     // Add an artificial use to this node so that we can keep track of
2566     // it if it gets CSE'd with a different node.
2567     HandleSDNode Handle(N);
2568 
2569     // Test if the LHS of the sub can be folded.
2570     X86ISelAddressMode Backup = AM;
2571     if (matchAddressRecursively(N.getOperand(0), AM, Depth+1)) {
2572       N = Handle.getValue();
2573       AM = Backup;
2574       break;
2575     }
2576     N = Handle.getValue();
2577     // Test if the index field is free for use.
2578     if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
2579       AM = Backup;
2580       break;
2581     }
2582 
2583     int Cost = 0;
2584     SDValue RHS = N.getOperand(1);
2585     // If the RHS involves a register with multiple uses, this
2586     // transformation incurs an extra mov, due to the neg instruction
2587     // clobbering its operand.
2588     if (!RHS.getNode()->hasOneUse() ||
2589         RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
2590         RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
2591         RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
2592         (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
2593          RHS.getOperand(0).getValueType() == MVT::i32))
2594       ++Cost;
2595     // If the base is a register with multiple uses, this
2596     // transformation may save a mov.
2597     if ((AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode() &&
2598          !AM.Base_Reg.getNode()->hasOneUse()) ||
2599         AM.BaseType == X86ISelAddressMode::FrameIndexBase)
2600       --Cost;
2601     // If the folded LHS was interesting, this transformation saves
2602     // address arithmetic.
2603     if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
2604         ((AM.Disp != 0) && (Backup.Disp == 0)) +
2605         (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
2606       --Cost;
2607     // If it doesn't look like it may be an overall win, don't do it.
2608     if (Cost >= 0) {
2609       AM = Backup;
2610       break;
2611     }
2612 
2613     // Ok, the transformation is legal and appears profitable. Go for it.
2614     // Negation will be emitted later to avoid creating dangling nodes if this
2615     // was an unprofitable LEA.
2616     AM.IndexReg = RHS;
2617     AM.NegateIndex = true;
2618     AM.Scale = 1;
2619     return false;
2620   }
2621 
2622   case ISD::OR:
2623   case ISD::XOR:
2624     // See if we can treat the OR/XOR node as an ADD node.
2625     if (!CurDAG->isADDLike(N))
2626       break;
2627     [[fallthrough]];
2628   case ISD::ADD:
2629     if (!matchAdd(N, AM, Depth))
2630       return false;
2631     break;
2632 
2633   case ISD::AND: {
2634     // Perform some heroic transforms on an and of a constant-count shift
2635     // with a constant to enable use of the scaled offset field.
2636 
2637     // Scale must not be used already.
2638     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
2639 
2640     // We only handle up to 64-bit values here as those are what matter for
2641     // addressing mode optimizations.
2642     assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
2643            "Unexpected value size!");
2644 
2645     if (!isa<ConstantSDNode>(N.getOperand(1)))
2646       break;
2647 
2648     if (N.getOperand(0).getOpcode() == ISD::SRL) {
2649       SDValue Shift = N.getOperand(0);
2650       SDValue X = Shift.getOperand(0);
2651 
2652       uint64_t Mask = N.getConstantOperandVal(1);
2653 
2654       // Try to fold the mask and shift into an extract and scale.
2655       if (!foldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
2656         return false;
2657 
2658       // Try to fold the mask and shift directly into the scale.
2659       if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
2660         return false;
2661 
2662       // Try to fold the mask and shift into BEXTR and scale.
2663       if (!foldMaskedShiftToBEXTR(*CurDAG, N, Mask, Shift, X, AM, *Subtarget))
2664         return false;
2665     }
2666 
2667     // Try to swap the mask and shift to place shifts which can be done as
2668     // a scale on the outside of the mask.
2669     if (!foldMaskedShiftToScaledMask(*CurDAG, N, AM))
2670       return false;
2671 
2672     break;
2673   }
2674   case ISD::ZERO_EXTEND: {
2675     // Try to widen a zexted shift left to the same size as its use, so we can
2676     // match the shift as a scale factor.
2677     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
2678       break;
2679 
2680     SDValue Src = N.getOperand(0);
2681 
2682     // See if we can match a zext(addlike(x,c)).
2683     // TODO: Move more ZERO_EXTEND patterns into matchIndexRecursively.
2684     if (Src.getOpcode() == ISD::ADD || Src.getOpcode() == ISD::OR)
2685       if (SDValue Index = matchIndexRecursively(N, AM, Depth + 1))
2686         if (Index != N) {
2687           AM.IndexReg = Index;
2688           return false;
2689         }
2690 
2691     // Peek through mask: zext(and(shl(x,c1),c2))
2692     APInt Mask = APInt::getAllOnes(Src.getScalarValueSizeInBits());
2693     if (Src.getOpcode() == ISD::AND && Src.hasOneUse())
2694       if (auto *MaskC = dyn_cast<ConstantSDNode>(Src.getOperand(1))) {
2695         Mask = MaskC->getAPIntValue();
2696         Src = Src.getOperand(0);
2697       }
2698 
2699     if (Src.getOpcode() == ISD::SHL && Src.hasOneUse()) {
2700       // Give up if the shift is not a valid scale factor [1,2,3].
2701       SDValue ShlSrc = Src.getOperand(0);
2702       SDValue ShlAmt = Src.getOperand(1);
2703       auto *ShAmtC = dyn_cast<ConstantSDNode>(ShlAmt);
2704       if (!ShAmtC)
2705         break;
2706       unsigned ShAmtV = ShAmtC->getZExtValue();
2707       if (ShAmtV > 3)
2708         break;
2709 
2710       // The narrow shift must only shift out zero bits (it must be 'nuw').
2711       // That makes it safe to widen to the destination type.
2712       APInt HighZeros =
2713           APInt::getHighBitsSet(ShlSrc.getValueSizeInBits(), ShAmtV);
2714       if (!Src->getFlags().hasNoUnsignedWrap() &&
2715           !CurDAG->MaskedValueIsZero(ShlSrc, HighZeros & Mask))
2716         break;
2717 
2718       // zext (shl nuw i8 %x, C1) to i32
2719       // --> shl (zext i8 %x to i32), (zext C1)
2720       // zext (and (shl nuw i8 %x, C1), C2) to i32
2721       // --> shl (zext i8 (and %x, C2 >> C1) to i32), (zext C1)
2722       MVT SrcVT = ShlSrc.getSimpleValueType();
2723       MVT VT = N.getSimpleValueType();
2724       SDLoc DL(N);
2725 
2726       SDValue Res = ShlSrc;
2727       if (!Mask.isAllOnes()) {
2728         Res = CurDAG->getConstant(Mask.lshr(ShAmtV), DL, SrcVT);
2729         insertDAGNode(*CurDAG, N, Res);
2730         Res = CurDAG->getNode(ISD::AND, DL, SrcVT, ShlSrc, Res);
2731         insertDAGNode(*CurDAG, N, Res);
2732       }
2733       SDValue Zext = CurDAG->getNode(ISD::ZERO_EXTEND, DL, VT, Res);
2734       insertDAGNode(*CurDAG, N, Zext);
2735       SDValue NewShl = CurDAG->getNode(ISD::SHL, DL, VT, Zext, ShlAmt);
2736       insertDAGNode(*CurDAG, N, NewShl);
2737 
2738       // Convert the shift to scale factor.
2739       AM.Scale = 1 << ShAmtV;
2740       AM.IndexReg = Zext;
2741 
2742       CurDAG->ReplaceAllUsesWith(N, NewShl);
2743       CurDAG->RemoveDeadNode(N.getNode());
2744       return false;
2745     }
2746 
2747     if (Src.getOpcode() == ISD::SRL && !Mask.isAllOnes()) {
2748       // Try to fold the mask and shift into an extract and scale.
2749       if (!foldMaskAndShiftToExtract(*CurDAG, N, Mask.getZExtValue(), Src,
2750                                      Src.getOperand(0), AM))
2751         return false;
2752 
2753       // Try to fold the mask and shift directly into the scale.
2754       if (!foldMaskAndShiftToScale(*CurDAG, N, Mask.getZExtValue(), Src,
2755                                    Src.getOperand(0), AM))
2756         return false;
2757 
2758       // Try to fold the mask and shift into BEXTR and scale.
2759       if (!foldMaskedShiftToBEXTR(*CurDAG, N, Mask.getZExtValue(), Src,
2760                                   Src.getOperand(0), AM, *Subtarget))
2761         return false;
2762     }
2763 
2764     break;
2765   }
2766   }
2767 
2768   return matchAddressBase(N, AM);
2769 }
2770 
2771 /// Helper for MatchAddress. Add the specified node to the
2772 /// specified addressing mode without any further recursion.
2773 bool X86DAGToDAGISel::matchAddressBase(SDValue N, X86ISelAddressMode &AM) {
2774   // Is the base register already occupied?
2775   if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
2776     // If so, check to see if the scale index register is set.
2777     if (!AM.IndexReg.getNode()) {
2778       AM.IndexReg = N;
2779       AM.Scale = 1;
2780       return false;
2781     }
2782 
2783     // Otherwise, we cannot select it.
2784     return true;
2785   }
2786 
2787   // Default, generate it as a register.
2788   AM.BaseType = X86ISelAddressMode::RegBase;
2789   AM.Base_Reg = N;
2790   return false;
2791 }
2792 
2793 bool X86DAGToDAGISel::matchVectorAddressRecursively(SDValue N,
2794                                                     X86ISelAddressMode &AM,
2795                                                     unsigned Depth) {
2796   SDLoc dl(N);
2797   LLVM_DEBUG({
2798     dbgs() << "MatchVectorAddress: ";
2799     AM.dump(CurDAG);
2800   });
2801   // Limit recursion.
2802   if (Depth >= SelectionDAG::MaxRecursionDepth)
2803     return matchAddressBase(N, AM);
2804 
2805   // TODO: Support other operations.
2806   switch (N.getOpcode()) {
2807   case ISD::Constant: {
2808     uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
2809     if (!foldOffsetIntoAddress(Val, AM))
2810       return false;
2811     break;
2812   }
2813   case X86ISD::Wrapper:
2814     if (!matchWrapper(N, AM))
2815       return false;
2816     break;
2817   case ISD::ADD: {
2818     // Add an artificial use to this node so that we can keep track of
2819     // it if it gets CSE'd with a different node.
2820     HandleSDNode Handle(N);
2821 
2822     X86ISelAddressMode Backup = AM;
2823     if (!matchVectorAddressRecursively(N.getOperand(0), AM, Depth + 1) &&
2824         !matchVectorAddressRecursively(Handle.getValue().getOperand(1), AM,
2825                                        Depth + 1))
2826       return false;
2827     AM = Backup;
2828 
2829     // Try again after commuting the operands.
2830     if (!matchVectorAddressRecursively(Handle.getValue().getOperand(1), AM,
2831                                        Depth + 1) &&
2832         !matchVectorAddressRecursively(Handle.getValue().getOperand(0), AM,
2833                                        Depth + 1))
2834       return false;
2835     AM = Backup;
2836 
2837     N = Handle.getValue();
2838     break;
2839   }
2840   }
2841 
2842   return matchAddressBase(N, AM);
2843 }
2844 
2845 /// Helper for selectVectorAddr. Handles things that can be folded into a
2846 /// gather/scatter address. The index register and scale should have already
2847 /// been handled.
2848 bool X86DAGToDAGISel::matchVectorAddress(SDValue N, X86ISelAddressMode &AM) {
2849   return matchVectorAddressRecursively(N, AM, 0);
2850 }
2851 
2852 bool X86DAGToDAGISel::selectVectorAddr(MemSDNode *Parent, SDValue BasePtr,
2853                                        SDValue IndexOp, SDValue ScaleOp,
2854                                        SDValue &Base, SDValue &Scale,
2855                                        SDValue &Index, SDValue &Disp,
2856                                        SDValue &Segment) {
2857   X86ISelAddressMode AM;
2858   AM.Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
2859 
2860   // Attempt to match index patterns, as long as we're not relying on implicit
2861   // sign-extension, which is performed BEFORE scale.
2862   if (IndexOp.getScalarValueSizeInBits() == BasePtr.getScalarValueSizeInBits())
2863     AM.IndexReg = matchIndexRecursively(IndexOp, AM, 0);
2864   else
2865     AM.IndexReg = IndexOp;
2866 
2867   unsigned AddrSpace = Parent->getPointerInfo().getAddrSpace();
2868   if (AddrSpace == X86AS::GS)
2869     AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
2870   if (AddrSpace == X86AS::FS)
2871     AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
2872   if (AddrSpace == X86AS::SS)
2873     AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
2874 
2875   SDLoc DL(BasePtr);
2876   MVT VT = BasePtr.getSimpleValueType();
2877 
2878   // Try to match into the base and displacement fields.
2879   if (matchVectorAddress(BasePtr, AM))
2880     return false;
2881 
2882   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2883   return true;
2884 }
2885 
2886 /// Returns true if it is able to pattern match an addressing mode.
2887 /// It returns the operands which make up the maximal addressing mode it can
2888 /// match by reference.
2889 ///
2890 /// Parent is the parent node of the addr operand that is being matched.  It
2891 /// is always a load, store, atomic node, or null.  It is only null when
2892 /// checking memory operands for inline asm nodes.
2893 bool X86DAGToDAGISel::selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
2894                                  SDValue &Scale, SDValue &Index,
2895                                  SDValue &Disp, SDValue &Segment) {
2896   X86ISelAddressMode AM;
2897 
2898   if (Parent &&
2899       // This list of opcodes are all the nodes that have an "addr:$ptr" operand
2900       // that are not a MemSDNode, and thus don't have proper addrspace info.
2901       Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
2902       Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
2903       Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
2904       Parent->getOpcode() != X86ISD::ENQCMD && // Fixme
2905       Parent->getOpcode() != X86ISD::ENQCMDS && // Fixme
2906       Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
2907       Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
2908     unsigned AddrSpace =
2909       cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
2910     if (AddrSpace == X86AS::GS)
2911       AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
2912     if (AddrSpace == X86AS::FS)
2913       AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
2914     if (AddrSpace == X86AS::SS)
2915       AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
2916   }
2917 
2918   // Save the DL and VT before calling matchAddress, it can invalidate N.
2919   SDLoc DL(N);
2920   MVT VT = N.getSimpleValueType();
2921 
2922   if (matchAddress(N, AM))
2923     return false;
2924 
2925   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2926   return true;
2927 }
2928 
2929 bool X86DAGToDAGISel::selectMOV64Imm32(SDValue N, SDValue &Imm) {
2930   // Cannot use 32 bit constants to reference objects in kernel code model.
2931   // Cannot use 32 bit constants to reference objects in large PIC mode since
2932   // GOTOFF is 64 bits.
2933   if (TM.getCodeModel() == CodeModel::Kernel ||
2934       (TM.getCodeModel() == CodeModel::Large && TM.isPositionIndependent()))
2935     return false;
2936 
2937   // In static codegen with small code model, we can get the address of a label
2938   // into a register with 'movl'
2939   if (N->getOpcode() != X86ISD::Wrapper)
2940     return false;
2941 
2942   N = N.getOperand(0);
2943 
2944   // At least GNU as does not accept 'movl' for TPOFF relocations.
2945   // FIXME: We could use 'movl' when we know we are targeting MC.
2946   if (N->getOpcode() == ISD::TargetGlobalTLSAddress)
2947     return false;
2948 
2949   Imm = N;
2950   // Small/medium code model can reference non-TargetGlobalAddress objects with
2951   // 32 bit constants.
2952   if (N->getOpcode() != ISD::TargetGlobalAddress) {
2953     return TM.getCodeModel() == CodeModel::Small ||
2954            TM.getCodeModel() == CodeModel::Medium;
2955   }
2956 
2957   const GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
2958   if (std::optional<ConstantRange> CR = GV->getAbsoluteSymbolRange())
2959     return CR->getUnsignedMax().ult(1ull << 32);
2960 
2961   return !TM.isLargeGlobalValue(GV);
2962 }
2963 
2964 bool X86DAGToDAGISel::selectLEA64_32Addr(SDValue N, SDValue &Base,
2965                                          SDValue &Scale, SDValue &Index,
2966                                          SDValue &Disp, SDValue &Segment) {
2967   // Save the debug loc before calling selectLEAAddr, in case it invalidates N.
2968   SDLoc DL(N);
2969 
2970   if (!selectLEAAddr(N, Base, Scale, Index, Disp, Segment))
2971     return false;
2972 
2973   auto *RN = dyn_cast<RegisterSDNode>(Base);
2974   if (RN && RN->getReg() == 0)
2975     Base = CurDAG->getRegister(0, MVT::i64);
2976   else if (Base.getValueType() == MVT::i32 && !isa<FrameIndexSDNode>(Base)) {
2977     // Base could already be %rip, particularly in the x32 ABI.
2978     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
2979                                                      MVT::i64), 0);
2980     Base = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
2981                                          Base);
2982   }
2983 
2984   RN = dyn_cast<RegisterSDNode>(Index);
2985   if (RN && RN->getReg() == 0)
2986     Index = CurDAG->getRegister(0, MVT::i64);
2987   else {
2988     assert(Index.getValueType() == MVT::i32 &&
2989            "Expect to be extending 32-bit registers for use in LEA");
2990     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
2991                                                      MVT::i64), 0);
2992     Index = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
2993                                           Index);
2994   }
2995 
2996   return true;
2997 }
2998 
2999 /// Calls SelectAddr and determines if the maximal addressing
3000 /// mode it matches can be cost effectively emitted as an LEA instruction.
3001 bool X86DAGToDAGISel::selectLEAAddr(SDValue N,
3002                                     SDValue &Base, SDValue &Scale,
3003                                     SDValue &Index, SDValue &Disp,
3004                                     SDValue &Segment) {
3005   X86ISelAddressMode AM;
3006 
3007   // Save the DL and VT before calling matchAddress, it can invalidate N.
3008   SDLoc DL(N);
3009   MVT VT = N.getSimpleValueType();
3010 
3011   // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
3012   // segments.
3013   SDValue Copy = AM.Segment;
3014   SDValue T = CurDAG->getRegister(0, MVT::i32);
3015   AM.Segment = T;
3016   if (matchAddress(N, AM))
3017     return false;
3018   assert (T == AM.Segment);
3019   AM.Segment = Copy;
3020 
3021   unsigned Complexity = 0;
3022   if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode())
3023     Complexity = 1;
3024   else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
3025     Complexity = 4;
3026 
3027   if (AM.IndexReg.getNode())
3028     Complexity++;
3029 
3030   // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
3031   // a simple shift.
3032   if (AM.Scale > 1)
3033     Complexity++;
3034 
3035   // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
3036   // to a LEA. This is determined with some experimentation but is by no means
3037   // optimal (especially for code size consideration). LEA is nice because of
3038   // its three-address nature. Tweak the cost function again when we can run
3039   // convertToThreeAddress() at register allocation time.
3040   if (AM.hasSymbolicDisplacement()) {
3041     // For X86-64, always use LEA to materialize RIP-relative addresses.
3042     if (Subtarget->is64Bit())
3043       Complexity = 4;
3044     else
3045       Complexity += 2;
3046   }
3047 
3048   // Heuristic: try harder to form an LEA from ADD if the operands set flags.
3049   // Unlike ADD, LEA does not affect flags, so we will be less likely to require
3050   // duplicating flag-producing instructions later in the pipeline.
3051   if (N.getOpcode() == ISD::ADD) {
3052     auto isMathWithFlags = [](SDValue V) {
3053       switch (V.getOpcode()) {
3054       case X86ISD::ADD:
3055       case X86ISD::SUB:
3056       case X86ISD::ADC:
3057       case X86ISD::SBB:
3058       case X86ISD::SMUL:
3059       case X86ISD::UMUL:
3060       /* TODO: These opcodes can be added safely, but we may want to justify
3061                their inclusion for different reasons (better for reg-alloc).
3062       case X86ISD::OR:
3063       case X86ISD::XOR:
3064       case X86ISD::AND:
3065       */
3066         // Value 1 is the flag output of the node - verify it's not dead.
3067         return !SDValue(V.getNode(), 1).use_empty();
3068       default:
3069         return false;
3070       }
3071     };
3072     // TODO: We might want to factor in whether there's a load folding
3073     // opportunity for the math op that disappears with LEA.
3074     if (isMathWithFlags(N.getOperand(0)) || isMathWithFlags(N.getOperand(1)))
3075       Complexity++;
3076   }
3077 
3078   if (AM.Disp)
3079     Complexity++;
3080 
3081   // If it isn't worth using an LEA, reject it.
3082   if (Complexity <= 2)
3083     return false;
3084 
3085   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
3086   return true;
3087 }
3088 
3089 /// This is only run on TargetGlobalTLSAddress nodes.
3090 bool X86DAGToDAGISel::selectTLSADDRAddr(SDValue N, SDValue &Base,
3091                                         SDValue &Scale, SDValue &Index,
3092                                         SDValue &Disp, SDValue &Segment) {
3093   assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
3094   auto *GA = cast<GlobalAddressSDNode>(N);
3095 
3096   X86ISelAddressMode AM;
3097   AM.GV = GA->getGlobal();
3098   AM.Disp += GA->getOffset();
3099   AM.SymbolFlags = GA->getTargetFlags();
3100 
3101   if (Subtarget->is32Bit()) {
3102     AM.Scale = 1;
3103     AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
3104   }
3105 
3106   MVT VT = N.getSimpleValueType();
3107   getAddressOperands(AM, SDLoc(N), VT, Base, Scale, Index, Disp, Segment);
3108   return true;
3109 }
3110 
3111 bool X86DAGToDAGISel::selectRelocImm(SDValue N, SDValue &Op) {
3112   // Keep track of the original value type and whether this value was
3113   // truncated. If we see a truncation from pointer type to VT that truncates
3114   // bits that are known to be zero, we can use a narrow reference.
3115   EVT VT = N.getValueType();
3116   bool WasTruncated = false;
3117   if (N.getOpcode() == ISD::TRUNCATE) {
3118     WasTruncated = true;
3119     N = N.getOperand(0);
3120   }
3121 
3122   if (N.getOpcode() != X86ISD::Wrapper)
3123     return false;
3124 
3125   // We can only use non-GlobalValues as immediates if they were not truncated,
3126   // as we do not have any range information. If we have a GlobalValue and the
3127   // address was not truncated, we can select it as an operand directly.
3128   unsigned Opc = N.getOperand(0)->getOpcode();
3129   if (Opc != ISD::TargetGlobalAddress || !WasTruncated) {
3130     Op = N.getOperand(0);
3131     // We can only select the operand directly if we didn't have to look past a
3132     // truncate.
3133     return !WasTruncated;
3134   }
3135 
3136   // Check that the global's range fits into VT.
3137   auto *GA = cast<GlobalAddressSDNode>(N.getOperand(0));
3138   std::optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
3139   if (!CR || CR->getUnsignedMax().uge(1ull << VT.getSizeInBits()))
3140     return false;
3141 
3142   // Okay, we can use a narrow reference.
3143   Op = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(N), VT,
3144                                       GA->getOffset(), GA->getTargetFlags());
3145   return true;
3146 }
3147 
3148 bool X86DAGToDAGISel::tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
3149                                   SDValue &Base, SDValue &Scale,
3150                                   SDValue &Index, SDValue &Disp,
3151                                   SDValue &Segment) {
3152   assert(Root && P && "Unknown root/parent nodes");
3153   if (!ISD::isNON_EXTLoad(N.getNode()) ||
3154       !IsProfitableToFold(N, P, Root) ||
3155       !IsLegalToFold(N, P, Root, OptLevel))
3156     return false;
3157 
3158   return selectAddr(N.getNode(),
3159                     N.getOperand(1), Base, Scale, Index, Disp, Segment);
3160 }
3161 
3162 bool X86DAGToDAGISel::tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
3163                                        SDValue &Base, SDValue &Scale,
3164                                        SDValue &Index, SDValue &Disp,
3165                                        SDValue &Segment) {
3166   assert(Root && P && "Unknown root/parent nodes");
3167   if (N->getOpcode() != X86ISD::VBROADCAST_LOAD ||
3168       !IsProfitableToFold(N, P, Root) ||
3169       !IsLegalToFold(N, P, Root, OptLevel))
3170     return false;
3171 
3172   return selectAddr(N.getNode(),
3173                     N.getOperand(1), Base, Scale, Index, Disp, Segment);
3174 }
3175 
3176 /// Return an SDNode that returns the value of the global base register.
3177 /// Output instructions required to initialize the global base register,
3178 /// if necessary.
3179 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
3180   unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
3181   auto &DL = MF->getDataLayout();
3182   return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy(DL)).getNode();
3183 }
3184 
3185 bool X86DAGToDAGISel::isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const {
3186   if (N->getOpcode() == ISD::TRUNCATE)
3187     N = N->getOperand(0).getNode();
3188   if (N->getOpcode() != X86ISD::Wrapper)
3189     return false;
3190 
3191   auto *GA = dyn_cast<GlobalAddressSDNode>(N->getOperand(0));
3192   if (!GA)
3193     return false;
3194 
3195   std::optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
3196   if (!CR)
3197     return Width == 32 && TM.getCodeModel() == CodeModel::Small;
3198 
3199   return CR->getSignedMin().sge(-1ull << Width) &&
3200          CR->getSignedMax().slt(1ull << Width);
3201 }
3202 
3203 X86::CondCode X86DAGToDAGISel::getCondFromNode(SDNode *N) const {
3204   assert(N->isMachineOpcode() && "Unexpected node");
3205   unsigned Opc = N->getMachineOpcode();
3206   const MCInstrDesc &MCID = getInstrInfo()->get(Opc);
3207   int CondNo = X86::getCondSrcNoFromDesc(MCID);
3208   if (CondNo < 0)
3209     return X86::COND_INVALID;
3210 
3211   return static_cast<X86::CondCode>(N->getConstantOperandVal(CondNo));
3212 }
3213 
3214 /// Test whether the given X86ISD::CMP node has any users that use a flag
3215 /// other than ZF.
3216 bool X86DAGToDAGISel::onlyUsesZeroFlag(SDValue Flags) const {
3217   // Examine each user of the node.
3218   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
3219          UI != UE; ++UI) {
3220     // Only check things that use the flags.
3221     if (UI.getUse().getResNo() != Flags.getResNo())
3222       continue;
3223     // Only examine CopyToReg uses that copy to EFLAGS.
3224     if (UI->getOpcode() != ISD::CopyToReg ||
3225         cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
3226       return false;
3227     // Examine each user of the CopyToReg use.
3228     for (SDNode::use_iterator FlagUI = UI->use_begin(),
3229            FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
3230       // Only examine the Flag result.
3231       if (FlagUI.getUse().getResNo() != 1) continue;
3232       // Anything unusual: assume conservatively.
3233       if (!FlagUI->isMachineOpcode()) return false;
3234       // Examine the condition code of the user.
3235       X86::CondCode CC = getCondFromNode(*FlagUI);
3236 
3237       switch (CC) {
3238       // Comparisons which only use the zero flag.
3239       case X86::COND_E: case X86::COND_NE:
3240         continue;
3241       // Anything else: assume conservatively.
3242       default:
3243         return false;
3244       }
3245     }
3246   }
3247   return true;
3248 }
3249 
3250 /// Test whether the given X86ISD::CMP node has any uses which require the SF
3251 /// flag to be accurate.
3252 bool X86DAGToDAGISel::hasNoSignFlagUses(SDValue Flags) const {
3253   // Examine each user of the node.
3254   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
3255          UI != UE; ++UI) {
3256     // Only check things that use the flags.
3257     if (UI.getUse().getResNo() != Flags.getResNo())
3258       continue;
3259     // Only examine CopyToReg uses that copy to EFLAGS.
3260     if (UI->getOpcode() != ISD::CopyToReg ||
3261         cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
3262       return false;
3263     // Examine each user of the CopyToReg use.
3264     for (SDNode::use_iterator FlagUI = UI->use_begin(),
3265            FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
3266       // Only examine the Flag result.
3267       if (FlagUI.getUse().getResNo() != 1) continue;
3268       // Anything unusual: assume conservatively.
3269       if (!FlagUI->isMachineOpcode()) return false;
3270       // Examine the condition code of the user.
3271       X86::CondCode CC = getCondFromNode(*FlagUI);
3272 
3273       switch (CC) {
3274       // Comparisons which don't examine the SF flag.
3275       case X86::COND_A: case X86::COND_AE:
3276       case X86::COND_B: case X86::COND_BE:
3277       case X86::COND_E: case X86::COND_NE:
3278       case X86::COND_O: case X86::COND_NO:
3279       case X86::COND_P: case X86::COND_NP:
3280         continue;
3281       // Anything else: assume conservatively.
3282       default:
3283         return false;
3284       }
3285     }
3286   }
3287   return true;
3288 }
3289 
3290 static bool mayUseCarryFlag(X86::CondCode CC) {
3291   switch (CC) {
3292   // Comparisons which don't examine the CF flag.
3293   case X86::COND_O: case X86::COND_NO:
3294   case X86::COND_E: case X86::COND_NE:
3295   case X86::COND_S: case X86::COND_NS:
3296   case X86::COND_P: case X86::COND_NP:
3297   case X86::COND_L: case X86::COND_GE:
3298   case X86::COND_G: case X86::COND_LE:
3299     return false;
3300   // Anything else: assume conservatively.
3301   default:
3302     return true;
3303   }
3304 }
3305 
3306 /// Test whether the given node which sets flags has any uses which require the
3307 /// CF flag to be accurate.
3308  bool X86DAGToDAGISel::hasNoCarryFlagUses(SDValue Flags) const {
3309   // Examine each user of the node.
3310   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
3311          UI != UE; ++UI) {
3312     // Only check things that use the flags.
3313     if (UI.getUse().getResNo() != Flags.getResNo())
3314       continue;
3315 
3316     unsigned UIOpc = UI->getOpcode();
3317 
3318     if (UIOpc == ISD::CopyToReg) {
3319       // Only examine CopyToReg uses that copy to EFLAGS.
3320       if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
3321         return false;
3322       // Examine each user of the CopyToReg use.
3323       for (SDNode::use_iterator FlagUI = UI->use_begin(), FlagUE = UI->use_end();
3324            FlagUI != FlagUE; ++FlagUI) {
3325         // Only examine the Flag result.
3326         if (FlagUI.getUse().getResNo() != 1)
3327           continue;
3328         // Anything unusual: assume conservatively.
3329         if (!FlagUI->isMachineOpcode())
3330           return false;
3331         // Examine the condition code of the user.
3332         X86::CondCode CC = getCondFromNode(*FlagUI);
3333 
3334         if (mayUseCarryFlag(CC))
3335           return false;
3336       }
3337 
3338       // This CopyToReg is ok. Move on to the next user.
3339       continue;
3340     }
3341 
3342     // This might be an unselected node. So look for the pre-isel opcodes that
3343     // use flags.
3344     unsigned CCOpNo;
3345     switch (UIOpc) {
3346     default:
3347       // Something unusual. Be conservative.
3348       return false;
3349     case X86ISD::SETCC:       CCOpNo = 0; break;
3350     case X86ISD::SETCC_CARRY: CCOpNo = 0; break;
3351     case X86ISD::CMOV:        CCOpNo = 2; break;
3352     case X86ISD::BRCOND:      CCOpNo = 2; break;
3353     }
3354 
3355     X86::CondCode CC = (X86::CondCode)UI->getConstantOperandVal(CCOpNo);
3356     if (mayUseCarryFlag(CC))
3357       return false;
3358   }
3359   return true;
3360 }
3361 
3362 /// Check whether or not the chain ending in StoreNode is suitable for doing
3363 /// the {load; op; store} to modify transformation.
3364 static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
3365                                         SDValue StoredVal, SelectionDAG *CurDAG,
3366                                         unsigned LoadOpNo,
3367                                         LoadSDNode *&LoadNode,
3368                                         SDValue &InputChain) {
3369   // Is the stored value result 0 of the operation?
3370   if (StoredVal.getResNo() != 0) return false;
3371 
3372   // Are there other uses of the operation other than the store?
3373   if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
3374 
3375   // Is the store non-extending and non-indexed?
3376   if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
3377     return false;
3378 
3379   SDValue Load = StoredVal->getOperand(LoadOpNo);
3380   // Is the stored value a non-extending and non-indexed load?
3381   if (!ISD::isNormalLoad(Load.getNode())) return false;
3382 
3383   // Return LoadNode by reference.
3384   LoadNode = cast<LoadSDNode>(Load);
3385 
3386   // Is store the only read of the loaded value?
3387   if (!Load.hasOneUse())
3388     return false;
3389 
3390   // Is the address of the store the same as the load?
3391   if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
3392       LoadNode->getOffset() != StoreNode->getOffset())
3393     return false;
3394 
3395   bool FoundLoad = false;
3396   SmallVector<SDValue, 4> ChainOps;
3397   SmallVector<const SDNode *, 4> LoopWorklist;
3398   SmallPtrSet<const SDNode *, 16> Visited;
3399   const unsigned int Max = 1024;
3400 
3401   //  Visualization of Load-Op-Store fusion:
3402   // -------------------------
3403   // Legend:
3404   //    *-lines = Chain operand dependencies.
3405   //    |-lines = Normal operand dependencies.
3406   //    Dependencies flow down and right. n-suffix references multiple nodes.
3407   //
3408   //        C                        Xn  C
3409   //        *                         *  *
3410   //        *                          * *
3411   //  Xn  A-LD    Yn                    TF         Yn
3412   //   *    * \   |                       *        |
3413   //    *   *  \  |                        *       |
3414   //     *  *   \ |             =>       A--LD_OP_ST
3415   //      * *    \|                                 \
3416   //       TF    OP                                  \
3417   //         *   | \                                  Zn
3418   //          *  |  \
3419   //         A-ST    Zn
3420   //
3421 
3422   // This merge induced dependences from: #1: Xn -> LD, OP, Zn
3423   //                                      #2: Yn -> LD
3424   //                                      #3: ST -> Zn
3425 
3426   // Ensure the transform is safe by checking for the dual
3427   // dependencies to make sure we do not induce a loop.
3428 
3429   // As LD is a predecessor to both OP and ST we can do this by checking:
3430   //  a). if LD is a predecessor to a member of Xn or Yn.
3431   //  b). if a Zn is a predecessor to ST.
3432 
3433   // However, (b) can only occur through being a chain predecessor to
3434   // ST, which is the same as Zn being a member or predecessor of Xn,
3435   // which is a subset of LD being a predecessor of Xn. So it's
3436   // subsumed by check (a).
3437 
3438   SDValue Chain = StoreNode->getChain();
3439 
3440   // Gather X elements in ChainOps.
3441   if (Chain == Load.getValue(1)) {
3442     FoundLoad = true;
3443     ChainOps.push_back(Load.getOperand(0));
3444   } else if (Chain.getOpcode() == ISD::TokenFactor) {
3445     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
3446       SDValue Op = Chain.getOperand(i);
3447       if (Op == Load.getValue(1)) {
3448         FoundLoad = true;
3449         // Drop Load, but keep its chain. No cycle check necessary.
3450         ChainOps.push_back(Load.getOperand(0));
3451         continue;
3452       }
3453       LoopWorklist.push_back(Op.getNode());
3454       ChainOps.push_back(Op);
3455     }
3456   }
3457 
3458   if (!FoundLoad)
3459     return false;
3460 
3461   // Worklist is currently Xn. Add Yn to worklist.
3462   for (SDValue Op : StoredVal->ops())
3463     if (Op.getNode() != LoadNode)
3464       LoopWorklist.push_back(Op.getNode());
3465 
3466   // Check (a) if Load is a predecessor to Xn + Yn
3467   if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max,
3468                                    true))
3469     return false;
3470 
3471   InputChain =
3472       CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ChainOps);
3473   return true;
3474 }
3475 
3476 // Change a chain of {load; op; store} of the same value into a simple op
3477 // through memory of that value, if the uses of the modified value and its
3478 // address are suitable.
3479 //
3480 // The tablegen pattern memory operand pattern is currently not able to match
3481 // the case where the EFLAGS on the original operation are used.
3482 //
3483 // To move this to tablegen, we'll need to improve tablegen to allow flags to
3484 // be transferred from a node in the pattern to the result node, probably with
3485 // a new keyword. For example, we have this
3486 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
3487 //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
3488 //   (implicit EFLAGS)]>;
3489 // but maybe need something like this
3490 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
3491 //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
3492 //   (transferrable EFLAGS)]>;
3493 //
3494 // Until then, we manually fold these and instruction select the operation
3495 // here.
3496 bool X86DAGToDAGISel::foldLoadStoreIntoMemOperand(SDNode *Node) {
3497   auto *StoreNode = cast<StoreSDNode>(Node);
3498   SDValue StoredVal = StoreNode->getOperand(1);
3499   unsigned Opc = StoredVal->getOpcode();
3500 
3501   // Before we try to select anything, make sure this is memory operand size
3502   // and opcode we can handle. Note that this must match the code below that
3503   // actually lowers the opcodes.
3504   EVT MemVT = StoreNode->getMemoryVT();
3505   if (MemVT != MVT::i64 && MemVT != MVT::i32 && MemVT != MVT::i16 &&
3506       MemVT != MVT::i8)
3507     return false;
3508 
3509   bool IsCommutable = false;
3510   bool IsNegate = false;
3511   switch (Opc) {
3512   default:
3513     return false;
3514   case X86ISD::SUB:
3515     IsNegate = isNullConstant(StoredVal.getOperand(0));
3516     break;
3517   case X86ISD::SBB:
3518     break;
3519   case X86ISD::ADD:
3520   case X86ISD::ADC:
3521   case X86ISD::AND:
3522   case X86ISD::OR:
3523   case X86ISD::XOR:
3524     IsCommutable = true;
3525     break;
3526   }
3527 
3528   unsigned LoadOpNo = IsNegate ? 1 : 0;
3529   LoadSDNode *LoadNode = nullptr;
3530   SDValue InputChain;
3531   if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
3532                                    LoadNode, InputChain)) {
3533     if (!IsCommutable)
3534       return false;
3535 
3536     // This operation is commutable, try the other operand.
3537     LoadOpNo = 1;
3538     if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
3539                                      LoadNode, InputChain))
3540       return false;
3541   }
3542 
3543   SDValue Base, Scale, Index, Disp, Segment;
3544   if (!selectAddr(LoadNode, LoadNode->getBasePtr(), Base, Scale, Index, Disp,
3545                   Segment))
3546     return false;
3547 
3548   auto SelectOpcode = [&](unsigned Opc64, unsigned Opc32, unsigned Opc16,
3549                           unsigned Opc8) {
3550     switch (MemVT.getSimpleVT().SimpleTy) {
3551     case MVT::i64:
3552       return Opc64;
3553     case MVT::i32:
3554       return Opc32;
3555     case MVT::i16:
3556       return Opc16;
3557     case MVT::i8:
3558       return Opc8;
3559     default:
3560       llvm_unreachable("Invalid size!");
3561     }
3562   };
3563 
3564   MachineSDNode *Result;
3565   switch (Opc) {
3566   case X86ISD::SUB:
3567     // Handle negate.
3568     if (IsNegate) {
3569       unsigned NewOpc = SelectOpcode(X86::NEG64m, X86::NEG32m, X86::NEG16m,
3570                                      X86::NEG8m);
3571       const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
3572       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
3573                                       MVT::Other, Ops);
3574       break;
3575     }
3576    [[fallthrough]];
3577   case X86ISD::ADD:
3578     // Try to match inc/dec.
3579     if (!Subtarget->slowIncDec() || CurDAG->shouldOptForSize()) {
3580       bool IsOne = isOneConstant(StoredVal.getOperand(1));
3581       bool IsNegOne = isAllOnesConstant(StoredVal.getOperand(1));
3582       // ADD/SUB with 1/-1 and carry flag isn't used can use inc/dec.
3583       if ((IsOne || IsNegOne) && hasNoCarryFlagUses(StoredVal.getValue(1))) {
3584         unsigned NewOpc =
3585           ((Opc == X86ISD::ADD) == IsOne)
3586               ? SelectOpcode(X86::INC64m, X86::INC32m, X86::INC16m, X86::INC8m)
3587               : SelectOpcode(X86::DEC64m, X86::DEC32m, X86::DEC16m, X86::DEC8m);
3588         const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
3589         Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
3590                                         MVT::Other, Ops);
3591         break;
3592       }
3593     }
3594     [[fallthrough]];
3595   case X86ISD::ADC:
3596   case X86ISD::SBB:
3597   case X86ISD::AND:
3598   case X86ISD::OR:
3599   case X86ISD::XOR: {
3600     auto SelectRegOpcode = [SelectOpcode](unsigned Opc) {
3601       switch (Opc) {
3602       case X86ISD::ADD:
3603         return SelectOpcode(X86::ADD64mr, X86::ADD32mr, X86::ADD16mr,
3604                             X86::ADD8mr);
3605       case X86ISD::ADC:
3606         return SelectOpcode(X86::ADC64mr, X86::ADC32mr, X86::ADC16mr,
3607                             X86::ADC8mr);
3608       case X86ISD::SUB:
3609         return SelectOpcode(X86::SUB64mr, X86::SUB32mr, X86::SUB16mr,
3610                             X86::SUB8mr);
3611       case X86ISD::SBB:
3612         return SelectOpcode(X86::SBB64mr, X86::SBB32mr, X86::SBB16mr,
3613                             X86::SBB8mr);
3614       case X86ISD::AND:
3615         return SelectOpcode(X86::AND64mr, X86::AND32mr, X86::AND16mr,
3616                             X86::AND8mr);
3617       case X86ISD::OR:
3618         return SelectOpcode(X86::OR64mr, X86::OR32mr, X86::OR16mr, X86::OR8mr);
3619       case X86ISD::XOR:
3620         return SelectOpcode(X86::XOR64mr, X86::XOR32mr, X86::XOR16mr,
3621                             X86::XOR8mr);
3622       default:
3623         llvm_unreachable("Invalid opcode!");
3624       }
3625     };
3626     auto SelectImmOpcode = [SelectOpcode](unsigned Opc) {
3627       switch (Opc) {
3628       case X86ISD::ADD:
3629         return SelectOpcode(X86::ADD64mi32, X86::ADD32mi, X86::ADD16mi,
3630                             X86::ADD8mi);
3631       case X86ISD::ADC:
3632         return SelectOpcode(X86::ADC64mi32, X86::ADC32mi, X86::ADC16mi,
3633                             X86::ADC8mi);
3634       case X86ISD::SUB:
3635         return SelectOpcode(X86::SUB64mi32, X86::SUB32mi, X86::SUB16mi,
3636                             X86::SUB8mi);
3637       case X86ISD::SBB:
3638         return SelectOpcode(X86::SBB64mi32, X86::SBB32mi, X86::SBB16mi,
3639                             X86::SBB8mi);
3640       case X86ISD::AND:
3641         return SelectOpcode(X86::AND64mi32, X86::AND32mi, X86::AND16mi,
3642                             X86::AND8mi);
3643       case X86ISD::OR:
3644         return SelectOpcode(X86::OR64mi32, X86::OR32mi, X86::OR16mi,
3645                             X86::OR8mi);
3646       case X86ISD::XOR:
3647         return SelectOpcode(X86::XOR64mi32, X86::XOR32mi, X86::XOR16mi,
3648                             X86::XOR8mi);
3649       default:
3650         llvm_unreachable("Invalid opcode!");
3651       }
3652     };
3653 
3654     unsigned NewOpc = SelectRegOpcode(Opc);
3655     SDValue Operand = StoredVal->getOperand(1-LoadOpNo);
3656 
3657     // See if the operand is a constant that we can fold into an immediate
3658     // operand.
3659     if (auto *OperandC = dyn_cast<ConstantSDNode>(Operand)) {
3660       int64_t OperandV = OperandC->getSExtValue();
3661 
3662       // Check if we can shrink the operand enough to fit in an immediate (or
3663       // fit into a smaller immediate) by negating it and switching the
3664       // operation.
3665       if ((Opc == X86ISD::ADD || Opc == X86ISD::SUB) &&
3666           ((MemVT != MVT::i8 && !isInt<8>(OperandV) && isInt<8>(-OperandV)) ||
3667            (MemVT == MVT::i64 && !isInt<32>(OperandV) &&
3668             isInt<32>(-OperandV))) &&
3669           hasNoCarryFlagUses(StoredVal.getValue(1))) {
3670         OperandV = -OperandV;
3671         Opc = Opc == X86ISD::ADD ? X86ISD::SUB : X86ISD::ADD;
3672       }
3673 
3674       if (MemVT != MVT::i64 || isInt<32>(OperandV)) {
3675         Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT);
3676         NewOpc = SelectImmOpcode(Opc);
3677       }
3678     }
3679 
3680     if (Opc == X86ISD::ADC || Opc == X86ISD::SBB) {
3681       SDValue CopyTo =
3682           CurDAG->getCopyToReg(InputChain, SDLoc(Node), X86::EFLAGS,
3683                                StoredVal.getOperand(2), SDValue());
3684 
3685       const SDValue Ops[] = {Base,    Scale,   Index,  Disp,
3686                              Segment, Operand, CopyTo, CopyTo.getValue(1)};
3687       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
3688                                       Ops);
3689     } else {
3690       const SDValue Ops[] = {Base,    Scale,   Index,     Disp,
3691                              Segment, Operand, InputChain};
3692       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
3693                                       Ops);
3694     }
3695     break;
3696   }
3697   default:
3698     llvm_unreachable("Invalid opcode!");
3699   }
3700 
3701   MachineMemOperand *MemOps[] = {StoreNode->getMemOperand(),
3702                                  LoadNode->getMemOperand()};
3703   CurDAG->setNodeMemRefs(Result, MemOps);
3704 
3705   // Update Load Chain uses as well.
3706   ReplaceUses(SDValue(LoadNode, 1), SDValue(Result, 1));
3707   ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
3708   ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
3709   CurDAG->RemoveDeadNode(Node);
3710   return true;
3711 }
3712 
3713 // See if this is an  X & Mask  that we can match to BEXTR/BZHI.
3714 // Where Mask is one of the following patterns:
3715 //   a) x &  (1 << nbits) - 1
3716 //   b) x & ~(-1 << nbits)
3717 //   c) x &  (-1 >> (32 - y))
3718 //   d) x << (32 - y) >> (32 - y)
3719 //   e) (1 << nbits) - 1
3720 bool X86DAGToDAGISel::matchBitExtract(SDNode *Node) {
3721   assert(
3722       (Node->getOpcode() == ISD::ADD || Node->getOpcode() == ISD::AND ||
3723        Node->getOpcode() == ISD::SRL) &&
3724       "Should be either an and-mask, or right-shift after clearing high bits.");
3725 
3726   // BEXTR is BMI instruction, BZHI is BMI2 instruction. We need at least one.
3727   if (!Subtarget->hasBMI() && !Subtarget->hasBMI2())
3728     return false;
3729 
3730   MVT NVT = Node->getSimpleValueType(0);
3731 
3732   // Only supported for 32 and 64 bits.
3733   if (NVT != MVT::i32 && NVT != MVT::i64)
3734     return false;
3735 
3736   SDValue NBits;
3737   bool NegateNBits;
3738 
3739   // If we have BMI2's BZHI, we are ok with muti-use patterns.
3740   // Else, if we only have BMI1's BEXTR, we require one-use.
3741   const bool AllowExtraUsesByDefault = Subtarget->hasBMI2();
3742   auto checkUses = [AllowExtraUsesByDefault](
3743                        SDValue Op, unsigned NUses,
3744                        std::optional<bool> AllowExtraUses) {
3745     return AllowExtraUses.value_or(AllowExtraUsesByDefault) ||
3746            Op.getNode()->hasNUsesOfValue(NUses, Op.getResNo());
3747   };
3748   auto checkOneUse = [checkUses](SDValue Op,
3749                                  std::optional<bool> AllowExtraUses =
3750                                      std::nullopt) {
3751     return checkUses(Op, 1, AllowExtraUses);
3752   };
3753   auto checkTwoUse = [checkUses](SDValue Op,
3754                                  std::optional<bool> AllowExtraUses =
3755                                      std::nullopt) {
3756     return checkUses(Op, 2, AllowExtraUses);
3757   };
3758 
3759   auto peekThroughOneUseTruncation = [checkOneUse](SDValue V) {
3760     if (V->getOpcode() == ISD::TRUNCATE && checkOneUse(V)) {
3761       assert(V.getSimpleValueType() == MVT::i32 &&
3762              V.getOperand(0).getSimpleValueType() == MVT::i64 &&
3763              "Expected i64 -> i32 truncation");
3764       V = V.getOperand(0);
3765     }
3766     return V;
3767   };
3768 
3769   // a) x & ((1 << nbits) + (-1))
3770   auto matchPatternA = [checkOneUse, peekThroughOneUseTruncation, &NBits,
3771                         &NegateNBits](SDValue Mask) -> bool {
3772     // Match `add`. Must only have one use!
3773     if (Mask->getOpcode() != ISD::ADD || !checkOneUse(Mask))
3774       return false;
3775     // We should be adding all-ones constant (i.e. subtracting one.)
3776     if (!isAllOnesConstant(Mask->getOperand(1)))
3777       return false;
3778     // Match `1 << nbits`. Might be truncated. Must only have one use!
3779     SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
3780     if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
3781       return false;
3782     if (!isOneConstant(M0->getOperand(0)))
3783       return false;
3784     NBits = M0->getOperand(1);
3785     NegateNBits = false;
3786     return true;
3787   };
3788 
3789   auto isAllOnes = [this, peekThroughOneUseTruncation, NVT](SDValue V) {
3790     V = peekThroughOneUseTruncation(V);
3791     return CurDAG->MaskedValueIsAllOnes(
3792         V, APInt::getLowBitsSet(V.getSimpleValueType().getSizeInBits(),
3793                                 NVT.getSizeInBits()));
3794   };
3795 
3796   // b) x & ~(-1 << nbits)
3797   auto matchPatternB = [checkOneUse, isAllOnes, peekThroughOneUseTruncation,
3798                         &NBits, &NegateNBits](SDValue Mask) -> bool {
3799     // Match `~()`. Must only have one use!
3800     if (Mask.getOpcode() != ISD::XOR || !checkOneUse(Mask))
3801       return false;
3802     // The -1 only has to be all-ones for the final Node's NVT.
3803     if (!isAllOnes(Mask->getOperand(1)))
3804       return false;
3805     // Match `-1 << nbits`. Might be truncated. Must only have one use!
3806     SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
3807     if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
3808       return false;
3809     // The -1 only has to be all-ones for the final Node's NVT.
3810     if (!isAllOnes(M0->getOperand(0)))
3811       return false;
3812     NBits = M0->getOperand(1);
3813     NegateNBits = false;
3814     return true;
3815   };
3816 
3817   // Try to match potentially-truncated shift amount as `(bitwidth - y)`,
3818   // or leave the shift amount as-is, but then we'll have to negate it.
3819   auto canonicalizeShiftAmt = [&NBits, &NegateNBits](SDValue ShiftAmt,
3820                                                      unsigned Bitwidth) {
3821     NBits = ShiftAmt;
3822     NegateNBits = true;
3823     // Skip over a truncate of the shift amount, if any.
3824     if (NBits.getOpcode() == ISD::TRUNCATE)
3825       NBits = NBits.getOperand(0);
3826     // Try to match the shift amount as (bitwidth - y). It should go away, too.
3827     // If it doesn't match, that's fine, we'll just negate it ourselves.
3828     if (NBits.getOpcode() != ISD::SUB)
3829       return;
3830     auto *V0 = dyn_cast<ConstantSDNode>(NBits.getOperand(0));
3831     if (!V0 || V0->getZExtValue() != Bitwidth)
3832       return;
3833     NBits = NBits.getOperand(1);
3834     NegateNBits = false;
3835   };
3836 
3837   // c) x &  (-1 >> z)  but then we'll have to subtract z from bitwidth
3838   //   or
3839   // c) x &  (-1 >> (32 - y))
3840   auto matchPatternC = [checkOneUse, peekThroughOneUseTruncation, &NegateNBits,
3841                         canonicalizeShiftAmt](SDValue Mask) -> bool {
3842     // The mask itself may be truncated.
3843     Mask = peekThroughOneUseTruncation(Mask);
3844     unsigned Bitwidth = Mask.getSimpleValueType().getSizeInBits();
3845     // Match `l>>`. Must only have one use!
3846     if (Mask.getOpcode() != ISD::SRL || !checkOneUse(Mask))
3847       return false;
3848     // We should be shifting truly all-ones constant.
3849     if (!isAllOnesConstant(Mask.getOperand(0)))
3850       return false;
3851     SDValue M1 = Mask.getOperand(1);
3852     // The shift amount should not be used externally.
3853     if (!checkOneUse(M1))
3854       return false;
3855     canonicalizeShiftAmt(M1, Bitwidth);
3856     // Pattern c. is non-canonical, and is expanded into pattern d. iff there
3857     // is no extra use of the mask. Clearly, there was one since we are here.
3858     // But at the same time, if we need to negate the shift amount,
3859     // then we don't want the mask to stick around, else it's unprofitable.
3860     return !NegateNBits;
3861   };
3862 
3863   SDValue X;
3864 
3865   // d) x << z >> z  but then we'll have to subtract z from bitwidth
3866   //   or
3867   // d) x << (32 - y) >> (32 - y)
3868   auto matchPatternD = [checkOneUse, checkTwoUse, canonicalizeShiftAmt,
3869                         AllowExtraUsesByDefault, &NegateNBits,
3870                         &X](SDNode *Node) -> bool {
3871     if (Node->getOpcode() != ISD::SRL)
3872       return false;
3873     SDValue N0 = Node->getOperand(0);
3874     if (N0->getOpcode() != ISD::SHL)
3875       return false;
3876     unsigned Bitwidth = N0.getSimpleValueType().getSizeInBits();
3877     SDValue N1 = Node->getOperand(1);
3878     SDValue N01 = N0->getOperand(1);
3879     // Both of the shifts must be by the exact same value.
3880     if (N1 != N01)
3881       return false;
3882     canonicalizeShiftAmt(N1, Bitwidth);
3883     // There should not be any external uses of the inner shift / shift amount.
3884     // Note that while we are generally okay with external uses given BMI2,
3885     // iff we need to negate the shift amount, we are not okay with extra uses.
3886     const bool AllowExtraUses = AllowExtraUsesByDefault && !NegateNBits;
3887     if (!checkOneUse(N0, AllowExtraUses) || !checkTwoUse(N1, AllowExtraUses))
3888       return false;
3889     X = N0->getOperand(0);
3890     return true;
3891   };
3892 
3893   auto matchLowBitMask = [matchPatternA, matchPatternB,
3894                           matchPatternC](SDValue Mask) -> bool {
3895     return matchPatternA(Mask) || matchPatternB(Mask) || matchPatternC(Mask);
3896   };
3897 
3898   if (Node->getOpcode() == ISD::AND) {
3899     X = Node->getOperand(0);
3900     SDValue Mask = Node->getOperand(1);
3901 
3902     if (matchLowBitMask(Mask)) {
3903       // Great.
3904     } else {
3905       std::swap(X, Mask);
3906       if (!matchLowBitMask(Mask))
3907         return false;
3908     }
3909   } else if (matchLowBitMask(SDValue(Node, 0))) {
3910     X = CurDAG->getAllOnesConstant(SDLoc(Node), NVT);
3911   } else if (!matchPatternD(Node))
3912     return false;
3913 
3914   // If we need to negate the shift amount, require BMI2 BZHI support.
3915   // It's just too unprofitable for BMI1 BEXTR.
3916   if (NegateNBits && !Subtarget->hasBMI2())
3917     return false;
3918 
3919   SDLoc DL(Node);
3920 
3921   // Truncate the shift amount.
3922   NBits = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NBits);
3923   insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3924 
3925   // Insert 8-bit NBits into lowest 8 bits of 32-bit register.
3926   // All the other bits are undefined, we do not care about them.
3927   SDValue ImplDef = SDValue(
3928       CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i32), 0);
3929   insertDAGNode(*CurDAG, SDValue(Node, 0), ImplDef);
3930 
3931   SDValue SRIdxVal = CurDAG->getTargetConstant(X86::sub_8bit, DL, MVT::i32);
3932   insertDAGNode(*CurDAG, SDValue(Node, 0), SRIdxVal);
3933   NBits = SDValue(CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
3934                                          MVT::i32, ImplDef, NBits, SRIdxVal),
3935                   0);
3936   insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3937 
3938   // We might have matched the amount of high bits to be cleared,
3939   // but we want the amount of low bits to be kept, so negate it then.
3940   if (NegateNBits) {
3941     SDValue BitWidthC = CurDAG->getConstant(NVT.getSizeInBits(), DL, MVT::i32);
3942     insertDAGNode(*CurDAG, SDValue(Node, 0), BitWidthC);
3943 
3944     NBits = CurDAG->getNode(ISD::SUB, DL, MVT::i32, BitWidthC, NBits);
3945     insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3946   }
3947 
3948   if (Subtarget->hasBMI2()) {
3949     // Great, just emit the BZHI..
3950     if (NVT != MVT::i32) {
3951       // But have to place the bit count into the wide-enough register first.
3952       NBits = CurDAG->getNode(ISD::ANY_EXTEND, DL, NVT, NBits);
3953       insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3954     }
3955 
3956     SDValue Extract = CurDAG->getNode(X86ISD::BZHI, DL, NVT, X, NBits);
3957     ReplaceNode(Node, Extract.getNode());
3958     SelectCode(Extract.getNode());
3959     return true;
3960   }
3961 
3962   // Else, if we do *NOT* have BMI2, let's find out if the if the 'X' is
3963   // *logically* shifted (potentially with one-use trunc inbetween),
3964   // and the truncation was the only use of the shift,
3965   // and if so look past one-use truncation.
3966   {
3967     SDValue RealX = peekThroughOneUseTruncation(X);
3968     // FIXME: only if the shift is one-use?
3969     if (RealX != X && RealX.getOpcode() == ISD::SRL)
3970       X = RealX;
3971   }
3972 
3973   MVT XVT = X.getSimpleValueType();
3974 
3975   // Else, emitting BEXTR requires one more step.
3976   // The 'control' of BEXTR has the pattern of:
3977   // [15...8 bit][ 7...0 bit] location
3978   // [ bit count][     shift] name
3979   // I.e. 0b000000011'00000001 means  (x >> 0b1) & 0b11
3980 
3981   // Shift NBits left by 8 bits, thus producing 'control'.
3982   // This makes the low 8 bits to be zero.
3983   SDValue C8 = CurDAG->getConstant(8, DL, MVT::i8);
3984   insertDAGNode(*CurDAG, SDValue(Node, 0), C8);
3985   SDValue Control = CurDAG->getNode(ISD::SHL, DL, MVT::i32, NBits, C8);
3986   insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
3987 
3988   // If the 'X' is *logically* shifted, we can fold that shift into 'control'.
3989   // FIXME: only if the shift is one-use?
3990   if (X.getOpcode() == ISD::SRL) {
3991     SDValue ShiftAmt = X.getOperand(1);
3992     X = X.getOperand(0);
3993 
3994     assert(ShiftAmt.getValueType() == MVT::i8 &&
3995            "Expected shift amount to be i8");
3996 
3997     // Now, *zero*-extend the shift amount. The bits 8...15 *must* be zero!
3998     // We could zext to i16 in some form, but we intentionally don't do that.
3999     SDValue OrigShiftAmt = ShiftAmt;
4000     ShiftAmt = CurDAG->getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShiftAmt);
4001     insertDAGNode(*CurDAG, OrigShiftAmt, ShiftAmt);
4002 
4003     // And now 'or' these low 8 bits of shift amount into the 'control'.
4004     Control = CurDAG->getNode(ISD::OR, DL, MVT::i32, Control, ShiftAmt);
4005     insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
4006   }
4007 
4008   // But have to place the 'control' into the wide-enough register first.
4009   if (XVT != MVT::i32) {
4010     Control = CurDAG->getNode(ISD::ANY_EXTEND, DL, XVT, Control);
4011     insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
4012   }
4013 
4014   // And finally, form the BEXTR itself.
4015   SDValue Extract = CurDAG->getNode(X86ISD::BEXTR, DL, XVT, X, Control);
4016 
4017   // The 'X' was originally truncated. Do that now.
4018   if (XVT != NVT) {
4019     insertDAGNode(*CurDAG, SDValue(Node, 0), Extract);
4020     Extract = CurDAG->getNode(ISD::TRUNCATE, DL, NVT, Extract);
4021   }
4022 
4023   ReplaceNode(Node, Extract.getNode());
4024   SelectCode(Extract.getNode());
4025 
4026   return true;
4027 }
4028 
4029 // See if this is an (X >> C1) & C2 that we can match to BEXTR/BEXTRI.
4030 MachineSDNode *X86DAGToDAGISel::matchBEXTRFromAndImm(SDNode *Node) {
4031   MVT NVT = Node->getSimpleValueType(0);
4032   SDLoc dl(Node);
4033 
4034   SDValue N0 = Node->getOperand(0);
4035   SDValue N1 = Node->getOperand(1);
4036 
4037   // If we have TBM we can use an immediate for the control. If we have BMI
4038   // we should only do this if the BEXTR instruction is implemented well.
4039   // Otherwise moving the control into a register makes this more costly.
4040   // TODO: Maybe load folding, greater than 32-bit masks, or a guarantee of LICM
4041   // hoisting the move immediate would make it worthwhile with a less optimal
4042   // BEXTR?
4043   bool PreferBEXTR =
4044       Subtarget->hasTBM() || (Subtarget->hasBMI() && Subtarget->hasFastBEXTR());
4045   if (!PreferBEXTR && !Subtarget->hasBMI2())
4046     return nullptr;
4047 
4048   // Must have a shift right.
4049   if (N0->getOpcode() != ISD::SRL && N0->getOpcode() != ISD::SRA)
4050     return nullptr;
4051 
4052   // Shift can't have additional users.
4053   if (!N0->hasOneUse())
4054     return nullptr;
4055 
4056   // Only supported for 32 and 64 bits.
4057   if (NVT != MVT::i32 && NVT != MVT::i64)
4058     return nullptr;
4059 
4060   // Shift amount and RHS of and must be constant.
4061   auto *MaskCst = dyn_cast<ConstantSDNode>(N1);
4062   auto *ShiftCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
4063   if (!MaskCst || !ShiftCst)
4064     return nullptr;
4065 
4066   // And RHS must be a mask.
4067   uint64_t Mask = MaskCst->getZExtValue();
4068   if (!isMask_64(Mask))
4069     return nullptr;
4070 
4071   uint64_t Shift = ShiftCst->getZExtValue();
4072   uint64_t MaskSize = llvm::popcount(Mask);
4073 
4074   // Don't interfere with something that can be handled by extracting AH.
4075   // TODO: If we are able to fold a load, BEXTR might still be better than AH.
4076   if (Shift == 8 && MaskSize == 8)
4077     return nullptr;
4078 
4079   // Make sure we are only using bits that were in the original value, not
4080   // shifted in.
4081   if (Shift + MaskSize > NVT.getSizeInBits())
4082     return nullptr;
4083 
4084   // BZHI, if available, is always fast, unlike BEXTR. But even if we decide
4085   // that we can't use BEXTR, it is only worthwhile using BZHI if the mask
4086   // does not fit into 32 bits. Load folding is not a sufficient reason.
4087   if (!PreferBEXTR && MaskSize <= 32)
4088     return nullptr;
4089 
4090   SDValue Control;
4091   unsigned ROpc, MOpc;
4092 
4093   if (!PreferBEXTR) {
4094     assert(Subtarget->hasBMI2() && "We must have BMI2's BZHI then.");
4095     // If we can't make use of BEXTR then we can't fuse shift+mask stages.
4096     // Let's perform the mask first, and apply shift later. Note that we need to
4097     // widen the mask to account for the fact that we'll apply shift afterwards!
4098     Control = CurDAG->getTargetConstant(Shift + MaskSize, dl, NVT);
4099     ROpc = NVT == MVT::i64 ? X86::BZHI64rr : X86::BZHI32rr;
4100     MOpc = NVT == MVT::i64 ? X86::BZHI64rm : X86::BZHI32rm;
4101     unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
4102     Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
4103   } else {
4104     // The 'control' of BEXTR has the pattern of:
4105     // [15...8 bit][ 7...0 bit] location
4106     // [ bit count][     shift] name
4107     // I.e. 0b000000011'00000001 means  (x >> 0b1) & 0b11
4108     Control = CurDAG->getTargetConstant(Shift | (MaskSize << 8), dl, NVT);
4109     if (Subtarget->hasTBM()) {
4110       ROpc = NVT == MVT::i64 ? X86::BEXTRI64ri : X86::BEXTRI32ri;
4111       MOpc = NVT == MVT::i64 ? X86::BEXTRI64mi : X86::BEXTRI32mi;
4112     } else {
4113       assert(Subtarget->hasBMI() && "We must have BMI1's BEXTR then.");
4114       // BMI requires the immediate to placed in a register.
4115       ROpc = NVT == MVT::i64 ? X86::BEXTR64rr : X86::BEXTR32rr;
4116       MOpc = NVT == MVT::i64 ? X86::BEXTR64rm : X86::BEXTR32rm;
4117       unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
4118       Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
4119     }
4120   }
4121 
4122   MachineSDNode *NewNode;
4123   SDValue Input = N0->getOperand(0);
4124   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4125   if (tryFoldLoad(Node, N0.getNode(), Input, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4126     SDValue Ops[] = {
4127         Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Control, Input.getOperand(0)};
4128     SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
4129     NewNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
4130     // Update the chain.
4131     ReplaceUses(Input.getValue(1), SDValue(NewNode, 2));
4132     // Record the mem-refs
4133     CurDAG->setNodeMemRefs(NewNode, {cast<LoadSDNode>(Input)->getMemOperand()});
4134   } else {
4135     NewNode = CurDAG->getMachineNode(ROpc, dl, NVT, MVT::i32, Input, Control);
4136   }
4137 
4138   if (!PreferBEXTR) {
4139     // We still need to apply the shift.
4140     SDValue ShAmt = CurDAG->getTargetConstant(Shift, dl, NVT);
4141     unsigned NewOpc = NVT == MVT::i64 ? X86::SHR64ri : X86::SHR32ri;
4142     NewNode =
4143         CurDAG->getMachineNode(NewOpc, dl, NVT, SDValue(NewNode, 0), ShAmt);
4144   }
4145 
4146   return NewNode;
4147 }
4148 
4149 // Emit a PCMISTR(I/M) instruction.
4150 MachineSDNode *X86DAGToDAGISel::emitPCMPISTR(unsigned ROpc, unsigned MOpc,
4151                                              bool MayFoldLoad, const SDLoc &dl,
4152                                              MVT VT, SDNode *Node) {
4153   SDValue N0 = Node->getOperand(0);
4154   SDValue N1 = Node->getOperand(1);
4155   SDValue Imm = Node->getOperand(2);
4156   auto *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
4157   Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
4158 
4159   // Try to fold a load. No need to check alignment.
4160   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4161   if (MayFoldLoad && tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4162     SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
4163                       N1.getOperand(0) };
4164     SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other);
4165     MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
4166     // Update the chain.
4167     ReplaceUses(N1.getValue(1), SDValue(CNode, 2));
4168     // Record the mem-refs
4169     CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
4170     return CNode;
4171   }
4172 
4173   SDValue Ops[] = { N0, N1, Imm };
4174   SDVTList VTs = CurDAG->getVTList(VT, MVT::i32);
4175   MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
4176   return CNode;
4177 }
4178 
4179 // Emit a PCMESTR(I/M) instruction. Also return the Glue result in case we need
4180 // to emit a second instruction after this one. This is needed since we have two
4181 // copyToReg nodes glued before this and we need to continue that glue through.
4182 MachineSDNode *X86DAGToDAGISel::emitPCMPESTR(unsigned ROpc, unsigned MOpc,
4183                                              bool MayFoldLoad, const SDLoc &dl,
4184                                              MVT VT, SDNode *Node,
4185                                              SDValue &InGlue) {
4186   SDValue N0 = Node->getOperand(0);
4187   SDValue N2 = Node->getOperand(2);
4188   SDValue Imm = Node->getOperand(4);
4189   auto *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
4190   Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
4191 
4192   // Try to fold a load. No need to check alignment.
4193   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4194   if (MayFoldLoad && tryFoldLoad(Node, N2, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4195     SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
4196                       N2.getOperand(0), InGlue };
4197     SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other, MVT::Glue);
4198     MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
4199     InGlue = SDValue(CNode, 3);
4200     // Update the chain.
4201     ReplaceUses(N2.getValue(1), SDValue(CNode, 2));
4202     // Record the mem-refs
4203     CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N2)->getMemOperand()});
4204     return CNode;
4205   }
4206 
4207   SDValue Ops[] = { N0, N2, Imm, InGlue };
4208   SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Glue);
4209   MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
4210   InGlue = SDValue(CNode, 2);
4211   return CNode;
4212 }
4213 
4214 bool X86DAGToDAGISel::tryShiftAmountMod(SDNode *N) {
4215   EVT VT = N->getValueType(0);
4216 
4217   // Only handle scalar shifts.
4218   if (VT.isVector())
4219     return false;
4220 
4221   // Narrower shifts only mask to 5 bits in hardware.
4222   unsigned Size = VT == MVT::i64 ? 64 : 32;
4223 
4224   SDValue OrigShiftAmt = N->getOperand(1);
4225   SDValue ShiftAmt = OrigShiftAmt;
4226   SDLoc DL(N);
4227 
4228   // Skip over a truncate of the shift amount.
4229   if (ShiftAmt->getOpcode() == ISD::TRUNCATE)
4230     ShiftAmt = ShiftAmt->getOperand(0);
4231 
4232   // This function is called after X86DAGToDAGISel::matchBitExtract(),
4233   // so we are not afraid that we might mess up BZHI/BEXTR pattern.
4234 
4235   SDValue NewShiftAmt;
4236   if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB ||
4237       ShiftAmt->getOpcode() == ISD::XOR) {
4238     SDValue Add0 = ShiftAmt->getOperand(0);
4239     SDValue Add1 = ShiftAmt->getOperand(1);
4240     auto *Add0C = dyn_cast<ConstantSDNode>(Add0);
4241     auto *Add1C = dyn_cast<ConstantSDNode>(Add1);
4242     // If we are shifting by X+/-/^N where N == 0 mod Size, then just shift by X
4243     // to avoid the ADD/SUB/XOR.
4244     if (Add1C && Add1C->getAPIntValue().urem(Size) == 0) {
4245       NewShiftAmt = Add0;
4246 
4247     } else if (ShiftAmt->getOpcode() != ISD::ADD && ShiftAmt.hasOneUse() &&
4248                ((Add0C && Add0C->getAPIntValue().urem(Size) == Size - 1) ||
4249                 (Add1C && Add1C->getAPIntValue().urem(Size) == Size - 1))) {
4250       // If we are doing a NOT on just the lower bits with (Size*N-1) -/^ X
4251       // we can replace it with a NOT. In the XOR case it may save some code
4252       // size, in the SUB case it also may save a move.
4253       assert(Add0C == nullptr || Add1C == nullptr);
4254 
4255       // We can only do N-X, not X-N
4256       if (ShiftAmt->getOpcode() == ISD::SUB && Add0C == nullptr)
4257         return false;
4258 
4259       EVT OpVT = ShiftAmt.getValueType();
4260 
4261       SDValue AllOnes = CurDAG->getAllOnesConstant(DL, OpVT);
4262       NewShiftAmt = CurDAG->getNode(ISD::XOR, DL, OpVT,
4263                                     Add0C == nullptr ? Add0 : Add1, AllOnes);
4264       insertDAGNode(*CurDAG, OrigShiftAmt, AllOnes);
4265       insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
4266       // If we are shifting by N-X where N == 0 mod Size, then just shift by
4267       // -X to generate a NEG instead of a SUB of a constant.
4268     } else if (ShiftAmt->getOpcode() == ISD::SUB && Add0C &&
4269                Add0C->getZExtValue() != 0) {
4270       EVT SubVT = ShiftAmt.getValueType();
4271       SDValue X;
4272       if (Add0C->getZExtValue() % Size == 0)
4273         X = Add1;
4274       else if (ShiftAmt.hasOneUse() && Size == 64 &&
4275                Add0C->getZExtValue() % 32 == 0) {
4276         // We have a 64-bit shift by (n*32-x), turn it into -(x+n*32).
4277         // This is mainly beneficial if we already compute (x+n*32).
4278         if (Add1.getOpcode() == ISD::TRUNCATE) {
4279           Add1 = Add1.getOperand(0);
4280           SubVT = Add1.getValueType();
4281         }
4282         if (Add0.getValueType() != SubVT) {
4283           Add0 = CurDAG->getZExtOrTrunc(Add0, DL, SubVT);
4284           insertDAGNode(*CurDAG, OrigShiftAmt, Add0);
4285         }
4286 
4287         X = CurDAG->getNode(ISD::ADD, DL, SubVT, Add1, Add0);
4288         insertDAGNode(*CurDAG, OrigShiftAmt, X);
4289       } else
4290         return false;
4291       // Insert a negate op.
4292       // TODO: This isn't guaranteed to replace the sub if there is a logic cone
4293       // that uses it that's not a shift.
4294       SDValue Zero = CurDAG->getConstant(0, DL, SubVT);
4295       SDValue Neg = CurDAG->getNode(ISD::SUB, DL, SubVT, Zero, X);
4296       NewShiftAmt = Neg;
4297 
4298       // Insert these operands into a valid topological order so they can
4299       // get selected independently.
4300       insertDAGNode(*CurDAG, OrigShiftAmt, Zero);
4301       insertDAGNode(*CurDAG, OrigShiftAmt, Neg);
4302     } else
4303       return false;
4304   } else
4305     return false;
4306 
4307   if (NewShiftAmt.getValueType() != MVT::i8) {
4308     // Need to truncate the shift amount.
4309     NewShiftAmt = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NewShiftAmt);
4310     // Add to a correct topological ordering.
4311     insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
4312   }
4313 
4314   // Insert a new mask to keep the shift amount legal. This should be removed
4315   // by isel patterns.
4316   NewShiftAmt = CurDAG->getNode(ISD::AND, DL, MVT::i8, NewShiftAmt,
4317                                 CurDAG->getConstant(Size - 1, DL, MVT::i8));
4318   // Place in a correct topological ordering.
4319   insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
4320 
4321   SDNode *UpdatedNode = CurDAG->UpdateNodeOperands(N, N->getOperand(0),
4322                                                    NewShiftAmt);
4323   if (UpdatedNode != N) {
4324     // If we found an existing node, we should replace ourselves with that node
4325     // and wait for it to be selected after its other users.
4326     ReplaceNode(N, UpdatedNode);
4327     return true;
4328   }
4329 
4330   // If the original shift amount is now dead, delete it so that we don't run
4331   // it through isel.
4332   if (OrigShiftAmt.getNode()->use_empty())
4333     CurDAG->RemoveDeadNode(OrigShiftAmt.getNode());
4334 
4335   // Now that we've optimized the shift amount, defer to normal isel to get
4336   // load folding and legacy vs BMI2 selection without repeating it here.
4337   SelectCode(N);
4338   return true;
4339 }
4340 
4341 bool X86DAGToDAGISel::tryShrinkShlLogicImm(SDNode *N) {
4342   MVT NVT = N->getSimpleValueType(0);
4343   unsigned Opcode = N->getOpcode();
4344   SDLoc dl(N);
4345 
4346   // For operations of the form (x << C1) op C2, check if we can use a smaller
4347   // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
4348   SDValue Shift = N->getOperand(0);
4349   SDValue N1 = N->getOperand(1);
4350 
4351   auto *Cst = dyn_cast<ConstantSDNode>(N1);
4352   if (!Cst)
4353     return false;
4354 
4355   int64_t Val = Cst->getSExtValue();
4356 
4357   // If we have an any_extend feeding the AND, look through it to see if there
4358   // is a shift behind it. But only if the AND doesn't use the extended bits.
4359   // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
4360   bool FoundAnyExtend = false;
4361   if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
4362       Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
4363       isUInt<32>(Val)) {
4364     FoundAnyExtend = true;
4365     Shift = Shift.getOperand(0);
4366   }
4367 
4368   if (Shift.getOpcode() != ISD::SHL || !Shift.hasOneUse())
4369     return false;
4370 
4371   // i8 is unshrinkable, i16 should be promoted to i32.
4372   if (NVT != MVT::i32 && NVT != MVT::i64)
4373     return false;
4374 
4375   auto *ShlCst = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
4376   if (!ShlCst)
4377     return false;
4378 
4379   uint64_t ShAmt = ShlCst->getZExtValue();
4380 
4381   // Make sure that we don't change the operation by removing bits.
4382   // This only matters for OR and XOR, AND is unaffected.
4383   uint64_t RemovedBitsMask = (1ULL << ShAmt) - 1;
4384   if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
4385     return false;
4386 
4387   // Check the minimum bitwidth for the new constant.
4388   // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
4389   auto CanShrinkImmediate = [&](int64_t &ShiftedVal) {
4390     if (Opcode == ISD::AND) {
4391       // AND32ri is the same as AND64ri32 with zext imm.
4392       // Try this before sign extended immediates below.
4393       ShiftedVal = (uint64_t)Val >> ShAmt;
4394       if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
4395         return true;
4396       // Also swap order when the AND can become MOVZX.
4397       if (ShiftedVal == UINT8_MAX || ShiftedVal == UINT16_MAX)
4398         return true;
4399     }
4400     ShiftedVal = Val >> ShAmt;
4401     if ((!isInt<8>(Val) && isInt<8>(ShiftedVal)) ||
4402         (!isInt<32>(Val) && isInt<32>(ShiftedVal)))
4403       return true;
4404     if (Opcode != ISD::AND) {
4405       // MOV32ri+OR64r/XOR64r is cheaper than MOV64ri64+OR64rr/XOR64rr
4406       ShiftedVal = (uint64_t)Val >> ShAmt;
4407       if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
4408         return true;
4409     }
4410     return false;
4411   };
4412 
4413   int64_t ShiftedVal;
4414   if (!CanShrinkImmediate(ShiftedVal))
4415     return false;
4416 
4417   // Ok, we can reorder to get a smaller immediate.
4418 
4419   // But, its possible the original immediate allowed an AND to become MOVZX.
4420   // Doing this late due to avoid the MakedValueIsZero call as late as
4421   // possible.
4422   if (Opcode == ISD::AND) {
4423     // Find the smallest zext this could possibly be.
4424     unsigned ZExtWidth = Cst->getAPIntValue().getActiveBits();
4425     ZExtWidth = llvm::bit_ceil(std::max(ZExtWidth, 8U));
4426 
4427     // Figure out which bits need to be zero to achieve that mask.
4428     APInt NeededMask = APInt::getLowBitsSet(NVT.getSizeInBits(),
4429                                             ZExtWidth);
4430     NeededMask &= ~Cst->getAPIntValue();
4431 
4432     if (CurDAG->MaskedValueIsZero(N->getOperand(0), NeededMask))
4433       return false;
4434   }
4435 
4436   SDValue X = Shift.getOperand(0);
4437   if (FoundAnyExtend) {
4438     SDValue NewX = CurDAG->getNode(ISD::ANY_EXTEND, dl, NVT, X);
4439     insertDAGNode(*CurDAG, SDValue(N, 0), NewX);
4440     X = NewX;
4441   }
4442 
4443   SDValue NewCst = CurDAG->getConstant(ShiftedVal, dl, NVT);
4444   insertDAGNode(*CurDAG, SDValue(N, 0), NewCst);
4445   SDValue NewBinOp = CurDAG->getNode(Opcode, dl, NVT, X, NewCst);
4446   insertDAGNode(*CurDAG, SDValue(N, 0), NewBinOp);
4447   SDValue NewSHL = CurDAG->getNode(ISD::SHL, dl, NVT, NewBinOp,
4448                                    Shift.getOperand(1));
4449   ReplaceNode(N, NewSHL.getNode());
4450   SelectCode(NewSHL.getNode());
4451   return true;
4452 }
4453 
4454 bool X86DAGToDAGISel::matchVPTERNLOG(SDNode *Root, SDNode *ParentA,
4455                                      SDNode *ParentB, SDNode *ParentC,
4456                                      SDValue A, SDValue B, SDValue C,
4457                                      uint8_t Imm) {
4458   assert(A.isOperandOf(ParentA) && B.isOperandOf(ParentB) &&
4459          C.isOperandOf(ParentC) && "Incorrect parent node");
4460 
4461   auto tryFoldLoadOrBCast =
4462       [this](SDNode *Root, SDNode *P, SDValue &L, SDValue &Base, SDValue &Scale,
4463              SDValue &Index, SDValue &Disp, SDValue &Segment) {
4464         if (tryFoldLoad(Root, P, L, Base, Scale, Index, Disp, Segment))
4465           return true;
4466 
4467         // Not a load, check for broadcast which may be behind a bitcast.
4468         if (L.getOpcode() == ISD::BITCAST && L.hasOneUse()) {
4469           P = L.getNode();
4470           L = L.getOperand(0);
4471         }
4472 
4473         if (L.getOpcode() != X86ISD::VBROADCAST_LOAD)
4474           return false;
4475 
4476         // Only 32 and 64 bit broadcasts are supported.
4477         auto *MemIntr = cast<MemIntrinsicSDNode>(L);
4478         unsigned Size = MemIntr->getMemoryVT().getSizeInBits();
4479         if (Size != 32 && Size != 64)
4480           return false;
4481 
4482         return tryFoldBroadcast(Root, P, L, Base, Scale, Index, Disp, Segment);
4483       };
4484 
4485   bool FoldedLoad = false;
4486   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4487   if (tryFoldLoadOrBCast(Root, ParentC, C, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4488     FoldedLoad = true;
4489   } else if (tryFoldLoadOrBCast(Root, ParentA, A, Tmp0, Tmp1, Tmp2, Tmp3,
4490                                 Tmp4)) {
4491     FoldedLoad = true;
4492     std::swap(A, C);
4493     // Swap bits 1/4 and 3/6.
4494     uint8_t OldImm = Imm;
4495     Imm = OldImm & 0xa5;
4496     if (OldImm & 0x02) Imm |= 0x10;
4497     if (OldImm & 0x10) Imm |= 0x02;
4498     if (OldImm & 0x08) Imm |= 0x40;
4499     if (OldImm & 0x40) Imm |= 0x08;
4500   } else if (tryFoldLoadOrBCast(Root, ParentB, B, Tmp0, Tmp1, Tmp2, Tmp3,
4501                                 Tmp4)) {
4502     FoldedLoad = true;
4503     std::swap(B, C);
4504     // Swap bits 1/2 and 5/6.
4505     uint8_t OldImm = Imm;
4506     Imm = OldImm & 0x99;
4507     if (OldImm & 0x02) Imm |= 0x04;
4508     if (OldImm & 0x04) Imm |= 0x02;
4509     if (OldImm & 0x20) Imm |= 0x40;
4510     if (OldImm & 0x40) Imm |= 0x20;
4511   }
4512 
4513   SDLoc DL(Root);
4514 
4515   SDValue TImm = CurDAG->getTargetConstant(Imm, DL, MVT::i8);
4516 
4517   MVT NVT = Root->getSimpleValueType(0);
4518 
4519   MachineSDNode *MNode;
4520   if (FoldedLoad) {
4521     SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other);
4522 
4523     unsigned Opc;
4524     if (C.getOpcode() == X86ISD::VBROADCAST_LOAD) {
4525       auto *MemIntr = cast<MemIntrinsicSDNode>(C);
4526       unsigned EltSize = MemIntr->getMemoryVT().getSizeInBits();
4527       assert((EltSize == 32 || EltSize == 64) && "Unexpected broadcast size!");
4528 
4529       bool UseD = EltSize == 32;
4530       if (NVT.is128BitVector())
4531         Opc = UseD ? X86::VPTERNLOGDZ128rmbi : X86::VPTERNLOGQZ128rmbi;
4532       else if (NVT.is256BitVector())
4533         Opc = UseD ? X86::VPTERNLOGDZ256rmbi : X86::VPTERNLOGQZ256rmbi;
4534       else if (NVT.is512BitVector())
4535         Opc = UseD ? X86::VPTERNLOGDZrmbi : X86::VPTERNLOGQZrmbi;
4536       else
4537         llvm_unreachable("Unexpected vector size!");
4538     } else {
4539       bool UseD = NVT.getVectorElementType() == MVT::i32;
4540       if (NVT.is128BitVector())
4541         Opc = UseD ? X86::VPTERNLOGDZ128rmi : X86::VPTERNLOGQZ128rmi;
4542       else if (NVT.is256BitVector())
4543         Opc = UseD ? X86::VPTERNLOGDZ256rmi : X86::VPTERNLOGQZ256rmi;
4544       else if (NVT.is512BitVector())
4545         Opc = UseD ? X86::VPTERNLOGDZrmi : X86::VPTERNLOGQZrmi;
4546       else
4547         llvm_unreachable("Unexpected vector size!");
4548     }
4549 
4550     SDValue Ops[] = {A, B, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, TImm, C.getOperand(0)};
4551     MNode = CurDAG->getMachineNode(Opc, DL, VTs, Ops);
4552 
4553     // Update the chain.
4554     ReplaceUses(C.getValue(1), SDValue(MNode, 1));
4555     // Record the mem-refs
4556     CurDAG->setNodeMemRefs(MNode, {cast<MemSDNode>(C)->getMemOperand()});
4557   } else {
4558     bool UseD = NVT.getVectorElementType() == MVT::i32;
4559     unsigned Opc;
4560     if (NVT.is128BitVector())
4561       Opc = UseD ? X86::VPTERNLOGDZ128rri : X86::VPTERNLOGQZ128rri;
4562     else if (NVT.is256BitVector())
4563       Opc = UseD ? X86::VPTERNLOGDZ256rri : X86::VPTERNLOGQZ256rri;
4564     else if (NVT.is512BitVector())
4565       Opc = UseD ? X86::VPTERNLOGDZrri : X86::VPTERNLOGQZrri;
4566     else
4567       llvm_unreachable("Unexpected vector size!");
4568 
4569     MNode = CurDAG->getMachineNode(Opc, DL, NVT, {A, B, C, TImm});
4570   }
4571 
4572   ReplaceUses(SDValue(Root, 0), SDValue(MNode, 0));
4573   CurDAG->RemoveDeadNode(Root);
4574   return true;
4575 }
4576 
4577 // Try to match two logic ops to a VPTERNLOG.
4578 // FIXME: Handle more complex patterns that use an operand more than once?
4579 bool X86DAGToDAGISel::tryVPTERNLOG(SDNode *N) {
4580   MVT NVT = N->getSimpleValueType(0);
4581 
4582   // Make sure we support VPTERNLOG.
4583   if (!NVT.isVector() || !Subtarget->hasAVX512() ||
4584       NVT.getVectorElementType() == MVT::i1)
4585     return false;
4586 
4587   // We need VLX for 128/256-bit.
4588   if (!(Subtarget->hasVLX() || NVT.is512BitVector()))
4589     return false;
4590 
4591   SDValue N0 = N->getOperand(0);
4592   SDValue N1 = N->getOperand(1);
4593 
4594   auto getFoldableLogicOp = [](SDValue Op) {
4595     // Peek through single use bitcast.
4596     if (Op.getOpcode() == ISD::BITCAST && Op.hasOneUse())
4597       Op = Op.getOperand(0);
4598 
4599     if (!Op.hasOneUse())
4600       return SDValue();
4601 
4602     unsigned Opc = Op.getOpcode();
4603     if (Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR ||
4604         Opc == X86ISD::ANDNP)
4605       return Op;
4606 
4607     return SDValue();
4608   };
4609 
4610   SDValue A, FoldableOp;
4611   if ((FoldableOp = getFoldableLogicOp(N1))) {
4612     A = N0;
4613   } else if ((FoldableOp = getFoldableLogicOp(N0))) {
4614     A = N1;
4615   } else
4616     return false;
4617 
4618   SDValue B = FoldableOp.getOperand(0);
4619   SDValue C = FoldableOp.getOperand(1);
4620   SDNode *ParentA = N;
4621   SDNode *ParentB = FoldableOp.getNode();
4622   SDNode *ParentC = FoldableOp.getNode();
4623 
4624   // We can build the appropriate control immediate by performing the logic
4625   // operation we're matching using these constants for A, B, and C.
4626   uint8_t TernlogMagicA = 0xf0;
4627   uint8_t TernlogMagicB = 0xcc;
4628   uint8_t TernlogMagicC = 0xaa;
4629 
4630   // Some of the inputs may be inverted, peek through them and invert the
4631   // magic values accordingly.
4632   // TODO: There may be a bitcast before the xor that we should peek through.
4633   auto PeekThroughNot = [](SDValue &Op, SDNode *&Parent, uint8_t &Magic) {
4634     if (Op.getOpcode() == ISD::XOR && Op.hasOneUse() &&
4635         ISD::isBuildVectorAllOnes(Op.getOperand(1).getNode())) {
4636       Magic = ~Magic;
4637       Parent = Op.getNode();
4638       Op = Op.getOperand(0);
4639     }
4640   };
4641 
4642   PeekThroughNot(A, ParentA, TernlogMagicA);
4643   PeekThroughNot(B, ParentB, TernlogMagicB);
4644   PeekThroughNot(C, ParentC, TernlogMagicC);
4645 
4646   uint8_t Imm;
4647   switch (FoldableOp.getOpcode()) {
4648   default: llvm_unreachable("Unexpected opcode!");
4649   case ISD::AND:      Imm = TernlogMagicB & TernlogMagicC; break;
4650   case ISD::OR:       Imm = TernlogMagicB | TernlogMagicC; break;
4651   case ISD::XOR:      Imm = TernlogMagicB ^ TernlogMagicC; break;
4652   case X86ISD::ANDNP: Imm = ~(TernlogMagicB) & TernlogMagicC; break;
4653   }
4654 
4655   switch (N->getOpcode()) {
4656   default: llvm_unreachable("Unexpected opcode!");
4657   case X86ISD::ANDNP:
4658     if (A == N0)
4659       Imm &= ~TernlogMagicA;
4660     else
4661       Imm = ~(Imm) & TernlogMagicA;
4662     break;
4663   case ISD::AND: Imm &= TernlogMagicA; break;
4664   case ISD::OR:  Imm |= TernlogMagicA; break;
4665   case ISD::XOR: Imm ^= TernlogMagicA; break;
4666   }
4667 
4668   return matchVPTERNLOG(N, ParentA, ParentB, ParentC, A, B, C, Imm);
4669 }
4670 
4671 /// If the high bits of an 'and' operand are known zero, try setting the
4672 /// high bits of an 'and' constant operand to produce a smaller encoding by
4673 /// creating a small, sign-extended negative immediate rather than a large
4674 /// positive one. This reverses a transform in SimplifyDemandedBits that
4675 /// shrinks mask constants by clearing bits. There is also a possibility that
4676 /// the 'and' mask can be made -1, so the 'and' itself is unnecessary. In that
4677 /// case, just replace the 'and'. Return 'true' if the node is replaced.
4678 bool X86DAGToDAGISel::shrinkAndImmediate(SDNode *And) {
4679   // i8 is unshrinkable, i16 should be promoted to i32, and vector ops don't
4680   // have immediate operands.
4681   MVT VT = And->getSimpleValueType(0);
4682   if (VT != MVT::i32 && VT != MVT::i64)
4683     return false;
4684 
4685   auto *And1C = dyn_cast<ConstantSDNode>(And->getOperand(1));
4686   if (!And1C)
4687     return false;
4688 
4689   // Bail out if the mask constant is already negative. It's can't shrink more.
4690   // If the upper 32 bits of a 64 bit mask are all zeros, we have special isel
4691   // patterns to use a 32-bit and instead of a 64-bit and by relying on the
4692   // implicit zeroing of 32 bit ops. So we should check if the lower 32 bits
4693   // are negative too.
4694   APInt MaskVal = And1C->getAPIntValue();
4695   unsigned MaskLZ = MaskVal.countl_zero();
4696   if (!MaskLZ || (VT == MVT::i64 && MaskLZ == 32))
4697     return false;
4698 
4699   // Don't extend into the upper 32 bits of a 64 bit mask.
4700   if (VT == MVT::i64 && MaskLZ >= 32) {
4701     MaskLZ -= 32;
4702     MaskVal = MaskVal.trunc(32);
4703   }
4704 
4705   SDValue And0 = And->getOperand(0);
4706   APInt HighZeros = APInt::getHighBitsSet(MaskVal.getBitWidth(), MaskLZ);
4707   APInt NegMaskVal = MaskVal | HighZeros;
4708 
4709   // If a negative constant would not allow a smaller encoding, there's no need
4710   // to continue. Only change the constant when we know it's a win.
4711   unsigned MinWidth = NegMaskVal.getSignificantBits();
4712   if (MinWidth > 32 || (MinWidth > 8 && MaskVal.getSignificantBits() <= 32))
4713     return false;
4714 
4715   // Extend masks if we truncated above.
4716   if (VT == MVT::i64 && MaskVal.getBitWidth() < 64) {
4717     NegMaskVal = NegMaskVal.zext(64);
4718     HighZeros = HighZeros.zext(64);
4719   }
4720 
4721   // The variable operand must be all zeros in the top bits to allow using the
4722   // new, negative constant as the mask.
4723   if (!CurDAG->MaskedValueIsZero(And0, HighZeros))
4724     return false;
4725 
4726   // Check if the mask is -1. In that case, this is an unnecessary instruction
4727   // that escaped earlier analysis.
4728   if (NegMaskVal.isAllOnes()) {
4729     ReplaceNode(And, And0.getNode());
4730     return true;
4731   }
4732 
4733   // A negative mask allows a smaller encoding. Create a new 'and' node.
4734   SDValue NewMask = CurDAG->getConstant(NegMaskVal, SDLoc(And), VT);
4735   insertDAGNode(*CurDAG, SDValue(And, 0), NewMask);
4736   SDValue NewAnd = CurDAG->getNode(ISD::AND, SDLoc(And), VT, And0, NewMask);
4737   ReplaceNode(And, NewAnd.getNode());
4738   SelectCode(NewAnd.getNode());
4739   return true;
4740 }
4741 
4742 static unsigned getVPTESTMOpc(MVT TestVT, bool IsTestN, bool FoldedLoad,
4743                               bool FoldedBCast, bool Masked) {
4744 #define VPTESTM_CASE(VT, SUFFIX) \
4745 case MVT::VT: \
4746   if (Masked) \
4747     return IsTestN ? X86::VPTESTNM##SUFFIX##k: X86::VPTESTM##SUFFIX##k; \
4748   return IsTestN ? X86::VPTESTNM##SUFFIX : X86::VPTESTM##SUFFIX;
4749 
4750 
4751 #define VPTESTM_BROADCAST_CASES(SUFFIX) \
4752 default: llvm_unreachable("Unexpected VT!"); \
4753 VPTESTM_CASE(v4i32, DZ128##SUFFIX) \
4754 VPTESTM_CASE(v2i64, QZ128##SUFFIX) \
4755 VPTESTM_CASE(v8i32, DZ256##SUFFIX) \
4756 VPTESTM_CASE(v4i64, QZ256##SUFFIX) \
4757 VPTESTM_CASE(v16i32, DZ##SUFFIX) \
4758 VPTESTM_CASE(v8i64, QZ##SUFFIX)
4759 
4760 #define VPTESTM_FULL_CASES(SUFFIX) \
4761 VPTESTM_BROADCAST_CASES(SUFFIX) \
4762 VPTESTM_CASE(v16i8, BZ128##SUFFIX) \
4763 VPTESTM_CASE(v8i16, WZ128##SUFFIX) \
4764 VPTESTM_CASE(v32i8, BZ256##SUFFIX) \
4765 VPTESTM_CASE(v16i16, WZ256##SUFFIX) \
4766 VPTESTM_CASE(v64i8, BZ##SUFFIX) \
4767 VPTESTM_CASE(v32i16, WZ##SUFFIX)
4768 
4769   if (FoldedBCast) {
4770     switch (TestVT.SimpleTy) {
4771     VPTESTM_BROADCAST_CASES(rmb)
4772     }
4773   }
4774 
4775   if (FoldedLoad) {
4776     switch (TestVT.SimpleTy) {
4777     VPTESTM_FULL_CASES(rm)
4778     }
4779   }
4780 
4781   switch (TestVT.SimpleTy) {
4782   VPTESTM_FULL_CASES(rr)
4783   }
4784 
4785 #undef VPTESTM_FULL_CASES
4786 #undef VPTESTM_BROADCAST_CASES
4787 #undef VPTESTM_CASE
4788 }
4789 
4790 // Try to create VPTESTM instruction. If InMask is not null, it will be used
4791 // to form a masked operation.
4792 bool X86DAGToDAGISel::tryVPTESTM(SDNode *Root, SDValue Setcc,
4793                                  SDValue InMask) {
4794   assert(Subtarget->hasAVX512() && "Expected AVX512!");
4795   assert(Setcc.getSimpleValueType().getVectorElementType() == MVT::i1 &&
4796          "Unexpected VT!");
4797 
4798   // Look for equal and not equal compares.
4799   ISD::CondCode CC = cast<CondCodeSDNode>(Setcc.getOperand(2))->get();
4800   if (CC != ISD::SETEQ && CC != ISD::SETNE)
4801     return false;
4802 
4803   SDValue SetccOp0 = Setcc.getOperand(0);
4804   SDValue SetccOp1 = Setcc.getOperand(1);
4805 
4806   // Canonicalize the all zero vector to the RHS.
4807   if (ISD::isBuildVectorAllZeros(SetccOp0.getNode()))
4808     std::swap(SetccOp0, SetccOp1);
4809 
4810   // See if we're comparing against zero.
4811   if (!ISD::isBuildVectorAllZeros(SetccOp1.getNode()))
4812     return false;
4813 
4814   SDValue N0 = SetccOp0;
4815 
4816   MVT CmpVT = N0.getSimpleValueType();
4817   MVT CmpSVT = CmpVT.getVectorElementType();
4818 
4819   // Start with both operands the same. We'll try to refine this.
4820   SDValue Src0 = N0;
4821   SDValue Src1 = N0;
4822 
4823   {
4824     // Look through single use bitcasts.
4825     SDValue N0Temp = N0;
4826     if (N0Temp.getOpcode() == ISD::BITCAST && N0Temp.hasOneUse())
4827       N0Temp = N0.getOperand(0);
4828 
4829      // Look for single use AND.
4830     if (N0Temp.getOpcode() == ISD::AND && N0Temp.hasOneUse()) {
4831       Src0 = N0Temp.getOperand(0);
4832       Src1 = N0Temp.getOperand(1);
4833     }
4834   }
4835 
4836   // Without VLX we need to widen the operation.
4837   bool Widen = !Subtarget->hasVLX() && !CmpVT.is512BitVector();
4838 
4839   auto tryFoldLoadOrBCast = [&](SDNode *Root, SDNode *P, SDValue &L,
4840                                 SDValue &Base, SDValue &Scale, SDValue &Index,
4841                                 SDValue &Disp, SDValue &Segment) {
4842     // If we need to widen, we can't fold the load.
4843     if (!Widen)
4844       if (tryFoldLoad(Root, P, L, Base, Scale, Index, Disp, Segment))
4845         return true;
4846 
4847     // If we didn't fold a load, try to match broadcast. No widening limitation
4848     // for this. But only 32 and 64 bit types are supported.
4849     if (CmpSVT != MVT::i32 && CmpSVT != MVT::i64)
4850       return false;
4851 
4852     // Look through single use bitcasts.
4853     if (L.getOpcode() == ISD::BITCAST && L.hasOneUse()) {
4854       P = L.getNode();
4855       L = L.getOperand(0);
4856     }
4857 
4858     if (L.getOpcode() != X86ISD::VBROADCAST_LOAD)
4859       return false;
4860 
4861     auto *MemIntr = cast<MemIntrinsicSDNode>(L);
4862     if (MemIntr->getMemoryVT().getSizeInBits() != CmpSVT.getSizeInBits())
4863       return false;
4864 
4865     return tryFoldBroadcast(Root, P, L, Base, Scale, Index, Disp, Segment);
4866   };
4867 
4868   // We can only fold loads if the sources are unique.
4869   bool CanFoldLoads = Src0 != Src1;
4870 
4871   bool FoldedLoad = false;
4872   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4873   if (CanFoldLoads) {
4874     FoldedLoad = tryFoldLoadOrBCast(Root, N0.getNode(), Src1, Tmp0, Tmp1, Tmp2,
4875                                     Tmp3, Tmp4);
4876     if (!FoldedLoad) {
4877       // And is commutative.
4878       FoldedLoad = tryFoldLoadOrBCast(Root, N0.getNode(), Src0, Tmp0, Tmp1,
4879                                       Tmp2, Tmp3, Tmp4);
4880       if (FoldedLoad)
4881         std::swap(Src0, Src1);
4882     }
4883   }
4884 
4885   bool FoldedBCast = FoldedLoad && Src1.getOpcode() == X86ISD::VBROADCAST_LOAD;
4886 
4887   bool IsMasked = InMask.getNode() != nullptr;
4888 
4889   SDLoc dl(Root);
4890 
4891   MVT ResVT = Setcc.getSimpleValueType();
4892   MVT MaskVT = ResVT;
4893   if (Widen) {
4894     // Widen the inputs using insert_subreg or copy_to_regclass.
4895     unsigned Scale = CmpVT.is128BitVector() ? 4 : 2;
4896     unsigned SubReg = CmpVT.is128BitVector() ? X86::sub_xmm : X86::sub_ymm;
4897     unsigned NumElts = CmpVT.getVectorNumElements() * Scale;
4898     CmpVT = MVT::getVectorVT(CmpSVT, NumElts);
4899     MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
4900     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, dl,
4901                                                      CmpVT), 0);
4902     Src0 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src0);
4903 
4904     if (!FoldedBCast)
4905       Src1 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src1);
4906 
4907     if (IsMasked) {
4908       // Widen the mask.
4909       unsigned RegClass = TLI->getRegClassFor(MaskVT)->getID();
4910       SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
4911       InMask = SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
4912                                               dl, MaskVT, InMask, RC), 0);
4913     }
4914   }
4915 
4916   bool IsTestN = CC == ISD::SETEQ;
4917   unsigned Opc = getVPTESTMOpc(CmpVT, IsTestN, FoldedLoad, FoldedBCast,
4918                                IsMasked);
4919 
4920   MachineSDNode *CNode;
4921   if (FoldedLoad) {
4922     SDVTList VTs = CurDAG->getVTList(MaskVT, MVT::Other);
4923 
4924     if (IsMasked) {
4925       SDValue Ops[] = { InMask, Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
4926                         Src1.getOperand(0) };
4927       CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
4928     } else {
4929       SDValue Ops[] = { Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
4930                         Src1.getOperand(0) };
4931       CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
4932     }
4933 
4934     // Update the chain.
4935     ReplaceUses(Src1.getValue(1), SDValue(CNode, 1));
4936     // Record the mem-refs
4937     CurDAG->setNodeMemRefs(CNode, {cast<MemSDNode>(Src1)->getMemOperand()});
4938   } else {
4939     if (IsMasked)
4940       CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, InMask, Src0, Src1);
4941     else
4942       CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, Src0, Src1);
4943   }
4944 
4945   // If we widened, we need to shrink the mask VT.
4946   if (Widen) {
4947     unsigned RegClass = TLI->getRegClassFor(ResVT)->getID();
4948     SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
4949     CNode = CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
4950                                    dl, ResVT, SDValue(CNode, 0), RC);
4951   }
4952 
4953   ReplaceUses(SDValue(Root, 0), SDValue(CNode, 0));
4954   CurDAG->RemoveDeadNode(Root);
4955   return true;
4956 }
4957 
4958 // Try to match the bitselect pattern (or (and A, B), (andn A, C)). Turn it
4959 // into vpternlog.
4960 bool X86DAGToDAGISel::tryMatchBitSelect(SDNode *N) {
4961   assert(N->getOpcode() == ISD::OR && "Unexpected opcode!");
4962 
4963   MVT NVT = N->getSimpleValueType(0);
4964 
4965   // Make sure we support VPTERNLOG.
4966   if (!NVT.isVector() || !Subtarget->hasAVX512())
4967     return false;
4968 
4969   // We need VLX for 128/256-bit.
4970   if (!(Subtarget->hasVLX() || NVT.is512BitVector()))
4971     return false;
4972 
4973   SDValue N0 = N->getOperand(0);
4974   SDValue N1 = N->getOperand(1);
4975 
4976   // Canonicalize AND to LHS.
4977   if (N1.getOpcode() == ISD::AND)
4978     std::swap(N0, N1);
4979 
4980   if (N0.getOpcode() != ISD::AND ||
4981       N1.getOpcode() != X86ISD::ANDNP ||
4982       !N0.hasOneUse() || !N1.hasOneUse())
4983     return false;
4984 
4985   // ANDN is not commutable, use it to pick down A and C.
4986   SDValue A = N1.getOperand(0);
4987   SDValue C = N1.getOperand(1);
4988 
4989   // AND is commutable, if one operand matches A, the other operand is B.
4990   // Otherwise this isn't a match.
4991   SDValue B;
4992   if (N0.getOperand(0) == A)
4993     B = N0.getOperand(1);
4994   else if (N0.getOperand(1) == A)
4995     B = N0.getOperand(0);
4996   else
4997     return false;
4998 
4999   SDLoc dl(N);
5000   SDValue Imm = CurDAG->getTargetConstant(0xCA, dl, MVT::i8);
5001   SDValue Ternlog = CurDAG->getNode(X86ISD::VPTERNLOG, dl, NVT, A, B, C, Imm);
5002   ReplaceNode(N, Ternlog.getNode());
5003 
5004   return matchVPTERNLOG(Ternlog.getNode(), Ternlog.getNode(), Ternlog.getNode(),
5005                         Ternlog.getNode(), A, B, C, 0xCA);
5006 }
5007 
5008 void X86DAGToDAGISel::Select(SDNode *Node) {
5009   MVT NVT = Node->getSimpleValueType(0);
5010   unsigned Opcode = Node->getOpcode();
5011   SDLoc dl(Node);
5012 
5013   if (Node->isMachineOpcode()) {
5014     LLVM_DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n');
5015     Node->setNodeId(-1);
5016     return;   // Already selected.
5017   }
5018 
5019   switch (Opcode) {
5020   default: break;
5021   case ISD::INTRINSIC_W_CHAIN: {
5022     unsigned IntNo = Node->getConstantOperandVal(1);
5023     switch (IntNo) {
5024     default: break;
5025     case Intrinsic::x86_encodekey128:
5026     case Intrinsic::x86_encodekey256: {
5027       if (!Subtarget->hasKL())
5028         break;
5029 
5030       unsigned Opcode;
5031       switch (IntNo) {
5032       default: llvm_unreachable("Impossible intrinsic");
5033       case Intrinsic::x86_encodekey128: Opcode = X86::ENCODEKEY128; break;
5034       case Intrinsic::x86_encodekey256: Opcode = X86::ENCODEKEY256; break;
5035       }
5036 
5037       SDValue Chain = Node->getOperand(0);
5038       Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM0, Node->getOperand(3),
5039                                    SDValue());
5040       if (Opcode == X86::ENCODEKEY256)
5041         Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM1, Node->getOperand(4),
5042                                      Chain.getValue(1));
5043 
5044       MachineSDNode *Res = CurDAG->getMachineNode(
5045           Opcode, dl, Node->getVTList(),
5046           {Node->getOperand(2), Chain, Chain.getValue(1)});
5047       ReplaceNode(Node, Res);
5048       return;
5049     }
5050     case Intrinsic::x86_tileloadd64_internal:
5051     case Intrinsic::x86_tileloaddt164_internal: {
5052       if (!Subtarget->hasAMXTILE())
5053         break;
5054       unsigned Opc = IntNo == Intrinsic::x86_tileloadd64_internal
5055                          ? X86::PTILELOADDV
5056                          : X86::PTILELOADDT1V;
5057       // _tile_loadd_internal(row, col, buf, STRIDE)
5058       SDValue Base = Node->getOperand(4);
5059       SDValue Scale = getI8Imm(1, dl);
5060       SDValue Index = Node->getOperand(5);
5061       SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
5062       SDValue Segment = CurDAG->getRegister(0, MVT::i16);
5063       SDValue Chain = Node->getOperand(0);
5064       MachineSDNode *CNode;
5065       SDValue Ops[] = {Node->getOperand(2),
5066                        Node->getOperand(3),
5067                        Base,
5068                        Scale,
5069                        Index,
5070                        Disp,
5071                        Segment,
5072                        Chain};
5073       CNode = CurDAG->getMachineNode(Opc, dl, {MVT::x86amx, MVT::Other}, Ops);
5074       ReplaceNode(Node, CNode);
5075       return;
5076     }
5077     }
5078     break;
5079   }
5080   case ISD::INTRINSIC_VOID: {
5081     unsigned IntNo = Node->getConstantOperandVal(1);
5082     switch (IntNo) {
5083     default: break;
5084     case Intrinsic::x86_sse3_monitor:
5085     case Intrinsic::x86_monitorx:
5086     case Intrinsic::x86_clzero: {
5087       bool Use64BitPtr = Node->getOperand(2).getValueType() == MVT::i64;
5088 
5089       unsigned Opc = 0;
5090       switch (IntNo) {
5091       default: llvm_unreachable("Unexpected intrinsic!");
5092       case Intrinsic::x86_sse3_monitor:
5093         if (!Subtarget->hasSSE3())
5094           break;
5095         Opc = Use64BitPtr ? X86::MONITOR64rrr : X86::MONITOR32rrr;
5096         break;
5097       case Intrinsic::x86_monitorx:
5098         if (!Subtarget->hasMWAITX())
5099           break;
5100         Opc = Use64BitPtr ? X86::MONITORX64rrr : X86::MONITORX32rrr;
5101         break;
5102       case Intrinsic::x86_clzero:
5103         if (!Subtarget->hasCLZERO())
5104           break;
5105         Opc = Use64BitPtr ? X86::CLZERO64r : X86::CLZERO32r;
5106         break;
5107       }
5108 
5109       if (Opc) {
5110         unsigned PtrReg = Use64BitPtr ? X86::RAX : X86::EAX;
5111         SDValue Chain = CurDAG->getCopyToReg(Node->getOperand(0), dl, PtrReg,
5112                                              Node->getOperand(2), SDValue());
5113         SDValue InGlue = Chain.getValue(1);
5114 
5115         if (IntNo == Intrinsic::x86_sse3_monitor ||
5116             IntNo == Intrinsic::x86_monitorx) {
5117           // Copy the other two operands to ECX and EDX.
5118           Chain = CurDAG->getCopyToReg(Chain, dl, X86::ECX, Node->getOperand(3),
5119                                        InGlue);
5120           InGlue = Chain.getValue(1);
5121           Chain = CurDAG->getCopyToReg(Chain, dl, X86::EDX, Node->getOperand(4),
5122                                        InGlue);
5123           InGlue = Chain.getValue(1);
5124         }
5125 
5126         MachineSDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
5127                                                       { Chain, InGlue});
5128         ReplaceNode(Node, CNode);
5129         return;
5130       }
5131 
5132       break;
5133     }
5134     case Intrinsic::x86_tilestored64_internal: {
5135       unsigned Opc = X86::PTILESTOREDV;
5136       // _tile_stored_internal(row, col, buf, STRIDE, c)
5137       SDValue Base = Node->getOperand(4);
5138       SDValue Scale = getI8Imm(1, dl);
5139       SDValue Index = Node->getOperand(5);
5140       SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
5141       SDValue Segment = CurDAG->getRegister(0, MVT::i16);
5142       SDValue Chain = Node->getOperand(0);
5143       MachineSDNode *CNode;
5144       SDValue Ops[] = {Node->getOperand(2),
5145                        Node->getOperand(3),
5146                        Base,
5147                        Scale,
5148                        Index,
5149                        Disp,
5150                        Segment,
5151                        Node->getOperand(6),
5152                        Chain};
5153       CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
5154       ReplaceNode(Node, CNode);
5155       return;
5156     }
5157     case Intrinsic::x86_tileloadd64:
5158     case Intrinsic::x86_tileloaddt164:
5159     case Intrinsic::x86_tilestored64: {
5160       if (!Subtarget->hasAMXTILE())
5161         break;
5162       unsigned Opc;
5163       switch (IntNo) {
5164       default: llvm_unreachable("Unexpected intrinsic!");
5165       case Intrinsic::x86_tileloadd64:   Opc = X86::PTILELOADD; break;
5166       case Intrinsic::x86_tileloaddt164: Opc = X86::PTILELOADDT1; break;
5167       case Intrinsic::x86_tilestored64:  Opc = X86::PTILESTORED; break;
5168       }
5169       // FIXME: Match displacement and scale.
5170       unsigned TIndex = Node->getConstantOperandVal(2);
5171       SDValue TReg = getI8Imm(TIndex, dl);
5172       SDValue Base = Node->getOperand(3);
5173       SDValue Scale = getI8Imm(1, dl);
5174       SDValue Index = Node->getOperand(4);
5175       SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
5176       SDValue Segment = CurDAG->getRegister(0, MVT::i16);
5177       SDValue Chain = Node->getOperand(0);
5178       MachineSDNode *CNode;
5179       if (Opc == X86::PTILESTORED) {
5180         SDValue Ops[] = { Base, Scale, Index, Disp, Segment, TReg, Chain };
5181         CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
5182       } else {
5183         SDValue Ops[] = { TReg, Base, Scale, Index, Disp, Segment, Chain };
5184         CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
5185       }
5186       ReplaceNode(Node, CNode);
5187       return;
5188     }
5189     }
5190     break;
5191   }
5192   case ISD::BRIND:
5193   case X86ISD::NT_BRIND: {
5194     if (Subtarget->isTargetNaCl())
5195       // NaCl has its own pass where jmp %r32 are converted to jmp %r64. We
5196       // leave the instruction alone.
5197       break;
5198     if (Subtarget->isTarget64BitILP32()) {
5199       // Converts a 32-bit register to a 64-bit, zero-extended version of
5200       // it. This is needed because x86-64 can do many things, but jmp %r32
5201       // ain't one of them.
5202       SDValue Target = Node->getOperand(1);
5203       assert(Target.getValueType() == MVT::i32 && "Unexpected VT!");
5204       SDValue ZextTarget = CurDAG->getZExtOrTrunc(Target, dl, MVT::i64);
5205       SDValue Brind = CurDAG->getNode(Opcode, dl, MVT::Other,
5206                                       Node->getOperand(0), ZextTarget);
5207       ReplaceNode(Node, Brind.getNode());
5208       SelectCode(ZextTarget.getNode());
5209       SelectCode(Brind.getNode());
5210       return;
5211     }
5212     break;
5213   }
5214   case X86ISD::GlobalBaseReg:
5215     ReplaceNode(Node, getGlobalBaseReg());
5216     return;
5217 
5218   case ISD::BITCAST:
5219     // Just drop all 128/256/512-bit bitcasts.
5220     if (NVT.is512BitVector() || NVT.is256BitVector() || NVT.is128BitVector() ||
5221         NVT == MVT::f128) {
5222       ReplaceUses(SDValue(Node, 0), Node->getOperand(0));
5223       CurDAG->RemoveDeadNode(Node);
5224       return;
5225     }
5226     break;
5227 
5228   case ISD::SRL:
5229     if (matchBitExtract(Node))
5230       return;
5231     [[fallthrough]];
5232   case ISD::SRA:
5233   case ISD::SHL:
5234     if (tryShiftAmountMod(Node))
5235       return;
5236     break;
5237 
5238   case X86ISD::VPTERNLOG: {
5239     uint8_t Imm = cast<ConstantSDNode>(Node->getOperand(3))->getZExtValue();
5240     if (matchVPTERNLOG(Node, Node, Node, Node, Node->getOperand(0),
5241                        Node->getOperand(1), Node->getOperand(2), Imm))
5242       return;
5243     break;
5244   }
5245 
5246   case X86ISD::ANDNP:
5247     if (tryVPTERNLOG(Node))
5248       return;
5249     break;
5250 
5251   case ISD::AND:
5252     if (NVT.isVector() && NVT.getVectorElementType() == MVT::i1) {
5253       // Try to form a masked VPTESTM. Operands can be in either order.
5254       SDValue N0 = Node->getOperand(0);
5255       SDValue N1 = Node->getOperand(1);
5256       if (N0.getOpcode() == ISD::SETCC && N0.hasOneUse() &&
5257           tryVPTESTM(Node, N0, N1))
5258         return;
5259       if (N1.getOpcode() == ISD::SETCC && N1.hasOneUse() &&
5260           tryVPTESTM(Node, N1, N0))
5261         return;
5262     }
5263 
5264     if (MachineSDNode *NewNode = matchBEXTRFromAndImm(Node)) {
5265       ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
5266       CurDAG->RemoveDeadNode(Node);
5267       return;
5268     }
5269     if (matchBitExtract(Node))
5270       return;
5271     if (AndImmShrink && shrinkAndImmediate(Node))
5272       return;
5273 
5274     [[fallthrough]];
5275   case ISD::OR:
5276   case ISD::XOR:
5277     if (tryShrinkShlLogicImm(Node))
5278       return;
5279     if (Opcode == ISD::OR && tryMatchBitSelect(Node))
5280       return;
5281     if (tryVPTERNLOG(Node))
5282       return;
5283 
5284     [[fallthrough]];
5285   case ISD::ADD:
5286     if (Opcode == ISD::ADD && matchBitExtract(Node))
5287       return;
5288     [[fallthrough]];
5289   case ISD::SUB: {
5290     // Try to avoid folding immediates with multiple uses for optsize.
5291     // This code tries to select to register form directly to avoid going
5292     // through the isel table which might fold the immediate. We can't change
5293     // the patterns on the add/sub/and/or/xor with immediate paterns in the
5294     // tablegen files to check immediate use count without making the patterns
5295     // unavailable to the fast-isel table.
5296     if (!CurDAG->shouldOptForSize())
5297       break;
5298 
5299     // Only handle i8/i16/i32/i64.
5300     if (NVT != MVT::i8 && NVT != MVT::i16 && NVT != MVT::i32 && NVT != MVT::i64)
5301       break;
5302 
5303     SDValue N0 = Node->getOperand(0);
5304     SDValue N1 = Node->getOperand(1);
5305 
5306     auto *Cst = dyn_cast<ConstantSDNode>(N1);
5307     if (!Cst)
5308       break;
5309 
5310     int64_t Val = Cst->getSExtValue();
5311 
5312     // Make sure its an immediate that is considered foldable.
5313     // FIXME: Handle unsigned 32 bit immediates for 64-bit AND.
5314     if (!isInt<8>(Val) && !isInt<32>(Val))
5315       break;
5316 
5317     // If this can match to INC/DEC, let it go.
5318     if (Opcode == ISD::ADD && (Val == 1 || Val == -1))
5319       break;
5320 
5321     // Check if we should avoid folding this immediate.
5322     if (!shouldAvoidImmediateInstFormsForSize(N1.getNode()))
5323       break;
5324 
5325     // We should not fold the immediate. So we need a register form instead.
5326     unsigned ROpc, MOpc;
5327     switch (NVT.SimpleTy) {
5328     default: llvm_unreachable("Unexpected VT!");
5329     case MVT::i8:
5330       switch (Opcode) {
5331       default: llvm_unreachable("Unexpected opcode!");
5332       case ISD::ADD: ROpc = X86::ADD8rr; MOpc = X86::ADD8rm; break;
5333       case ISD::SUB: ROpc = X86::SUB8rr; MOpc = X86::SUB8rm; break;
5334       case ISD::AND: ROpc = X86::AND8rr; MOpc = X86::AND8rm; break;
5335       case ISD::OR:  ROpc = X86::OR8rr;  MOpc = X86::OR8rm;  break;
5336       case ISD::XOR: ROpc = X86::XOR8rr; MOpc = X86::XOR8rm; break;
5337       }
5338       break;
5339     case MVT::i16:
5340       switch (Opcode) {
5341       default: llvm_unreachable("Unexpected opcode!");
5342       case ISD::ADD: ROpc = X86::ADD16rr; MOpc = X86::ADD16rm; break;
5343       case ISD::SUB: ROpc = X86::SUB16rr; MOpc = X86::SUB16rm; break;
5344       case ISD::AND: ROpc = X86::AND16rr; MOpc = X86::AND16rm; break;
5345       case ISD::OR:  ROpc = X86::OR16rr;  MOpc = X86::OR16rm;  break;
5346       case ISD::XOR: ROpc = X86::XOR16rr; MOpc = X86::XOR16rm; break;
5347       }
5348       break;
5349     case MVT::i32:
5350       switch (Opcode) {
5351       default: llvm_unreachable("Unexpected opcode!");
5352       case ISD::ADD: ROpc = X86::ADD32rr; MOpc = X86::ADD32rm; break;
5353       case ISD::SUB: ROpc = X86::SUB32rr; MOpc = X86::SUB32rm; break;
5354       case ISD::AND: ROpc = X86::AND32rr; MOpc = X86::AND32rm; break;
5355       case ISD::OR:  ROpc = X86::OR32rr;  MOpc = X86::OR32rm;  break;
5356       case ISD::XOR: ROpc = X86::XOR32rr; MOpc = X86::XOR32rm; break;
5357       }
5358       break;
5359     case MVT::i64:
5360       switch (Opcode) {
5361       default: llvm_unreachable("Unexpected opcode!");
5362       case ISD::ADD: ROpc = X86::ADD64rr; MOpc = X86::ADD64rm; break;
5363       case ISD::SUB: ROpc = X86::SUB64rr; MOpc = X86::SUB64rm; break;
5364       case ISD::AND: ROpc = X86::AND64rr; MOpc = X86::AND64rm; break;
5365       case ISD::OR:  ROpc = X86::OR64rr;  MOpc = X86::OR64rm;  break;
5366       case ISD::XOR: ROpc = X86::XOR64rr; MOpc = X86::XOR64rm; break;
5367       }
5368       break;
5369     }
5370 
5371     // Ok this is a AND/OR/XOR/ADD/SUB with constant.
5372 
5373     // If this is a not a subtract, we can still try to fold a load.
5374     if (Opcode != ISD::SUB) {
5375       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5376       if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
5377         SDValue Ops[] = { N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
5378         SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
5379         MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5380         // Update the chain.
5381         ReplaceUses(N0.getValue(1), SDValue(CNode, 2));
5382         // Record the mem-refs
5383         CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N0)->getMemOperand()});
5384         ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5385         CurDAG->RemoveDeadNode(Node);
5386         return;
5387       }
5388     }
5389 
5390     CurDAG->SelectNodeTo(Node, ROpc, NVT, MVT::i32, N0, N1);
5391     return;
5392   }
5393 
5394   case X86ISD::SMUL:
5395     // i16/i32/i64 are handled with isel patterns.
5396     if (NVT != MVT::i8)
5397       break;
5398     [[fallthrough]];
5399   case X86ISD::UMUL: {
5400     SDValue N0 = Node->getOperand(0);
5401     SDValue N1 = Node->getOperand(1);
5402 
5403     unsigned LoReg, ROpc, MOpc;
5404     switch (NVT.SimpleTy) {
5405     default: llvm_unreachable("Unsupported VT!");
5406     case MVT::i8:
5407       LoReg = X86::AL;
5408       ROpc = Opcode == X86ISD::SMUL ? X86::IMUL8r : X86::MUL8r;
5409       MOpc = Opcode == X86ISD::SMUL ? X86::IMUL8m : X86::MUL8m;
5410       break;
5411     case MVT::i16:
5412       LoReg = X86::AX;
5413       ROpc = X86::MUL16r;
5414       MOpc = X86::MUL16m;
5415       break;
5416     case MVT::i32:
5417       LoReg = X86::EAX;
5418       ROpc = X86::MUL32r;
5419       MOpc = X86::MUL32m;
5420       break;
5421     case MVT::i64:
5422       LoReg = X86::RAX;
5423       ROpc = X86::MUL64r;
5424       MOpc = X86::MUL64m;
5425       break;
5426     }
5427 
5428     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5429     bool FoldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5430     // Multiply is commutative.
5431     if (!FoldedLoad) {
5432       FoldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5433       if (FoldedLoad)
5434         std::swap(N0, N1);
5435     }
5436 
5437     SDValue InGlue = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
5438                                           N0, SDValue()).getValue(1);
5439 
5440     MachineSDNode *CNode;
5441     if (FoldedLoad) {
5442       // i16/i32/i64 use an instruction that produces a low and high result even
5443       // though only the low result is used.
5444       SDVTList VTs;
5445       if (NVT == MVT::i8)
5446         VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
5447       else
5448         VTs = CurDAG->getVTList(NVT, NVT, MVT::i32, MVT::Other);
5449 
5450       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
5451                         InGlue };
5452       CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5453 
5454       // Update the chain.
5455       ReplaceUses(N1.getValue(1), SDValue(CNode, NVT == MVT::i8 ? 2 : 3));
5456       // Record the mem-refs
5457       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5458     } else {
5459       // i16/i32/i64 use an instruction that produces a low and high result even
5460       // though only the low result is used.
5461       SDVTList VTs;
5462       if (NVT == MVT::i8)
5463         VTs = CurDAG->getVTList(NVT, MVT::i32);
5464       else
5465         VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
5466 
5467       CNode = CurDAG->getMachineNode(ROpc, dl, VTs, {N1, InGlue});
5468     }
5469 
5470     ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5471     ReplaceUses(SDValue(Node, 1), SDValue(CNode, NVT == MVT::i8 ? 1 : 2));
5472     CurDAG->RemoveDeadNode(Node);
5473     return;
5474   }
5475 
5476   case ISD::SMUL_LOHI:
5477   case ISD::UMUL_LOHI: {
5478     SDValue N0 = Node->getOperand(0);
5479     SDValue N1 = Node->getOperand(1);
5480 
5481     unsigned Opc, MOpc;
5482     unsigned LoReg, HiReg;
5483     bool IsSigned = Opcode == ISD::SMUL_LOHI;
5484     bool UseMULX = !IsSigned && Subtarget->hasBMI2();
5485     bool UseMULXHi = UseMULX && SDValue(Node, 0).use_empty();
5486     switch (NVT.SimpleTy) {
5487     default: llvm_unreachable("Unsupported VT!");
5488     case MVT::i32:
5489       Opc  = UseMULXHi ? X86::MULX32Hrr :
5490              UseMULX ? X86::MULX32rr :
5491              IsSigned ? X86::IMUL32r : X86::MUL32r;
5492       MOpc = UseMULXHi ? X86::MULX32Hrm :
5493              UseMULX ? X86::MULX32rm :
5494              IsSigned ? X86::IMUL32m : X86::MUL32m;
5495       LoReg = UseMULX ? X86::EDX : X86::EAX;
5496       HiReg = X86::EDX;
5497       break;
5498     case MVT::i64:
5499       Opc  = UseMULXHi ? X86::MULX64Hrr :
5500              UseMULX ? X86::MULX64rr :
5501              IsSigned ? X86::IMUL64r : X86::MUL64r;
5502       MOpc = UseMULXHi ? X86::MULX64Hrm :
5503              UseMULX ? X86::MULX64rm :
5504              IsSigned ? X86::IMUL64m : X86::MUL64m;
5505       LoReg = UseMULX ? X86::RDX : X86::RAX;
5506       HiReg = X86::RDX;
5507       break;
5508     }
5509 
5510     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5511     bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5512     // Multiply is commutative.
5513     if (!foldedLoad) {
5514       foldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5515       if (foldedLoad)
5516         std::swap(N0, N1);
5517     }
5518 
5519     SDValue InGlue = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
5520                                           N0, SDValue()).getValue(1);
5521     SDValue ResHi, ResLo;
5522     if (foldedLoad) {
5523       SDValue Chain;
5524       MachineSDNode *CNode = nullptr;
5525       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
5526                         InGlue };
5527       if (UseMULXHi) {
5528         SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other);
5529         CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5530         ResHi = SDValue(CNode, 0);
5531         Chain = SDValue(CNode, 1);
5532       } else if (UseMULX) {
5533         SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other);
5534         CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5535         ResHi = SDValue(CNode, 0);
5536         ResLo = SDValue(CNode, 1);
5537         Chain = SDValue(CNode, 2);
5538       } else {
5539         SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
5540         CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5541         Chain = SDValue(CNode, 0);
5542         InGlue = SDValue(CNode, 1);
5543       }
5544 
5545       // Update the chain.
5546       ReplaceUses(N1.getValue(1), Chain);
5547       // Record the mem-refs
5548       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5549     } else {
5550       SDValue Ops[] = { N1, InGlue };
5551       if (UseMULXHi) {
5552         SDVTList VTs = CurDAG->getVTList(NVT);
5553         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5554         ResHi = SDValue(CNode, 0);
5555       } else if (UseMULX) {
5556         SDVTList VTs = CurDAG->getVTList(NVT, NVT);
5557         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5558         ResHi = SDValue(CNode, 0);
5559         ResLo = SDValue(CNode, 1);
5560       } else {
5561         SDVTList VTs = CurDAG->getVTList(MVT::Glue);
5562         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5563         InGlue = SDValue(CNode, 0);
5564       }
5565     }
5566 
5567     // Copy the low half of the result, if it is needed.
5568     if (!SDValue(Node, 0).use_empty()) {
5569       if (!ResLo) {
5570         assert(LoReg && "Register for low half is not defined!");
5571         ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg,
5572                                        NVT, InGlue);
5573         InGlue = ResLo.getValue(2);
5574       }
5575       ReplaceUses(SDValue(Node, 0), ResLo);
5576       LLVM_DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG);
5577                  dbgs() << '\n');
5578     }
5579     // Copy the high half of the result, if it is needed.
5580     if (!SDValue(Node, 1).use_empty()) {
5581       if (!ResHi) {
5582         assert(HiReg && "Register for high half is not defined!");
5583         ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg,
5584                                        NVT, InGlue);
5585         InGlue = ResHi.getValue(2);
5586       }
5587       ReplaceUses(SDValue(Node, 1), ResHi);
5588       LLVM_DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG);
5589                  dbgs() << '\n');
5590     }
5591 
5592     CurDAG->RemoveDeadNode(Node);
5593     return;
5594   }
5595 
5596   case ISD::SDIVREM:
5597   case ISD::UDIVREM: {
5598     SDValue N0 = Node->getOperand(0);
5599     SDValue N1 = Node->getOperand(1);
5600 
5601     unsigned ROpc, MOpc;
5602     bool isSigned = Opcode == ISD::SDIVREM;
5603     if (!isSigned) {
5604       switch (NVT.SimpleTy) {
5605       default: llvm_unreachable("Unsupported VT!");
5606       case MVT::i8:  ROpc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
5607       case MVT::i16: ROpc = X86::DIV16r; MOpc = X86::DIV16m; break;
5608       case MVT::i32: ROpc = X86::DIV32r; MOpc = X86::DIV32m; break;
5609       case MVT::i64: ROpc = X86::DIV64r; MOpc = X86::DIV64m; break;
5610       }
5611     } else {
5612       switch (NVT.SimpleTy) {
5613       default: llvm_unreachable("Unsupported VT!");
5614       case MVT::i8:  ROpc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
5615       case MVT::i16: ROpc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
5616       case MVT::i32: ROpc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
5617       case MVT::i64: ROpc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
5618       }
5619     }
5620 
5621     unsigned LoReg, HiReg, ClrReg;
5622     unsigned SExtOpcode;
5623     switch (NVT.SimpleTy) {
5624     default: llvm_unreachable("Unsupported VT!");
5625     case MVT::i8:
5626       LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
5627       SExtOpcode = 0; // Not used.
5628       break;
5629     case MVT::i16:
5630       LoReg = X86::AX;  HiReg = X86::DX;
5631       ClrReg = X86::DX;
5632       SExtOpcode = X86::CWD;
5633       break;
5634     case MVT::i32:
5635       LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
5636       SExtOpcode = X86::CDQ;
5637       break;
5638     case MVT::i64:
5639       LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
5640       SExtOpcode = X86::CQO;
5641       break;
5642     }
5643 
5644     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5645     bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5646     bool signBitIsZero = CurDAG->SignBitIsZero(N0);
5647 
5648     SDValue InGlue;
5649     if (NVT == MVT::i8) {
5650       // Special case for div8, just use a move with zero extension to AX to
5651       // clear the upper 8 bits (AH).
5652       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain;
5653       MachineSDNode *Move;
5654       if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
5655         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
5656         unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rm8
5657                                                     : X86::MOVZX16rm8;
5658         Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, MVT::Other, Ops);
5659         Chain = SDValue(Move, 1);
5660         ReplaceUses(N0.getValue(1), Chain);
5661         // Record the mem-refs
5662         CurDAG->setNodeMemRefs(Move, {cast<LoadSDNode>(N0)->getMemOperand()});
5663       } else {
5664         unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rr8
5665                                                     : X86::MOVZX16rr8;
5666         Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, N0);
5667         Chain = CurDAG->getEntryNode();
5668       }
5669       Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, SDValue(Move, 0),
5670                                     SDValue());
5671       InGlue = Chain.getValue(1);
5672     } else {
5673       InGlue =
5674         CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
5675                              LoReg, N0, SDValue()).getValue(1);
5676       if (isSigned && !signBitIsZero) {
5677         // Sign extend the low part into the high part.
5678         InGlue =
5679           SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InGlue),0);
5680       } else {
5681         // Zero out the high part, effectively zero extending the input.
5682         SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32);
5683         SDValue ClrNode = SDValue(
5684             CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, std::nullopt), 0);
5685         switch (NVT.SimpleTy) {
5686         case MVT::i16:
5687           ClrNode =
5688               SDValue(CurDAG->getMachineNode(
5689                           TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
5690                           CurDAG->getTargetConstant(X86::sub_16bit, dl,
5691                                                     MVT::i32)),
5692                       0);
5693           break;
5694         case MVT::i32:
5695           break;
5696         case MVT::i64:
5697           ClrNode =
5698               SDValue(CurDAG->getMachineNode(
5699                           TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
5700                           CurDAG->getTargetConstant(0, dl, MVT::i64), ClrNode,
5701                           CurDAG->getTargetConstant(X86::sub_32bit, dl,
5702                                                     MVT::i32)),
5703                       0);
5704           break;
5705         default:
5706           llvm_unreachable("Unexpected division source");
5707         }
5708 
5709         InGlue = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
5710                                       ClrNode, InGlue).getValue(1);
5711       }
5712     }
5713 
5714     if (foldedLoad) {
5715       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
5716                         InGlue };
5717       MachineSDNode *CNode =
5718         CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
5719       InGlue = SDValue(CNode, 1);
5720       // Update the chain.
5721       ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
5722       // Record the mem-refs
5723       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5724     } else {
5725       InGlue =
5726         SDValue(CurDAG->getMachineNode(ROpc, dl, MVT::Glue, N1, InGlue), 0);
5727     }
5728 
5729     // Prevent use of AH in a REX instruction by explicitly copying it to
5730     // an ABCD_L register.
5731     //
5732     // The current assumption of the register allocator is that isel
5733     // won't generate explicit references to the GR8_ABCD_H registers. If
5734     // the allocator and/or the backend get enhanced to be more robust in
5735     // that regard, this can be, and should be, removed.
5736     if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) {
5737       SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8);
5738       unsigned AHExtOpcode =
5739           isSigned ? X86::MOVSX32rr8_NOREX : X86::MOVZX32rr8_NOREX;
5740 
5741       SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32,
5742                                              MVT::Glue, AHCopy, InGlue);
5743       SDValue Result(RNode, 0);
5744       InGlue = SDValue(RNode, 1);
5745 
5746       Result =
5747           CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result);
5748 
5749       ReplaceUses(SDValue(Node, 1), Result);
5750       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5751                  dbgs() << '\n');
5752     }
5753     // Copy the division (low) result, if it is needed.
5754     if (!SDValue(Node, 0).use_empty()) {
5755       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
5756                                                 LoReg, NVT, InGlue);
5757       InGlue = Result.getValue(2);
5758       ReplaceUses(SDValue(Node, 0), Result);
5759       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5760                  dbgs() << '\n');
5761     }
5762     // Copy the remainder (high) result, if it is needed.
5763     if (!SDValue(Node, 1).use_empty()) {
5764       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
5765                                               HiReg, NVT, InGlue);
5766       InGlue = Result.getValue(2);
5767       ReplaceUses(SDValue(Node, 1), Result);
5768       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5769                  dbgs() << '\n');
5770     }
5771     CurDAG->RemoveDeadNode(Node);
5772     return;
5773   }
5774 
5775   case X86ISD::FCMP:
5776   case X86ISD::STRICT_FCMP:
5777   case X86ISD::STRICT_FCMPS: {
5778     bool IsStrictCmp = Node->getOpcode() == X86ISD::STRICT_FCMP ||
5779                        Node->getOpcode() == X86ISD::STRICT_FCMPS;
5780     SDValue N0 = Node->getOperand(IsStrictCmp ? 1 : 0);
5781     SDValue N1 = Node->getOperand(IsStrictCmp ? 2 : 1);
5782 
5783     // Save the original VT of the compare.
5784     MVT CmpVT = N0.getSimpleValueType();
5785 
5786     // Floating point needs special handling if we don't have FCOMI.
5787     if (Subtarget->canUseCMOV())
5788       break;
5789 
5790     bool IsSignaling = Node->getOpcode() == X86ISD::STRICT_FCMPS;
5791 
5792     unsigned Opc;
5793     switch (CmpVT.SimpleTy) {
5794     default: llvm_unreachable("Unexpected type!");
5795     case MVT::f32:
5796       Opc = IsSignaling ? X86::COM_Fpr32 : X86::UCOM_Fpr32;
5797       break;
5798     case MVT::f64:
5799       Opc = IsSignaling ? X86::COM_Fpr64 : X86::UCOM_Fpr64;
5800       break;
5801     case MVT::f80:
5802       Opc = IsSignaling ? X86::COM_Fpr80 : X86::UCOM_Fpr80;
5803       break;
5804     }
5805 
5806     SDValue Chain =
5807         IsStrictCmp ? Node->getOperand(0) : CurDAG->getEntryNode();
5808     SDValue Glue;
5809     if (IsStrictCmp) {
5810       SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
5811       Chain = SDValue(CurDAG->getMachineNode(Opc, dl, VTs, {N0, N1, Chain}), 0);
5812       Glue = Chain.getValue(1);
5813     } else {
5814       Glue = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N0, N1), 0);
5815     }
5816 
5817     // Move FPSW to AX.
5818     SDValue FNSTSW =
5819         SDValue(CurDAG->getMachineNode(X86::FNSTSW16r, dl, MVT::i16, Glue), 0);
5820 
5821     // Extract upper 8-bits of AX.
5822     SDValue Extract =
5823         CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl, MVT::i8, FNSTSW);
5824 
5825     // Move AH into flags.
5826     // Some 64-bit targets lack SAHF support, but they do support FCOMI.
5827     assert(Subtarget->canUseLAHFSAHF() &&
5828            "Target doesn't support SAHF or FCOMI?");
5829     SDValue AH = CurDAG->getCopyToReg(Chain, dl, X86::AH, Extract, SDValue());
5830     Chain = AH;
5831     SDValue SAHF = SDValue(
5832         CurDAG->getMachineNode(X86::SAHF, dl, MVT::i32, AH.getValue(1)), 0);
5833 
5834     if (IsStrictCmp)
5835       ReplaceUses(SDValue(Node, 1), Chain);
5836 
5837     ReplaceUses(SDValue(Node, 0), SAHF);
5838     CurDAG->RemoveDeadNode(Node);
5839     return;
5840   }
5841 
5842   case X86ISD::CMP: {
5843     SDValue N0 = Node->getOperand(0);
5844     SDValue N1 = Node->getOperand(1);
5845 
5846     // Optimizations for TEST compares.
5847     if (!isNullConstant(N1))
5848       break;
5849 
5850     // Save the original VT of the compare.
5851     MVT CmpVT = N0.getSimpleValueType();
5852 
5853     // If we are comparing (and (shr X, C, Mask) with 0, emit a BEXTR followed
5854     // by a test instruction. The test should be removed later by
5855     // analyzeCompare if we are using only the zero flag.
5856     // TODO: Should we check the users and use the BEXTR flags directly?
5857     if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
5858       if (MachineSDNode *NewNode = matchBEXTRFromAndImm(N0.getNode())) {
5859         unsigned TestOpc = CmpVT == MVT::i64 ? X86::TEST64rr
5860                                              : X86::TEST32rr;
5861         SDValue BEXTR = SDValue(NewNode, 0);
5862         NewNode = CurDAG->getMachineNode(TestOpc, dl, MVT::i32, BEXTR, BEXTR);
5863         ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
5864         CurDAG->RemoveDeadNode(Node);
5865         return;
5866       }
5867     }
5868 
5869     // We can peek through truncates, but we need to be careful below.
5870     if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse())
5871       N0 = N0.getOperand(0);
5872 
5873     // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
5874     // use a smaller encoding.
5875     // Look past the truncate if CMP is the only use of it.
5876     if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
5877         N0.getValueType() != MVT::i8) {
5878       auto *MaskC = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5879       if (!MaskC)
5880         break;
5881 
5882       // We may have looked through a truncate so mask off any bits that
5883       // shouldn't be part of the compare.
5884       uint64_t Mask = MaskC->getZExtValue();
5885       Mask &= maskTrailingOnes<uint64_t>(CmpVT.getScalarSizeInBits());
5886 
5887       // Check if we can replace AND+IMM{32,64} with a shift. This is possible
5888       // for masks like 0xFF000000 or 0x00FFFFFF and if we care only about the
5889       // zero flag.
5890       if (CmpVT == MVT::i64 && !isInt<8>(Mask) && isShiftedMask_64(Mask) &&
5891           onlyUsesZeroFlag(SDValue(Node, 0))) {
5892         unsigned ShiftOpcode = ISD::DELETED_NODE;
5893         unsigned ShiftAmt;
5894         unsigned SubRegIdx;
5895         MVT SubRegVT;
5896         unsigned TestOpcode;
5897         unsigned LeadingZeros = llvm::countl_zero(Mask);
5898         unsigned TrailingZeros = llvm::countr_zero(Mask);
5899 
5900         // With leading/trailing zeros, the transform is profitable if we can
5901         // eliminate a movabsq or shrink a 32-bit immediate to 8-bit without
5902         // incurring any extra register moves.
5903         bool SavesBytes = !isInt<32>(Mask) || N0.getOperand(0).hasOneUse();
5904         if (LeadingZeros == 0 && SavesBytes) {
5905           // If the mask covers the most significant bit, then we can replace
5906           // TEST+AND with a SHR and check eflags.
5907           // This emits a redundant TEST which is subsequently eliminated.
5908           ShiftOpcode = X86::SHR64ri;
5909           ShiftAmt = TrailingZeros;
5910           SubRegIdx = 0;
5911           TestOpcode = X86::TEST64rr;
5912         } else if (TrailingZeros == 0 && SavesBytes) {
5913           // If the mask covers the least significant bit, then we can replace
5914           // TEST+AND with a SHL and check eflags.
5915           // This emits a redundant TEST which is subsequently eliminated.
5916           ShiftOpcode = X86::SHL64ri;
5917           ShiftAmt = LeadingZeros;
5918           SubRegIdx = 0;
5919           TestOpcode = X86::TEST64rr;
5920         } else if (MaskC->hasOneUse() && !isInt<32>(Mask)) {
5921           // If the shifted mask extends into the high half and is 8/16/32 bits
5922           // wide, then replace it with a SHR and a TEST8rr/TEST16rr/TEST32rr.
5923           unsigned PopCount = 64 - LeadingZeros - TrailingZeros;
5924           if (PopCount == 8) {
5925             ShiftOpcode = X86::SHR64ri;
5926             ShiftAmt = TrailingZeros;
5927             SubRegIdx = X86::sub_8bit;
5928             SubRegVT = MVT::i8;
5929             TestOpcode = X86::TEST8rr;
5930           } else if (PopCount == 16) {
5931             ShiftOpcode = X86::SHR64ri;
5932             ShiftAmt = TrailingZeros;
5933             SubRegIdx = X86::sub_16bit;
5934             SubRegVT = MVT::i16;
5935             TestOpcode = X86::TEST16rr;
5936           } else if (PopCount == 32) {
5937             ShiftOpcode = X86::SHR64ri;
5938             ShiftAmt = TrailingZeros;
5939             SubRegIdx = X86::sub_32bit;
5940             SubRegVT = MVT::i32;
5941             TestOpcode = X86::TEST32rr;
5942           }
5943         }
5944         if (ShiftOpcode != ISD::DELETED_NODE) {
5945           SDValue ShiftC = CurDAG->getTargetConstant(ShiftAmt, dl, MVT::i64);
5946           SDValue Shift = SDValue(
5947               CurDAG->getMachineNode(ShiftOpcode, dl, MVT::i64, MVT::i32,
5948                                      N0.getOperand(0), ShiftC),
5949               0);
5950           if (SubRegIdx != 0) {
5951             Shift =
5952                 CurDAG->getTargetExtractSubreg(SubRegIdx, dl, SubRegVT, Shift);
5953           }
5954           MachineSDNode *Test =
5955               CurDAG->getMachineNode(TestOpcode, dl, MVT::i32, Shift, Shift);
5956           ReplaceNode(Node, Test);
5957           return;
5958         }
5959       }
5960 
5961       MVT VT;
5962       int SubRegOp;
5963       unsigned ROpc, MOpc;
5964 
5965       // For each of these checks we need to be careful if the sign flag is
5966       // being used. It is only safe to use the sign flag in two conditions,
5967       // either the sign bit in the shrunken mask is zero or the final test
5968       // size is equal to the original compare size.
5969 
5970       if (isUInt<8>(Mask) &&
5971           (!(Mask & 0x80) || CmpVT == MVT::i8 ||
5972            hasNoSignFlagUses(SDValue(Node, 0)))) {
5973         // For example, convert "testl %eax, $8" to "testb %al, $8"
5974         VT = MVT::i8;
5975         SubRegOp = X86::sub_8bit;
5976         ROpc = X86::TEST8ri;
5977         MOpc = X86::TEST8mi;
5978       } else if (OptForMinSize && isUInt<16>(Mask) &&
5979                  (!(Mask & 0x8000) || CmpVT == MVT::i16 ||
5980                   hasNoSignFlagUses(SDValue(Node, 0)))) {
5981         // For example, "testl %eax, $32776" to "testw %ax, $32776".
5982         // NOTE: We only want to form TESTW instructions if optimizing for
5983         // min size. Otherwise we only save one byte and possibly get a length
5984         // changing prefix penalty in the decoders.
5985         VT = MVT::i16;
5986         SubRegOp = X86::sub_16bit;
5987         ROpc = X86::TEST16ri;
5988         MOpc = X86::TEST16mi;
5989       } else if (isUInt<32>(Mask) && N0.getValueType() != MVT::i16 &&
5990                  ((!(Mask & 0x80000000) &&
5991                    // Without minsize 16-bit Cmps can get here so we need to
5992                    // be sure we calculate the correct sign flag if needed.
5993                    (CmpVT != MVT::i16 || !(Mask & 0x8000))) ||
5994                   CmpVT == MVT::i32 ||
5995                   hasNoSignFlagUses(SDValue(Node, 0)))) {
5996         // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
5997         // NOTE: We only want to run that transform if N0 is 32 or 64 bits.
5998         // Otherwize, we find ourselves in a position where we have to do
5999         // promotion. If previous passes did not promote the and, we assume
6000         // they had a good reason not to and do not promote here.
6001         VT = MVT::i32;
6002         SubRegOp = X86::sub_32bit;
6003         ROpc = X86::TEST32ri;
6004         MOpc = X86::TEST32mi;
6005       } else {
6006         // No eligible transformation was found.
6007         break;
6008       }
6009 
6010       SDValue Imm = CurDAG->getTargetConstant(Mask, dl, VT);
6011       SDValue Reg = N0.getOperand(0);
6012 
6013       // Emit a testl or testw.
6014       MachineSDNode *NewNode;
6015       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
6016       if (tryFoldLoad(Node, N0.getNode(), Reg, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
6017         if (auto *LoadN = dyn_cast<LoadSDNode>(N0.getOperand(0).getNode())) {
6018           if (!LoadN->isSimple()) {
6019             unsigned NumVolBits = LoadN->getValueType(0).getSizeInBits();
6020             if ((MOpc == X86::TEST8mi && NumVolBits != 8) ||
6021                 (MOpc == X86::TEST16mi && NumVolBits != 16) ||
6022                 (MOpc == X86::TEST32mi && NumVolBits != 32))
6023               break;
6024           }
6025         }
6026         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
6027                           Reg.getOperand(0) };
6028         NewNode = CurDAG->getMachineNode(MOpc, dl, MVT::i32, MVT::Other, Ops);
6029         // Update the chain.
6030         ReplaceUses(Reg.getValue(1), SDValue(NewNode, 1));
6031         // Record the mem-refs
6032         CurDAG->setNodeMemRefs(NewNode,
6033                                {cast<LoadSDNode>(Reg)->getMemOperand()});
6034       } else {
6035         // Extract the subregister if necessary.
6036         if (N0.getValueType() != VT)
6037           Reg = CurDAG->getTargetExtractSubreg(SubRegOp, dl, VT, Reg);
6038 
6039         NewNode = CurDAG->getMachineNode(ROpc, dl, MVT::i32, Reg, Imm);
6040       }
6041       // Replace CMP with TEST.
6042       ReplaceNode(Node, NewNode);
6043       return;
6044     }
6045     break;
6046   }
6047   case X86ISD::PCMPISTR: {
6048     if (!Subtarget->hasSSE42())
6049       break;
6050 
6051     bool NeedIndex = !SDValue(Node, 0).use_empty();
6052     bool NeedMask = !SDValue(Node, 1).use_empty();
6053     // We can't fold a load if we are going to make two instructions.
6054     bool MayFoldLoad = !NeedIndex || !NeedMask;
6055 
6056     MachineSDNode *CNode;
6057     if (NeedMask) {
6058       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrr : X86::PCMPISTRMrr;
6059       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrm : X86::PCMPISTRMrm;
6060       CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node);
6061       ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
6062     }
6063     if (NeedIndex || !NeedMask) {
6064       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrr : X86::PCMPISTRIrr;
6065       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrm : X86::PCMPISTRIrm;
6066       CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node);
6067       ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
6068     }
6069 
6070     // Connect the flag usage to the last instruction created.
6071     ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
6072     CurDAG->RemoveDeadNode(Node);
6073     return;
6074   }
6075   case X86ISD::PCMPESTR: {
6076     if (!Subtarget->hasSSE42())
6077       break;
6078 
6079     // Copy the two implicit register inputs.
6080     SDValue InGlue = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EAX,
6081                                           Node->getOperand(1),
6082                                           SDValue()).getValue(1);
6083     InGlue = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EDX,
6084                                   Node->getOperand(3), InGlue).getValue(1);
6085 
6086     bool NeedIndex = !SDValue(Node, 0).use_empty();
6087     bool NeedMask = !SDValue(Node, 1).use_empty();
6088     // We can't fold a load if we are going to make two instructions.
6089     bool MayFoldLoad = !NeedIndex || !NeedMask;
6090 
6091     MachineSDNode *CNode;
6092     if (NeedMask) {
6093       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrr : X86::PCMPESTRMrr;
6094       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrm : X86::PCMPESTRMrm;
6095       CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node,
6096                            InGlue);
6097       ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
6098     }
6099     if (NeedIndex || !NeedMask) {
6100       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrr : X86::PCMPESTRIrr;
6101       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrm : X86::PCMPESTRIrm;
6102       CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node, InGlue);
6103       ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
6104     }
6105     // Connect the flag usage to the last instruction created.
6106     ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
6107     CurDAG->RemoveDeadNode(Node);
6108     return;
6109   }
6110 
6111   case ISD::SETCC: {
6112     if (NVT.isVector() && tryVPTESTM(Node, SDValue(Node, 0), SDValue()))
6113       return;
6114 
6115     break;
6116   }
6117 
6118   case ISD::STORE:
6119     if (foldLoadStoreIntoMemOperand(Node))
6120       return;
6121     break;
6122 
6123   case X86ISD::SETCC_CARRY: {
6124     MVT VT = Node->getSimpleValueType(0);
6125     SDValue Result;
6126     if (Subtarget->hasSBBDepBreaking()) {
6127       // We have to do this manually because tblgen will put the eflags copy in
6128       // the wrong place if we use an extract_subreg in the pattern.
6129       // Copy flags to the EFLAGS register and glue it to next node.
6130       SDValue EFLAGS =
6131           CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS,
6132                                Node->getOperand(1), SDValue());
6133 
6134       // Create a 64-bit instruction if the result is 64-bits otherwise use the
6135       // 32-bit version.
6136       unsigned Opc = VT == MVT::i64 ? X86::SETB_C64r : X86::SETB_C32r;
6137       MVT SetVT = VT == MVT::i64 ? MVT::i64 : MVT::i32;
6138       Result = SDValue(
6139           CurDAG->getMachineNode(Opc, dl, SetVT, EFLAGS, EFLAGS.getValue(1)),
6140           0);
6141     } else {
6142       // The target does not recognize sbb with the same reg operand as a
6143       // no-source idiom, so we explicitly zero the input values.
6144       Result = getSBBZero(Node);
6145     }
6146 
6147     // For less than 32-bits we need to extract from the 32-bit node.
6148     if (VT == MVT::i8 || VT == MVT::i16) {
6149       int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit;
6150       Result = CurDAG->getTargetExtractSubreg(SubIndex, dl, VT, Result);
6151     }
6152 
6153     ReplaceUses(SDValue(Node, 0), Result);
6154     CurDAG->RemoveDeadNode(Node);
6155     return;
6156   }
6157   case X86ISD::SBB: {
6158     if (isNullConstant(Node->getOperand(0)) &&
6159         isNullConstant(Node->getOperand(1))) {
6160       SDValue Result = getSBBZero(Node);
6161 
6162       // Replace the flag use.
6163       ReplaceUses(SDValue(Node, 1), Result.getValue(1));
6164 
6165       // Replace the result use.
6166       if (!SDValue(Node, 0).use_empty()) {
6167         // For less than 32-bits we need to extract from the 32-bit node.
6168         MVT VT = Node->getSimpleValueType(0);
6169         if (VT == MVT::i8 || VT == MVT::i16) {
6170           int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit;
6171           Result = CurDAG->getTargetExtractSubreg(SubIndex, dl, VT, Result);
6172         }
6173         ReplaceUses(SDValue(Node, 0), Result);
6174       }
6175 
6176       CurDAG->RemoveDeadNode(Node);
6177       return;
6178     }
6179     break;
6180   }
6181   case X86ISD::MGATHER: {
6182     auto *Mgt = cast<X86MaskedGatherSDNode>(Node);
6183     SDValue IndexOp = Mgt->getIndex();
6184     SDValue Mask = Mgt->getMask();
6185     MVT IndexVT = IndexOp.getSimpleValueType();
6186     MVT ValueVT = Node->getSimpleValueType(0);
6187     MVT MaskVT = Mask.getSimpleValueType();
6188 
6189     // This is just to prevent crashes if the nodes are malformed somehow. We're
6190     // otherwise only doing loose type checking in here based on type what
6191     // a type constraint would say just like table based isel.
6192     if (!ValueVT.isVector() || !MaskVT.isVector())
6193       break;
6194 
6195     unsigned NumElts = ValueVT.getVectorNumElements();
6196     MVT ValueSVT = ValueVT.getVectorElementType();
6197 
6198     bool IsFP = ValueSVT.isFloatingPoint();
6199     unsigned EltSize = ValueSVT.getSizeInBits();
6200 
6201     unsigned Opc = 0;
6202     bool AVX512Gather = MaskVT.getVectorElementType() == MVT::i1;
6203     if (AVX512Gather) {
6204       if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
6205         Opc = IsFP ? X86::VGATHERDPSZ128rm : X86::VPGATHERDDZ128rm;
6206       else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
6207         Opc = IsFP ? X86::VGATHERDPSZ256rm : X86::VPGATHERDDZ256rm;
6208       else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32)
6209         Opc = IsFP ? X86::VGATHERDPSZrm : X86::VPGATHERDDZrm;
6210       else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
6211         Opc = IsFP ? X86::VGATHERDPDZ128rm : X86::VPGATHERDQZ128rm;
6212       else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
6213         Opc = IsFP ? X86::VGATHERDPDZ256rm : X86::VPGATHERDQZ256rm;
6214       else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64)
6215         Opc = IsFP ? X86::VGATHERDPDZrm : X86::VPGATHERDQZrm;
6216       else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
6217         Opc = IsFP ? X86::VGATHERQPSZ128rm : X86::VPGATHERQDZ128rm;
6218       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
6219         Opc = IsFP ? X86::VGATHERQPSZ256rm : X86::VPGATHERQDZ256rm;
6220       else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32)
6221         Opc = IsFP ? X86::VGATHERQPSZrm : X86::VPGATHERQDZrm;
6222       else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
6223         Opc = IsFP ? X86::VGATHERQPDZ128rm : X86::VPGATHERQQZ128rm;
6224       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
6225         Opc = IsFP ? X86::VGATHERQPDZ256rm : X86::VPGATHERQQZ256rm;
6226       else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64)
6227         Opc = IsFP ? X86::VGATHERQPDZrm : X86::VPGATHERQQZrm;
6228     } else {
6229       assert(EVT(MaskVT) == EVT(ValueVT).changeVectorElementTypeToInteger() &&
6230              "Unexpected mask VT!");
6231       if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
6232         Opc = IsFP ? X86::VGATHERDPSrm : X86::VPGATHERDDrm;
6233       else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
6234         Opc = IsFP ? X86::VGATHERDPSYrm : X86::VPGATHERDDYrm;
6235       else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
6236         Opc = IsFP ? X86::VGATHERDPDrm : X86::VPGATHERDQrm;
6237       else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
6238         Opc = IsFP ? X86::VGATHERDPDYrm : X86::VPGATHERDQYrm;
6239       else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
6240         Opc = IsFP ? X86::VGATHERQPSrm : X86::VPGATHERQDrm;
6241       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
6242         Opc = IsFP ? X86::VGATHERQPSYrm : X86::VPGATHERQDYrm;
6243       else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
6244         Opc = IsFP ? X86::VGATHERQPDrm : X86::VPGATHERQQrm;
6245       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
6246         Opc = IsFP ? X86::VGATHERQPDYrm : X86::VPGATHERQQYrm;
6247     }
6248 
6249     if (!Opc)
6250       break;
6251 
6252     SDValue Base, Scale, Index, Disp, Segment;
6253     if (!selectVectorAddr(Mgt, Mgt->getBasePtr(), IndexOp, Mgt->getScale(),
6254                           Base, Scale, Index, Disp, Segment))
6255       break;
6256 
6257     SDValue PassThru = Mgt->getPassThru();
6258     SDValue Chain = Mgt->getChain();
6259     // Gather instructions have a mask output not in the ISD node.
6260     SDVTList VTs = CurDAG->getVTList(ValueVT, MaskVT, MVT::Other);
6261 
6262     MachineSDNode *NewNode;
6263     if (AVX512Gather) {
6264       SDValue Ops[] = {PassThru, Mask, Base,    Scale,
6265                        Index,    Disp, Segment, Chain};
6266       NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
6267     } else {
6268       SDValue Ops[] = {PassThru, Base,    Scale, Index,
6269                        Disp,     Segment, Mask,  Chain};
6270       NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
6271     }
6272     CurDAG->setNodeMemRefs(NewNode, {Mgt->getMemOperand()});
6273     ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
6274     ReplaceUses(SDValue(Node, 1), SDValue(NewNode, 2));
6275     CurDAG->RemoveDeadNode(Node);
6276     return;
6277   }
6278   case X86ISD::MSCATTER: {
6279     auto *Sc = cast<X86MaskedScatterSDNode>(Node);
6280     SDValue Value = Sc->getValue();
6281     SDValue IndexOp = Sc->getIndex();
6282     MVT IndexVT = IndexOp.getSimpleValueType();
6283     MVT ValueVT = Value.getSimpleValueType();
6284 
6285     // This is just to prevent crashes if the nodes are malformed somehow. We're
6286     // otherwise only doing loose type checking in here based on type what
6287     // a type constraint would say just like table based isel.
6288     if (!ValueVT.isVector())
6289       break;
6290 
6291     unsigned NumElts = ValueVT.getVectorNumElements();
6292     MVT ValueSVT = ValueVT.getVectorElementType();
6293 
6294     bool IsFP = ValueSVT.isFloatingPoint();
6295     unsigned EltSize = ValueSVT.getSizeInBits();
6296 
6297     unsigned Opc;
6298     if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
6299       Opc = IsFP ? X86::VSCATTERDPSZ128mr : X86::VPSCATTERDDZ128mr;
6300     else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
6301       Opc = IsFP ? X86::VSCATTERDPSZ256mr : X86::VPSCATTERDDZ256mr;
6302     else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32)
6303       Opc = IsFP ? X86::VSCATTERDPSZmr : X86::VPSCATTERDDZmr;
6304     else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
6305       Opc = IsFP ? X86::VSCATTERDPDZ128mr : X86::VPSCATTERDQZ128mr;
6306     else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
6307       Opc = IsFP ? X86::VSCATTERDPDZ256mr : X86::VPSCATTERDQZ256mr;
6308     else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64)
6309       Opc = IsFP ? X86::VSCATTERDPDZmr : X86::VPSCATTERDQZmr;
6310     else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
6311       Opc = IsFP ? X86::VSCATTERQPSZ128mr : X86::VPSCATTERQDZ128mr;
6312     else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
6313       Opc = IsFP ? X86::VSCATTERQPSZ256mr : X86::VPSCATTERQDZ256mr;
6314     else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32)
6315       Opc = IsFP ? X86::VSCATTERQPSZmr : X86::VPSCATTERQDZmr;
6316     else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
6317       Opc = IsFP ? X86::VSCATTERQPDZ128mr : X86::VPSCATTERQQZ128mr;
6318     else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
6319       Opc = IsFP ? X86::VSCATTERQPDZ256mr : X86::VPSCATTERQQZ256mr;
6320     else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64)
6321       Opc = IsFP ? X86::VSCATTERQPDZmr : X86::VPSCATTERQQZmr;
6322     else
6323       break;
6324 
6325     SDValue Base, Scale, Index, Disp, Segment;
6326     if (!selectVectorAddr(Sc, Sc->getBasePtr(), IndexOp, Sc->getScale(),
6327                           Base, Scale, Index, Disp, Segment))
6328       break;
6329 
6330     SDValue Mask = Sc->getMask();
6331     SDValue Chain = Sc->getChain();
6332     // Scatter instructions have a mask output not in the ISD node.
6333     SDVTList VTs = CurDAG->getVTList(Mask.getValueType(), MVT::Other);
6334     SDValue Ops[] = {Base, Scale, Index, Disp, Segment, Mask, Value, Chain};
6335 
6336     MachineSDNode *NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
6337     CurDAG->setNodeMemRefs(NewNode, {Sc->getMemOperand()});
6338     ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 1));
6339     CurDAG->RemoveDeadNode(Node);
6340     return;
6341   }
6342   case ISD::PREALLOCATED_SETUP: {
6343     auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>();
6344     auto CallId = MFI->getPreallocatedIdForCallSite(
6345         cast<SrcValueSDNode>(Node->getOperand(1))->getValue());
6346     SDValue Chain = Node->getOperand(0);
6347     SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32);
6348     MachineSDNode *New = CurDAG->getMachineNode(
6349         TargetOpcode::PREALLOCATED_SETUP, dl, MVT::Other, CallIdValue, Chain);
6350     ReplaceUses(SDValue(Node, 0), SDValue(New, 0)); // Chain
6351     CurDAG->RemoveDeadNode(Node);
6352     return;
6353   }
6354   case ISD::PREALLOCATED_ARG: {
6355     auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>();
6356     auto CallId = MFI->getPreallocatedIdForCallSite(
6357         cast<SrcValueSDNode>(Node->getOperand(1))->getValue());
6358     SDValue Chain = Node->getOperand(0);
6359     SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32);
6360     SDValue ArgIndex = Node->getOperand(2);
6361     SDValue Ops[3];
6362     Ops[0] = CallIdValue;
6363     Ops[1] = ArgIndex;
6364     Ops[2] = Chain;
6365     MachineSDNode *New = CurDAG->getMachineNode(
6366         TargetOpcode::PREALLOCATED_ARG, dl,
6367         CurDAG->getVTList(TLI->getPointerTy(CurDAG->getDataLayout()),
6368                           MVT::Other),
6369         Ops);
6370     ReplaceUses(SDValue(Node, 0), SDValue(New, 0)); // Arg pointer
6371     ReplaceUses(SDValue(Node, 1), SDValue(New, 1)); // Chain
6372     CurDAG->RemoveDeadNode(Node);
6373     return;
6374   }
6375   case X86ISD::AESENCWIDE128KL:
6376   case X86ISD::AESDECWIDE128KL:
6377   case X86ISD::AESENCWIDE256KL:
6378   case X86ISD::AESDECWIDE256KL: {
6379     if (!Subtarget->hasWIDEKL())
6380       break;
6381 
6382     unsigned Opcode;
6383     switch (Node->getOpcode()) {
6384     default:
6385       llvm_unreachable("Unexpected opcode!");
6386     case X86ISD::AESENCWIDE128KL:
6387       Opcode = X86::AESENCWIDE128KL;
6388       break;
6389     case X86ISD::AESDECWIDE128KL:
6390       Opcode = X86::AESDECWIDE128KL;
6391       break;
6392     case X86ISD::AESENCWIDE256KL:
6393       Opcode = X86::AESENCWIDE256KL;
6394       break;
6395     case X86ISD::AESDECWIDE256KL:
6396       Opcode = X86::AESDECWIDE256KL;
6397       break;
6398     }
6399 
6400     SDValue Chain = Node->getOperand(0);
6401     SDValue Addr = Node->getOperand(1);
6402 
6403     SDValue Base, Scale, Index, Disp, Segment;
6404     if (!selectAddr(Node, Addr, Base, Scale, Index, Disp, Segment))
6405       break;
6406 
6407     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM0, Node->getOperand(2),
6408                                  SDValue());
6409     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM1, Node->getOperand(3),
6410                                  Chain.getValue(1));
6411     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM2, Node->getOperand(4),
6412                                  Chain.getValue(1));
6413     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM3, Node->getOperand(5),
6414                                  Chain.getValue(1));
6415     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM4, Node->getOperand(6),
6416                                  Chain.getValue(1));
6417     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM5, Node->getOperand(7),
6418                                  Chain.getValue(1));
6419     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM6, Node->getOperand(8),
6420                                  Chain.getValue(1));
6421     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM7, Node->getOperand(9),
6422                                  Chain.getValue(1));
6423 
6424     MachineSDNode *Res = CurDAG->getMachineNode(
6425         Opcode, dl, Node->getVTList(),
6426         {Base, Scale, Index, Disp, Segment, Chain, Chain.getValue(1)});
6427     CurDAG->setNodeMemRefs(Res, cast<MemSDNode>(Node)->getMemOperand());
6428     ReplaceNode(Node, Res);
6429     return;
6430   }
6431   }
6432 
6433   SelectCode(Node);
6434 }
6435 
6436 bool X86DAGToDAGISel::SelectInlineAsmMemoryOperand(
6437     const SDValue &Op, InlineAsm::ConstraintCode ConstraintID,
6438     std::vector<SDValue> &OutOps) {
6439   SDValue Op0, Op1, Op2, Op3, Op4;
6440   switch (ConstraintID) {
6441   default:
6442     llvm_unreachable("Unexpected asm memory constraint");
6443   case InlineAsm::ConstraintCode::o: // offsetable        ??
6444   case InlineAsm::ConstraintCode::v: // not offsetable    ??
6445   case InlineAsm::ConstraintCode::m: // memory
6446   case InlineAsm::ConstraintCode::X:
6447   case InlineAsm::ConstraintCode::p: // address
6448     if (!selectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4))
6449       return true;
6450     break;
6451   }
6452 
6453   OutOps.push_back(Op0);
6454   OutOps.push_back(Op1);
6455   OutOps.push_back(Op2);
6456   OutOps.push_back(Op3);
6457   OutOps.push_back(Op4);
6458   return false;
6459 }
6460 
6461 /// This pass converts a legalized DAG into a X86-specific DAG,
6462 /// ready for instruction scheduling.
6463 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
6464                                      CodeGenOptLevel OptLevel) {
6465   return new X86DAGToDAGISel(TM, OptLevel);
6466 }
6467