1//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the various pseudo instructions used by the compiler,
10// as well as Pat patterns used during instruction selection.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Pattern Matching Support
16
17def GetLo32XForm : SDNodeXForm<imm, [{
18  // Transformation function: get the low 32 bits.
19  return getI32Imm((uint32_t)N->getZExtValue(), SDLoc(N));
20}]>;
21
22
23//===----------------------------------------------------------------------===//
24// Random Pseudo Instructions.
25
26// PIC base construction.  This expands to code that looks like this:
27//     call  $next_inst
28//     popl %destreg"
29let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP, SSP],
30    SchedRW = [WriteJump] in
31  def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
32                      "", []>;
33
34// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
35// a stack adjustment and the codegen must know that they may modify the stack
36// pointer before prolog-epilog rewriting occurs.
37// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
38// sub / add which can clobber EFLAGS.
39let Defs = [ESP, EFLAGS, SSP], Uses = [ESP, SSP], SchedRW = [WriteALU] in {
40def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs),
41                           (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3),
42                           "#ADJCALLSTACKDOWN", []>, Requires<[NotLP64]>;
43def ADJCALLSTACKUP32   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
44                           "#ADJCALLSTACKUP",
45                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
46                           Requires<[NotLP64]>;
47}
48def : Pat<(X86callseq_start timm:$amt1, timm:$amt2),
49       (ADJCALLSTACKDOWN32 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[NotLP64]>;
50
51
52// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
53// a stack adjustment and the codegen must know that they may modify the stack
54// pointer before prolog-epilog rewriting occurs.
55// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
56// sub / add which can clobber EFLAGS.
57let Defs = [RSP, EFLAGS, SSP], Uses = [RSP, SSP], SchedRW = [WriteALU] in {
58def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs),
59                           (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3),
60                           "#ADJCALLSTACKDOWN", []>, Requires<[IsLP64]>;
61def ADJCALLSTACKUP64   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
62                           "#ADJCALLSTACKUP",
63                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
64                           Requires<[IsLP64]>;
65}
66def : Pat<(X86callseq_start timm:$amt1, timm:$amt2),
67        (ADJCALLSTACKDOWN64 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[IsLP64]>;
68
69let SchedRW = [WriteSystem] in {
70
71// x86-64 va_start lowering magic.
72let hasSideEffects = 1, mayStore = 1, Defs = [EFLAGS] in {
73def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
74                              (outs),
75                              (ins GR8:$al, i8mem:$regsavefi, variable_ops),
76                              "#VASTART_SAVE_XMM_REGS $al, $regsavefi",
77                              [(X86vastart_save_xmm_regs GR8:$al, addr:$regsavefi),
78                               (implicit EFLAGS)]>;
79}
80
81let usesCustomInserter = 1, Defs = [EFLAGS] in {
82// The VAARG_64 and VAARG_X32 pseudo-instructions take the address of the
83// va_list, and place the address of the next argument into a register.
84let Defs = [EFLAGS] in {
85def VAARG_64 : I<0, Pseudo,
86                 (outs GR64:$dst),
87                 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
88                 "#VAARG_64 $dst, $ap, $size, $mode, $align",
89                 [(set GR64:$dst,
90                    (X86vaarg64 addr:$ap, timm:$size, timm:$mode, timm:$align)),
91                  (implicit EFLAGS)]>, Requires<[In64BitMode, IsLP64]>;
92def VAARG_X32 : I<0, Pseudo,
93                 (outs GR32:$dst),
94                 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
95                 "#VAARG_X32 $dst, $ap, $size, $mode, $align",
96                 [(set GR32:$dst,
97                    (X86vaargx32 addr:$ap, timm:$size, timm:$mode, timm:$align)),
98                  (implicit EFLAGS)]>, Requires<[In64BitMode, NotLP64]>;
99}
100
101// When using segmented stacks these are lowered into instructions which first
102// check if the current stacklet has enough free memory. If it does, memory is
103// allocated by bumping the stack pointer. Otherwise memory is allocated from
104// the heap.
105
106let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
107def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
108                      "# variable sized alloca for segmented stacks",
109                      [(set GR32:$dst,
110                         (X86SegAlloca GR32:$size))]>,
111                    Requires<[NotLP64]>;
112
113let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
114def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
115                      "# variable sized alloca for segmented stacks",
116                      [(set GR64:$dst,
117                         (X86SegAlloca GR64:$size))]>,
118                    Requires<[In64BitMode]>;
119
120// To protect against stack clash, dynamic allocation should perform a memory
121// probe at each page.
122
123let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
124def PROBED_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
125                      "# variable sized alloca with probing",
126                      [(set GR32:$dst,
127                         (X86ProbedAlloca GR32:$size))]>,
128                    Requires<[NotLP64]>;
129
130let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
131def PROBED_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
132                      "# variable sized alloca with probing",
133                      [(set GR64:$dst,
134                         (X86ProbedAlloca GR64:$size))]>,
135                    Requires<[In64BitMode]>;
136}
137
138let hasNoSchedulingInfo = 1 in
139def STACKALLOC_W_PROBING : I<0, Pseudo, (outs), (ins i64imm:$stacksize),
140                             "# fixed size alloca with probing",
141                             []>;
142
143// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
144// targets.  These calls are needed to probe the stack when allocating more than
145// 4k bytes in one go. Touching the stack at 4K increments is necessary to
146// ensure that the guard pages used by the OS virtual memory manager are
147// allocated in correct sequence.
148// The main point of having separate instruction are extra unmodelled effects
149// (compared to ordinary calls) like stack pointer change.
150
151let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
152def DYN_ALLOCA_32 : I<0, Pseudo, (outs), (ins GR32:$size),
153                     "# dynamic stack allocation",
154                     [(X86DynAlloca GR32:$size)]>,
155                     Requires<[NotLP64]>;
156
157let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
158def DYN_ALLOCA_64 : I<0, Pseudo, (outs), (ins GR64:$size),
159                     "# dynamic stack allocation",
160                     [(X86DynAlloca GR64:$size)]>,
161                     Requires<[In64BitMode]>;
162} // SchedRW
163
164// These instructions XOR the frame pointer into a GPR. They are used in some
165// stack protection schemes. These are post-RA pseudos because we only know the
166// frame register after register allocation.
167let Constraints = "$src = $dst", isMoveImm = 1, isPseudo = 1, Defs = [EFLAGS] in {
168  def XOR32_FP : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src),
169                  "xorl\t$$FP, $src", []>,
170                  Requires<[NotLP64]>, Sched<[WriteALU]>;
171  def XOR64_FP : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src),
172                  "xorq\t$$FP $src", []>,
173                  Requires<[In64BitMode]>, Sched<[WriteALU]>;
174}
175
176//===----------------------------------------------------------------------===//
177// EH Pseudo Instructions
178//
179let SchedRW = [WriteSystem] in {
180let isTerminator = 1, isReturn = 1, isBarrier = 1,
181    hasCtrlDep = 1, isCodeGenOnly = 1 in {
182def EH_RETURN   : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
183                    "ret\t#eh_return, addr: $addr",
184                    [(X86ehret GR32:$addr)]>, Sched<[WriteJumpLd]>;
185
186}
187
188let isTerminator = 1, isReturn = 1, isBarrier = 1,
189    hasCtrlDep = 1, isCodeGenOnly = 1 in {
190def EH_RETURN64   : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
191                     "ret\t#eh_return, addr: $addr",
192                     [(X86ehret GR64:$addr)]>, Sched<[WriteJumpLd]>;
193
194}
195
196let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1,
197    isCodeGenOnly = 1, isReturn = 1, isEHScopeReturn = 1 in {
198  def CLEANUPRET : I<0, Pseudo, (outs), (ins), "# CLEANUPRET", [(cleanupret)]>;
199
200  // CATCHRET needs a custom inserter for SEH.
201  let usesCustomInserter = 1 in
202    def CATCHRET : I<0, Pseudo, (outs), (ins brtarget32:$dst, brtarget32:$from),
203                     "# CATCHRET",
204                     [(catchret bb:$dst, bb:$from)]>;
205}
206
207let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
208    usesCustomInserter = 1 in {
209  def EH_SjLj_SetJmp32  : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
210                            "#EH_SJLJ_SETJMP32",
211                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
212                          Requires<[Not64BitMode]>;
213  def EH_SjLj_SetJmp64  : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
214                            "#EH_SJLJ_SETJMP64",
215                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
216                          Requires<[In64BitMode]>;
217  let isTerminator = 1 in {
218  def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
219                            "#EH_SJLJ_LONGJMP32",
220                            [(X86eh_sjlj_longjmp addr:$buf)]>,
221                          Requires<[Not64BitMode]>;
222  def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
223                            "#EH_SJLJ_LONGJMP64",
224                            [(X86eh_sjlj_longjmp addr:$buf)]>,
225                          Requires<[In64BitMode]>;
226  }
227}
228
229let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
230  def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
231                        "#EH_SjLj_Setup\t$dst", []>;
232}
233} // SchedRW
234
235//===----------------------------------------------------------------------===//
236// Pseudo instructions used by unwind info.
237//
238let isPseudo = 1, SchedRW = [WriteSystem] in {
239  def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
240                            "#SEH_PushReg $reg", []>;
241  def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
242                            "#SEH_SaveReg $reg, $dst", []>;
243  def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
244                            "#SEH_SaveXMM $reg, $dst", []>;
245  def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
246                            "#SEH_StackAlloc $size", []>;
247  def SEH_StackAlign : I<0, Pseudo, (outs), (ins i32imm:$align),
248                            "#SEH_StackAlign $align", []>;
249  def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
250                            "#SEH_SetFrame $reg, $offset", []>;
251  def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
252                            "#SEH_PushFrame $mode", []>;
253  def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
254                            "#SEH_EndPrologue", []>;
255  def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
256                            "#SEH_Epilogue", []>;
257}
258
259//===----------------------------------------------------------------------===//
260// Pseudo instructions used by address sanitizer.
261//===----------------------------------------------------------------------===//
262let
263  Defs = [R10, R11, EFLAGS] in {
264def ASAN_CHECK_MEMACCESS : PseudoI<
265  (outs), (ins GR64PLTSafe:$addr, i32imm:$accessinfo),
266  [(int_asan_check_memaccess GR64PLTSafe:$addr, (i32 timm:$accessinfo))]>,
267  Sched<[]>;
268}
269
270//===----------------------------------------------------------------------===//
271// Pseudo instructions used by segmented stacks.
272//
273
274// This is lowered into a RET instruction by MCInstLower.  We need
275// this so that we don't have to have a MachineBasicBlock which ends
276// with a RET and also has successors.
277let isPseudo = 1, SchedRW = [WriteJumpLd] in {
278def MORESTACK_RET: I<0, Pseudo, (outs), (ins), "", []>;
279
280// This instruction is lowered to a RET followed by a MOV.  The two
281// instructions are not generated on a higher level since then the
282// verifier sees a MachineBasicBlock ending with a non-terminator.
283def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins), "", []>;
284}
285
286//===----------------------------------------------------------------------===//
287// Alias Instructions
288//===----------------------------------------------------------------------===//
289
290// Alias instruction mapping movr0 to xor.
291// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
292let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
293    isPseudo = 1, isMoveImm = 1, AddedComplexity = 10 in
294def MOV32r0  : I<0, Pseudo, (outs GR32:$dst), (ins), "",
295                 [(set GR32:$dst, 0)]>, Sched<[WriteZero]>;
296
297// Other widths can also make use of the 32-bit xor, which may have a smaller
298// encoding and avoid partial register updates.
299let AddedComplexity = 10 in {
300def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
301def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
302def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)>;
303}
304
305let Predicates = [OptForSize, Not64BitMode],
306    AddedComplexity = 10 in {
307  let SchedRW = [WriteALU] in {
308  // Pseudo instructions for materializing 1 and -1 using XOR+INC/DEC,
309  // which only require 3 bytes compared to MOV32ri which requires 5.
310  let Defs = [EFLAGS], isReMaterializable = 1, isPseudo = 1 in {
311    def MOV32r1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
312                        [(set GR32:$dst, 1)]>;
313    def MOV32r_1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
314                        [(set GR32:$dst, -1)]>;
315  }
316  } // SchedRW
317
318  // MOV16ri is 4 bytes, so the instructions above are smaller.
319  def : Pat<(i16 1), (EXTRACT_SUBREG (MOV32r1), sub_16bit)>;
320  def : Pat<(i16 -1), (EXTRACT_SUBREG (MOV32r_1), sub_16bit)>;
321}
322
323let isReMaterializable = 1, isPseudo = 1, AddedComplexity = 5,
324    SchedRW = [WriteALU] in {
325// AddedComplexity higher than MOV64ri but lower than MOV32r0 and MOV32r1.
326def MOV32ImmSExti8 : I<0, Pseudo, (outs GR32:$dst), (ins i32i8imm:$src), "",
327                       [(set GR32:$dst, i32immSExt8:$src)]>,
328                       Requires<[OptForMinSize, NotWin64WithoutFP]>;
329def MOV64ImmSExti8 : I<0, Pseudo, (outs GR64:$dst), (ins i64i8imm:$src), "",
330                       [(set GR64:$dst, i64immSExt8:$src)]>,
331                       Requires<[OptForMinSize, NotWin64WithoutFP]>;
332}
333
334// Materialize i64 constant where top 32-bits are zero. This could theoretically
335// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
336// that would make it more difficult to rematerialize.
337let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
338    isPseudo = 1, SchedRW = [WriteMove] in
339def MOV32ri64 : I<0, Pseudo, (outs GR64:$dst), (ins i64i32imm:$src), "",
340                  [(set GR64:$dst, i64immZExt32:$src)]>;
341
342// This 64-bit pseudo-move can also be used for labels in the x86-64 small code
343// model.
344def mov64imm32 : ComplexPattern<i64, 1, "selectMOV64Imm32", [X86Wrapper]>;
345def : Pat<(i64 mov64imm32:$src), (MOV32ri64 mov64imm32:$src)>;
346
347// Use sbb to materialize carry bit.
348let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteADC],
349    hasSideEffects = 0 in {
350// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
351// However, Pat<> can't replicate the destination reg into the inputs of the
352// result.
353def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "", []>;
354def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "", []>;
355} // isCodeGenOnly
356
357//===----------------------------------------------------------------------===//
358// String Pseudo Instructions
359//
360let SchedRW = [WriteMicrocoded] in {
361let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
362def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins),
363                    "{rep;movsb (%esi), %es:(%edi)|rep movsb es:[edi], [esi]}",
364                    [(X86rep_movs i8)]>, REP, AdSize32,
365                   Requires<[NotLP64]>;
366def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins),
367                    "{rep;movsw (%esi), %es:(%edi)|rep movsw es:[edi], [esi]}",
368                    [(X86rep_movs i16)]>, REP, AdSize32, OpSize16,
369                   Requires<[NotLP64]>;
370def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins),
371                    "{rep;movsl (%esi), %es:(%edi)|rep movsd es:[edi], [esi]}",
372                    [(X86rep_movs i32)]>, REP, AdSize32, OpSize32,
373                   Requires<[NotLP64]>;
374def REP_MOVSQ_32 : RI<0xA5, RawFrm, (outs), (ins),
375                    "{rep;movsq (%esi), %es:(%edi)|rep movsq es:[edi], [esi]}",
376                    [(X86rep_movs i64)]>, REP, AdSize32,
377                   Requires<[NotLP64, In64BitMode]>;
378}
379
380let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
381def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins),
382                    "{rep;movsb (%rsi), %es:(%rdi)|rep movsb es:[rdi], [rsi]}",
383                    [(X86rep_movs i8)]>, REP, AdSize64,
384                   Requires<[IsLP64]>;
385def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins),
386                    "{rep;movsw (%rsi), %es:(%rdi)|rep movsw es:[rdi], [rsi]}",
387                    [(X86rep_movs i16)]>, REP, AdSize64, OpSize16,
388                   Requires<[IsLP64]>;
389def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins),
390                    "{rep;movsl (%rsi), %es:(%rdi)|rep movsdi es:[rdi], [rsi]}",
391                    [(X86rep_movs i32)]>, REP, AdSize64, OpSize32,
392                   Requires<[IsLP64]>;
393def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins),
394                    "{rep;movsq (%rsi), %es:(%rdi)|rep movsq es:[rdi], [rsi]}",
395                    [(X86rep_movs i64)]>, REP, AdSize64,
396                   Requires<[IsLP64]>;
397}
398
399// FIXME: Should use "(X86rep_stos AL)" as the pattern.
400let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
401  let Uses = [AL,ECX,EDI] in
402  def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins),
403                       "{rep;stosb %al, %es:(%edi)|rep stosb es:[edi], al}",
404                      [(X86rep_stos i8)]>, REP, AdSize32,
405                     Requires<[NotLP64]>;
406  let Uses = [AX,ECX,EDI] in
407  def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins),
408                      "{rep;stosw %ax, %es:(%edi)|rep stosw es:[edi], ax}",
409                      [(X86rep_stos i16)]>, REP, AdSize32, OpSize16,
410                     Requires<[NotLP64]>;
411  let Uses = [EAX,ECX,EDI] in
412  def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins),
413                      "{rep;stosl %eax, %es:(%edi)|rep stosd es:[edi], eax}",
414                      [(X86rep_stos i32)]>, REP, AdSize32, OpSize32,
415                     Requires<[NotLP64]>;
416  let Uses = [RAX,RCX,RDI] in
417  def REP_STOSQ_32 : RI<0xAB, RawFrm, (outs), (ins),
418                        "{rep;stosq %rax, %es:(%edi)|rep stosq es:[edi], rax}",
419                        [(X86rep_stos i64)]>, REP, AdSize32,
420                        Requires<[NotLP64, In64BitMode]>;
421}
422
423let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
424  let Uses = [AL,RCX,RDI] in
425  def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins),
426                       "{rep;stosb %al, %es:(%rdi)|rep stosb es:[rdi], al}",
427                       [(X86rep_stos i8)]>, REP, AdSize64,
428                       Requires<[IsLP64]>;
429  let Uses = [AX,RCX,RDI] in
430  def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins),
431                       "{rep;stosw %ax, %es:(%rdi)|rep stosw es:[rdi], ax}",
432                       [(X86rep_stos i16)]>, REP, AdSize64, OpSize16,
433                       Requires<[IsLP64]>;
434  let Uses = [RAX,RCX,RDI] in
435  def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins),
436                      "{rep;stosl %eax, %es:(%rdi)|rep stosd es:[rdi], eax}",
437                       [(X86rep_stos i32)]>, REP, AdSize64, OpSize32,
438                       Requires<[IsLP64]>;
439
440  let Uses = [RAX,RCX,RDI] in
441  def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins),
442                        "{rep;stosq %rax, %es:(%rdi)|rep stosq es:[rdi], rax}",
443                        [(X86rep_stos i64)]>, REP, AdSize64,
444                        Requires<[IsLP64]>;
445}
446} // SchedRW
447
448//===----------------------------------------------------------------------===//
449// Thread Local Storage Instructions
450//
451let SchedRW = [WriteSystem] in {
452
453// ELF TLS Support
454// All calls clobber the non-callee saved registers. ESP is marked as
455// a use to prevent stack-pointer assignments that appear immediately
456// before calls from potentially appearing dead.
457let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
458            ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
459            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
460            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
461            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF],
462    usesCustomInserter = 1, Uses = [ESP, SSP] in {
463def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
464                  "# TLS_addr32",
465                  [(X86tlsaddr tls32addr:$sym)]>,
466                  Requires<[Not64BitMode]>;
467def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
468                  "# TLS_base_addr32",
469                  [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
470                  Requires<[Not64BitMode]>;
471}
472
473// All calls clobber the non-callee saved registers. RSP is marked as
474// a use to prevent stack-pointer assignments that appear immediately
475// before calls from potentially appearing dead.
476let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
477            FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
478            ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
479            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
480            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
481            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF],
482    usesCustomInserter = 1, Uses = [RSP, SSP] in {
483def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
484                   "# TLS_addr64",
485                  [(X86tlsaddr tls64addr:$sym)]>,
486                  Requires<[In64BitMode, IsLP64]>;
487def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
488                   "# TLS_base_addr64",
489                  [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
490                  Requires<[In64BitMode, IsLP64]>;
491def TLS_addrX32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
492                   "# TLS_addrX32",
493                  [(X86tlsaddr tls32addr:$sym)]>,
494                  Requires<[In64BitMode, NotLP64]>;
495def TLS_base_addrX32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
496                   "# TLS_base_addrX32",
497                  [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
498                  Requires<[In64BitMode, NotLP64]>;
499}
500
501// Darwin TLS Support
502// For i386, the address of the thunk is passed on the stack, on return the
503// address of the variable is in %eax.  %ecx is trashed during the function
504// call.  All other registers are preserved.
505let Defs = [EAX, ECX, EFLAGS, DF],
506    Uses = [ESP, SSP],
507    usesCustomInserter = 1 in
508def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
509                "# TLSCall_32",
510                [(X86TLSCall addr:$sym)]>,
511                Requires<[Not64BitMode]>;
512
513// For x86_64, the address of the thunk is passed in %rdi, but the
514// pseudo directly use the symbol, so do not add an implicit use of
515// %rdi. The lowering will do the right thing with RDI.
516// On return the address of the variable is in %rax.  All other
517// registers are preserved.
518let Defs = [RAX, EFLAGS, DF],
519    Uses = [RSP, SSP],
520    usesCustomInserter = 1 in
521def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
522                  "# TLSCall_64",
523                  [(X86TLSCall addr:$sym)]>,
524                  Requires<[In64BitMode]>;
525} // SchedRW
526
527//===----------------------------------------------------------------------===//
528// Conditional Move Pseudo Instructions
529
530// CMOV* - Used to implement the SELECT DAG operation.  Expanded after
531// instruction selection into a branch sequence.
532multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> {
533  def CMOV#NAME  : I<0, Pseudo,
534                    (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond),
535                    "#CMOV_"#NAME#" PSEUDO!",
536                    [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, timm:$cond,
537                                                EFLAGS)))]>;
538}
539
540let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS] in {
541  // X86 doesn't have 8-bit conditional moves. Use a customInserter to
542  // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
543  // however that requires promoting the operands, and can induce additional
544  // i8 register pressure.
545  defm _GR8 : CMOVrr_PSEUDO<GR8, i8>;
546
547  let Predicates = [NoCMOV] in {
548    defm _GR32 : CMOVrr_PSEUDO<GR32, i32>;
549    defm _GR16 : CMOVrr_PSEUDO<GR16, i16>;
550  } // Predicates = [NoCMOV]
551
552  // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
553  // SSE1/SSE2.
554  let Predicates = [FPStackf32] in
555    defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>;
556
557  let Predicates = [FPStackf64] in
558    defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>;
559
560  defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>;
561
562  let Predicates = [HasMMX] in
563    defm _VR64   : CMOVrr_PSEUDO<VR64, x86mmx>;
564
565  let Predicates = [HasSSE1,NoAVX512] in
566    defm _FR32   : CMOVrr_PSEUDO<FR32, f32>;
567  let Predicates = [HasSSE2,NoAVX512] in {
568    defm _FR16   : CMOVrr_PSEUDO<FR16, f16>;
569    defm _FR64   : CMOVrr_PSEUDO<FR64, f64>;
570  }
571  let Predicates = [HasAVX512] in {
572    defm _FR16X  : CMOVrr_PSEUDO<FR16X, f16>;
573    defm _FR32X  : CMOVrr_PSEUDO<FR32X, f32>;
574    defm _FR64X  : CMOVrr_PSEUDO<FR64X, f64>;
575  }
576  let Predicates = [NoVLX] in {
577    defm _VR128  : CMOVrr_PSEUDO<VR128, v2i64>;
578    defm _VR256  : CMOVrr_PSEUDO<VR256, v4i64>;
579  }
580  let Predicates = [HasVLX] in {
581    defm _VR128X : CMOVrr_PSEUDO<VR128X, v2i64>;
582    defm _VR256X : CMOVrr_PSEUDO<VR256X, v4i64>;
583  }
584  defm _VR512  : CMOVrr_PSEUDO<VR512, v8i64>;
585  defm _VK1    : CMOVrr_PSEUDO<VK1,  v1i1>;
586  defm _VK2    : CMOVrr_PSEUDO<VK2,  v2i1>;
587  defm _VK4    : CMOVrr_PSEUDO<VK4,  v4i1>;
588  defm _VK8    : CMOVrr_PSEUDO<VK8,  v8i1>;
589  defm _VK16   : CMOVrr_PSEUDO<VK16, v16i1>;
590  defm _VK32   : CMOVrr_PSEUDO<VK32, v32i1>;
591  defm _VK64   : CMOVrr_PSEUDO<VK64, v64i1>;
592} // usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS]
593
594def : Pat<(f128 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
595          (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
596
597let Predicates = [NoVLX] in {
598  def : Pat<(v16i8 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
599            (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
600  def : Pat<(v8i16 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
601            (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
602  def : Pat<(v4i32 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
603            (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
604  def : Pat<(v4f32 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
605            (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
606  def : Pat<(v2f64 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
607            (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
608
609  def : Pat<(v32i8 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
610            (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
611  def : Pat<(v16i16 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
612            (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
613  def : Pat<(v8i32 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
614            (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
615  def : Pat<(v8f32 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
616            (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
617  def : Pat<(v4f64 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
618            (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
619}
620let Predicates = [HasVLX] in {
621  def : Pat<(v16i8 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
622            (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
623  def : Pat<(v8i16 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
624            (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
625  def : Pat<(v8f16 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
626            (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
627  def : Pat<(v4i32 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
628            (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
629  def : Pat<(v4f32 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
630            (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
631  def : Pat<(v2f64 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
632            (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
633
634  def : Pat<(v32i8 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
635            (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
636  def : Pat<(v16i16 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
637            (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
638  def : Pat<(v16f16 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
639            (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
640  def : Pat<(v8i32 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
641            (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
642  def : Pat<(v8f32 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
643            (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
644  def : Pat<(v4f64 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
645            (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
646}
647
648def : Pat<(v64i8 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
649          (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
650def : Pat<(v32i16 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
651          (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
652def : Pat<(v32f16 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
653          (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
654def : Pat<(v16i32 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
655          (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
656def : Pat<(v16f32 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
657          (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
658def : Pat<(v8f64 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
659          (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
660
661//===----------------------------------------------------------------------===//
662// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
663//===----------------------------------------------------------------------===//
664
665// FIXME: Use normal instructions and add lock prefix dynamically.
666
667// Memory barriers
668
669let isCodeGenOnly = 1, Defs = [EFLAGS] in
670def OR32mi8Locked  : Ii8<0x83, MRM1m, (outs), (ins i32mem:$dst, i32i8imm:$zero),
671                         "or{l}\t{$zero, $dst|$dst, $zero}", []>,
672                         Requires<[Not64BitMode]>, OpSize32, LOCK,
673                         Sched<[WriteALURMW]>;
674
675let hasSideEffects = 1, isMeta = 1 in
676def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
677                     "#MEMBARRIER",
678                     [(X86MemBarrier)]>, Sched<[WriteLoad]>;
679
680// RegOpc corresponds to the mr version of the instruction
681// ImmOpc corresponds to the mi version of the instruction
682// ImmOpc8 corresponds to the mi8 version of the instruction
683// ImmMod corresponds to the instruction format of the mi and mi8 versions
684multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
685                           Format ImmMod, SDNode Op, string mnemonic> {
686let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
687    SchedRW = [WriteALURMW] in {
688
689def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
690                  RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
691                  MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
692                  !strconcat(mnemonic, "{b}\t",
693                             "{$src2, $dst|$dst, $src2}"),
694                  [(set EFLAGS, (Op addr:$dst, GR8:$src2))]>, LOCK;
695
696def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
697                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
698                   MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
699                   !strconcat(mnemonic, "{w}\t",
700                              "{$src2, $dst|$dst, $src2}"),
701                   [(set EFLAGS, (Op addr:$dst, GR16:$src2))]>,
702                   OpSize16, LOCK;
703
704def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
705                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
706                   MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
707                   !strconcat(mnemonic, "{l}\t",
708                              "{$src2, $dst|$dst, $src2}"),
709                   [(set EFLAGS, (Op addr:$dst, GR32:$src2))]>,
710                   OpSize32, LOCK;
711
712def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
713                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
714                    MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
715                    !strconcat(mnemonic, "{q}\t",
716                               "{$src2, $dst|$dst, $src2}"),
717                    [(set EFLAGS, (Op addr:$dst, GR64:$src2))]>, LOCK;
718
719// NOTE: These are order specific, we want the mi8 forms to be listed
720// first so that they are slightly preferred to the mi forms.
721def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
722                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
723                      ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
724                      !strconcat(mnemonic, "{w}\t",
725                                 "{$src2, $dst|$dst, $src2}"),
726                      [(set EFLAGS, (Op addr:$dst, i16immSExt8:$src2))]>,
727                      OpSize16, LOCK;
728
729def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
730                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
731                      ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
732                      !strconcat(mnemonic, "{l}\t",
733                                 "{$src2, $dst|$dst, $src2}"),
734                      [(set EFLAGS, (Op addr:$dst, i32immSExt8:$src2))]>,
735                      OpSize32, LOCK;
736
737def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
738                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
739                       ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
740                       !strconcat(mnemonic, "{q}\t",
741                                  "{$src2, $dst|$dst, $src2}"),
742                       [(set EFLAGS, (Op addr:$dst, i64immSExt8:$src2))]>,
743                       LOCK;
744
745def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
746                    ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
747                    ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
748                    !strconcat(mnemonic, "{b}\t",
749                               "{$src2, $dst|$dst, $src2}"),
750                    [(set EFLAGS, (Op addr:$dst, (i8 imm:$src2)))]>, LOCK;
751
752def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
753                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
754                      ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
755                      !strconcat(mnemonic, "{w}\t",
756                                 "{$src2, $dst|$dst, $src2}"),
757                      [(set EFLAGS, (Op addr:$dst, (i16 imm:$src2)))]>,
758                      OpSize16, LOCK;
759
760def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
761                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
762                      ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
763                      !strconcat(mnemonic, "{l}\t",
764                                 "{$src2, $dst|$dst, $src2}"),
765                      [(set EFLAGS, (Op addr:$dst, (i32 imm:$src2)))]>,
766                      OpSize32, LOCK;
767
768def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
769                          ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
770                          ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
771                          !strconcat(mnemonic, "{q}\t",
772                                     "{$src2, $dst|$dst, $src2}"),
773                          [(set EFLAGS, (Op addr:$dst, i64immSExt32:$src2))]>,
774                          LOCK;
775}
776
777}
778
779defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, X86lock_add, "add">;
780defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, X86lock_sub, "sub">;
781defm LOCK_OR  : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, X86lock_or , "or">;
782defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, X86lock_and, "and">;
783defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, X86lock_xor, "xor">;
784
785def X86lock_add_nocf : PatFrag<(ops node:$lhs, node:$rhs),
786                               (X86lock_add node:$lhs, node:$rhs), [{
787  return hasNoCarryFlagUses(SDValue(N, 0));
788}]>;
789
790def X86lock_sub_nocf : PatFrag<(ops node:$lhs, node:$rhs),
791                               (X86lock_sub node:$lhs, node:$rhs), [{
792  return hasNoCarryFlagUses(SDValue(N, 0));
793}]>;
794
795let Predicates = [UseIncDec] in {
796  let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
797      SchedRW = [WriteALURMW]  in {
798    def LOCK_INC8m  : I<0xFE, MRM0m, (outs), (ins i8mem :$dst),
799                        "inc{b}\t$dst",
800                        [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i8 1)))]>,
801                        LOCK;
802    def LOCK_INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst),
803                        "inc{w}\t$dst",
804                        [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i16 1)))]>,
805                        OpSize16, LOCK;
806    def LOCK_INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst),
807                        "inc{l}\t$dst",
808                        [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i32 1)))]>,
809                        OpSize32, LOCK;
810    def LOCK_INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst),
811                         "inc{q}\t$dst",
812                         [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i64 1)))]>,
813                         LOCK;
814
815    def LOCK_DEC8m  : I<0xFE, MRM1m, (outs), (ins i8mem :$dst),
816                        "dec{b}\t$dst",
817                        [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i8 1)))]>,
818                        LOCK;
819    def LOCK_DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst),
820                        "dec{w}\t$dst",
821                        [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i16 1)))]>,
822                        OpSize16, LOCK;
823    def LOCK_DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst),
824                        "dec{l}\t$dst",
825                        [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i32 1)))]>,
826                        OpSize32, LOCK;
827    def LOCK_DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst),
828                         "dec{q}\t$dst",
829                         [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i64 1)))]>,
830                         LOCK;
831  }
832
833  // Additional patterns for -1 constant.
834  def : Pat<(X86lock_add addr:$dst, (i8  -1)), (LOCK_DEC8m  addr:$dst)>;
835  def : Pat<(X86lock_add addr:$dst, (i16 -1)), (LOCK_DEC16m addr:$dst)>;
836  def : Pat<(X86lock_add addr:$dst, (i32 -1)), (LOCK_DEC32m addr:$dst)>;
837  def : Pat<(X86lock_add addr:$dst, (i64 -1)), (LOCK_DEC64m addr:$dst)>;
838  def : Pat<(X86lock_sub addr:$dst, (i8  -1)), (LOCK_INC8m  addr:$dst)>;
839  def : Pat<(X86lock_sub addr:$dst, (i16 -1)), (LOCK_INC16m addr:$dst)>;
840  def : Pat<(X86lock_sub addr:$dst, (i32 -1)), (LOCK_INC32m addr:$dst)>;
841  def : Pat<(X86lock_sub addr:$dst, (i64 -1)), (LOCK_INC64m addr:$dst)>;
842}
843
844// Atomic bit test.
845def X86LBTest : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisPtrTy<1>,
846                                     SDTCisVT<2, i8>, SDTCisVT<3, i32>]>;
847def x86bts : SDNode<"X86ISD::LBTS", X86LBTest,
848                    [SDNPHasChain, SDNPMayLoad, SDNPMayStore, SDNPMemOperand]>;
849def x86btc : SDNode<"X86ISD::LBTC", X86LBTest,
850                    [SDNPHasChain, SDNPMayLoad, SDNPMayStore, SDNPMemOperand]>;
851def x86btr : SDNode<"X86ISD::LBTR", X86LBTest,
852                    [SDNPHasChain, SDNPMayLoad, SDNPMayStore, SDNPMemOperand]>;
853
854multiclass ATOMIC_LOGIC_OP<Format Form, string s> {
855  let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
856      SchedRW = [WriteBitTestSetRegRMW]  in {
857    def 16m : Ii8<0xBA, Form, (outs), (ins i16mem:$src1, i8imm:$src2),
858                  !strconcat(s, "{w}\t{$src2, $src1|$src1, $src2}"),
859                  [(set EFLAGS, (!cast<SDNode>("x86" # s) addr:$src1, timm:$src2, (i32 16)))]>,
860              OpSize16, TB, LOCK;
861    def 32m : Ii8<0xBA, Form, (outs), (ins i32mem:$src1, i8imm:$src2),
862                  !strconcat(s, "{l}\t{$src2, $src1|$src1, $src2}"),
863                  [(set EFLAGS, (!cast<SDNode>("x86" # s) addr:$src1, timm:$src2, (i32 32)))]>,
864              OpSize32, TB, LOCK;
865    def 64m : RIi8<0xBA, Form, (outs), (ins i64mem:$src1, i8imm:$src2),
866                   !strconcat(s, "{q}\t{$src2, $src1|$src1, $src2}"),
867                   [(set EFLAGS, (!cast<SDNode>("x86" # s) addr:$src1, timm:$src2, (i32 64)))]>,
868              TB, LOCK;
869  }
870}
871
872defm LOCK_BTS : ATOMIC_LOGIC_OP<MRM5m, "bts">;
873defm LOCK_BTC : ATOMIC_LOGIC_OP<MRM7m, "btc">;
874defm LOCK_BTR : ATOMIC_LOGIC_OP<MRM6m, "btr">;
875
876// Atomic compare and swap.
877multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
878                          string mnemonic, SDPatternOperator frag> {
879let isCodeGenOnly = 1, SchedRW = [WriteCMPXCHGRMW] in {
880  let Defs = [AL, EFLAGS], Uses = [AL] in
881  def NAME#8  : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
882                  !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
883                  [(frag addr:$ptr, GR8:$swap, 1)]>, TB, LOCK;
884  let Defs = [AX, EFLAGS], Uses = [AX] in
885  def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
886                  !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
887                  [(frag addr:$ptr, GR16:$swap, 2)]>, TB, OpSize16, LOCK;
888  let Defs = [EAX, EFLAGS], Uses = [EAX] in
889  def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
890                  !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
891                  [(frag addr:$ptr, GR32:$swap, 4)]>, TB, OpSize32, LOCK;
892  let Defs = [RAX, EFLAGS], Uses = [RAX] in
893  def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
894                   !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
895                   [(frag addr:$ptr, GR64:$swap, 8)]>, TB, LOCK;
896}
897}
898
899let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
900    Predicates = [HasCX8], SchedRW = [WriteCMPXCHGRMW],
901    isCodeGenOnly = 1, usesCustomInserter = 1 in {
902def LCMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$ptr),
903                   "cmpxchg8b\t$ptr",
904                   [(X86cas8 addr:$ptr)]>, TB, LOCK;
905}
906
907let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
908    Predicates = [HasCX16,In64BitMode], SchedRW = [WriteCMPXCHGRMW],
909    isCodeGenOnly = 1, mayLoad = 1, mayStore = 1, hasSideEffects = 0 in {
910def LCMPXCHG16B : RI<0xC7, MRM1m, (outs), (ins i128mem:$ptr),
911                     "cmpxchg16b\t$ptr",
912                     []>, TB, LOCK;
913}
914
915// This pseudo must be used when the frame uses RBX as
916// the base pointer. Indeed, in such situation RBX is a reserved
917// register and the register allocator will ignore any use/def of
918// it. In other words, the register will not fix the clobbering of
919// RBX that will happen when setting the arguments for the instrucion.
920//
921// Unlike the actual related instruction, we mark that this one
922// defines RBX (instead of using RBX).
923// The rationale is that we will define RBX during the expansion of
924// the pseudo. The argument feeding RBX is rbx_input.
925//
926// The additional argument, $rbx_save, is a temporary register used to
927// save the value of RBX across the actual instruction.
928//
929// To make sure the register assigned to $rbx_save does not interfere with
930// the definition of the actual instruction, we use a definition $dst which
931// is tied to $rbx_save. That way, the live-range of $rbx_save spans across
932// the instruction and we are sure we will have a valid register to restore
933// the value of RBX.
934let Defs = [RAX, RDX, RBX, EFLAGS], Uses = [RAX, RCX, RDX],
935    Predicates = [HasCX16,In64BitMode], SchedRW = [WriteCMPXCHGRMW],
936    isCodeGenOnly = 1, isPseudo = 1,
937    mayLoad = 1, mayStore = 1, hasSideEffects = 0,
938    Constraints = "$rbx_save = $dst" in {
939def LCMPXCHG16B_SAVE_RBX :
940    I<0, Pseudo, (outs GR64:$dst),
941      (ins i128mem:$ptr, GR64:$rbx_input, GR64:$rbx_save), "", []>;
942}
943
944// Pseudo instruction that doesn't read/write RBX. Will be turned into either
945// LCMPXCHG16B_SAVE_RBX or LCMPXCHG16B via a custom inserter.
946let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RCX, RDX],
947    Predicates = [HasCX16,In64BitMode], SchedRW = [WriteCMPXCHGRMW],
948    isCodeGenOnly = 1, isPseudo = 1,
949    mayLoad = 1, mayStore = 1, hasSideEffects = 0,
950    usesCustomInserter = 1 in {
951def LCMPXCHG16B_NO_RBX :
952    I<0, Pseudo, (outs), (ins i128mem:$ptr, GR64:$rbx_input), "",
953      [(X86cas16 addr:$ptr, GR64:$rbx_input)]>;
954}
955
956// This pseudo must be used when the frame uses RBX/EBX as
957// the base pointer.
958// cf comment for LCMPXCHG16B_SAVE_RBX.
959let Defs = [EBX], Uses = [ECX, EAX],
960    Predicates = [HasMWAITX], SchedRW = [WriteSystem],
961    isCodeGenOnly = 1, isPseudo = 1, Constraints = "$rbx_save = $dst" in {
962def MWAITX_SAVE_RBX :
963    I<0, Pseudo, (outs GR64:$dst),
964      (ins GR32:$ebx_input, GR64:$rbx_save),
965      "mwaitx",
966      []>;
967}
968
969// Pseudo mwaitx instruction to use for custom insertion.
970let Predicates = [HasMWAITX], SchedRW = [WriteSystem],
971    isCodeGenOnly = 1, isPseudo = 1,
972    usesCustomInserter = 1 in {
973def MWAITX :
974    I<0, Pseudo, (outs), (ins GR32:$ecx, GR32:$eax, GR32:$ebx),
975      "mwaitx",
976      [(int_x86_mwaitx GR32:$ecx, GR32:$eax, GR32:$ebx)]>;
977}
978
979
980defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg", X86cas>;
981
982// Atomic exchange and add
983multiclass ATOMIC_RMW_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
984                            string frag> {
985  let Constraints = "$val = $dst", Defs = [EFLAGS], mayLoad = 1, mayStore = 1,
986      isCodeGenOnly = 1, SchedRW = [WriteALURMW] in {
987    def NAME#8  : I<opc8, MRMSrcMem, (outs GR8:$dst),
988                    (ins GR8:$val, i8mem:$ptr),
989                    !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
990                    [(set GR8:$dst,
991                          (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))]>;
992    def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
993                    (ins GR16:$val, i16mem:$ptr),
994                    !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
995                    [(set
996                       GR16:$dst,
997                       (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))]>,
998                    OpSize16;
999    def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
1000                    (ins GR32:$val, i32mem:$ptr),
1001                    !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
1002                    [(set
1003                       GR32:$dst,
1004                       (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))]>,
1005                    OpSize32;
1006    def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
1007                     (ins GR64:$val, i64mem:$ptr),
1008                     !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
1009                     [(set
1010                        GR64:$dst,
1011                        (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))]>;
1012  }
1013}
1014
1015defm LXADD : ATOMIC_RMW_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add">, TB, LOCK;
1016
1017/* The following multiclass tries to make sure that in code like
1018 *    x.store (immediate op x.load(acquire), release)
1019 * and
1020 *    x.store (register op x.load(acquire), release)
1021 * an operation directly on memory is generated instead of wasting a register.
1022 * It is not automatic as atomic_store/load are only lowered to MOV instructions
1023 * extremely late to prevent them from being accidentally reordered in the backend
1024 * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
1025 */
1026multiclass RELEASE_BINOP_MI<string Name, SDNode op> {
1027  def : Pat<(atomic_store_8 addr:$dst,
1028             (op (atomic_load_8 addr:$dst), (i8 imm:$src))),
1029            (!cast<Instruction>(Name#"8mi") addr:$dst, imm:$src)>;
1030  def : Pat<(atomic_store_16 addr:$dst,
1031             (op (atomic_load_16 addr:$dst), (i16 imm:$src))),
1032            (!cast<Instruction>(Name#"16mi") addr:$dst, imm:$src)>;
1033  def : Pat<(atomic_store_32 addr:$dst,
1034             (op (atomic_load_32 addr:$dst), (i32 imm:$src))),
1035            (!cast<Instruction>(Name#"32mi") addr:$dst, imm:$src)>;
1036  def : Pat<(atomic_store_64 addr:$dst,
1037             (op (atomic_load_64 addr:$dst), (i64immSExt32:$src))),
1038            (!cast<Instruction>(Name#"64mi32") addr:$dst, (i64immSExt32:$src))>;
1039
1040  def : Pat<(atomic_store_8 addr:$dst,
1041             (op (atomic_load_8 addr:$dst), (i8 GR8:$src))),
1042            (!cast<Instruction>(Name#"8mr") addr:$dst, GR8:$src)>;
1043  def : Pat<(atomic_store_16 addr:$dst,
1044             (op (atomic_load_16 addr:$dst), (i16 GR16:$src))),
1045            (!cast<Instruction>(Name#"16mr") addr:$dst, GR16:$src)>;
1046  def : Pat<(atomic_store_32 addr:$dst,
1047             (op (atomic_load_32 addr:$dst), (i32 GR32:$src))),
1048            (!cast<Instruction>(Name#"32mr") addr:$dst, GR32:$src)>;
1049  def : Pat<(atomic_store_64 addr:$dst,
1050             (op (atomic_load_64 addr:$dst), (i64 GR64:$src))),
1051            (!cast<Instruction>(Name#"64mr") addr:$dst, GR64:$src)>;
1052}
1053defm : RELEASE_BINOP_MI<"ADD", add>;
1054defm : RELEASE_BINOP_MI<"AND", and>;
1055defm : RELEASE_BINOP_MI<"OR",  or>;
1056defm : RELEASE_BINOP_MI<"XOR", xor>;
1057defm : RELEASE_BINOP_MI<"SUB", sub>;
1058
1059// Atomic load + floating point patterns.
1060// FIXME: This could also handle SIMD operations with *ps and *pd instructions.
1061multiclass ATOMIC_LOAD_FP_BINOP_MI<string Name, SDNode op> {
1062  def : Pat<(op FR32:$src1, (bitconvert (i32 (atomic_load_32 addr:$src2)))),
1063            (!cast<Instruction>(Name#"SSrm") FR32:$src1, addr:$src2)>,
1064            Requires<[UseSSE1]>;
1065  def : Pat<(op FR32:$src1, (bitconvert (i32 (atomic_load_32 addr:$src2)))),
1066            (!cast<Instruction>("V"#Name#"SSrm") FR32:$src1, addr:$src2)>,
1067            Requires<[UseAVX]>;
1068  def : Pat<(op FR32X:$src1, (bitconvert (i32 (atomic_load_32 addr:$src2)))),
1069            (!cast<Instruction>("V"#Name#"SSZrm") FR32X:$src1, addr:$src2)>,
1070            Requires<[HasAVX512]>;
1071
1072  def : Pat<(op FR64:$src1, (bitconvert (i64 (atomic_load_64 addr:$src2)))),
1073            (!cast<Instruction>(Name#"SDrm") FR64:$src1, addr:$src2)>,
1074            Requires<[UseSSE1]>;
1075  def : Pat<(op FR64:$src1, (bitconvert (i64 (atomic_load_64 addr:$src2)))),
1076            (!cast<Instruction>("V"#Name#"SDrm") FR64:$src1, addr:$src2)>,
1077            Requires<[UseAVX]>;
1078  def : Pat<(op FR64X:$src1, (bitconvert (i64 (atomic_load_64 addr:$src2)))),
1079            (!cast<Instruction>("V"#Name#"SDZrm") FR64X:$src1, addr:$src2)>,
1080            Requires<[HasAVX512]>;
1081}
1082defm : ATOMIC_LOAD_FP_BINOP_MI<"ADD", fadd>;
1083// FIXME: Add fsub, fmul, fdiv, ...
1084
1085multiclass RELEASE_UNOP<string Name, dag dag8, dag dag16, dag dag32,
1086                        dag dag64> {
1087  def : Pat<(atomic_store_8 addr:$dst, dag8),
1088            (!cast<Instruction>(Name#8m) addr:$dst)>;
1089  def : Pat<(atomic_store_16 addr:$dst, dag16),
1090            (!cast<Instruction>(Name#16m) addr:$dst)>;
1091  def : Pat<(atomic_store_32 addr:$dst, dag32),
1092            (!cast<Instruction>(Name#32m) addr:$dst)>;
1093  def : Pat<(atomic_store_64 addr:$dst, dag64),
1094            (!cast<Instruction>(Name#64m) addr:$dst)>;
1095}
1096
1097let Predicates = [UseIncDec] in {
1098  defm : RELEASE_UNOP<"INC",
1099      (add (atomic_load_8  addr:$dst), (i8 1)),
1100      (add (atomic_load_16 addr:$dst), (i16 1)),
1101      (add (atomic_load_32 addr:$dst), (i32 1)),
1102      (add (atomic_load_64 addr:$dst), (i64 1))>;
1103  defm : RELEASE_UNOP<"DEC",
1104      (add (atomic_load_8  addr:$dst), (i8 -1)),
1105      (add (atomic_load_16 addr:$dst), (i16 -1)),
1106      (add (atomic_load_32 addr:$dst), (i32 -1)),
1107      (add (atomic_load_64 addr:$dst), (i64 -1))>;
1108}
1109
1110defm : RELEASE_UNOP<"NEG",
1111    (ineg (i8 (atomic_load_8  addr:$dst))),
1112    (ineg (i16 (atomic_load_16 addr:$dst))),
1113    (ineg (i32 (atomic_load_32 addr:$dst))),
1114    (ineg (i64 (atomic_load_64 addr:$dst)))>;
1115defm : RELEASE_UNOP<"NOT",
1116    (not (i8 (atomic_load_8  addr:$dst))),
1117    (not (i16 (atomic_load_16 addr:$dst))),
1118    (not (i32 (atomic_load_32 addr:$dst))),
1119    (not (i64 (atomic_load_64 addr:$dst)))>;
1120
1121def : Pat<(atomic_store_8 addr:$dst, (i8 imm:$src)),
1122          (MOV8mi addr:$dst, imm:$src)>;
1123def : Pat<(atomic_store_16 addr:$dst, (i16 imm:$src)),
1124          (MOV16mi addr:$dst, imm:$src)>;
1125def : Pat<(atomic_store_32 addr:$dst, (i32 imm:$src)),
1126          (MOV32mi addr:$dst, imm:$src)>;
1127def : Pat<(atomic_store_64 addr:$dst, (i64immSExt32:$src)),
1128          (MOV64mi32 addr:$dst, i64immSExt32:$src)>;
1129
1130def : Pat<(atomic_store_8 addr:$dst, GR8:$src),
1131          (MOV8mr addr:$dst, GR8:$src)>;
1132def : Pat<(atomic_store_16 addr:$dst, GR16:$src),
1133          (MOV16mr addr:$dst, GR16:$src)>;
1134def : Pat<(atomic_store_32 addr:$dst, GR32:$src),
1135          (MOV32mr addr:$dst, GR32:$src)>;
1136def : Pat<(atomic_store_64 addr:$dst, GR64:$src),
1137          (MOV64mr addr:$dst, GR64:$src)>;
1138
1139def : Pat<(i8  (atomic_load_8 addr:$src)),  (MOV8rm addr:$src)>;
1140def : Pat<(i16 (atomic_load_16 addr:$src)), (MOV16rm addr:$src)>;
1141def : Pat<(i32 (atomic_load_32 addr:$src)), (MOV32rm addr:$src)>;
1142def : Pat<(i64 (atomic_load_64 addr:$src)), (MOV64rm addr:$src)>;
1143
1144// Floating point loads/stores.
1145def : Pat<(atomic_store_32 addr:$dst, (i32 (bitconvert (f32 FR32:$src)))),
1146          (MOVSSmr addr:$dst, FR32:$src)>, Requires<[UseSSE1]>;
1147def : Pat<(atomic_store_32 addr:$dst, (i32 (bitconvert (f32 FR32:$src)))),
1148          (VMOVSSmr addr:$dst, FR32:$src)>, Requires<[UseAVX]>;
1149def : Pat<(atomic_store_32 addr:$dst, (i32 (bitconvert (f32 FR32:$src)))),
1150          (VMOVSSZmr addr:$dst, FR32:$src)>, Requires<[HasAVX512]>;
1151
1152def : Pat<(atomic_store_64 addr:$dst, (i64 (bitconvert (f64 FR64:$src)))),
1153          (MOVSDmr addr:$dst, FR64:$src)>, Requires<[UseSSE2]>;
1154def : Pat<(atomic_store_64 addr:$dst, (i64 (bitconvert (f64 FR64:$src)))),
1155          (VMOVSDmr addr:$dst, FR64:$src)>, Requires<[UseAVX]>;
1156def : Pat<(atomic_store_64 addr:$dst, (i64 (bitconvert (f64 FR64:$src)))),
1157          (VMOVSDmr addr:$dst, FR64:$src)>, Requires<[HasAVX512]>;
1158
1159def : Pat<(f32 (bitconvert (i32 (atomic_load_32 addr:$src)))),
1160          (MOVSSrm_alt addr:$src)>, Requires<[UseSSE1]>;
1161def : Pat<(f32 (bitconvert (i32 (atomic_load_32 addr:$src)))),
1162          (VMOVSSrm_alt addr:$src)>, Requires<[UseAVX]>;
1163def : Pat<(f32 (bitconvert (i32 (atomic_load_32 addr:$src)))),
1164          (VMOVSSZrm_alt addr:$src)>, Requires<[HasAVX512]>;
1165
1166def : Pat<(f64 (bitconvert (i64 (atomic_load_64 addr:$src)))),
1167          (MOVSDrm_alt addr:$src)>, Requires<[UseSSE2]>;
1168def : Pat<(f64 (bitconvert (i64 (atomic_load_64 addr:$src)))),
1169          (VMOVSDrm_alt addr:$src)>, Requires<[UseAVX]>;
1170def : Pat<(f64 (bitconvert (i64 (atomic_load_64 addr:$src)))),
1171          (VMOVSDZrm_alt addr:$src)>, Requires<[HasAVX512]>;
1172
1173//===----------------------------------------------------------------------===//
1174// DAG Pattern Matching Rules
1175//===----------------------------------------------------------------------===//
1176
1177// Use AND/OR to store 0/-1 in memory when optimizing for minsize. This saves
1178// binary size compared to a regular MOV, but it introduces an unnecessary
1179// load, so is not suitable for regular or optsize functions.
1180let Predicates = [OptForMinSize] in {
1181def : Pat<(simple_store (i16 0), addr:$dst), (AND16mi8 addr:$dst, 0)>;
1182def : Pat<(simple_store (i32 0), addr:$dst), (AND32mi8 addr:$dst, 0)>;
1183def : Pat<(simple_store (i64 0), addr:$dst), (AND64mi8 addr:$dst, 0)>;
1184def : Pat<(simple_store (i16 -1), addr:$dst), (OR16mi8 addr:$dst, -1)>;
1185def : Pat<(simple_store (i32 -1), addr:$dst), (OR32mi8 addr:$dst, -1)>;
1186def : Pat<(simple_store (i64 -1), addr:$dst), (OR64mi8 addr:$dst, -1)>;
1187}
1188
1189// In kernel code model, we can get the address of a label
1190// into a register with 'movq'.  FIXME: This is a hack, the 'imm' predicate of
1191// the MOV64ri32 should accept these.
1192def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
1193          (MOV64ri32 tconstpool  :$dst)>, Requires<[KernelCode]>;
1194def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
1195          (MOV64ri32 tjumptable  :$dst)>, Requires<[KernelCode]>;
1196def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
1197          (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
1198def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
1199          (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
1200def : Pat<(i64 (X86Wrapper mcsym:$dst)),
1201          (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>;
1202def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
1203          (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
1204
1205// If we have small model and -static mode, it is safe to store global addresses
1206// directly as immediates.  FIXME: This is really a hack, the 'imm' predicate
1207// for MOV64mi32 should handle this sort of thing.
1208def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
1209          (MOV64mi32 addr:$dst, tconstpool:$src)>,
1210          Requires<[NearData, IsNotPIC]>;
1211def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
1212          (MOV64mi32 addr:$dst, tjumptable:$src)>,
1213          Requires<[NearData, IsNotPIC]>;
1214def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
1215          (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
1216          Requires<[NearData, IsNotPIC]>;
1217def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
1218          (MOV64mi32 addr:$dst, texternalsym:$src)>,
1219          Requires<[NearData, IsNotPIC]>;
1220def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst),
1221          (MOV64mi32 addr:$dst, mcsym:$src)>,
1222          Requires<[NearData, IsNotPIC]>;
1223def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
1224          (MOV64mi32 addr:$dst, tblockaddress:$src)>,
1225          Requires<[NearData, IsNotPIC]>;
1226
1227def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>;
1228def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>;
1229
1230// Calls
1231
1232// tls has some funny stuff here...
1233// This corresponds to movabs $foo@tpoff, %rax
1234def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
1235          (MOV64ri32 tglobaltlsaddr :$dst)>;
1236// This corresponds to add $foo@tpoff, %rax
1237def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
1238          (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
1239
1240
1241// Direct PC relative function call for small code model. 32-bit displacement
1242// sign extended to 64-bit.
1243def : Pat<(X86call (i64 tglobaladdr:$dst)),
1244          (CALL64pcrel32 tglobaladdr:$dst)>;
1245def : Pat<(X86call (i64 texternalsym:$dst)),
1246          (CALL64pcrel32 texternalsym:$dst)>;
1247
1248def : Pat<(X86call_rvmarker (i64 tglobaladdr:$rvfunc), (i64 texternalsym:$dst)),
1249          (CALL64pcrel32_RVMARKER tglobaladdr:$rvfunc, texternalsym:$dst)>;
1250def : Pat<(X86call_rvmarker (i64 tglobaladdr:$rvfunc), (i64 tglobaladdr:$dst)),
1251          (CALL64pcrel32_RVMARKER tglobaladdr:$rvfunc, tglobaladdr:$dst)>;
1252
1253
1254// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
1255// can never use callee-saved registers. That is the purpose of the GR64_TC
1256// register classes.
1257//
1258// The only volatile register that is never used by the calling convention is
1259// %r11. This happens when calling a vararg function with 6 arguments.
1260//
1261// Match an X86tcret that uses less than 7 volatile registers.
1262def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
1263                             (X86tcret node:$ptr, node:$off), [{
1264  // X86tcret args: (*chain, ptr, imm, regs..., glue)
1265  unsigned NumRegs = 0;
1266  for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
1267    if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
1268      return false;
1269  return true;
1270}]>;
1271
1272def X86tcret_1reg : PatFrag<(ops node:$ptr, node:$off),
1273                             (X86tcret node:$ptr, node:$off), [{
1274  // X86tcret args: (*chain, ptr, imm, regs..., glue)
1275  unsigned NumRegs = 1;
1276  const SDValue& BasePtr = cast<LoadSDNode>(N->getOperand(1))->getBasePtr();
1277  if (isa<FrameIndexSDNode>(BasePtr))
1278    NumRegs = 3;
1279  else if (BasePtr->getNumOperands() && isa<GlobalAddressSDNode>(BasePtr->getOperand(0)))
1280    NumRegs = 3;
1281  for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
1282    if (isa<RegisterSDNode>(N->getOperand(i)) && ( NumRegs-- == 0))
1283      return false;
1284  return true;
1285}]>;
1286
1287def : Pat<(X86tcret ptr_rc_tailcall:$dst, timm:$off),
1288          (TCRETURNri ptr_rc_tailcall:$dst, timm:$off)>,
1289          Requires<[Not64BitMode, NotUseIndirectThunkCalls]>;
1290
1291// FIXME: This is disabled for 32-bit PIC mode because the global base
1292// register which is part of the address mode may be assigned a
1293// callee-saved register.
1294// Similar to X86tcret_6regs, here we only have 1 register left
1295def : Pat<(X86tcret_1reg (load addr:$dst), timm:$off),
1296          (TCRETURNmi addr:$dst, timm:$off)>,
1297          Requires<[Not64BitMode, IsNotPIC, NotUseIndirectThunkCalls]>;
1298
1299def : Pat<(X86tcret (i32 tglobaladdr:$dst), timm:$off),
1300          (TCRETURNdi tglobaladdr:$dst, timm:$off)>,
1301          Requires<[NotLP64]>;
1302
1303def : Pat<(X86tcret (i32 texternalsym:$dst), timm:$off),
1304          (TCRETURNdi texternalsym:$dst, timm:$off)>,
1305          Requires<[NotLP64]>;
1306
1307def : Pat<(X86tcret ptr_rc_tailcall:$dst, timm:$off),
1308          (TCRETURNri64 ptr_rc_tailcall:$dst, timm:$off)>,
1309          Requires<[In64BitMode, NotUseIndirectThunkCalls]>;
1310
1311// Don't fold loads into X86tcret requiring more than 6 regs.
1312// There wouldn't be enough scratch registers for base+index.
1313def : Pat<(X86tcret_6regs (load addr:$dst), timm:$off),
1314          (TCRETURNmi64 addr:$dst, timm:$off)>,
1315          Requires<[In64BitMode, NotUseIndirectThunkCalls]>;
1316
1317def : Pat<(X86tcret ptr_rc_tailcall:$dst, timm:$off),
1318          (INDIRECT_THUNK_TCRETURN64 ptr_rc_tailcall:$dst, timm:$off)>,
1319          Requires<[In64BitMode, UseIndirectThunkCalls]>;
1320
1321def : Pat<(X86tcret ptr_rc_tailcall:$dst, timm:$off),
1322          (INDIRECT_THUNK_TCRETURN32 ptr_rc_tailcall:$dst, timm:$off)>,
1323          Requires<[Not64BitMode, UseIndirectThunkCalls]>;
1324
1325def : Pat<(X86tcret (i64 tglobaladdr:$dst), timm:$off),
1326          (TCRETURNdi64 tglobaladdr:$dst, timm:$off)>,
1327          Requires<[IsLP64]>;
1328
1329def : Pat<(X86tcret (i64 texternalsym:$dst), timm:$off),
1330          (TCRETURNdi64 texternalsym:$dst, timm:$off)>,
1331          Requires<[IsLP64]>;
1332
1333// Normal calls, with various flavors of addresses.
1334def : Pat<(X86call (i32 tglobaladdr:$dst)),
1335          (CALLpcrel32 tglobaladdr:$dst)>;
1336def : Pat<(X86call (i32 texternalsym:$dst)),
1337          (CALLpcrel32 texternalsym:$dst)>;
1338def : Pat<(X86call (i32 imm:$dst)),
1339          (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
1340
1341// Comparisons.
1342
1343// TEST R,R is smaller than CMP R,0
1344def : Pat<(X86cmp GR8:$src1, 0),
1345          (TEST8rr GR8:$src1, GR8:$src1)>;
1346def : Pat<(X86cmp GR16:$src1, 0),
1347          (TEST16rr GR16:$src1, GR16:$src1)>;
1348def : Pat<(X86cmp GR32:$src1, 0),
1349          (TEST32rr GR32:$src1, GR32:$src1)>;
1350def : Pat<(X86cmp GR64:$src1, 0),
1351          (TEST64rr GR64:$src1, GR64:$src1)>;
1352
1353// zextload bool -> zextload byte
1354// i1 stored in one byte in zero-extended form.
1355// Upper bits cleanup should be executed before Store.
1356def : Pat<(zextloadi8i1  addr:$src), (MOV8rm addr:$src)>;
1357def : Pat<(zextloadi16i1 addr:$src),
1358          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1359def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
1360def : Pat<(zextloadi64i1 addr:$src),
1361          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1362
1363// extload bool -> extload byte
1364// When extloading from 16-bit and smaller memory locations into 64-bit
1365// registers, use zero-extending loads so that the entire 64-bit register is
1366// defined, avoiding partial-register updates.
1367
1368def : Pat<(extloadi8i1 addr:$src),   (MOV8rm      addr:$src)>;
1369def : Pat<(extloadi16i1 addr:$src),
1370          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1371def : Pat<(extloadi32i1 addr:$src),  (MOVZX32rm8  addr:$src)>;
1372def : Pat<(extloadi16i8 addr:$src),
1373          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1374def : Pat<(extloadi32i8 addr:$src),  (MOVZX32rm8  addr:$src)>;
1375def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
1376
1377// For other extloads, use subregs, since the high contents of the register are
1378// defined after an extload.
1379// NOTE: The extloadi64i32 pattern needs to be first as it will try to form
1380// 32-bit loads for 4 byte aligned i8/i16 loads.
1381def : Pat<(extloadi64i32 addr:$src),
1382          (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
1383def : Pat<(extloadi64i1 addr:$src),
1384          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1385def : Pat<(extloadi64i8 addr:$src),
1386          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1387def : Pat<(extloadi64i16 addr:$src),
1388          (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
1389
1390// anyext. Define these to do an explicit zero-extend to
1391// avoid partial-register updates.
1392def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
1393                                     (MOVZX32rr8 GR8 :$src), sub_16bit)>;
1394def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8  GR8 :$src)>;
1395
1396// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
1397def : Pat<(i32 (anyext GR16:$src)),
1398          (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
1399
1400def : Pat<(i64 (anyext GR8 :$src)),
1401          (SUBREG_TO_REG (i64 0), (MOVZX32rr8  GR8  :$src), sub_32bit)>;
1402def : Pat<(i64 (anyext GR16:$src)),
1403          (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
1404def : Pat<(i64 (anyext GR32:$src)),
1405          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, sub_32bit)>;
1406
1407// If this is an anyext of the remainder of an 8-bit sdivrem, use a MOVSX
1408// instead of a MOVZX. The sdivrem lowering will emit emit a MOVSX to move
1409// %ah to the lower byte of a register. By using a MOVSX here we allow a
1410// post-isel peephole to merge the two MOVSX instructions into one.
1411def anyext_sdiv : PatFrag<(ops node:$lhs), (anyext node:$lhs),[{
1412  return (N->getOperand(0).getOpcode() == ISD::SDIVREM &&
1413          N->getOperand(0).getResNo() == 1);
1414}]>;
1415def : Pat<(i32 (anyext_sdiv GR8:$src)), (MOVSX32rr8 GR8:$src)>;
1416
1417// Any instruction that defines a 32-bit result leaves the high half of the
1418// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
1419// be copying from a truncate. AssertSext/AssertZext/AssertAlign aren't saying
1420// anything about the upper 32 bits, they're probably just qualifying a
1421// CopyFromReg. FREEZE may be coming from a a truncate. Any other 32-bit
1422// operation will zero-extend up to 64 bits.
1423def def32 : PatLeaf<(i32 GR32:$src), [{
1424  return N->getOpcode() != ISD::TRUNCATE &&
1425         N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1426         N->getOpcode() != ISD::CopyFromReg &&
1427         N->getOpcode() != ISD::AssertSext &&
1428         N->getOpcode() != ISD::AssertZext &&
1429         N->getOpcode() != ISD::AssertAlign &&
1430         N->getOpcode() != ISD::FREEZE;
1431}]>;
1432
1433// In the case of a 32-bit def that is known to implicitly zero-extend,
1434// we can use a SUBREG_TO_REG.
1435def : Pat<(i64 (zext def32:$src)),
1436          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1437def : Pat<(i64 (and (anyext def32:$src), 0x00000000FFFFFFFF)),
1438          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1439
1440//===----------------------------------------------------------------------===//
1441// Pattern match OR as ADD
1442//===----------------------------------------------------------------------===//
1443
1444// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1445// 3-addressified into an LEA instruction to avoid copies.  However, we also
1446// want to finally emit these instructions as an or at the end of the code
1447// generator to make the generated code easier to read.  To do this, we select
1448// into "disjoint bits" pseudo ops.
1449
1450// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1451def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1452  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1453    return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1454
1455  KnownBits Known0 = CurDAG->computeKnownBits(N->getOperand(0), 0);
1456  KnownBits Known1 = CurDAG->computeKnownBits(N->getOperand(1), 0);
1457  return (~Known0.Zero & ~Known1.Zero) == 0;
1458}]>;
1459
1460
1461// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1462// Try this before the selecting to OR.
1463let SchedRW = [WriteALU] in {
1464
1465let isConvertibleToThreeAddress = 1, isPseudo = 1,
1466    Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1467let isCommutable = 1 in {
1468def ADD8rr_DB   : I<0, Pseudo, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2),
1469                    "", // orb/addb REG, REG
1470                    [(set GR8:$dst, (or_is_add GR8:$src1, GR8:$src2))]>;
1471def ADD16rr_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1472                    "", // orw/addw REG, REG
1473                    [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1474def ADD32rr_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1475                    "", // orl/addl REG, REG
1476                    [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1477def ADD64rr_DB  : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1478                    "", // orq/addq REG, REG
1479                    [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
1480} // isCommutable
1481
1482// NOTE: These are order specific, we want the ri8 forms to be listed
1483// first so that they are slightly preferred to the ri forms.
1484
1485def ADD8ri_DB :   I<0, Pseudo,
1486                    (outs GR8:$dst), (ins GR8:$src1, i8imm:$src2),
1487                    "", // orb/addb REG, imm8
1488                    [(set GR8:$dst, (or_is_add GR8:$src1, imm:$src2))]>;
1489def ADD16ri8_DB : I<0, Pseudo,
1490                    (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1491                    "", // orw/addw REG, imm8
1492                    [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1493def ADD16ri_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1494                    "", // orw/addw REG, imm
1495                    [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1496
1497def ADD32ri8_DB : I<0, Pseudo,
1498                    (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1499                    "", // orl/addl REG, imm8
1500                    [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1501def ADD32ri_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1502                    "", // orl/addl REG, imm
1503                    [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1504
1505
1506def ADD64ri8_DB : I<0, Pseudo,
1507                    (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1508                    "", // orq/addq REG, imm8
1509                    [(set GR64:$dst, (or_is_add GR64:$src1,
1510                                                i64immSExt8:$src2))]>;
1511def ADD64ri32_DB : I<0, Pseudo,
1512                     (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1513                     "", // orq/addq REG, imm
1514                     [(set GR64:$dst, (or_is_add GR64:$src1,
1515                                                 i64immSExt32:$src2))]>;
1516}
1517} // AddedComplexity, SchedRW
1518
1519//===----------------------------------------------------------------------===//
1520// Pattern match XOR as ADD
1521//===----------------------------------------------------------------------===//
1522
1523// Prefer to pattern match XOR with min_signed_value as ADD at isel time.
1524// ADD can be 3-addressified into an LEA instruction to avoid copies.
1525let AddedComplexity = 5 in {
1526def : Pat<(xor GR8:$src1, -128),
1527          (ADD8ri GR8:$src1, -128)>;
1528def : Pat<(xor GR16:$src1, -32768),
1529          (ADD16ri GR16:$src1, -32768)>;
1530def : Pat<(xor GR32:$src1, -2147483648),
1531          (ADD32ri GR32:$src1, -2147483648)>;
1532}
1533
1534//===----------------------------------------------------------------------===//
1535// Some peepholes
1536//===----------------------------------------------------------------------===//
1537
1538// Odd encoding trick: -128 fits into an 8-bit immediate field while
1539// +128 doesn't, so in this special case use a sub instead of an add.
1540def : Pat<(add GR16:$src1, 128),
1541          (SUB16ri8 GR16:$src1, -128)>;
1542def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1543          (SUB16mi8 addr:$dst, -128)>;
1544
1545def : Pat<(add GR32:$src1, 128),
1546          (SUB32ri8 GR32:$src1, -128)>;
1547def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1548          (SUB32mi8 addr:$dst, -128)>;
1549
1550def : Pat<(add GR64:$src1, 128),
1551          (SUB64ri8 GR64:$src1, -128)>;
1552def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1553          (SUB64mi8 addr:$dst, -128)>;
1554
1555def : Pat<(X86add_flag_nocf GR16:$src1, 128),
1556          (SUB16ri8 GR16:$src1, -128)>;
1557def : Pat<(X86add_flag_nocf GR32:$src1, 128),
1558          (SUB32ri8 GR32:$src1, -128)>;
1559def : Pat<(X86add_flag_nocf GR64:$src1, 128),
1560          (SUB64ri8 GR64:$src1, -128)>;
1561
1562// The same trick applies for 32-bit immediate fields in 64-bit
1563// instructions.
1564def : Pat<(add GR64:$src1, 0x0000000080000000),
1565          (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1566def : Pat<(store (add (loadi64 addr:$dst), 0x0000000080000000), addr:$dst),
1567          (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1568
1569def : Pat<(X86add_flag_nocf GR64:$src1, 0x0000000080000000),
1570          (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1571
1572// To avoid needing to materialize an immediate in a register, use a 32-bit and
1573// with implicit zero-extension instead of a 64-bit and if the immediate has at
1574// least 32 bits of leading zeros. If in addition the last 32 bits can be
1575// represented with a sign extension of a 8 bit constant, use that.
1576// This can also reduce instruction size by eliminating the need for the REX
1577// prefix.
1578
1579// AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32.
1580let AddedComplexity = 1 in {
1581def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
1582          (SUBREG_TO_REG
1583            (i64 0),
1584            (AND32ri8
1585              (EXTRACT_SUBREG GR64:$src, sub_32bit),
1586              (i32 (GetLo32XForm imm:$imm))),
1587            sub_32bit)>;
1588
1589def : Pat<(and GR64:$src, i64immZExt32:$imm),
1590          (SUBREG_TO_REG
1591            (i64 0),
1592            (AND32ri
1593              (EXTRACT_SUBREG GR64:$src, sub_32bit),
1594              (i32 (GetLo32XForm imm:$imm))),
1595            sub_32bit)>;
1596} // AddedComplexity = 1
1597
1598
1599// AddedComplexity is needed due to the increased complexity on the
1600// i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all
1601// the MOVZX patterns keeps thems together in DAGIsel tables.
1602let AddedComplexity = 1 in {
1603// r & (2^16-1) ==> movz
1604def : Pat<(and GR32:$src1, 0xffff),
1605          (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1606// r & (2^8-1) ==> movz
1607def : Pat<(and GR32:$src1, 0xff),
1608          (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>;
1609// r & (2^8-1) ==> movz
1610def : Pat<(and GR16:$src1, 0xff),
1611           (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG GR16:$src1, sub_8bit)),
1612             sub_16bit)>;
1613
1614// r & (2^32-1) ==> movz
1615def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1616          (SUBREG_TO_REG (i64 0),
1617                         (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
1618                         sub_32bit)>;
1619// r & (2^16-1) ==> movz
1620def : Pat<(and GR64:$src, 0xffff),
1621          (SUBREG_TO_REG (i64 0),
1622                      (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
1623                      sub_32bit)>;
1624// r & (2^8-1) ==> movz
1625def : Pat<(and GR64:$src, 0xff),
1626          (SUBREG_TO_REG (i64 0),
1627                         (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
1628                         sub_32bit)>;
1629} // AddedComplexity = 1
1630
1631
1632// Try to use BTS/BTR/BTC for single bit operations on the upper 32-bits.
1633
1634def BTRXForm : SDNodeXForm<imm, [{
1635  // Transformation function: Find the lowest 0.
1636  return getI64Imm((uint8_t)N->getAPIntValue().countTrailingOnes(), SDLoc(N));
1637}]>;
1638
1639def BTCBTSXForm : SDNodeXForm<imm, [{
1640  // Transformation function: Find the lowest 1.
1641  return getI64Imm((uint8_t)N->getAPIntValue().countTrailingZeros(), SDLoc(N));
1642}]>;
1643
1644def BTRMask64 : ImmLeaf<i64, [{
1645  return !isUInt<32>(Imm) && !isInt<32>(Imm) && isPowerOf2_64(~Imm);
1646}]>;
1647
1648def BTCBTSMask64 : ImmLeaf<i64, [{
1649  return !isInt<32>(Imm) && isPowerOf2_64(Imm);
1650}]>;
1651
1652// For now only do this for optsize.
1653let AddedComplexity = 1, Predicates=[OptForSize] in {
1654  def : Pat<(and GR64:$src1, BTRMask64:$mask),
1655            (BTR64ri8 GR64:$src1, (BTRXForm imm:$mask))>;
1656  def : Pat<(or GR64:$src1, BTCBTSMask64:$mask),
1657            (BTS64ri8 GR64:$src1, (BTCBTSXForm imm:$mask))>;
1658  def : Pat<(xor GR64:$src1, BTCBTSMask64:$mask),
1659            (BTC64ri8 GR64:$src1, (BTCBTSXForm imm:$mask))>;
1660}
1661
1662
1663// sext_inreg patterns
1664def : Pat<(sext_inreg GR32:$src, i16),
1665          (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1666def : Pat<(sext_inreg GR32:$src, i8),
1667          (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>;
1668
1669def : Pat<(sext_inreg GR16:$src, i8),
1670           (EXTRACT_SUBREG (MOVSX32rr8 (EXTRACT_SUBREG GR16:$src, sub_8bit)),
1671             sub_16bit)>;
1672
1673def : Pat<(sext_inreg GR64:$src, i32),
1674          (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1675def : Pat<(sext_inreg GR64:$src, i16),
1676          (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1677def : Pat<(sext_inreg GR64:$src, i8),
1678          (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1679
1680// sext, sext_load, zext, zext_load
1681def: Pat<(i16 (sext GR8:$src)),
1682          (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
1683def: Pat<(sextloadi16i8 addr:$src),
1684          (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
1685def: Pat<(i16 (zext GR8:$src)),
1686          (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
1687def: Pat<(zextloadi16i8 addr:$src),
1688          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1689
1690// trunc patterns
1691def : Pat<(i16 (trunc GR32:$src)),
1692          (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1693def : Pat<(i8 (trunc GR32:$src)),
1694          (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1695                          sub_8bit)>,
1696      Requires<[Not64BitMode]>;
1697def : Pat<(i8 (trunc GR16:$src)),
1698          (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1699                          sub_8bit)>,
1700      Requires<[Not64BitMode]>;
1701def : Pat<(i32 (trunc GR64:$src)),
1702          (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1703def : Pat<(i16 (trunc GR64:$src)),
1704          (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1705def : Pat<(i8 (trunc GR64:$src)),
1706          (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1707def : Pat<(i8 (trunc GR32:$src)),
1708          (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1709      Requires<[In64BitMode]>;
1710def : Pat<(i8 (trunc GR16:$src)),
1711          (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1712      Requires<[In64BitMode]>;
1713
1714def immff00_ffff  : ImmLeaf<i32, [{
1715  return Imm >= 0xff00 && Imm <= 0xffff;
1716}]>;
1717
1718// h-register tricks
1719def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1720          (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)>,
1721      Requires<[Not64BitMode]>;
1722def : Pat<(i8 (trunc (srl_su (i32 (anyext GR16:$src)), (i8 8)))),
1723          (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)>,
1724      Requires<[Not64BitMode]>;
1725def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1726          (EXTRACT_SUBREG GR32:$src, sub_8bit_hi)>,
1727      Requires<[Not64BitMode]>;
1728def : Pat<(srl GR16:$src, (i8 8)),
1729          (EXTRACT_SUBREG
1730            (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
1731            sub_16bit)>;
1732def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1733          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>;
1734def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1735          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>;
1736def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1737          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>;
1738def : Pat<(srl (and_su GR32:$src, immff00_ffff), (i8 8)),
1739          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>;
1740
1741// h-register tricks.
1742// For now, be conservative on x86-64 and use an h-register extract only if the
1743// value is immediately zero-extended or stored, which are somewhat common
1744// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1745// from being allocated in the same instruction as the h register, as there's
1746// currently no way to describe this requirement to the register allocator.
1747
1748// h-register extract and zero-extend.
1749def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1750          (SUBREG_TO_REG
1751            (i64 0),
1752            (MOVZX32rr8_NOREX
1753              (EXTRACT_SUBREG GR64:$src, sub_8bit_hi)),
1754            sub_32bit)>;
1755def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1756          (SUBREG_TO_REG
1757            (i64 0),
1758            (MOVZX32rr8_NOREX
1759              (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
1760            sub_32bit)>;
1761def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1762          (SUBREG_TO_REG
1763            (i64 0),
1764            (MOVZX32rr8_NOREX
1765              (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
1766            sub_32bit)>;
1767
1768// h-register extract and store.
1769def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1770          (MOV8mr_NOREX
1771            addr:$dst,
1772            (EXTRACT_SUBREG GR64:$src, sub_8bit_hi))>;
1773def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1774          (MOV8mr_NOREX
1775            addr:$dst,
1776            (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>,
1777      Requires<[In64BitMode]>;
1778def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1779          (MOV8mr_NOREX
1780            addr:$dst,
1781            (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>,
1782      Requires<[In64BitMode]>;
1783
1784// Special pattern to catch the last step of __builtin_parity handling. Our
1785// goal is to use an xor of an h-register with the corresponding l-register.
1786// The above patterns would handle this on non 64-bit targets, but for 64-bit
1787// we need to be more careful. We're using a NOREX instruction here in case
1788// register allocation fails to keep the two registers together. So we need to
1789// make sure we can't accidentally mix R8-R15 with an h-register.
1790def : Pat<(X86xor_flag (i8 (trunc GR32:$src)),
1791                       (i8 (trunc (srl_su GR32:$src, (i8 8))))),
1792          (XOR8rr_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit),
1793                        (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>;
1794
1795// (shl x, 1) ==> (add x, x)
1796// Note that if x is undef (immediate or otherwise), we could theoretically
1797// end up with the two uses of x getting different values, producing a result
1798// where the least significant bit is not 0. However, the probability of this
1799// happening is considered low enough that this is officially not a
1800// "real problem".
1801def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr  GR8 :$src1, GR8 :$src1)>;
1802def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1803def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1804def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1805
1806def shiftMask8 : PatFrag<(ops node:$lhs), (and node:$lhs, imm), [{
1807  return isUnneededShiftMask(N, 3);
1808}]>;
1809
1810def shiftMask16 : PatFrag<(ops node:$lhs), (and node:$lhs, imm), [{
1811  return isUnneededShiftMask(N, 4);
1812}]>;
1813
1814def shiftMask32 : PatFrag<(ops node:$lhs), (and node:$lhs, imm), [{
1815  return isUnneededShiftMask(N, 5);
1816}]>;
1817
1818def shiftMask64 : PatFrag<(ops node:$lhs), (and node:$lhs, imm), [{
1819  return isUnneededShiftMask(N, 6);
1820}]>;
1821
1822
1823// Shift amount is implicitly masked.
1824multiclass MaskedShiftAmountPats<SDNode frag, string name> {
1825  // (shift x (and y, 31)) ==> (shift x, y)
1826  def : Pat<(frag GR8:$src1, (shiftMask32 CL)),
1827            (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
1828  def : Pat<(frag GR16:$src1, (shiftMask32 CL)),
1829            (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
1830  def : Pat<(frag GR32:$src1, (shiftMask32 CL)),
1831            (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
1832  def : Pat<(store (frag (loadi8 addr:$dst), (shiftMask32 CL)), addr:$dst),
1833            (!cast<Instruction>(name # "8mCL") addr:$dst)>;
1834  def : Pat<(store (frag (loadi16 addr:$dst), (shiftMask32 CL)), addr:$dst),
1835            (!cast<Instruction>(name # "16mCL") addr:$dst)>;
1836  def : Pat<(store (frag (loadi32 addr:$dst), (shiftMask32 CL)), addr:$dst),
1837            (!cast<Instruction>(name # "32mCL") addr:$dst)>;
1838
1839  // (shift x (and y, 63)) ==> (shift x, y)
1840  def : Pat<(frag GR64:$src1, (shiftMask64 CL)),
1841            (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
1842  def : Pat<(store (frag (loadi64 addr:$dst), (shiftMask64 CL)), addr:$dst),
1843            (!cast<Instruction>(name # "64mCL") addr:$dst)>;
1844}
1845
1846defm : MaskedShiftAmountPats<shl, "SHL">;
1847defm : MaskedShiftAmountPats<srl, "SHR">;
1848defm : MaskedShiftAmountPats<sra, "SAR">;
1849
1850// ROL/ROR instructions allow a stronger mask optimization than shift for 8- and
1851// 16-bit. We can remove a mask of any (bitwidth - 1) on the rotation amount
1852// because over-rotating produces the same result. This is noted in the Intel
1853// docs with: "tempCOUNT <- (COUNT & COUNTMASK) MOD SIZE". Masking the rotation
1854// amount could affect EFLAGS results, but that does not matter because we are
1855// not tracking flags for these nodes.
1856multiclass MaskedRotateAmountPats<SDNode frag, string name> {
1857  // (rot x (and y, BitWidth - 1)) ==> (rot x, y)
1858  def : Pat<(frag GR8:$src1, (shiftMask8 CL)),
1859  (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
1860  def : Pat<(frag GR16:$src1, (shiftMask16 CL)),
1861  (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
1862  def : Pat<(frag GR32:$src1, (shiftMask32 CL)),
1863  (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
1864  def : Pat<(store (frag (loadi8 addr:$dst), (shiftMask8 CL)), addr:$dst),
1865  (!cast<Instruction>(name # "8mCL") addr:$dst)>;
1866  def : Pat<(store (frag (loadi16 addr:$dst), (shiftMask16 CL)), addr:$dst),
1867  (!cast<Instruction>(name # "16mCL") addr:$dst)>;
1868  def : Pat<(store (frag (loadi32 addr:$dst), (shiftMask32 CL)), addr:$dst),
1869  (!cast<Instruction>(name # "32mCL") addr:$dst)>;
1870
1871  // (rot x (and y, 63)) ==> (rot x, y)
1872  def : Pat<(frag GR64:$src1, (shiftMask64 CL)),
1873  (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
1874  def : Pat<(store (frag (loadi64 addr:$dst), (shiftMask64 CL)), addr:$dst),
1875  (!cast<Instruction>(name # "64mCL") addr:$dst)>;
1876}
1877
1878
1879defm : MaskedRotateAmountPats<rotl, "ROL">;
1880defm : MaskedRotateAmountPats<rotr, "ROR">;
1881
1882// Double "funnel" shift amount is implicitly masked.
1883// (fshl/fshr x (and y, 31)) ==> (fshl/fshr x, y) (NOTE: modulo32)
1884def : Pat<(X86fshl GR16:$src1, GR16:$src2, (shiftMask32 CL)),
1885          (SHLD16rrCL GR16:$src1, GR16:$src2)>;
1886def : Pat<(X86fshr GR16:$src2, GR16:$src1, (shiftMask32 CL)),
1887          (SHRD16rrCL GR16:$src1, GR16:$src2)>;
1888
1889// (fshl/fshr x (and y, 31)) ==> (fshl/fshr x, y)
1890def : Pat<(fshl GR32:$src1, GR32:$src2, (shiftMask32 CL)),
1891          (SHLD32rrCL GR32:$src1, GR32:$src2)>;
1892def : Pat<(fshr GR32:$src2, GR32:$src1, (shiftMask32 CL)),
1893          (SHRD32rrCL GR32:$src1, GR32:$src2)>;
1894
1895// (fshl/fshr x (and y, 63)) ==> (fshl/fshr x, y)
1896def : Pat<(fshl GR64:$src1, GR64:$src2, (shiftMask64 CL)),
1897          (SHLD64rrCL GR64:$src1, GR64:$src2)>;
1898def : Pat<(fshr GR64:$src2, GR64:$src1, (shiftMask64 CL)),
1899          (SHRD64rrCL GR64:$src1, GR64:$src2)>;
1900
1901let Predicates = [HasBMI2] in {
1902  let AddedComplexity = 1 in {
1903    def : Pat<(sra GR32:$src1, (shiftMask32 GR8:$src2)),
1904              (SARX32rr GR32:$src1,
1905                        (INSERT_SUBREG
1906                          (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1907    def : Pat<(sra GR64:$src1, (shiftMask64 GR8:$src2)),
1908              (SARX64rr GR64:$src1,
1909                        (INSERT_SUBREG
1910                          (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1911
1912    def : Pat<(srl GR32:$src1, (shiftMask32 GR8:$src2)),
1913              (SHRX32rr GR32:$src1,
1914                        (INSERT_SUBREG
1915                          (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1916    def : Pat<(srl GR64:$src1, (shiftMask64 GR8:$src2)),
1917              (SHRX64rr GR64:$src1,
1918                        (INSERT_SUBREG
1919                          (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1920
1921    def : Pat<(shl GR32:$src1, (shiftMask32 GR8:$src2)),
1922              (SHLX32rr GR32:$src1,
1923                        (INSERT_SUBREG
1924                          (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1925    def : Pat<(shl GR64:$src1, (shiftMask64 GR8:$src2)),
1926              (SHLX64rr GR64:$src1,
1927                        (INSERT_SUBREG
1928                          (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1929  }
1930
1931  def : Pat<(sra (loadi32 addr:$src1), (shiftMask32 GR8:$src2)),
1932            (SARX32rm addr:$src1,
1933                      (INSERT_SUBREG
1934                        (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1935  def : Pat<(sra (loadi64 addr:$src1), (shiftMask64 GR8:$src2)),
1936            (SARX64rm addr:$src1,
1937                      (INSERT_SUBREG
1938                        (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1939
1940  def : Pat<(srl (loadi32 addr:$src1), (shiftMask32 GR8:$src2)),
1941            (SHRX32rm addr:$src1,
1942                      (INSERT_SUBREG
1943                        (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1944  def : Pat<(srl (loadi64 addr:$src1), (shiftMask64 GR8:$src2)),
1945            (SHRX64rm addr:$src1,
1946                      (INSERT_SUBREG
1947                        (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1948
1949  def : Pat<(shl (loadi32 addr:$src1), (shiftMask32 GR8:$src2)),
1950            (SHLX32rm addr:$src1,
1951                      (INSERT_SUBREG
1952                        (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1953  def : Pat<(shl (loadi64 addr:$src1), (shiftMask64 GR8:$src2)),
1954            (SHLX64rm addr:$src1,
1955                      (INSERT_SUBREG
1956                        (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1957}
1958
1959// Use BTR/BTS/BTC for clearing/setting/toggling a bit in a variable location.
1960multiclass one_bit_patterns<RegisterClass RC, ValueType VT, Instruction BTR,
1961                            Instruction BTS, Instruction BTC,
1962                            PatFrag ShiftMask> {
1963  def : Pat<(and RC:$src1, (rotl -2, GR8:$src2)),
1964            (BTR RC:$src1,
1965                 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1966  def : Pat<(or RC:$src1, (shl 1, GR8:$src2)),
1967            (BTS RC:$src1,
1968                 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1969  def : Pat<(xor RC:$src1, (shl 1, GR8:$src2)),
1970            (BTC RC:$src1,
1971                 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1972
1973  // Similar to above, but removing unneeded masking of the shift amount.
1974  def : Pat<(and RC:$src1, (rotl -2, (ShiftMask GR8:$src2))),
1975            (BTR RC:$src1,
1976                 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1977  def : Pat<(or RC:$src1, (shl 1, (ShiftMask GR8:$src2))),
1978            (BTS RC:$src1,
1979                (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1980  def : Pat<(xor RC:$src1, (shl 1, (ShiftMask GR8:$src2))),
1981            (BTC RC:$src1,
1982                (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1983}
1984
1985defm : one_bit_patterns<GR16, i16, BTR16rr, BTS16rr, BTC16rr, shiftMask16>;
1986defm : one_bit_patterns<GR32, i32, BTR32rr, BTS32rr, BTC32rr, shiftMask32>;
1987defm : one_bit_patterns<GR64, i64, BTR64rr, BTS64rr, BTC64rr, shiftMask64>;
1988
1989//===----------------------------------------------------------------------===//
1990// EFLAGS-defining Patterns
1991//===----------------------------------------------------------------------===//
1992
1993// add reg, reg
1994def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr  GR8 :$src1, GR8 :$src2)>;
1995def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1996def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1997def : Pat<(add GR64:$src1, GR64:$src2), (ADD64rr GR64:$src1, GR64:$src2)>;
1998
1999// add reg, mem
2000def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
2001          (ADD8rm GR8:$src1, addr:$src2)>;
2002def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
2003          (ADD16rm GR16:$src1, addr:$src2)>;
2004def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
2005          (ADD32rm GR32:$src1, addr:$src2)>;
2006def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
2007          (ADD64rm GR64:$src1, addr:$src2)>;
2008
2009// add reg, imm
2010def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri  GR8:$src1 , imm:$src2)>;
2011def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
2012def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
2013def : Pat<(add GR16:$src1, i16immSExt8:$src2),
2014          (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
2015def : Pat<(add GR32:$src1, i32immSExt8:$src2),
2016          (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
2017def : Pat<(add GR64:$src1, i64immSExt8:$src2),
2018          (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
2019def : Pat<(add GR64:$src1, i64immSExt32:$src2),
2020          (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
2021
2022// sub reg, reg
2023def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr  GR8 :$src1, GR8 :$src2)>;
2024def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
2025def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
2026def : Pat<(sub GR64:$src1, GR64:$src2), (SUB64rr GR64:$src1, GR64:$src2)>;
2027
2028// sub reg, mem
2029def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
2030          (SUB8rm GR8:$src1, addr:$src2)>;
2031def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
2032          (SUB16rm GR16:$src1, addr:$src2)>;
2033def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
2034          (SUB32rm GR32:$src1, addr:$src2)>;
2035def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
2036          (SUB64rm GR64:$src1, addr:$src2)>;
2037
2038// sub reg, imm
2039def : Pat<(sub GR8:$src1, imm:$src2),
2040          (SUB8ri GR8:$src1, imm:$src2)>;
2041def : Pat<(sub GR16:$src1, imm:$src2),
2042          (SUB16ri GR16:$src1, imm:$src2)>;
2043def : Pat<(sub GR32:$src1, imm:$src2),
2044          (SUB32ri GR32:$src1, imm:$src2)>;
2045def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
2046          (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
2047def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
2048          (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
2049def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
2050          (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
2051def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
2052          (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
2053
2054// sub 0, reg
2055def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r  GR8 :$src)>;
2056def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
2057def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
2058def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
2059
2060// mul reg, reg
2061def : Pat<(mul GR16:$src1, GR16:$src2),
2062          (IMUL16rr GR16:$src1, GR16:$src2)>;
2063def : Pat<(mul GR32:$src1, GR32:$src2),
2064          (IMUL32rr GR32:$src1, GR32:$src2)>;
2065def : Pat<(mul GR64:$src1, GR64:$src2),
2066          (IMUL64rr GR64:$src1, GR64:$src2)>;
2067
2068// mul reg, mem
2069def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
2070          (IMUL16rm GR16:$src1, addr:$src2)>;
2071def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
2072          (IMUL32rm GR32:$src1, addr:$src2)>;
2073def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
2074          (IMUL64rm GR64:$src1, addr:$src2)>;
2075
2076// mul reg, imm
2077def : Pat<(mul GR16:$src1, imm:$src2),
2078          (IMUL16rri GR16:$src1, imm:$src2)>;
2079def : Pat<(mul GR32:$src1, imm:$src2),
2080          (IMUL32rri GR32:$src1, imm:$src2)>;
2081def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
2082          (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
2083def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
2084          (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
2085def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
2086          (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
2087def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
2088          (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
2089
2090// reg = mul mem, imm
2091def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
2092          (IMUL16rmi addr:$src1, imm:$src2)>;
2093def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
2094          (IMUL32rmi addr:$src1, imm:$src2)>;
2095def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
2096          (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
2097def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
2098          (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
2099def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
2100          (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
2101def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
2102          (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
2103
2104// Increment/Decrement reg.
2105// Do not make INC/DEC if it is slow
2106let Predicates = [UseIncDec] in {
2107  def : Pat<(add GR8:$src, 1),   (INC8r GR8:$src)>;
2108  def : Pat<(add GR16:$src, 1),  (INC16r GR16:$src)>;
2109  def : Pat<(add GR32:$src, 1),  (INC32r GR32:$src)>;
2110  def : Pat<(add GR64:$src, 1),  (INC64r GR64:$src)>;
2111  def : Pat<(add GR8:$src, -1),  (DEC8r GR8:$src)>;
2112  def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
2113  def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
2114  def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
2115
2116  def : Pat<(X86add_flag_nocf GR8:$src, -1),  (DEC8r GR8:$src)>;
2117  def : Pat<(X86add_flag_nocf GR16:$src, -1), (DEC16r GR16:$src)>;
2118  def : Pat<(X86add_flag_nocf GR32:$src, -1), (DEC32r GR32:$src)>;
2119  def : Pat<(X86add_flag_nocf GR64:$src, -1), (DEC64r GR64:$src)>;
2120  def : Pat<(X86sub_flag_nocf GR8:$src, -1),  (INC8r GR8:$src)>;
2121  def : Pat<(X86sub_flag_nocf GR16:$src, -1), (INC16r GR16:$src)>;
2122  def : Pat<(X86sub_flag_nocf GR32:$src, -1), (INC32r GR32:$src)>;
2123  def : Pat<(X86sub_flag_nocf GR64:$src, -1), (INC64r GR64:$src)>;
2124}
2125
2126// or reg/reg.
2127def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr  GR8 :$src1, GR8 :$src2)>;
2128def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
2129def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
2130def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
2131
2132// or reg/mem
2133def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
2134          (OR8rm GR8:$src1, addr:$src2)>;
2135def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
2136          (OR16rm GR16:$src1, addr:$src2)>;
2137def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
2138          (OR32rm GR32:$src1, addr:$src2)>;
2139def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
2140          (OR64rm GR64:$src1, addr:$src2)>;
2141
2142// or reg/imm
2143def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri  GR8 :$src1, imm:$src2)>;
2144def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
2145def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
2146def : Pat<(or GR16:$src1, i16immSExt8:$src2),
2147          (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
2148def : Pat<(or GR32:$src1, i32immSExt8:$src2),
2149          (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
2150def : Pat<(or GR64:$src1, i64immSExt8:$src2),
2151          (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
2152def : Pat<(or GR64:$src1, i64immSExt32:$src2),
2153          (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
2154
2155// xor reg/reg
2156def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr  GR8 :$src1, GR8 :$src2)>;
2157def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
2158def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
2159def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
2160
2161// xor reg/mem
2162def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
2163          (XOR8rm GR8:$src1, addr:$src2)>;
2164def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
2165          (XOR16rm GR16:$src1, addr:$src2)>;
2166def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
2167          (XOR32rm GR32:$src1, addr:$src2)>;
2168def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
2169          (XOR64rm GR64:$src1, addr:$src2)>;
2170
2171// xor reg/imm
2172def : Pat<(xor GR8:$src1, imm:$src2),
2173          (XOR8ri GR8:$src1, imm:$src2)>;
2174def : Pat<(xor GR16:$src1, imm:$src2),
2175          (XOR16ri GR16:$src1, imm:$src2)>;
2176def : Pat<(xor GR32:$src1, imm:$src2),
2177          (XOR32ri GR32:$src1, imm:$src2)>;
2178def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
2179          (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
2180def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
2181          (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
2182def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
2183          (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
2184def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
2185          (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
2186
2187// and reg/reg
2188def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr  GR8 :$src1, GR8 :$src2)>;
2189def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
2190def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
2191def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
2192
2193// and reg/mem
2194def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
2195          (AND8rm GR8:$src1, addr:$src2)>;
2196def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
2197          (AND16rm GR16:$src1, addr:$src2)>;
2198def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
2199          (AND32rm GR32:$src1, addr:$src2)>;
2200def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
2201          (AND64rm GR64:$src1, addr:$src2)>;
2202
2203// and reg/imm
2204def : Pat<(and GR8:$src1, imm:$src2),
2205          (AND8ri GR8:$src1, imm:$src2)>;
2206def : Pat<(and GR16:$src1, imm:$src2),
2207          (AND16ri GR16:$src1, imm:$src2)>;
2208def : Pat<(and GR32:$src1, imm:$src2),
2209          (AND32ri GR32:$src1, imm:$src2)>;
2210def : Pat<(and GR16:$src1, i16immSExt8:$src2),
2211          (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
2212def : Pat<(and GR32:$src1, i32immSExt8:$src2),
2213          (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
2214def : Pat<(and GR64:$src1, i64immSExt8:$src2),
2215          (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
2216def : Pat<(and GR64:$src1, i64immSExt32:$src2),
2217          (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
2218
2219// Bit scan instruction patterns to match explicit zero-undef behavior.
2220def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
2221def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
2222def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
2223def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
2224def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
2225def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
2226
2227// When HasMOVBE is enabled it is possible to get a non-legalized
2228// register-register 16 bit bswap. This maps it to a ROL instruction.
2229let Predicates = [HasMOVBE] in {
2230 def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
2231}
2232