1//===-- X86InstrControl.td - Control Flow Instructions -----*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the X86 jump, return, call, and related instructions.
10//
11//===----------------------------------------------------------------------===//
12
13//===----------------------------------------------------------------------===//
14//  Control Flow Instructions.
15//
16
17// Return instructions.
18//
19// The X86retflag return instructions are variadic because we may add ST0 and
20// ST1 arguments when returning values on the x87 stack.
21let isTerminator = 1, isReturn = 1, isBarrier = 1,
22    hasCtrlDep = 1, FPForm = SpecialFP, SchedRW = [WriteJumpLd] in {
23  def RETL   : I   <0xC3, RawFrm, (outs), (ins variable_ops),
24                    "ret{l}", []>, OpSize32, Requires<[Not64BitMode]>;
25  def RETQ   : I   <0xC3, RawFrm, (outs), (ins variable_ops),
26                    "ret{q}", []>, OpSize32, Requires<[In64BitMode]>;
27  def RETW   : I   <0xC3, RawFrm, (outs), (ins),
28                    "ret{w}", []>, OpSize16;
29  def RETIL  : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
30                    "ret{l}\t$amt", []>, OpSize32, Requires<[Not64BitMode]>;
31  def RETIQ  : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
32                    "ret{q}\t$amt", []>, OpSize32, Requires<[In64BitMode]>;
33  def RETIW  : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt),
34                    "ret{w}\t$amt", []>, OpSize16;
35  def LRETL  : I   <0xCB, RawFrm, (outs), (ins),
36                    "{l}ret{l|f}", []>, OpSize32;
37  def LRETQ  : RI  <0xCB, RawFrm, (outs), (ins),
38                    "{l}ret{|f}q", []>, Requires<[In64BitMode]>;
39  def LRETW  : I   <0xCB, RawFrm, (outs), (ins),
40                    "{l}ret{w|f}", []>, OpSize16;
41  def LRETIL : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
42                    "{l}ret{l|f}\t$amt", []>, OpSize32;
43  def LRETIQ : RIi16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
44                    "{l}ret{|f}q\t$amt", []>, Requires<[In64BitMode]>;
45  def LRETIW : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
46                    "{l}ret{w|f}\t$amt", []>, OpSize16;
47
48  // The machine return from interrupt instruction, but sometimes we need to
49  // perform a post-epilogue stack adjustment. Codegen emits the pseudo form
50  // which expands to include an SP adjustment if necessary.
51  def IRET16 : I   <0xcf, RawFrm, (outs), (ins), "iret{w}", []>,
52               OpSize16;
53  def IRET32 : I   <0xcf, RawFrm, (outs), (ins), "iret{l|d}", []>, OpSize32;
54  def IRET64 : RI  <0xcf, RawFrm, (outs), (ins), "iretq", []>, Requires<[In64BitMode]>;
55  let isCodeGenOnly = 1 in
56  def IRET : PseudoI<(outs), (ins i32imm:$adj), [(X86iret timm:$adj)]>;
57  def RET  : PseudoI<(outs), (ins i32imm:$adj, variable_ops), [(X86retflag timm:$adj)]>;
58}
59
60// Unconditional branches.
61let isBarrier = 1, isBranch = 1, isTerminator = 1, SchedRW = [WriteJump] in {
62  def JMP_1 : Ii8PCRel<0xEB, RawFrm, (outs), (ins brtarget8:$dst),
63                       "jmp\t$dst", [(br bb:$dst)]>;
64  let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in {
65    def JMP_2 : Ii16PCRel<0xE9, RawFrm, (outs), (ins brtarget16:$dst),
66                          "jmp\t$dst", []>, OpSize16;
67    def JMP_4 : Ii32PCRel<0xE9, RawFrm, (outs), (ins brtarget32:$dst),
68                          "jmp\t$dst", []>, OpSize32;
69  }
70}
71
72// Conditional Branches.
73let isBranch = 1, isTerminator = 1, Uses = [EFLAGS], SchedRW = [WriteJump],
74    isCodeGenOnly = 1, ForceDisassemble = 1 in {
75  def JCC_1 : Ii8PCRel <0x70, AddCCFrm, (outs),
76                        (ins brtarget8:$dst, ccode:$cond),
77                        "j${cond}\t$dst",
78                        [(X86brcond bb:$dst, imm:$cond, EFLAGS)]>;
79  let hasSideEffects = 0 in {
80    def JCC_2 : Ii16PCRel<0x80, AddCCFrm, (outs),
81                          (ins brtarget16:$dst, ccode:$cond),
82                          "j${cond}\t$dst",
83                          []>, OpSize16, TB;
84    def JCC_4 : Ii32PCRel<0x80, AddCCFrm, (outs),
85                          (ins brtarget32:$dst, ccode:$cond),
86                          "j${cond}\t$dst",
87                          []>, TB, OpSize32;
88  }
89}
90
91def : InstAlias<"jo\t$dst",  (JCC_1 brtarget8:$dst,  0), 0>;
92def : InstAlias<"jno\t$dst", (JCC_1 brtarget8:$dst,  1), 0>;
93def : InstAlias<"jb\t$dst",  (JCC_1 brtarget8:$dst,  2), 0>;
94def : InstAlias<"jae\t$dst", (JCC_1 brtarget8:$dst,  3), 0>;
95def : InstAlias<"je\t$dst",  (JCC_1 brtarget8:$dst,  4), 0>;
96def : InstAlias<"jne\t$dst", (JCC_1 brtarget8:$dst,  5), 0>;
97def : InstAlias<"jbe\t$dst", (JCC_1 brtarget8:$dst,  6), 0>;
98def : InstAlias<"ja\t$dst",  (JCC_1 brtarget8:$dst,  7), 0>;
99def : InstAlias<"js\t$dst",  (JCC_1 brtarget8:$dst,  8), 0>;
100def : InstAlias<"jns\t$dst", (JCC_1 brtarget8:$dst,  9), 0>;
101def : InstAlias<"jp\t$dst",  (JCC_1 brtarget8:$dst, 10), 0>;
102def : InstAlias<"jnp\t$dst", (JCC_1 brtarget8:$dst, 11), 0>;
103def : InstAlias<"jl\t$dst",  (JCC_1 brtarget8:$dst, 12), 0>;
104def : InstAlias<"jge\t$dst", (JCC_1 brtarget8:$dst, 13), 0>;
105def : InstAlias<"jle\t$dst", (JCC_1 brtarget8:$dst, 14), 0>;
106def : InstAlias<"jg\t$dst",  (JCC_1 brtarget8:$dst, 15), 0>;
107
108// jcx/jecx/jrcx instructions.
109let isBranch = 1, isTerminator = 1, hasSideEffects = 0, SchedRW = [WriteJump] in {
110  // These are the 32-bit versions of this instruction for the asmparser.  In
111  // 32-bit mode, the address size prefix is jcxz and the unprefixed version is
112  // jecxz.
113  let Uses = [CX] in
114    def JCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
115                        "jcxz\t$dst", []>, AdSize16, Requires<[Not64BitMode]>;
116  let Uses = [ECX] in
117    def JECXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
118                        "jecxz\t$dst", []>, AdSize32;
119
120  let Uses = [RCX] in
121    def JRCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
122                         "jrcxz\t$dst", []>, AdSize64, Requires<[In64BitMode]>;
123}
124
125// Indirect branches
126let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
127  def JMP16r     : I<0xFF, MRM4r, (outs), (ins GR16:$dst), "jmp{w}\t{*}$dst",
128                     [(brind GR16:$dst)]>, Requires<[Not64BitMode]>,
129                     OpSize16, Sched<[WriteJump]>;
130  def JMP16m     : I<0xFF, MRM4m, (outs), (ins i16mem:$dst), "jmp{w}\t{*}$dst",
131                     [(brind (loadi16 addr:$dst))]>, Requires<[Not64BitMode]>,
132                     OpSize16, Sched<[WriteJumpLd]>;
133
134  def JMP32r     : I<0xFF, MRM4r, (outs), (ins GR32:$dst), "jmp{l}\t{*}$dst",
135                     [(brind GR32:$dst)]>, Requires<[Not64BitMode]>,
136                     OpSize32, Sched<[WriteJump]>;
137  def JMP32m     : I<0xFF, MRM4m, (outs), (ins i32mem:$dst), "jmp{l}\t{*}$dst",
138                     [(brind (loadi32 addr:$dst))]>, Requires<[Not64BitMode]>,
139                     OpSize32, Sched<[WriteJumpLd]>;
140
141  def JMP64r     : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst",
142                     [(brind GR64:$dst)]>, Requires<[In64BitMode]>,
143                     Sched<[WriteJump]>;
144  def JMP64m     : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), "jmp{q}\t{*}$dst",
145                     [(brind (loadi64 addr:$dst))]>, Requires<[In64BitMode]>,
146                     Sched<[WriteJumpLd]>;
147
148  // Non-tracking jumps for IBT, use with caution.
149  let isCodeGenOnly = 1 in {
150    def JMP16r_NT : I<0xFF, MRM4r, (outs), (ins GR16 : $dst), "jmp{w}\t{*}$dst",
151                      [(X86NoTrackBrind GR16 : $dst)]>, Requires<[Not64BitMode]>,
152                      OpSize16, Sched<[WriteJump]>, NOTRACK;
153
154    def JMP16m_NT : I<0xFF, MRM4m, (outs), (ins i16mem : $dst), "jmp{w}\t{*}$dst",
155                      [(X86NoTrackBrind (loadi16 addr : $dst))]>,
156                      Requires<[Not64BitMode]>, OpSize16, Sched<[WriteJumpLd]>,
157                      NOTRACK;
158
159    def JMP32r_NT : I<0xFF, MRM4r, (outs), (ins GR32 : $dst), "jmp{l}\t{*}$dst",
160                      [(X86NoTrackBrind GR32 : $dst)]>, Requires<[Not64BitMode]>,
161                      OpSize32, Sched<[WriteJump]>, NOTRACK;
162    def JMP32m_NT : I<0xFF, MRM4m, (outs), (ins i32mem : $dst), "jmp{l}\t{*}$dst",
163                      [(X86NoTrackBrind (loadi32 addr : $dst))]>,
164                      Requires<[Not64BitMode]>, OpSize32, Sched<[WriteJumpLd]>,
165                      NOTRACK;
166
167    def JMP64r_NT : I<0xFF, MRM4r, (outs), (ins GR64 : $dst), "jmp{q}\t{*}$dst",
168                      [(X86NoTrackBrind GR64 : $dst)]>, Requires<[In64BitMode]>,
169                      Sched<[WriteJump]>, NOTRACK;
170    def JMP64m_NT : I<0xFF, MRM4m, (outs), (ins i64mem : $dst), "jmp{q}\t{*}$dst",
171                      [(X86NoTrackBrind(loadi64 addr : $dst))]>,
172                      Requires<[In64BitMode]>, Sched<[WriteJumpLd]>, NOTRACK;
173  }
174
175  let Predicates = [Not64BitMode], AsmVariantName = "att" in {
176    def FARJMP16i  : Iseg16<0xEA, RawFrmImm16, (outs),
177                            (ins i16imm:$off, i16imm:$seg),
178                            "ljmp{w}\t$seg, $off", []>,
179                            OpSize16, Sched<[WriteJump]>;
180    def FARJMP32i  : Iseg32<0xEA, RawFrmImm16, (outs),
181                            (ins i32imm:$off, i16imm:$seg),
182                            "ljmp{l}\t$seg, $off", []>,
183                            OpSize32, Sched<[WriteJump]>;
184  }
185  def FARJMP64   : RI<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
186                      "ljmp{q}\t{*}$dst", []>, Sched<[WriteJump]>, Requires<[In64BitMode]>;
187
188  let AsmVariantName = "att" in
189  def FARJMP16m  : I<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
190                     "ljmp{w}\t{*}$dst", []>, OpSize16, Sched<[WriteJumpLd]>;
191  def FARJMP32m  : I<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
192                     "{l}jmp{l}\t{*}$dst", []>, OpSize32, Sched<[WriteJumpLd]>;
193}
194
195// Loop instructions
196let SchedRW = [WriteJump] in {
197def LOOP   : Ii8PCRel<0xE2, RawFrm, (outs), (ins brtarget8:$dst), "loop\t$dst", []>;
198def LOOPE  : Ii8PCRel<0xE1, RawFrm, (outs), (ins brtarget8:$dst), "loope\t$dst", []>;
199def LOOPNE : Ii8PCRel<0xE0, RawFrm, (outs), (ins brtarget8:$dst), "loopne\t$dst", []>;
200}
201
202//===----------------------------------------------------------------------===//
203//  Call Instructions...
204//
205let isCall = 1 in
206  // All calls clobber the non-callee saved registers. ESP is marked as
207  // a use to prevent stack-pointer assignments that appear immediately
208  // before calls from potentially appearing dead. Uses for argument
209  // registers are added manually.
210  let Uses = [ESP, SSP] in {
211    def CALLpcrel32 : Ii32PCRel<0xE8, RawFrm,
212                           (outs), (ins i32imm_pcrel:$dst),
213                           "call{l}\t$dst", []>, OpSize32,
214                      Requires<[Not64BitMode]>, Sched<[WriteJump]>;
215    let hasSideEffects = 0 in
216      def CALLpcrel16 : Ii16PCRel<0xE8, RawFrm,
217                             (outs), (ins i16imm_pcrel:$dst),
218                             "call{w}\t$dst", []>, OpSize16,
219                        Sched<[WriteJump]>;
220    def CALL16r     : I<0xFF, MRM2r, (outs), (ins GR16:$dst),
221                        "call{w}\t{*}$dst", [(X86call GR16:$dst)]>,
222                      OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>;
223    def CALL16m     : I<0xFF, MRM2m, (outs), (ins i16mem:$dst),
224                        "call{w}\t{*}$dst", [(X86call (loadi16 addr:$dst))]>,
225                        OpSize16, Requires<[Not64BitMode,FavorMemIndirectCall]>,
226                        Sched<[WriteJumpLd]>;
227    def CALL32r     : I<0xFF, MRM2r, (outs), (ins GR32:$dst),
228                        "call{l}\t{*}$dst", [(X86call GR32:$dst)]>, OpSize32,
229                        Requires<[Not64BitMode,NotUseRetpolineIndirectCalls]>,
230                        Sched<[WriteJump]>;
231    def CALL32m     : I<0xFF, MRM2m, (outs), (ins i32mem:$dst),
232                        "call{l}\t{*}$dst", [(X86call (loadi32 addr:$dst))]>,
233                        OpSize32,
234                        Requires<[Not64BitMode,FavorMemIndirectCall,
235                                  NotUseRetpolineIndirectCalls]>,
236                        Sched<[WriteJumpLd]>;
237
238    // Non-tracking calls for IBT, use with caution.
239    let isCodeGenOnly = 1 in {
240      def CALL16r_NT : I<0xFF, MRM2r, (outs), (ins GR16 : $dst),
241                        "call{w}\t{*}$dst",[(X86NoTrackCall GR16 : $dst)]>,
242                        OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>, NOTRACK;
243      def CALL16m_NT : I<0xFF, MRM2m, (outs), (ins i16mem : $dst),
244                        "call{w}\t{*}$dst",[(X86NoTrackCall(loadi16 addr : $dst))]>,
245                        OpSize16, Requires<[Not64BitMode,FavorMemIndirectCall]>,
246                        Sched<[WriteJumpLd]>, NOTRACK;
247      def CALL32r_NT : I<0xFF, MRM2r, (outs), (ins GR32 : $dst),
248                        "call{l}\t{*}$dst",[(X86NoTrackCall GR32 : $dst)]>,
249                        OpSize32, Requires<[Not64BitMode]>, Sched<[WriteJump]>, NOTRACK;
250      def CALL32m_NT : I<0xFF, MRM2m, (outs), (ins i32mem : $dst),
251                        "call{l}\t{*}$dst",[(X86NoTrackCall(loadi32 addr : $dst))]>,
252                        OpSize32, Requires<[Not64BitMode,FavorMemIndirectCall]>,
253                        Sched<[WriteJumpLd]>, NOTRACK;
254    }
255
256    let Predicates = [Not64BitMode], AsmVariantName = "att" in {
257      def FARCALL16i  : Iseg16<0x9A, RawFrmImm16, (outs),
258                               (ins i16imm:$off, i16imm:$seg),
259                               "lcall{w}\t$seg, $off", []>,
260                               OpSize16, Sched<[WriteJump]>;
261      def FARCALL32i  : Iseg32<0x9A, RawFrmImm16, (outs),
262                               (ins i32imm:$off, i16imm:$seg),
263                               "lcall{l}\t$seg, $off", []>,
264                               OpSize32, Sched<[WriteJump]>;
265    }
266
267    def FARCALL16m  : I<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
268                        "lcall{w}\t{*}$dst", []>, OpSize16, Sched<[WriteJumpLd]>;
269    def FARCALL32m  : I<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
270                        "{l}call{l}\t{*}$dst", []>, OpSize32, Sched<[WriteJumpLd]>;
271  }
272
273
274// Tail call stuff.
275let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
276    isCodeGenOnly = 1, SchedRW = [WriteJumpLd] in
277  let Uses = [ESP, SSP] in {
278  def TCRETURNdi : PseudoI<(outs),
279                     (ins i32imm_pcrel:$dst, i32imm:$offset), []>, NotMemoryFoldable;
280  def TCRETURNri : PseudoI<(outs),
281                     (ins ptr_rc_tailcall:$dst, i32imm:$offset), []>, NotMemoryFoldable;
282  let mayLoad = 1 in
283  def TCRETURNmi : PseudoI<(outs),
284                     (ins i32mem_TC:$dst, i32imm:$offset), []>;
285
286  // FIXME: The should be pseudo instructions that are lowered when going to
287  // mcinst.
288  def TAILJMPd : Ii32PCRel<0xE9, RawFrm, (outs),
289                           (ins i32imm_pcrel:$dst), "jmp\t$dst", []>;
290
291  def TAILJMPr : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst),
292                   "", []>;  // FIXME: Remove encoding when JIT is dead.
293  let mayLoad = 1 in
294  def TAILJMPm : I<0xFF, MRM4m, (outs), (ins i32mem_TC:$dst),
295                   "jmp{l}\t{*}$dst", []>;
296}
297
298// Conditional tail calls are similar to the above, but they are branches
299// rather than barriers, and they use EFLAGS.
300let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1,
301    isCodeGenOnly = 1, SchedRW = [WriteJumpLd] in
302  let Uses = [ESP, EFLAGS, SSP] in {
303  def TCRETURNdicc : PseudoI<(outs),
304                     (ins i32imm_pcrel:$dst, i32imm:$offset, i32imm:$cond), []>;
305
306  // This gets substituted to a conditional jump instruction in MC lowering.
307  def TAILJMPd_CC : Ii32PCRel<0x80, RawFrm, (outs),
308                           (ins i32imm_pcrel:$dst, i32imm:$cond), "", []>;
309}
310
311
312//===----------------------------------------------------------------------===//
313//  Call Instructions...
314//
315
316// RSP is marked as a use to prevent stack-pointer assignments that appear
317// immediately before calls from potentially appearing dead. Uses for argument
318// registers are added manually.
319let isCall = 1, Uses = [RSP, SSP], SchedRW = [WriteJump] in {
320  // NOTE: this pattern doesn't match "X86call imm", because we do not know
321  // that the offset between an arbitrary immediate and the call will fit in
322  // the 32-bit pcrel field that we have.
323  def CALL64pcrel32 : Ii32PCRel<0xE8, RawFrm,
324                        (outs), (ins i64i32imm_pcrel:$dst),
325                        "call{q}\t$dst", []>, OpSize32,
326                      Requires<[In64BitMode]>;
327  def CALL64r       : I<0xFF, MRM2r, (outs), (ins GR64:$dst),
328                        "call{q}\t{*}$dst", [(X86call GR64:$dst)]>,
329                      Requires<[In64BitMode,NotUseRetpolineIndirectCalls]>;
330  def CALL64m       : I<0xFF, MRM2m, (outs), (ins i64mem:$dst),
331                        "call{q}\t{*}$dst", [(X86call (loadi64 addr:$dst))]>,
332                      Requires<[In64BitMode,FavorMemIndirectCall,
333                                NotUseRetpolineIndirectCalls]>;
334
335  // Non-tracking calls for IBT, use with caution.
336  let isCodeGenOnly = 1 in {
337    def CALL64r_NT : I<0xFF, MRM2r, (outs), (ins GR64 : $dst),
338                      "call{q}\t{*}$dst",[(X86NoTrackCall GR64 : $dst)]>,
339                      Requires<[In64BitMode]>, NOTRACK;
340    def CALL64m_NT : I<0xFF, MRM2m, (outs), (ins i64mem : $dst),
341                       "call{q}\t{*}$dst",
342                       [(X86NoTrackCall(loadi64 addr : $dst))]>,
343                       Requires<[In64BitMode,FavorMemIndirectCall]>, NOTRACK;
344  }
345
346  def FARCALL64   : RI<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
347                       "lcall{q}\t{*}$dst", []>;
348}
349
350let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
351    isCodeGenOnly = 1, Uses = [RSP, SSP], SchedRW = [WriteJump] in {
352  def TCRETURNdi64   : PseudoI<(outs),
353                        (ins i64i32imm_pcrel:$dst, i32imm:$offset),
354                        []>;
355  def TCRETURNri64   : PseudoI<(outs),
356                        (ins ptr_rc_tailcall:$dst, i32imm:$offset), []>, NotMemoryFoldable;
357  let mayLoad = 1 in
358  def TCRETURNmi64   : PseudoI<(outs),
359                        (ins i64mem_TC:$dst, i32imm:$offset), []>, NotMemoryFoldable;
360
361  def TAILJMPd64 : Ii32PCRel<0xE9, RawFrm, (outs), (ins i64i32imm_pcrel:$dst),
362                   "jmp\t$dst", []>;
363
364  def TAILJMPr64 : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst),
365                     "jmp{q}\t{*}$dst", []>;
366
367  let mayLoad = 1 in
368  def TAILJMPm64 : I<0xFF, MRM4m, (outs), (ins i64mem_TC:$dst),
369                     "jmp{q}\t{*}$dst", []>;
370
371  // Win64 wants indirect jumps leaving the function to have a REX_W prefix.
372  let hasREX_WPrefix = 1 in {
373    def TAILJMPr64_REX : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst),
374                           "rex64 jmp{q}\t{*}$dst", []>;
375
376    let mayLoad = 1 in
377    def TAILJMPm64_REX : I<0xFF, MRM4m, (outs), (ins i64mem_TC:$dst),
378                           "rex64 jmp{q}\t{*}$dst", []>;
379  }
380}
381
382let isPseudo = 1, isCall = 1, isCodeGenOnly = 1,
383    Uses = [RSP, SSP],
384    usesCustomInserter = 1,
385    SchedRW = [WriteJump] in {
386  def RETPOLINE_CALL32 :
387    PseudoI<(outs), (ins GR32:$dst), [(X86call GR32:$dst)]>,
388            Requires<[Not64BitMode,UseRetpolineIndirectCalls]>;
389
390  def RETPOLINE_CALL64 :
391    PseudoI<(outs), (ins GR64:$dst), [(X86call GR64:$dst)]>,
392            Requires<[In64BitMode,UseRetpolineIndirectCalls]>;
393
394  // Retpoline variant of indirect tail calls.
395  let isTerminator = 1, isReturn = 1, isBarrier = 1 in {
396    def RETPOLINE_TCRETURN64 :
397      PseudoI<(outs), (ins GR64:$dst, i32imm:$offset), []>;
398    def RETPOLINE_TCRETURN32 :
399      PseudoI<(outs), (ins GR32:$dst, i32imm:$offset), []>;
400  }
401}
402
403// Conditional tail calls are similar to the above, but they are branches
404// rather than barriers, and they use EFLAGS.
405let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1,
406    isCodeGenOnly = 1, SchedRW = [WriteJumpLd] in
407  let Uses = [RSP, EFLAGS, SSP] in {
408  def TCRETURNdi64cc : PseudoI<(outs),
409                           (ins i64i32imm_pcrel:$dst, i32imm:$offset,
410                            i32imm:$cond), []>;
411
412  // This gets substituted to a conditional jump instruction in MC lowering.
413  def TAILJMPd64_CC : Ii32PCRel<0x80, RawFrm, (outs),
414                           (ins i64i32imm_pcrel:$dst, i32imm:$cond), "", []>;
415}
416