1//===- X86InstrFPStack.td - FPU Instruction Set ------------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the X86 x87 FPU instruction set, defining the
10// instructions, and properties of the instructions which are needed for code
11// generation, machine code emission, and analysis.
12//
13//===----------------------------------------------------------------------===//
14
15// Some 'special' instructions - expanded after instruction selection.
16// Clobbers EFLAGS due to OR instruction used internally.
17// FIXME: Can we model this in SelectionDAG?
18let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Defs = [EFLAGS] in {
19  def FP32_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP32:$src),
20                              [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>;
21  def FP32_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP32:$src),
22                              [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>;
23  def FP32_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP32:$src),
24                              [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>;
25  def FP64_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP64:$src),
26                              [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>;
27  def FP64_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP64:$src),
28                              [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>;
29  def FP64_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP64:$src),
30                              [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>;
31  def FP80_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP80:$src),
32                              [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>;
33  def FP80_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP80:$src),
34                              [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>;
35  def FP80_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP80:$src),
36                              [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>;
37
38  def FP80_ADDr : PseudoI<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2),
39                          [(set RFP80:$dst,
40                                (any_X86fp80_add  RFP80:$src1, RFP80:$src2))]>;
41  def FP80_ADDm32 : PseudoI<(outs RFP80:$dst), (ins RFP80:$src1, f32mem:$src2),
42                            [(set RFP80:$dst,
43                                  (any_X86fp80_add RFP80:$src1,
44                                                   (f80 (extloadf32 addr:$src2))))]>;
45}
46
47// All FP Stack operations are represented with four instructions here.  The
48// first three instructions, generated by the instruction selector, use "RFP32"
49// "RFP64" or "RFP80" registers: traditional register files to reference 32-bit,
50// 64-bit or 80-bit floating point values.  These sizes apply to the values,
51// not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be
52// copied to each other without losing information.  These instructions are all
53// pseudo instructions and use the "_Fp" suffix.
54// In some cases there are additional variants with a mixture of different
55// register sizes.
56// The second instruction is defined with FPI, which is the actual instruction
57// emitted by the assembler.  These use "RST" registers, although frequently
58// the actual register(s) used are implicit.  These are always 80 bits.
59// The FP stackifier pass converts one to the other after register allocation
60// occurs.
61//
62// Note that the FpI instruction should have instruction selection info (e.g.
63// a pattern) and the FPI instruction should have emission info (e.g. opcode
64// encoding and asm printing info).
65
66// FpIf32, FpIf64 - Floating Point Pseudo Instruction template.
67// f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1.
68// f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2.
69// f80 instructions cannot use SSE and use neither of these.
70class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
71             FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>;
72class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
73             FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>;
74
75// Factoring for arithmetic.
76multiclass FPBinary_rr<SDPatternOperator OpNode> {
77// Register op register -> register
78// These are separated out because they have no reversed form.
79def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP,
80                [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>;
81def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP,
82                [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>;
83def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP,
84                [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>;
85}
86// The FopST0 series are not included here because of the irregularities
87// in where the 'r' goes in assembly output.
88// These instructions cannot address 80-bit memory.
89multiclass FPBinary<SDPatternOperator OpNode, Format fp, string asmstring,
90                    bit Forward = 1> {
91// ST(0) = ST(0) + [mem]
92def _Fp32m  : FpIf32<(outs RFP32:$dst),
93                     (ins RFP32:$src1, f32mem:$src2), OneArgFPRW,
94                  [!if(Forward,
95                       (set RFP32:$dst,
96                        (OpNode RFP32:$src1, (loadf32 addr:$src2))),
97                       (set RFP32:$dst,
98                        (OpNode (loadf32 addr:$src2), RFP32:$src1)))]>;
99def _Fp64m  : FpIf64<(outs RFP64:$dst),
100                     (ins RFP64:$src1, f64mem:$src2), OneArgFPRW,
101                  [!if(Forward,
102                       (set RFP64:$dst,
103                        (OpNode RFP64:$src1, (loadf64 addr:$src2))),
104                       (set RFP64:$dst,
105                        (OpNode (loadf64 addr:$src2), RFP64:$src1)))]>;
106def _Fp64m32: FpIf64<(outs RFP64:$dst),
107                     (ins RFP64:$src1, f32mem:$src2), OneArgFPRW,
108                  [!if(Forward,
109                       (set RFP64:$dst,
110                        (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2)))),
111                       (set RFP64:$dst,
112                        (OpNode (f64 (extloadf32 addr:$src2)), RFP64:$src1)))]>;
113def _Fp80m32: FpI_<(outs RFP80:$dst),
114                   (ins RFP80:$src1, f32mem:$src2), OneArgFPRW,
115                  [!if(Forward,
116                       (set RFP80:$dst,
117                        (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2)))),
118                       (set RFP80:$dst,
119                        (OpNode (f80 (extloadf32 addr:$src2)), RFP80:$src1)))]>;
120def _Fp80m64: FpI_<(outs RFP80:$dst),
121                   (ins RFP80:$src1, f64mem:$src2), OneArgFPRW,
122                  [!if(Forward,
123                       (set RFP80:$dst,
124                        (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2)))),
125                       (set RFP80:$dst,
126                        (OpNode (f80 (extloadf64 addr:$src2)), RFP80:$src1)))]>;
127let mayLoad = 1 in
128def _F32m  : FPI<0xD8, fp, (outs), (ins f32mem:$src),
129                 !strconcat("f", asmstring, "{s}\t$src")>;
130let mayLoad = 1 in
131def _F64m  : FPI<0xDC, fp, (outs), (ins f64mem:$src),
132                 !strconcat("f", asmstring, "{l}\t$src")>;
133// ST(0) = ST(0) + [memint]
134def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2),
135                       OneArgFPRW,
136                       [!if(Forward,
137                            (set RFP32:$dst,
138                             (OpNode RFP32:$src1, (X86fild16 addr:$src2))),
139                            (set RFP32:$dst,
140                             (OpNode (X86fild16 addr:$src2), RFP32:$src1)))]>;
141def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2),
142                       OneArgFPRW,
143                       [!if(Forward,
144                            (set RFP32:$dst,
145                             (OpNode RFP32:$src1, (X86fild32 addr:$src2))),
146                            (set RFP32:$dst,
147                             (OpNode (X86fild32 addr:$src2), RFP32:$src1)))]>;
148def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2),
149                       OneArgFPRW,
150                       [!if(Forward,
151                            (set RFP64:$dst,
152                             (OpNode RFP64:$src1, (X86fild16 addr:$src2))),
153                            (set RFP64:$dst,
154                             (OpNode (X86fild16 addr:$src2), RFP64:$src1)))]>;
155def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2),
156                       OneArgFPRW,
157                       [!if(Forward,
158                            (set RFP64:$dst,
159                             (OpNode RFP64:$src1, (X86fild32 addr:$src2))),
160                            (set RFP64:$dst,
161                             (OpNode (X86fild32 addr:$src2), RFP64:$src1)))]>;
162def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2),
163                     OneArgFPRW,
164                     [!if(Forward,
165                          (set RFP80:$dst,
166                           (OpNode RFP80:$src1, (X86fild16 addr:$src2))),
167                          (set RFP80:$dst,
168                           (OpNode (X86fild16 addr:$src2), RFP80:$src1)))]>;
169def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2),
170                     OneArgFPRW,
171                     [!if(Forward,
172                          (set RFP80:$dst,
173                           (OpNode RFP80:$src1, (X86fild32 addr:$src2))),
174                          (set RFP80:$dst,
175                           (OpNode (X86fild32 addr:$src2), RFP80:$src1)))]>;
176let mayLoad = 1 in
177def _FI16m  : FPI<0xDE, fp, (outs), (ins i16mem:$src),
178                  !strconcat("fi", asmstring, "{s}\t$src")>;
179let mayLoad = 1 in
180def _FI32m  : FPI<0xDA, fp, (outs), (ins i32mem:$src),
181                  !strconcat("fi", asmstring, "{l}\t$src")>;
182}
183
184let Uses = [FPCW], mayRaiseFPException = 1 in {
185// FPBinary_rr just defines pseudo-instructions, no need to set a scheduling
186// resources.
187let hasNoSchedulingInfo = 1 in {
188defm ADD : FPBinary_rr<any_fadd>;
189defm SUB : FPBinary_rr<any_fsub>;
190defm MUL : FPBinary_rr<any_fmul>;
191defm DIV : FPBinary_rr<any_fdiv>;
192}
193
194// Sets the scheduling resources for the actual NAME#_F<size>m definitions.
195let SchedRW = [WriteFAddLd] in {
196defm ADD : FPBinary<any_fadd, MRM0m, "add">;
197defm SUB : FPBinary<any_fsub, MRM4m, "sub">;
198defm SUBR: FPBinary<any_fsub ,MRM5m, "subr", 0>;
199}
200
201let SchedRW = [WriteFMulLd] in {
202defm MUL : FPBinary<any_fmul, MRM1m, "mul">;
203}
204
205let SchedRW = [WriteFDivLd] in {
206defm DIV : FPBinary<any_fdiv, MRM6m, "div">;
207defm DIVR: FPBinary<any_fdiv, MRM7m, "divr", 0>;
208}
209} // Uses = [FPCW], mayRaiseFPException = 1
210
211class FPST0rInst<Format fp, string asm>
212  : FPI<0xD8, fp, (outs), (ins RSTi:$op), asm>;
213class FPrST0Inst<Format fp, string asm>
214  : FPI<0xDC, fp, (outs), (ins RSTi:$op), asm>;
215class FPrST0PInst<Format fp, string asm>
216  : FPI<0xDE, fp, (outs), (ins RSTi:$op), asm>;
217
218// NOTE: GAS and apparently all other AT&T style assemblers have a broken notion
219// of some of the 'reverse' forms of the fsub and fdiv instructions.  As such,
220// we have to put some 'r's in and take them out of weird places.
221let SchedRW = [WriteFAdd], Uses = [FPCW], mayRaiseFPException = 1 in {
222def ADD_FST0r   : FPST0rInst <MRM0r, "fadd\t{$op, %st|st, $op}">;
223def ADD_FrST0   : FPrST0Inst <MRM0r, "fadd\t{%st, $op|$op, st}">;
224def ADD_FPrST0  : FPrST0PInst<MRM0r, "faddp\t{%st, $op|$op, st}">;
225def SUBR_FST0r  : FPST0rInst <MRM5r, "fsubr\t{$op, %st|st, $op}">;
226def SUB_FrST0   : FPrST0Inst <MRM5r, "fsub{r}\t{%st, $op|$op, st}">;
227def SUB_FPrST0  : FPrST0PInst<MRM5r, "fsub{r}p\t{%st, $op|$op, st}">;
228def SUB_FST0r   : FPST0rInst <MRM4r, "fsub\t{$op, %st|st, $op}">;
229def SUBR_FrST0  : FPrST0Inst <MRM4r, "fsub{|r}\t{%st, $op|$op, st}">;
230def SUBR_FPrST0 : FPrST0PInst<MRM4r, "fsub{|r}p\t{%st, $op|$op, st}">;
231} // SchedRW
232let SchedRW = [WriteFCom], Uses = [FPCW], mayRaiseFPException = 1 in {
233def COM_FST0r   : FPST0rInst <MRM2r, "fcom\t$op">;
234def COMP_FST0r  : FPST0rInst <MRM3r, "fcomp\t$op">;
235} // SchedRW
236let SchedRW = [WriteFMul], Uses = [FPCW], mayRaiseFPException = 1 in {
237def MUL_FST0r   : FPST0rInst <MRM1r, "fmul\t{$op, %st|st, $op}">;
238def MUL_FrST0   : FPrST0Inst <MRM1r, "fmul\t{%st, $op|$op, st}">;
239def MUL_FPrST0  : FPrST0PInst<MRM1r, "fmulp\t{%st, $op|$op, st}">;
240} // SchedRW
241let SchedRW = [WriteFDiv], Uses = [FPCW], mayRaiseFPException = 1 in {
242def DIVR_FST0r  : FPST0rInst <MRM7r, "fdivr\t{$op, %st|st, $op}">;
243def DIV_FrST0   : FPrST0Inst <MRM7r, "fdiv{r}\t{%st, $op|$op, st}">;
244def DIV_FPrST0  : FPrST0PInst<MRM7r, "fdiv{r}p\t{%st, $op|$op, st}">;
245def DIV_FST0r   : FPST0rInst <MRM6r, "fdiv\t{$op, %st|st, $op}">;
246def DIVR_FrST0  : FPrST0Inst <MRM6r, "fdiv{|r}\t{%st, $op|$op, st}">;
247def DIVR_FPrST0 : FPrST0PInst<MRM6r, "fdiv{|r}p\t{%st, $op|$op, st}">;
248} // SchedRW
249
250// Unary operations.
251multiclass FPUnary<SDPatternOperator OpNode, Format fp, string asmstring> {
252def _Fp32  : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW,
253                 [(set RFP32:$dst, (OpNode RFP32:$src))]>;
254def _Fp64  : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW,
255                 [(set RFP64:$dst, (OpNode RFP64:$src))]>;
256def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW,
257                 [(set RFP80:$dst, (OpNode RFP80:$src))]>;
258def _F     : FPI<0xD9, fp, (outs), (ins), asmstring>;
259}
260
261let SchedRW = [WriteFSign] in {
262defm CHS : FPUnary<fneg, MRM_E0, "fchs">;
263defm ABS : FPUnary<fabs, MRM_E1, "fabs">;
264}
265
266let Uses = [FPCW], mayRaiseFPException = 1 in {
267let SchedRW = [WriteFSqrt80] in
268defm SQRT: FPUnary<any_fsqrt,MRM_FA, "fsqrt">;
269
270let SchedRW = [WriteFCom] in {
271let hasSideEffects = 0 in {
272def TST_Fp32  : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
273def TST_Fp64  : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
274def TST_Fp80  : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
275} // hasSideEffects
276
277def TST_F  : FPI<0xD9, MRM_E4, (outs), (ins), "ftst">;
278} // SchedRW
279} // Uses = [FPCW], mayRaiseFPException = 1
280
281let SchedRW = [WriteFTest], Defs = [FPSW] in {
282def XAM_Fp32  : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
283def XAM_Fp64  : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
284def XAM_Fp80  : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
285def XAM_F     : FPI<0xD9, MRM_E5, (outs), (ins), "fxam">;
286} // SchedRW
287
288// Versions of FP instructions that take a single memory operand.  Added for the
289//   disassembler; remove as they are included with patterns elsewhere.
290let SchedRW = [WriteFComLd], Uses = [FPCW], mayRaiseFPException = 1,
291    mayLoad = 1 in {
292def FCOM32m  : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom{s}\t$src">;
293def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp{s}\t$src">;
294
295def FCOM64m  : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom{l}\t$src">;
296def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp{l}\t$src">;
297
298def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{s}\t$src">;
299def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{s}\t$src">;
300
301def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">;
302def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">;
303} // SchedRW
304
305let SchedRW = [WriteMicrocoded] in {
306let Defs = [FPSW, FPCW], mayLoad = 1 in {
307def FRSTORm  : FPI<0xDD, MRM4m, (outs), (ins anymem:$src), "frstor\t$src">;
308let Predicates = [HasX87] in
309def FLDENVm  : I<0xD9, MRM4m, (outs), (ins anymem:$src), "fldenv\t$src",
310                 [(X86fpenv_set addr:$src)]>;
311}
312
313let Defs = [FPSW, FPCW], Uses = [FPSW, FPCW], mayStore = 1 in {
314def FSAVEm   : FPI<0xDD, MRM6m, (outs), (ins anymem:$dst), "fnsave\t$dst">;
315let Predicates = [HasX87] in
316def FSTENVm  : I<0xD9, MRM6m, (outs), (ins anymem:$dst), "fnstenv\t$dst",
317                 [(X86fpenv_get addr:$dst)]>;
318}
319
320let Uses = [FPSW], mayStore = 1 in
321def FNSTSWm  : FPI<0xDD, MRM7m, (outs), (ins i16mem:$dst), "fnstsw\t$dst">;
322
323let mayLoad = 1 in
324def FBLDm    : FPI<0xDF, MRM4m, (outs), (ins f80mem:$src), "fbld\t$src">;
325let Uses = [FPCW] ,mayRaiseFPException = 1, mayStore = 1 in
326def FBSTPm   : FPI<0xDF, MRM6m, (outs), (ins f80mem:$dst), "fbstp\t$dst">;
327} // SchedRW
328
329// Floating point cmovs.
330class FpIf32CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
331  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32, HasCMOV]>;
332class FpIf64CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
333  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64, HasCMOV]>;
334
335multiclass FPCMov<PatLeaf cc> {
336  def _Fp32  : FpIf32CMov<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2),
337                       CondMovFP,
338                     [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2,
339                                        cc, EFLAGS))]>;
340  def _Fp64  : FpIf64CMov<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2),
341                       CondMovFP,
342                     [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2,
343                                        cc, EFLAGS))]>;
344  def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2),
345                     CondMovFP,
346                     [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2,
347                                        cc, EFLAGS))]>,
348                                        Requires<[HasCMOV]>;
349}
350
351let SchedRW = [WriteFCMOV] in {
352let Uses = [EFLAGS], Constraints = "$src1 = $dst" in {
353defm CMOVB  : FPCMov<X86_COND_B>;
354defm CMOVBE : FPCMov<X86_COND_BE>;
355defm CMOVE  : FPCMov<X86_COND_E>;
356defm CMOVP  : FPCMov<X86_COND_P>;
357defm CMOVNB : FPCMov<X86_COND_AE>;
358defm CMOVNBE: FPCMov<X86_COND_A>;
359defm CMOVNE : FPCMov<X86_COND_NE>;
360defm CMOVNP : FPCMov<X86_COND_NP>;
361} // Uses = [EFLAGS], Constraints = "$src1 = $dst"
362
363let Predicates = [HasCMOV] in {
364// These are not factored because there's no clean way to pass DA/DB.
365def CMOVB_F  : FPI<0xDA, MRM0r, (outs), (ins RSTi:$op),
366                  "fcmovb\t{$op, %st|st, $op}">;
367def CMOVBE_F : FPI<0xDA, MRM2r, (outs), (ins RSTi:$op),
368                  "fcmovbe\t{$op, %st|st, $op}">;
369def CMOVE_F  : FPI<0xDA, MRM1r, (outs), (ins RSTi:$op),
370                  "fcmove\t{$op, %st|st, $op}">;
371def CMOVP_F  : FPI<0xDA, MRM3r, (outs), (ins RSTi:$op),
372                  "fcmovu\t{$op, %st|st, $op}">;
373def CMOVNB_F : FPI<0xDB, MRM0r, (outs), (ins RSTi:$op),
374                  "fcmovnb\t{$op, %st|st, $op}">;
375def CMOVNBE_F: FPI<0xDB, MRM2r, (outs), (ins RSTi:$op),
376                  "fcmovnbe\t{$op, %st|st, $op}">;
377def CMOVNE_F : FPI<0xDB, MRM1r, (outs), (ins RSTi:$op),
378                  "fcmovne\t{$op, %st|st, $op}">;
379def CMOVNP_F : FPI<0xDB, MRM3r, (outs), (ins RSTi:$op),
380                  "fcmovnu\t{$op, %st|st, $op}">;
381} // Predicates = [HasCMOV]
382} // SchedRW
383
384let mayRaiseFPException = 1 in {
385// Floating point loads & stores.
386let SchedRW = [WriteLoad], Uses = [FPCW] in {
387let canFoldAsLoad = 1 in {
388def LD_Fp32m   : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP,
389                  [(set RFP32:$dst, (loadf32 addr:$src))]>;
390def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP,
391                  [(set RFP64:$dst, (loadf64 addr:$src))]>;
392def LD_Fp80m   : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP,
393                  [(set RFP80:$dst, (loadf80 addr:$src))]>;
394} // canFoldAsLoad
395def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP,
396                  [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>;
397def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP,
398                  [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>;
399def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP,
400                  [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>;
401let mayRaiseFPException = 0 in {
402def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP,
403                  [(set RFP32:$dst, (X86fild16 addr:$src))]>;
404def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP,
405                  [(set RFP32:$dst, (X86fild32 addr:$src))]>;
406def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP,
407                  [(set RFP32:$dst, (X86fild64 addr:$src))]>;
408def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP,
409                  [(set RFP64:$dst, (X86fild16 addr:$src))]>;
410def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP,
411                  [(set RFP64:$dst, (X86fild32 addr:$src))]>;
412def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP,
413                  [(set RFP64:$dst, (X86fild64 addr:$src))]>;
414def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP,
415                  [(set RFP80:$dst, (X86fild16 addr:$src))]>;
416def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP,
417                  [(set RFP80:$dst, (X86fild32 addr:$src))]>;
418def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP,
419                  [(set RFP80:$dst, (X86fild64 addr:$src))]>;
420} // mayRaiseFPException = 0
421} // SchedRW
422
423let SchedRW = [WriteStore], Uses = [FPCW] in {
424def ST_Fp32m   : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP,
425                  [(store RFP32:$src, addr:$op)]>;
426def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP,
427                  [(truncstoref32 RFP64:$src, addr:$op)]>;
428def ST_Fp64m   : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP,
429                  [(store RFP64:$src, addr:$op)]>;
430def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP,
431                  [(truncstoref32 RFP80:$src, addr:$op)]>;
432def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP,
433                  [(truncstoref64 RFP80:$src, addr:$op)]>;
434// FST does not support 80-bit memory target; FSTP must be used.
435
436let mayStore = 1, hasSideEffects = 0 in {
437def ST_FpP32m    : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>;
438def ST_FpP64m32  : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>;
439def ST_FpP64m    : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>;
440def ST_FpP80m32  : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>;
441def ST_FpP80m64  : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>;
442} // mayStore
443
444def ST_FpP80m    : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP,
445                    [(store RFP80:$src, addr:$op)]>;
446
447let mayStore = 1, hasSideEffects = 0 in {
448def IST_Fp16m32  : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>;
449def IST_Fp32m32  : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
450                          [(X86fist32 RFP32:$src, addr:$op)]>;
451def IST_Fp64m32  : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
452                          [(X86fist64 RFP32:$src, addr:$op)]>;
453def IST_Fp16m64  : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>;
454def IST_Fp32m64  : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
455                          [(X86fist32 RFP64:$src, addr:$op)]>;
456def IST_Fp64m64  : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
457                          [(X86fist64 RFP64:$src, addr:$op)]>;
458def IST_Fp16m80  : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>;
459def IST_Fp32m80  : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
460                        [(X86fist32 RFP80:$src, addr:$op)]>;
461def IST_Fp64m80  : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
462                        [(X86fist64 RFP80:$src, addr:$op)]>;
463} // mayStore
464} // SchedRW, Uses = [FPCW]
465
466let mayLoad = 1, SchedRW = [WriteLoad], Uses = [FPCW] in {
467def LD_F32m   : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src">;
468def LD_F64m   : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src">;
469def LD_F80m   : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src">;
470let mayRaiseFPException = 0 in {
471def ILD_F16m  : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src">;
472def ILD_F32m  : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src">;
473def ILD_F64m  : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src">;
474}
475}
476let mayStore = 1, SchedRW = [WriteStore], Uses = [FPCW] in {
477def ST_F32m   : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst">;
478def ST_F64m   : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst">;
479def ST_FP32m  : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst">;
480def ST_FP64m  : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst">;
481def ST_FP80m  : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst">;
482def IST_F16m  : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst">;
483def IST_F32m  : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst">;
484def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst">;
485def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst">;
486def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst">;
487}
488
489// FISTTP requires SSE3 even though it's a FPStack op.
490let Predicates = [HasSSE3], SchedRW = [WriteStore], Uses = [FPCW] in {
491def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP,
492                    [(X86fp_to_i16mem RFP32:$src, addr:$op)]>;
493def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
494                    [(X86fp_to_i32mem RFP32:$src, addr:$op)]>;
495def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
496                    [(X86fp_to_i64mem RFP32:$src, addr:$op)]>;
497def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP,
498                    [(X86fp_to_i16mem RFP64:$src, addr:$op)]>;
499def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
500                    [(X86fp_to_i32mem RFP64:$src, addr:$op)]>;
501def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
502                    [(X86fp_to_i64mem RFP64:$src, addr:$op)]>;
503def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP,
504                    [(X86fp_to_i16mem RFP80:$src, addr:$op)]>;
505def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
506                    [(X86fp_to_i32mem RFP80:$src, addr:$op)]>;
507def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
508                    [(X86fp_to_i64mem RFP80:$src, addr:$op)]>;
509} // Predicates = [HasSSE3]
510
511let mayStore = 1, SchedRW = [WriteStore], Uses = [FPCW] in {
512def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst">;
513def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst">;
514def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst), "fisttp{ll}\t$dst">;
515}
516
517// FP Stack manipulation instructions.
518let SchedRW = [WriteMove], Uses = [FPCW] in {
519def LD_Frr   : FPI<0xD9, MRM0r, (outs), (ins RSTi:$op), "fld\t$op">;
520def ST_Frr   : FPI<0xDD, MRM2r, (outs), (ins RSTi:$op), "fst\t$op">;
521def ST_FPrr  : FPI<0xDD, MRM3r, (outs), (ins RSTi:$op), "fstp\t$op">;
522let mayRaiseFPException = 0 in
523def XCH_F    : FPI<0xD9, MRM1r, (outs), (ins RSTi:$op), "fxch\t$op">;
524}
525
526// Floating point constant loads.
527let SchedRW = [WriteZero], Uses = [FPCW], isReMaterializable = 1 in {
528def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
529                [(set RFP32:$dst, fpimm0)]>;
530def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
531                [(set RFP32:$dst, fpimm1)]>;
532def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
533                [(set RFP64:$dst, fpimm0)]>;
534def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
535                [(set RFP64:$dst, fpimm1)]>;
536def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
537                [(set RFP80:$dst, fpimm0)]>;
538def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
539                [(set RFP80:$dst, fpimm1)]>;
540}
541
542let SchedRW = [WriteFLD0], Uses = [FPCW], mayRaiseFPException = 0 in
543def LD_F0 : FPI<0xD9, MRM_EE, (outs), (ins), "fldz">;
544
545let SchedRW = [WriteFLD1], Uses = [FPCW], mayRaiseFPException = 0 in
546def LD_F1 : FPI<0xD9, MRM_E8, (outs), (ins), "fld1">;
547
548let SchedRW = [WriteFLDC], Defs = [FPSW], Uses = [FPCW], mayRaiseFPException = 0 in {
549def FLDL2T : I<0xD9, MRM_E9, (outs), (ins), "fldl2t", []>;
550def FLDL2E : I<0xD9, MRM_EA, (outs), (ins), "fldl2e", []>;
551def FLDPI : I<0xD9, MRM_EB, (outs), (ins), "fldpi", []>;
552def FLDLG2 : I<0xD9, MRM_EC, (outs), (ins), "fldlg2", []>;
553def FLDLN2 : I<0xD9, MRM_ED, (outs), (ins), "fldln2", []>;
554} // SchedRW
555
556// Floating point compares.
557let SchedRW = [WriteFCom], Uses = [FPCW], hasSideEffects = 0 in {
558def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, []>;
559def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, []>;
560def UCOM_Fpr80 : FpI_  <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, []>;
561def COM_Fpr32  : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, []>;
562def COM_Fpr64  : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, []>;
563def COM_Fpr80  : FpI_  <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, []>;
564} // SchedRW
565} // mayRaiseFPException = 1
566
567let SchedRW = [WriteFCom], mayRaiseFPException = 1 in {
568// CC = ST(0) cmp ST(i)
569let Defs = [EFLAGS, FPSW], Uses = [FPCW] in {
570def UCOM_FpIr32: FpI_<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
571                  [(set EFLAGS, (X86any_fcmp RFP32:$lhs, RFP32:$rhs))]>,
572                  Requires<[FPStackf32, HasCMOV]>;
573def UCOM_FpIr64: FpI_<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
574                  [(set EFLAGS, (X86any_fcmp RFP64:$lhs, RFP64:$rhs))]>,
575                  Requires<[FPStackf64, HasCMOV]>;
576def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
577                  [(set EFLAGS, (X86any_fcmp RFP80:$lhs, RFP80:$rhs))]>,
578                  Requires<[HasCMOV]>;
579def COM_FpIr32: FpI_<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
580                  [(set EFLAGS, (X86strict_fcmps RFP32:$lhs, RFP32:$rhs))]>,
581                  Requires<[FPStackf32, HasCMOV]>;
582def COM_FpIr64: FpI_<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
583                  [(set EFLAGS, (X86strict_fcmps RFP64:$lhs, RFP64:$rhs))]>,
584                  Requires<[FPStackf64, HasCMOV]>;
585def COM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
586                  [(set EFLAGS, (X86strict_fcmps RFP80:$lhs, RFP80:$rhs))]>,
587                  Requires<[HasCMOV]>;
588}
589
590let Uses = [ST0, FPCW] in {
591def UCOM_Fr    : FPI<0xDD, MRM4r,    // FPSW = cmp ST(0) with ST(i)
592                    (outs), (ins RSTi:$reg), "fucom\t$reg">;
593def UCOM_FPr   : FPI<0xDD, MRM5r,    // FPSW = cmp ST(0) with ST(i), pop
594                    (outs), (ins RSTi:$reg), "fucomp\t$reg">;
595def UCOM_FPPr  : FPI<0xDA, MRM_E9,       // cmp ST(0) with ST(1), pop, pop
596                    (outs), (ins), "fucompp">;
597}
598
599let Defs = [EFLAGS, FPSW], Uses = [ST0, FPCW] in {
600def UCOM_FIr   : FPI<0xDB, MRM5r,     // CC = cmp ST(0) with ST(i)
601                    (outs), (ins RSTi:$reg), "fucomi\t{$reg, %st|st, $reg}">;
602def UCOM_FIPr  : FPI<0xDF, MRM5r,     // CC = cmp ST(0) with ST(i), pop
603                    (outs), (ins RSTi:$reg), "fucompi\t{$reg, %st|st, $reg}">;
604
605def COM_FIr : FPI<0xDB, MRM6r, (outs), (ins RSTi:$reg),
606                  "fcomi\t{$reg, %st|st, $reg}">;
607def COM_FIPr : FPI<0xDF, MRM6r, (outs), (ins RSTi:$reg),
608                   "fcompi\t{$reg, %st|st, $reg}">;
609}
610} // SchedRW
611
612// Floating point flag ops.
613let SchedRW = [WriteALU] in {
614let Defs = [AX, FPSW], Uses = [FPSW], hasSideEffects = 0 in
615def FNSTSW16r : I<0xDF, MRM_E0,                  // AX = fp flags
616                  (outs), (ins), "fnstsw\t{%ax|ax}", []>;
617let Defs = [FPSW], Uses = [FPCW] in
618def FNSTCW16m : I<0xD9, MRM7m,                   // [mem16] = X87 control world
619                  (outs), (ins i16mem:$dst), "fnstcw\t$dst",
620                  [(X86fp_cwd_get16 addr:$dst)]>;
621} // SchedRW
622let Defs = [FPSW,FPCW], mayLoad = 1 in
623def FLDCW16m  : I<0xD9, MRM5m,                   // X87 control world = [mem16]
624                  (outs), (ins i16mem:$dst), "fldcw\t$dst",
625                  [(X86fp_cwd_set16 addr:$dst)]>,
626                Sched<[WriteLoad]>;
627
628// FPU control instructions
629let SchedRW = [WriteMicrocoded] in {
630def FFREE : FPI<0xDD, MRM0r, (outs), (ins RSTi:$reg), "ffree\t$reg">;
631def FFREEP : FPI<0xDF, MRM0r, (outs), (ins RSTi:$reg), "ffreep\t$reg">;
632
633let Defs = [FPSW, FPCW] in
634def FNINIT : I<0xDB, MRM_E3, (outs), (ins), "fninit", []>;
635// Clear exceptions
636let Defs = [FPSW] in
637def FNCLEX : I<0xDB, MRM_E2, (outs), (ins), "fnclex", []>;
638} // SchedRW
639
640// Operand-less floating-point instructions for the disassembler.
641let Defs = [FPSW] in
642def FNOP : I<0xD9, MRM_D0, (outs), (ins), "fnop", []>, Sched<[WriteNop]>;
643
644let SchedRW = [WriteMicrocoded] in {
645let Defs = [FPSW] in {
646def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", []>;
647def FDECSTP : I<0xD9, MRM_F6, (outs), (ins), "fdecstp", []>;
648def FINCSTP : I<0xD9, MRM_F7, (outs), (ins), "fincstp", []>;
649let Uses = [FPCW], mayRaiseFPException = 1 in {
650def F2XM1 : I<0xD9, MRM_F0, (outs), (ins), "f2xm1", []>;
651def FYL2X : I<0xD9, MRM_F1, (outs), (ins), "fyl2x", []>;
652def FPTAN : I<0xD9, MRM_F2, (outs), (ins), "fptan", []>;
653def FPATAN : I<0xD9, MRM_F3, (outs), (ins), "fpatan", []>;
654def FXTRACT : I<0xD9, MRM_F4, (outs), (ins), "fxtract", []>;
655def FPREM1 : I<0xD9, MRM_F5, (outs), (ins), "fprem1", []>;
656def FPREM : I<0xD9, MRM_F8, (outs), (ins), "fprem", []>;
657def FYL2XP1 : I<0xD9, MRM_F9, (outs), (ins), "fyl2xp1", []>;
658def FSIN : I<0xD9, MRM_FE, (outs), (ins), "fsin", []>;
659def FCOS : I<0xD9, MRM_FF, (outs), (ins), "fcos", []>;
660def FSINCOS : I<0xD9, MRM_FB, (outs), (ins), "fsincos", []>;
661def FRNDINT : I<0xD9, MRM_FC, (outs), (ins), "frndint", []>;
662def FSCALE : I<0xD9, MRM_FD, (outs), (ins), "fscale", []>;
663def FCOMPP : I<0xDE, MRM_D9, (outs), (ins), "fcompp", []>;
664} // Uses = [FPCW], mayRaiseFPException = 1
665} // Defs = [FPSW]
666
667let Uses = [FPSW, FPCW] in {
668def FXSAVE : I<0xAE, MRM0m, (outs), (ins opaquemem:$dst),
669             "fxsave\t$dst", [(int_x86_fxsave addr:$dst)]>, PS,
670             Requires<[HasFXSR]>;
671def FXSAVE64 : RI<0xAE, MRM0m, (outs), (ins opaquemem:$dst),
672               "fxsave64\t$dst", [(int_x86_fxsave64 addr:$dst)]>,
673               PS, Requires<[HasFXSR, In64BitMode]>;
674} // Uses = [FPSW, FPCW]
675
676let Defs = [FPSW, FPCW] in {
677def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaquemem:$src),
678              "fxrstor\t$src", [(int_x86_fxrstor addr:$src)]>,
679              PS, Requires<[HasFXSR]>;
680def FXRSTOR64 : RI<0xAE, MRM1m, (outs), (ins opaquemem:$src),
681                "fxrstor64\t$src", [(int_x86_fxrstor64 addr:$src)]>,
682                PS, Requires<[HasFXSR, In64BitMode]>;
683} // Defs = [FPSW, FPCW]
684} // SchedRW
685
686//===----------------------------------------------------------------------===//
687// Non-Instruction Patterns
688//===----------------------------------------------------------------------===//
689
690// Required for RET of f32 / f64 / f80 values.
691def : Pat<(X86fldf32 addr:$src), (LD_Fp32m addr:$src)>;
692def : Pat<(X86fldf32 addr:$src), (LD_Fp32m64 addr:$src)>;
693def : Pat<(X86fldf64 addr:$src), (LD_Fp64m addr:$src)>;
694def : Pat<(X86fldf32 addr:$src), (LD_Fp32m80 addr:$src)>;
695def : Pat<(X86fldf64 addr:$src), (LD_Fp64m80 addr:$src)>;
696def : Pat<(X86fldf80 addr:$src), (LD_Fp80m addr:$src)>;
697
698// Required for CALL which return f32 / f64 / f80 values.
699def : Pat<(X86fstf32 RFP32:$src, addr:$op), (ST_Fp32m addr:$op, RFP32:$src)>;
700def : Pat<(X86fstf32 RFP64:$src, addr:$op), (ST_Fp64m32 addr:$op, RFP64:$src)>;
701def : Pat<(X86fstf64 RFP64:$src, addr:$op), (ST_Fp64m addr:$op, RFP64:$src)>;
702def : Pat<(X86fstf32 RFP80:$src, addr:$op), (ST_Fp80m32 addr:$op, RFP80:$src)>;
703def : Pat<(X86fstf64 RFP80:$src, addr:$op), (ST_Fp80m64 addr:$op, RFP80:$src)>;
704def : Pat<(X86fstf80 RFP80:$src, addr:$op), (ST_FpP80m addr:$op, RFP80:$src)>;
705
706// Floating point constant -0.0 and -1.0
707def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>;
708def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>;
709def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>;
710def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>;
711def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>;
712def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>;
713
714// FP extensions map onto simple pseudo-value conversions if they are to/from
715// the FP stack.
716def : Pat<(f64 (any_fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP64)>,
717          Requires<[FPStackf32]>;
718def : Pat<(f80 (any_fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP80)>,
719           Requires<[FPStackf32]>;
720def : Pat<(f80 (any_fpextend RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP80)>,
721           Requires<[FPStackf64]>;
722
723// FP truncations map onto simple pseudo-value conversions if they are to/from
724// the FP stack.  We have validated that only value-preserving truncations make
725// it through isel.
726def : Pat<(f32 (any_fpround RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP32)>,
727          Requires<[FPStackf32]>;
728def : Pat<(f32 (any_fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP32)>,
729           Requires<[FPStackf32]>;
730def : Pat<(f64 (any_fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP64)>,
731           Requires<[FPStackf64]>;
732