1//===- X86InstrFPStack.td - FPU Instruction Set ------------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the X86 x87 FPU instruction set, defining the
10// instructions, and properties of the instructions which are needed for code
11// generation, machine code emission, and analysis.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// FPStack specific DAG Nodes.
17//===----------------------------------------------------------------------===//
18
19def SDTX86Fld       : SDTypeProfile<1, 1, [SDTCisFP<0>,
20                                           SDTCisPtrTy<1>]>;
21def SDTX86Fst       : SDTypeProfile<0, 2, [SDTCisFP<0>,
22                                           SDTCisPtrTy<1>]>;
23def SDTX86Fild      : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
24def SDTX86Fist      : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
25
26def SDTX86CwdStore  : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
27def SDTX86CwdLoad   : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
28def SDTX86FPEnv     : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
29
30def X86fp80_add     : SDNode<"X86ISD::FP80_ADD", SDTFPBinOp, [SDNPCommutative]>;
31def X86strict_fp80_add : SDNode<"X86ISD::STRICT_FP80_ADD", SDTFPBinOp,
32                        [SDNPHasChain,SDNPCommutative]>;
33def any_X86fp80_add : PatFrags<(ops node:$lhs, node:$rhs),
34                               [(X86strict_fp80_add node:$lhs, node:$rhs),
35                                (X86fp80_add node:$lhs, node:$rhs)]>;
36
37def X86fld          : SDNode<"X86ISD::FLD", SDTX86Fld,
38                             [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
39def X86fst          : SDNode<"X86ISD::FST", SDTX86Fst,
40                             [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
41def X86fild         : SDNode<"X86ISD::FILD", SDTX86Fild,
42                             [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
43def X86fist         : SDNode<"X86ISD::FIST", SDTX86Fist,
44                             [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
45def X86fp_to_mem : SDNode<"X86ISD::FP_TO_INT_IN_MEM", SDTX86Fst,
46                          [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
47def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m",          SDTX86CwdStore,
48                             [SDNPHasChain, SDNPMayStore, SDNPSideEffect,
49                              SDNPMemOperand]>;
50def X86fp_cwd_set16 : SDNode<"X86ISD::FLDCW16m",           SDTX86CwdLoad,
51                             [SDNPHasChain, SDNPMayLoad, SDNPSideEffect,
52                              SDNPMemOperand]>;
53def X86fpenv_get    : SDNode<"X86ISD::FNSTENVm",           SDTX86FPEnv,
54                             [SDNPHasChain, SDNPMayStore, SDNPSideEffect,
55                              SDNPMemOperand]>;
56def X86fpenv_set    : SDNode<"X86ISD::FLDENVm",            SDTX86FPEnv,
57                             [SDNPHasChain, SDNPMayLoad, SDNPSideEffect,
58                              SDNPMemOperand]>;
59
60def X86fstf32 : PatFrag<(ops node:$val, node:$ptr),
61                        (X86fst node:$val, node:$ptr), [{
62  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f32;
63}]>;
64def X86fstf64 : PatFrag<(ops node:$val, node:$ptr),
65                        (X86fst node:$val, node:$ptr), [{
66  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f64;
67}]>;
68def X86fstf80 : PatFrag<(ops node:$val, node:$ptr),
69                        (X86fst node:$val, node:$ptr), [{
70  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f80;
71}]>;
72
73def X86fldf32 : PatFrag<(ops node:$ptr), (X86fld node:$ptr), [{
74  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f32;
75}]>;
76def X86fldf64 : PatFrag<(ops node:$ptr), (X86fld node:$ptr), [{
77  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f64;
78}]>;
79def X86fldf80 : PatFrag<(ops node:$ptr), (X86fld node:$ptr), [{
80  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f80;
81}]>;
82
83def X86fild16 : PatFrag<(ops node:$ptr), (X86fild node:$ptr), [{
84  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
85}]>;
86def X86fild32 : PatFrag<(ops node:$ptr), (X86fild node:$ptr), [{
87  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
88}]>;
89def X86fild64 : PatFrag<(ops node:$ptr), (X86fild node:$ptr), [{
90  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
91}]>;
92
93def X86fist32 : PatFrag<(ops node:$val, node:$ptr),
94                        (X86fist node:$val, node:$ptr), [{
95  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
96}]>;
97
98def X86fist64 : PatFrag<(ops node:$val, node:$ptr),
99                        (X86fist node:$val, node:$ptr), [{
100  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
101}]>;
102
103def X86fp_to_i16mem : PatFrag<(ops node:$val, node:$ptr),
104                              (X86fp_to_mem node:$val, node:$ptr), [{
105  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
106}]>;
107def X86fp_to_i32mem : PatFrag<(ops node:$val, node:$ptr),
108                              (X86fp_to_mem node:$val, node:$ptr), [{
109  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
110}]>;
111def X86fp_to_i64mem : PatFrag<(ops node:$val, node:$ptr),
112                              (X86fp_to_mem node:$val, node:$ptr), [{
113  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
114}]>;
115
116//===----------------------------------------------------------------------===//
117// FPStack pattern fragments
118//===----------------------------------------------------------------------===//
119
120def fpimm0 : FPImmLeaf<fAny, [{
121  return Imm.isExactlyValue(+0.0);
122}]>;
123
124def fpimmneg0 : FPImmLeaf<fAny, [{
125  return Imm.isExactlyValue(-0.0);
126}]>;
127
128def fpimm1 : FPImmLeaf<fAny, [{
129  return Imm.isExactlyValue(+1.0);
130}]>;
131
132def fpimmneg1 : FPImmLeaf<fAny, [{
133  return Imm.isExactlyValue(-1.0);
134}]>;
135
136// Some 'special' instructions - expanded after instruction selection.
137// Clobbers EFLAGS due to OR instruction used internally.
138// FIXME: Can we model this in SelectionDAG?
139let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Defs = [EFLAGS] in {
140  def FP32_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP32:$src),
141                              [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>;
142  def FP32_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP32:$src),
143                              [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>;
144  def FP32_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP32:$src),
145                              [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>;
146  def FP64_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP64:$src),
147                              [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>;
148  def FP64_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP64:$src),
149                              [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>;
150  def FP64_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP64:$src),
151                              [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>;
152  def FP80_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP80:$src),
153                              [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>;
154  def FP80_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP80:$src),
155                              [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>;
156  def FP80_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP80:$src),
157                              [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>;
158
159  def FP80_ADDr : PseudoI<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2),
160                          [(set RFP80:$dst,
161                                (any_X86fp80_add  RFP80:$src1, RFP80:$src2))]>;
162  def FP80_ADDm32 : PseudoI<(outs RFP80:$dst), (ins RFP80:$src1, f32mem:$src2),
163                            [(set RFP80:$dst,
164                                  (any_X86fp80_add RFP80:$src1,
165                                                   (f80 (extloadf32 addr:$src2))))]>;
166}
167
168// All FP Stack operations are represented with four instructions here.  The
169// first three instructions, generated by the instruction selector, use "RFP32"
170// "RFP64" or "RFP80" registers: traditional register files to reference 32-bit,
171// 64-bit or 80-bit floating point values.  These sizes apply to the values,
172// not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be
173// copied to each other without losing information.  These instructions are all
174// pseudo instructions and use the "_Fp" suffix.
175// In some cases there are additional variants with a mixture of different
176// register sizes.
177// The second instruction is defined with FPI, which is the actual instruction
178// emitted by the assembler.  These use "RST" registers, although frequently
179// the actual register(s) used are implicit.  These are always 80 bits.
180// The FP stackifier pass converts one to the other after register allocation
181// occurs.
182//
183// Note that the FpI instruction should have instruction selection info (e.g.
184// a pattern) and the FPI instruction should have emission info (e.g. opcode
185// encoding and asm printing info).
186
187// FpIf32, FpIf64 - Floating Point Pseudo Instruction template.
188// f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1.
189// f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2.
190// f80 instructions cannot use SSE and use neither of these.
191class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
192             FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>;
193class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
194             FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>;
195
196// Factoring for arithmetic.
197multiclass FPBinary_rr<SDPatternOperator OpNode> {
198// Register op register -> register
199// These are separated out because they have no reversed form.
200def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP,
201                [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>;
202def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP,
203                [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>;
204def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP,
205                [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>;
206}
207// The FopST0 series are not included here because of the irregularities
208// in where the 'r' goes in assembly output.
209// These instructions cannot address 80-bit memory.
210multiclass FPBinary<SDPatternOperator OpNode, Format fp, string asmstring,
211                    bit Forward = 1> {
212// ST(0) = ST(0) + [mem]
213def _Fp32m  : FpIf32<(outs RFP32:$dst),
214                     (ins RFP32:$src1, f32mem:$src2), OneArgFPRW,
215                  [!if(Forward,
216                       (set RFP32:$dst,
217                        (OpNode RFP32:$src1, (loadf32 addr:$src2))),
218                       (set RFP32:$dst,
219                        (OpNode (loadf32 addr:$src2), RFP32:$src1)))]>;
220def _Fp64m  : FpIf64<(outs RFP64:$dst),
221                     (ins RFP64:$src1, f64mem:$src2), OneArgFPRW,
222                  [!if(Forward,
223                       (set RFP64:$dst,
224                        (OpNode RFP64:$src1, (loadf64 addr:$src2))),
225                       (set RFP64:$dst,
226                        (OpNode (loadf64 addr:$src2), RFP64:$src1)))]>;
227def _Fp64m32: FpIf64<(outs RFP64:$dst),
228                     (ins RFP64:$src1, f32mem:$src2), OneArgFPRW,
229                  [!if(Forward,
230                       (set RFP64:$dst,
231                        (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2)))),
232                       (set RFP64:$dst,
233                        (OpNode (f64 (extloadf32 addr:$src2)), RFP64:$src1)))]>;
234def _Fp80m32: FpI_<(outs RFP80:$dst),
235                   (ins RFP80:$src1, f32mem:$src2), OneArgFPRW,
236                  [!if(Forward,
237                       (set RFP80:$dst,
238                        (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2)))),
239                       (set RFP80:$dst,
240                        (OpNode (f80 (extloadf32 addr:$src2)), RFP80:$src1)))]>;
241def _Fp80m64: FpI_<(outs RFP80:$dst),
242                   (ins RFP80:$src1, f64mem:$src2), OneArgFPRW,
243                  [!if(Forward,
244                       (set RFP80:$dst,
245                        (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2)))),
246                       (set RFP80:$dst,
247                        (OpNode (f80 (extloadf64 addr:$src2)), RFP80:$src1)))]>;
248let mayLoad = 1 in
249def _F32m  : FPI<0xD8, fp, (outs), (ins f32mem:$src),
250                 !strconcat("f", asmstring, "{s}\t$src")>;
251let mayLoad = 1 in
252def _F64m  : FPI<0xDC, fp, (outs), (ins f64mem:$src),
253                 !strconcat("f", asmstring, "{l}\t$src")>;
254// ST(0) = ST(0) + [memint]
255def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2),
256                       OneArgFPRW,
257                       [!if(Forward,
258                            (set RFP32:$dst,
259                             (OpNode RFP32:$src1, (X86fild16 addr:$src2))),
260                            (set RFP32:$dst,
261                             (OpNode (X86fild16 addr:$src2), RFP32:$src1)))]>;
262def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2),
263                       OneArgFPRW,
264                       [!if(Forward,
265                            (set RFP32:$dst,
266                             (OpNode RFP32:$src1, (X86fild32 addr:$src2))),
267                            (set RFP32:$dst,
268                             (OpNode (X86fild32 addr:$src2), RFP32:$src1)))]>;
269def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2),
270                       OneArgFPRW,
271                       [!if(Forward,
272                            (set RFP64:$dst,
273                             (OpNode RFP64:$src1, (X86fild16 addr:$src2))),
274                            (set RFP64:$dst,
275                             (OpNode (X86fild16 addr:$src2), RFP64:$src1)))]>;
276def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2),
277                       OneArgFPRW,
278                       [!if(Forward,
279                            (set RFP64:$dst,
280                             (OpNode RFP64:$src1, (X86fild32 addr:$src2))),
281                            (set RFP64:$dst,
282                             (OpNode (X86fild32 addr:$src2), RFP64:$src1)))]>;
283def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2),
284                     OneArgFPRW,
285                     [!if(Forward,
286                          (set RFP80:$dst,
287                           (OpNode RFP80:$src1, (X86fild16 addr:$src2))),
288                          (set RFP80:$dst,
289                           (OpNode (X86fild16 addr:$src2), RFP80:$src1)))]>;
290def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2),
291                     OneArgFPRW,
292                     [!if(Forward,
293                          (set RFP80:$dst,
294                           (OpNode RFP80:$src1, (X86fild32 addr:$src2))),
295                          (set RFP80:$dst,
296                           (OpNode (X86fild32 addr:$src2), RFP80:$src1)))]>;
297let mayLoad = 1 in
298def _FI16m  : FPI<0xDE, fp, (outs), (ins i16mem:$src),
299                  !strconcat("fi", asmstring, "{s}\t$src")>;
300let mayLoad = 1 in
301def _FI32m  : FPI<0xDA, fp, (outs), (ins i32mem:$src),
302                  !strconcat("fi", asmstring, "{l}\t$src")>;
303}
304
305let Uses = [FPCW], mayRaiseFPException = 1 in {
306// FPBinary_rr just defines pseudo-instructions, no need to set a scheduling
307// resources.
308let hasNoSchedulingInfo = 1 in {
309defm ADD : FPBinary_rr<any_fadd>;
310defm SUB : FPBinary_rr<any_fsub>;
311defm MUL : FPBinary_rr<any_fmul>;
312defm DIV : FPBinary_rr<any_fdiv>;
313}
314
315// Sets the scheduling resources for the actual NAME#_F<size>m definitions.
316let SchedRW = [WriteFAddLd] in {
317defm ADD : FPBinary<any_fadd, MRM0m, "add">;
318defm SUB : FPBinary<any_fsub, MRM4m, "sub">;
319defm SUBR: FPBinary<any_fsub ,MRM5m, "subr", 0>;
320}
321
322let SchedRW = [WriteFMulLd] in {
323defm MUL : FPBinary<any_fmul, MRM1m, "mul">;
324}
325
326let SchedRW = [WriteFDivLd] in {
327defm DIV : FPBinary<any_fdiv, MRM6m, "div">;
328defm DIVR: FPBinary<any_fdiv, MRM7m, "divr", 0>;
329}
330} // Uses = [FPCW], mayRaiseFPException = 1
331
332class FPST0rInst<Format fp, string asm>
333  : FPI<0xD8, fp, (outs), (ins RSTi:$op), asm>;
334class FPrST0Inst<Format fp, string asm>
335  : FPI<0xDC, fp, (outs), (ins RSTi:$op), asm>;
336class FPrST0PInst<Format fp, string asm>
337  : FPI<0xDE, fp, (outs), (ins RSTi:$op), asm>;
338
339// NOTE: GAS and apparently all other AT&T style assemblers have a broken notion
340// of some of the 'reverse' forms of the fsub and fdiv instructions.  As such,
341// we have to put some 'r's in and take them out of weird places.
342let SchedRW = [WriteFAdd], Uses = [FPCW], mayRaiseFPException = 1 in {
343def ADD_FST0r   : FPST0rInst <MRM0r, "fadd\t{$op, %st|st, $op}">;
344def ADD_FrST0   : FPrST0Inst <MRM0r, "fadd\t{%st, $op|$op, st}">;
345def ADD_FPrST0  : FPrST0PInst<MRM0r, "faddp\t{%st, $op|$op, st}">;
346def SUBR_FST0r  : FPST0rInst <MRM5r, "fsubr\t{$op, %st|st, $op}">;
347def SUB_FrST0   : FPrST0Inst <MRM5r, "fsub{r}\t{%st, $op|$op, st}">;
348def SUB_FPrST0  : FPrST0PInst<MRM5r, "fsub{r}p\t{%st, $op|$op, st}">;
349def SUB_FST0r   : FPST0rInst <MRM4r, "fsub\t{$op, %st|st, $op}">;
350def SUBR_FrST0  : FPrST0Inst <MRM4r, "fsub{|r}\t{%st, $op|$op, st}">;
351def SUBR_FPrST0 : FPrST0PInst<MRM4r, "fsub{|r}p\t{%st, $op|$op, st}">;
352} // SchedRW
353let SchedRW = [WriteFCom], Uses = [FPCW], mayRaiseFPException = 1 in {
354def COM_FST0r   : FPST0rInst <MRM2r, "fcom\t$op">;
355def COMP_FST0r  : FPST0rInst <MRM3r, "fcomp\t$op">;
356} // SchedRW
357let SchedRW = [WriteFMul], Uses = [FPCW], mayRaiseFPException = 1 in {
358def MUL_FST0r   : FPST0rInst <MRM1r, "fmul\t{$op, %st|st, $op}">;
359def MUL_FrST0   : FPrST0Inst <MRM1r, "fmul\t{%st, $op|$op, st}">;
360def MUL_FPrST0  : FPrST0PInst<MRM1r, "fmulp\t{%st, $op|$op, st}">;
361} // SchedRW
362let SchedRW = [WriteFDiv], Uses = [FPCW], mayRaiseFPException = 1 in {
363def DIVR_FST0r  : FPST0rInst <MRM7r, "fdivr\t{$op, %st|st, $op}">;
364def DIV_FrST0   : FPrST0Inst <MRM7r, "fdiv{r}\t{%st, $op|$op, st}">;
365def DIV_FPrST0  : FPrST0PInst<MRM7r, "fdiv{r}p\t{%st, $op|$op, st}">;
366def DIV_FST0r   : FPST0rInst <MRM6r, "fdiv\t{$op, %st|st, $op}">;
367def DIVR_FrST0  : FPrST0Inst <MRM6r, "fdiv{|r}\t{%st, $op|$op, st}">;
368def DIVR_FPrST0 : FPrST0PInst<MRM6r, "fdiv{|r}p\t{%st, $op|$op, st}">;
369} // SchedRW
370
371// Unary operations.
372multiclass FPUnary<SDPatternOperator OpNode, Format fp, string asmstring> {
373def _Fp32  : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW,
374                 [(set RFP32:$dst, (OpNode RFP32:$src))]>;
375def _Fp64  : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW,
376                 [(set RFP64:$dst, (OpNode RFP64:$src))]>;
377def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW,
378                 [(set RFP80:$dst, (OpNode RFP80:$src))]>;
379def _F     : FPI<0xD9, fp, (outs), (ins), asmstring>;
380}
381
382let SchedRW = [WriteFSign] in {
383defm CHS : FPUnary<fneg, MRM_E0, "fchs">;
384defm ABS : FPUnary<fabs, MRM_E1, "fabs">;
385}
386
387let Uses = [FPCW], mayRaiseFPException = 1 in {
388let SchedRW = [WriteFSqrt80] in
389defm SQRT: FPUnary<any_fsqrt,MRM_FA, "fsqrt">;
390
391let SchedRW = [WriteFCom] in {
392let hasSideEffects = 0 in {
393def TST_Fp32  : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
394def TST_Fp64  : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
395def TST_Fp80  : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
396} // hasSideEffects
397
398def TST_F  : FPI<0xD9, MRM_E4, (outs), (ins), "ftst">;
399} // SchedRW
400} // Uses = [FPCW], mayRaiseFPException = 1
401
402let SchedRW = [WriteFTest], Defs = [FPSW] in {
403def XAM_Fp32  : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
404def XAM_Fp64  : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
405def XAM_Fp80  : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
406def XAM_F     : FPI<0xD9, MRM_E5, (outs), (ins), "fxam">;
407} // SchedRW
408
409// Versions of FP instructions that take a single memory operand.  Added for the
410//   disassembler; remove as they are included with patterns elsewhere.
411let SchedRW = [WriteFComLd], Uses = [FPCW], mayRaiseFPException = 1,
412    mayLoad = 1 in {
413def FCOM32m  : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom{s}\t$src">;
414def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp{s}\t$src">;
415
416def FCOM64m  : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom{l}\t$src">;
417def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp{l}\t$src">;
418
419def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{s}\t$src">;
420def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{s}\t$src">;
421
422def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">;
423def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">;
424} // SchedRW
425
426let SchedRW = [WriteMicrocoded] in {
427let Defs = [FPSW, FPCW], mayLoad = 1 in {
428def FRSTORm  : FPI<0xDD, MRM4m, (outs), (ins anymem:$src), "frstor\t$src">;
429let Predicates = [HasX87] in
430def FLDENVm  : I<0xD9, MRM4m, (outs), (ins anymem:$src), "fldenv\t$src",
431                 [(X86fpenv_set addr:$src)]>;
432}
433
434let Defs = [FPSW, FPCW], Uses = [FPSW, FPCW], mayStore = 1 in {
435def FSAVEm   : FPI<0xDD, MRM6m, (outs), (ins anymem:$dst), "fnsave\t$dst">;
436let Predicates = [HasX87] in
437def FSTENVm  : I<0xD9, MRM6m, (outs), (ins anymem:$dst), "fnstenv\t$dst",
438                 [(X86fpenv_get addr:$dst)]>;
439}
440
441let Uses = [FPSW], mayStore = 1 in
442def FNSTSWm  : FPI<0xDD, MRM7m, (outs), (ins i16mem:$dst), "fnstsw\t$dst">;
443
444let mayLoad = 1 in
445def FBLDm    : FPI<0xDF, MRM4m, (outs), (ins f80mem:$src), "fbld\t$src">;
446let Uses = [FPCW] ,mayRaiseFPException = 1, mayStore = 1 in
447def FBSTPm   : FPI<0xDF, MRM6m, (outs), (ins f80mem:$dst), "fbstp\t$dst">;
448} // SchedRW
449
450// Floating point cmovs.
451class FpIf32CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
452  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32, HasCMOV]>;
453class FpIf64CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
454  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64, HasCMOV]>;
455
456multiclass FPCMov<PatLeaf cc> {
457  def _Fp32  : FpIf32CMov<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2),
458                       CondMovFP,
459                     [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2,
460                                        cc, EFLAGS))]>;
461  def _Fp64  : FpIf64CMov<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2),
462                       CondMovFP,
463                     [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2,
464                                        cc, EFLAGS))]>;
465  def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2),
466                     CondMovFP,
467                     [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2,
468                                        cc, EFLAGS))]>,
469                                        Requires<[HasCMOV]>;
470}
471
472let SchedRW = [WriteFCMOV] in {
473let Uses = [EFLAGS], Constraints = "$src1 = $dst" in {
474defm CMOVB  : FPCMov<X86_COND_B>;
475defm CMOVBE : FPCMov<X86_COND_BE>;
476defm CMOVE  : FPCMov<X86_COND_E>;
477defm CMOVP  : FPCMov<X86_COND_P>;
478defm CMOVNB : FPCMov<X86_COND_AE>;
479defm CMOVNBE: FPCMov<X86_COND_A>;
480defm CMOVNE : FPCMov<X86_COND_NE>;
481defm CMOVNP : FPCMov<X86_COND_NP>;
482} // Uses = [EFLAGS], Constraints = "$src1 = $dst"
483
484let Predicates = [HasCMOV] in {
485// These are not factored because there's no clean way to pass DA/DB.
486def CMOVB_F  : FPI<0xDA, MRM0r, (outs), (ins RSTi:$op),
487                  "fcmovb\t{$op, %st|st, $op}">;
488def CMOVBE_F : FPI<0xDA, MRM2r, (outs), (ins RSTi:$op),
489                  "fcmovbe\t{$op, %st|st, $op}">;
490def CMOVE_F  : FPI<0xDA, MRM1r, (outs), (ins RSTi:$op),
491                  "fcmove\t{$op, %st|st, $op}">;
492def CMOVP_F  : FPI<0xDA, MRM3r, (outs), (ins RSTi:$op),
493                  "fcmovu\t{$op, %st|st, $op}">;
494def CMOVNB_F : FPI<0xDB, MRM0r, (outs), (ins RSTi:$op),
495                  "fcmovnb\t{$op, %st|st, $op}">;
496def CMOVNBE_F: FPI<0xDB, MRM2r, (outs), (ins RSTi:$op),
497                  "fcmovnbe\t{$op, %st|st, $op}">;
498def CMOVNE_F : FPI<0xDB, MRM1r, (outs), (ins RSTi:$op),
499                  "fcmovne\t{$op, %st|st, $op}">;
500def CMOVNP_F : FPI<0xDB, MRM3r, (outs), (ins RSTi:$op),
501                  "fcmovnu\t{$op, %st|st, $op}">;
502} // Predicates = [HasCMOV]
503} // SchedRW
504
505let mayRaiseFPException = 1 in {
506// Floating point loads & stores.
507let SchedRW = [WriteLoad], Uses = [FPCW] in {
508let canFoldAsLoad = 1 in {
509def LD_Fp32m   : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP,
510                  [(set RFP32:$dst, (loadf32 addr:$src))]>;
511def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP,
512                  [(set RFP64:$dst, (loadf64 addr:$src))]>;
513def LD_Fp80m   : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP,
514                  [(set RFP80:$dst, (loadf80 addr:$src))]>;
515} // canFoldAsLoad
516def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP,
517                  [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>;
518def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP,
519                  [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>;
520def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP,
521                  [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>;
522let mayRaiseFPException = 0 in {
523def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP,
524                  [(set RFP32:$dst, (X86fild16 addr:$src))]>;
525def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP,
526                  [(set RFP32:$dst, (X86fild32 addr:$src))]>;
527def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP,
528                  [(set RFP32:$dst, (X86fild64 addr:$src))]>;
529def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP,
530                  [(set RFP64:$dst, (X86fild16 addr:$src))]>;
531def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP,
532                  [(set RFP64:$dst, (X86fild32 addr:$src))]>;
533def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP,
534                  [(set RFP64:$dst, (X86fild64 addr:$src))]>;
535def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP,
536                  [(set RFP80:$dst, (X86fild16 addr:$src))]>;
537def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP,
538                  [(set RFP80:$dst, (X86fild32 addr:$src))]>;
539def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP,
540                  [(set RFP80:$dst, (X86fild64 addr:$src))]>;
541} // mayRaiseFPException = 0
542} // SchedRW
543
544let SchedRW = [WriteStore], Uses = [FPCW] in {
545def ST_Fp32m   : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP,
546                  [(store RFP32:$src, addr:$op)]>;
547def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP,
548                  [(truncstoref32 RFP64:$src, addr:$op)]>;
549def ST_Fp64m   : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP,
550                  [(store RFP64:$src, addr:$op)]>;
551def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP,
552                  [(truncstoref32 RFP80:$src, addr:$op)]>;
553def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP,
554                  [(truncstoref64 RFP80:$src, addr:$op)]>;
555// FST does not support 80-bit memory target; FSTP must be used.
556
557let mayStore = 1, hasSideEffects = 0 in {
558def ST_FpP32m    : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>;
559def ST_FpP64m32  : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>;
560def ST_FpP64m    : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>;
561def ST_FpP80m32  : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>;
562def ST_FpP80m64  : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>;
563} // mayStore
564
565def ST_FpP80m    : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP,
566                    [(store RFP80:$src, addr:$op)]>;
567
568let mayStore = 1, hasSideEffects = 0 in {
569def IST_Fp16m32  : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>;
570def IST_Fp32m32  : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
571                          [(X86fist32 RFP32:$src, addr:$op)]>;
572def IST_Fp64m32  : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
573                          [(X86fist64 RFP32:$src, addr:$op)]>;
574def IST_Fp16m64  : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>;
575def IST_Fp32m64  : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
576                          [(X86fist32 RFP64:$src, addr:$op)]>;
577def IST_Fp64m64  : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
578                          [(X86fist64 RFP64:$src, addr:$op)]>;
579def IST_Fp16m80  : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>;
580def IST_Fp32m80  : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
581                        [(X86fist32 RFP80:$src, addr:$op)]>;
582def IST_Fp64m80  : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
583                        [(X86fist64 RFP80:$src, addr:$op)]>;
584} // mayStore
585} // SchedRW, Uses = [FPCW]
586
587let mayLoad = 1, SchedRW = [WriteLoad], Uses = [FPCW] in {
588def LD_F32m   : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src">;
589def LD_F64m   : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src">;
590def LD_F80m   : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src">;
591let mayRaiseFPException = 0 in {
592def ILD_F16m  : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src">;
593def ILD_F32m  : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src">;
594def ILD_F64m  : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src">;
595}
596}
597let mayStore = 1, SchedRW = [WriteStore], Uses = [FPCW] in {
598def ST_F32m   : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst">;
599def ST_F64m   : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst">;
600def ST_FP32m  : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst">;
601def ST_FP64m  : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst">;
602def ST_FP80m  : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst">;
603def IST_F16m  : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst">;
604def IST_F32m  : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst">;
605def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst">;
606def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst">;
607def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst">;
608}
609
610// FISTTP requires SSE3 even though it's a FPStack op.
611let Predicates = [HasSSE3], SchedRW = [WriteStore], Uses = [FPCW] in {
612def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP,
613                    [(X86fp_to_i16mem RFP32:$src, addr:$op)]>;
614def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
615                    [(X86fp_to_i32mem RFP32:$src, addr:$op)]>;
616def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
617                    [(X86fp_to_i64mem RFP32:$src, addr:$op)]>;
618def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP,
619                    [(X86fp_to_i16mem RFP64:$src, addr:$op)]>;
620def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
621                    [(X86fp_to_i32mem RFP64:$src, addr:$op)]>;
622def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
623                    [(X86fp_to_i64mem RFP64:$src, addr:$op)]>;
624def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP,
625                    [(X86fp_to_i16mem RFP80:$src, addr:$op)]>;
626def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
627                    [(X86fp_to_i32mem RFP80:$src, addr:$op)]>;
628def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
629                    [(X86fp_to_i64mem RFP80:$src, addr:$op)]>;
630} // Predicates = [HasSSE3]
631
632let mayStore = 1, SchedRW = [WriteStore], Uses = [FPCW] in {
633def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst">;
634def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst">;
635def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst), "fisttp{ll}\t$dst">;
636}
637
638// FP Stack manipulation instructions.
639let SchedRW = [WriteMove], Uses = [FPCW] in {
640def LD_Frr   : FPI<0xD9, MRM0r, (outs), (ins RSTi:$op), "fld\t$op">;
641def ST_Frr   : FPI<0xDD, MRM2r, (outs), (ins RSTi:$op), "fst\t$op">;
642def ST_FPrr  : FPI<0xDD, MRM3r, (outs), (ins RSTi:$op), "fstp\t$op">;
643let mayRaiseFPException = 0 in
644def XCH_F    : FPI<0xD9, MRM1r, (outs), (ins RSTi:$op), "fxch\t$op">;
645}
646
647// Floating point constant loads.
648let SchedRW = [WriteZero], Uses = [FPCW] in {
649def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
650                [(set RFP32:$dst, fpimm0)]>;
651def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
652                [(set RFP32:$dst, fpimm1)]>;
653def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
654                [(set RFP64:$dst, fpimm0)]>;
655def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
656                [(set RFP64:$dst, fpimm1)]>;
657def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
658                [(set RFP80:$dst, fpimm0)]>;
659def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
660                [(set RFP80:$dst, fpimm1)]>;
661}
662
663let SchedRW = [WriteFLD0], Uses = [FPCW], mayRaiseFPException = 0 in
664def LD_F0 : FPI<0xD9, MRM_EE, (outs), (ins), "fldz">;
665
666let SchedRW = [WriteFLD1], Uses = [FPCW], mayRaiseFPException = 0 in
667def LD_F1 : FPI<0xD9, MRM_E8, (outs), (ins), "fld1">;
668
669let SchedRW = [WriteFLDC], Defs = [FPSW], Uses = [FPCW], mayRaiseFPException = 0 in {
670def FLDL2T : I<0xD9, MRM_E9, (outs), (ins), "fldl2t", []>;
671def FLDL2E : I<0xD9, MRM_EA, (outs), (ins), "fldl2e", []>;
672def FLDPI : I<0xD9, MRM_EB, (outs), (ins), "fldpi", []>;
673def FLDLG2 : I<0xD9, MRM_EC, (outs), (ins), "fldlg2", []>;
674def FLDLN2 : I<0xD9, MRM_ED, (outs), (ins), "fldln2", []>;
675} // SchedRW
676
677// Floating point compares.
678let SchedRW = [WriteFCom], Uses = [FPCW], hasSideEffects = 0 in {
679def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, []>;
680def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, []>;
681def UCOM_Fpr80 : FpI_  <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, []>;
682def COM_Fpr32  : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, []>;
683def COM_Fpr64  : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, []>;
684def COM_Fpr80  : FpI_  <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, []>;
685} // SchedRW
686} // mayRaiseFPException = 1
687
688let SchedRW = [WriteFCom], mayRaiseFPException = 1 in {
689// CC = ST(0) cmp ST(i)
690let Defs = [EFLAGS, FPSW], Uses = [FPCW] in {
691def UCOM_FpIr32: FpI_<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
692                  [(set EFLAGS, (X86any_fcmp RFP32:$lhs, RFP32:$rhs))]>,
693                  Requires<[FPStackf32, HasCMOV]>;
694def UCOM_FpIr64: FpI_<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
695                  [(set EFLAGS, (X86any_fcmp RFP64:$lhs, RFP64:$rhs))]>,
696                  Requires<[FPStackf64, HasCMOV]>;
697def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
698                  [(set EFLAGS, (X86any_fcmp RFP80:$lhs, RFP80:$rhs))]>,
699                  Requires<[HasCMOV]>;
700def COM_FpIr32: FpI_<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
701                  [(set EFLAGS, (X86strict_fcmps RFP32:$lhs, RFP32:$rhs))]>,
702                  Requires<[FPStackf32, HasCMOV]>;
703def COM_FpIr64: FpI_<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
704                  [(set EFLAGS, (X86strict_fcmps RFP64:$lhs, RFP64:$rhs))]>,
705                  Requires<[FPStackf64, HasCMOV]>;
706def COM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
707                  [(set EFLAGS, (X86strict_fcmps RFP80:$lhs, RFP80:$rhs))]>,
708                  Requires<[HasCMOV]>;
709}
710
711let Uses = [ST0, FPCW] in {
712def UCOM_Fr    : FPI<0xDD, MRM4r,    // FPSW = cmp ST(0) with ST(i)
713                    (outs), (ins RSTi:$reg), "fucom\t$reg">;
714def UCOM_FPr   : FPI<0xDD, MRM5r,    // FPSW = cmp ST(0) with ST(i), pop
715                    (outs), (ins RSTi:$reg), "fucomp\t$reg">;
716def UCOM_FPPr  : FPI<0xDA, MRM_E9,       // cmp ST(0) with ST(1), pop, pop
717                    (outs), (ins), "fucompp">;
718}
719
720let Defs = [EFLAGS, FPSW], Uses = [ST0, FPCW] in {
721def UCOM_FIr   : FPI<0xDB, MRM5r,     // CC = cmp ST(0) with ST(i)
722                    (outs), (ins RSTi:$reg), "fucomi\t{$reg, %st|st, $reg}">;
723def UCOM_FIPr  : FPI<0xDF, MRM5r,     // CC = cmp ST(0) with ST(i), pop
724                    (outs), (ins RSTi:$reg), "fucompi\t{$reg, %st|st, $reg}">;
725
726def COM_FIr : FPI<0xDB, MRM6r, (outs), (ins RSTi:$reg),
727                  "fcomi\t{$reg, %st|st, $reg}">;
728def COM_FIPr : FPI<0xDF, MRM6r, (outs), (ins RSTi:$reg),
729                   "fcompi\t{$reg, %st|st, $reg}">;
730}
731} // SchedRW
732
733// Floating point flag ops.
734let SchedRW = [WriteALU] in {
735let Defs = [AX, FPSW], Uses = [FPSW], hasSideEffects = 0 in
736def FNSTSW16r : I<0xDF, MRM_E0,                  // AX = fp flags
737                  (outs), (ins), "fnstsw\t{%ax|ax}", []>;
738let Defs = [FPSW], Uses = [FPCW] in
739def FNSTCW16m : I<0xD9, MRM7m,                   // [mem16] = X87 control world
740                  (outs), (ins i16mem:$dst), "fnstcw\t$dst",
741                  [(X86fp_cwd_get16 addr:$dst)]>;
742} // SchedRW
743let Defs = [FPSW,FPCW], mayLoad = 1 in
744def FLDCW16m  : I<0xD9, MRM5m,                   // X87 control world = [mem16]
745                  (outs), (ins i16mem:$dst), "fldcw\t$dst",
746                  [(X86fp_cwd_set16 addr:$dst)]>,
747                Sched<[WriteLoad]>;
748
749// FPU control instructions
750let SchedRW = [WriteMicrocoded] in {
751def FFREE : FPI<0xDD, MRM0r, (outs), (ins RSTi:$reg), "ffree\t$reg">;
752def FFREEP : FPI<0xDF, MRM0r, (outs), (ins RSTi:$reg), "ffreep\t$reg">;
753
754let Defs = [FPSW, FPCW] in
755def FNINIT : I<0xDB, MRM_E3, (outs), (ins), "fninit", []>;
756// Clear exceptions
757let Defs = [FPSW] in
758def FNCLEX : I<0xDB, MRM_E2, (outs), (ins), "fnclex", []>;
759} // SchedRW
760
761// Operand-less floating-point instructions for the disassembler.
762let Defs = [FPSW] in
763def FNOP : I<0xD9, MRM_D0, (outs), (ins), "fnop", []>, Sched<[WriteNop]>;
764
765let SchedRW = [WriteMicrocoded] in {
766let Defs = [FPSW] in {
767def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", []>;
768def FDECSTP : I<0xD9, MRM_F6, (outs), (ins), "fdecstp", []>;
769def FINCSTP : I<0xD9, MRM_F7, (outs), (ins), "fincstp", []>;
770let Uses = [FPCW], mayRaiseFPException = 1 in {
771def F2XM1 : I<0xD9, MRM_F0, (outs), (ins), "f2xm1", []>;
772def FYL2X : I<0xD9, MRM_F1, (outs), (ins), "fyl2x", []>;
773def FPTAN : I<0xD9, MRM_F2, (outs), (ins), "fptan", []>;
774def FPATAN : I<0xD9, MRM_F3, (outs), (ins), "fpatan", []>;
775def FXTRACT : I<0xD9, MRM_F4, (outs), (ins), "fxtract", []>;
776def FPREM1 : I<0xD9, MRM_F5, (outs), (ins), "fprem1", []>;
777def FPREM : I<0xD9, MRM_F8, (outs), (ins), "fprem", []>;
778def FYL2XP1 : I<0xD9, MRM_F9, (outs), (ins), "fyl2xp1", []>;
779def FSIN : I<0xD9, MRM_FE, (outs), (ins), "fsin", []>;
780def FCOS : I<0xD9, MRM_FF, (outs), (ins), "fcos", []>;
781def FSINCOS : I<0xD9, MRM_FB, (outs), (ins), "fsincos", []>;
782def FRNDINT : I<0xD9, MRM_FC, (outs), (ins), "frndint", []>;
783def FSCALE : I<0xD9, MRM_FD, (outs), (ins), "fscale", []>;
784def FCOMPP : I<0xDE, MRM_D9, (outs), (ins), "fcompp", []>;
785} // Uses = [FPCW], mayRaiseFPException = 1
786} // Defs = [FPSW]
787
788let Uses = [FPSW, FPCW] in {
789def FXSAVE : I<0xAE, MRM0m, (outs), (ins opaquemem:$dst),
790             "fxsave\t$dst", [(int_x86_fxsave addr:$dst)]>, PS,
791             Requires<[HasFXSR]>;
792def FXSAVE64 : RI<0xAE, MRM0m, (outs), (ins opaquemem:$dst),
793               "fxsave64\t$dst", [(int_x86_fxsave64 addr:$dst)]>,
794               PS, Requires<[HasFXSR, In64BitMode]>;
795} // Uses = [FPSW, FPCW]
796
797let Defs = [FPSW, FPCW] in {
798def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaquemem:$src),
799              "fxrstor\t$src", [(int_x86_fxrstor addr:$src)]>,
800              PS, Requires<[HasFXSR]>;
801def FXRSTOR64 : RI<0xAE, MRM1m, (outs), (ins opaquemem:$src),
802                "fxrstor64\t$src", [(int_x86_fxrstor64 addr:$src)]>,
803                PS, Requires<[HasFXSR, In64BitMode]>;
804} // Defs = [FPSW, FPCW]
805} // SchedRW
806
807//===----------------------------------------------------------------------===//
808// Non-Instruction Patterns
809//===----------------------------------------------------------------------===//
810
811// Required for RET of f32 / f64 / f80 values.
812def : Pat<(X86fldf32 addr:$src), (LD_Fp32m addr:$src)>;
813def : Pat<(X86fldf32 addr:$src), (LD_Fp32m64 addr:$src)>;
814def : Pat<(X86fldf64 addr:$src), (LD_Fp64m addr:$src)>;
815def : Pat<(X86fldf32 addr:$src), (LD_Fp32m80 addr:$src)>;
816def : Pat<(X86fldf64 addr:$src), (LD_Fp64m80 addr:$src)>;
817def : Pat<(X86fldf80 addr:$src), (LD_Fp80m addr:$src)>;
818
819// Required for CALL which return f32 / f64 / f80 values.
820def : Pat<(X86fstf32 RFP32:$src, addr:$op), (ST_Fp32m addr:$op, RFP32:$src)>;
821def : Pat<(X86fstf32 RFP64:$src, addr:$op), (ST_Fp64m32 addr:$op, RFP64:$src)>;
822def : Pat<(X86fstf64 RFP64:$src, addr:$op), (ST_Fp64m addr:$op, RFP64:$src)>;
823def : Pat<(X86fstf32 RFP80:$src, addr:$op), (ST_Fp80m32 addr:$op, RFP80:$src)>;
824def : Pat<(X86fstf64 RFP80:$src, addr:$op), (ST_Fp80m64 addr:$op, RFP80:$src)>;
825def : Pat<(X86fstf80 RFP80:$src, addr:$op), (ST_FpP80m addr:$op, RFP80:$src)>;
826
827// Floating point constant -0.0 and -1.0
828def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>;
829def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>;
830def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>;
831def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>;
832def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>;
833def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>;
834
835// FP extensions map onto simple pseudo-value conversions if they are to/from
836// the FP stack.
837def : Pat<(f64 (any_fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP64)>,
838          Requires<[FPStackf32]>;
839def : Pat<(f80 (any_fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP80)>,
840           Requires<[FPStackf32]>;
841def : Pat<(f80 (any_fpextend RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP80)>,
842           Requires<[FPStackf64]>;
843
844// FP truncations map onto simple pseudo-value conversions if they are to/from
845// the FP stack.  We have validated that only value-preserving truncations make
846// it through isel.
847def : Pat<(f32 (any_fpround RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP32)>,
848          Requires<[FPStackf32]>;
849def : Pat<(f32 (any_fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP32)>,
850           Requires<[FPStackf32]>;
851def : Pat<(f64 (any_fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP64)>,
852           Requires<[FPStackf64]>;
853