1//===- X86InstrFPStack.td - FPU Instruction Set ------------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the X86 x87 FPU instruction set, defining the
10// instructions, and properties of the instructions which are needed for code
11// generation, machine code emission, and analysis.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// FPStack specific DAG Nodes.
17//===----------------------------------------------------------------------===//
18
19def SDTX86Fld       : SDTypeProfile<1, 1, [SDTCisFP<0>,
20                                           SDTCisPtrTy<1>]>;
21def SDTX86Fst       : SDTypeProfile<0, 2, [SDTCisFP<0>,
22                                           SDTCisPtrTy<1>]>;
23def SDTX86Fild      : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
24def SDTX86Fist      : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
25
26def SDTX86CwdStore  : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
27def SDTX86CwdLoad   : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
28
29def X86fp80_add     : SDNode<"X86ISD::FP80_ADD", SDTFPBinOp, [SDNPCommutative]>;
30def X86strict_fp80_add : SDNode<"X86ISD::STRICT_FP80_ADD", SDTFPBinOp,
31                        [SDNPHasChain,SDNPCommutative]>;
32def any_X86fp80_add : PatFrags<(ops node:$lhs, node:$rhs),
33                               [(X86strict_fp80_add node:$lhs, node:$rhs),
34                                (X86fp80_add node:$lhs, node:$rhs)]>;
35
36def X86fld          : SDNode<"X86ISD::FLD", SDTX86Fld,
37                             [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
38def X86fst          : SDNode<"X86ISD::FST", SDTX86Fst,
39                             [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
40def X86fild         : SDNode<"X86ISD::FILD", SDTX86Fild,
41                             [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
42def X86fist         : SDNode<"X86ISD::FIST", SDTX86Fist,
43                             [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
44def X86fp_to_mem : SDNode<"X86ISD::FP_TO_INT_IN_MEM", SDTX86Fst,
45                          [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
46def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m",          SDTX86CwdStore,
47                             [SDNPHasChain, SDNPMayStore, SDNPSideEffect,
48                              SDNPMemOperand]>;
49def X86fp_cwd_set16 : SDNode<"X86ISD::FLDCW16m",           SDTX86CwdLoad,
50                             [SDNPHasChain, SDNPMayLoad, SDNPSideEffect,
51                              SDNPMemOperand]>;
52
53def X86fstf32 : PatFrag<(ops node:$val, node:$ptr),
54                        (X86fst node:$val, node:$ptr), [{
55  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f32;
56}]>;
57def X86fstf64 : PatFrag<(ops node:$val, node:$ptr),
58                        (X86fst node:$val, node:$ptr), [{
59  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f64;
60}]>;
61def X86fstf80 : PatFrag<(ops node:$val, node:$ptr),
62                        (X86fst node:$val, node:$ptr), [{
63  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f80;
64}]>;
65
66def X86fldf32 : PatFrag<(ops node:$ptr), (X86fld node:$ptr), [{
67  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f32;
68}]>;
69def X86fldf64 : PatFrag<(ops node:$ptr), (X86fld node:$ptr), [{
70  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f64;
71}]>;
72def X86fldf80 : PatFrag<(ops node:$ptr), (X86fld node:$ptr), [{
73  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f80;
74}]>;
75
76def X86fild16 : PatFrag<(ops node:$ptr), (X86fild node:$ptr), [{
77  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
78}]>;
79def X86fild32 : PatFrag<(ops node:$ptr), (X86fild node:$ptr), [{
80  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
81}]>;
82def X86fild64 : PatFrag<(ops node:$ptr), (X86fild node:$ptr), [{
83  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
84}]>;
85
86def X86fist32 : PatFrag<(ops node:$val, node:$ptr),
87                        (X86fist node:$val, node:$ptr), [{
88  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
89}]>;
90
91def X86fist64 : PatFrag<(ops node:$val, node:$ptr),
92                        (X86fist node:$val, node:$ptr), [{
93  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
94}]>;
95
96def X86fp_to_i16mem : PatFrag<(ops node:$val, node:$ptr),
97                              (X86fp_to_mem node:$val, node:$ptr), [{
98  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
99}]>;
100def X86fp_to_i32mem : PatFrag<(ops node:$val, node:$ptr),
101                              (X86fp_to_mem node:$val, node:$ptr), [{
102  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
103}]>;
104def X86fp_to_i64mem : PatFrag<(ops node:$val, node:$ptr),
105                              (X86fp_to_mem node:$val, node:$ptr), [{
106  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
107}]>;
108
109//===----------------------------------------------------------------------===//
110// FPStack pattern fragments
111//===----------------------------------------------------------------------===//
112
113def fpimm0 : FPImmLeaf<fAny, [{
114  return Imm.isExactlyValue(+0.0);
115}]>;
116
117def fpimmneg0 : FPImmLeaf<fAny, [{
118  return Imm.isExactlyValue(-0.0);
119}]>;
120
121def fpimm1 : FPImmLeaf<fAny, [{
122  return Imm.isExactlyValue(+1.0);
123}]>;
124
125def fpimmneg1 : FPImmLeaf<fAny, [{
126  return Imm.isExactlyValue(-1.0);
127}]>;
128
129// Some 'special' instructions - expanded after instruction selection.
130// Clobbers EFLAGS due to OR instruction used internally.
131// FIXME: Can we model this in SelectionDAG?
132let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Defs = [EFLAGS] in {
133  def FP32_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP32:$src),
134                              [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>;
135  def FP32_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP32:$src),
136                              [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>;
137  def FP32_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP32:$src),
138                              [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>;
139  def FP64_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP64:$src),
140                              [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>;
141  def FP64_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP64:$src),
142                              [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>;
143  def FP64_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP64:$src),
144                              [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>;
145  def FP80_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP80:$src),
146                              [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>;
147  def FP80_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP80:$src),
148                              [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>;
149  def FP80_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP80:$src),
150                              [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>;
151
152  def FP80_ADDr : PseudoI<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2),
153                          [(set RFP80:$dst,
154                                (any_X86fp80_add  RFP80:$src1, RFP80:$src2))]>;
155  def FP80_ADDm32 : PseudoI<(outs RFP80:$dst), (ins RFP80:$src1, f32mem:$src2),
156                            [(set RFP80:$dst,
157                                  (any_X86fp80_add RFP80:$src1,
158                                                   (f80 (extloadf32 addr:$src2))))]>;
159}
160
161// All FP Stack operations are represented with four instructions here.  The
162// first three instructions, generated by the instruction selector, use "RFP32"
163// "RFP64" or "RFP80" registers: traditional register files to reference 32-bit,
164// 64-bit or 80-bit floating point values.  These sizes apply to the values,
165// not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be
166// copied to each other without losing information.  These instructions are all
167// pseudo instructions and use the "_Fp" suffix.
168// In some cases there are additional variants with a mixture of different
169// register sizes.
170// The second instruction is defined with FPI, which is the actual instruction
171// emitted by the assembler.  These use "RST" registers, although frequently
172// the actual register(s) used are implicit.  These are always 80 bits.
173// The FP stackifier pass converts one to the other after register allocation
174// occurs.
175//
176// Note that the FpI instruction should have instruction selection info (e.g.
177// a pattern) and the FPI instruction should have emission info (e.g. opcode
178// encoding and asm printing info).
179
180// FpIf32, FpIf64 - Floating Point Pseudo Instruction template.
181// f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1.
182// f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2.
183// f80 instructions cannot use SSE and use neither of these.
184class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
185             FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>;
186class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
187             FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>;
188
189// Factoring for arithmetic.
190multiclass FPBinary_rr<SDPatternOperator OpNode> {
191// Register op register -> register
192// These are separated out because they have no reversed form.
193def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP,
194                [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>;
195def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP,
196                [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>;
197def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP,
198                [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>;
199}
200// The FopST0 series are not included here because of the irregularities
201// in where the 'r' goes in assembly output.
202// These instructions cannot address 80-bit memory.
203multiclass FPBinary<SDPatternOperator OpNode, Format fp, string asmstring,
204                    bit Forward = 1> {
205// ST(0) = ST(0) + [mem]
206def _Fp32m  : FpIf32<(outs RFP32:$dst),
207                     (ins RFP32:$src1, f32mem:$src2), OneArgFPRW,
208                  [!if(Forward,
209                       (set RFP32:$dst,
210                        (OpNode RFP32:$src1, (loadf32 addr:$src2))),
211                       (set RFP32:$dst,
212                        (OpNode (loadf32 addr:$src2), RFP32:$src1)))]>;
213def _Fp64m  : FpIf64<(outs RFP64:$dst),
214                     (ins RFP64:$src1, f64mem:$src2), OneArgFPRW,
215                  [!if(Forward,
216                       (set RFP64:$dst,
217                        (OpNode RFP64:$src1, (loadf64 addr:$src2))),
218                       (set RFP64:$dst,
219                        (OpNode (loadf64 addr:$src2), RFP64:$src1)))]>;
220def _Fp64m32: FpIf64<(outs RFP64:$dst),
221                     (ins RFP64:$src1, f32mem:$src2), OneArgFPRW,
222                  [!if(Forward,
223                       (set RFP64:$dst,
224                        (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2)))),
225                       (set RFP64:$dst,
226                        (OpNode (f64 (extloadf32 addr:$src2)), RFP64:$src1)))]>;
227def _Fp80m32: FpI_<(outs RFP80:$dst),
228                   (ins RFP80:$src1, f32mem:$src2), OneArgFPRW,
229                  [!if(Forward,
230                       (set RFP80:$dst,
231                        (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2)))),
232                       (set RFP80:$dst,
233                        (OpNode (f80 (extloadf32 addr:$src2)), RFP80:$src1)))]>;
234def _Fp80m64: FpI_<(outs RFP80:$dst),
235                   (ins RFP80:$src1, f64mem:$src2), OneArgFPRW,
236                  [!if(Forward,
237                       (set RFP80:$dst,
238                        (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2)))),
239                       (set RFP80:$dst,
240                        (OpNode (f80 (extloadf64 addr:$src2)), RFP80:$src1)))]>;
241let mayLoad = 1 in
242def _F32m  : FPI<0xD8, fp, (outs), (ins f32mem:$src),
243                 !strconcat("f", asmstring, "{s}\t$src")>;
244let mayLoad = 1 in
245def _F64m  : FPI<0xDC, fp, (outs), (ins f64mem:$src),
246                 !strconcat("f", asmstring, "{l}\t$src")>;
247// ST(0) = ST(0) + [memint]
248def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2),
249                       OneArgFPRW,
250                       [!if(Forward,
251                            (set RFP32:$dst,
252                             (OpNode RFP32:$src1, (X86fild16 addr:$src2))),
253                            (set RFP32:$dst,
254                             (OpNode (X86fild16 addr:$src2), RFP32:$src1)))]>;
255def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2),
256                       OneArgFPRW,
257                       [!if(Forward,
258                            (set RFP32:$dst,
259                             (OpNode RFP32:$src1, (X86fild32 addr:$src2))),
260                            (set RFP32:$dst,
261                             (OpNode (X86fild32 addr:$src2), RFP32:$src1)))]>;
262def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2),
263                       OneArgFPRW,
264                       [!if(Forward,
265                            (set RFP64:$dst,
266                             (OpNode RFP64:$src1, (X86fild16 addr:$src2))),
267                            (set RFP64:$dst,
268                             (OpNode (X86fild16 addr:$src2), RFP64:$src1)))]>;
269def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2),
270                       OneArgFPRW,
271                       [!if(Forward,
272                            (set RFP64:$dst,
273                             (OpNode RFP64:$src1, (X86fild32 addr:$src2))),
274                            (set RFP64:$dst,
275                             (OpNode (X86fild32 addr:$src2), RFP64:$src1)))]>;
276def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2),
277                     OneArgFPRW,
278                     [!if(Forward,
279                          (set RFP80:$dst,
280                           (OpNode RFP80:$src1, (X86fild16 addr:$src2))),
281                          (set RFP80:$dst,
282                           (OpNode (X86fild16 addr:$src2), RFP80:$src1)))]>;
283def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2),
284                     OneArgFPRW,
285                     [!if(Forward,
286                          (set RFP80:$dst,
287                           (OpNode RFP80:$src1, (X86fild32 addr:$src2))),
288                          (set RFP80:$dst,
289                           (OpNode (X86fild32 addr:$src2), RFP80:$src1)))]>;
290let mayLoad = 1 in
291def _FI16m  : FPI<0xDE, fp, (outs), (ins i16mem:$src),
292                  !strconcat("fi", asmstring, "{s}\t$src")>;
293let mayLoad = 1 in
294def _FI32m  : FPI<0xDA, fp, (outs), (ins i32mem:$src),
295                  !strconcat("fi", asmstring, "{l}\t$src")>;
296}
297
298let Uses = [FPCW], mayRaiseFPException = 1 in {
299// FPBinary_rr just defines pseudo-instructions, no need to set a scheduling
300// resources.
301let hasNoSchedulingInfo = 1 in {
302defm ADD : FPBinary_rr<any_fadd>;
303defm SUB : FPBinary_rr<any_fsub>;
304defm MUL : FPBinary_rr<any_fmul>;
305defm DIV : FPBinary_rr<any_fdiv>;
306}
307
308// Sets the scheduling resources for the actual NAME#_F<size>m definitions.
309let SchedRW = [WriteFAddLd] in {
310defm ADD : FPBinary<any_fadd, MRM0m, "add">;
311defm SUB : FPBinary<any_fsub, MRM4m, "sub">;
312defm SUBR: FPBinary<any_fsub ,MRM5m, "subr", 0>;
313}
314
315let SchedRW = [WriteFMulLd] in {
316defm MUL : FPBinary<any_fmul, MRM1m, "mul">;
317}
318
319let SchedRW = [WriteFDivLd] in {
320defm DIV : FPBinary<any_fdiv, MRM6m, "div">;
321defm DIVR: FPBinary<any_fdiv, MRM7m, "divr", 0>;
322}
323} // Uses = [FPCW], mayRaiseFPException = 1
324
325class FPST0rInst<Format fp, string asm>
326  : FPI<0xD8, fp, (outs), (ins RSTi:$op), asm>;
327class FPrST0Inst<Format fp, string asm>
328  : FPI<0xDC, fp, (outs), (ins RSTi:$op), asm>;
329class FPrST0PInst<Format fp, string asm>
330  : FPI<0xDE, fp, (outs), (ins RSTi:$op), asm>;
331
332// NOTE: GAS and apparently all other AT&T style assemblers have a broken notion
333// of some of the 'reverse' forms of the fsub and fdiv instructions.  As such,
334// we have to put some 'r's in and take them out of weird places.
335let SchedRW = [WriteFAdd], Uses = [FPCW], mayRaiseFPException = 1 in {
336def ADD_FST0r   : FPST0rInst <MRM0r, "fadd\t{$op, %st|st, $op}">;
337def ADD_FrST0   : FPrST0Inst <MRM0r, "fadd\t{%st, $op|$op, st}">;
338def ADD_FPrST0  : FPrST0PInst<MRM0r, "faddp\t{%st, $op|$op, st}">;
339def SUBR_FST0r  : FPST0rInst <MRM5r, "fsubr\t{$op, %st|st, $op}">;
340def SUB_FrST0   : FPrST0Inst <MRM5r, "fsub{r}\t{%st, $op|$op, st}">;
341def SUB_FPrST0  : FPrST0PInst<MRM5r, "fsub{r}p\t{%st, $op|$op, st}">;
342def SUB_FST0r   : FPST0rInst <MRM4r, "fsub\t{$op, %st|st, $op}">;
343def SUBR_FrST0  : FPrST0Inst <MRM4r, "fsub{|r}\t{%st, $op|$op, st}">;
344def SUBR_FPrST0 : FPrST0PInst<MRM4r, "fsub{|r}p\t{%st, $op|$op, st}">;
345} // SchedRW
346let SchedRW = [WriteFCom], Uses = [FPCW], mayRaiseFPException = 1 in {
347def COM_FST0r   : FPST0rInst <MRM2r, "fcom\t$op">;
348def COMP_FST0r  : FPST0rInst <MRM3r, "fcomp\t$op">;
349} // SchedRW
350let SchedRW = [WriteFMul], Uses = [FPCW], mayRaiseFPException = 1 in {
351def MUL_FST0r   : FPST0rInst <MRM1r, "fmul\t{$op, %st|st, $op}">;
352def MUL_FrST0   : FPrST0Inst <MRM1r, "fmul\t{%st, $op|$op, st}">;
353def MUL_FPrST0  : FPrST0PInst<MRM1r, "fmulp\t{%st, $op|$op, st}">;
354} // SchedRW
355let SchedRW = [WriteFDiv], Uses = [FPCW], mayRaiseFPException = 1 in {
356def DIVR_FST0r  : FPST0rInst <MRM7r, "fdivr\t{$op, %st|st, $op}">;
357def DIV_FrST0   : FPrST0Inst <MRM7r, "fdiv{r}\t{%st, $op|$op, st}">;
358def DIV_FPrST0  : FPrST0PInst<MRM7r, "fdiv{r}p\t{%st, $op|$op, st}">;
359def DIV_FST0r   : FPST0rInst <MRM6r, "fdiv\t{$op, %st|st, $op}">;
360def DIVR_FrST0  : FPrST0Inst <MRM6r, "fdiv{|r}\t{%st, $op|$op, st}">;
361def DIVR_FPrST0 : FPrST0PInst<MRM6r, "fdiv{|r}p\t{%st, $op|$op, st}">;
362} // SchedRW
363
364// Unary operations.
365multiclass FPUnary<SDPatternOperator OpNode, Format fp, string asmstring> {
366def _Fp32  : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW,
367                 [(set RFP32:$dst, (OpNode RFP32:$src))]>;
368def _Fp64  : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW,
369                 [(set RFP64:$dst, (OpNode RFP64:$src))]>;
370def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW,
371                 [(set RFP80:$dst, (OpNode RFP80:$src))]>;
372def _F     : FPI<0xD9, fp, (outs), (ins), asmstring>;
373}
374
375let SchedRW = [WriteFSign] in {
376defm CHS : FPUnary<fneg, MRM_E0, "fchs">;
377defm ABS : FPUnary<fabs, MRM_E1, "fabs">;
378}
379
380let Uses = [FPCW], mayRaiseFPException = 1 in {
381let SchedRW = [WriteFSqrt80] in
382defm SQRT: FPUnary<any_fsqrt,MRM_FA, "fsqrt">;
383
384let SchedRW = [WriteFCom] in {
385let hasSideEffects = 0 in {
386def TST_Fp32  : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
387def TST_Fp64  : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
388def TST_Fp80  : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
389} // hasSideEffects
390
391def TST_F  : FPI<0xD9, MRM_E4, (outs), (ins), "ftst">;
392} // SchedRW
393} // Uses = [FPCW], mayRaiseFPException = 1
394
395let SchedRW = [WriteFTest], Defs = [FPSW] in {
396def XAM_Fp32  : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
397def XAM_Fp64  : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
398def XAM_Fp80  : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
399def XAM_F     : FPI<0xD9, MRM_E5, (outs), (ins), "fxam">;
400} // SchedRW
401
402// Versions of FP instructions that take a single memory operand.  Added for the
403//   disassembler; remove as they are included with patterns elsewhere.
404let SchedRW = [WriteFComLd], Uses = [FPCW], mayRaiseFPException = 1,
405    mayLoad = 1 in {
406def FCOM32m  : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom{s}\t$src">;
407def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp{s}\t$src">;
408
409def FCOM64m  : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom{l}\t$src">;
410def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp{l}\t$src">;
411
412def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{s}\t$src">;
413def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{s}\t$src">;
414
415def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">;
416def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">;
417} // SchedRW
418
419let SchedRW = [WriteMicrocoded] in {
420let Defs = [FPSW, FPCW], mayLoad = 1 in {
421def FLDENVm  : FPI<0xD9, MRM4m, (outs), (ins anymem:$src), "fldenv\t$src">;
422def FRSTORm  : FPI<0xDD, MRM4m, (outs), (ins anymem:$src), "frstor\t$src">;
423}
424
425let Defs = [FPSW, FPCW], Uses = [FPSW, FPCW], mayStore = 1 in {
426def FSTENVm  : FPI<0xD9, MRM6m, (outs), (ins anymem:$dst), "fnstenv\t$dst">;
427def FSAVEm   : FPI<0xDD, MRM6m, (outs), (ins anymem:$dst), "fnsave\t$dst">;
428}
429
430let Uses = [FPSW], mayStore = 1 in
431def FNSTSWm  : FPI<0xDD, MRM7m, (outs), (ins i16mem:$dst), "fnstsw\t$dst">;
432
433let mayLoad = 1 in
434def FBLDm    : FPI<0xDF, MRM4m, (outs), (ins f80mem:$src), "fbld\t$src">;
435let Uses = [FPCW] ,mayRaiseFPException = 1, mayStore = 1 in
436def FBSTPm   : FPI<0xDF, MRM6m, (outs), (ins f80mem:$dst), "fbstp\t$dst">;
437} // SchedRW
438
439// Floating point cmovs.
440class FpIf32CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
441  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32, HasCMOV]>;
442class FpIf64CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
443  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64, HasCMOV]>;
444
445multiclass FPCMov<PatLeaf cc> {
446  def _Fp32  : FpIf32CMov<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2),
447                       CondMovFP,
448                     [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2,
449                                        cc, EFLAGS))]>;
450  def _Fp64  : FpIf64CMov<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2),
451                       CondMovFP,
452                     [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2,
453                                        cc, EFLAGS))]>;
454  def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2),
455                     CondMovFP,
456                     [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2,
457                                        cc, EFLAGS))]>,
458                                        Requires<[HasCMOV]>;
459}
460
461let SchedRW = [WriteFCMOV] in {
462let Uses = [EFLAGS], Constraints = "$src1 = $dst" in {
463defm CMOVB  : FPCMov<X86_COND_B>;
464defm CMOVBE : FPCMov<X86_COND_BE>;
465defm CMOVE  : FPCMov<X86_COND_E>;
466defm CMOVP  : FPCMov<X86_COND_P>;
467defm CMOVNB : FPCMov<X86_COND_AE>;
468defm CMOVNBE: FPCMov<X86_COND_A>;
469defm CMOVNE : FPCMov<X86_COND_NE>;
470defm CMOVNP : FPCMov<X86_COND_NP>;
471} // Uses = [EFLAGS], Constraints = "$src1 = $dst"
472
473let Predicates = [HasCMOV] in {
474// These are not factored because there's no clean way to pass DA/DB.
475def CMOVB_F  : FPI<0xDA, MRM0r, (outs), (ins RSTi:$op),
476                  "fcmovb\t{$op, %st|st, $op}">;
477def CMOVBE_F : FPI<0xDA, MRM2r, (outs), (ins RSTi:$op),
478                  "fcmovbe\t{$op, %st|st, $op}">;
479def CMOVE_F  : FPI<0xDA, MRM1r, (outs), (ins RSTi:$op),
480                  "fcmove\t{$op, %st|st, $op}">;
481def CMOVP_F  : FPI<0xDA, MRM3r, (outs), (ins RSTi:$op),
482                  "fcmovu\t{$op, %st|st, $op}">;
483def CMOVNB_F : FPI<0xDB, MRM0r, (outs), (ins RSTi:$op),
484                  "fcmovnb\t{$op, %st|st, $op}">;
485def CMOVNBE_F: FPI<0xDB, MRM2r, (outs), (ins RSTi:$op),
486                  "fcmovnbe\t{$op, %st|st, $op}">;
487def CMOVNE_F : FPI<0xDB, MRM1r, (outs), (ins RSTi:$op),
488                  "fcmovne\t{$op, %st|st, $op}">;
489def CMOVNP_F : FPI<0xDB, MRM3r, (outs), (ins RSTi:$op),
490                  "fcmovnu\t{$op, %st|st, $op}">;
491} // Predicates = [HasCMOV]
492} // SchedRW
493
494let mayRaiseFPException = 1 in {
495// Floating point loads & stores.
496let SchedRW = [WriteLoad], Uses = [FPCW] in {
497let canFoldAsLoad = 1 in {
498def LD_Fp32m   : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP,
499                  [(set RFP32:$dst, (loadf32 addr:$src))]>;
500def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP,
501                  [(set RFP64:$dst, (loadf64 addr:$src))]>;
502def LD_Fp80m   : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP,
503                  [(set RFP80:$dst, (loadf80 addr:$src))]>;
504} // canFoldAsLoad
505def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP,
506                  [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>;
507def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP,
508                  [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>;
509def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP,
510                  [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>;
511let mayRaiseFPException = 0 in {
512def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP,
513                  [(set RFP32:$dst, (X86fild16 addr:$src))]>;
514def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP,
515                  [(set RFP32:$dst, (X86fild32 addr:$src))]>;
516def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP,
517                  [(set RFP32:$dst, (X86fild64 addr:$src))]>;
518def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP,
519                  [(set RFP64:$dst, (X86fild16 addr:$src))]>;
520def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP,
521                  [(set RFP64:$dst, (X86fild32 addr:$src))]>;
522def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP,
523                  [(set RFP64:$dst, (X86fild64 addr:$src))]>;
524def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP,
525                  [(set RFP80:$dst, (X86fild16 addr:$src))]>;
526def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP,
527                  [(set RFP80:$dst, (X86fild32 addr:$src))]>;
528def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP,
529                  [(set RFP80:$dst, (X86fild64 addr:$src))]>;
530} // mayRaiseFPException = 0
531} // SchedRW
532
533let SchedRW = [WriteStore], Uses = [FPCW] in {
534def ST_Fp32m   : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP,
535                  [(store RFP32:$src, addr:$op)]>;
536def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP,
537                  [(truncstoref32 RFP64:$src, addr:$op)]>;
538def ST_Fp64m   : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP,
539                  [(store RFP64:$src, addr:$op)]>;
540def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP,
541                  [(truncstoref32 RFP80:$src, addr:$op)]>;
542def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP,
543                  [(truncstoref64 RFP80:$src, addr:$op)]>;
544// FST does not support 80-bit memory target; FSTP must be used.
545
546let mayStore = 1, hasSideEffects = 0 in {
547def ST_FpP32m    : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>;
548def ST_FpP64m32  : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>;
549def ST_FpP64m    : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>;
550def ST_FpP80m32  : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>;
551def ST_FpP80m64  : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>;
552} // mayStore
553
554def ST_FpP80m    : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP,
555                    [(store RFP80:$src, addr:$op)]>;
556
557let mayStore = 1, hasSideEffects = 0 in {
558def IST_Fp16m32  : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>;
559def IST_Fp32m32  : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
560                          [(X86fist32 RFP32:$src, addr:$op)]>;
561def IST_Fp64m32  : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
562                          [(X86fist64 RFP32:$src, addr:$op)]>;
563def IST_Fp16m64  : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>;
564def IST_Fp32m64  : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
565                          [(X86fist32 RFP64:$src, addr:$op)]>;
566def IST_Fp64m64  : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
567                          [(X86fist64 RFP64:$src, addr:$op)]>;
568def IST_Fp16m80  : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>;
569def IST_Fp32m80  : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
570                        [(X86fist32 RFP80:$src, addr:$op)]>;
571def IST_Fp64m80  : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
572                        [(X86fist64 RFP80:$src, addr:$op)]>;
573} // mayStore
574} // SchedRW, Uses = [FPCW]
575
576let mayLoad = 1, SchedRW = [WriteLoad], Uses = [FPCW] in {
577def LD_F32m   : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src">;
578def LD_F64m   : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src">;
579def LD_F80m   : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src">;
580let mayRaiseFPException = 0 in {
581def ILD_F16m  : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src">;
582def ILD_F32m  : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src">;
583def ILD_F64m  : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src">;
584}
585}
586let mayStore = 1, SchedRW = [WriteStore], Uses = [FPCW] in {
587def ST_F32m   : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst">;
588def ST_F64m   : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst">;
589def ST_FP32m  : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst">;
590def ST_FP64m  : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst">;
591def ST_FP80m  : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst">;
592def IST_F16m  : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst">;
593def IST_F32m  : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst">;
594def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst">;
595def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst">;
596def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst">;
597}
598
599// FISTTP requires SSE3 even though it's a FPStack op.
600let Predicates = [HasSSE3], SchedRW = [WriteStore], Uses = [FPCW] in {
601def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP,
602                    [(X86fp_to_i16mem RFP32:$src, addr:$op)]>;
603def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
604                    [(X86fp_to_i32mem RFP32:$src, addr:$op)]>;
605def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
606                    [(X86fp_to_i64mem RFP32:$src, addr:$op)]>;
607def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP,
608                    [(X86fp_to_i16mem RFP64:$src, addr:$op)]>;
609def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
610                    [(X86fp_to_i32mem RFP64:$src, addr:$op)]>;
611def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
612                    [(X86fp_to_i64mem RFP64:$src, addr:$op)]>;
613def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP,
614                    [(X86fp_to_i16mem RFP80:$src, addr:$op)]>;
615def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
616                    [(X86fp_to_i32mem RFP80:$src, addr:$op)]>;
617def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
618                    [(X86fp_to_i64mem RFP80:$src, addr:$op)]>;
619} // Predicates = [HasSSE3]
620
621let mayStore = 1, SchedRW = [WriteStore], Uses = [FPCW] in {
622def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst">;
623def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst">;
624def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst), "fisttp{ll}\t$dst">;
625}
626
627// FP Stack manipulation instructions.
628let SchedRW = [WriteMove], Uses = [FPCW] in {
629def LD_Frr   : FPI<0xD9, MRM0r, (outs), (ins RSTi:$op), "fld\t$op">;
630def ST_Frr   : FPI<0xDD, MRM2r, (outs), (ins RSTi:$op), "fst\t$op">;
631def ST_FPrr  : FPI<0xDD, MRM3r, (outs), (ins RSTi:$op), "fstp\t$op">;
632let mayRaiseFPException = 0 in
633def XCH_F    : FPI<0xD9, MRM1r, (outs), (ins RSTi:$op), "fxch\t$op">;
634}
635
636// Floating point constant loads.
637let SchedRW = [WriteZero], Uses = [FPCW] in {
638def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
639                [(set RFP32:$dst, fpimm0)]>;
640def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
641                [(set RFP32:$dst, fpimm1)]>;
642def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
643                [(set RFP64:$dst, fpimm0)]>;
644def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
645                [(set RFP64:$dst, fpimm1)]>;
646def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
647                [(set RFP80:$dst, fpimm0)]>;
648def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
649                [(set RFP80:$dst, fpimm1)]>;
650}
651
652let SchedRW = [WriteFLD0], Uses = [FPCW], mayRaiseFPException = 0 in
653def LD_F0 : FPI<0xD9, MRM_EE, (outs), (ins), "fldz">;
654
655let SchedRW = [WriteFLD1], Uses = [FPCW], mayRaiseFPException = 0 in
656def LD_F1 : FPI<0xD9, MRM_E8, (outs), (ins), "fld1">;
657
658let SchedRW = [WriteFLDC], Defs = [FPSW], Uses = [FPCW], mayRaiseFPException = 0 in {
659def FLDL2T : I<0xD9, MRM_E9, (outs), (ins), "fldl2t", []>;
660def FLDL2E : I<0xD9, MRM_EA, (outs), (ins), "fldl2e", []>;
661def FLDPI : I<0xD9, MRM_EB, (outs), (ins), "fldpi", []>;
662def FLDLG2 : I<0xD9, MRM_EC, (outs), (ins), "fldlg2", []>;
663def FLDLN2 : I<0xD9, MRM_ED, (outs), (ins), "fldln2", []>;
664} // SchedRW
665
666// Floating point compares.
667let SchedRW = [WriteFCom], Uses = [FPCW], hasSideEffects = 0 in {
668def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, []>;
669def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, []>;
670def UCOM_Fpr80 : FpI_  <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, []>;
671def COM_Fpr32  : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, []>;
672def COM_Fpr64  : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, []>;
673def COM_Fpr80  : FpI_  <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, []>;
674} // SchedRW
675} // mayRaiseFPException = 1
676
677let SchedRW = [WriteFCom], mayRaiseFPException = 1 in {
678// CC = ST(0) cmp ST(i)
679let Defs = [EFLAGS, FPSW], Uses = [FPCW] in {
680def UCOM_FpIr32: FpI_<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
681                  [(set EFLAGS, (X86any_fcmp RFP32:$lhs, RFP32:$rhs))]>,
682                  Requires<[FPStackf32, HasCMOV]>;
683def UCOM_FpIr64: FpI_<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
684                  [(set EFLAGS, (X86any_fcmp RFP64:$lhs, RFP64:$rhs))]>,
685                  Requires<[FPStackf64, HasCMOV]>;
686def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
687                  [(set EFLAGS, (X86any_fcmp RFP80:$lhs, RFP80:$rhs))]>,
688                  Requires<[HasCMOV]>;
689def COM_FpIr32: FpI_<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
690                  [(set EFLAGS, (X86strict_fcmps RFP32:$lhs, RFP32:$rhs))]>,
691                  Requires<[FPStackf32, HasCMOV]>;
692def COM_FpIr64: FpI_<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
693                  [(set EFLAGS, (X86strict_fcmps RFP64:$lhs, RFP64:$rhs))]>,
694                  Requires<[FPStackf64, HasCMOV]>;
695def COM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
696                  [(set EFLAGS, (X86strict_fcmps RFP80:$lhs, RFP80:$rhs))]>,
697                  Requires<[HasCMOV]>;
698}
699
700let Uses = [ST0, FPCW] in {
701def UCOM_Fr    : FPI<0xDD, MRM4r,    // FPSW = cmp ST(0) with ST(i)
702                    (outs), (ins RSTi:$reg), "fucom\t$reg">;
703def UCOM_FPr   : FPI<0xDD, MRM5r,    // FPSW = cmp ST(0) with ST(i), pop
704                    (outs), (ins RSTi:$reg), "fucomp\t$reg">;
705def UCOM_FPPr  : FPI<0xDA, MRM_E9,       // cmp ST(0) with ST(1), pop, pop
706                    (outs), (ins), "fucompp">;
707}
708
709let Defs = [EFLAGS, FPSW], Uses = [ST0, FPCW] in {
710def UCOM_FIr   : FPI<0xDB, MRM5r,     // CC = cmp ST(0) with ST(i)
711                    (outs), (ins RSTi:$reg), "fucomi\t{$reg, %st|st, $reg}">;
712def UCOM_FIPr  : FPI<0xDF, MRM5r,     // CC = cmp ST(0) with ST(i), pop
713                    (outs), (ins RSTi:$reg), "fucompi\t{$reg, %st|st, $reg}">;
714
715def COM_FIr : FPI<0xDB, MRM6r, (outs), (ins RSTi:$reg),
716                  "fcomi\t{$reg, %st|st, $reg}">;
717def COM_FIPr : FPI<0xDF, MRM6r, (outs), (ins RSTi:$reg),
718                   "fcompi\t{$reg, %st|st, $reg}">;
719}
720} // SchedRW
721
722// Floating point flag ops.
723let SchedRW = [WriteALU] in {
724let Defs = [AX, FPSW], Uses = [FPSW], hasSideEffects = 0 in
725def FNSTSW16r : I<0xDF, MRM_E0,                  // AX = fp flags
726                  (outs), (ins), "fnstsw\t{%ax|ax}", []>;
727let Defs = [FPSW], Uses = [FPCW] in
728def FNSTCW16m : I<0xD9, MRM7m,                   // [mem16] = X87 control world
729                  (outs), (ins i16mem:$dst), "fnstcw\t$dst",
730                  [(X86fp_cwd_get16 addr:$dst)]>;
731} // SchedRW
732let Defs = [FPSW,FPCW], mayLoad = 1 in
733def FLDCW16m  : I<0xD9, MRM5m,                   // X87 control world = [mem16]
734                  (outs), (ins i16mem:$dst), "fldcw\t$dst",
735                  [(X86fp_cwd_set16 addr:$dst)]>,
736                Sched<[WriteLoad]>;
737
738// FPU control instructions
739let SchedRW = [WriteMicrocoded] in {
740def FFREE : FPI<0xDD, MRM0r, (outs), (ins RSTi:$reg), "ffree\t$reg">;
741def FFREEP : FPI<0xDF, MRM0r, (outs), (ins RSTi:$reg), "ffreep\t$reg">;
742
743let Defs = [FPSW, FPCW] in
744def FNINIT : I<0xDB, MRM_E3, (outs), (ins), "fninit", []>;
745// Clear exceptions
746let Defs = [FPSW] in
747def FNCLEX : I<0xDB, MRM_E2, (outs), (ins), "fnclex", []>;
748} // SchedRW
749
750// Operand-less floating-point instructions for the disassembler.
751let Defs = [FPSW] in
752def FNOP : I<0xD9, MRM_D0, (outs), (ins), "fnop", []>, Sched<[WriteNop]>;
753
754let SchedRW = [WriteMicrocoded] in {
755let Defs = [FPSW] in {
756def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", []>;
757def FDECSTP : I<0xD9, MRM_F6, (outs), (ins), "fdecstp", []>;
758def FINCSTP : I<0xD9, MRM_F7, (outs), (ins), "fincstp", []>;
759let Uses = [FPCW], mayRaiseFPException = 1 in {
760def F2XM1 : I<0xD9, MRM_F0, (outs), (ins), "f2xm1", []>;
761def FYL2X : I<0xD9, MRM_F1, (outs), (ins), "fyl2x", []>;
762def FPTAN : I<0xD9, MRM_F2, (outs), (ins), "fptan", []>;
763def FPATAN : I<0xD9, MRM_F3, (outs), (ins), "fpatan", []>;
764def FXTRACT : I<0xD9, MRM_F4, (outs), (ins), "fxtract", []>;
765def FPREM1 : I<0xD9, MRM_F5, (outs), (ins), "fprem1", []>;
766def FPREM : I<0xD9, MRM_F8, (outs), (ins), "fprem", []>;
767def FYL2XP1 : I<0xD9, MRM_F9, (outs), (ins), "fyl2xp1", []>;
768def FSIN : I<0xD9, MRM_FE, (outs), (ins), "fsin", []>;
769def FCOS : I<0xD9, MRM_FF, (outs), (ins), "fcos", []>;
770def FSINCOS : I<0xD9, MRM_FB, (outs), (ins), "fsincos", []>;
771def FRNDINT : I<0xD9, MRM_FC, (outs), (ins), "frndint", []>;
772def FSCALE : I<0xD9, MRM_FD, (outs), (ins), "fscale", []>;
773def FCOMPP : I<0xDE, MRM_D9, (outs), (ins), "fcompp", []>;
774} // Uses = [FPCW], mayRaiseFPException = 1
775} // Defs = [FPSW]
776
777let Uses = [FPSW, FPCW] in {
778def FXSAVE : I<0xAE, MRM0m, (outs), (ins opaquemem:$dst),
779             "fxsave\t$dst", [(int_x86_fxsave addr:$dst)]>, PS,
780             Requires<[HasFXSR]>;
781def FXSAVE64 : RI<0xAE, MRM0m, (outs), (ins opaquemem:$dst),
782               "fxsave64\t$dst", [(int_x86_fxsave64 addr:$dst)]>,
783               PS, Requires<[HasFXSR, In64BitMode]>;
784} // Uses = [FPSW, FPCW]
785
786let Defs = [FPSW, FPCW] in {
787def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaquemem:$src),
788              "fxrstor\t$src", [(int_x86_fxrstor addr:$src)]>,
789              PS, Requires<[HasFXSR]>;
790def FXRSTOR64 : RI<0xAE, MRM1m, (outs), (ins opaquemem:$src),
791                "fxrstor64\t$src", [(int_x86_fxrstor64 addr:$src)]>,
792                PS, Requires<[HasFXSR, In64BitMode]>;
793} // Defs = [FPSW, FPCW]
794} // SchedRW
795
796//===----------------------------------------------------------------------===//
797// Non-Instruction Patterns
798//===----------------------------------------------------------------------===//
799
800// Required for RET of f32 / f64 / f80 values.
801def : Pat<(X86fldf32 addr:$src), (LD_Fp32m addr:$src)>;
802def : Pat<(X86fldf32 addr:$src), (LD_Fp32m64 addr:$src)>;
803def : Pat<(X86fldf64 addr:$src), (LD_Fp64m addr:$src)>;
804def : Pat<(X86fldf32 addr:$src), (LD_Fp32m80 addr:$src)>;
805def : Pat<(X86fldf64 addr:$src), (LD_Fp64m80 addr:$src)>;
806def : Pat<(X86fldf80 addr:$src), (LD_Fp80m addr:$src)>;
807
808// Required for CALL which return f32 / f64 / f80 values.
809def : Pat<(X86fstf32 RFP32:$src, addr:$op), (ST_Fp32m addr:$op, RFP32:$src)>;
810def : Pat<(X86fstf32 RFP64:$src, addr:$op), (ST_Fp64m32 addr:$op, RFP64:$src)>;
811def : Pat<(X86fstf64 RFP64:$src, addr:$op), (ST_Fp64m addr:$op, RFP64:$src)>;
812def : Pat<(X86fstf32 RFP80:$src, addr:$op), (ST_Fp80m32 addr:$op, RFP80:$src)>;
813def : Pat<(X86fstf64 RFP80:$src, addr:$op), (ST_Fp80m64 addr:$op, RFP80:$src)>;
814def : Pat<(X86fstf80 RFP80:$src, addr:$op), (ST_FpP80m addr:$op, RFP80:$src)>;
815
816// Floating point constant -0.0 and -1.0
817def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>;
818def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>;
819def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>;
820def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>;
821def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>;
822def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>;
823
824// FP extensions map onto simple pseudo-value conversions if they are to/from
825// the FP stack.
826def : Pat<(f64 (any_fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP64)>,
827          Requires<[FPStackf32]>;
828def : Pat<(f80 (any_fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP80)>,
829           Requires<[FPStackf32]>;
830def : Pat<(f80 (any_fpextend RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP80)>,
831           Requires<[FPStackf64]>;
832
833// FP truncations map onto simple pseudo-value conversions if they are to/from
834// the FP stack.  We have validated that only value-preserving truncations make
835// it through isel.
836def : Pat<(f32 (any_fpround RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP32)>,
837          Requires<[FPStackf32]>;
838def : Pat<(f32 (any_fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP32)>,
839           Requires<[FPStackf32]>;
840def : Pat<(f64 (any_fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP64)>,
841           Requires<[FPStackf64]>;
842