1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86InstrInfo.h"
14 #include "X86.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrFoldTables.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Sequence.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/LiveVariables.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineDominators.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineModuleInfo.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/IR/DebugInfoMetadata.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/MC/MCAsmInfo.h"
39 #include "llvm/MC/MCExpr.h"
40 #include "llvm/MC/MCInst.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetOptions.h"
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "x86-instr-info"
50 
51 #define GET_INSTRINFO_CTOR_DTOR
52 #include "X86GenInstrInfo.inc"
53 
54 static cl::opt<bool>
55     NoFusing("disable-spill-fusing",
56              cl::desc("Disable fusing of spill code into instructions"),
57              cl::Hidden);
58 static cl::opt<bool>
59 PrintFailedFusing("print-failed-fuse-candidates",
60                   cl::desc("Print instructions that the allocator wants to"
61                            " fuse, but the X86 backend currently can't"),
62                   cl::Hidden);
63 static cl::opt<bool>
64 ReMatPICStubLoad("remat-pic-stub-load",
65                  cl::desc("Re-materialize load from stub in PIC mode"),
66                  cl::init(false), cl::Hidden);
67 static cl::opt<unsigned>
68 PartialRegUpdateClearance("partial-reg-update-clearance",
69                           cl::desc("Clearance between two register writes "
70                                    "for inserting XOR to avoid partial "
71                                    "register update"),
72                           cl::init(64), cl::Hidden);
73 static cl::opt<unsigned>
74 UndefRegClearance("undef-reg-clearance",
75                   cl::desc("How many idle instructions we would like before "
76                            "certain undef register reads"),
77                   cl::init(128), cl::Hidden);
78 
79 
80 // Pin the vtable to this file.
81 void X86InstrInfo::anchor() {}
82 
83 X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
84     : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
85                                                : X86::ADJCALLSTACKDOWN32),
86                       (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
87                                                : X86::ADJCALLSTACKUP32),
88                       X86::CATCHRET,
89                       (STI.is64Bit() ? X86::RET64 : X86::RET32)),
90       Subtarget(STI), RI(STI.getTargetTriple()) {
91 }
92 
93 bool
94 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
95                                     Register &SrcReg, Register &DstReg,
96                                     unsigned &SubIdx) const {
97   switch (MI.getOpcode()) {
98   default: break;
99   case X86::MOVSX16rr8:
100   case X86::MOVZX16rr8:
101   case X86::MOVSX32rr8:
102   case X86::MOVZX32rr8:
103   case X86::MOVSX64rr8:
104     if (!Subtarget.is64Bit())
105       // It's not always legal to reference the low 8-bit of the larger
106       // register in 32-bit mode.
107       return false;
108     LLVM_FALLTHROUGH;
109   case X86::MOVSX32rr16:
110   case X86::MOVZX32rr16:
111   case X86::MOVSX64rr16:
112   case X86::MOVSX64rr32: {
113     if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
114       // Be conservative.
115       return false;
116     SrcReg = MI.getOperand(1).getReg();
117     DstReg = MI.getOperand(0).getReg();
118     switch (MI.getOpcode()) {
119     default: llvm_unreachable("Unreachable!");
120     case X86::MOVSX16rr8:
121     case X86::MOVZX16rr8:
122     case X86::MOVSX32rr8:
123     case X86::MOVZX32rr8:
124     case X86::MOVSX64rr8:
125       SubIdx = X86::sub_8bit;
126       break;
127     case X86::MOVSX32rr16:
128     case X86::MOVZX32rr16:
129     case X86::MOVSX64rr16:
130       SubIdx = X86::sub_16bit;
131       break;
132     case X86::MOVSX64rr32:
133       SubIdx = X86::sub_32bit;
134       break;
135     }
136     return true;
137   }
138   }
139   return false;
140 }
141 
142 bool X86InstrInfo::isDataInvariant(MachineInstr &MI) {
143   if (MI.mayLoad() || MI.mayStore())
144     return false;
145 
146   // Some target-independent operations that trivially lower to data-invariant
147   // instructions.
148   if (MI.isCopyLike() || MI.isInsertSubreg())
149     return true;
150 
151   unsigned Opcode = MI.getOpcode();
152   using namespace X86;
153   // On x86 it is believed that imul is constant time w.r.t. the loaded data.
154   // However, they set flags and are perhaps the most surprisingly constant
155   // time operations so we call them out here separately.
156   if (isIMUL(Opcode))
157     return true;
158   // Bit scanning and counting instructions that are somewhat surprisingly
159   // constant time as they scan across bits and do other fairly complex
160   // operations like popcnt, but are believed to be constant time on x86.
161   // However, these set flags.
162   if (isBSF(Opcode) || isBSR(Opcode) || isLZCNT(Opcode) || isPOPCNT(Opcode) ||
163       isTZCNT(Opcode))
164     return true;
165   // Bit manipulation instructions are effectively combinations of basic
166   // arithmetic ops, and should still execute in constant time. These also
167   // set flags.
168   if (isBLCFILL(Opcode) || isBLCI(Opcode) || isBLCIC(Opcode) ||
169       isBLCMSK(Opcode) || isBLCS(Opcode) || isBLSFILL(Opcode) ||
170       isBLSI(Opcode) || isBLSIC(Opcode) || isBLSMSK(Opcode) || isBLSR(Opcode) ||
171       isTZMSK(Opcode))
172     return true;
173   // Bit extracting and clearing instructions should execute in constant time,
174   // and set flags.
175   if (isBEXTR(Opcode) || isBZHI(Opcode))
176     return true;
177   // Shift and rotate.
178   if (isROL(Opcode) || isROR(Opcode) || isSAR(Opcode) || isSHL(Opcode) ||
179       isSHR(Opcode) || isSHLD(Opcode) || isSHRD(Opcode))
180     return true;
181   // Basic arithmetic is constant time on the input but does set flags.
182   if (isADC(Opcode) || isADD(Opcode) || isAND(Opcode) || isOR(Opcode) ||
183       isSBB(Opcode) || isSUB(Opcode) || isXOR(Opcode))
184     return true;
185   // Arithmetic with just 32-bit and 64-bit variants and no immediates.
186   if (isADCX(Opcode) || isADOX(Opcode) || isANDN(Opcode))
187     return true;
188   // Unary arithmetic operations.
189   if (isDEC(Opcode) || isINC(Opcode) || isNEG(Opcode))
190     return true;
191   // Unlike other arithmetic, NOT doesn't set EFLAGS.
192   if (isNOT(Opcode))
193     return true;
194   // Various move instructions used to zero or sign extend things. Note that we
195   // intentionally don't support the _NOREX variants as we can't handle that
196   // register constraint anyways.
197   if (isMOVSX(Opcode) || isMOVZX(Opcode) || isMOVSXD(Opcode) || isMOV(Opcode))
198     return true;
199   // Arithmetic instructions that are both constant time and don't set flags.
200   if (isRORX(Opcode) || isSARX(Opcode) || isSHLX(Opcode) || isSHRX(Opcode))
201     return true;
202   // LEA doesn't actually access memory, and its arithmetic is constant time.
203   if (isLEA(Opcode))
204     return true;
205   // By default, assume that the instruction is not data invariant.
206   return false;
207 }
208 
209 bool X86InstrInfo::isDataInvariantLoad(MachineInstr &MI) {
210   switch (MI.getOpcode()) {
211   default:
212     // By default, assume that the load will immediately leak.
213     return false;
214 
215   // On x86 it is believed that imul is constant time w.r.t. the loaded data.
216   // However, they set flags and are perhaps the most surprisingly constant
217   // time operations so we call them out here separately.
218   case X86::IMUL16rm:
219   case X86::IMUL16rmi8:
220   case X86::IMUL16rmi:
221   case X86::IMUL32rm:
222   case X86::IMUL32rmi8:
223   case X86::IMUL32rmi:
224   case X86::IMUL64rm:
225   case X86::IMUL64rmi32:
226   case X86::IMUL64rmi8:
227 
228   // Bit scanning and counting instructions that are somewhat surprisingly
229   // constant time as they scan across bits and do other fairly complex
230   // operations like popcnt, but are believed to be constant time on x86.
231   // However, these set flags.
232   case X86::BSF16rm:
233   case X86::BSF32rm:
234   case X86::BSF64rm:
235   case X86::BSR16rm:
236   case X86::BSR32rm:
237   case X86::BSR64rm:
238   case X86::LZCNT16rm:
239   case X86::LZCNT32rm:
240   case X86::LZCNT64rm:
241   case X86::POPCNT16rm:
242   case X86::POPCNT32rm:
243   case X86::POPCNT64rm:
244   case X86::TZCNT16rm:
245   case X86::TZCNT32rm:
246   case X86::TZCNT64rm:
247 
248   // Bit manipulation instructions are effectively combinations of basic
249   // arithmetic ops, and should still execute in constant time. These also
250   // set flags.
251   case X86::BLCFILL32rm:
252   case X86::BLCFILL64rm:
253   case X86::BLCI32rm:
254   case X86::BLCI64rm:
255   case X86::BLCIC32rm:
256   case X86::BLCIC64rm:
257   case X86::BLCMSK32rm:
258   case X86::BLCMSK64rm:
259   case X86::BLCS32rm:
260   case X86::BLCS64rm:
261   case X86::BLSFILL32rm:
262   case X86::BLSFILL64rm:
263   case X86::BLSI32rm:
264   case X86::BLSI64rm:
265   case X86::BLSIC32rm:
266   case X86::BLSIC64rm:
267   case X86::BLSMSK32rm:
268   case X86::BLSMSK64rm:
269   case X86::BLSR32rm:
270   case X86::BLSR64rm:
271   case X86::TZMSK32rm:
272   case X86::TZMSK64rm:
273 
274   // Bit extracting and clearing instructions should execute in constant time,
275   // and set flags.
276   case X86::BEXTR32rm:
277   case X86::BEXTR64rm:
278   case X86::BEXTRI32mi:
279   case X86::BEXTRI64mi:
280   case X86::BZHI32rm:
281   case X86::BZHI64rm:
282 
283   // Basic arithmetic is constant time on the input but does set flags.
284   case X86::ADC8rm:
285   case X86::ADC16rm:
286   case X86::ADC32rm:
287   case X86::ADC64rm:
288   case X86::ADCX32rm:
289   case X86::ADCX64rm:
290   case X86::ADD8rm:
291   case X86::ADD16rm:
292   case X86::ADD32rm:
293   case X86::ADD64rm:
294   case X86::ADOX32rm:
295   case X86::ADOX64rm:
296   case X86::AND8rm:
297   case X86::AND16rm:
298   case X86::AND32rm:
299   case X86::AND64rm:
300   case X86::ANDN32rm:
301   case X86::ANDN64rm:
302   case X86::OR8rm:
303   case X86::OR16rm:
304   case X86::OR32rm:
305   case X86::OR64rm:
306   case X86::SBB8rm:
307   case X86::SBB16rm:
308   case X86::SBB32rm:
309   case X86::SBB64rm:
310   case X86::SUB8rm:
311   case X86::SUB16rm:
312   case X86::SUB32rm:
313   case X86::SUB64rm:
314   case X86::XOR8rm:
315   case X86::XOR16rm:
316   case X86::XOR32rm:
317   case X86::XOR64rm:
318 
319   // Integer multiply w/o affecting flags is still believed to be constant
320   // time on x86. Called out separately as this is among the most surprising
321   // instructions to exhibit that behavior.
322   case X86::MULX32rm:
323   case X86::MULX64rm:
324 
325   // Arithmetic instructions that are both constant time and don't set flags.
326   case X86::RORX32mi:
327   case X86::RORX64mi:
328   case X86::SARX32rm:
329   case X86::SARX64rm:
330   case X86::SHLX32rm:
331   case X86::SHLX64rm:
332   case X86::SHRX32rm:
333   case X86::SHRX64rm:
334 
335   // Conversions are believed to be constant time and don't set flags.
336   case X86::CVTTSD2SI64rm:
337   case X86::VCVTTSD2SI64rm:
338   case X86::VCVTTSD2SI64Zrm:
339   case X86::CVTTSD2SIrm:
340   case X86::VCVTTSD2SIrm:
341   case X86::VCVTTSD2SIZrm:
342   case X86::CVTTSS2SI64rm:
343   case X86::VCVTTSS2SI64rm:
344   case X86::VCVTTSS2SI64Zrm:
345   case X86::CVTTSS2SIrm:
346   case X86::VCVTTSS2SIrm:
347   case X86::VCVTTSS2SIZrm:
348   case X86::CVTSI2SDrm:
349   case X86::VCVTSI2SDrm:
350   case X86::VCVTSI2SDZrm:
351   case X86::CVTSI2SSrm:
352   case X86::VCVTSI2SSrm:
353   case X86::VCVTSI2SSZrm:
354   case X86::CVTSI642SDrm:
355   case X86::VCVTSI642SDrm:
356   case X86::VCVTSI642SDZrm:
357   case X86::CVTSI642SSrm:
358   case X86::VCVTSI642SSrm:
359   case X86::VCVTSI642SSZrm:
360   case X86::CVTSS2SDrm:
361   case X86::VCVTSS2SDrm:
362   case X86::VCVTSS2SDZrm:
363   case X86::CVTSD2SSrm:
364   case X86::VCVTSD2SSrm:
365   case X86::VCVTSD2SSZrm:
366   // AVX512 added unsigned integer conversions.
367   case X86::VCVTTSD2USI64Zrm:
368   case X86::VCVTTSD2USIZrm:
369   case X86::VCVTTSS2USI64Zrm:
370   case X86::VCVTTSS2USIZrm:
371   case X86::VCVTUSI2SDZrm:
372   case X86::VCVTUSI642SDZrm:
373   case X86::VCVTUSI2SSZrm:
374   case X86::VCVTUSI642SSZrm:
375 
376   // Loads to register don't set flags.
377   case X86::MOV8rm:
378   case X86::MOV8rm_NOREX:
379   case X86::MOV16rm:
380   case X86::MOV32rm:
381   case X86::MOV64rm:
382   case X86::MOVSX16rm8:
383   case X86::MOVSX32rm16:
384   case X86::MOVSX32rm8:
385   case X86::MOVSX32rm8_NOREX:
386   case X86::MOVSX64rm16:
387   case X86::MOVSX64rm32:
388   case X86::MOVSX64rm8:
389   case X86::MOVZX16rm8:
390   case X86::MOVZX32rm16:
391   case X86::MOVZX32rm8:
392   case X86::MOVZX32rm8_NOREX:
393   case X86::MOVZX64rm16:
394   case X86::MOVZX64rm8:
395     return true;
396   }
397 }
398 
399 int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
400   const MachineFunction *MF = MI.getParent()->getParent();
401   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
402 
403   if (isFrameInstr(MI)) {
404     int SPAdj = alignTo(getFrameSize(MI), TFI->getStackAlign());
405     SPAdj -= getFrameAdjustment(MI);
406     if (!isFrameSetup(MI))
407       SPAdj = -SPAdj;
408     return SPAdj;
409   }
410 
411   // To know whether a call adjusts the stack, we need information
412   // that is bound to the following ADJCALLSTACKUP pseudo.
413   // Look for the next ADJCALLSTACKUP that follows the call.
414   if (MI.isCall()) {
415     const MachineBasicBlock *MBB = MI.getParent();
416     auto I = ++MachineBasicBlock::const_iterator(MI);
417     for (auto E = MBB->end(); I != E; ++I) {
418       if (I->getOpcode() == getCallFrameDestroyOpcode() ||
419           I->isCall())
420         break;
421     }
422 
423     // If we could not find a frame destroy opcode, then it has already
424     // been simplified, so we don't care.
425     if (I->getOpcode() != getCallFrameDestroyOpcode())
426       return 0;
427 
428     return -(I->getOperand(1).getImm());
429   }
430 
431   // Currently handle only PUSHes we can reasonably expect to see
432   // in call sequences
433   switch (MI.getOpcode()) {
434   default:
435     return 0;
436   case X86::PUSH32i8:
437   case X86::PUSH32r:
438   case X86::PUSH32rmm:
439   case X86::PUSH32rmr:
440   case X86::PUSHi32:
441     return 4;
442   case X86::PUSH64i8:
443   case X86::PUSH64r:
444   case X86::PUSH64rmm:
445   case X86::PUSH64rmr:
446   case X86::PUSH64i32:
447     return 8;
448   }
449 }
450 
451 /// Return true and the FrameIndex if the specified
452 /// operand and follow operands form a reference to the stack frame.
453 bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
454                                   int &FrameIndex) const {
455   if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
456       MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
457       MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
458       MI.getOperand(Op + X86::AddrDisp).isImm() &&
459       MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
460       MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
461       MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
462     FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
463     return true;
464   }
465   return false;
466 }
467 
468 static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
469   switch (Opcode) {
470   default:
471     return false;
472   case X86::MOV8rm:
473   case X86::KMOVBkm:
474     MemBytes = 1;
475     return true;
476   case X86::MOV16rm:
477   case X86::KMOVWkm:
478   case X86::VMOVSHZrm:
479   case X86::VMOVSHZrm_alt:
480     MemBytes = 2;
481     return true;
482   case X86::MOV32rm:
483   case X86::MOVSSrm:
484   case X86::MOVSSrm_alt:
485   case X86::VMOVSSrm:
486   case X86::VMOVSSrm_alt:
487   case X86::VMOVSSZrm:
488   case X86::VMOVSSZrm_alt:
489   case X86::KMOVDkm:
490     MemBytes = 4;
491     return true;
492   case X86::MOV64rm:
493   case X86::LD_Fp64m:
494   case X86::MOVSDrm:
495   case X86::MOVSDrm_alt:
496   case X86::VMOVSDrm:
497   case X86::VMOVSDrm_alt:
498   case X86::VMOVSDZrm:
499   case X86::VMOVSDZrm_alt:
500   case X86::MMX_MOVD64rm:
501   case X86::MMX_MOVQ64rm:
502   case X86::KMOVQkm:
503     MemBytes = 8;
504     return true;
505   case X86::MOVAPSrm:
506   case X86::MOVUPSrm:
507   case X86::MOVAPDrm:
508   case X86::MOVUPDrm:
509   case X86::MOVDQArm:
510   case X86::MOVDQUrm:
511   case X86::VMOVAPSrm:
512   case X86::VMOVUPSrm:
513   case X86::VMOVAPDrm:
514   case X86::VMOVUPDrm:
515   case X86::VMOVDQArm:
516   case X86::VMOVDQUrm:
517   case X86::VMOVAPSZ128rm:
518   case X86::VMOVUPSZ128rm:
519   case X86::VMOVAPSZ128rm_NOVLX:
520   case X86::VMOVUPSZ128rm_NOVLX:
521   case X86::VMOVAPDZ128rm:
522   case X86::VMOVUPDZ128rm:
523   case X86::VMOVDQU8Z128rm:
524   case X86::VMOVDQU16Z128rm:
525   case X86::VMOVDQA32Z128rm:
526   case X86::VMOVDQU32Z128rm:
527   case X86::VMOVDQA64Z128rm:
528   case X86::VMOVDQU64Z128rm:
529     MemBytes = 16;
530     return true;
531   case X86::VMOVAPSYrm:
532   case X86::VMOVUPSYrm:
533   case X86::VMOVAPDYrm:
534   case X86::VMOVUPDYrm:
535   case X86::VMOVDQAYrm:
536   case X86::VMOVDQUYrm:
537   case X86::VMOVAPSZ256rm:
538   case X86::VMOVUPSZ256rm:
539   case X86::VMOVAPSZ256rm_NOVLX:
540   case X86::VMOVUPSZ256rm_NOVLX:
541   case X86::VMOVAPDZ256rm:
542   case X86::VMOVUPDZ256rm:
543   case X86::VMOVDQU8Z256rm:
544   case X86::VMOVDQU16Z256rm:
545   case X86::VMOVDQA32Z256rm:
546   case X86::VMOVDQU32Z256rm:
547   case X86::VMOVDQA64Z256rm:
548   case X86::VMOVDQU64Z256rm:
549     MemBytes = 32;
550     return true;
551   case X86::VMOVAPSZrm:
552   case X86::VMOVUPSZrm:
553   case X86::VMOVAPDZrm:
554   case X86::VMOVUPDZrm:
555   case X86::VMOVDQU8Zrm:
556   case X86::VMOVDQU16Zrm:
557   case X86::VMOVDQA32Zrm:
558   case X86::VMOVDQU32Zrm:
559   case X86::VMOVDQA64Zrm:
560   case X86::VMOVDQU64Zrm:
561     MemBytes = 64;
562     return true;
563   }
564 }
565 
566 static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
567   switch (Opcode) {
568   default:
569     return false;
570   case X86::MOV8mr:
571   case X86::KMOVBmk:
572     MemBytes = 1;
573     return true;
574   case X86::MOV16mr:
575   case X86::KMOVWmk:
576   case X86::VMOVSHZmr:
577     MemBytes = 2;
578     return true;
579   case X86::MOV32mr:
580   case X86::MOVSSmr:
581   case X86::VMOVSSmr:
582   case X86::VMOVSSZmr:
583   case X86::KMOVDmk:
584     MemBytes = 4;
585     return true;
586   case X86::MOV64mr:
587   case X86::ST_FpP64m:
588   case X86::MOVSDmr:
589   case X86::VMOVSDmr:
590   case X86::VMOVSDZmr:
591   case X86::MMX_MOVD64mr:
592   case X86::MMX_MOVQ64mr:
593   case X86::MMX_MOVNTQmr:
594   case X86::KMOVQmk:
595     MemBytes = 8;
596     return true;
597   case X86::MOVAPSmr:
598   case X86::MOVUPSmr:
599   case X86::MOVAPDmr:
600   case X86::MOVUPDmr:
601   case X86::MOVDQAmr:
602   case X86::MOVDQUmr:
603   case X86::VMOVAPSmr:
604   case X86::VMOVUPSmr:
605   case X86::VMOVAPDmr:
606   case X86::VMOVUPDmr:
607   case X86::VMOVDQAmr:
608   case X86::VMOVDQUmr:
609   case X86::VMOVUPSZ128mr:
610   case X86::VMOVAPSZ128mr:
611   case X86::VMOVUPSZ128mr_NOVLX:
612   case X86::VMOVAPSZ128mr_NOVLX:
613   case X86::VMOVUPDZ128mr:
614   case X86::VMOVAPDZ128mr:
615   case X86::VMOVDQA32Z128mr:
616   case X86::VMOVDQU32Z128mr:
617   case X86::VMOVDQA64Z128mr:
618   case X86::VMOVDQU64Z128mr:
619   case X86::VMOVDQU8Z128mr:
620   case X86::VMOVDQU16Z128mr:
621     MemBytes = 16;
622     return true;
623   case X86::VMOVUPSYmr:
624   case X86::VMOVAPSYmr:
625   case X86::VMOVUPDYmr:
626   case X86::VMOVAPDYmr:
627   case X86::VMOVDQUYmr:
628   case X86::VMOVDQAYmr:
629   case X86::VMOVUPSZ256mr:
630   case X86::VMOVAPSZ256mr:
631   case X86::VMOVUPSZ256mr_NOVLX:
632   case X86::VMOVAPSZ256mr_NOVLX:
633   case X86::VMOVUPDZ256mr:
634   case X86::VMOVAPDZ256mr:
635   case X86::VMOVDQU8Z256mr:
636   case X86::VMOVDQU16Z256mr:
637   case X86::VMOVDQA32Z256mr:
638   case X86::VMOVDQU32Z256mr:
639   case X86::VMOVDQA64Z256mr:
640   case X86::VMOVDQU64Z256mr:
641     MemBytes = 32;
642     return true;
643   case X86::VMOVUPSZmr:
644   case X86::VMOVAPSZmr:
645   case X86::VMOVUPDZmr:
646   case X86::VMOVAPDZmr:
647   case X86::VMOVDQU8Zmr:
648   case X86::VMOVDQU16Zmr:
649   case X86::VMOVDQA32Zmr:
650   case X86::VMOVDQU32Zmr:
651   case X86::VMOVDQA64Zmr:
652   case X86::VMOVDQU64Zmr:
653     MemBytes = 64;
654     return true;
655   }
656   return false;
657 }
658 
659 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
660                                            int &FrameIndex) const {
661   unsigned Dummy;
662   return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
663 }
664 
665 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
666                                            int &FrameIndex,
667                                            unsigned &MemBytes) const {
668   if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
669     if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
670       return MI.getOperand(0).getReg();
671   return 0;
672 }
673 
674 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
675                                                  int &FrameIndex) const {
676   unsigned Dummy;
677   if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
678     unsigned Reg;
679     if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
680       return Reg;
681     // Check for post-frame index elimination operations
682     SmallVector<const MachineMemOperand *, 1> Accesses;
683     if (hasLoadFromStackSlot(MI, Accesses)) {
684       FrameIndex =
685           cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
686               ->getFrameIndex();
687       return MI.getOperand(0).getReg();
688     }
689   }
690   return 0;
691 }
692 
693 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
694                                           int &FrameIndex) const {
695   unsigned Dummy;
696   return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
697 }
698 
699 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
700                                           int &FrameIndex,
701                                           unsigned &MemBytes) const {
702   if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
703     if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
704         isFrameOperand(MI, 0, FrameIndex))
705       return MI.getOperand(X86::AddrNumOperands).getReg();
706   return 0;
707 }
708 
709 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
710                                                 int &FrameIndex) const {
711   unsigned Dummy;
712   if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
713     unsigned Reg;
714     if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
715       return Reg;
716     // Check for post-frame index elimination operations
717     SmallVector<const MachineMemOperand *, 1> Accesses;
718     if (hasStoreToStackSlot(MI, Accesses)) {
719       FrameIndex =
720           cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
721               ->getFrameIndex();
722       return MI.getOperand(X86::AddrNumOperands).getReg();
723     }
724   }
725   return 0;
726 }
727 
728 /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
729 static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI) {
730   // Don't waste compile time scanning use-def chains of physregs.
731   if (!BaseReg.isVirtual())
732     return false;
733   bool isPICBase = false;
734   for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
735          E = MRI.def_instr_end(); I != E; ++I) {
736     MachineInstr *DefMI = &*I;
737     if (DefMI->getOpcode() != X86::MOVPC32r)
738       return false;
739     assert(!isPICBase && "More than one PIC base?");
740     isPICBase = true;
741   }
742   return isPICBase;
743 }
744 
745 bool X86InstrInfo::isReallyTriviallyReMaterializable(
746     const MachineInstr &MI) const {
747   switch (MI.getOpcode()) {
748   default:
749     // This function should only be called for opcodes with the ReMaterializable
750     // flag set.
751     llvm_unreachable("Unknown rematerializable operation!");
752     break;
753 
754   case X86::LOAD_STACK_GUARD:
755   case X86::AVX1_SETALLONES:
756   case X86::AVX2_SETALLONES:
757   case X86::AVX512_128_SET0:
758   case X86::AVX512_256_SET0:
759   case X86::AVX512_512_SET0:
760   case X86::AVX512_512_SETALLONES:
761   case X86::AVX512_FsFLD0SD:
762   case X86::AVX512_FsFLD0SH:
763   case X86::AVX512_FsFLD0SS:
764   case X86::AVX512_FsFLD0F128:
765   case X86::AVX_SET0:
766   case X86::FsFLD0SD:
767   case X86::FsFLD0SS:
768   case X86::FsFLD0SH:
769   case X86::FsFLD0F128:
770   case X86::KSET0D:
771   case X86::KSET0Q:
772   case X86::KSET0W:
773   case X86::KSET1D:
774   case X86::KSET1Q:
775   case X86::KSET1W:
776   case X86::MMX_SET0:
777   case X86::MOV32ImmSExti8:
778   case X86::MOV32r0:
779   case X86::MOV32r1:
780   case X86::MOV32r_1:
781   case X86::MOV32ri64:
782   case X86::MOV64ImmSExti8:
783   case X86::V_SET0:
784   case X86::V_SETALLONES:
785   case X86::MOV16ri:
786   case X86::MOV32ri:
787   case X86::MOV64ri:
788   case X86::MOV64ri32:
789   case X86::MOV8ri:
790   case X86::PTILEZEROV:
791     return true;
792 
793   case X86::MOV8rm:
794   case X86::MOV8rm_NOREX:
795   case X86::MOV16rm:
796   case X86::MOV32rm:
797   case X86::MOV64rm:
798   case X86::MOVSSrm:
799   case X86::MOVSSrm_alt:
800   case X86::MOVSDrm:
801   case X86::MOVSDrm_alt:
802   case X86::MOVAPSrm:
803   case X86::MOVUPSrm:
804   case X86::MOVAPDrm:
805   case X86::MOVUPDrm:
806   case X86::MOVDQArm:
807   case X86::MOVDQUrm:
808   case X86::VMOVSSrm:
809   case X86::VMOVSSrm_alt:
810   case X86::VMOVSDrm:
811   case X86::VMOVSDrm_alt:
812   case X86::VMOVAPSrm:
813   case X86::VMOVUPSrm:
814   case X86::VMOVAPDrm:
815   case X86::VMOVUPDrm:
816   case X86::VMOVDQArm:
817   case X86::VMOVDQUrm:
818   case X86::VMOVAPSYrm:
819   case X86::VMOVUPSYrm:
820   case X86::VMOVAPDYrm:
821   case X86::VMOVUPDYrm:
822   case X86::VMOVDQAYrm:
823   case X86::VMOVDQUYrm:
824   case X86::MMX_MOVD64rm:
825   case X86::MMX_MOVQ64rm:
826   // AVX-512
827   case X86::VMOVSSZrm:
828   case X86::VMOVSSZrm_alt:
829   case X86::VMOVSDZrm:
830   case X86::VMOVSDZrm_alt:
831   case X86::VMOVSHZrm:
832   case X86::VMOVSHZrm_alt:
833   case X86::VMOVAPDZ128rm:
834   case X86::VMOVAPDZ256rm:
835   case X86::VMOVAPDZrm:
836   case X86::VMOVAPSZ128rm:
837   case X86::VMOVAPSZ256rm:
838   case X86::VMOVAPSZ128rm_NOVLX:
839   case X86::VMOVAPSZ256rm_NOVLX:
840   case X86::VMOVAPSZrm:
841   case X86::VMOVDQA32Z128rm:
842   case X86::VMOVDQA32Z256rm:
843   case X86::VMOVDQA32Zrm:
844   case X86::VMOVDQA64Z128rm:
845   case X86::VMOVDQA64Z256rm:
846   case X86::VMOVDQA64Zrm:
847   case X86::VMOVDQU16Z128rm:
848   case X86::VMOVDQU16Z256rm:
849   case X86::VMOVDQU16Zrm:
850   case X86::VMOVDQU32Z128rm:
851   case X86::VMOVDQU32Z256rm:
852   case X86::VMOVDQU32Zrm:
853   case X86::VMOVDQU64Z128rm:
854   case X86::VMOVDQU64Z256rm:
855   case X86::VMOVDQU64Zrm:
856   case X86::VMOVDQU8Z128rm:
857   case X86::VMOVDQU8Z256rm:
858   case X86::VMOVDQU8Zrm:
859   case X86::VMOVUPDZ128rm:
860   case X86::VMOVUPDZ256rm:
861   case X86::VMOVUPDZrm:
862   case X86::VMOVUPSZ128rm:
863   case X86::VMOVUPSZ256rm:
864   case X86::VMOVUPSZ128rm_NOVLX:
865   case X86::VMOVUPSZ256rm_NOVLX:
866   case X86::VMOVUPSZrm: {
867     // Loads from constant pools are trivially rematerializable.
868     if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
869         MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
870         MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
871         MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
872         MI.isDereferenceableInvariantLoad()) {
873       Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
874       if (BaseReg == 0 || BaseReg == X86::RIP)
875         return true;
876       // Allow re-materialization of PIC load.
877       if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())
878         return false;
879       const MachineFunction &MF = *MI.getParent()->getParent();
880       const MachineRegisterInfo &MRI = MF.getRegInfo();
881       return regIsPICBase(BaseReg, MRI);
882     }
883     return false;
884   }
885 
886   case X86::LEA32r:
887   case X86::LEA64r: {
888     if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
889         MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
890         MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
891         !MI.getOperand(1 + X86::AddrDisp).isReg()) {
892       // lea fi#, lea GV, etc. are all rematerializable.
893       if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
894         return true;
895       Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
896       if (BaseReg == 0)
897         return true;
898       // Allow re-materialization of lea PICBase + x.
899       const MachineFunction &MF = *MI.getParent()->getParent();
900       const MachineRegisterInfo &MRI = MF.getRegInfo();
901       return regIsPICBase(BaseReg, MRI);
902     }
903     return false;
904   }
905   }
906 }
907 
908 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
909                                  MachineBasicBlock::iterator I,
910                                  Register DestReg, unsigned SubIdx,
911                                  const MachineInstr &Orig,
912                                  const TargetRegisterInfo &TRI) const {
913   bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI);
914   if (ClobbersEFLAGS && MBB.computeRegisterLiveness(&TRI, X86::EFLAGS, I) !=
915                             MachineBasicBlock::LQR_Dead) {
916     // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
917     // effects.
918     int Value;
919     switch (Orig.getOpcode()) {
920     case X86::MOV32r0:  Value = 0; break;
921     case X86::MOV32r1:  Value = 1; break;
922     case X86::MOV32r_1: Value = -1; break;
923     default:
924       llvm_unreachable("Unexpected instruction!");
925     }
926 
927     const DebugLoc &DL = Orig.getDebugLoc();
928     BuildMI(MBB, I, DL, get(X86::MOV32ri))
929         .add(Orig.getOperand(0))
930         .addImm(Value);
931   } else {
932     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
933     MBB.insert(I, MI);
934   }
935 
936   MachineInstr &NewMI = *std::prev(I);
937   NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
938 }
939 
940 /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
941 bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
942   for (const MachineOperand &MO : MI.operands()) {
943     if (MO.isReg() && MO.isDef() &&
944         MO.getReg() == X86::EFLAGS && !MO.isDead()) {
945       return true;
946     }
947   }
948   return false;
949 }
950 
951 /// Check whether the shift count for a machine operand is non-zero.
952 inline static unsigned getTruncatedShiftCount(const MachineInstr &MI,
953                                               unsigned ShiftAmtOperandIdx) {
954   // The shift count is six bits with the REX.W prefix and five bits without.
955   unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
956   unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
957   return Imm & ShiftCountMask;
958 }
959 
960 /// Check whether the given shift count is appropriate
961 /// can be represented by a LEA instruction.
962 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
963   // Left shift instructions can be transformed into load-effective-address
964   // instructions if we can encode them appropriately.
965   // A LEA instruction utilizes a SIB byte to encode its scale factor.
966   // The SIB.scale field is two bits wide which means that we can encode any
967   // shift amount less than 4.
968   return ShAmt < 4 && ShAmt > 0;
969 }
970 
971 static bool findRedundantFlagInstr(MachineInstr &CmpInstr,
972                                    MachineInstr &CmpValDefInstr,
973                                    const MachineRegisterInfo *MRI,
974                                    MachineInstr **AndInstr,
975                                    const TargetRegisterInfo *TRI,
976                                    bool &NoSignFlag, bool &ClearsOverflowFlag) {
977   if (CmpValDefInstr.getOpcode() != X86::SUBREG_TO_REG)
978     return false;
979 
980   if (CmpInstr.getOpcode() != X86::TEST64rr)
981     return false;
982 
983   // CmpInstr is a TEST64rr instruction, and `X86InstrInfo::analyzeCompare`
984   // guarantees that it's analyzable only if two registers are identical.
985   assert(
986       (CmpInstr.getOperand(0).getReg() == CmpInstr.getOperand(1).getReg()) &&
987       "CmpInstr is an analyzable TEST64rr, and `X86InstrInfo::analyzeCompare` "
988       "requires two reg operands are the same.");
989 
990   // Caller (`X86InstrInfo::optimizeCompareInstr`) guarantees that
991   // `CmpValDefInstr` defines the value that's used by `CmpInstr`; in this case
992   // if `CmpValDefInstr` sets the EFLAGS, it is likely that `CmpInstr` is
993   // redundant.
994   assert(
995       (MRI->getVRegDef(CmpInstr.getOperand(0).getReg()) == &CmpValDefInstr) &&
996       "Caller guarantees that TEST64rr is a user of SUBREG_TO_REG.");
997 
998   // As seen in X86 td files, CmpValDefInstr.getOperand(1).getImm() is typically
999   // 0.
1000   if (CmpValDefInstr.getOperand(1).getImm() != 0)
1001     return false;
1002 
1003   // As seen in X86 td files, CmpValDefInstr.getOperand(3) is typically
1004   // sub_32bit or sub_xmm.
1005   if (CmpValDefInstr.getOperand(3).getImm() != X86::sub_32bit)
1006     return false;
1007 
1008   MachineInstr *VregDefInstr =
1009       MRI->getVRegDef(CmpValDefInstr.getOperand(2).getReg());
1010 
1011   assert(VregDefInstr && "Must have a definition (SSA)");
1012 
1013   // Requires `CmpValDefInstr` and `VregDefInstr` are from the same MBB
1014   // to simplify the subsequent analysis.
1015   //
1016   // FIXME: If `VregDefInstr->getParent()` is the only predecessor of
1017   // `CmpValDefInstr.getParent()`, this could be handled.
1018   if (VregDefInstr->getParent() != CmpValDefInstr.getParent())
1019     return false;
1020 
1021   if (X86::isAND(VregDefInstr->getOpcode())) {
1022     // Get a sequence of instructions like
1023     //   %reg = and* ...                    // Set EFLAGS
1024     //   ...                                // EFLAGS not changed
1025     //   %extended_reg = subreg_to_reg 0, %reg, %subreg.sub_32bit
1026     //   test64rr %extended_reg, %extended_reg, implicit-def $eflags
1027     //
1028     // If subsequent readers use a subset of bits that don't change
1029     // after `and*` instructions, it's likely that the test64rr could
1030     // be optimized away.
1031     for (const MachineInstr &Instr :
1032          make_range(std::next(MachineBasicBlock::iterator(VregDefInstr)),
1033                     MachineBasicBlock::iterator(CmpValDefInstr))) {
1034       // There are instructions between 'VregDefInstr' and
1035       // 'CmpValDefInstr' that modifies EFLAGS.
1036       if (Instr.modifiesRegister(X86::EFLAGS, TRI))
1037         return false;
1038     }
1039 
1040     *AndInstr = VregDefInstr;
1041 
1042     // AND instruction will essentially update SF and clear OF, so
1043     // NoSignFlag should be false in the sense that SF is modified by `AND`.
1044     //
1045     // However, the implementation artifically sets `NoSignFlag` to true
1046     // to poison the SF bit; that is to say, if SF is looked at later, the
1047     // optimization (to erase TEST64rr) will be disabled.
1048     //
1049     // The reason to poison SF bit is that SF bit value could be different
1050     // in the `AND` and `TEST` operation; signed bit is not known for `AND`,
1051     // and is known to be 0 as a result of `TEST64rr`.
1052     //
1053     // FIXME: As opposed to poisoning the SF bit directly, consider peeking into
1054     // the AND instruction and using the static information to guide peephole
1055     // optimization if possible. For example, it's possible to fold a
1056     // conditional move into a copy if the relevant EFLAG bits could be deduced
1057     // from an immediate operand of and operation.
1058     //
1059     NoSignFlag = true;
1060     // ClearsOverflowFlag is true for AND operation (no surprise).
1061     ClearsOverflowFlag = true;
1062     return true;
1063   }
1064   return false;
1065 }
1066 
1067 bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
1068                                   unsigned Opc, bool AllowSP, Register &NewSrc,
1069                                   bool &isKill, MachineOperand &ImplicitOp,
1070                                   LiveVariables *LV, LiveIntervals *LIS) const {
1071   MachineFunction &MF = *MI.getParent()->getParent();
1072   const TargetRegisterClass *RC;
1073   if (AllowSP) {
1074     RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
1075   } else {
1076     RC = Opc != X86::LEA32r ?
1077       &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
1078   }
1079   Register SrcReg = Src.getReg();
1080   isKill = MI.killsRegister(SrcReg);
1081 
1082   // For both LEA64 and LEA32 the register already has essentially the right
1083   // type (32-bit or 64-bit) we may just need to forbid SP.
1084   if (Opc != X86::LEA64_32r) {
1085     NewSrc = SrcReg;
1086     assert(!Src.isUndef() && "Undef op doesn't need optimization");
1087 
1088     if (NewSrc.isVirtual() && !MF.getRegInfo().constrainRegClass(NewSrc, RC))
1089       return false;
1090 
1091     return true;
1092   }
1093 
1094   // This is for an LEA64_32r and incoming registers are 32-bit. One way or
1095   // another we need to add 64-bit registers to the final MI.
1096   if (SrcReg.isPhysical()) {
1097     ImplicitOp = Src;
1098     ImplicitOp.setImplicit();
1099 
1100     NewSrc = getX86SubSuperRegister(SrcReg, 64);
1101     assert(!Src.isUndef() && "Undef op doesn't need optimization");
1102   } else {
1103     // Virtual register of the wrong class, we have to create a temporary 64-bit
1104     // vreg to feed into the LEA.
1105     NewSrc = MF.getRegInfo().createVirtualRegister(RC);
1106     MachineInstr *Copy =
1107         BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1108             .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
1109             .addReg(SrcReg, getKillRegState(isKill));
1110 
1111     // Which is obviously going to be dead after we're done with it.
1112     isKill = true;
1113 
1114     if (LV)
1115       LV->replaceKillInstruction(SrcReg, MI, *Copy);
1116 
1117     if (LIS) {
1118       SlotIndex CopyIdx = LIS->InsertMachineInstrInMaps(*Copy);
1119       SlotIndex Idx = LIS->getInstructionIndex(MI);
1120       LiveInterval &LI = LIS->getInterval(SrcReg);
1121       LiveRange::Segment *S = LI.getSegmentContaining(Idx);
1122       if (S->end.getBaseIndex() == Idx)
1123         S->end = CopyIdx.getRegSlot();
1124     }
1125   }
1126 
1127   // We've set all the parameters without issue.
1128   return true;
1129 }
1130 
1131 MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1132                                                          MachineInstr &MI,
1133                                                          LiveVariables *LV,
1134                                                          LiveIntervals *LIS,
1135                                                          bool Is8BitOp) const {
1136   // We handle 8-bit adds and various 16-bit opcodes in the switch below.
1137   MachineBasicBlock &MBB = *MI.getParent();
1138   MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
1139   assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits(
1140               *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&
1141          "Unexpected type for LEA transform");
1142 
1143   // TODO: For a 32-bit target, we need to adjust the LEA variables with
1144   // something like this:
1145   //   Opcode = X86::LEA32r;
1146   //   InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1147   //   OutRegLEA =
1148   //       Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
1149   //                : RegInfo.createVirtualRegister(&X86::GR32RegClass);
1150   if (!Subtarget.is64Bit())
1151     return nullptr;
1152 
1153   unsigned Opcode = X86::LEA64_32r;
1154   Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1155   Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1156   Register InRegLEA2;
1157 
1158   // Build and insert into an implicit UNDEF value. This is OK because
1159   // we will be shifting and then extracting the lower 8/16-bits.
1160   // This has the potential to cause partial register stall. e.g.
1161   //   movw    (%rbp,%rcx,2), %dx
1162   //   leal    -65(%rdx), %esi
1163   // But testing has shown this *does* help performance in 64-bit mode (at
1164   // least on modern x86 machines).
1165   MachineBasicBlock::iterator MBBI = MI.getIterator();
1166   Register Dest = MI.getOperand(0).getReg();
1167   Register Src = MI.getOperand(1).getReg();
1168   Register Src2;
1169   bool IsDead = MI.getOperand(0).isDead();
1170   bool IsKill = MI.getOperand(1).isKill();
1171   unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
1172   assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization");
1173   MachineInstr *ImpDef =
1174       BuildMI(MBB, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA);
1175   MachineInstr *InsMI =
1176       BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1177           .addReg(InRegLEA, RegState::Define, SubReg)
1178           .addReg(Src, getKillRegState(IsKill));
1179   MachineInstr *ImpDef2 = nullptr;
1180   MachineInstr *InsMI2 = nullptr;
1181 
1182   MachineInstrBuilder MIB =
1183       BuildMI(MBB, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA);
1184   switch (MIOpc) {
1185   default: llvm_unreachable("Unreachable!");
1186   case X86::SHL8ri:
1187   case X86::SHL16ri: {
1188     unsigned ShAmt = MI.getOperand(2).getImm();
1189     MIB.addReg(0)
1190         .addImm(1LL << ShAmt)
1191         .addReg(InRegLEA, RegState::Kill)
1192         .addImm(0)
1193         .addReg(0);
1194     break;
1195   }
1196   case X86::INC8r:
1197   case X86::INC16r:
1198     addRegOffset(MIB, InRegLEA, true, 1);
1199     break;
1200   case X86::DEC8r:
1201   case X86::DEC16r:
1202     addRegOffset(MIB, InRegLEA, true, -1);
1203     break;
1204   case X86::ADD8ri:
1205   case X86::ADD8ri_DB:
1206   case X86::ADD16ri:
1207   case X86::ADD16ri8:
1208   case X86::ADD16ri_DB:
1209   case X86::ADD16ri8_DB:
1210     addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm());
1211     break;
1212   case X86::ADD8rr:
1213   case X86::ADD8rr_DB:
1214   case X86::ADD16rr:
1215   case X86::ADD16rr_DB: {
1216     Src2 = MI.getOperand(2).getReg();
1217     bool IsKill2 = MI.getOperand(2).isKill();
1218     assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization");
1219     if (Src == Src2) {
1220       // ADD8rr/ADD16rr killed %reg1028, %reg1028
1221       // just a single insert_subreg.
1222       addRegReg(MIB, InRegLEA, true, InRegLEA, false);
1223     } else {
1224       if (Subtarget.is64Bit())
1225         InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1226       else
1227         InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1228       // Build and insert into an implicit UNDEF value. This is OK because
1229       // we will be shifting and then extracting the lower 8/16-bits.
1230       ImpDef2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF),
1231                         InRegLEA2);
1232       InsMI2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
1233                    .addReg(InRegLEA2, RegState::Define, SubReg)
1234                    .addReg(Src2, getKillRegState(IsKill2));
1235       addRegReg(MIB, InRegLEA, true, InRegLEA2, true);
1236     }
1237     if (LV && IsKill2 && InsMI2)
1238       LV->replaceKillInstruction(Src2, MI, *InsMI2);
1239     break;
1240   }
1241   }
1242 
1243   MachineInstr *NewMI = MIB;
1244   MachineInstr *ExtMI =
1245       BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1246           .addReg(Dest, RegState::Define | getDeadRegState(IsDead))
1247           .addReg(OutRegLEA, RegState::Kill, SubReg);
1248 
1249   if (LV) {
1250     // Update live variables.
1251     LV->getVarInfo(InRegLEA).Kills.push_back(NewMI);
1252     LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI);
1253     if (IsKill)
1254       LV->replaceKillInstruction(Src, MI, *InsMI);
1255     if (IsDead)
1256       LV->replaceKillInstruction(Dest, MI, *ExtMI);
1257   }
1258 
1259   if (LIS) {
1260     LIS->InsertMachineInstrInMaps(*ImpDef);
1261     SlotIndex InsIdx = LIS->InsertMachineInstrInMaps(*InsMI);
1262     if (ImpDef2)
1263       LIS->InsertMachineInstrInMaps(*ImpDef2);
1264     SlotIndex Ins2Idx;
1265     if (InsMI2)
1266       Ins2Idx = LIS->InsertMachineInstrInMaps(*InsMI2);
1267     SlotIndex NewIdx = LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
1268     SlotIndex ExtIdx = LIS->InsertMachineInstrInMaps(*ExtMI);
1269     LIS->getInterval(InRegLEA);
1270     LIS->getInterval(OutRegLEA);
1271     if (InRegLEA2)
1272       LIS->getInterval(InRegLEA2);
1273 
1274     // Move the use of Src up to InsMI.
1275     LiveInterval &SrcLI = LIS->getInterval(Src);
1276     LiveRange::Segment *SrcSeg = SrcLI.getSegmentContaining(NewIdx);
1277     if (SrcSeg->end == NewIdx.getRegSlot())
1278       SrcSeg->end = InsIdx.getRegSlot();
1279 
1280     if (InsMI2) {
1281       // Move the use of Src2 up to InsMI2.
1282       LiveInterval &Src2LI = LIS->getInterval(Src2);
1283       LiveRange::Segment *Src2Seg = Src2LI.getSegmentContaining(NewIdx);
1284       if (Src2Seg->end == NewIdx.getRegSlot())
1285         Src2Seg->end = Ins2Idx.getRegSlot();
1286     }
1287 
1288     // Move the definition of Dest down to ExtMI.
1289     LiveInterval &DestLI = LIS->getInterval(Dest);
1290     LiveRange::Segment *DestSeg =
1291         DestLI.getSegmentContaining(NewIdx.getRegSlot());
1292     assert(DestSeg->start == NewIdx.getRegSlot() &&
1293            DestSeg->valno->def == NewIdx.getRegSlot());
1294     DestSeg->start = ExtIdx.getRegSlot();
1295     DestSeg->valno->def = ExtIdx.getRegSlot();
1296   }
1297 
1298   return ExtMI;
1299 }
1300 
1301 /// This method must be implemented by targets that
1302 /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
1303 /// may be able to convert a two-address instruction into a true
1304 /// three-address instruction on demand.  This allows the X86 target (for
1305 /// example) to convert ADD and SHL instructions into LEA instructions if they
1306 /// would require register copies due to two-addressness.
1307 ///
1308 /// This method returns a null pointer if the transformation cannot be
1309 /// performed, otherwise it returns the new instruction.
1310 ///
1311 MachineInstr *X86InstrInfo::convertToThreeAddress(MachineInstr &MI,
1312                                                   LiveVariables *LV,
1313                                                   LiveIntervals *LIS) const {
1314   // The following opcodes also sets the condition code register(s). Only
1315   // convert them to equivalent lea if the condition code register def's
1316   // are dead!
1317   if (hasLiveCondCodeDef(MI))
1318     return nullptr;
1319 
1320   MachineFunction &MF = *MI.getParent()->getParent();
1321   // All instructions input are two-addr instructions.  Get the known operands.
1322   const MachineOperand &Dest = MI.getOperand(0);
1323   const MachineOperand &Src = MI.getOperand(1);
1324 
1325   // Ideally, operations with undef should be folded before we get here, but we
1326   // can't guarantee it. Bail out because optimizing undefs is a waste of time.
1327   // Without this, we have to forward undef state to new register operands to
1328   // avoid machine verifier errors.
1329   if (Src.isUndef())
1330     return nullptr;
1331   if (MI.getNumOperands() > 2)
1332     if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef())
1333       return nullptr;
1334 
1335   MachineInstr *NewMI = nullptr;
1336   Register SrcReg, SrcReg2;
1337   bool Is64Bit = Subtarget.is64Bit();
1338 
1339   bool Is8BitOp = false;
1340   unsigned MIOpc = MI.getOpcode();
1341   switch (MIOpc) {
1342   default: llvm_unreachable("Unreachable!");
1343   case X86::SHL64ri: {
1344     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1345     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1346     if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
1347 
1348     // LEA can't handle RSP.
1349     if (Src.getReg().isVirtual() && !MF.getRegInfo().constrainRegClass(
1350                                         Src.getReg(), &X86::GR64_NOSPRegClass))
1351       return nullptr;
1352 
1353     NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
1354                 .add(Dest)
1355                 .addReg(0)
1356                 .addImm(1LL << ShAmt)
1357                 .add(Src)
1358                 .addImm(0)
1359                 .addReg(0);
1360     break;
1361   }
1362   case X86::SHL32ri: {
1363     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1364     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1365     if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
1366 
1367     unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1368 
1369     // LEA can't handle ESP.
1370     bool isKill;
1371     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1372     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1373                         ImplicitOp, LV, LIS))
1374       return nullptr;
1375 
1376     MachineInstrBuilder MIB =
1377         BuildMI(MF, MI.getDebugLoc(), get(Opc))
1378             .add(Dest)
1379             .addReg(0)
1380             .addImm(1LL << ShAmt)
1381             .addReg(SrcReg, getKillRegState(isKill))
1382             .addImm(0)
1383             .addReg(0);
1384     if (ImplicitOp.getReg() != 0)
1385       MIB.add(ImplicitOp);
1386     NewMI = MIB;
1387 
1388     break;
1389   }
1390   case X86::SHL8ri:
1391     Is8BitOp = true;
1392     LLVM_FALLTHROUGH;
1393   case X86::SHL16ri: {
1394     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1395     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1396     if (!isTruncatedShiftCountForLEA(ShAmt))
1397       return nullptr;
1398     return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1399   }
1400   case X86::INC64r:
1401   case X86::INC32r: {
1402     assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
1403     unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r :
1404         (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1405     bool isKill;
1406     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1407     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1408                         ImplicitOp, LV, LIS))
1409       return nullptr;
1410 
1411     MachineInstrBuilder MIB =
1412         BuildMI(MF, MI.getDebugLoc(), get(Opc))
1413             .add(Dest)
1414             .addReg(SrcReg, getKillRegState(isKill));
1415     if (ImplicitOp.getReg() != 0)
1416       MIB.add(ImplicitOp);
1417 
1418     NewMI = addOffset(MIB, 1);
1419     break;
1420   }
1421   case X86::DEC64r:
1422   case X86::DEC32r: {
1423     assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
1424     unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1425         : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1426 
1427     bool isKill;
1428     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1429     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1430                         ImplicitOp, LV, LIS))
1431       return nullptr;
1432 
1433     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1434                                   .add(Dest)
1435                                   .addReg(SrcReg, getKillRegState(isKill));
1436     if (ImplicitOp.getReg() != 0)
1437       MIB.add(ImplicitOp);
1438 
1439     NewMI = addOffset(MIB, -1);
1440 
1441     break;
1442   }
1443   case X86::DEC8r:
1444   case X86::INC8r:
1445     Is8BitOp = true;
1446     LLVM_FALLTHROUGH;
1447   case X86::DEC16r:
1448   case X86::INC16r:
1449     return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1450   case X86::ADD64rr:
1451   case X86::ADD64rr_DB:
1452   case X86::ADD32rr:
1453   case X86::ADD32rr_DB: {
1454     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1455     unsigned Opc;
1456     if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
1457       Opc = X86::LEA64r;
1458     else
1459       Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1460 
1461     const MachineOperand &Src2 = MI.getOperand(2);
1462     bool isKill2;
1463     MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
1464     if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/false, SrcReg2, isKill2,
1465                         ImplicitOp2, LV, LIS))
1466       return nullptr;
1467 
1468     bool isKill;
1469     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1470     if (Src.getReg() == Src2.getReg()) {
1471       // Don't call classify LEAReg a second time on the same register, in case
1472       // the first call inserted a COPY from Src2 and marked it as killed.
1473       isKill = isKill2;
1474       SrcReg = SrcReg2;
1475     } else {
1476       if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1477                           ImplicitOp, LV, LIS))
1478         return nullptr;
1479     }
1480 
1481     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
1482     if (ImplicitOp.getReg() != 0)
1483       MIB.add(ImplicitOp);
1484     if (ImplicitOp2.getReg() != 0)
1485       MIB.add(ImplicitOp2);
1486 
1487     NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
1488     if (LV && Src2.isKill())
1489       LV->replaceKillInstruction(SrcReg2, MI, *NewMI);
1490     break;
1491   }
1492   case X86::ADD8rr:
1493   case X86::ADD8rr_DB:
1494     Is8BitOp = true;
1495     LLVM_FALLTHROUGH;
1496   case X86::ADD16rr:
1497   case X86::ADD16rr_DB:
1498     return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1499   case X86::ADD64ri32:
1500   case X86::ADD64ri8:
1501   case X86::ADD64ri32_DB:
1502   case X86::ADD64ri8_DB:
1503     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1504     NewMI = addOffset(
1505         BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
1506         MI.getOperand(2));
1507     break;
1508   case X86::ADD32ri:
1509   case X86::ADD32ri8:
1510   case X86::ADD32ri_DB:
1511   case X86::ADD32ri8_DB: {
1512     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1513     unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1514 
1515     bool isKill;
1516     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1517     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1518                         ImplicitOp, LV, LIS))
1519       return nullptr;
1520 
1521     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1522                                   .add(Dest)
1523                                   .addReg(SrcReg, getKillRegState(isKill));
1524     if (ImplicitOp.getReg() != 0)
1525       MIB.add(ImplicitOp);
1526 
1527     NewMI = addOffset(MIB, MI.getOperand(2));
1528     break;
1529   }
1530   case X86::ADD8ri:
1531   case X86::ADD8ri_DB:
1532     Is8BitOp = true;
1533     LLVM_FALLTHROUGH;
1534   case X86::ADD16ri:
1535   case X86::ADD16ri8:
1536   case X86::ADD16ri_DB:
1537   case X86::ADD16ri8_DB:
1538     return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1539   case X86::SUB8ri:
1540   case X86::SUB16ri8:
1541   case X86::SUB16ri:
1542     /// FIXME: Support these similar to ADD8ri/ADD16ri*.
1543     return nullptr;
1544   case X86::SUB32ri8:
1545   case X86::SUB32ri: {
1546     if (!MI.getOperand(2).isImm())
1547       return nullptr;
1548     int64_t Imm = MI.getOperand(2).getImm();
1549     if (!isInt<32>(-Imm))
1550       return nullptr;
1551 
1552     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1553     unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1554 
1555     bool isKill;
1556     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1557     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1558                         ImplicitOp, LV, LIS))
1559       return nullptr;
1560 
1561     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1562                                   .add(Dest)
1563                                   .addReg(SrcReg, getKillRegState(isKill));
1564     if (ImplicitOp.getReg() != 0)
1565       MIB.add(ImplicitOp);
1566 
1567     NewMI = addOffset(MIB, -Imm);
1568     break;
1569   }
1570 
1571   case X86::SUB64ri8:
1572   case X86::SUB64ri32: {
1573     if (!MI.getOperand(2).isImm())
1574       return nullptr;
1575     int64_t Imm = MI.getOperand(2).getImm();
1576     if (!isInt<32>(-Imm))
1577       return nullptr;
1578 
1579     assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!");
1580 
1581     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(),
1582                                       get(X86::LEA64r)).add(Dest).add(Src);
1583     NewMI = addOffset(MIB, -Imm);
1584     break;
1585   }
1586 
1587   case X86::VMOVDQU8Z128rmk:
1588   case X86::VMOVDQU8Z256rmk:
1589   case X86::VMOVDQU8Zrmk:
1590   case X86::VMOVDQU16Z128rmk:
1591   case X86::VMOVDQU16Z256rmk:
1592   case X86::VMOVDQU16Zrmk:
1593   case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk:
1594   case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk:
1595   case X86::VMOVDQU32Zrmk:    case X86::VMOVDQA32Zrmk:
1596   case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk:
1597   case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk:
1598   case X86::VMOVDQU64Zrmk:    case X86::VMOVDQA64Zrmk:
1599   case X86::VMOVUPDZ128rmk:   case X86::VMOVAPDZ128rmk:
1600   case X86::VMOVUPDZ256rmk:   case X86::VMOVAPDZ256rmk:
1601   case X86::VMOVUPDZrmk:      case X86::VMOVAPDZrmk:
1602   case X86::VMOVUPSZ128rmk:   case X86::VMOVAPSZ128rmk:
1603   case X86::VMOVUPSZ256rmk:   case X86::VMOVAPSZ256rmk:
1604   case X86::VMOVUPSZrmk:      case X86::VMOVAPSZrmk:
1605   case X86::VBROADCASTSDZ256rmk:
1606   case X86::VBROADCASTSDZrmk:
1607   case X86::VBROADCASTSSZ128rmk:
1608   case X86::VBROADCASTSSZ256rmk:
1609   case X86::VBROADCASTSSZrmk:
1610   case X86::VPBROADCASTDZ128rmk:
1611   case X86::VPBROADCASTDZ256rmk:
1612   case X86::VPBROADCASTDZrmk:
1613   case X86::VPBROADCASTQZ128rmk:
1614   case X86::VPBROADCASTQZ256rmk:
1615   case X86::VPBROADCASTQZrmk: {
1616     unsigned Opc;
1617     switch (MIOpc) {
1618     default: llvm_unreachable("Unreachable!");
1619     case X86::VMOVDQU8Z128rmk:     Opc = X86::VPBLENDMBZ128rmk; break;
1620     case X86::VMOVDQU8Z256rmk:     Opc = X86::VPBLENDMBZ256rmk; break;
1621     case X86::VMOVDQU8Zrmk:        Opc = X86::VPBLENDMBZrmk;    break;
1622     case X86::VMOVDQU16Z128rmk:    Opc = X86::VPBLENDMWZ128rmk; break;
1623     case X86::VMOVDQU16Z256rmk:    Opc = X86::VPBLENDMWZ256rmk; break;
1624     case X86::VMOVDQU16Zrmk:       Opc = X86::VPBLENDMWZrmk;    break;
1625     case X86::VMOVDQU32Z128rmk:    Opc = X86::VPBLENDMDZ128rmk; break;
1626     case X86::VMOVDQU32Z256rmk:    Opc = X86::VPBLENDMDZ256rmk; break;
1627     case X86::VMOVDQU32Zrmk:       Opc = X86::VPBLENDMDZrmk;    break;
1628     case X86::VMOVDQU64Z128rmk:    Opc = X86::VPBLENDMQZ128rmk; break;
1629     case X86::VMOVDQU64Z256rmk:    Opc = X86::VPBLENDMQZ256rmk; break;
1630     case X86::VMOVDQU64Zrmk:       Opc = X86::VPBLENDMQZrmk;    break;
1631     case X86::VMOVUPDZ128rmk:      Opc = X86::VBLENDMPDZ128rmk; break;
1632     case X86::VMOVUPDZ256rmk:      Opc = X86::VBLENDMPDZ256rmk; break;
1633     case X86::VMOVUPDZrmk:         Opc = X86::VBLENDMPDZrmk;    break;
1634     case X86::VMOVUPSZ128rmk:      Opc = X86::VBLENDMPSZ128rmk; break;
1635     case X86::VMOVUPSZ256rmk:      Opc = X86::VBLENDMPSZ256rmk; break;
1636     case X86::VMOVUPSZrmk:         Opc = X86::VBLENDMPSZrmk;    break;
1637     case X86::VMOVDQA32Z128rmk:    Opc = X86::VPBLENDMDZ128rmk; break;
1638     case X86::VMOVDQA32Z256rmk:    Opc = X86::VPBLENDMDZ256rmk; break;
1639     case X86::VMOVDQA32Zrmk:       Opc = X86::VPBLENDMDZrmk;    break;
1640     case X86::VMOVDQA64Z128rmk:    Opc = X86::VPBLENDMQZ128rmk; break;
1641     case X86::VMOVDQA64Z256rmk:    Opc = X86::VPBLENDMQZ256rmk; break;
1642     case X86::VMOVDQA64Zrmk:       Opc = X86::VPBLENDMQZrmk;    break;
1643     case X86::VMOVAPDZ128rmk:      Opc = X86::VBLENDMPDZ128rmk; break;
1644     case X86::VMOVAPDZ256rmk:      Opc = X86::VBLENDMPDZ256rmk; break;
1645     case X86::VMOVAPDZrmk:         Opc = X86::VBLENDMPDZrmk;    break;
1646     case X86::VMOVAPSZ128rmk:      Opc = X86::VBLENDMPSZ128rmk; break;
1647     case X86::VMOVAPSZ256rmk:      Opc = X86::VBLENDMPSZ256rmk; break;
1648     case X86::VMOVAPSZrmk:         Opc = X86::VBLENDMPSZrmk;    break;
1649     case X86::VBROADCASTSDZ256rmk: Opc = X86::VBLENDMPDZ256rmbk; break;
1650     case X86::VBROADCASTSDZrmk:    Opc = X86::VBLENDMPDZrmbk;    break;
1651     case X86::VBROADCASTSSZ128rmk: Opc = X86::VBLENDMPSZ128rmbk; break;
1652     case X86::VBROADCASTSSZ256rmk: Opc = X86::VBLENDMPSZ256rmbk; break;
1653     case X86::VBROADCASTSSZrmk:    Opc = X86::VBLENDMPSZrmbk;    break;
1654     case X86::VPBROADCASTDZ128rmk: Opc = X86::VPBLENDMDZ128rmbk; break;
1655     case X86::VPBROADCASTDZ256rmk: Opc = X86::VPBLENDMDZ256rmbk; break;
1656     case X86::VPBROADCASTDZrmk:    Opc = X86::VPBLENDMDZrmbk;    break;
1657     case X86::VPBROADCASTQZ128rmk: Opc = X86::VPBLENDMQZ128rmbk; break;
1658     case X86::VPBROADCASTQZ256rmk: Opc = X86::VPBLENDMQZ256rmbk; break;
1659     case X86::VPBROADCASTQZrmk:    Opc = X86::VPBLENDMQZrmbk;    break;
1660     }
1661 
1662     NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1663               .add(Dest)
1664               .add(MI.getOperand(2))
1665               .add(Src)
1666               .add(MI.getOperand(3))
1667               .add(MI.getOperand(4))
1668               .add(MI.getOperand(5))
1669               .add(MI.getOperand(6))
1670               .add(MI.getOperand(7));
1671     break;
1672   }
1673 
1674   case X86::VMOVDQU8Z128rrk:
1675   case X86::VMOVDQU8Z256rrk:
1676   case X86::VMOVDQU8Zrrk:
1677   case X86::VMOVDQU16Z128rrk:
1678   case X86::VMOVDQU16Z256rrk:
1679   case X86::VMOVDQU16Zrrk:
1680   case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk:
1681   case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk:
1682   case X86::VMOVDQU32Zrrk:    case X86::VMOVDQA32Zrrk:
1683   case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk:
1684   case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk:
1685   case X86::VMOVDQU64Zrrk:    case X86::VMOVDQA64Zrrk:
1686   case X86::VMOVUPDZ128rrk:   case X86::VMOVAPDZ128rrk:
1687   case X86::VMOVUPDZ256rrk:   case X86::VMOVAPDZ256rrk:
1688   case X86::VMOVUPDZrrk:      case X86::VMOVAPDZrrk:
1689   case X86::VMOVUPSZ128rrk:   case X86::VMOVAPSZ128rrk:
1690   case X86::VMOVUPSZ256rrk:   case X86::VMOVAPSZ256rrk:
1691   case X86::VMOVUPSZrrk:      case X86::VMOVAPSZrrk: {
1692     unsigned Opc;
1693     switch (MIOpc) {
1694     default: llvm_unreachable("Unreachable!");
1695     case X86::VMOVDQU8Z128rrk:  Opc = X86::VPBLENDMBZ128rrk; break;
1696     case X86::VMOVDQU8Z256rrk:  Opc = X86::VPBLENDMBZ256rrk; break;
1697     case X86::VMOVDQU8Zrrk:     Opc = X86::VPBLENDMBZrrk;    break;
1698     case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break;
1699     case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break;
1700     case X86::VMOVDQU16Zrrk:    Opc = X86::VPBLENDMWZrrk;    break;
1701     case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1702     case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1703     case X86::VMOVDQU32Zrrk:    Opc = X86::VPBLENDMDZrrk;    break;
1704     case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1705     case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1706     case X86::VMOVDQU64Zrrk:    Opc = X86::VPBLENDMQZrrk;    break;
1707     case X86::VMOVUPDZ128rrk:   Opc = X86::VBLENDMPDZ128rrk; break;
1708     case X86::VMOVUPDZ256rrk:   Opc = X86::VBLENDMPDZ256rrk; break;
1709     case X86::VMOVUPDZrrk:      Opc = X86::VBLENDMPDZrrk;    break;
1710     case X86::VMOVUPSZ128rrk:   Opc = X86::VBLENDMPSZ128rrk; break;
1711     case X86::VMOVUPSZ256rrk:   Opc = X86::VBLENDMPSZ256rrk; break;
1712     case X86::VMOVUPSZrrk:      Opc = X86::VBLENDMPSZrrk;    break;
1713     case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1714     case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1715     case X86::VMOVDQA32Zrrk:    Opc = X86::VPBLENDMDZrrk;    break;
1716     case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1717     case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1718     case X86::VMOVDQA64Zrrk:    Opc = X86::VPBLENDMQZrrk;    break;
1719     case X86::VMOVAPDZ128rrk:   Opc = X86::VBLENDMPDZ128rrk; break;
1720     case X86::VMOVAPDZ256rrk:   Opc = X86::VBLENDMPDZ256rrk; break;
1721     case X86::VMOVAPDZrrk:      Opc = X86::VBLENDMPDZrrk;    break;
1722     case X86::VMOVAPSZ128rrk:   Opc = X86::VBLENDMPSZ128rrk; break;
1723     case X86::VMOVAPSZ256rrk:   Opc = X86::VBLENDMPSZ256rrk; break;
1724     case X86::VMOVAPSZrrk:      Opc = X86::VBLENDMPSZrrk;    break;
1725     }
1726 
1727     NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1728               .add(Dest)
1729               .add(MI.getOperand(2))
1730               .add(Src)
1731               .add(MI.getOperand(3));
1732     break;
1733   }
1734   }
1735 
1736   if (!NewMI) return nullptr;
1737 
1738   if (LV) {  // Update live variables
1739     if (Src.isKill())
1740       LV->replaceKillInstruction(Src.getReg(), MI, *NewMI);
1741     if (Dest.isDead())
1742       LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI);
1743   }
1744 
1745   MachineBasicBlock &MBB = *MI.getParent();
1746   MBB.insert(MI.getIterator(), NewMI); // Insert the new inst
1747 
1748   if (LIS) {
1749     LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
1750     if (SrcReg)
1751       LIS->getInterval(SrcReg);
1752     if (SrcReg2)
1753       LIS->getInterval(SrcReg2);
1754   }
1755 
1756   return NewMI;
1757 }
1758 
1759 /// This determines which of three possible cases of a three source commute
1760 /// the source indexes correspond to taking into account any mask operands.
1761 /// All prevents commuting a passthru operand. Returns -1 if the commute isn't
1762 /// possible.
1763 /// Case 0 - Possible to commute the first and second operands.
1764 /// Case 1 - Possible to commute the first and third operands.
1765 /// Case 2 - Possible to commute the second and third operands.
1766 static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
1767                                        unsigned SrcOpIdx2) {
1768   // Put the lowest index to SrcOpIdx1 to simplify the checks below.
1769   if (SrcOpIdx1 > SrcOpIdx2)
1770     std::swap(SrcOpIdx1, SrcOpIdx2);
1771 
1772   unsigned Op1 = 1, Op2 = 2, Op3 = 3;
1773   if (X86II::isKMasked(TSFlags)) {
1774     Op2++;
1775     Op3++;
1776   }
1777 
1778   if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
1779     return 0;
1780   if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
1781     return 1;
1782   if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
1783     return 2;
1784   llvm_unreachable("Unknown three src commute case.");
1785 }
1786 
1787 unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
1788     const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
1789     const X86InstrFMA3Group &FMA3Group) const {
1790 
1791   unsigned Opc = MI.getOpcode();
1792 
1793   // TODO: Commuting the 1st operand of FMA*_Int requires some additional
1794   // analysis. The commute optimization is legal only if all users of FMA*_Int
1795   // use only the lowest element of the FMA*_Int instruction. Such analysis are
1796   // not implemented yet. So, just return 0 in that case.
1797   // When such analysis are available this place will be the right place for
1798   // calling it.
1799   assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&
1800          "Intrinsic instructions can't commute operand 1");
1801 
1802   // Determine which case this commute is or if it can't be done.
1803   unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1804                                          SrcOpIdx2);
1805   assert(Case < 3 && "Unexpected case number!");
1806 
1807   // Define the FMA forms mapping array that helps to map input FMA form
1808   // to output FMA form to preserve the operation semantics after
1809   // commuting the operands.
1810   const unsigned Form132Index = 0;
1811   const unsigned Form213Index = 1;
1812   const unsigned Form231Index = 2;
1813   static const unsigned FormMapping[][3] = {
1814     // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
1815     // FMA132 A, C, b; ==> FMA231 C, A, b;
1816     // FMA213 B, A, c; ==> FMA213 A, B, c;
1817     // FMA231 C, A, b; ==> FMA132 A, C, b;
1818     { Form231Index, Form213Index, Form132Index },
1819     // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
1820     // FMA132 A, c, B; ==> FMA132 B, c, A;
1821     // FMA213 B, a, C; ==> FMA231 C, a, B;
1822     // FMA231 C, a, B; ==> FMA213 B, a, C;
1823     { Form132Index, Form231Index, Form213Index },
1824     // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
1825     // FMA132 a, C, B; ==> FMA213 a, B, C;
1826     // FMA213 b, A, C; ==> FMA132 b, C, A;
1827     // FMA231 c, A, B; ==> FMA231 c, B, A;
1828     { Form213Index, Form132Index, Form231Index }
1829   };
1830 
1831   unsigned FMAForms[3];
1832   FMAForms[0] = FMA3Group.get132Opcode();
1833   FMAForms[1] = FMA3Group.get213Opcode();
1834   FMAForms[2] = FMA3Group.get231Opcode();
1835 
1836   // Everything is ready, just adjust the FMA opcode and return it.
1837   for (unsigned FormIndex = 0; FormIndex < 3; FormIndex++)
1838     if (Opc == FMAForms[FormIndex])
1839       return FMAForms[FormMapping[Case][FormIndex]];
1840 
1841   llvm_unreachable("Illegal FMA3 format");
1842 }
1843 
1844 static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
1845                              unsigned SrcOpIdx2) {
1846   // Determine which case this commute is or if it can't be done.
1847   unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1848                                          SrcOpIdx2);
1849   assert(Case < 3 && "Unexpected case value!");
1850 
1851   // For each case we need to swap two pairs of bits in the final immediate.
1852   static const uint8_t SwapMasks[3][4] = {
1853     { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
1854     { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
1855     { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
1856   };
1857 
1858   uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm();
1859   // Clear out the bits we are swapping.
1860   uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
1861                            SwapMasks[Case][2] | SwapMasks[Case][3]);
1862   // If the immediate had a bit of the pair set, then set the opposite bit.
1863   if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1];
1864   if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0];
1865   if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3];
1866   if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2];
1867   MI.getOperand(MI.getNumOperands()-1).setImm(NewImm);
1868 }
1869 
1870 // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
1871 // commuted.
1872 static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
1873 #define VPERM_CASES(Suffix) \
1874   case X86::VPERMI2##Suffix##128rr:    case X86::VPERMT2##Suffix##128rr:    \
1875   case X86::VPERMI2##Suffix##256rr:    case X86::VPERMT2##Suffix##256rr:    \
1876   case X86::VPERMI2##Suffix##rr:       case X86::VPERMT2##Suffix##rr:       \
1877   case X86::VPERMI2##Suffix##128rm:    case X86::VPERMT2##Suffix##128rm:    \
1878   case X86::VPERMI2##Suffix##256rm:    case X86::VPERMT2##Suffix##256rm:    \
1879   case X86::VPERMI2##Suffix##rm:       case X86::VPERMT2##Suffix##rm:       \
1880   case X86::VPERMI2##Suffix##128rrkz:  case X86::VPERMT2##Suffix##128rrkz:  \
1881   case X86::VPERMI2##Suffix##256rrkz:  case X86::VPERMT2##Suffix##256rrkz:  \
1882   case X86::VPERMI2##Suffix##rrkz:     case X86::VPERMT2##Suffix##rrkz:     \
1883   case X86::VPERMI2##Suffix##128rmkz:  case X86::VPERMT2##Suffix##128rmkz:  \
1884   case X86::VPERMI2##Suffix##256rmkz:  case X86::VPERMT2##Suffix##256rmkz:  \
1885   case X86::VPERMI2##Suffix##rmkz:     case X86::VPERMT2##Suffix##rmkz:
1886 
1887 #define VPERM_CASES_BROADCAST(Suffix) \
1888   VPERM_CASES(Suffix) \
1889   case X86::VPERMI2##Suffix##128rmb:   case X86::VPERMT2##Suffix##128rmb:   \
1890   case X86::VPERMI2##Suffix##256rmb:   case X86::VPERMT2##Suffix##256rmb:   \
1891   case X86::VPERMI2##Suffix##rmb:      case X86::VPERMT2##Suffix##rmb:      \
1892   case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
1893   case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
1894   case X86::VPERMI2##Suffix##rmbkz:    case X86::VPERMT2##Suffix##rmbkz:
1895 
1896   switch (Opcode) {
1897   default: return false;
1898   VPERM_CASES(B)
1899   VPERM_CASES_BROADCAST(D)
1900   VPERM_CASES_BROADCAST(PD)
1901   VPERM_CASES_BROADCAST(PS)
1902   VPERM_CASES_BROADCAST(Q)
1903   VPERM_CASES(W)
1904     return true;
1905   }
1906 #undef VPERM_CASES_BROADCAST
1907 #undef VPERM_CASES
1908 }
1909 
1910 // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
1911 // from the I opcode to the T opcode and vice versa.
1912 static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
1913 #define VPERM_CASES(Orig, New) \
1914   case X86::Orig##128rr:    return X86::New##128rr;   \
1915   case X86::Orig##128rrkz:  return X86::New##128rrkz; \
1916   case X86::Orig##128rm:    return X86::New##128rm;   \
1917   case X86::Orig##128rmkz:  return X86::New##128rmkz; \
1918   case X86::Orig##256rr:    return X86::New##256rr;   \
1919   case X86::Orig##256rrkz:  return X86::New##256rrkz; \
1920   case X86::Orig##256rm:    return X86::New##256rm;   \
1921   case X86::Orig##256rmkz:  return X86::New##256rmkz; \
1922   case X86::Orig##rr:       return X86::New##rr;      \
1923   case X86::Orig##rrkz:     return X86::New##rrkz;    \
1924   case X86::Orig##rm:       return X86::New##rm;      \
1925   case X86::Orig##rmkz:     return X86::New##rmkz;
1926 
1927 #define VPERM_CASES_BROADCAST(Orig, New) \
1928   VPERM_CASES(Orig, New) \
1929   case X86::Orig##128rmb:   return X86::New##128rmb;   \
1930   case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
1931   case X86::Orig##256rmb:   return X86::New##256rmb;   \
1932   case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
1933   case X86::Orig##rmb:      return X86::New##rmb;      \
1934   case X86::Orig##rmbkz:    return X86::New##rmbkz;
1935 
1936   switch (Opcode) {
1937   VPERM_CASES(VPERMI2B, VPERMT2B)
1938   VPERM_CASES_BROADCAST(VPERMI2D,  VPERMT2D)
1939   VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
1940   VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
1941   VPERM_CASES_BROADCAST(VPERMI2Q,  VPERMT2Q)
1942   VPERM_CASES(VPERMI2W, VPERMT2W)
1943   VPERM_CASES(VPERMT2B, VPERMI2B)
1944   VPERM_CASES_BROADCAST(VPERMT2D,  VPERMI2D)
1945   VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
1946   VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
1947   VPERM_CASES_BROADCAST(VPERMT2Q,  VPERMI2Q)
1948   VPERM_CASES(VPERMT2W, VPERMI2W)
1949   }
1950 
1951   llvm_unreachable("Unreachable!");
1952 #undef VPERM_CASES_BROADCAST
1953 #undef VPERM_CASES
1954 }
1955 
1956 MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
1957                                                    unsigned OpIdx1,
1958                                                    unsigned OpIdx2) const {
1959   auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
1960     if (NewMI)
1961       return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
1962     return MI;
1963   };
1964 
1965   switch (MI.getOpcode()) {
1966   case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1967   case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1968   case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1969   case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1970   case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1971   case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1972     unsigned Opc;
1973     unsigned Size;
1974     switch (MI.getOpcode()) {
1975     default: llvm_unreachable("Unreachable!");
1976     case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1977     case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1978     case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1979     case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1980     case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1981     case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1982     }
1983     unsigned Amt = MI.getOperand(3).getImm();
1984     auto &WorkingMI = cloneIfNew(MI);
1985     WorkingMI.setDesc(get(Opc));
1986     WorkingMI.getOperand(3).setImm(Size - Amt);
1987     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1988                                                    OpIdx1, OpIdx2);
1989   }
1990   case X86::PFSUBrr:
1991   case X86::PFSUBRrr: {
1992     // PFSUB  x, y: x = x - y
1993     // PFSUBR x, y: x = y - x
1994     unsigned Opc =
1995         (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr);
1996     auto &WorkingMI = cloneIfNew(MI);
1997     WorkingMI.setDesc(get(Opc));
1998     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1999                                                    OpIdx1, OpIdx2);
2000   }
2001   case X86::BLENDPDrri:
2002   case X86::BLENDPSrri:
2003   case X86::VBLENDPDrri:
2004   case X86::VBLENDPSrri:
2005     // If we're optimizing for size, try to use MOVSD/MOVSS.
2006     if (MI.getParent()->getParent()->getFunction().hasOptSize()) {
2007       unsigned Mask, Opc;
2008       switch (MI.getOpcode()) {
2009       default: llvm_unreachable("Unreachable!");
2010       case X86::BLENDPDrri:  Opc = X86::MOVSDrr;  Mask = 0x03; break;
2011       case X86::BLENDPSrri:  Opc = X86::MOVSSrr;  Mask = 0x0F; break;
2012       case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break;
2013       case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break;
2014       }
2015       if ((MI.getOperand(3).getImm() ^ Mask) == 1) {
2016         auto &WorkingMI = cloneIfNew(MI);
2017         WorkingMI.setDesc(get(Opc));
2018         WorkingMI.removeOperand(3);
2019         return TargetInstrInfo::commuteInstructionImpl(WorkingMI,
2020                                                        /*NewMI=*/false,
2021                                                        OpIdx1, OpIdx2);
2022       }
2023     }
2024     LLVM_FALLTHROUGH;
2025   case X86::PBLENDWrri:
2026   case X86::VBLENDPDYrri:
2027   case X86::VBLENDPSYrri:
2028   case X86::VPBLENDDrri:
2029   case X86::VPBLENDWrri:
2030   case X86::VPBLENDDYrri:
2031   case X86::VPBLENDWYrri:{
2032     int8_t Mask;
2033     switch (MI.getOpcode()) {
2034     default: llvm_unreachable("Unreachable!");
2035     case X86::BLENDPDrri:    Mask = (int8_t)0x03; break;
2036     case X86::BLENDPSrri:    Mask = (int8_t)0x0F; break;
2037     case X86::PBLENDWrri:    Mask = (int8_t)0xFF; break;
2038     case X86::VBLENDPDrri:   Mask = (int8_t)0x03; break;
2039     case X86::VBLENDPSrri:   Mask = (int8_t)0x0F; break;
2040     case X86::VBLENDPDYrri:  Mask = (int8_t)0x0F; break;
2041     case X86::VBLENDPSYrri:  Mask = (int8_t)0xFF; break;
2042     case X86::VPBLENDDrri:   Mask = (int8_t)0x0F; break;
2043     case X86::VPBLENDWrri:   Mask = (int8_t)0xFF; break;
2044     case X86::VPBLENDDYrri:  Mask = (int8_t)0xFF; break;
2045     case X86::VPBLENDWYrri:  Mask = (int8_t)0xFF; break;
2046     }
2047     // Only the least significant bits of Imm are used.
2048     // Using int8_t to ensure it will be sign extended to the int64_t that
2049     // setImm takes in order to match isel behavior.
2050     int8_t Imm = MI.getOperand(3).getImm() & Mask;
2051     auto &WorkingMI = cloneIfNew(MI);
2052     WorkingMI.getOperand(3).setImm(Mask ^ Imm);
2053     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2054                                                    OpIdx1, OpIdx2);
2055   }
2056   case X86::INSERTPSrr:
2057   case X86::VINSERTPSrr:
2058   case X86::VINSERTPSZrr: {
2059     unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
2060     unsigned ZMask = Imm & 15;
2061     unsigned DstIdx = (Imm >> 4) & 3;
2062     unsigned SrcIdx = (Imm >> 6) & 3;
2063 
2064     // We can commute insertps if we zero 2 of the elements, the insertion is
2065     // "inline" and we don't override the insertion with a zero.
2066     if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
2067         countPopulation(ZMask) == 2) {
2068       unsigned AltIdx = findFirstSet((ZMask | (1 << DstIdx)) ^ 15);
2069       assert(AltIdx < 4 && "Illegal insertion index");
2070       unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
2071       auto &WorkingMI = cloneIfNew(MI);
2072       WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(AltImm);
2073       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2074                                                      OpIdx1, OpIdx2);
2075     }
2076     return nullptr;
2077   }
2078   case X86::MOVSDrr:
2079   case X86::MOVSSrr:
2080   case X86::VMOVSDrr:
2081   case X86::VMOVSSrr:{
2082     // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
2083     if (Subtarget.hasSSE41()) {
2084       unsigned Mask, Opc;
2085       switch (MI.getOpcode()) {
2086       default: llvm_unreachable("Unreachable!");
2087       case X86::MOVSDrr:  Opc = X86::BLENDPDrri;  Mask = 0x02; break;
2088       case X86::MOVSSrr:  Opc = X86::BLENDPSrri;  Mask = 0x0E; break;
2089       case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break;
2090       case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break;
2091       }
2092 
2093       auto &WorkingMI = cloneIfNew(MI);
2094       WorkingMI.setDesc(get(Opc));
2095       WorkingMI.addOperand(MachineOperand::CreateImm(Mask));
2096       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2097                                                      OpIdx1, OpIdx2);
2098     }
2099 
2100     // Convert to SHUFPD.
2101     assert(MI.getOpcode() == X86::MOVSDrr &&
2102            "Can only commute MOVSDrr without SSE4.1");
2103 
2104     auto &WorkingMI = cloneIfNew(MI);
2105     WorkingMI.setDesc(get(X86::SHUFPDrri));
2106     WorkingMI.addOperand(MachineOperand::CreateImm(0x02));
2107     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2108                                                    OpIdx1, OpIdx2);
2109   }
2110   case X86::SHUFPDrri: {
2111     // Commute to MOVSD.
2112     assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
2113     auto &WorkingMI = cloneIfNew(MI);
2114     WorkingMI.setDesc(get(X86::MOVSDrr));
2115     WorkingMI.removeOperand(3);
2116     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2117                                                    OpIdx1, OpIdx2);
2118   }
2119   case X86::PCLMULQDQrr:
2120   case X86::VPCLMULQDQrr:
2121   case X86::VPCLMULQDQYrr:
2122   case X86::VPCLMULQDQZrr:
2123   case X86::VPCLMULQDQZ128rr:
2124   case X86::VPCLMULQDQZ256rr: {
2125     // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
2126     // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
2127     unsigned Imm = MI.getOperand(3).getImm();
2128     unsigned Src1Hi = Imm & 0x01;
2129     unsigned Src2Hi = Imm & 0x10;
2130     auto &WorkingMI = cloneIfNew(MI);
2131     WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
2132     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2133                                                    OpIdx1, OpIdx2);
2134   }
2135   case X86::VPCMPBZ128rri:  case X86::VPCMPUBZ128rri:
2136   case X86::VPCMPBZ256rri:  case X86::VPCMPUBZ256rri:
2137   case X86::VPCMPBZrri:     case X86::VPCMPUBZrri:
2138   case X86::VPCMPDZ128rri:  case X86::VPCMPUDZ128rri:
2139   case X86::VPCMPDZ256rri:  case X86::VPCMPUDZ256rri:
2140   case X86::VPCMPDZrri:     case X86::VPCMPUDZrri:
2141   case X86::VPCMPQZ128rri:  case X86::VPCMPUQZ128rri:
2142   case X86::VPCMPQZ256rri:  case X86::VPCMPUQZ256rri:
2143   case X86::VPCMPQZrri:     case X86::VPCMPUQZrri:
2144   case X86::VPCMPWZ128rri:  case X86::VPCMPUWZ128rri:
2145   case X86::VPCMPWZ256rri:  case X86::VPCMPUWZ256rri:
2146   case X86::VPCMPWZrri:     case X86::VPCMPUWZrri:
2147   case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik:
2148   case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik:
2149   case X86::VPCMPBZrrik:    case X86::VPCMPUBZrrik:
2150   case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik:
2151   case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik:
2152   case X86::VPCMPDZrrik:    case X86::VPCMPUDZrrik:
2153   case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik:
2154   case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik:
2155   case X86::VPCMPQZrrik:    case X86::VPCMPUQZrrik:
2156   case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik:
2157   case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik:
2158   case X86::VPCMPWZrrik:    case X86::VPCMPUWZrrik: {
2159     // Flip comparison mode immediate (if necessary).
2160     unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7;
2161     Imm = X86::getSwappedVPCMPImm(Imm);
2162     auto &WorkingMI = cloneIfNew(MI);
2163     WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm);
2164     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2165                                                    OpIdx1, OpIdx2);
2166   }
2167   case X86::VPCOMBri: case X86::VPCOMUBri:
2168   case X86::VPCOMDri: case X86::VPCOMUDri:
2169   case X86::VPCOMQri: case X86::VPCOMUQri:
2170   case X86::VPCOMWri: case X86::VPCOMUWri: {
2171     // Flip comparison mode immediate (if necessary).
2172     unsigned Imm = MI.getOperand(3).getImm() & 0x7;
2173     Imm = X86::getSwappedVPCOMImm(Imm);
2174     auto &WorkingMI = cloneIfNew(MI);
2175     WorkingMI.getOperand(3).setImm(Imm);
2176     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2177                                                    OpIdx1, OpIdx2);
2178   }
2179   case X86::VCMPSDZrr:
2180   case X86::VCMPSSZrr:
2181   case X86::VCMPPDZrri:
2182   case X86::VCMPPSZrri:
2183   case X86::VCMPSHZrr:
2184   case X86::VCMPPHZrri:
2185   case X86::VCMPPHZ128rri:
2186   case X86::VCMPPHZ256rri:
2187   case X86::VCMPPDZ128rri:
2188   case X86::VCMPPSZ128rri:
2189   case X86::VCMPPDZ256rri:
2190   case X86::VCMPPSZ256rri:
2191   case X86::VCMPPDZrrik:
2192   case X86::VCMPPSZrrik:
2193   case X86::VCMPPDZ128rrik:
2194   case X86::VCMPPSZ128rrik:
2195   case X86::VCMPPDZ256rrik:
2196   case X86::VCMPPSZ256rrik: {
2197     unsigned Imm =
2198                 MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f;
2199     Imm = X86::getSwappedVCMPImm(Imm);
2200     auto &WorkingMI = cloneIfNew(MI);
2201     WorkingMI.getOperand(MI.getNumExplicitOperands() - 1).setImm(Imm);
2202     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2203                                                    OpIdx1, OpIdx2);
2204   }
2205   case X86::VPERM2F128rr:
2206   case X86::VPERM2I128rr: {
2207     // Flip permute source immediate.
2208     // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
2209     // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
2210     int8_t Imm = MI.getOperand(3).getImm() & 0xFF;
2211     auto &WorkingMI = cloneIfNew(MI);
2212     WorkingMI.getOperand(3).setImm(Imm ^ 0x22);
2213     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2214                                                    OpIdx1, OpIdx2);
2215   }
2216   case X86::MOVHLPSrr:
2217   case X86::UNPCKHPDrr:
2218   case X86::VMOVHLPSrr:
2219   case X86::VUNPCKHPDrr:
2220   case X86::VMOVHLPSZrr:
2221   case X86::VUNPCKHPDZ128rr: {
2222     assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
2223 
2224     unsigned Opc = MI.getOpcode();
2225     switch (Opc) {
2226     default: llvm_unreachable("Unreachable!");
2227     case X86::MOVHLPSrr:       Opc = X86::UNPCKHPDrr;      break;
2228     case X86::UNPCKHPDrr:      Opc = X86::MOVHLPSrr;       break;
2229     case X86::VMOVHLPSrr:      Opc = X86::VUNPCKHPDrr;     break;
2230     case X86::VUNPCKHPDrr:     Opc = X86::VMOVHLPSrr;      break;
2231     case X86::VMOVHLPSZrr:     Opc = X86::VUNPCKHPDZ128rr; break;
2232     case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr;     break;
2233     }
2234     auto &WorkingMI = cloneIfNew(MI);
2235     WorkingMI.setDesc(get(Opc));
2236     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2237                                                    OpIdx1, OpIdx2);
2238   }
2239   case X86::CMOV16rr:  case X86::CMOV32rr:  case X86::CMOV64rr: {
2240     auto &WorkingMI = cloneIfNew(MI);
2241     unsigned OpNo = MI.getDesc().getNumOperands() - 1;
2242     X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm());
2243     WorkingMI.getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC));
2244     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2245                                                    OpIdx1, OpIdx2);
2246   }
2247   case X86::VPTERNLOGDZrri:      case X86::VPTERNLOGDZrmi:
2248   case X86::VPTERNLOGDZ128rri:   case X86::VPTERNLOGDZ128rmi:
2249   case X86::VPTERNLOGDZ256rri:   case X86::VPTERNLOGDZ256rmi:
2250   case X86::VPTERNLOGQZrri:      case X86::VPTERNLOGQZrmi:
2251   case X86::VPTERNLOGQZ128rri:   case X86::VPTERNLOGQZ128rmi:
2252   case X86::VPTERNLOGQZ256rri:   case X86::VPTERNLOGQZ256rmi:
2253   case X86::VPTERNLOGDZrrik:
2254   case X86::VPTERNLOGDZ128rrik:
2255   case X86::VPTERNLOGDZ256rrik:
2256   case X86::VPTERNLOGQZrrik:
2257   case X86::VPTERNLOGQZ128rrik:
2258   case X86::VPTERNLOGQZ256rrik:
2259   case X86::VPTERNLOGDZrrikz:    case X86::VPTERNLOGDZrmikz:
2260   case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
2261   case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
2262   case X86::VPTERNLOGQZrrikz:    case X86::VPTERNLOGQZrmikz:
2263   case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
2264   case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
2265   case X86::VPTERNLOGDZ128rmbi:
2266   case X86::VPTERNLOGDZ256rmbi:
2267   case X86::VPTERNLOGDZrmbi:
2268   case X86::VPTERNLOGQZ128rmbi:
2269   case X86::VPTERNLOGQZ256rmbi:
2270   case X86::VPTERNLOGQZrmbi:
2271   case X86::VPTERNLOGDZ128rmbikz:
2272   case X86::VPTERNLOGDZ256rmbikz:
2273   case X86::VPTERNLOGDZrmbikz:
2274   case X86::VPTERNLOGQZ128rmbikz:
2275   case X86::VPTERNLOGQZ256rmbikz:
2276   case X86::VPTERNLOGQZrmbikz: {
2277     auto &WorkingMI = cloneIfNew(MI);
2278     commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2);
2279     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2280                                                    OpIdx1, OpIdx2);
2281   }
2282   default: {
2283     if (isCommutableVPERMV3Instruction(MI.getOpcode())) {
2284       unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode());
2285       auto &WorkingMI = cloneIfNew(MI);
2286       WorkingMI.setDesc(get(Opc));
2287       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2288                                                      OpIdx1, OpIdx2);
2289     }
2290 
2291     const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2292                                                       MI.getDesc().TSFlags);
2293     if (FMA3Group) {
2294       unsigned Opc =
2295         getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group);
2296       auto &WorkingMI = cloneIfNew(MI);
2297       WorkingMI.setDesc(get(Opc));
2298       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2299                                                      OpIdx1, OpIdx2);
2300     }
2301 
2302     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2303   }
2304   }
2305 }
2306 
2307 bool
2308 X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
2309                                             unsigned &SrcOpIdx1,
2310                                             unsigned &SrcOpIdx2,
2311                                             bool IsIntrinsic) const {
2312   uint64_t TSFlags = MI.getDesc().TSFlags;
2313 
2314   unsigned FirstCommutableVecOp = 1;
2315   unsigned LastCommutableVecOp = 3;
2316   unsigned KMaskOp = -1U;
2317   if (X86II::isKMasked(TSFlags)) {
2318     // For k-zero-masked operations it is Ok to commute the first vector
2319     // operand. Unless this is an intrinsic instruction.
2320     // For regular k-masked operations a conservative choice is done as the
2321     // elements of the first vector operand, for which the corresponding bit
2322     // in the k-mask operand is set to 0, are copied to the result of the
2323     // instruction.
2324     // TODO/FIXME: The commute still may be legal if it is known that the
2325     // k-mask operand is set to either all ones or all zeroes.
2326     // It is also Ok to commute the 1st operand if all users of MI use only
2327     // the elements enabled by the k-mask operand. For example,
2328     //   v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
2329     //                                                     : v1[i];
2330     //   VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
2331     //                                  // Ok, to commute v1 in FMADD213PSZrk.
2332 
2333     // The k-mask operand has index = 2 for masked and zero-masked operations.
2334     KMaskOp = 2;
2335 
2336     // The operand with index = 1 is used as a source for those elements for
2337     // which the corresponding bit in the k-mask is set to 0.
2338     if (X86II::isKMergeMasked(TSFlags) || IsIntrinsic)
2339       FirstCommutableVecOp = 3;
2340 
2341     LastCommutableVecOp++;
2342   } else if (IsIntrinsic) {
2343     // Commuting the first operand of an intrinsic instruction isn't possible
2344     // unless we can prove that only the lowest element of the result is used.
2345     FirstCommutableVecOp = 2;
2346   }
2347 
2348   if (isMem(MI, LastCommutableVecOp))
2349     LastCommutableVecOp--;
2350 
2351   // Only the first RegOpsNum operands are commutable.
2352   // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
2353   // that the operand is not specified/fixed.
2354   if (SrcOpIdx1 != CommuteAnyOperandIndex &&
2355       (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
2356        SrcOpIdx1 == KMaskOp))
2357     return false;
2358   if (SrcOpIdx2 != CommuteAnyOperandIndex &&
2359       (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
2360        SrcOpIdx2 == KMaskOp))
2361     return false;
2362 
2363   // Look for two different register operands assumed to be commutable
2364   // regardless of the FMA opcode. The FMA opcode is adjusted later.
2365   if (SrcOpIdx1 == CommuteAnyOperandIndex ||
2366       SrcOpIdx2 == CommuteAnyOperandIndex) {
2367     unsigned CommutableOpIdx2 = SrcOpIdx2;
2368 
2369     // At least one of operands to be commuted is not specified and
2370     // this method is free to choose appropriate commutable operands.
2371     if (SrcOpIdx1 == SrcOpIdx2)
2372       // Both of operands are not fixed. By default set one of commutable
2373       // operands to the last register operand of the instruction.
2374       CommutableOpIdx2 = LastCommutableVecOp;
2375     else if (SrcOpIdx2 == CommuteAnyOperandIndex)
2376       // Only one of operands is not fixed.
2377       CommutableOpIdx2 = SrcOpIdx1;
2378 
2379     // CommutableOpIdx2 is well defined now. Let's choose another commutable
2380     // operand and assign its index to CommutableOpIdx1.
2381     Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
2382 
2383     unsigned CommutableOpIdx1;
2384     for (CommutableOpIdx1 = LastCommutableVecOp;
2385          CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
2386       // Just ignore and skip the k-mask operand.
2387       if (CommutableOpIdx1 == KMaskOp)
2388         continue;
2389 
2390       // The commuted operands must have different registers.
2391       // Otherwise, the commute transformation does not change anything and
2392       // is useless then.
2393       if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
2394         break;
2395     }
2396 
2397     // No appropriate commutable operands were found.
2398     if (CommutableOpIdx1 < FirstCommutableVecOp)
2399       return false;
2400 
2401     // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
2402     // to return those values.
2403     if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2404                               CommutableOpIdx1, CommutableOpIdx2))
2405       return false;
2406   }
2407 
2408   return true;
2409 }
2410 
2411 bool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI,
2412                                          unsigned &SrcOpIdx1,
2413                                          unsigned &SrcOpIdx2) const {
2414   const MCInstrDesc &Desc = MI.getDesc();
2415   if (!Desc.isCommutable())
2416     return false;
2417 
2418   switch (MI.getOpcode()) {
2419   case X86::CMPSDrr:
2420   case X86::CMPSSrr:
2421   case X86::CMPPDrri:
2422   case X86::CMPPSrri:
2423   case X86::VCMPSDrr:
2424   case X86::VCMPSSrr:
2425   case X86::VCMPPDrri:
2426   case X86::VCMPPSrri:
2427   case X86::VCMPPDYrri:
2428   case X86::VCMPPSYrri:
2429   case X86::VCMPSDZrr:
2430   case X86::VCMPSSZrr:
2431   case X86::VCMPPDZrri:
2432   case X86::VCMPPSZrri:
2433   case X86::VCMPSHZrr:
2434   case X86::VCMPPHZrri:
2435   case X86::VCMPPHZ128rri:
2436   case X86::VCMPPHZ256rri:
2437   case X86::VCMPPDZ128rri:
2438   case X86::VCMPPSZ128rri:
2439   case X86::VCMPPDZ256rri:
2440   case X86::VCMPPSZ256rri:
2441   case X86::VCMPPDZrrik:
2442   case X86::VCMPPSZrrik:
2443   case X86::VCMPPDZ128rrik:
2444   case X86::VCMPPSZ128rrik:
2445   case X86::VCMPPDZ256rrik:
2446   case X86::VCMPPSZ256rrik: {
2447     unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0;
2448 
2449     // Float comparison can be safely commuted for
2450     // Ordered/Unordered/Equal/NotEqual tests
2451     unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7;
2452     switch (Imm) {
2453     default:
2454       // EVEX versions can be commuted.
2455       if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX)
2456         break;
2457       return false;
2458     case 0x00: // EQUAL
2459     case 0x03: // UNORDERED
2460     case 0x04: // NOT EQUAL
2461     case 0x07: // ORDERED
2462       break;
2463     }
2464 
2465     // The indices of the commutable operands are 1 and 2 (or 2 and 3
2466     // when masked).
2467     // Assign them to the returned operand indices here.
2468     return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset,
2469                                 2 + OpOffset);
2470   }
2471   case X86::MOVSSrr:
2472     // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
2473     // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
2474     // AVX implies sse4.1.
2475     if (Subtarget.hasSSE41())
2476       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2477     return false;
2478   case X86::SHUFPDrri:
2479     // We can commute this to MOVSD.
2480     if (MI.getOperand(3).getImm() == 0x02)
2481       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2482     return false;
2483   case X86::MOVHLPSrr:
2484   case X86::UNPCKHPDrr:
2485   case X86::VMOVHLPSrr:
2486   case X86::VUNPCKHPDrr:
2487   case X86::VMOVHLPSZrr:
2488   case X86::VUNPCKHPDZ128rr:
2489     if (Subtarget.hasSSE2())
2490       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2491     return false;
2492   case X86::VPTERNLOGDZrri:      case X86::VPTERNLOGDZrmi:
2493   case X86::VPTERNLOGDZ128rri:   case X86::VPTERNLOGDZ128rmi:
2494   case X86::VPTERNLOGDZ256rri:   case X86::VPTERNLOGDZ256rmi:
2495   case X86::VPTERNLOGQZrri:      case X86::VPTERNLOGQZrmi:
2496   case X86::VPTERNLOGQZ128rri:   case X86::VPTERNLOGQZ128rmi:
2497   case X86::VPTERNLOGQZ256rri:   case X86::VPTERNLOGQZ256rmi:
2498   case X86::VPTERNLOGDZrrik:
2499   case X86::VPTERNLOGDZ128rrik:
2500   case X86::VPTERNLOGDZ256rrik:
2501   case X86::VPTERNLOGQZrrik:
2502   case X86::VPTERNLOGQZ128rrik:
2503   case X86::VPTERNLOGQZ256rrik:
2504   case X86::VPTERNLOGDZrrikz:    case X86::VPTERNLOGDZrmikz:
2505   case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
2506   case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
2507   case X86::VPTERNLOGQZrrikz:    case X86::VPTERNLOGQZrmikz:
2508   case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
2509   case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
2510   case X86::VPTERNLOGDZ128rmbi:
2511   case X86::VPTERNLOGDZ256rmbi:
2512   case X86::VPTERNLOGDZrmbi:
2513   case X86::VPTERNLOGQZ128rmbi:
2514   case X86::VPTERNLOGQZ256rmbi:
2515   case X86::VPTERNLOGQZrmbi:
2516   case X86::VPTERNLOGDZ128rmbikz:
2517   case X86::VPTERNLOGDZ256rmbikz:
2518   case X86::VPTERNLOGDZrmbikz:
2519   case X86::VPTERNLOGQZ128rmbikz:
2520   case X86::VPTERNLOGQZ256rmbikz:
2521   case X86::VPTERNLOGQZrmbikz:
2522     return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2523   case X86::VPDPWSSDYrr:
2524   case X86::VPDPWSSDrr:
2525   case X86::VPDPWSSDSYrr:
2526   case X86::VPDPWSSDSrr:
2527   case X86::VPDPWSSDZ128r:
2528   case X86::VPDPWSSDZ128rk:
2529   case X86::VPDPWSSDZ128rkz:
2530   case X86::VPDPWSSDZ256r:
2531   case X86::VPDPWSSDZ256rk:
2532   case X86::VPDPWSSDZ256rkz:
2533   case X86::VPDPWSSDZr:
2534   case X86::VPDPWSSDZrk:
2535   case X86::VPDPWSSDZrkz:
2536   case X86::VPDPWSSDSZ128r:
2537   case X86::VPDPWSSDSZ128rk:
2538   case X86::VPDPWSSDSZ128rkz:
2539   case X86::VPDPWSSDSZ256r:
2540   case X86::VPDPWSSDSZ256rk:
2541   case X86::VPDPWSSDSZ256rkz:
2542   case X86::VPDPWSSDSZr:
2543   case X86::VPDPWSSDSZrk:
2544   case X86::VPDPWSSDSZrkz:
2545   case X86::VPMADD52HUQZ128r:
2546   case X86::VPMADD52HUQZ128rk:
2547   case X86::VPMADD52HUQZ128rkz:
2548   case X86::VPMADD52HUQZ256r:
2549   case X86::VPMADD52HUQZ256rk:
2550   case X86::VPMADD52HUQZ256rkz:
2551   case X86::VPMADD52HUQZr:
2552   case X86::VPMADD52HUQZrk:
2553   case X86::VPMADD52HUQZrkz:
2554   case X86::VPMADD52LUQZ128r:
2555   case X86::VPMADD52LUQZ128rk:
2556   case X86::VPMADD52LUQZ128rkz:
2557   case X86::VPMADD52LUQZ256r:
2558   case X86::VPMADD52LUQZ256rk:
2559   case X86::VPMADD52LUQZ256rkz:
2560   case X86::VPMADD52LUQZr:
2561   case X86::VPMADD52LUQZrk:
2562   case X86::VPMADD52LUQZrkz:
2563   case X86::VFMADDCPHZr:
2564   case X86::VFMADDCPHZrk:
2565   case X86::VFMADDCPHZrkz:
2566   case X86::VFMADDCPHZ128r:
2567   case X86::VFMADDCPHZ128rk:
2568   case X86::VFMADDCPHZ128rkz:
2569   case X86::VFMADDCPHZ256r:
2570   case X86::VFMADDCPHZ256rk:
2571   case X86::VFMADDCPHZ256rkz:
2572   case X86::VFMADDCSHZr:
2573   case X86::VFMADDCSHZrk:
2574   case X86::VFMADDCSHZrkz: {
2575     unsigned CommutableOpIdx1 = 2;
2576     unsigned CommutableOpIdx2 = 3;
2577     if (X86II::isKMasked(Desc.TSFlags)) {
2578       // Skip the mask register.
2579       ++CommutableOpIdx1;
2580       ++CommutableOpIdx2;
2581     }
2582     if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2583                               CommutableOpIdx1, CommutableOpIdx2))
2584       return false;
2585     if (!MI.getOperand(SrcOpIdx1).isReg() ||
2586         !MI.getOperand(SrcOpIdx2).isReg())
2587       // No idea.
2588       return false;
2589     return true;
2590   }
2591 
2592   default:
2593     const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2594                                                       MI.getDesc().TSFlags);
2595     if (FMA3Group)
2596       return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
2597                                            FMA3Group->isIntrinsic());
2598 
2599     // Handled masked instructions since we need to skip over the mask input
2600     // and the preserved input.
2601     if (X86II::isKMasked(Desc.TSFlags)) {
2602       // First assume that the first input is the mask operand and skip past it.
2603       unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
2604       unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
2605       // Check if the first input is tied. If there isn't one then we only
2606       // need to skip the mask operand which we did above.
2607       if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
2608                                              MCOI::TIED_TO) != -1)) {
2609         // If this is zero masking instruction with a tied operand, we need to
2610         // move the first index back to the first input since this must
2611         // be a 3 input instruction and we want the first two non-mask inputs.
2612         // Otherwise this is a 2 input instruction with a preserved input and
2613         // mask, so we need to move the indices to skip one more input.
2614         if (X86II::isKMergeMasked(Desc.TSFlags)) {
2615           ++CommutableOpIdx1;
2616           ++CommutableOpIdx2;
2617         } else {
2618           --CommutableOpIdx1;
2619         }
2620       }
2621 
2622       if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2623                                 CommutableOpIdx1, CommutableOpIdx2))
2624         return false;
2625 
2626       if (!MI.getOperand(SrcOpIdx1).isReg() ||
2627           !MI.getOperand(SrcOpIdx2).isReg())
2628         // No idea.
2629         return false;
2630       return true;
2631     }
2632 
2633     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2634   }
2635   return false;
2636 }
2637 
2638 static bool isConvertibleLEA(MachineInstr *MI) {
2639   unsigned Opcode = MI->getOpcode();
2640   if (Opcode != X86::LEA32r && Opcode != X86::LEA64r &&
2641       Opcode != X86::LEA64_32r)
2642     return false;
2643 
2644   const MachineOperand &Scale = MI->getOperand(1 + X86::AddrScaleAmt);
2645   const MachineOperand &Disp = MI->getOperand(1 + X86::AddrDisp);
2646   const MachineOperand &Segment = MI->getOperand(1 + X86::AddrSegmentReg);
2647 
2648   if (Segment.getReg() != 0 || !Disp.isImm() || Disp.getImm() != 0 ||
2649       Scale.getImm() > 1)
2650     return false;
2651 
2652   return true;
2653 }
2654 
2655 bool X86InstrInfo::hasCommutePreference(MachineInstr &MI, bool &Commute) const {
2656   // Currently we're interested in following sequence only.
2657   //   r3 = lea r1, r2
2658   //   r5 = add r3, r4
2659   // Both r3 and r4 are killed in add, we hope the add instruction has the
2660   // operand order
2661   //   r5 = add r4, r3
2662   // So later in X86FixupLEAs the lea instruction can be rewritten as add.
2663   unsigned Opcode = MI.getOpcode();
2664   if (Opcode != X86::ADD32rr && Opcode != X86::ADD64rr)
2665     return false;
2666 
2667   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2668   Register Reg1 = MI.getOperand(1).getReg();
2669   Register Reg2 = MI.getOperand(2).getReg();
2670 
2671   // Check if Reg1 comes from LEA in the same MBB.
2672   if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg1)) {
2673     if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
2674       Commute = true;
2675       return true;
2676     }
2677   }
2678 
2679   // Check if Reg2 comes from LEA in the same MBB.
2680   if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg2)) {
2681     if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
2682       Commute = false;
2683       return true;
2684     }
2685   }
2686 
2687   return false;
2688 }
2689 
2690 int X86::getCondSrcNoFromDesc(const MCInstrDesc &MCID) {
2691   unsigned Opcode = MCID.getOpcode();
2692   if (!(X86::isJCC(Opcode) || X86::isSETCC(Opcode) || X86::isCMOVCC(Opcode)))
2693     return -1;
2694   // Assume that condition code is always the last use operand.
2695   unsigned NumUses = MCID.getNumOperands() - MCID.getNumDefs();
2696   return NumUses - 1;
2697 }
2698 
2699 X86::CondCode X86::getCondFromMI(const MachineInstr &MI) {
2700   const MCInstrDesc &MCID = MI.getDesc();
2701   int CondNo = getCondSrcNoFromDesc(MCID);
2702   if (CondNo < 0)
2703     return X86::COND_INVALID;
2704   CondNo += MCID.getNumDefs();
2705   return static_cast<X86::CondCode>(MI.getOperand(CondNo).getImm());
2706 }
2707 
2708 X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) {
2709   return X86::isJCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
2710                                     : X86::COND_INVALID;
2711 }
2712 
2713 X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) {
2714   return X86::isSETCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
2715                                       : X86::COND_INVALID;
2716 }
2717 
2718 X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) {
2719   return X86::isCMOVCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
2720                                        : X86::COND_INVALID;
2721 }
2722 
2723 /// Return the inverse of the specified condition,
2724 /// e.g. turning COND_E to COND_NE.
2725 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2726   switch (CC) {
2727   default: llvm_unreachable("Illegal condition code!");
2728   case X86::COND_E:  return X86::COND_NE;
2729   case X86::COND_NE: return X86::COND_E;
2730   case X86::COND_L:  return X86::COND_GE;
2731   case X86::COND_LE: return X86::COND_G;
2732   case X86::COND_G:  return X86::COND_LE;
2733   case X86::COND_GE: return X86::COND_L;
2734   case X86::COND_B:  return X86::COND_AE;
2735   case X86::COND_BE: return X86::COND_A;
2736   case X86::COND_A:  return X86::COND_BE;
2737   case X86::COND_AE: return X86::COND_B;
2738   case X86::COND_S:  return X86::COND_NS;
2739   case X86::COND_NS: return X86::COND_S;
2740   case X86::COND_P:  return X86::COND_NP;
2741   case X86::COND_NP: return X86::COND_P;
2742   case X86::COND_O:  return X86::COND_NO;
2743   case X86::COND_NO: return X86::COND_O;
2744   case X86::COND_NE_OR_P:  return X86::COND_E_AND_NP;
2745   case X86::COND_E_AND_NP: return X86::COND_NE_OR_P;
2746   }
2747 }
2748 
2749 /// Assuming the flags are set by MI(a,b), return the condition code if we
2750 /// modify the instructions such that flags are set by MI(b,a).
2751 static X86::CondCode getSwappedCondition(X86::CondCode CC) {
2752   switch (CC) {
2753   default: return X86::COND_INVALID;
2754   case X86::COND_E:  return X86::COND_E;
2755   case X86::COND_NE: return X86::COND_NE;
2756   case X86::COND_L:  return X86::COND_G;
2757   case X86::COND_LE: return X86::COND_GE;
2758   case X86::COND_G:  return X86::COND_L;
2759   case X86::COND_GE: return X86::COND_LE;
2760   case X86::COND_B:  return X86::COND_A;
2761   case X86::COND_BE: return X86::COND_AE;
2762   case X86::COND_A:  return X86::COND_B;
2763   case X86::COND_AE: return X86::COND_BE;
2764   }
2765 }
2766 
2767 std::pair<X86::CondCode, bool>
2768 X86::getX86ConditionCode(CmpInst::Predicate Predicate) {
2769   X86::CondCode CC = X86::COND_INVALID;
2770   bool NeedSwap = false;
2771   switch (Predicate) {
2772   default: break;
2773   // Floating-point Predicates
2774   case CmpInst::FCMP_UEQ: CC = X86::COND_E;       break;
2775   case CmpInst::FCMP_OLT: NeedSwap = true;        LLVM_FALLTHROUGH;
2776   case CmpInst::FCMP_OGT: CC = X86::COND_A;       break;
2777   case CmpInst::FCMP_OLE: NeedSwap = true;        LLVM_FALLTHROUGH;
2778   case CmpInst::FCMP_OGE: CC = X86::COND_AE;      break;
2779   case CmpInst::FCMP_UGT: NeedSwap = true;        LLVM_FALLTHROUGH;
2780   case CmpInst::FCMP_ULT: CC = X86::COND_B;       break;
2781   case CmpInst::FCMP_UGE: NeedSwap = true;        LLVM_FALLTHROUGH;
2782   case CmpInst::FCMP_ULE: CC = X86::COND_BE;      break;
2783   case CmpInst::FCMP_ONE: CC = X86::COND_NE;      break;
2784   case CmpInst::FCMP_UNO: CC = X86::COND_P;       break;
2785   case CmpInst::FCMP_ORD: CC = X86::COND_NP;      break;
2786   case CmpInst::FCMP_OEQ:                         LLVM_FALLTHROUGH;
2787   case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
2788 
2789   // Integer Predicates
2790   case CmpInst::ICMP_EQ:  CC = X86::COND_E;       break;
2791   case CmpInst::ICMP_NE:  CC = X86::COND_NE;      break;
2792   case CmpInst::ICMP_UGT: CC = X86::COND_A;       break;
2793   case CmpInst::ICMP_UGE: CC = X86::COND_AE;      break;
2794   case CmpInst::ICMP_ULT: CC = X86::COND_B;       break;
2795   case CmpInst::ICMP_ULE: CC = X86::COND_BE;      break;
2796   case CmpInst::ICMP_SGT: CC = X86::COND_G;       break;
2797   case CmpInst::ICMP_SGE: CC = X86::COND_GE;      break;
2798   case CmpInst::ICMP_SLT: CC = X86::COND_L;       break;
2799   case CmpInst::ICMP_SLE: CC = X86::COND_LE;      break;
2800   }
2801 
2802   return std::make_pair(CC, NeedSwap);
2803 }
2804 
2805 /// Return a cmov opcode for the given register size in bytes, and operand type.
2806 unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) {
2807   switch(RegBytes) {
2808   default: llvm_unreachable("Illegal register size!");
2809   case 2: return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr;
2810   case 4: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr;
2811   case 8: return HasMemoryOperand ? X86::CMOV64rm : X86::CMOV64rr;
2812   }
2813 }
2814 
2815 /// Get the VPCMP immediate for the given condition.
2816 unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) {
2817   switch (CC) {
2818   default: llvm_unreachable("Unexpected SETCC condition");
2819   case ISD::SETNE:  return 4;
2820   case ISD::SETEQ:  return 0;
2821   case ISD::SETULT:
2822   case ISD::SETLT: return 1;
2823   case ISD::SETUGT:
2824   case ISD::SETGT: return 6;
2825   case ISD::SETUGE:
2826   case ISD::SETGE: return 5;
2827   case ISD::SETULE:
2828   case ISD::SETLE: return 2;
2829   }
2830 }
2831 
2832 /// Get the VPCMP immediate if the operands are swapped.
2833 unsigned X86::getSwappedVPCMPImm(unsigned Imm) {
2834   switch (Imm) {
2835   default: llvm_unreachable("Unreachable!");
2836   case 0x01: Imm = 0x06; break; // LT  -> NLE
2837   case 0x02: Imm = 0x05; break; // LE  -> NLT
2838   case 0x05: Imm = 0x02; break; // NLT -> LE
2839   case 0x06: Imm = 0x01; break; // NLE -> LT
2840   case 0x00: // EQ
2841   case 0x03: // FALSE
2842   case 0x04: // NE
2843   case 0x07: // TRUE
2844     break;
2845   }
2846 
2847   return Imm;
2848 }
2849 
2850 /// Get the VPCOM immediate if the operands are swapped.
2851 unsigned X86::getSwappedVPCOMImm(unsigned Imm) {
2852   switch (Imm) {
2853   default: llvm_unreachable("Unreachable!");
2854   case 0x00: Imm = 0x02; break; // LT -> GT
2855   case 0x01: Imm = 0x03; break; // LE -> GE
2856   case 0x02: Imm = 0x00; break; // GT -> LT
2857   case 0x03: Imm = 0x01; break; // GE -> LE
2858   case 0x04: // EQ
2859   case 0x05: // NE
2860   case 0x06: // FALSE
2861   case 0x07: // TRUE
2862     break;
2863   }
2864 
2865   return Imm;
2866 }
2867 
2868 /// Get the VCMP immediate if the operands are swapped.
2869 unsigned X86::getSwappedVCMPImm(unsigned Imm) {
2870   // Only need the lower 2 bits to distinquish.
2871   switch (Imm & 0x3) {
2872   default: llvm_unreachable("Unreachable!");
2873   case 0x00: case 0x03:
2874     // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted.
2875     break;
2876   case 0x01: case 0x02:
2877     // Need to toggle bits 3:0. Bit 4 stays the same.
2878     Imm ^= 0xf;
2879     break;
2880   }
2881 
2882   return Imm;
2883 }
2884 
2885 /// Return true if the Reg is X87 register.
2886 static bool isX87Reg(unsigned Reg) {
2887   return (Reg == X86::FPCW || Reg == X86::FPSW ||
2888           (Reg >= X86::ST0 && Reg <= X86::ST7));
2889 }
2890 
2891 /// check if the instruction is X87 instruction
2892 bool X86::isX87Instruction(MachineInstr &MI) {
2893   for (const MachineOperand &MO : MI.operands()) {
2894     if (!MO.isReg())
2895       continue;
2896     if (isX87Reg(MO.getReg()))
2897       return true;
2898   }
2899   return false;
2900 }
2901 
2902 bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
2903   switch (MI.getOpcode()) {
2904   case X86::TCRETURNdi:
2905   case X86::TCRETURNri:
2906   case X86::TCRETURNmi:
2907   case X86::TCRETURNdi64:
2908   case X86::TCRETURNri64:
2909   case X86::TCRETURNmi64:
2910     return true;
2911   default:
2912     return false;
2913   }
2914 }
2915 
2916 bool X86InstrInfo::canMakeTailCallConditional(
2917     SmallVectorImpl<MachineOperand> &BranchCond,
2918     const MachineInstr &TailCall) const {
2919   if (TailCall.getOpcode() != X86::TCRETURNdi &&
2920       TailCall.getOpcode() != X86::TCRETURNdi64) {
2921     // Only direct calls can be done with a conditional branch.
2922     return false;
2923   }
2924 
2925   const MachineFunction *MF = TailCall.getParent()->getParent();
2926   if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
2927     // Conditional tail calls confuse the Win64 unwinder.
2928     return false;
2929   }
2930 
2931   assert(BranchCond.size() == 1);
2932   if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
2933     // Can't make a conditional tail call with this condition.
2934     return false;
2935   }
2936 
2937   const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
2938   if (X86FI->getTCReturnAddrDelta() != 0 ||
2939       TailCall.getOperand(1).getImm() != 0) {
2940     // A conditional tail call cannot do any stack adjustment.
2941     return false;
2942   }
2943 
2944   return true;
2945 }
2946 
2947 void X86InstrInfo::replaceBranchWithTailCall(
2948     MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
2949     const MachineInstr &TailCall) const {
2950   assert(canMakeTailCallConditional(BranchCond, TailCall));
2951 
2952   MachineBasicBlock::iterator I = MBB.end();
2953   while (I != MBB.begin()) {
2954     --I;
2955     if (I->isDebugInstr())
2956       continue;
2957     if (!I->isBranch())
2958       assert(0 && "Can't find the branch to replace!");
2959 
2960     X86::CondCode CC = X86::getCondFromBranch(*I);
2961     assert(BranchCond.size() == 1);
2962     if (CC != BranchCond[0].getImm())
2963       continue;
2964 
2965     break;
2966   }
2967 
2968   unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
2969                                                          : X86::TCRETURNdi64cc;
2970 
2971   auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
2972   MIB->addOperand(TailCall.getOperand(0)); // Destination.
2973   MIB.addImm(0); // Stack offset (not used).
2974   MIB->addOperand(BranchCond[0]); // Condition.
2975   MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
2976 
2977   // Add implicit uses and defs of all live regs potentially clobbered by the
2978   // call. This way they still appear live across the call.
2979   LivePhysRegs LiveRegs(getRegisterInfo());
2980   LiveRegs.addLiveOuts(MBB);
2981   SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
2982   LiveRegs.stepForward(*MIB, Clobbers);
2983   for (const auto &C : Clobbers) {
2984     MIB.addReg(C.first, RegState::Implicit);
2985     MIB.addReg(C.first, RegState::Implicit | RegState::Define);
2986   }
2987 
2988   I->eraseFromParent();
2989 }
2990 
2991 // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
2992 // not be a fallthrough MBB now due to layout changes). Return nullptr if the
2993 // fallthrough MBB cannot be identified.
2994 static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
2995                                             MachineBasicBlock *TBB) {
2996   // Look for non-EHPad successors other than TBB. If we find exactly one, it
2997   // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
2998   // and fallthrough MBB. If we find more than one, we cannot identify the
2999   // fallthrough MBB and should return nullptr.
3000   MachineBasicBlock *FallthroughBB = nullptr;
3001   for (MachineBasicBlock *Succ : MBB->successors()) {
3002     if (Succ->isEHPad() || (Succ == TBB && FallthroughBB))
3003       continue;
3004     // Return a nullptr if we found more than one fallthrough successor.
3005     if (FallthroughBB && FallthroughBB != TBB)
3006       return nullptr;
3007     FallthroughBB = Succ;
3008   }
3009   return FallthroughBB;
3010 }
3011 
3012 bool X86InstrInfo::AnalyzeBranchImpl(
3013     MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
3014     SmallVectorImpl<MachineOperand> &Cond,
3015     SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
3016 
3017   // Start from the bottom of the block and work up, examining the
3018   // terminator instructions.
3019   MachineBasicBlock::iterator I = MBB.end();
3020   MachineBasicBlock::iterator UnCondBrIter = MBB.end();
3021   while (I != MBB.begin()) {
3022     --I;
3023     if (I->isDebugInstr())
3024       continue;
3025 
3026     // Working from the bottom, when we see a non-terminator instruction, we're
3027     // done.
3028     if (!isUnpredicatedTerminator(*I))
3029       break;
3030 
3031     // A terminator that isn't a branch can't easily be handled by this
3032     // analysis.
3033     if (!I->isBranch())
3034       return true;
3035 
3036     // Handle unconditional branches.
3037     if (I->getOpcode() == X86::JMP_1) {
3038       UnCondBrIter = I;
3039 
3040       if (!AllowModify) {
3041         TBB = I->getOperand(0).getMBB();
3042         continue;
3043       }
3044 
3045       // If the block has any instructions after a JMP, delete them.
3046       MBB.erase(std::next(I), MBB.end());
3047 
3048       Cond.clear();
3049       FBB = nullptr;
3050 
3051       // Delete the JMP if it's equivalent to a fall-through.
3052       if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
3053         TBB = nullptr;
3054         I->eraseFromParent();
3055         I = MBB.end();
3056         UnCondBrIter = MBB.end();
3057         continue;
3058       }
3059 
3060       // TBB is used to indicate the unconditional destination.
3061       TBB = I->getOperand(0).getMBB();
3062       continue;
3063     }
3064 
3065     // Handle conditional branches.
3066     X86::CondCode BranchCode = X86::getCondFromBranch(*I);
3067     if (BranchCode == X86::COND_INVALID)
3068       return true;  // Can't handle indirect branch.
3069 
3070     // In practice we should never have an undef eflags operand, if we do
3071     // abort here as we are not prepared to preserve the flag.
3072     if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef())
3073       return true;
3074 
3075     // Working from the bottom, handle the first conditional branch.
3076     if (Cond.empty()) {
3077       MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
3078       if (AllowModify && UnCondBrIter != MBB.end() &&
3079           MBB.isLayoutSuccessor(TargetBB)) {
3080         // If we can modify the code and it ends in something like:
3081         //
3082         //     jCC L1
3083         //     jmp L2
3084         //   L1:
3085         //     ...
3086         //   L2:
3087         //
3088         // Then we can change this to:
3089         //
3090         //     jnCC L2
3091         //   L1:
3092         //     ...
3093         //   L2:
3094         //
3095         // Which is a bit more efficient.
3096         // We conditionally jump to the fall-through block.
3097         BranchCode = GetOppositeBranchCondition(BranchCode);
3098         MachineBasicBlock::iterator OldInst = I;
3099 
3100         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JCC_1))
3101           .addMBB(UnCondBrIter->getOperand(0).getMBB())
3102           .addImm(BranchCode);
3103         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
3104           .addMBB(TargetBB);
3105 
3106         OldInst->eraseFromParent();
3107         UnCondBrIter->eraseFromParent();
3108 
3109         // Restart the analysis.
3110         UnCondBrIter = MBB.end();
3111         I = MBB.end();
3112         continue;
3113       }
3114 
3115       FBB = TBB;
3116       TBB = I->getOperand(0).getMBB();
3117       Cond.push_back(MachineOperand::CreateImm(BranchCode));
3118       CondBranches.push_back(&*I);
3119       continue;
3120     }
3121 
3122     // Handle subsequent conditional branches. Only handle the case where all
3123     // conditional branches branch to the same destination and their condition
3124     // opcodes fit one of the special multi-branch idioms.
3125     assert(Cond.size() == 1);
3126     assert(TBB);
3127 
3128     // If the conditions are the same, we can leave them alone.
3129     X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
3130     auto NewTBB = I->getOperand(0).getMBB();
3131     if (OldBranchCode == BranchCode && TBB == NewTBB)
3132       continue;
3133 
3134     // If they differ, see if they fit one of the known patterns. Theoretically,
3135     // we could handle more patterns here, but we shouldn't expect to see them
3136     // if instruction selection has done a reasonable job.
3137     if (TBB == NewTBB &&
3138                ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
3139                 (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
3140       BranchCode = X86::COND_NE_OR_P;
3141     } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
3142                (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
3143       if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
3144         return true;
3145 
3146       // X86::COND_E_AND_NP usually has two different branch destinations.
3147       //
3148       // JP B1
3149       // JE B2
3150       // JMP B1
3151       // B1:
3152       // B2:
3153       //
3154       // Here this condition branches to B2 only if NP && E. It has another
3155       // equivalent form:
3156       //
3157       // JNE B1
3158       // JNP B2
3159       // JMP B1
3160       // B1:
3161       // B2:
3162       //
3163       // Similarly it branches to B2 only if E && NP. That is why this condition
3164       // is named with COND_E_AND_NP.
3165       BranchCode = X86::COND_E_AND_NP;
3166     } else
3167       return true;
3168 
3169     // Update the MachineOperand.
3170     Cond[0].setImm(BranchCode);
3171     CondBranches.push_back(&*I);
3172   }
3173 
3174   return false;
3175 }
3176 
3177 bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
3178                                  MachineBasicBlock *&TBB,
3179                                  MachineBasicBlock *&FBB,
3180                                  SmallVectorImpl<MachineOperand> &Cond,
3181                                  bool AllowModify) const {
3182   SmallVector<MachineInstr *, 4> CondBranches;
3183   return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
3184 }
3185 
3186 bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
3187                                           MachineBranchPredicate &MBP,
3188                                           bool AllowModify) const {
3189   using namespace std::placeholders;
3190 
3191   SmallVector<MachineOperand, 4> Cond;
3192   SmallVector<MachineInstr *, 4> CondBranches;
3193   if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
3194                         AllowModify))
3195     return true;
3196 
3197   if (Cond.size() != 1)
3198     return true;
3199 
3200   assert(MBP.TrueDest && "expected!");
3201 
3202   if (!MBP.FalseDest)
3203     MBP.FalseDest = MBB.getNextNode();
3204 
3205   const TargetRegisterInfo *TRI = &getRegisterInfo();
3206 
3207   MachineInstr *ConditionDef = nullptr;
3208   bool SingleUseCondition = true;
3209 
3210   for (MachineInstr &MI : llvm::drop_begin(llvm::reverse(MBB))) {
3211     if (MI.modifiesRegister(X86::EFLAGS, TRI)) {
3212       ConditionDef = &MI;
3213       break;
3214     }
3215 
3216     if (MI.readsRegister(X86::EFLAGS, TRI))
3217       SingleUseCondition = false;
3218   }
3219 
3220   if (!ConditionDef)
3221     return true;
3222 
3223   if (SingleUseCondition) {
3224     for (auto *Succ : MBB.successors())
3225       if (Succ->isLiveIn(X86::EFLAGS))
3226         SingleUseCondition = false;
3227   }
3228 
3229   MBP.ConditionDef = ConditionDef;
3230   MBP.SingleUseCondition = SingleUseCondition;
3231 
3232   // Currently we only recognize the simple pattern:
3233   //
3234   //   test %reg, %reg
3235   //   je %label
3236   //
3237   const unsigned TestOpcode =
3238       Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
3239 
3240   if (ConditionDef->getOpcode() == TestOpcode &&
3241       ConditionDef->getNumOperands() == 3 &&
3242       ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
3243       (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
3244     MBP.LHS = ConditionDef->getOperand(0);
3245     MBP.RHS = MachineOperand::CreateImm(0);
3246     MBP.Predicate = Cond[0].getImm() == X86::COND_NE
3247                         ? MachineBranchPredicate::PRED_NE
3248                         : MachineBranchPredicate::PRED_EQ;
3249     return false;
3250   }
3251 
3252   return true;
3253 }
3254 
3255 unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
3256                                     int *BytesRemoved) const {
3257   assert(!BytesRemoved && "code size not handled");
3258 
3259   MachineBasicBlock::iterator I = MBB.end();
3260   unsigned Count = 0;
3261 
3262   while (I != MBB.begin()) {
3263     --I;
3264     if (I->isDebugInstr())
3265       continue;
3266     if (I->getOpcode() != X86::JMP_1 &&
3267         X86::getCondFromBranch(*I) == X86::COND_INVALID)
3268       break;
3269     // Remove the branch.
3270     I->eraseFromParent();
3271     I = MBB.end();
3272     ++Count;
3273   }
3274 
3275   return Count;
3276 }
3277 
3278 unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
3279                                     MachineBasicBlock *TBB,
3280                                     MachineBasicBlock *FBB,
3281                                     ArrayRef<MachineOperand> Cond,
3282                                     const DebugLoc &DL,
3283                                     int *BytesAdded) const {
3284   // Shouldn't be a fall through.
3285   assert(TBB && "insertBranch must not be told to insert a fallthrough");
3286   assert((Cond.size() == 1 || Cond.size() == 0) &&
3287          "X86 branch conditions have one component!");
3288   assert(!BytesAdded && "code size not handled");
3289 
3290   if (Cond.empty()) {
3291     // Unconditional branch?
3292     assert(!FBB && "Unconditional branch with multiple successors!");
3293     BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
3294     return 1;
3295   }
3296 
3297   // If FBB is null, it is implied to be a fall-through block.
3298   bool FallThru = FBB == nullptr;
3299 
3300   // Conditional branch.
3301   unsigned Count = 0;
3302   X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
3303   switch (CC) {
3304   case X86::COND_NE_OR_P:
3305     // Synthesize NE_OR_P with two branches.
3306     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE);
3307     ++Count;
3308     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P);
3309     ++Count;
3310     break;
3311   case X86::COND_E_AND_NP:
3312     // Use the next block of MBB as FBB if it is null.
3313     if (FBB == nullptr) {
3314       FBB = getFallThroughMBB(&MBB, TBB);
3315       assert(FBB && "MBB cannot be the last block in function when the false "
3316                     "body is a fall-through.");
3317     }
3318     // Synthesize COND_E_AND_NP with two branches.
3319     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE);
3320     ++Count;
3321     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP);
3322     ++Count;
3323     break;
3324   default: {
3325     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC);
3326     ++Count;
3327   }
3328   }
3329   if (!FallThru) {
3330     // Two-way Conditional branch. Insert the second branch.
3331     BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
3332     ++Count;
3333   }
3334   return Count;
3335 }
3336 
3337 bool X86InstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
3338                                    ArrayRef<MachineOperand> Cond,
3339                                    Register DstReg, Register TrueReg,
3340                                    Register FalseReg, int &CondCycles,
3341                                    int &TrueCycles, int &FalseCycles) const {
3342   // Not all subtargets have cmov instructions.
3343   if (!Subtarget.canUseCMOV())
3344     return false;
3345   if (Cond.size() != 1)
3346     return false;
3347   // We cannot do the composite conditions, at least not in SSA form.
3348   if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND)
3349     return false;
3350 
3351   // Check register classes.
3352   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3353   const TargetRegisterClass *RC =
3354     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
3355   if (!RC)
3356     return false;
3357 
3358   // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
3359   if (X86::GR16RegClass.hasSubClassEq(RC) ||
3360       X86::GR32RegClass.hasSubClassEq(RC) ||
3361       X86::GR64RegClass.hasSubClassEq(RC)) {
3362     // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
3363     // Bridge. Probably Ivy Bridge as well.
3364     CondCycles = 2;
3365     TrueCycles = 2;
3366     FalseCycles = 2;
3367     return true;
3368   }
3369 
3370   // Can't do vectors.
3371   return false;
3372 }
3373 
3374 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
3375                                 MachineBasicBlock::iterator I,
3376                                 const DebugLoc &DL, Register DstReg,
3377                                 ArrayRef<MachineOperand> Cond, Register TrueReg,
3378                                 Register FalseReg) const {
3379   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3380   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
3381   const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
3382   assert(Cond.size() == 1 && "Invalid Cond array");
3383   unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8,
3384                                     false /*HasMemoryOperand*/);
3385   BuildMI(MBB, I, DL, get(Opc), DstReg)
3386       .addReg(FalseReg)
3387       .addReg(TrueReg)
3388       .addImm(Cond[0].getImm());
3389 }
3390 
3391 /// Test if the given register is a physical h register.
3392 static bool isHReg(unsigned Reg) {
3393   return X86::GR8_ABCD_HRegClass.contains(Reg);
3394 }
3395 
3396 // Try and copy between VR128/VR64 and GR64 registers.
3397 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
3398                                         const X86Subtarget &Subtarget) {
3399   bool HasAVX = Subtarget.hasAVX();
3400   bool HasAVX512 = Subtarget.hasAVX512();
3401 
3402   // SrcReg(MaskReg) -> DestReg(GR64)
3403   // SrcReg(MaskReg) -> DestReg(GR32)
3404 
3405   // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3406   if (X86::VK16RegClass.contains(SrcReg)) {
3407     if (X86::GR64RegClass.contains(DestReg)) {
3408       assert(Subtarget.hasBWI());
3409       return X86::KMOVQrk;
3410     }
3411     if (X86::GR32RegClass.contains(DestReg))
3412       return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk;
3413   }
3414 
3415   // SrcReg(GR64) -> DestReg(MaskReg)
3416   // SrcReg(GR32) -> DestReg(MaskReg)
3417 
3418   // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3419   if (X86::VK16RegClass.contains(DestReg)) {
3420     if (X86::GR64RegClass.contains(SrcReg)) {
3421       assert(Subtarget.hasBWI());
3422       return X86::KMOVQkr;
3423     }
3424     if (X86::GR32RegClass.contains(SrcReg))
3425       return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr;
3426   }
3427 
3428 
3429   // SrcReg(VR128) -> DestReg(GR64)
3430   // SrcReg(VR64)  -> DestReg(GR64)
3431   // SrcReg(GR64)  -> DestReg(VR128)
3432   // SrcReg(GR64)  -> DestReg(VR64)
3433 
3434   if (X86::GR64RegClass.contains(DestReg)) {
3435     if (X86::VR128XRegClass.contains(SrcReg))
3436       // Copy from a VR128 register to a GR64 register.
3437       return HasAVX512 ? X86::VMOVPQIto64Zrr :
3438              HasAVX    ? X86::VMOVPQIto64rr  :
3439                          X86::MOVPQIto64rr;
3440     if (X86::VR64RegClass.contains(SrcReg))
3441       // Copy from a VR64 register to a GR64 register.
3442       return X86::MMX_MOVD64from64rr;
3443   } else if (X86::GR64RegClass.contains(SrcReg)) {
3444     // Copy from a GR64 register to a VR128 register.
3445     if (X86::VR128XRegClass.contains(DestReg))
3446       return HasAVX512 ? X86::VMOV64toPQIZrr :
3447              HasAVX    ? X86::VMOV64toPQIrr  :
3448                          X86::MOV64toPQIrr;
3449     // Copy from a GR64 register to a VR64 register.
3450     if (X86::VR64RegClass.contains(DestReg))
3451       return X86::MMX_MOVD64to64rr;
3452   }
3453 
3454   // SrcReg(VR128) -> DestReg(GR32)
3455   // SrcReg(GR32)  -> DestReg(VR128)
3456 
3457   if (X86::GR32RegClass.contains(DestReg) &&
3458       X86::VR128XRegClass.contains(SrcReg))
3459     // Copy from a VR128 register to a GR32 register.
3460     return HasAVX512 ? X86::VMOVPDI2DIZrr :
3461            HasAVX    ? X86::VMOVPDI2DIrr  :
3462                        X86::MOVPDI2DIrr;
3463 
3464   if (X86::VR128XRegClass.contains(DestReg) &&
3465       X86::GR32RegClass.contains(SrcReg))
3466     // Copy from a VR128 register to a VR128 register.
3467     return HasAVX512 ? X86::VMOVDI2PDIZrr :
3468            HasAVX    ? X86::VMOVDI2PDIrr  :
3469                        X86::MOVDI2PDIrr;
3470   return 0;
3471 }
3472 
3473 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
3474                                MachineBasicBlock::iterator MI,
3475                                const DebugLoc &DL, MCRegister DestReg,
3476                                MCRegister SrcReg, bool KillSrc) const {
3477   // First deal with the normal symmetric copies.
3478   bool HasAVX = Subtarget.hasAVX();
3479   bool HasVLX = Subtarget.hasVLX();
3480   unsigned Opc = 0;
3481   if (X86::GR64RegClass.contains(DestReg, SrcReg))
3482     Opc = X86::MOV64rr;
3483   else if (X86::GR32RegClass.contains(DestReg, SrcReg))
3484     Opc = X86::MOV32rr;
3485   else if (X86::GR16RegClass.contains(DestReg, SrcReg))
3486     Opc = X86::MOV16rr;
3487   else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
3488     // Copying to or from a physical H register on x86-64 requires a NOREX
3489     // move.  Otherwise use a normal move.
3490     if ((isHReg(DestReg) || isHReg(SrcReg)) &&
3491         Subtarget.is64Bit()) {
3492       Opc = X86::MOV8rr_NOREX;
3493       // Both operands must be encodable without an REX prefix.
3494       assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
3495              "8-bit H register can not be copied outside GR8_NOREX");
3496     } else
3497       Opc = X86::MOV8rr;
3498   }
3499   else if (X86::VR64RegClass.contains(DestReg, SrcReg))
3500     Opc = X86::MMX_MOVQ64rr;
3501   else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
3502     if (HasVLX)
3503       Opc = X86::VMOVAPSZ128rr;
3504     else if (X86::VR128RegClass.contains(DestReg, SrcReg))
3505       Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
3506     else {
3507       // If this an extended register and we don't have VLX we need to use a
3508       // 512-bit move.
3509       Opc = X86::VMOVAPSZrr;
3510       const TargetRegisterInfo *TRI = &getRegisterInfo();
3511       DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm,
3512                                          &X86::VR512RegClass);
3513       SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm,
3514                                         &X86::VR512RegClass);
3515     }
3516   } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
3517     if (HasVLX)
3518       Opc = X86::VMOVAPSZ256rr;
3519     else if (X86::VR256RegClass.contains(DestReg, SrcReg))
3520       Opc = X86::VMOVAPSYrr;
3521     else {
3522       // If this an extended register and we don't have VLX we need to use a
3523       // 512-bit move.
3524       Opc = X86::VMOVAPSZrr;
3525       const TargetRegisterInfo *TRI = &getRegisterInfo();
3526       DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm,
3527                                          &X86::VR512RegClass);
3528       SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm,
3529                                         &X86::VR512RegClass);
3530     }
3531   } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
3532     Opc = X86::VMOVAPSZrr;
3533   // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3534   else if (X86::VK16RegClass.contains(DestReg, SrcReg))
3535     Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk;
3536   if (!Opc)
3537     Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
3538 
3539   if (Opc) {
3540     BuildMI(MBB, MI, DL, get(Opc), DestReg)
3541       .addReg(SrcReg, getKillRegState(KillSrc));
3542     return;
3543   }
3544 
3545   if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
3546     // FIXME: We use a fatal error here because historically LLVM has tried
3547     // lower some of these physreg copies and we want to ensure we get
3548     // reasonable bug reports if someone encounters a case no other testing
3549     // found. This path should be removed after the LLVM 7 release.
3550     report_fatal_error("Unable to copy EFLAGS physical register!");
3551   }
3552 
3553   LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "
3554                     << RI.getName(DestReg) << '\n');
3555   report_fatal_error("Cannot emit physreg copy instruction");
3556 }
3557 
3558 Optional<DestSourcePair>
3559 X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
3560   if (MI.isMoveReg())
3561     return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
3562   return None;
3563 }
3564 
3565 static unsigned getLoadStoreRegOpcode(Register Reg,
3566                                       const TargetRegisterClass *RC,
3567                                       bool IsStackAligned,
3568                                       const X86Subtarget &STI, bool load) {
3569   bool HasAVX = STI.hasAVX();
3570   bool HasAVX512 = STI.hasAVX512();
3571   bool HasVLX = STI.hasVLX();
3572 
3573   switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
3574   default:
3575     llvm_unreachable("Unknown spill size");
3576   case 1:
3577     assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
3578     if (STI.is64Bit())
3579       // Copying to or from a physical H register on x86-64 requires a NOREX
3580       // move.  Otherwise use a normal move.
3581       if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
3582         return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
3583     return load ? X86::MOV8rm : X86::MOV8mr;
3584   case 2:
3585     if (X86::VK16RegClass.hasSubClassEq(RC))
3586       return load ? X86::KMOVWkm : X86::KMOVWmk;
3587     assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
3588     return load ? X86::MOV16rm : X86::MOV16mr;
3589   case 4:
3590     if (X86::GR32RegClass.hasSubClassEq(RC))
3591       return load ? X86::MOV32rm : X86::MOV32mr;
3592     if (X86::FR32XRegClass.hasSubClassEq(RC))
3593       return load ?
3594         (HasAVX512 ? X86::VMOVSSZrm_alt :
3595          HasAVX    ? X86::VMOVSSrm_alt :
3596                      X86::MOVSSrm_alt) :
3597         (HasAVX512 ? X86::VMOVSSZmr :
3598          HasAVX    ? X86::VMOVSSmr :
3599                      X86::MOVSSmr);
3600     if (X86::RFP32RegClass.hasSubClassEq(RC))
3601       return load ? X86::LD_Fp32m : X86::ST_Fp32m;
3602     if (X86::VK32RegClass.hasSubClassEq(RC)) {
3603       assert(STI.hasBWI() && "KMOVD requires BWI");
3604       return load ? X86::KMOVDkm : X86::KMOVDmk;
3605     }
3606     // All of these mask pair classes have the same spill size, the same kind
3607     // of kmov instructions can be used with all of them.
3608     if (X86::VK1PAIRRegClass.hasSubClassEq(RC) ||
3609         X86::VK2PAIRRegClass.hasSubClassEq(RC) ||
3610         X86::VK4PAIRRegClass.hasSubClassEq(RC) ||
3611         X86::VK8PAIRRegClass.hasSubClassEq(RC) ||
3612         X86::VK16PAIRRegClass.hasSubClassEq(RC))
3613       return load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE;
3614     if ((X86::FR16RegClass.hasSubClassEq(RC) ||
3615          X86::FR16XRegClass.hasSubClassEq(RC)) &&
3616         STI.hasFP16())
3617       return load ? X86::VMOVSHZrm_alt : X86::VMOVSHZmr;
3618     llvm_unreachable("Unknown 4-byte regclass");
3619   case 8:
3620     if (X86::GR64RegClass.hasSubClassEq(RC))
3621       return load ? X86::MOV64rm : X86::MOV64mr;
3622     if (X86::FR64XRegClass.hasSubClassEq(RC))
3623       return load ?
3624         (HasAVX512 ? X86::VMOVSDZrm_alt :
3625          HasAVX    ? X86::VMOVSDrm_alt :
3626                      X86::MOVSDrm_alt) :
3627         (HasAVX512 ? X86::VMOVSDZmr :
3628          HasAVX    ? X86::VMOVSDmr :
3629                      X86::MOVSDmr);
3630     if (X86::VR64RegClass.hasSubClassEq(RC))
3631       return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
3632     if (X86::RFP64RegClass.hasSubClassEq(RC))
3633       return load ? X86::LD_Fp64m : X86::ST_Fp64m;
3634     if (X86::VK64RegClass.hasSubClassEq(RC)) {
3635       assert(STI.hasBWI() && "KMOVQ requires BWI");
3636       return load ? X86::KMOVQkm : X86::KMOVQmk;
3637     }
3638     llvm_unreachable("Unknown 8-byte regclass");
3639   case 10:
3640     assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
3641     return load ? X86::LD_Fp80m : X86::ST_FpP80m;
3642   case 16: {
3643     if (X86::VR128XRegClass.hasSubClassEq(RC)) {
3644       // If stack is realigned we can use aligned stores.
3645       if (IsStackAligned)
3646         return load ?
3647           (HasVLX    ? X86::VMOVAPSZ128rm :
3648            HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX :
3649            HasAVX    ? X86::VMOVAPSrm :
3650                        X86::MOVAPSrm):
3651           (HasVLX    ? X86::VMOVAPSZ128mr :
3652            HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX :
3653            HasAVX    ? X86::VMOVAPSmr :
3654                        X86::MOVAPSmr);
3655       else
3656         return load ?
3657           (HasVLX    ? X86::VMOVUPSZ128rm :
3658            HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX :
3659            HasAVX    ? X86::VMOVUPSrm :
3660                        X86::MOVUPSrm):
3661           (HasVLX    ? X86::VMOVUPSZ128mr :
3662            HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX :
3663            HasAVX    ? X86::VMOVUPSmr :
3664                        X86::MOVUPSmr);
3665     }
3666     llvm_unreachable("Unknown 16-byte regclass");
3667   }
3668   case 32:
3669     assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
3670     // If stack is realigned we can use aligned stores.
3671     if (IsStackAligned)
3672       return load ?
3673         (HasVLX    ? X86::VMOVAPSZ256rm :
3674          HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX :
3675                      X86::VMOVAPSYrm) :
3676         (HasVLX    ? X86::VMOVAPSZ256mr :
3677          HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX :
3678                      X86::VMOVAPSYmr);
3679     else
3680       return load ?
3681         (HasVLX    ? X86::VMOVUPSZ256rm :
3682          HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX :
3683                      X86::VMOVUPSYrm) :
3684         (HasVLX    ? X86::VMOVUPSZ256mr :
3685          HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX :
3686                      X86::VMOVUPSYmr);
3687   case 64:
3688     assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
3689     assert(STI.hasAVX512() && "Using 512-bit register requires AVX512");
3690     if (IsStackAligned)
3691       return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
3692     else
3693       return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3694   }
3695 }
3696 
3697 Optional<ExtAddrMode>
3698 X86InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI,
3699                                       const TargetRegisterInfo *TRI) const {
3700   const MCInstrDesc &Desc = MemI.getDesc();
3701   int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3702   if (MemRefBegin < 0)
3703     return None;
3704 
3705   MemRefBegin += X86II::getOperandBias(Desc);
3706 
3707   auto &BaseOp = MemI.getOperand(MemRefBegin + X86::AddrBaseReg);
3708   if (!BaseOp.isReg()) // Can be an MO_FrameIndex
3709     return None;
3710 
3711   const MachineOperand &DispMO = MemI.getOperand(MemRefBegin + X86::AddrDisp);
3712   // Displacement can be symbolic
3713   if (!DispMO.isImm())
3714     return None;
3715 
3716   ExtAddrMode AM;
3717   AM.BaseReg = BaseOp.getReg();
3718   AM.ScaledReg = MemI.getOperand(MemRefBegin + X86::AddrIndexReg).getReg();
3719   AM.Scale = MemI.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm();
3720   AM.Displacement = DispMO.getImm();
3721   return AM;
3722 }
3723 
3724 bool X86InstrInfo::verifyInstruction(const MachineInstr &MI,
3725                                      StringRef &ErrInfo) const {
3726   Optional<ExtAddrMode> AMOrNone = getAddrModeFromMemoryOp(MI, nullptr);
3727   if (!AMOrNone)
3728     return true;
3729 
3730   ExtAddrMode AM = *AMOrNone;
3731 
3732   if (AM.ScaledReg != X86::NoRegister) {
3733     switch (AM.Scale) {
3734     case 1:
3735     case 2:
3736     case 4:
3737     case 8:
3738       break;
3739     default:
3740       ErrInfo = "Scale factor in address must be 1, 2, 4 or 8";
3741       return false;
3742     }
3743   }
3744   if (!isInt<32>(AM.Displacement)) {
3745     ErrInfo = "Displacement in address must fit into 32-bit signed "
3746               "integer";
3747     return false;
3748   }
3749 
3750   return true;
3751 }
3752 
3753 bool X86InstrInfo::getConstValDefinedInReg(const MachineInstr &MI,
3754                                            const Register Reg,
3755                                            int64_t &ImmVal) const {
3756   if (MI.getOpcode() != X86::MOV32ri && MI.getOpcode() != X86::MOV64ri)
3757     return false;
3758   // Mov Src can be a global address.
3759   if (!MI.getOperand(1).isImm() || MI.getOperand(0).getReg() != Reg)
3760     return false;
3761   ImmVal = MI.getOperand(1).getImm();
3762   return true;
3763 }
3764 
3765 bool X86InstrInfo::preservesZeroValueInReg(
3766     const MachineInstr *MI, const Register NullValueReg,
3767     const TargetRegisterInfo *TRI) const {
3768   if (!MI->modifiesRegister(NullValueReg, TRI))
3769     return true;
3770   switch (MI->getOpcode()) {
3771   // Shift right/left of a null unto itself is still a null, i.e. rax = shl rax
3772   // X.
3773   case X86::SHR64ri:
3774   case X86::SHR32ri:
3775   case X86::SHL64ri:
3776   case X86::SHL32ri:
3777     assert(MI->getOperand(0).isDef() && MI->getOperand(1).isUse() &&
3778            "expected for shift opcode!");
3779     return MI->getOperand(0).getReg() == NullValueReg &&
3780            MI->getOperand(1).getReg() == NullValueReg;
3781   // Zero extend of a sub-reg of NullValueReg into itself does not change the
3782   // null value.
3783   case X86::MOV32rr:
3784     return llvm::all_of(MI->operands(), [&](const MachineOperand &MO) {
3785       return TRI->isSubRegisterEq(NullValueReg, MO.getReg());
3786     });
3787   default:
3788     return false;
3789   }
3790   llvm_unreachable("Should be handled above!");
3791 }
3792 
3793 bool X86InstrInfo::getMemOperandsWithOffsetWidth(
3794     const MachineInstr &MemOp, SmallVectorImpl<const MachineOperand *> &BaseOps,
3795     int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
3796     const TargetRegisterInfo *TRI) const {
3797   const MCInstrDesc &Desc = MemOp.getDesc();
3798   int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3799   if (MemRefBegin < 0)
3800     return false;
3801 
3802   MemRefBegin += X86II::getOperandBias(Desc);
3803 
3804   const MachineOperand *BaseOp =
3805       &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
3806   if (!BaseOp->isReg()) // Can be an MO_FrameIndex
3807     return false;
3808 
3809   if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
3810     return false;
3811 
3812   if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
3813       X86::NoRegister)
3814     return false;
3815 
3816   const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
3817 
3818   // Displacement can be symbolic
3819   if (!DispMO.isImm())
3820     return false;
3821 
3822   Offset = DispMO.getImm();
3823 
3824   if (!BaseOp->isReg())
3825     return false;
3826 
3827   OffsetIsScalable = false;
3828   // FIXME: Relying on memoperands() may not be right thing to do here. Check
3829   // with X86 maintainers, and fix it accordingly. For now, it is ok, since
3830   // there is no use of `Width` for X86 back-end at the moment.
3831   Width =
3832       !MemOp.memoperands_empty() ? MemOp.memoperands().front()->getSize() : 0;
3833   BaseOps.push_back(BaseOp);
3834   return true;
3835 }
3836 
3837 static unsigned getStoreRegOpcode(Register SrcReg,
3838                                   const TargetRegisterClass *RC,
3839                                   bool IsStackAligned,
3840                                   const X86Subtarget &STI) {
3841   return getLoadStoreRegOpcode(SrcReg, RC, IsStackAligned, STI, false);
3842 }
3843 
3844 static unsigned getLoadRegOpcode(Register DestReg,
3845                                  const TargetRegisterClass *RC,
3846                                  bool IsStackAligned, const X86Subtarget &STI) {
3847   return getLoadStoreRegOpcode(DestReg, RC, IsStackAligned, STI, true);
3848 }
3849 
3850 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
3851                                        MachineBasicBlock::iterator MI,
3852                                        Register SrcReg, bool isKill, int FrameIdx,
3853                                        const TargetRegisterClass *RC,
3854                                        const TargetRegisterInfo *TRI) const {
3855   const MachineFunction &MF = *MBB.getParent();
3856   const MachineFrameInfo &MFI = MF.getFrameInfo();
3857   MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
3858   assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
3859          "Stack slot too small for store");
3860   if (RC->getID() == X86::TILERegClassID) {
3861     unsigned Opc = X86::TILESTORED;
3862     // tilestored %tmm, (%sp, %idx)
3863     Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
3864     BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
3865     MachineInstr *NewMI =
3866         addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3867             .addReg(SrcReg, getKillRegState(isKill));
3868     MachineOperand &MO = NewMI->getOperand(2);
3869     MO.setReg(VirtReg);
3870     MO.setIsKill(true);
3871   } else if ((RC->getID() == X86::FR16RegClassID ||
3872               RC->getID() == X86::FR16XRegClassID) &&
3873              !Subtarget.hasFP16()) {
3874     unsigned Opc = Subtarget.hasAVX512() ? X86::VMOVSSZmr
3875                    : Subtarget.hasAVX()  ? X86::VMOVSSmr
3876                                          : X86::MOVSSmr;
3877     addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3878         .addReg(SrcReg, getKillRegState(isKill));
3879   } else {
3880     unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3881     bool isAligned =
3882         (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
3883         (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
3884     unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3885     addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3886         .addReg(SrcReg, getKillRegState(isKill));
3887   }
3888 }
3889 
3890 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
3891                                         MachineBasicBlock::iterator MI,
3892                                         Register DestReg, int FrameIdx,
3893                                         const TargetRegisterClass *RC,
3894                                         const TargetRegisterInfo *TRI) const {
3895   const MachineFunction &MF = *MBB.getParent();
3896   const MachineFrameInfo &MFI = MF.getFrameInfo();
3897   assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
3898          "Load size exceeds stack slot");
3899   if (RC->getID() == X86::TILERegClassID) {
3900     unsigned Opc = X86::TILELOADD;
3901     // tileloadd (%sp, %idx), %tmm
3902     MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
3903     Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
3904     MachineInstr *NewMI =
3905         BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
3906     NewMI = addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
3907                               FrameIdx);
3908     MachineOperand &MO = NewMI->getOperand(3);
3909     MO.setReg(VirtReg);
3910     MO.setIsKill(true);
3911   } else if ((RC->getID() == X86::FR16RegClassID ||
3912               RC->getID() == X86::FR16XRegClassID) &&
3913              !Subtarget.hasFP16()) {
3914     unsigned Opc = Subtarget.hasAVX512() ? X86::VMOVSSZrm
3915                    : Subtarget.hasAVX()  ? X86::VMOVSSrm
3916                                          : X86::MOVSSrm;
3917     addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
3918                       FrameIdx);
3919   } else {
3920     unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3921     bool isAligned =
3922         (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
3923         (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
3924     unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
3925     addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
3926                       FrameIdx);
3927   }
3928 }
3929 
3930 bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
3931                                   Register &SrcReg2, int64_t &CmpMask,
3932                                   int64_t &CmpValue) const {
3933   switch (MI.getOpcode()) {
3934   default: break;
3935   case X86::CMP64ri32:
3936   case X86::CMP64ri8:
3937   case X86::CMP32ri:
3938   case X86::CMP32ri8:
3939   case X86::CMP16ri:
3940   case X86::CMP16ri8:
3941   case X86::CMP8ri:
3942     SrcReg = MI.getOperand(0).getReg();
3943     SrcReg2 = 0;
3944     if (MI.getOperand(1).isImm()) {
3945       CmpMask = ~0;
3946       CmpValue = MI.getOperand(1).getImm();
3947     } else {
3948       CmpMask = CmpValue = 0;
3949     }
3950     return true;
3951   // A SUB can be used to perform comparison.
3952   case X86::SUB64rm:
3953   case X86::SUB32rm:
3954   case X86::SUB16rm:
3955   case X86::SUB8rm:
3956     SrcReg = MI.getOperand(1).getReg();
3957     SrcReg2 = 0;
3958     CmpMask = 0;
3959     CmpValue = 0;
3960     return true;
3961   case X86::SUB64rr:
3962   case X86::SUB32rr:
3963   case X86::SUB16rr:
3964   case X86::SUB8rr:
3965     SrcReg = MI.getOperand(1).getReg();
3966     SrcReg2 = MI.getOperand(2).getReg();
3967     CmpMask = 0;
3968     CmpValue = 0;
3969     return true;
3970   case X86::SUB64ri32:
3971   case X86::SUB64ri8:
3972   case X86::SUB32ri:
3973   case X86::SUB32ri8:
3974   case X86::SUB16ri:
3975   case X86::SUB16ri8:
3976   case X86::SUB8ri:
3977     SrcReg = MI.getOperand(1).getReg();
3978     SrcReg2 = 0;
3979     if (MI.getOperand(2).isImm()) {
3980       CmpMask = ~0;
3981       CmpValue = MI.getOperand(2).getImm();
3982     } else {
3983       CmpMask = CmpValue = 0;
3984     }
3985     return true;
3986   case X86::CMP64rr:
3987   case X86::CMP32rr:
3988   case X86::CMP16rr:
3989   case X86::CMP8rr:
3990     SrcReg = MI.getOperand(0).getReg();
3991     SrcReg2 = MI.getOperand(1).getReg();
3992     CmpMask = 0;
3993     CmpValue = 0;
3994     return true;
3995   case X86::TEST8rr:
3996   case X86::TEST16rr:
3997   case X86::TEST32rr:
3998   case X86::TEST64rr:
3999     SrcReg = MI.getOperand(0).getReg();
4000     if (MI.getOperand(1).getReg() != SrcReg)
4001       return false;
4002     // Compare against zero.
4003     SrcReg2 = 0;
4004     CmpMask = ~0;
4005     CmpValue = 0;
4006     return true;
4007   }
4008   return false;
4009 }
4010 
4011 bool X86InstrInfo::isRedundantFlagInstr(const MachineInstr &FlagI,
4012                                         Register SrcReg, Register SrcReg2,
4013                                         int64_t ImmMask, int64_t ImmValue,
4014                                         const MachineInstr &OI, bool *IsSwapped,
4015                                         int64_t *ImmDelta) const {
4016   switch (OI.getOpcode()) {
4017   case X86::CMP64rr:
4018   case X86::CMP32rr:
4019   case X86::CMP16rr:
4020   case X86::CMP8rr:
4021   case X86::SUB64rr:
4022   case X86::SUB32rr:
4023   case X86::SUB16rr:
4024   case X86::SUB8rr: {
4025     Register OISrcReg;
4026     Register OISrcReg2;
4027     int64_t OIMask;
4028     int64_t OIValue;
4029     if (!analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) ||
4030         OIMask != ImmMask || OIValue != ImmValue)
4031       return false;
4032     if (SrcReg == OISrcReg && SrcReg2 == OISrcReg2) {
4033       *IsSwapped = false;
4034       return true;
4035     }
4036     if (SrcReg == OISrcReg2 && SrcReg2 == OISrcReg) {
4037       *IsSwapped = true;
4038       return true;
4039     }
4040     return false;
4041   }
4042   case X86::CMP64ri32:
4043   case X86::CMP64ri8:
4044   case X86::CMP32ri:
4045   case X86::CMP32ri8:
4046   case X86::CMP16ri:
4047   case X86::CMP16ri8:
4048   case X86::CMP8ri:
4049   case X86::SUB64ri32:
4050   case X86::SUB64ri8:
4051   case X86::SUB32ri:
4052   case X86::SUB32ri8:
4053   case X86::SUB16ri:
4054   case X86::SUB16ri8:
4055   case X86::SUB8ri:
4056   case X86::TEST64rr:
4057   case X86::TEST32rr:
4058   case X86::TEST16rr:
4059   case X86::TEST8rr: {
4060     if (ImmMask != 0) {
4061       Register OISrcReg;
4062       Register OISrcReg2;
4063       int64_t OIMask;
4064       int64_t OIValue;
4065       if (analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) &&
4066           SrcReg == OISrcReg && ImmMask == OIMask) {
4067         if (OIValue == ImmValue) {
4068           *ImmDelta = 0;
4069           return true;
4070         } else if (static_cast<uint64_t>(ImmValue) ==
4071                    static_cast<uint64_t>(OIValue) - 1) {
4072           *ImmDelta = -1;
4073           return true;
4074         } else if (static_cast<uint64_t>(ImmValue) ==
4075                    static_cast<uint64_t>(OIValue) + 1) {
4076           *ImmDelta = 1;
4077           return true;
4078         } else {
4079           return false;
4080         }
4081       }
4082     }
4083     return FlagI.isIdenticalTo(OI);
4084   }
4085   default:
4086     return false;
4087   }
4088 }
4089 
4090 /// Check whether the definition can be converted
4091 /// to remove a comparison against zero.
4092 inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag,
4093                                     bool &ClearsOverflowFlag) {
4094   NoSignFlag = false;
4095   ClearsOverflowFlag = false;
4096 
4097   switch (MI.getOpcode()) {
4098   default: return false;
4099 
4100   // The shift instructions only modify ZF if their shift count is non-zero.
4101   // N.B.: The processor truncates the shift count depending on the encoding.
4102   case X86::SAR8ri:    case X86::SAR16ri:  case X86::SAR32ri:case X86::SAR64ri:
4103   case X86::SHR8ri:    case X86::SHR16ri:  case X86::SHR32ri:case X86::SHR64ri:
4104      return getTruncatedShiftCount(MI, 2) != 0;
4105 
4106   // Some left shift instructions can be turned into LEA instructions but only
4107   // if their flags aren't used. Avoid transforming such instructions.
4108   case X86::SHL8ri:    case X86::SHL16ri:  case X86::SHL32ri:case X86::SHL64ri:{
4109     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
4110     if (isTruncatedShiftCountForLEA(ShAmt)) return false;
4111     return ShAmt != 0;
4112   }
4113 
4114   case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
4115   case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
4116      return getTruncatedShiftCount(MI, 3) != 0;
4117 
4118   case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
4119   case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8:
4120   case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr:
4121   case X86::SUB16rr:   case X86::SUB8rr:   case X86::SUB64rm:
4122   case X86::SUB32rm:   case X86::SUB16rm:  case X86::SUB8rm:
4123   case X86::DEC64r:    case X86::DEC32r:   case X86::DEC16r: case X86::DEC8r:
4124   case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
4125   case X86::ADD32ri8:  case X86::ADD16ri:  case X86::ADD16ri8:
4126   case X86::ADD8ri:    case X86::ADD64rr:  case X86::ADD32rr:
4127   case X86::ADD16rr:   case X86::ADD8rr:   case X86::ADD64rm:
4128   case X86::ADD32rm:   case X86::ADD16rm:  case X86::ADD8rm:
4129   case X86::INC64r:    case X86::INC32r:   case X86::INC16r: case X86::INC8r:
4130   case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri:
4131   case X86::ADC32ri8:  case X86::ADC16ri:  case X86::ADC16ri8:
4132   case X86::ADC8ri:    case X86::ADC64rr:  case X86::ADC32rr:
4133   case X86::ADC16rr:   case X86::ADC8rr:   case X86::ADC64rm:
4134   case X86::ADC32rm:   case X86::ADC16rm:  case X86::ADC8rm:
4135   case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri:
4136   case X86::SBB32ri8:  case X86::SBB16ri:  case X86::SBB16ri8:
4137   case X86::SBB8ri:    case X86::SBB64rr:  case X86::SBB32rr:
4138   case X86::SBB16rr:   case X86::SBB8rr:   case X86::SBB64rm:
4139   case X86::SBB32rm:   case X86::SBB16rm:  case X86::SBB8rm:
4140   case X86::NEG8r:     case X86::NEG16r:   case X86::NEG32r: case X86::NEG64r:
4141   case X86::SAR8r1:    case X86::SAR16r1:  case X86::SAR32r1:case X86::SAR64r1:
4142   case X86::SHR8r1:    case X86::SHR16r1:  case X86::SHR32r1:case X86::SHR64r1:
4143   case X86::SHL8r1:    case X86::SHL16r1:  case X86::SHL32r1:case X86::SHL64r1:
4144   case X86::LZCNT16rr: case X86::LZCNT16rm:
4145   case X86::LZCNT32rr: case X86::LZCNT32rm:
4146   case X86::LZCNT64rr: case X86::LZCNT64rm:
4147   case X86::POPCNT16rr:case X86::POPCNT16rm:
4148   case X86::POPCNT32rr:case X86::POPCNT32rm:
4149   case X86::POPCNT64rr:case X86::POPCNT64rm:
4150   case X86::TZCNT16rr: case X86::TZCNT16rm:
4151   case X86::TZCNT32rr: case X86::TZCNT32rm:
4152   case X86::TZCNT64rr: case X86::TZCNT64rm:
4153     return true;
4154   case X86::AND64ri32:   case X86::AND64ri8:  case X86::AND32ri:
4155   case X86::AND32ri8:    case X86::AND16ri:   case X86::AND16ri8:
4156   case X86::AND8ri:      case X86::AND64rr:   case X86::AND32rr:
4157   case X86::AND16rr:     case X86::AND8rr:    case X86::AND64rm:
4158   case X86::AND32rm:     case X86::AND16rm:   case X86::AND8rm:
4159   case X86::XOR64ri32:   case X86::XOR64ri8:  case X86::XOR32ri:
4160   case X86::XOR32ri8:    case X86::XOR16ri:   case X86::XOR16ri8:
4161   case X86::XOR8ri:      case X86::XOR64rr:   case X86::XOR32rr:
4162   case X86::XOR16rr:     case X86::XOR8rr:    case X86::XOR64rm:
4163   case X86::XOR32rm:     case X86::XOR16rm:   case X86::XOR8rm:
4164   case X86::OR64ri32:    case X86::OR64ri8:   case X86::OR32ri:
4165   case X86::OR32ri8:     case X86::OR16ri:    case X86::OR16ri8:
4166   case X86::OR8ri:       case X86::OR64rr:    case X86::OR32rr:
4167   case X86::OR16rr:      case X86::OR8rr:     case X86::OR64rm:
4168   case X86::OR32rm:      case X86::OR16rm:    case X86::OR8rm:
4169   case X86::ANDN32rr:    case X86::ANDN32rm:
4170   case X86::ANDN64rr:    case X86::ANDN64rm:
4171   case X86::BLSI32rr:    case X86::BLSI32rm:
4172   case X86::BLSI64rr:    case X86::BLSI64rm:
4173   case X86::BLSMSK32rr:  case X86::BLSMSK32rm:
4174   case X86::BLSMSK64rr:  case X86::BLSMSK64rm:
4175   case X86::BLSR32rr:    case X86::BLSR32rm:
4176   case X86::BLSR64rr:    case X86::BLSR64rm:
4177   case X86::BLCFILL32rr: case X86::BLCFILL32rm:
4178   case X86::BLCFILL64rr: case X86::BLCFILL64rm:
4179   case X86::BLCI32rr:    case X86::BLCI32rm:
4180   case X86::BLCI64rr:    case X86::BLCI64rm:
4181   case X86::BLCIC32rr:   case X86::BLCIC32rm:
4182   case X86::BLCIC64rr:   case X86::BLCIC64rm:
4183   case X86::BLCMSK32rr:  case X86::BLCMSK32rm:
4184   case X86::BLCMSK64rr:  case X86::BLCMSK64rm:
4185   case X86::BLCS32rr:    case X86::BLCS32rm:
4186   case X86::BLCS64rr:    case X86::BLCS64rm:
4187   case X86::BLSFILL32rr: case X86::BLSFILL32rm:
4188   case X86::BLSFILL64rr: case X86::BLSFILL64rm:
4189   case X86::BLSIC32rr:   case X86::BLSIC32rm:
4190   case X86::BLSIC64rr:   case X86::BLSIC64rm:
4191   case X86::BZHI32rr:    case X86::BZHI32rm:
4192   case X86::BZHI64rr:    case X86::BZHI64rm:
4193   case X86::T1MSKC32rr:  case X86::T1MSKC32rm:
4194   case X86::T1MSKC64rr:  case X86::T1MSKC64rm:
4195   case X86::TZMSK32rr:   case X86::TZMSK32rm:
4196   case X86::TZMSK64rr:   case X86::TZMSK64rm:
4197     // These instructions clear the overflow flag just like TEST.
4198     // FIXME: These are not the only instructions in this switch that clear the
4199     // overflow flag.
4200     ClearsOverflowFlag = true;
4201     return true;
4202   case X86::BEXTR32rr:   case X86::BEXTR64rr:
4203   case X86::BEXTR32rm:   case X86::BEXTR64rm:
4204   case X86::BEXTRI32ri:  case X86::BEXTRI32mi:
4205   case X86::BEXTRI64ri:  case X86::BEXTRI64mi:
4206     // BEXTR doesn't update the sign flag so we can't use it. It does clear
4207     // the overflow flag, but that's not useful without the sign flag.
4208     NoSignFlag = true;
4209     return true;
4210   }
4211 }
4212 
4213 /// Check whether the use can be converted to remove a comparison against zero.
4214 static X86::CondCode isUseDefConvertible(const MachineInstr &MI) {
4215   switch (MI.getOpcode()) {
4216   default: return X86::COND_INVALID;
4217   case X86::NEG8r:
4218   case X86::NEG16r:
4219   case X86::NEG32r:
4220   case X86::NEG64r:
4221     return X86::COND_AE;
4222   case X86::LZCNT16rr:
4223   case X86::LZCNT32rr:
4224   case X86::LZCNT64rr:
4225     return X86::COND_B;
4226   case X86::POPCNT16rr:
4227   case X86::POPCNT32rr:
4228   case X86::POPCNT64rr:
4229     return X86::COND_E;
4230   case X86::TZCNT16rr:
4231   case X86::TZCNT32rr:
4232   case X86::TZCNT64rr:
4233     return X86::COND_B;
4234   case X86::BSF16rr:
4235   case X86::BSF32rr:
4236   case X86::BSF64rr:
4237   case X86::BSR16rr:
4238   case X86::BSR32rr:
4239   case X86::BSR64rr:
4240     return X86::COND_E;
4241   case X86::BLSI32rr:
4242   case X86::BLSI64rr:
4243     return X86::COND_AE;
4244   case X86::BLSR32rr:
4245   case X86::BLSR64rr:
4246   case X86::BLSMSK32rr:
4247   case X86::BLSMSK64rr:
4248     return X86::COND_B;
4249   // TODO: TBM instructions.
4250   }
4251 }
4252 
4253 /// Check if there exists an earlier instruction that
4254 /// operates on the same source operands and sets flags in the same way as
4255 /// Compare; remove Compare if possible.
4256 bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
4257                                         Register SrcReg2, int64_t CmpMask,
4258                                         int64_t CmpValue,
4259                                         const MachineRegisterInfo *MRI) const {
4260   // Check whether we can replace SUB with CMP.
4261   switch (CmpInstr.getOpcode()) {
4262   default: break;
4263   case X86::SUB64ri32:
4264   case X86::SUB64ri8:
4265   case X86::SUB32ri:
4266   case X86::SUB32ri8:
4267   case X86::SUB16ri:
4268   case X86::SUB16ri8:
4269   case X86::SUB8ri:
4270   case X86::SUB64rm:
4271   case X86::SUB32rm:
4272   case X86::SUB16rm:
4273   case X86::SUB8rm:
4274   case X86::SUB64rr:
4275   case X86::SUB32rr:
4276   case X86::SUB16rr:
4277   case X86::SUB8rr: {
4278     if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
4279       return false;
4280     // There is no use of the destination register, we can replace SUB with CMP.
4281     unsigned NewOpcode = 0;
4282     switch (CmpInstr.getOpcode()) {
4283     default: llvm_unreachable("Unreachable!");
4284     case X86::SUB64rm:   NewOpcode = X86::CMP64rm;   break;
4285     case X86::SUB32rm:   NewOpcode = X86::CMP32rm;   break;
4286     case X86::SUB16rm:   NewOpcode = X86::CMP16rm;   break;
4287     case X86::SUB8rm:    NewOpcode = X86::CMP8rm;    break;
4288     case X86::SUB64rr:   NewOpcode = X86::CMP64rr;   break;
4289     case X86::SUB32rr:   NewOpcode = X86::CMP32rr;   break;
4290     case X86::SUB16rr:   NewOpcode = X86::CMP16rr;   break;
4291     case X86::SUB8rr:    NewOpcode = X86::CMP8rr;    break;
4292     case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
4293     case X86::SUB64ri8:  NewOpcode = X86::CMP64ri8;  break;
4294     case X86::SUB32ri:   NewOpcode = X86::CMP32ri;   break;
4295     case X86::SUB32ri8:  NewOpcode = X86::CMP32ri8;  break;
4296     case X86::SUB16ri:   NewOpcode = X86::CMP16ri;   break;
4297     case X86::SUB16ri8:  NewOpcode = X86::CMP16ri8;  break;
4298     case X86::SUB8ri:    NewOpcode = X86::CMP8ri;    break;
4299     }
4300     CmpInstr.setDesc(get(NewOpcode));
4301     CmpInstr.removeOperand(0);
4302     // Mutating this instruction invalidates any debug data associated with it.
4303     CmpInstr.dropDebugNumber();
4304     // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
4305     if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
4306         NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
4307       return false;
4308   }
4309   }
4310 
4311   // The following code tries to remove the comparison by re-using EFLAGS
4312   // from earlier instructions.
4313 
4314   bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
4315 
4316   // Transformation currently requires SSA values.
4317   if (SrcReg2.isPhysical())
4318     return false;
4319   MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
4320   assert(SrcRegDef && "Must have a definition (SSA)");
4321 
4322   MachineInstr *MI = nullptr;
4323   MachineInstr *Sub = nullptr;
4324   MachineInstr *Movr0Inst = nullptr;
4325   bool NoSignFlag = false;
4326   bool ClearsOverflowFlag = false;
4327   bool ShouldUpdateCC = false;
4328   bool IsSwapped = false;
4329   X86::CondCode NewCC = X86::COND_INVALID;
4330   int64_t ImmDelta = 0;
4331 
4332   // Search backward from CmpInstr for the next instruction defining EFLAGS.
4333   const TargetRegisterInfo *TRI = &getRegisterInfo();
4334   MachineBasicBlock &CmpMBB = *CmpInstr.getParent();
4335   MachineBasicBlock::reverse_iterator From =
4336       std::next(MachineBasicBlock::reverse_iterator(CmpInstr));
4337   for (MachineBasicBlock *MBB = &CmpMBB;;) {
4338     for (MachineInstr &Inst : make_range(From, MBB->rend())) {
4339       // Try to use EFLAGS from the instruction defining %SrcReg. Example:
4340       //     %eax = addl ...
4341       //     ...                // EFLAGS not changed
4342       //     testl %eax, %eax   // <-- can be removed
4343       if (&Inst == SrcRegDef) {
4344         if (IsCmpZero &&
4345             isDefConvertible(Inst, NoSignFlag, ClearsOverflowFlag)) {
4346           MI = &Inst;
4347           break;
4348         }
4349 
4350         // Look back for the following pattern, in which case the test64rr
4351         // instruction could be erased.
4352         //
4353         // Example:
4354         //  %reg = and32ri %in_reg, 5
4355         //  ...                         // EFLAGS not changed.
4356         //  %src_reg = subreg_to_reg 0, %reg, %subreg.sub_index
4357         //  test64rr %src_reg, %src_reg, implicit-def $eflags
4358         MachineInstr *AndInstr = nullptr;
4359         if (IsCmpZero &&
4360             findRedundantFlagInstr(CmpInstr, Inst, MRI, &AndInstr, TRI,
4361                                    NoSignFlag, ClearsOverflowFlag)) {
4362           assert(AndInstr != nullptr && X86::isAND(AndInstr->getOpcode()));
4363           MI = AndInstr;
4364           break;
4365         }
4366         // Cannot find other candidates before definition of SrcReg.
4367         return false;
4368       }
4369 
4370       if (Inst.modifiesRegister(X86::EFLAGS, TRI)) {
4371         // Try to use EFLAGS produced by an instruction reading %SrcReg.
4372         // Example:
4373         //      %eax = ...
4374         //      ...
4375         //      popcntl %eax
4376         //      ...                 // EFLAGS not changed
4377         //      testl %eax, %eax    // <-- can be removed
4378         if (IsCmpZero) {
4379           NewCC = isUseDefConvertible(Inst);
4380           if (NewCC != X86::COND_INVALID && Inst.getOperand(1).isReg() &&
4381               Inst.getOperand(1).getReg() == SrcReg) {
4382             ShouldUpdateCC = true;
4383             MI = &Inst;
4384             break;
4385           }
4386         }
4387 
4388         // Try to use EFLAGS from an instruction with similar flag results.
4389         // Example:
4390         //     sub x, y  or  cmp x, y
4391         //     ...           // EFLAGS not changed
4392         //     cmp x, y      // <-- can be removed
4393         if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask, CmpValue,
4394                                  Inst, &IsSwapped, &ImmDelta)) {
4395           Sub = &Inst;
4396           break;
4397         }
4398 
4399         // MOV32r0 is implemented with xor which clobbers condition code. It is
4400         // safe to move up, if the definition to EFLAGS is dead and earlier
4401         // instructions do not read or write EFLAGS.
4402         if (!Movr0Inst && Inst.getOpcode() == X86::MOV32r0 &&
4403             Inst.registerDefIsDead(X86::EFLAGS, TRI)) {
4404           Movr0Inst = &Inst;
4405           continue;
4406         }
4407 
4408         // Cannot do anything for any other EFLAG changes.
4409         return false;
4410       }
4411     }
4412 
4413     if (MI || Sub)
4414       break;
4415 
4416     // Reached begin of basic block. Continue in predecessor if there is
4417     // exactly one.
4418     if (MBB->pred_size() != 1)
4419       return false;
4420     MBB = *MBB->pred_begin();
4421     From = MBB->rbegin();
4422   }
4423 
4424   // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
4425   // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
4426   // If we are done with the basic block, we need to check whether EFLAGS is
4427   // live-out.
4428   bool FlagsMayLiveOut = true;
4429   SmallVector<std::pair<MachineInstr*, X86::CondCode>, 4> OpsToUpdate;
4430   MachineBasicBlock::iterator AfterCmpInstr =
4431       std::next(MachineBasicBlock::iterator(CmpInstr));
4432   for (MachineInstr &Instr : make_range(AfterCmpInstr, CmpMBB.end())) {
4433     bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
4434     bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
4435     // We should check the usage if this instruction uses and updates EFLAGS.
4436     if (!UseEFLAGS && ModifyEFLAGS) {
4437       // It is safe to remove CmpInstr if EFLAGS is updated again.
4438       FlagsMayLiveOut = false;
4439       break;
4440     }
4441     if (!UseEFLAGS && !ModifyEFLAGS)
4442       continue;
4443 
4444     // EFLAGS is used by this instruction.
4445     X86::CondCode OldCC = X86::COND_INVALID;
4446     if (MI || IsSwapped || ImmDelta != 0) {
4447       // We decode the condition code from opcode.
4448       if (Instr.isBranch())
4449         OldCC = X86::getCondFromBranch(Instr);
4450       else {
4451         OldCC = X86::getCondFromSETCC(Instr);
4452         if (OldCC == X86::COND_INVALID)
4453           OldCC = X86::getCondFromCMov(Instr);
4454       }
4455       if (OldCC == X86::COND_INVALID) return false;
4456     }
4457     X86::CondCode ReplacementCC = X86::COND_INVALID;
4458     if (MI) {
4459       switch (OldCC) {
4460       default: break;
4461       case X86::COND_A: case X86::COND_AE:
4462       case X86::COND_B: case X86::COND_BE:
4463         // CF is used, we can't perform this optimization.
4464         return false;
4465       case X86::COND_G: case X86::COND_GE:
4466       case X86::COND_L: case X86::COND_LE:
4467         // If SF is used, but the instruction doesn't update the SF, then we
4468         // can't do the optimization.
4469         if (NoSignFlag)
4470           return false;
4471         LLVM_FALLTHROUGH;
4472       case X86::COND_O: case X86::COND_NO:
4473         // If OF is used, the instruction needs to clear it like CmpZero does.
4474         if (!ClearsOverflowFlag)
4475           return false;
4476         break;
4477       case X86::COND_S: case X86::COND_NS:
4478         // If SF is used, but the instruction doesn't update the SF, then we
4479         // can't do the optimization.
4480         if (NoSignFlag)
4481           return false;
4482         break;
4483       }
4484 
4485       // If we're updating the condition code check if we have to reverse the
4486       // condition.
4487       if (ShouldUpdateCC)
4488         switch (OldCC) {
4489         default:
4490           return false;
4491         case X86::COND_E:
4492           ReplacementCC = NewCC;
4493           break;
4494         case X86::COND_NE:
4495           ReplacementCC = GetOppositeBranchCondition(NewCC);
4496           break;
4497         }
4498     } else if (IsSwapped) {
4499       // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
4500       // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
4501       // We swap the condition code and synthesize the new opcode.
4502       ReplacementCC = getSwappedCondition(OldCC);
4503       if (ReplacementCC == X86::COND_INVALID)
4504         return false;
4505       ShouldUpdateCC = true;
4506     } else if (ImmDelta != 0) {
4507       unsigned BitWidth = TRI->getRegSizeInBits(*MRI->getRegClass(SrcReg));
4508       // Shift amount for min/max constants to adjust for 8/16/32 instruction
4509       // sizes.
4510       switch (OldCC) {
4511       case X86::COND_L: // x <s (C + 1)  -->  x <=s C
4512         if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
4513           return false;
4514         ReplacementCC = X86::COND_LE;
4515         break;
4516       case X86::COND_B: // x <u (C + 1)  -->  x <=u C
4517         if (ImmDelta != 1 || CmpValue == 0)
4518           return false;
4519         ReplacementCC = X86::COND_BE;
4520         break;
4521       case X86::COND_GE: // x >=s (C + 1)  -->  x >s C
4522         if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
4523           return false;
4524         ReplacementCC = X86::COND_G;
4525         break;
4526       case X86::COND_AE: // x >=u (C + 1)  -->  x >u C
4527         if (ImmDelta != 1 || CmpValue == 0)
4528           return false;
4529         ReplacementCC = X86::COND_A;
4530         break;
4531       case X86::COND_G: // x >s (C - 1)  -->  x >=s C
4532         if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
4533           return false;
4534         ReplacementCC = X86::COND_GE;
4535         break;
4536       case X86::COND_A: // x >u (C - 1)  -->  x >=u C
4537         if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
4538           return false;
4539         ReplacementCC = X86::COND_AE;
4540         break;
4541       case X86::COND_LE: // x <=s (C - 1)  -->  x <s C
4542         if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
4543           return false;
4544         ReplacementCC = X86::COND_L;
4545         break;
4546       case X86::COND_BE: // x <=u (C - 1)  -->  x <u C
4547         if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
4548           return false;
4549         ReplacementCC = X86::COND_B;
4550         break;
4551       default:
4552         return false;
4553       }
4554       ShouldUpdateCC = true;
4555     }
4556 
4557     if (ShouldUpdateCC && ReplacementCC != OldCC) {
4558       // Push the MachineInstr to OpsToUpdate.
4559       // If it is safe to remove CmpInstr, the condition code of these
4560       // instructions will be modified.
4561       OpsToUpdate.push_back(std::make_pair(&Instr, ReplacementCC));
4562     }
4563     if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
4564       // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
4565       FlagsMayLiveOut = false;
4566       break;
4567     }
4568   }
4569 
4570   // If we have to update users but EFLAGS is live-out abort, since we cannot
4571   // easily find all of the users.
4572   if ((MI != nullptr || ShouldUpdateCC) && FlagsMayLiveOut) {
4573     for (MachineBasicBlock *Successor : CmpMBB.successors())
4574       if (Successor->isLiveIn(X86::EFLAGS))
4575         return false;
4576   }
4577 
4578   // The instruction to be updated is either Sub or MI.
4579   assert((MI == nullptr || Sub == nullptr) && "Should not have Sub and MI set");
4580   Sub = MI != nullptr ? MI : Sub;
4581   MachineBasicBlock *SubBB = Sub->getParent();
4582   // Move Movr0Inst to the appropriate place before Sub.
4583   if (Movr0Inst) {
4584     // Only move within the same block so we don't accidentally move to a
4585     // block with higher execution frequency.
4586     if (&CmpMBB != SubBB)
4587       return false;
4588     // Look backwards until we find a def that doesn't use the current EFLAGS.
4589     MachineBasicBlock::reverse_iterator InsertI = Sub,
4590                                         InsertE = Sub->getParent()->rend();
4591     for (; InsertI != InsertE; ++InsertI) {
4592       MachineInstr *Instr = &*InsertI;
4593       if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
4594           Instr->modifiesRegister(X86::EFLAGS, TRI)) {
4595         Movr0Inst->getParent()->remove(Movr0Inst);
4596         Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
4597                                    Movr0Inst);
4598         break;
4599       }
4600     }
4601     if (InsertI == InsertE)
4602       return false;
4603   }
4604 
4605   // Make sure Sub instruction defines EFLAGS and mark the def live.
4606   MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS);
4607   assert(FlagDef && "Unable to locate a def EFLAGS operand");
4608   FlagDef->setIsDead(false);
4609 
4610   CmpInstr.eraseFromParent();
4611 
4612   // Modify the condition code of instructions in OpsToUpdate.
4613   for (auto &Op : OpsToUpdate) {
4614     Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1)
4615         .setImm(Op.second);
4616   }
4617   // Add EFLAGS to block live-ins between CmpBB and block of flags producer.
4618   for (MachineBasicBlock *MBB = &CmpMBB; MBB != SubBB;
4619        MBB = *MBB->pred_begin()) {
4620     assert(MBB->pred_size() == 1 && "Expected exactly one predecessor");
4621     if (!MBB->isLiveIn(X86::EFLAGS))
4622       MBB->addLiveIn(X86::EFLAGS);
4623   }
4624   return true;
4625 }
4626 
4627 /// Try to remove the load by folding it to a register
4628 /// operand at the use. We fold the load instructions if load defines a virtual
4629 /// register, the virtual register is used once in the same BB, and the
4630 /// instructions in-between do not load or store, and have no side effects.
4631 MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
4632                                               const MachineRegisterInfo *MRI,
4633                                               Register &FoldAsLoadDefReg,
4634                                               MachineInstr *&DefMI) const {
4635   // Check whether we can move DefMI here.
4636   DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
4637   assert(DefMI);
4638   bool SawStore = false;
4639   if (!DefMI->isSafeToMove(nullptr, SawStore))
4640     return nullptr;
4641 
4642   // Collect information about virtual register operands of MI.
4643   SmallVector<unsigned, 1> SrcOperandIds;
4644   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
4645     MachineOperand &MO = MI.getOperand(i);
4646     if (!MO.isReg())
4647       continue;
4648     Register Reg = MO.getReg();
4649     if (Reg != FoldAsLoadDefReg)
4650       continue;
4651     // Do not fold if we have a subreg use or a def.
4652     if (MO.getSubReg() || MO.isDef())
4653       return nullptr;
4654     SrcOperandIds.push_back(i);
4655   }
4656   if (SrcOperandIds.empty())
4657     return nullptr;
4658 
4659   // Check whether we can fold the def into SrcOperandId.
4660   if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
4661     FoldAsLoadDefReg = 0;
4662     return FoldMI;
4663   }
4664 
4665   return nullptr;
4666 }
4667 
4668 /// Expand a single-def pseudo instruction to a two-addr
4669 /// instruction with two undef reads of the register being defined.
4670 /// This is used for mapping:
4671 ///   %xmm4 = V_SET0
4672 /// to:
4673 ///   %xmm4 = PXORrr undef %xmm4, undef %xmm4
4674 ///
4675 static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
4676                              const MCInstrDesc &Desc) {
4677   assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
4678   Register Reg = MIB.getReg(0);
4679   MIB->setDesc(Desc);
4680 
4681   // MachineInstr::addOperand() will insert explicit operands before any
4682   // implicit operands.
4683   MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
4684   // But we don't trust that.
4685   assert(MIB.getReg(1) == Reg &&
4686          MIB.getReg(2) == Reg && "Misplaced operand");
4687   return true;
4688 }
4689 
4690 /// Expand a single-def pseudo instruction to a two-addr
4691 /// instruction with two %k0 reads.
4692 /// This is used for mapping:
4693 ///   %k4 = K_SET1
4694 /// to:
4695 ///   %k4 = KXNORrr %k0, %k0
4696 static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc,
4697                             Register Reg) {
4698   assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
4699   MIB->setDesc(Desc);
4700   MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
4701   return true;
4702 }
4703 
4704 static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
4705                           bool MinusOne) {
4706   MachineBasicBlock &MBB = *MIB->getParent();
4707   const DebugLoc &DL = MIB->getDebugLoc();
4708   Register Reg = MIB.getReg(0);
4709 
4710   // Insert the XOR.
4711   BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
4712       .addReg(Reg, RegState::Undef)
4713       .addReg(Reg, RegState::Undef);
4714 
4715   // Turn the pseudo into an INC or DEC.
4716   MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
4717   MIB.addReg(Reg);
4718 
4719   return true;
4720 }
4721 
4722 static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
4723                                const TargetInstrInfo &TII,
4724                                const X86Subtarget &Subtarget) {
4725   MachineBasicBlock &MBB = *MIB->getParent();
4726   const DebugLoc &DL = MIB->getDebugLoc();
4727   int64_t Imm = MIB->getOperand(1).getImm();
4728   assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
4729   MachineBasicBlock::iterator I = MIB.getInstr();
4730 
4731   int StackAdjustment;
4732 
4733   if (Subtarget.is64Bit()) {
4734     assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
4735            MIB->getOpcode() == X86::MOV32ImmSExti8);
4736 
4737     // Can't use push/pop lowering if the function might write to the red zone.
4738     X86MachineFunctionInfo *X86FI =
4739         MBB.getParent()->getInfo<X86MachineFunctionInfo>();
4740     if (X86FI->getUsesRedZone()) {
4741       MIB->setDesc(TII.get(MIB->getOpcode() ==
4742                            X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri));
4743       return true;
4744     }
4745 
4746     // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
4747     // widen the register if necessary.
4748     StackAdjustment = 8;
4749     BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm);
4750     MIB->setDesc(TII.get(X86::POP64r));
4751     MIB->getOperand(0)
4752         .setReg(getX86SubSuperRegister(MIB.getReg(0), 64));
4753   } else {
4754     assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
4755     StackAdjustment = 4;
4756     BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm);
4757     MIB->setDesc(TII.get(X86::POP32r));
4758   }
4759   MIB->removeOperand(1);
4760   MIB->addImplicitDefUseOperands(*MBB.getParent());
4761 
4762   // Build CFI if necessary.
4763   MachineFunction &MF = *MBB.getParent();
4764   const X86FrameLowering *TFL = Subtarget.getFrameLowering();
4765   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
4766   bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
4767   bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
4768   if (EmitCFI) {
4769     TFL->BuildCFI(MBB, I, DL,
4770         MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
4771     TFL->BuildCFI(MBB, std::next(I), DL,
4772         MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
4773   }
4774 
4775   return true;
4776 }
4777 
4778 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different
4779 // code sequence is needed for other targets.
4780 static void expandLoadStackGuard(MachineInstrBuilder &MIB,
4781                                  const TargetInstrInfo &TII) {
4782   MachineBasicBlock &MBB = *MIB->getParent();
4783   const DebugLoc &DL = MIB->getDebugLoc();
4784   Register Reg = MIB.getReg(0);
4785   const GlobalValue *GV =
4786       cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
4787   auto Flags = MachineMemOperand::MOLoad |
4788                MachineMemOperand::MODereferenceable |
4789                MachineMemOperand::MOInvariant;
4790   MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4791       MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, Align(8));
4792   MachineBasicBlock::iterator I = MIB.getInstr();
4793 
4794   BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
4795       .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
4796       .addMemOperand(MMO);
4797   MIB->setDebugLoc(DL);
4798   MIB->setDesc(TII.get(X86::MOV64rm));
4799   MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
4800 }
4801 
4802 static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) {
4803   MachineBasicBlock &MBB = *MIB->getParent();
4804   MachineFunction &MF = *MBB.getParent();
4805   const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
4806   const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
4807   unsigned XorOp =
4808       MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
4809   MIB->setDesc(TII.get(XorOp));
4810   MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
4811   return true;
4812 }
4813 
4814 // This is used to handle spills for 128/256-bit registers when we have AVX512,
4815 // but not VLX. If it uses an extended register we need to use an instruction
4816 // that loads the lower 128/256-bit, but is available with only AVX512F.
4817 static bool expandNOVLXLoad(MachineInstrBuilder &MIB,
4818                             const TargetRegisterInfo *TRI,
4819                             const MCInstrDesc &LoadDesc,
4820                             const MCInstrDesc &BroadcastDesc,
4821                             unsigned SubIdx) {
4822   Register DestReg = MIB.getReg(0);
4823   // Check if DestReg is XMM16-31 or YMM16-31.
4824   if (TRI->getEncodingValue(DestReg) < 16) {
4825     // We can use a normal VEX encoded load.
4826     MIB->setDesc(LoadDesc);
4827   } else {
4828     // Use a 128/256-bit VBROADCAST instruction.
4829     MIB->setDesc(BroadcastDesc);
4830     // Change the destination to a 512-bit register.
4831     DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
4832     MIB->getOperand(0).setReg(DestReg);
4833   }
4834   return true;
4835 }
4836 
4837 // This is used to handle spills for 128/256-bit registers when we have AVX512,
4838 // but not VLX. If it uses an extended register we need to use an instruction
4839 // that stores the lower 128/256-bit, but is available with only AVX512F.
4840 static bool expandNOVLXStore(MachineInstrBuilder &MIB,
4841                              const TargetRegisterInfo *TRI,
4842                              const MCInstrDesc &StoreDesc,
4843                              const MCInstrDesc &ExtractDesc,
4844                              unsigned SubIdx) {
4845   Register SrcReg = MIB.getReg(X86::AddrNumOperands);
4846   // Check if DestReg is XMM16-31 or YMM16-31.
4847   if (TRI->getEncodingValue(SrcReg) < 16) {
4848     // We can use a normal VEX encoded store.
4849     MIB->setDesc(StoreDesc);
4850   } else {
4851     // Use a VEXTRACTF instruction.
4852     MIB->setDesc(ExtractDesc);
4853     // Change the destination to a 512-bit register.
4854     SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
4855     MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg);
4856     MIB.addImm(0x0); // Append immediate to extract from the lower bits.
4857   }
4858 
4859   return true;
4860 }
4861 
4862 static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) {
4863   MIB->setDesc(Desc);
4864   int64_t ShiftAmt = MIB->getOperand(2).getImm();
4865   // Temporarily remove the immediate so we can add another source register.
4866   MIB->removeOperand(2);
4867   // Add the register. Don't copy the kill flag if there is one.
4868   MIB.addReg(MIB.getReg(1),
4869              getUndefRegState(MIB->getOperand(1).isUndef()));
4870   // Add back the immediate.
4871   MIB.addImm(ShiftAmt);
4872   return true;
4873 }
4874 
4875 bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
4876   bool HasAVX = Subtarget.hasAVX();
4877   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4878   switch (MI.getOpcode()) {
4879   case X86::MOV32r0:
4880     return Expand2AddrUndef(MIB, get(X86::XOR32rr));
4881   case X86::MOV32r1:
4882     return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
4883   case X86::MOV32r_1:
4884     return expandMOV32r1(MIB, *this, /*MinusOne=*/ true);
4885   case X86::MOV32ImmSExti8:
4886   case X86::MOV64ImmSExti8:
4887     return ExpandMOVImmSExti8(MIB, *this, Subtarget);
4888   case X86::SETB_C32r:
4889     return Expand2AddrUndef(MIB, get(X86::SBB32rr));
4890   case X86::SETB_C64r:
4891     return Expand2AddrUndef(MIB, get(X86::SBB64rr));
4892   case X86::MMX_SET0:
4893     return Expand2AddrUndef(MIB, get(X86::MMX_PXORrr));
4894   case X86::V_SET0:
4895   case X86::FsFLD0SS:
4896   case X86::FsFLD0SD:
4897   case X86::FsFLD0SH:
4898   case X86::FsFLD0F128:
4899     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
4900   case X86::AVX_SET0: {
4901     assert(HasAVX && "AVX not supported");
4902     const TargetRegisterInfo *TRI = &getRegisterInfo();
4903     Register SrcReg = MIB.getReg(0);
4904     Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4905     MIB->getOperand(0).setReg(XReg);
4906     Expand2AddrUndef(MIB, get(X86::VXORPSrr));
4907     MIB.addReg(SrcReg, RegState::ImplicitDefine);
4908     return true;
4909   }
4910   case X86::AVX512_128_SET0:
4911   case X86::AVX512_FsFLD0SH:
4912   case X86::AVX512_FsFLD0SS:
4913   case X86::AVX512_FsFLD0SD:
4914   case X86::AVX512_FsFLD0F128: {
4915     bool HasVLX = Subtarget.hasVLX();
4916     Register SrcReg = MIB.getReg(0);
4917     const TargetRegisterInfo *TRI = &getRegisterInfo();
4918     if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
4919       return Expand2AddrUndef(MIB,
4920                               get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4921     // Extended register without VLX. Use a larger XOR.
4922     SrcReg =
4923         TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
4924     MIB->getOperand(0).setReg(SrcReg);
4925     return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4926   }
4927   case X86::AVX512_256_SET0:
4928   case X86::AVX512_512_SET0: {
4929     bool HasVLX = Subtarget.hasVLX();
4930     Register SrcReg = MIB.getReg(0);
4931     const TargetRegisterInfo *TRI = &getRegisterInfo();
4932     if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
4933       Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4934       MIB->getOperand(0).setReg(XReg);
4935       Expand2AddrUndef(MIB,
4936                        get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4937       MIB.addReg(SrcReg, RegState::ImplicitDefine);
4938       return true;
4939     }
4940     if (MI.getOpcode() == X86::AVX512_256_SET0) {
4941       // No VLX so we must reference a zmm.
4942       unsigned ZReg =
4943         TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
4944       MIB->getOperand(0).setReg(ZReg);
4945     }
4946     return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4947   }
4948   case X86::V_SETALLONES:
4949     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
4950   case X86::AVX2_SETALLONES:
4951     return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
4952   case X86::AVX1_SETALLONES: {
4953     Register Reg = MIB.getReg(0);
4954     // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
4955     MIB->setDesc(get(X86::VCMPPSYrri));
4956     MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
4957     return true;
4958   }
4959   case X86::AVX512_512_SETALLONES: {
4960     Register Reg = MIB.getReg(0);
4961     MIB->setDesc(get(X86::VPTERNLOGDZrri));
4962     // VPTERNLOGD needs 3 register inputs and an immediate.
4963     // 0xff will return 1s for any input.
4964     MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef)
4965        .addReg(Reg, RegState::Undef).addImm(0xff);
4966     return true;
4967   }
4968   case X86::AVX512_512_SEXT_MASK_32:
4969   case X86::AVX512_512_SEXT_MASK_64: {
4970     Register Reg = MIB.getReg(0);
4971     Register MaskReg = MIB.getReg(1);
4972     unsigned MaskState = getRegState(MIB->getOperand(1));
4973     unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ?
4974                    X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz;
4975     MI.removeOperand(1);
4976     MIB->setDesc(get(Opc));
4977     // VPTERNLOG needs 3 register inputs and an immediate.
4978     // 0xff will return 1s for any input.
4979     MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState)
4980        .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff);
4981     return true;
4982   }
4983   case X86::VMOVAPSZ128rm_NOVLX:
4984     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
4985                            get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4986   case X86::VMOVUPSZ128rm_NOVLX:
4987     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
4988                            get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4989   case X86::VMOVAPSZ256rm_NOVLX:
4990     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
4991                            get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4992   case X86::VMOVUPSZ256rm_NOVLX:
4993     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
4994                            get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4995   case X86::VMOVAPSZ128mr_NOVLX:
4996     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
4997                             get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4998   case X86::VMOVUPSZ128mr_NOVLX:
4999     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
5000                             get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
5001   case X86::VMOVAPSZ256mr_NOVLX:
5002     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
5003                             get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
5004   case X86::VMOVUPSZ256mr_NOVLX:
5005     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
5006                             get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
5007   case X86::MOV32ri64: {
5008     Register Reg = MIB.getReg(0);
5009     Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit);
5010     MI.setDesc(get(X86::MOV32ri));
5011     MIB->getOperand(0).setReg(Reg32);
5012     MIB.addReg(Reg, RegState::ImplicitDefine);
5013     return true;
5014   }
5015 
5016   // KNL does not recognize dependency-breaking idioms for mask registers,
5017   // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
5018   // Using %k0 as the undef input register is a performance heuristic based
5019   // on the assumption that %k0 is used less frequently than the other mask
5020   // registers, since it is not usable as a write mask.
5021   // FIXME: A more advanced approach would be to choose the best input mask
5022   // register based on context.
5023   case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
5024   case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
5025   case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
5026   case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
5027   case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
5028   case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
5029   case TargetOpcode::LOAD_STACK_GUARD:
5030     expandLoadStackGuard(MIB, *this);
5031     return true;
5032   case X86::XOR64_FP:
5033   case X86::XOR32_FP:
5034     return expandXorFP(MIB, *this);
5035   case X86::SHLDROT32ri: return expandSHXDROT(MIB, get(X86::SHLD32rri8));
5036   case X86::SHLDROT64ri: return expandSHXDROT(MIB, get(X86::SHLD64rri8));
5037   case X86::SHRDROT32ri: return expandSHXDROT(MIB, get(X86::SHRD32rri8));
5038   case X86::SHRDROT64ri: return expandSHXDROT(MIB, get(X86::SHRD64rri8));
5039   case X86::ADD8rr_DB:    MIB->setDesc(get(X86::OR8rr));    break;
5040   case X86::ADD16rr_DB:   MIB->setDesc(get(X86::OR16rr));   break;
5041   case X86::ADD32rr_DB:   MIB->setDesc(get(X86::OR32rr));   break;
5042   case X86::ADD64rr_DB:   MIB->setDesc(get(X86::OR64rr));   break;
5043   case X86::ADD8ri_DB:    MIB->setDesc(get(X86::OR8ri));    break;
5044   case X86::ADD16ri_DB:   MIB->setDesc(get(X86::OR16ri));   break;
5045   case X86::ADD32ri_DB:   MIB->setDesc(get(X86::OR32ri));   break;
5046   case X86::ADD64ri32_DB: MIB->setDesc(get(X86::OR64ri32)); break;
5047   case X86::ADD16ri8_DB:  MIB->setDesc(get(X86::OR16ri8));  break;
5048   case X86::ADD32ri8_DB:  MIB->setDesc(get(X86::OR32ri8));  break;
5049   case X86::ADD64ri8_DB:  MIB->setDesc(get(X86::OR64ri8));  break;
5050   }
5051   return false;
5052 }
5053 
5054 /// Return true for all instructions that only update
5055 /// the first 32 or 64-bits of the destination register and leave the rest
5056 /// unmodified. This can be used to avoid folding loads if the instructions
5057 /// only update part of the destination register, and the non-updated part is
5058 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
5059 /// instructions breaks the partial register dependency and it can improve
5060 /// performance. e.g.:
5061 ///
5062 ///   movss (%rdi), %xmm0
5063 ///   cvtss2sd %xmm0, %xmm0
5064 ///
5065 /// Instead of
5066 ///   cvtss2sd (%rdi), %xmm0
5067 ///
5068 /// FIXME: This should be turned into a TSFlags.
5069 ///
5070 static bool hasPartialRegUpdate(unsigned Opcode,
5071                                 const X86Subtarget &Subtarget,
5072                                 bool ForLoadFold = false) {
5073   switch (Opcode) {
5074   case X86::CVTSI2SSrr:
5075   case X86::CVTSI2SSrm:
5076   case X86::CVTSI642SSrr:
5077   case X86::CVTSI642SSrm:
5078   case X86::CVTSI2SDrr:
5079   case X86::CVTSI2SDrm:
5080   case X86::CVTSI642SDrr:
5081   case X86::CVTSI642SDrm:
5082     // Load folding won't effect the undef register update since the input is
5083     // a GPR.
5084     return !ForLoadFold;
5085   case X86::CVTSD2SSrr:
5086   case X86::CVTSD2SSrm:
5087   case X86::CVTSS2SDrr:
5088   case X86::CVTSS2SDrm:
5089   case X86::MOVHPDrm:
5090   case X86::MOVHPSrm:
5091   case X86::MOVLPDrm:
5092   case X86::MOVLPSrm:
5093   case X86::RCPSSr:
5094   case X86::RCPSSm:
5095   case X86::RCPSSr_Int:
5096   case X86::RCPSSm_Int:
5097   case X86::ROUNDSDr:
5098   case X86::ROUNDSDm:
5099   case X86::ROUNDSSr:
5100   case X86::ROUNDSSm:
5101   case X86::RSQRTSSr:
5102   case X86::RSQRTSSm:
5103   case X86::RSQRTSSr_Int:
5104   case X86::RSQRTSSm_Int:
5105   case X86::SQRTSSr:
5106   case X86::SQRTSSm:
5107   case X86::SQRTSSr_Int:
5108   case X86::SQRTSSm_Int:
5109   case X86::SQRTSDr:
5110   case X86::SQRTSDm:
5111   case X86::SQRTSDr_Int:
5112   case X86::SQRTSDm_Int:
5113     return true;
5114   case X86::VFCMULCPHZ128rm:
5115   case X86::VFCMULCPHZ128rmb:
5116   case X86::VFCMULCPHZ128rmbkz:
5117   case X86::VFCMULCPHZ128rmkz:
5118   case X86::VFCMULCPHZ128rr:
5119   case X86::VFCMULCPHZ128rrkz:
5120   case X86::VFCMULCPHZ256rm:
5121   case X86::VFCMULCPHZ256rmb:
5122   case X86::VFCMULCPHZ256rmbkz:
5123   case X86::VFCMULCPHZ256rmkz:
5124   case X86::VFCMULCPHZ256rr:
5125   case X86::VFCMULCPHZ256rrkz:
5126   case X86::VFCMULCPHZrm:
5127   case X86::VFCMULCPHZrmb:
5128   case X86::VFCMULCPHZrmbkz:
5129   case X86::VFCMULCPHZrmkz:
5130   case X86::VFCMULCPHZrr:
5131   case X86::VFCMULCPHZrrb:
5132   case X86::VFCMULCPHZrrbkz:
5133   case X86::VFCMULCPHZrrkz:
5134   case X86::VFMULCPHZ128rm:
5135   case X86::VFMULCPHZ128rmb:
5136   case X86::VFMULCPHZ128rmbkz:
5137   case X86::VFMULCPHZ128rmkz:
5138   case X86::VFMULCPHZ128rr:
5139   case X86::VFMULCPHZ128rrkz:
5140   case X86::VFMULCPHZ256rm:
5141   case X86::VFMULCPHZ256rmb:
5142   case X86::VFMULCPHZ256rmbkz:
5143   case X86::VFMULCPHZ256rmkz:
5144   case X86::VFMULCPHZ256rr:
5145   case X86::VFMULCPHZ256rrkz:
5146   case X86::VFMULCPHZrm:
5147   case X86::VFMULCPHZrmb:
5148   case X86::VFMULCPHZrmbkz:
5149   case X86::VFMULCPHZrmkz:
5150   case X86::VFMULCPHZrr:
5151   case X86::VFMULCPHZrrb:
5152   case X86::VFMULCPHZrrbkz:
5153   case X86::VFMULCPHZrrkz:
5154   case X86::VFCMULCSHZrm:
5155   case X86::VFCMULCSHZrmkz:
5156   case X86::VFCMULCSHZrr:
5157   case X86::VFCMULCSHZrrb:
5158   case X86::VFCMULCSHZrrbkz:
5159   case X86::VFCMULCSHZrrkz:
5160   case X86::VFMULCSHZrm:
5161   case X86::VFMULCSHZrmkz:
5162   case X86::VFMULCSHZrr:
5163   case X86::VFMULCSHZrrb:
5164   case X86::VFMULCSHZrrbkz:
5165   case X86::VFMULCSHZrrkz:
5166     return Subtarget.hasMULCFalseDeps();
5167   case X86::VPERMDYrm:
5168   case X86::VPERMDYrr:
5169   case X86::VPERMQYmi:
5170   case X86::VPERMQYri:
5171   case X86::VPERMPSYrm:
5172   case X86::VPERMPSYrr:
5173   case X86::VPERMPDYmi:
5174   case X86::VPERMPDYri:
5175   case X86::VPERMDZ256rm:
5176   case X86::VPERMDZ256rmb:
5177   case X86::VPERMDZ256rmbkz:
5178   case X86::VPERMDZ256rmkz:
5179   case X86::VPERMDZ256rr:
5180   case X86::VPERMDZ256rrkz:
5181   case X86::VPERMDZrm:
5182   case X86::VPERMDZrmb:
5183   case X86::VPERMDZrmbkz:
5184   case X86::VPERMDZrmkz:
5185   case X86::VPERMDZrr:
5186   case X86::VPERMDZrrkz:
5187   case X86::VPERMQZ256mbi:
5188   case X86::VPERMQZ256mbikz:
5189   case X86::VPERMQZ256mi:
5190   case X86::VPERMQZ256mikz:
5191   case X86::VPERMQZ256ri:
5192   case X86::VPERMQZ256rikz:
5193   case X86::VPERMQZ256rm:
5194   case X86::VPERMQZ256rmb:
5195   case X86::VPERMQZ256rmbkz:
5196   case X86::VPERMQZ256rmkz:
5197   case X86::VPERMQZ256rr:
5198   case X86::VPERMQZ256rrkz:
5199   case X86::VPERMQZmbi:
5200   case X86::VPERMQZmbikz:
5201   case X86::VPERMQZmi:
5202   case X86::VPERMQZmikz:
5203   case X86::VPERMQZri:
5204   case X86::VPERMQZrikz:
5205   case X86::VPERMQZrm:
5206   case X86::VPERMQZrmb:
5207   case X86::VPERMQZrmbkz:
5208   case X86::VPERMQZrmkz:
5209   case X86::VPERMQZrr:
5210   case X86::VPERMQZrrkz:
5211   case X86::VPERMPSZ256rm:
5212   case X86::VPERMPSZ256rmb:
5213   case X86::VPERMPSZ256rmbkz:
5214   case X86::VPERMPSZ256rmkz:
5215   case X86::VPERMPSZ256rr:
5216   case X86::VPERMPSZ256rrkz:
5217   case X86::VPERMPSZrm:
5218   case X86::VPERMPSZrmb:
5219   case X86::VPERMPSZrmbkz:
5220   case X86::VPERMPSZrmkz:
5221   case X86::VPERMPSZrr:
5222   case X86::VPERMPSZrrkz:
5223   case X86::VPERMPDZ256mbi:
5224   case X86::VPERMPDZ256mbikz:
5225   case X86::VPERMPDZ256mi:
5226   case X86::VPERMPDZ256mikz:
5227   case X86::VPERMPDZ256ri:
5228   case X86::VPERMPDZ256rikz:
5229   case X86::VPERMPDZ256rm:
5230   case X86::VPERMPDZ256rmb:
5231   case X86::VPERMPDZ256rmbkz:
5232   case X86::VPERMPDZ256rmkz:
5233   case X86::VPERMPDZ256rr:
5234   case X86::VPERMPDZ256rrkz:
5235   case X86::VPERMPDZmbi:
5236   case X86::VPERMPDZmbikz:
5237   case X86::VPERMPDZmi:
5238   case X86::VPERMPDZmikz:
5239   case X86::VPERMPDZri:
5240   case X86::VPERMPDZrikz:
5241   case X86::VPERMPDZrm:
5242   case X86::VPERMPDZrmb:
5243   case X86::VPERMPDZrmbkz:
5244   case X86::VPERMPDZrmkz:
5245   case X86::VPERMPDZrr:
5246   case X86::VPERMPDZrrkz:
5247     return Subtarget.hasPERMFalseDeps();
5248   case X86::VRANGEPDZ128rmbi:
5249   case X86::VRANGEPDZ128rmbikz:
5250   case X86::VRANGEPDZ128rmi:
5251   case X86::VRANGEPDZ128rmikz:
5252   case X86::VRANGEPDZ128rri:
5253   case X86::VRANGEPDZ128rrikz:
5254   case X86::VRANGEPDZ256rmbi:
5255   case X86::VRANGEPDZ256rmbikz:
5256   case X86::VRANGEPDZ256rmi:
5257   case X86::VRANGEPDZ256rmikz:
5258   case X86::VRANGEPDZ256rri:
5259   case X86::VRANGEPDZ256rrikz:
5260   case X86::VRANGEPDZrmbi:
5261   case X86::VRANGEPDZrmbikz:
5262   case X86::VRANGEPDZrmi:
5263   case X86::VRANGEPDZrmikz:
5264   case X86::VRANGEPDZrri:
5265   case X86::VRANGEPDZrrib:
5266   case X86::VRANGEPDZrribkz:
5267   case X86::VRANGEPDZrrikz:
5268   case X86::VRANGEPSZ128rmbi:
5269   case X86::VRANGEPSZ128rmbikz:
5270   case X86::VRANGEPSZ128rmi:
5271   case X86::VRANGEPSZ128rmikz:
5272   case X86::VRANGEPSZ128rri:
5273   case X86::VRANGEPSZ128rrikz:
5274   case X86::VRANGEPSZ256rmbi:
5275   case X86::VRANGEPSZ256rmbikz:
5276   case X86::VRANGEPSZ256rmi:
5277   case X86::VRANGEPSZ256rmikz:
5278   case X86::VRANGEPSZ256rri:
5279   case X86::VRANGEPSZ256rrikz:
5280   case X86::VRANGEPSZrmbi:
5281   case X86::VRANGEPSZrmbikz:
5282   case X86::VRANGEPSZrmi:
5283   case X86::VRANGEPSZrmikz:
5284   case X86::VRANGEPSZrri:
5285   case X86::VRANGEPSZrrib:
5286   case X86::VRANGEPSZrribkz:
5287   case X86::VRANGEPSZrrikz:
5288   case X86::VRANGESDZrmi:
5289   case X86::VRANGESDZrmikz:
5290   case X86::VRANGESDZrri:
5291   case X86::VRANGESDZrrib:
5292   case X86::VRANGESDZrribkz:
5293   case X86::VRANGESDZrrikz:
5294   case X86::VRANGESSZrmi:
5295   case X86::VRANGESSZrmikz:
5296   case X86::VRANGESSZrri:
5297   case X86::VRANGESSZrrib:
5298   case X86::VRANGESSZrribkz:
5299   case X86::VRANGESSZrrikz:
5300     return Subtarget.hasRANGEFalseDeps();
5301   case X86::VGETMANTSSZrmi:
5302   case X86::VGETMANTSSZrmikz:
5303   case X86::VGETMANTSSZrri:
5304   case X86::VGETMANTSSZrrib:
5305   case X86::VGETMANTSSZrribkz:
5306   case X86::VGETMANTSSZrrikz:
5307   case X86::VGETMANTSDZrmi:
5308   case X86::VGETMANTSDZrmikz:
5309   case X86::VGETMANTSDZrri:
5310   case X86::VGETMANTSDZrrib:
5311   case X86::VGETMANTSDZrribkz:
5312   case X86::VGETMANTSDZrrikz:
5313   case X86::VGETMANTSHZrmi:
5314   case X86::VGETMANTSHZrmikz:
5315   case X86::VGETMANTSHZrri:
5316   case X86::VGETMANTSHZrrib:
5317   case X86::VGETMANTSHZrribkz:
5318   case X86::VGETMANTSHZrrikz:
5319   case X86::VGETMANTPSZ128rmbi:
5320   case X86::VGETMANTPSZ128rmbikz:
5321   case X86::VGETMANTPSZ128rmi:
5322   case X86::VGETMANTPSZ128rmikz:
5323   case X86::VGETMANTPSZ256rmbi:
5324   case X86::VGETMANTPSZ256rmbikz:
5325   case X86::VGETMANTPSZ256rmi:
5326   case X86::VGETMANTPSZ256rmikz:
5327   case X86::VGETMANTPSZrmbi:
5328   case X86::VGETMANTPSZrmbikz:
5329   case X86::VGETMANTPSZrmi:
5330   case X86::VGETMANTPSZrmikz:
5331   case X86::VGETMANTPDZ128rmbi:
5332   case X86::VGETMANTPDZ128rmbikz:
5333   case X86::VGETMANTPDZ128rmi:
5334   case X86::VGETMANTPDZ128rmikz:
5335   case X86::VGETMANTPDZ256rmbi:
5336   case X86::VGETMANTPDZ256rmbikz:
5337   case X86::VGETMANTPDZ256rmi:
5338   case X86::VGETMANTPDZ256rmikz:
5339   case X86::VGETMANTPDZrmbi:
5340   case X86::VGETMANTPDZrmbikz:
5341   case X86::VGETMANTPDZrmi:
5342   case X86::VGETMANTPDZrmikz:
5343     return Subtarget.hasGETMANTFalseDeps();
5344   case X86::VPMULLQZ128rm:
5345   case X86::VPMULLQZ128rmb:
5346   case X86::VPMULLQZ128rmbkz:
5347   case X86::VPMULLQZ128rmkz:
5348   case X86::VPMULLQZ128rr:
5349   case X86::VPMULLQZ128rrkz:
5350   case X86::VPMULLQZ256rm:
5351   case X86::VPMULLQZ256rmb:
5352   case X86::VPMULLQZ256rmbkz:
5353   case X86::VPMULLQZ256rmkz:
5354   case X86::VPMULLQZ256rr:
5355   case X86::VPMULLQZ256rrkz:
5356   case X86::VPMULLQZrm:
5357   case X86::VPMULLQZrmb:
5358   case X86::VPMULLQZrmbkz:
5359   case X86::VPMULLQZrmkz:
5360   case X86::VPMULLQZrr:
5361   case X86::VPMULLQZrrkz:
5362     return Subtarget.hasMULLQFalseDeps();
5363   // GPR
5364   case X86::POPCNT32rm:
5365   case X86::POPCNT32rr:
5366   case X86::POPCNT64rm:
5367   case X86::POPCNT64rr:
5368     return Subtarget.hasPOPCNTFalseDeps();
5369   case X86::LZCNT32rm:
5370   case X86::LZCNT32rr:
5371   case X86::LZCNT64rm:
5372   case X86::LZCNT64rr:
5373   case X86::TZCNT32rm:
5374   case X86::TZCNT32rr:
5375   case X86::TZCNT64rm:
5376   case X86::TZCNT64rr:
5377     return Subtarget.hasLZCNTFalseDeps();
5378   }
5379 
5380   return false;
5381 }
5382 
5383 /// Inform the BreakFalseDeps pass how many idle
5384 /// instructions we would like before a partial register update.
5385 unsigned X86InstrInfo::getPartialRegUpdateClearance(
5386     const MachineInstr &MI, unsigned OpNum,
5387     const TargetRegisterInfo *TRI) const {
5388   if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget))
5389     return 0;
5390 
5391   // If MI is marked as reading Reg, the partial register update is wanted.
5392   const MachineOperand &MO = MI.getOperand(0);
5393   Register Reg = MO.getReg();
5394   if (Reg.isVirtual()) {
5395     if (MO.readsReg() || MI.readsVirtualRegister(Reg))
5396       return 0;
5397   } else {
5398     if (MI.readsRegister(Reg, TRI))
5399       return 0;
5400   }
5401 
5402   // If any instructions in the clearance range are reading Reg, insert a
5403   // dependency breaking instruction, which is inexpensive and is likely to
5404   // be hidden in other instruction's cycles.
5405   return PartialRegUpdateClearance;
5406 }
5407 
5408 // Return true for any instruction the copies the high bits of the first source
5409 // operand into the unused high bits of the destination operand.
5410 // Also returns true for instructions that have two inputs where one may
5411 // be undef and we want it to use the same register as the other input.
5412 static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum,
5413                               bool ForLoadFold = false) {
5414   // Set the OpNum parameter to the first source operand.
5415   switch (Opcode) {
5416   case X86::MMX_PUNPCKHBWrr:
5417   case X86::MMX_PUNPCKHWDrr:
5418   case X86::MMX_PUNPCKHDQrr:
5419   case X86::MMX_PUNPCKLBWrr:
5420   case X86::MMX_PUNPCKLWDrr:
5421   case X86::MMX_PUNPCKLDQrr:
5422   case X86::MOVHLPSrr:
5423   case X86::PACKSSWBrr:
5424   case X86::PACKUSWBrr:
5425   case X86::PACKSSDWrr:
5426   case X86::PACKUSDWrr:
5427   case X86::PUNPCKHBWrr:
5428   case X86::PUNPCKLBWrr:
5429   case X86::PUNPCKHWDrr:
5430   case X86::PUNPCKLWDrr:
5431   case X86::PUNPCKHDQrr:
5432   case X86::PUNPCKLDQrr:
5433   case X86::PUNPCKHQDQrr:
5434   case X86::PUNPCKLQDQrr:
5435   case X86::SHUFPDrri:
5436   case X86::SHUFPSrri:
5437     // These instructions are sometimes used with an undef first or second
5438     // source. Return true here so BreakFalseDeps will assign this source to the
5439     // same register as the first source to avoid a false dependency.
5440     // Operand 1 of these instructions is tied so they're separate from their
5441     // VEX counterparts.
5442     return OpNum == 2 && !ForLoadFold;
5443 
5444   case X86::VMOVLHPSrr:
5445   case X86::VMOVLHPSZrr:
5446   case X86::VPACKSSWBrr:
5447   case X86::VPACKUSWBrr:
5448   case X86::VPACKSSDWrr:
5449   case X86::VPACKUSDWrr:
5450   case X86::VPACKSSWBZ128rr:
5451   case X86::VPACKUSWBZ128rr:
5452   case X86::VPACKSSDWZ128rr:
5453   case X86::VPACKUSDWZ128rr:
5454   case X86::VPERM2F128rr:
5455   case X86::VPERM2I128rr:
5456   case X86::VSHUFF32X4Z256rri:
5457   case X86::VSHUFF32X4Zrri:
5458   case X86::VSHUFF64X2Z256rri:
5459   case X86::VSHUFF64X2Zrri:
5460   case X86::VSHUFI32X4Z256rri:
5461   case X86::VSHUFI32X4Zrri:
5462   case X86::VSHUFI64X2Z256rri:
5463   case X86::VSHUFI64X2Zrri:
5464   case X86::VPUNPCKHBWrr:
5465   case X86::VPUNPCKLBWrr:
5466   case X86::VPUNPCKHBWYrr:
5467   case X86::VPUNPCKLBWYrr:
5468   case X86::VPUNPCKHBWZ128rr:
5469   case X86::VPUNPCKLBWZ128rr:
5470   case X86::VPUNPCKHBWZ256rr:
5471   case X86::VPUNPCKLBWZ256rr:
5472   case X86::VPUNPCKHBWZrr:
5473   case X86::VPUNPCKLBWZrr:
5474   case X86::VPUNPCKHWDrr:
5475   case X86::VPUNPCKLWDrr:
5476   case X86::VPUNPCKHWDYrr:
5477   case X86::VPUNPCKLWDYrr:
5478   case X86::VPUNPCKHWDZ128rr:
5479   case X86::VPUNPCKLWDZ128rr:
5480   case X86::VPUNPCKHWDZ256rr:
5481   case X86::VPUNPCKLWDZ256rr:
5482   case X86::VPUNPCKHWDZrr:
5483   case X86::VPUNPCKLWDZrr:
5484   case X86::VPUNPCKHDQrr:
5485   case X86::VPUNPCKLDQrr:
5486   case X86::VPUNPCKHDQYrr:
5487   case X86::VPUNPCKLDQYrr:
5488   case X86::VPUNPCKHDQZ128rr:
5489   case X86::VPUNPCKLDQZ128rr:
5490   case X86::VPUNPCKHDQZ256rr:
5491   case X86::VPUNPCKLDQZ256rr:
5492   case X86::VPUNPCKHDQZrr:
5493   case X86::VPUNPCKLDQZrr:
5494   case X86::VPUNPCKHQDQrr:
5495   case X86::VPUNPCKLQDQrr:
5496   case X86::VPUNPCKHQDQYrr:
5497   case X86::VPUNPCKLQDQYrr:
5498   case X86::VPUNPCKHQDQZ128rr:
5499   case X86::VPUNPCKLQDQZ128rr:
5500   case X86::VPUNPCKHQDQZ256rr:
5501   case X86::VPUNPCKLQDQZ256rr:
5502   case X86::VPUNPCKHQDQZrr:
5503   case X86::VPUNPCKLQDQZrr:
5504     // These instructions are sometimes used with an undef first or second
5505     // source. Return true here so BreakFalseDeps will assign this source to the
5506     // same register as the first source to avoid a false dependency.
5507     return (OpNum == 1 || OpNum == 2) && !ForLoadFold;
5508 
5509   case X86::VCVTSI2SSrr:
5510   case X86::VCVTSI2SSrm:
5511   case X86::VCVTSI2SSrr_Int:
5512   case X86::VCVTSI2SSrm_Int:
5513   case X86::VCVTSI642SSrr:
5514   case X86::VCVTSI642SSrm:
5515   case X86::VCVTSI642SSrr_Int:
5516   case X86::VCVTSI642SSrm_Int:
5517   case X86::VCVTSI2SDrr:
5518   case X86::VCVTSI2SDrm:
5519   case X86::VCVTSI2SDrr_Int:
5520   case X86::VCVTSI2SDrm_Int:
5521   case X86::VCVTSI642SDrr:
5522   case X86::VCVTSI642SDrm:
5523   case X86::VCVTSI642SDrr_Int:
5524   case X86::VCVTSI642SDrm_Int:
5525   // AVX-512
5526   case X86::VCVTSI2SSZrr:
5527   case X86::VCVTSI2SSZrm:
5528   case X86::VCVTSI2SSZrr_Int:
5529   case X86::VCVTSI2SSZrrb_Int:
5530   case X86::VCVTSI2SSZrm_Int:
5531   case X86::VCVTSI642SSZrr:
5532   case X86::VCVTSI642SSZrm:
5533   case X86::VCVTSI642SSZrr_Int:
5534   case X86::VCVTSI642SSZrrb_Int:
5535   case X86::VCVTSI642SSZrm_Int:
5536   case X86::VCVTSI2SDZrr:
5537   case X86::VCVTSI2SDZrm:
5538   case X86::VCVTSI2SDZrr_Int:
5539   case X86::VCVTSI2SDZrm_Int:
5540   case X86::VCVTSI642SDZrr:
5541   case X86::VCVTSI642SDZrm:
5542   case X86::VCVTSI642SDZrr_Int:
5543   case X86::VCVTSI642SDZrrb_Int:
5544   case X86::VCVTSI642SDZrm_Int:
5545   case X86::VCVTUSI2SSZrr:
5546   case X86::VCVTUSI2SSZrm:
5547   case X86::VCVTUSI2SSZrr_Int:
5548   case X86::VCVTUSI2SSZrrb_Int:
5549   case X86::VCVTUSI2SSZrm_Int:
5550   case X86::VCVTUSI642SSZrr:
5551   case X86::VCVTUSI642SSZrm:
5552   case X86::VCVTUSI642SSZrr_Int:
5553   case X86::VCVTUSI642SSZrrb_Int:
5554   case X86::VCVTUSI642SSZrm_Int:
5555   case X86::VCVTUSI2SDZrr:
5556   case X86::VCVTUSI2SDZrm:
5557   case X86::VCVTUSI2SDZrr_Int:
5558   case X86::VCVTUSI2SDZrm_Int:
5559   case X86::VCVTUSI642SDZrr:
5560   case X86::VCVTUSI642SDZrm:
5561   case X86::VCVTUSI642SDZrr_Int:
5562   case X86::VCVTUSI642SDZrrb_Int:
5563   case X86::VCVTUSI642SDZrm_Int:
5564   case X86::VCVTSI2SHZrr:
5565   case X86::VCVTSI2SHZrm:
5566   case X86::VCVTSI2SHZrr_Int:
5567   case X86::VCVTSI2SHZrrb_Int:
5568   case X86::VCVTSI2SHZrm_Int:
5569   case X86::VCVTSI642SHZrr:
5570   case X86::VCVTSI642SHZrm:
5571   case X86::VCVTSI642SHZrr_Int:
5572   case X86::VCVTSI642SHZrrb_Int:
5573   case X86::VCVTSI642SHZrm_Int:
5574   case X86::VCVTUSI2SHZrr:
5575   case X86::VCVTUSI2SHZrm:
5576   case X86::VCVTUSI2SHZrr_Int:
5577   case X86::VCVTUSI2SHZrrb_Int:
5578   case X86::VCVTUSI2SHZrm_Int:
5579   case X86::VCVTUSI642SHZrr:
5580   case X86::VCVTUSI642SHZrm:
5581   case X86::VCVTUSI642SHZrr_Int:
5582   case X86::VCVTUSI642SHZrrb_Int:
5583   case X86::VCVTUSI642SHZrm_Int:
5584     // Load folding won't effect the undef register update since the input is
5585     // a GPR.
5586     return OpNum == 1 && !ForLoadFold;
5587   case X86::VCVTSD2SSrr:
5588   case X86::VCVTSD2SSrm:
5589   case X86::VCVTSD2SSrr_Int:
5590   case X86::VCVTSD2SSrm_Int:
5591   case X86::VCVTSS2SDrr:
5592   case X86::VCVTSS2SDrm:
5593   case X86::VCVTSS2SDrr_Int:
5594   case X86::VCVTSS2SDrm_Int:
5595   case X86::VRCPSSr:
5596   case X86::VRCPSSr_Int:
5597   case X86::VRCPSSm:
5598   case X86::VRCPSSm_Int:
5599   case X86::VROUNDSDr:
5600   case X86::VROUNDSDm:
5601   case X86::VROUNDSDr_Int:
5602   case X86::VROUNDSDm_Int:
5603   case X86::VROUNDSSr:
5604   case X86::VROUNDSSm:
5605   case X86::VROUNDSSr_Int:
5606   case X86::VROUNDSSm_Int:
5607   case X86::VRSQRTSSr:
5608   case X86::VRSQRTSSr_Int:
5609   case X86::VRSQRTSSm:
5610   case X86::VRSQRTSSm_Int:
5611   case X86::VSQRTSSr:
5612   case X86::VSQRTSSr_Int:
5613   case X86::VSQRTSSm:
5614   case X86::VSQRTSSm_Int:
5615   case X86::VSQRTSDr:
5616   case X86::VSQRTSDr_Int:
5617   case X86::VSQRTSDm:
5618   case X86::VSQRTSDm_Int:
5619   // AVX-512
5620   case X86::VCVTSD2SSZrr:
5621   case X86::VCVTSD2SSZrr_Int:
5622   case X86::VCVTSD2SSZrrb_Int:
5623   case X86::VCVTSD2SSZrm:
5624   case X86::VCVTSD2SSZrm_Int:
5625   case X86::VCVTSS2SDZrr:
5626   case X86::VCVTSS2SDZrr_Int:
5627   case X86::VCVTSS2SDZrrb_Int:
5628   case X86::VCVTSS2SDZrm:
5629   case X86::VCVTSS2SDZrm_Int:
5630   case X86::VGETEXPSDZr:
5631   case X86::VGETEXPSDZrb:
5632   case X86::VGETEXPSDZm:
5633   case X86::VGETEXPSSZr:
5634   case X86::VGETEXPSSZrb:
5635   case X86::VGETEXPSSZm:
5636   case X86::VGETMANTSDZrri:
5637   case X86::VGETMANTSDZrrib:
5638   case X86::VGETMANTSDZrmi:
5639   case X86::VGETMANTSSZrri:
5640   case X86::VGETMANTSSZrrib:
5641   case X86::VGETMANTSSZrmi:
5642   case X86::VRNDSCALESDZr:
5643   case X86::VRNDSCALESDZr_Int:
5644   case X86::VRNDSCALESDZrb_Int:
5645   case X86::VRNDSCALESDZm:
5646   case X86::VRNDSCALESDZm_Int:
5647   case X86::VRNDSCALESSZr:
5648   case X86::VRNDSCALESSZr_Int:
5649   case X86::VRNDSCALESSZrb_Int:
5650   case X86::VRNDSCALESSZm:
5651   case X86::VRNDSCALESSZm_Int:
5652   case X86::VRCP14SDZrr:
5653   case X86::VRCP14SDZrm:
5654   case X86::VRCP14SSZrr:
5655   case X86::VRCP14SSZrm:
5656   case X86::VRCPSHZrr:
5657   case X86::VRCPSHZrm:
5658   case X86::VRSQRTSHZrr:
5659   case X86::VRSQRTSHZrm:
5660   case X86::VREDUCESHZrmi:
5661   case X86::VREDUCESHZrri:
5662   case X86::VREDUCESHZrrib:
5663   case X86::VGETEXPSHZr:
5664   case X86::VGETEXPSHZrb:
5665   case X86::VGETEXPSHZm:
5666   case X86::VGETMANTSHZrri:
5667   case X86::VGETMANTSHZrrib:
5668   case X86::VGETMANTSHZrmi:
5669   case X86::VRNDSCALESHZr:
5670   case X86::VRNDSCALESHZr_Int:
5671   case X86::VRNDSCALESHZrb_Int:
5672   case X86::VRNDSCALESHZm:
5673   case X86::VRNDSCALESHZm_Int:
5674   case X86::VSQRTSHZr:
5675   case X86::VSQRTSHZr_Int:
5676   case X86::VSQRTSHZrb_Int:
5677   case X86::VSQRTSHZm:
5678   case X86::VSQRTSHZm_Int:
5679   case X86::VRCP28SDZr:
5680   case X86::VRCP28SDZrb:
5681   case X86::VRCP28SDZm:
5682   case X86::VRCP28SSZr:
5683   case X86::VRCP28SSZrb:
5684   case X86::VRCP28SSZm:
5685   case X86::VREDUCESSZrmi:
5686   case X86::VREDUCESSZrri:
5687   case X86::VREDUCESSZrrib:
5688   case X86::VRSQRT14SDZrr:
5689   case X86::VRSQRT14SDZrm:
5690   case X86::VRSQRT14SSZrr:
5691   case X86::VRSQRT14SSZrm:
5692   case X86::VRSQRT28SDZr:
5693   case X86::VRSQRT28SDZrb:
5694   case X86::VRSQRT28SDZm:
5695   case X86::VRSQRT28SSZr:
5696   case X86::VRSQRT28SSZrb:
5697   case X86::VRSQRT28SSZm:
5698   case X86::VSQRTSSZr:
5699   case X86::VSQRTSSZr_Int:
5700   case X86::VSQRTSSZrb_Int:
5701   case X86::VSQRTSSZm:
5702   case X86::VSQRTSSZm_Int:
5703   case X86::VSQRTSDZr:
5704   case X86::VSQRTSDZr_Int:
5705   case X86::VSQRTSDZrb_Int:
5706   case X86::VSQRTSDZm:
5707   case X86::VSQRTSDZm_Int:
5708   case X86::VCVTSD2SHZrr:
5709   case X86::VCVTSD2SHZrr_Int:
5710   case X86::VCVTSD2SHZrrb_Int:
5711   case X86::VCVTSD2SHZrm:
5712   case X86::VCVTSD2SHZrm_Int:
5713   case X86::VCVTSS2SHZrr:
5714   case X86::VCVTSS2SHZrr_Int:
5715   case X86::VCVTSS2SHZrrb_Int:
5716   case X86::VCVTSS2SHZrm:
5717   case X86::VCVTSS2SHZrm_Int:
5718   case X86::VCVTSH2SDZrr:
5719   case X86::VCVTSH2SDZrr_Int:
5720   case X86::VCVTSH2SDZrrb_Int:
5721   case X86::VCVTSH2SDZrm:
5722   case X86::VCVTSH2SDZrm_Int:
5723   case X86::VCVTSH2SSZrr:
5724   case X86::VCVTSH2SSZrr_Int:
5725   case X86::VCVTSH2SSZrrb_Int:
5726   case X86::VCVTSH2SSZrm:
5727   case X86::VCVTSH2SSZrm_Int:
5728     return OpNum == 1;
5729   case X86::VMOVSSZrrk:
5730   case X86::VMOVSDZrrk:
5731     return OpNum == 3 && !ForLoadFold;
5732   case X86::VMOVSSZrrkz:
5733   case X86::VMOVSDZrrkz:
5734     return OpNum == 2 && !ForLoadFold;
5735   }
5736 
5737   return false;
5738 }
5739 
5740 /// Inform the BreakFalseDeps pass how many idle instructions we would like
5741 /// before certain undef register reads.
5742 ///
5743 /// This catches the VCVTSI2SD family of instructions:
5744 ///
5745 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
5746 ///
5747 /// We should to be careful *not* to catch VXOR idioms which are presumably
5748 /// handled specially in the pipeline:
5749 ///
5750 /// vxorps undef %xmm1, undef %xmm1, %xmm1
5751 ///
5752 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the
5753 /// high bits that are passed-through are not live.
5754 unsigned
5755 X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
5756                                    const TargetRegisterInfo *TRI) const {
5757   const MachineOperand &MO = MI.getOperand(OpNum);
5758   if (Register::isPhysicalRegister(MO.getReg()) &&
5759       hasUndefRegUpdate(MI.getOpcode(), OpNum))
5760     return UndefRegClearance;
5761 
5762   return 0;
5763 }
5764 
5765 void X86InstrInfo::breakPartialRegDependency(
5766     MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5767   Register Reg = MI.getOperand(OpNum).getReg();
5768   // If MI kills this register, the false dependence is already broken.
5769   if (MI.killsRegister(Reg, TRI))
5770     return;
5771 
5772   if (X86::VR128RegClass.contains(Reg)) {
5773     // These instructions are all floating point domain, so xorps is the best
5774     // choice.
5775     unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
5776     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
5777         .addReg(Reg, RegState::Undef)
5778         .addReg(Reg, RegState::Undef);
5779     MI.addRegisterKilled(Reg, TRI, true);
5780   } else if (X86::VR256RegClass.contains(Reg)) {
5781     // Use vxorps to clear the full ymm register.
5782     // It wants to read and write the xmm sub-register.
5783     Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
5784     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
5785         .addReg(XReg, RegState::Undef)
5786         .addReg(XReg, RegState::Undef)
5787         .addReg(Reg, RegState::ImplicitDefine);
5788     MI.addRegisterKilled(Reg, TRI, true);
5789   } else if (X86::VR128XRegClass.contains(Reg)) {
5790     // Only handle VLX targets.
5791     if (!Subtarget.hasVLX())
5792       return;
5793     // Since vxorps requires AVX512DQ, vpxord should be the best choice.
5794     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), Reg)
5795         .addReg(Reg, RegState::Undef)
5796         .addReg(Reg, RegState::Undef);
5797     MI.addRegisterKilled(Reg, TRI, true);
5798   } else if (X86::VR256XRegClass.contains(Reg) ||
5799              X86::VR512RegClass.contains(Reg)) {
5800     // Only handle VLX targets.
5801     if (!Subtarget.hasVLX())
5802       return;
5803     // Use vpxord to clear the full ymm/zmm register.
5804     // It wants to read and write the xmm sub-register.
5805     Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
5806     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), XReg)
5807         .addReg(XReg, RegState::Undef)
5808         .addReg(XReg, RegState::Undef)
5809         .addReg(Reg, RegState::ImplicitDefine);
5810     MI.addRegisterKilled(Reg, TRI, true);
5811   } else if (X86::GR64RegClass.contains(Reg)) {
5812     // Using XOR32rr because it has shorter encoding and zeros up the upper bits
5813     // as well.
5814     Register XReg = TRI->getSubReg(Reg, X86::sub_32bit);
5815     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
5816         .addReg(XReg, RegState::Undef)
5817         .addReg(XReg, RegState::Undef)
5818         .addReg(Reg, RegState::ImplicitDefine);
5819     MI.addRegisterKilled(Reg, TRI, true);
5820   } else if (X86::GR32RegClass.contains(Reg)) {
5821     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
5822         .addReg(Reg, RegState::Undef)
5823         .addReg(Reg, RegState::Undef);
5824     MI.addRegisterKilled(Reg, TRI, true);
5825   }
5826 }
5827 
5828 static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
5829                         int PtrOffset = 0) {
5830   unsigned NumAddrOps = MOs.size();
5831 
5832   if (NumAddrOps < 4) {
5833     // FrameIndex only - add an immediate offset (whether its zero or not).
5834     for (unsigned i = 0; i != NumAddrOps; ++i)
5835       MIB.add(MOs[i]);
5836     addOffset(MIB, PtrOffset);
5837   } else {
5838     // General Memory Addressing - we need to add any offset to an existing
5839     // offset.
5840     assert(MOs.size() == 5 && "Unexpected memory operand list length");
5841     for (unsigned i = 0; i != NumAddrOps; ++i) {
5842       const MachineOperand &MO = MOs[i];
5843       if (i == 3 && PtrOffset != 0) {
5844         MIB.addDisp(MO, PtrOffset);
5845       } else {
5846         MIB.add(MO);
5847       }
5848     }
5849   }
5850 }
5851 
5852 static void updateOperandRegConstraints(MachineFunction &MF,
5853                                         MachineInstr &NewMI,
5854                                         const TargetInstrInfo &TII) {
5855   MachineRegisterInfo &MRI = MF.getRegInfo();
5856   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
5857 
5858   for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) {
5859     MachineOperand &MO = NewMI.getOperand(Idx);
5860     // We only need to update constraints on virtual register operands.
5861     if (!MO.isReg())
5862       continue;
5863     Register Reg = MO.getReg();
5864     if (!Reg.isVirtual())
5865       continue;
5866 
5867     auto *NewRC = MRI.constrainRegClass(
5868         Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF));
5869     if (!NewRC) {
5870       LLVM_DEBUG(
5871           dbgs() << "WARNING: Unable to update register constraint for operand "
5872                  << Idx << " of instruction:\n";
5873           NewMI.dump(); dbgs() << "\n");
5874     }
5875   }
5876 }
5877 
5878 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
5879                                      ArrayRef<MachineOperand> MOs,
5880                                      MachineBasicBlock::iterator InsertPt,
5881                                      MachineInstr &MI,
5882                                      const TargetInstrInfo &TII) {
5883   // Create the base instruction with the memory operand as the first part.
5884   // Omit the implicit operands, something BuildMI can't do.
5885   MachineInstr *NewMI =
5886       MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
5887   MachineInstrBuilder MIB(MF, NewMI);
5888   addOperands(MIB, MOs);
5889 
5890   // Loop over the rest of the ri operands, converting them over.
5891   unsigned NumOps = MI.getDesc().getNumOperands() - 2;
5892   for (unsigned i = 0; i != NumOps; ++i) {
5893     MachineOperand &MO = MI.getOperand(i + 2);
5894     MIB.add(MO);
5895   }
5896   for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), NumOps + 2))
5897     MIB.add(MO);
5898 
5899   updateOperandRegConstraints(MF, *NewMI, TII);
5900 
5901   MachineBasicBlock *MBB = InsertPt->getParent();
5902   MBB->insert(InsertPt, NewMI);
5903 
5904   return MIB;
5905 }
5906 
5907 static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
5908                               unsigned OpNo, ArrayRef<MachineOperand> MOs,
5909                               MachineBasicBlock::iterator InsertPt,
5910                               MachineInstr &MI, const TargetInstrInfo &TII,
5911                               int PtrOffset = 0) {
5912   // Omit the implicit operands, something BuildMI can't do.
5913   MachineInstr *NewMI =
5914       MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
5915   MachineInstrBuilder MIB(MF, NewMI);
5916 
5917   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
5918     MachineOperand &MO = MI.getOperand(i);
5919     if (i == OpNo) {
5920       assert(MO.isReg() && "Expected to fold into reg operand!");
5921       addOperands(MIB, MOs, PtrOffset);
5922     } else {
5923       MIB.add(MO);
5924     }
5925   }
5926 
5927   updateOperandRegConstraints(MF, *NewMI, TII);
5928 
5929   // Copy the NoFPExcept flag from the instruction we're fusing.
5930   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
5931     NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept);
5932 
5933   MachineBasicBlock *MBB = InsertPt->getParent();
5934   MBB->insert(InsertPt, NewMI);
5935 
5936   return MIB;
5937 }
5938 
5939 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
5940                                 ArrayRef<MachineOperand> MOs,
5941                                 MachineBasicBlock::iterator InsertPt,
5942                                 MachineInstr &MI) {
5943   MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
5944                                     MI.getDebugLoc(), TII.get(Opcode));
5945   addOperands(MIB, MOs);
5946   return MIB.addImm(0);
5947 }
5948 
5949 MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
5950     MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
5951     ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
5952     unsigned Size, Align Alignment) const {
5953   switch (MI.getOpcode()) {
5954   case X86::INSERTPSrr:
5955   case X86::VINSERTPSrr:
5956   case X86::VINSERTPSZrr:
5957     // Attempt to convert the load of inserted vector into a fold load
5958     // of a single float.
5959     if (OpNum == 2) {
5960       unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
5961       unsigned ZMask = Imm & 15;
5962       unsigned DstIdx = (Imm >> 4) & 3;
5963       unsigned SrcIdx = (Imm >> 6) & 3;
5964 
5965       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5966       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
5967       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
5968       if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(4)) {
5969         int PtrOffset = SrcIdx * 4;
5970         unsigned NewImm = (DstIdx << 4) | ZMask;
5971         unsigned NewOpCode =
5972             (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm :
5973             (MI.getOpcode() == X86::VINSERTPSrr)  ? X86::VINSERTPSrm  :
5974                                                     X86::INSERTPSrm;
5975         MachineInstr *NewMI =
5976             FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
5977         NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
5978         return NewMI;
5979       }
5980     }
5981     break;
5982   case X86::MOVHLPSrr:
5983   case X86::VMOVHLPSrr:
5984   case X86::VMOVHLPSZrr:
5985     // Move the upper 64-bits of the second operand to the lower 64-bits.
5986     // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
5987     // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
5988     if (OpNum == 2) {
5989       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5990       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
5991       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
5992       if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(8)) {
5993         unsigned NewOpCode =
5994             (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm :
5995             (MI.getOpcode() == X86::VMOVHLPSrr)  ? X86::VMOVLPSrm     :
5996                                                    X86::MOVLPSrm;
5997         MachineInstr *NewMI =
5998             FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
5999         return NewMI;
6000       }
6001     }
6002     break;
6003   case X86::UNPCKLPDrr:
6004     // If we won't be able to fold this to the memory form of UNPCKL, use
6005     // MOVHPD instead. Done as custom because we can't have this in the load
6006     // table twice.
6007     if (OpNum == 2) {
6008       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6009       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
6010       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
6011       if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment < Align(16)) {
6012         MachineInstr *NewMI =
6013             FuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this);
6014         return NewMI;
6015       }
6016     }
6017     break;
6018   }
6019 
6020   return nullptr;
6021 }
6022 
6023 static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF,
6024                                                MachineInstr &MI) {
6025   if (!hasUndefRegUpdate(MI.getOpcode(), 1, /*ForLoadFold*/true) ||
6026       !MI.getOperand(1).isReg())
6027     return false;
6028 
6029   // The are two cases we need to handle depending on where in the pipeline
6030   // the folding attempt is being made.
6031   // -Register has the undef flag set.
6032   // -Register is produced by the IMPLICIT_DEF instruction.
6033 
6034   if (MI.getOperand(1).isUndef())
6035     return true;
6036 
6037   MachineRegisterInfo &RegInfo = MF.getRegInfo();
6038   MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg());
6039   return VRegDef && VRegDef->isImplicitDef();
6040 }
6041 
6042 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
6043     MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
6044     ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
6045     unsigned Size, Align Alignment, bool AllowCommute) const {
6046   bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
6047   bool isTwoAddrFold = false;
6048 
6049   // For CPUs that favor the register form of a call or push,
6050   // do not fold loads into calls or pushes, unless optimizing for size
6051   // aggressively.
6052   if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() &&
6053       (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
6054        MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
6055        MI.getOpcode() == X86::PUSH64r))
6056     return nullptr;
6057 
6058   // Avoid partial and undef register update stalls unless optimizing for size.
6059   if (!MF.getFunction().hasOptSize() &&
6060       (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
6061        shouldPreventUndefRegUpdateMemFold(MF, MI)))
6062     return nullptr;
6063 
6064   unsigned NumOps = MI.getDesc().getNumOperands();
6065   bool isTwoAddr =
6066       NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
6067 
6068   // FIXME: AsmPrinter doesn't know how to handle
6069   // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
6070   if (MI.getOpcode() == X86::ADD32ri &&
6071       MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
6072     return nullptr;
6073 
6074   // GOTTPOFF relocation loads can only be folded into add instructions.
6075   // FIXME: Need to exclude other relocations that only support specific
6076   // instructions.
6077   if (MOs.size() == X86::AddrNumOperands &&
6078       MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
6079       MI.getOpcode() != X86::ADD64rr)
6080     return nullptr;
6081 
6082   MachineInstr *NewMI = nullptr;
6083 
6084   // Attempt to fold any custom cases we have.
6085   if (MachineInstr *CustomMI = foldMemoryOperandCustom(
6086           MF, MI, OpNum, MOs, InsertPt, Size, Alignment))
6087     return CustomMI;
6088 
6089   const X86MemoryFoldTableEntry *I = nullptr;
6090 
6091   // Folding a memory location into the two-address part of a two-address
6092   // instruction is different than folding it other places.  It requires
6093   // replacing the *two* registers with the memory location.
6094   if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() &&
6095       MI.getOperand(1).isReg() &&
6096       MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
6097     I = lookupTwoAddrFoldTable(MI.getOpcode());
6098     isTwoAddrFold = true;
6099   } else {
6100     if (OpNum == 0) {
6101       if (MI.getOpcode() == X86::MOV32r0) {
6102         NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
6103         if (NewMI)
6104           return NewMI;
6105       }
6106     }
6107 
6108     I = lookupFoldTable(MI.getOpcode(), OpNum);
6109   }
6110 
6111   if (I != nullptr) {
6112     unsigned Opcode = I->DstOp;
6113     bool FoldedLoad =
6114         isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_LOAD) || OpNum > 0;
6115     bool FoldedStore =
6116         isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_STORE);
6117     MaybeAlign MinAlign =
6118         decodeMaybeAlign((I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT);
6119     if (MinAlign && Alignment < *MinAlign)
6120       return nullptr;
6121     bool NarrowToMOV32rm = false;
6122     if (Size) {
6123       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6124       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum,
6125                                                   &RI, MF);
6126       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
6127       // Check if it's safe to fold the load. If the size of the object is
6128       // narrower than the load width, then it's not.
6129       // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
6130       if (FoldedLoad && Size < RCSize) {
6131         // If this is a 64-bit load, but the spill slot is 32, then we can do
6132         // a 32-bit load which is implicitly zero-extended. This likely is
6133         // due to live interval analysis remat'ing a load from stack slot.
6134         if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
6135           return nullptr;
6136         if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
6137           return nullptr;
6138         Opcode = X86::MOV32rm;
6139         NarrowToMOV32rm = true;
6140       }
6141       // For stores, make sure the size of the object is equal to the size of
6142       // the store. If the object is larger, the extra bits would be garbage. If
6143       // the object is smaller we might overwrite another object or fault.
6144       if (FoldedStore && Size != RCSize)
6145         return nullptr;
6146     }
6147 
6148     if (isTwoAddrFold)
6149       NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
6150     else
6151       NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
6152 
6153     if (NarrowToMOV32rm) {
6154       // If this is the special case where we use a MOV32rm to load a 32-bit
6155       // value and zero-extend the top bits. Change the destination register
6156       // to a 32-bit one.
6157       Register DstReg = NewMI->getOperand(0).getReg();
6158       if (DstReg.isPhysical())
6159         NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
6160       else
6161         NewMI->getOperand(0).setSubReg(X86::sub_32bit);
6162     }
6163     return NewMI;
6164   }
6165 
6166   // If the instruction and target operand are commutable, commute the
6167   // instruction and try again.
6168   if (AllowCommute) {
6169     unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
6170     if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
6171       bool HasDef = MI.getDesc().getNumDefs();
6172       Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
6173       Register Reg1 = MI.getOperand(CommuteOpIdx1).getReg();
6174       Register Reg2 = MI.getOperand(CommuteOpIdx2).getReg();
6175       bool Tied1 =
6176           0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
6177       bool Tied2 =
6178           0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
6179 
6180       // If either of the commutable operands are tied to the destination
6181       // then we can not commute + fold.
6182       if ((HasDef && Reg0 == Reg1 && Tied1) ||
6183           (HasDef && Reg0 == Reg2 && Tied2))
6184         return nullptr;
6185 
6186       MachineInstr *CommutedMI =
6187           commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
6188       if (!CommutedMI) {
6189         // Unable to commute.
6190         return nullptr;
6191       }
6192       if (CommutedMI != &MI) {
6193         // New instruction. We can't fold from this.
6194         CommutedMI->eraseFromParent();
6195         return nullptr;
6196       }
6197 
6198       // Attempt to fold with the commuted version of the instruction.
6199       NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, Size,
6200                                     Alignment, /*AllowCommute=*/false);
6201       if (NewMI)
6202         return NewMI;
6203 
6204       // Folding failed again - undo the commute before returning.
6205       MachineInstr *UncommutedMI =
6206           commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
6207       if (!UncommutedMI) {
6208         // Unable to commute.
6209         return nullptr;
6210       }
6211       if (UncommutedMI != &MI) {
6212         // New instruction. It doesn't need to be kept.
6213         UncommutedMI->eraseFromParent();
6214         return nullptr;
6215       }
6216 
6217       // Return here to prevent duplicate fuse failure report.
6218       return nullptr;
6219     }
6220   }
6221 
6222   // No fusion
6223   if (PrintFailedFusing && !MI.isCopy())
6224     dbgs() << "We failed to fuse operand " << OpNum << " in " << MI;
6225   return nullptr;
6226 }
6227 
6228 MachineInstr *
6229 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
6230                                     ArrayRef<unsigned> Ops,
6231                                     MachineBasicBlock::iterator InsertPt,
6232                                     int FrameIndex, LiveIntervals *LIS,
6233                                     VirtRegMap *VRM) const {
6234   // Check switch flag
6235   if (NoFusing)
6236     return nullptr;
6237 
6238   // Avoid partial and undef register update stalls unless optimizing for size.
6239   if (!MF.getFunction().hasOptSize() &&
6240       (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
6241        shouldPreventUndefRegUpdateMemFold(MF, MI)))
6242     return nullptr;
6243 
6244   // Don't fold subreg spills, or reloads that use a high subreg.
6245   for (auto Op : Ops) {
6246     MachineOperand &MO = MI.getOperand(Op);
6247     auto SubReg = MO.getSubReg();
6248     if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
6249       return nullptr;
6250   }
6251 
6252   const MachineFrameInfo &MFI = MF.getFrameInfo();
6253   unsigned Size = MFI.getObjectSize(FrameIndex);
6254   Align Alignment = MFI.getObjectAlign(FrameIndex);
6255   // If the function stack isn't realigned we don't want to fold instructions
6256   // that need increased alignment.
6257   if (!RI.hasStackRealignment(MF))
6258     Alignment =
6259         std::min(Alignment, Subtarget.getFrameLowering()->getStackAlign());
6260   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
6261     unsigned NewOpc = 0;
6262     unsigned RCSize = 0;
6263     switch (MI.getOpcode()) {
6264     default: return nullptr;
6265     case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
6266     case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
6267     case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
6268     case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
6269     }
6270     // Check if it's safe to fold the load. If the size of the object is
6271     // narrower than the load width, then it's not.
6272     if (Size < RCSize)
6273       return nullptr;
6274     // Change to CMPXXri r, 0 first.
6275     MI.setDesc(get(NewOpc));
6276     MI.getOperand(1).ChangeToImmediate(0);
6277   } else if (Ops.size() != 1)
6278     return nullptr;
6279 
6280   return foldMemoryOperandImpl(MF, MI, Ops[0],
6281                                MachineOperand::CreateFI(FrameIndex), InsertPt,
6282                                Size, Alignment, /*AllowCommute=*/true);
6283 }
6284 
6285 /// Check if \p LoadMI is a partial register load that we can't fold into \p MI
6286 /// because the latter uses contents that wouldn't be defined in the folded
6287 /// version.  For instance, this transformation isn't legal:
6288 ///   movss (%rdi), %xmm0
6289 ///   addps %xmm0, %xmm0
6290 /// ->
6291 ///   addps (%rdi), %xmm0
6292 ///
6293 /// But this one is:
6294 ///   movss (%rdi), %xmm0
6295 ///   addss %xmm0, %xmm0
6296 /// ->
6297 ///   addss (%rdi), %xmm0
6298 ///
6299 static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
6300                                              const MachineInstr &UserMI,
6301                                              const MachineFunction &MF) {
6302   unsigned Opc = LoadMI.getOpcode();
6303   unsigned UserOpc = UserMI.getOpcode();
6304   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6305   const TargetRegisterClass *RC =
6306       MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
6307   unsigned RegSize = TRI.getRegSizeInBits(*RC);
6308 
6309   if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm ||
6310        Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt ||
6311        Opc == X86::VMOVSSZrm_alt) &&
6312       RegSize > 32) {
6313     // These instructions only load 32 bits, we can't fold them if the
6314     // destination register is wider than 32 bits (4 bytes), and its user
6315     // instruction isn't scalar (SS).
6316     switch (UserOpc) {
6317     case X86::CVTSS2SDrr_Int:
6318     case X86::VCVTSS2SDrr_Int:
6319     case X86::VCVTSS2SDZrr_Int:
6320     case X86::VCVTSS2SDZrr_Intk:
6321     case X86::VCVTSS2SDZrr_Intkz:
6322     case X86::CVTSS2SIrr_Int:     case X86::CVTSS2SI64rr_Int:
6323     case X86::VCVTSS2SIrr_Int:    case X86::VCVTSS2SI64rr_Int:
6324     case X86::VCVTSS2SIZrr_Int:   case X86::VCVTSS2SI64Zrr_Int:
6325     case X86::CVTTSS2SIrr_Int:    case X86::CVTTSS2SI64rr_Int:
6326     case X86::VCVTTSS2SIrr_Int:   case X86::VCVTTSS2SI64rr_Int:
6327     case X86::VCVTTSS2SIZrr_Int:  case X86::VCVTTSS2SI64Zrr_Int:
6328     case X86::VCVTSS2USIZrr_Int:  case X86::VCVTSS2USI64Zrr_Int:
6329     case X86::VCVTTSS2USIZrr_Int: case X86::VCVTTSS2USI64Zrr_Int:
6330     case X86::RCPSSr_Int:   case X86::VRCPSSr_Int:
6331     case X86::RSQRTSSr_Int: case X86::VRSQRTSSr_Int:
6332     case X86::ROUNDSSr_Int: case X86::VROUNDSSr_Int:
6333     case X86::COMISSrr_Int: case X86::VCOMISSrr_Int: case X86::VCOMISSZrr_Int:
6334     case X86::UCOMISSrr_Int:case X86::VUCOMISSrr_Int:case X86::VUCOMISSZrr_Int:
6335     case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int:
6336     case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int:
6337     case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int:
6338     case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int:
6339     case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int:
6340     case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int:
6341     case X86::SQRTSSr_Int: case X86::VSQRTSSr_Int: case X86::VSQRTSSZr_Int:
6342     case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int:
6343     case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz:
6344     case X86::VCMPSSZrr_Intk:
6345     case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz:
6346     case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz:
6347     case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz:
6348     case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz:
6349     case X86::VSQRTSSZr_Intk: case X86::VSQRTSSZr_Intkz:
6350     case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz:
6351     case X86::VFMADDSS4rr_Int:   case X86::VFNMADDSS4rr_Int:
6352     case X86::VFMSUBSS4rr_Int:   case X86::VFNMSUBSS4rr_Int:
6353     case X86::VFMADD132SSr_Int:  case X86::VFNMADD132SSr_Int:
6354     case X86::VFMADD213SSr_Int:  case X86::VFNMADD213SSr_Int:
6355     case X86::VFMADD231SSr_Int:  case X86::VFNMADD231SSr_Int:
6356     case X86::VFMSUB132SSr_Int:  case X86::VFNMSUB132SSr_Int:
6357     case X86::VFMSUB213SSr_Int:  case X86::VFNMSUB213SSr_Int:
6358     case X86::VFMSUB231SSr_Int:  case X86::VFNMSUB231SSr_Int:
6359     case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int:
6360     case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int:
6361     case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int:
6362     case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int:
6363     case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int:
6364     case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int:
6365     case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk:
6366     case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk:
6367     case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk:
6368     case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk:
6369     case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk:
6370     case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk:
6371     case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz:
6372     case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz:
6373     case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz:
6374     case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz:
6375     case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz:
6376     case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz:
6377     case X86::VFIXUPIMMSSZrri:
6378     case X86::VFIXUPIMMSSZrrik:
6379     case X86::VFIXUPIMMSSZrrikz:
6380     case X86::VFPCLASSSSZrr:
6381     case X86::VFPCLASSSSZrrk:
6382     case X86::VGETEXPSSZr:
6383     case X86::VGETEXPSSZrk:
6384     case X86::VGETEXPSSZrkz:
6385     case X86::VGETMANTSSZrri:
6386     case X86::VGETMANTSSZrrik:
6387     case X86::VGETMANTSSZrrikz:
6388     case X86::VRANGESSZrri:
6389     case X86::VRANGESSZrrik:
6390     case X86::VRANGESSZrrikz:
6391     case X86::VRCP14SSZrr:
6392     case X86::VRCP14SSZrrk:
6393     case X86::VRCP14SSZrrkz:
6394     case X86::VRCP28SSZr:
6395     case X86::VRCP28SSZrk:
6396     case X86::VRCP28SSZrkz:
6397     case X86::VREDUCESSZrri:
6398     case X86::VREDUCESSZrrik:
6399     case X86::VREDUCESSZrrikz:
6400     case X86::VRNDSCALESSZr_Int:
6401     case X86::VRNDSCALESSZr_Intk:
6402     case X86::VRNDSCALESSZr_Intkz:
6403     case X86::VRSQRT14SSZrr:
6404     case X86::VRSQRT14SSZrrk:
6405     case X86::VRSQRT14SSZrrkz:
6406     case X86::VRSQRT28SSZr:
6407     case X86::VRSQRT28SSZrk:
6408     case X86::VRSQRT28SSZrkz:
6409     case X86::VSCALEFSSZrr:
6410     case X86::VSCALEFSSZrrk:
6411     case X86::VSCALEFSSZrrkz:
6412       return false;
6413     default:
6414       return true;
6415     }
6416   }
6417 
6418   if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm ||
6419        Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt ||
6420        Opc == X86::VMOVSDZrm_alt) &&
6421       RegSize > 64) {
6422     // These instructions only load 64 bits, we can't fold them if the
6423     // destination register is wider than 64 bits (8 bytes), and its user
6424     // instruction isn't scalar (SD).
6425     switch (UserOpc) {
6426     case X86::CVTSD2SSrr_Int:
6427     case X86::VCVTSD2SSrr_Int:
6428     case X86::VCVTSD2SSZrr_Int:
6429     case X86::VCVTSD2SSZrr_Intk:
6430     case X86::VCVTSD2SSZrr_Intkz:
6431     case X86::CVTSD2SIrr_Int:     case X86::CVTSD2SI64rr_Int:
6432     case X86::VCVTSD2SIrr_Int:    case X86::VCVTSD2SI64rr_Int:
6433     case X86::VCVTSD2SIZrr_Int:   case X86::VCVTSD2SI64Zrr_Int:
6434     case X86::CVTTSD2SIrr_Int:    case X86::CVTTSD2SI64rr_Int:
6435     case X86::VCVTTSD2SIrr_Int:   case X86::VCVTTSD2SI64rr_Int:
6436     case X86::VCVTTSD2SIZrr_Int:  case X86::VCVTTSD2SI64Zrr_Int:
6437     case X86::VCVTSD2USIZrr_Int:  case X86::VCVTSD2USI64Zrr_Int:
6438     case X86::VCVTTSD2USIZrr_Int: case X86::VCVTTSD2USI64Zrr_Int:
6439     case X86::ROUNDSDr_Int: case X86::VROUNDSDr_Int:
6440     case X86::COMISDrr_Int: case X86::VCOMISDrr_Int: case X86::VCOMISDZrr_Int:
6441     case X86::UCOMISDrr_Int:case X86::VUCOMISDrr_Int:case X86::VUCOMISDZrr_Int:
6442     case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int:
6443     case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int:
6444     case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int:
6445     case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int:
6446     case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int:
6447     case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int:
6448     case X86::SQRTSDr_Int: case X86::VSQRTSDr_Int: case X86::VSQRTSDZr_Int:
6449     case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int:
6450     case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz:
6451     case X86::VCMPSDZrr_Intk:
6452     case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz:
6453     case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz:
6454     case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz:
6455     case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz:
6456     case X86::VSQRTSDZr_Intk: case X86::VSQRTSDZr_Intkz:
6457     case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz:
6458     case X86::VFMADDSD4rr_Int:   case X86::VFNMADDSD4rr_Int:
6459     case X86::VFMSUBSD4rr_Int:   case X86::VFNMSUBSD4rr_Int:
6460     case X86::VFMADD132SDr_Int:  case X86::VFNMADD132SDr_Int:
6461     case X86::VFMADD213SDr_Int:  case X86::VFNMADD213SDr_Int:
6462     case X86::VFMADD231SDr_Int:  case X86::VFNMADD231SDr_Int:
6463     case X86::VFMSUB132SDr_Int:  case X86::VFNMSUB132SDr_Int:
6464     case X86::VFMSUB213SDr_Int:  case X86::VFNMSUB213SDr_Int:
6465     case X86::VFMSUB231SDr_Int:  case X86::VFNMSUB231SDr_Int:
6466     case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int:
6467     case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int:
6468     case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int:
6469     case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int:
6470     case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int:
6471     case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int:
6472     case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk:
6473     case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk:
6474     case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk:
6475     case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk:
6476     case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk:
6477     case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk:
6478     case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz:
6479     case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz:
6480     case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz:
6481     case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz:
6482     case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz:
6483     case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz:
6484     case X86::VFIXUPIMMSDZrri:
6485     case X86::VFIXUPIMMSDZrrik:
6486     case X86::VFIXUPIMMSDZrrikz:
6487     case X86::VFPCLASSSDZrr:
6488     case X86::VFPCLASSSDZrrk:
6489     case X86::VGETEXPSDZr:
6490     case X86::VGETEXPSDZrk:
6491     case X86::VGETEXPSDZrkz:
6492     case X86::VGETMANTSDZrri:
6493     case X86::VGETMANTSDZrrik:
6494     case X86::VGETMANTSDZrrikz:
6495     case X86::VRANGESDZrri:
6496     case X86::VRANGESDZrrik:
6497     case X86::VRANGESDZrrikz:
6498     case X86::VRCP14SDZrr:
6499     case X86::VRCP14SDZrrk:
6500     case X86::VRCP14SDZrrkz:
6501     case X86::VRCP28SDZr:
6502     case X86::VRCP28SDZrk:
6503     case X86::VRCP28SDZrkz:
6504     case X86::VREDUCESDZrri:
6505     case X86::VREDUCESDZrrik:
6506     case X86::VREDUCESDZrrikz:
6507     case X86::VRNDSCALESDZr_Int:
6508     case X86::VRNDSCALESDZr_Intk:
6509     case X86::VRNDSCALESDZr_Intkz:
6510     case X86::VRSQRT14SDZrr:
6511     case X86::VRSQRT14SDZrrk:
6512     case X86::VRSQRT14SDZrrkz:
6513     case X86::VRSQRT28SDZr:
6514     case X86::VRSQRT28SDZrk:
6515     case X86::VRSQRT28SDZrkz:
6516     case X86::VSCALEFSDZrr:
6517     case X86::VSCALEFSDZrrk:
6518     case X86::VSCALEFSDZrrkz:
6519       return false;
6520     default:
6521       return true;
6522     }
6523   }
6524 
6525   if ((Opc == X86::VMOVSHZrm || Opc == X86::VMOVSHZrm_alt) && RegSize > 16) {
6526     // These instructions only load 16 bits, we can't fold them if the
6527     // destination register is wider than 16 bits (2 bytes), and its user
6528     // instruction isn't scalar (SH).
6529     switch (UserOpc) {
6530     case X86::VADDSHZrr_Int:
6531     case X86::VCMPSHZrr_Int:
6532     case X86::VDIVSHZrr_Int:
6533     case X86::VMAXSHZrr_Int:
6534     case X86::VMINSHZrr_Int:
6535     case X86::VMULSHZrr_Int:
6536     case X86::VSUBSHZrr_Int:
6537     case X86::VADDSHZrr_Intk: case X86::VADDSHZrr_Intkz:
6538     case X86::VCMPSHZrr_Intk:
6539     case X86::VDIVSHZrr_Intk: case X86::VDIVSHZrr_Intkz:
6540     case X86::VMAXSHZrr_Intk: case X86::VMAXSHZrr_Intkz:
6541     case X86::VMINSHZrr_Intk: case X86::VMINSHZrr_Intkz:
6542     case X86::VMULSHZrr_Intk: case X86::VMULSHZrr_Intkz:
6543     case X86::VSUBSHZrr_Intk: case X86::VSUBSHZrr_Intkz:
6544     case X86::VFMADD132SHZr_Int: case X86::VFNMADD132SHZr_Int:
6545     case X86::VFMADD213SHZr_Int: case X86::VFNMADD213SHZr_Int:
6546     case X86::VFMADD231SHZr_Int: case X86::VFNMADD231SHZr_Int:
6547     case X86::VFMSUB132SHZr_Int: case X86::VFNMSUB132SHZr_Int:
6548     case X86::VFMSUB213SHZr_Int: case X86::VFNMSUB213SHZr_Int:
6549     case X86::VFMSUB231SHZr_Int: case X86::VFNMSUB231SHZr_Int:
6550     case X86::VFMADD132SHZr_Intk: case X86::VFNMADD132SHZr_Intk:
6551     case X86::VFMADD213SHZr_Intk: case X86::VFNMADD213SHZr_Intk:
6552     case X86::VFMADD231SHZr_Intk: case X86::VFNMADD231SHZr_Intk:
6553     case X86::VFMSUB132SHZr_Intk: case X86::VFNMSUB132SHZr_Intk:
6554     case X86::VFMSUB213SHZr_Intk: case X86::VFNMSUB213SHZr_Intk:
6555     case X86::VFMSUB231SHZr_Intk: case X86::VFNMSUB231SHZr_Intk:
6556     case X86::VFMADD132SHZr_Intkz: case X86::VFNMADD132SHZr_Intkz:
6557     case X86::VFMADD213SHZr_Intkz: case X86::VFNMADD213SHZr_Intkz:
6558     case X86::VFMADD231SHZr_Intkz: case X86::VFNMADD231SHZr_Intkz:
6559     case X86::VFMSUB132SHZr_Intkz: case X86::VFNMSUB132SHZr_Intkz:
6560     case X86::VFMSUB213SHZr_Intkz: case X86::VFNMSUB213SHZr_Intkz:
6561     case X86::VFMSUB231SHZr_Intkz: case X86::VFNMSUB231SHZr_Intkz:
6562       return false;
6563     default:
6564       return true;
6565     }
6566   }
6567 
6568   return false;
6569 }
6570 
6571 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
6572     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
6573     MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
6574     LiveIntervals *LIS) const {
6575 
6576   // TODO: Support the case where LoadMI loads a wide register, but MI
6577   // only uses a subreg.
6578   for (auto Op : Ops) {
6579     if (MI.getOperand(Op).getSubReg())
6580       return nullptr;
6581   }
6582 
6583   // If loading from a FrameIndex, fold directly from the FrameIndex.
6584   unsigned NumOps = LoadMI.getDesc().getNumOperands();
6585   int FrameIndex;
6586   if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
6587     if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
6588       return nullptr;
6589     return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
6590   }
6591 
6592   // Check switch flag
6593   if (NoFusing) return nullptr;
6594 
6595   // Avoid partial and undef register update stalls unless optimizing for size.
6596   if (!MF.getFunction().hasOptSize() &&
6597       (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
6598        shouldPreventUndefRegUpdateMemFold(MF, MI)))
6599     return nullptr;
6600 
6601   // Determine the alignment of the load.
6602   Align Alignment;
6603   if (LoadMI.hasOneMemOperand())
6604     Alignment = (*LoadMI.memoperands_begin())->getAlign();
6605   else
6606     switch (LoadMI.getOpcode()) {
6607     case X86::AVX512_512_SET0:
6608     case X86::AVX512_512_SETALLONES:
6609       Alignment = Align(64);
6610       break;
6611     case X86::AVX2_SETALLONES:
6612     case X86::AVX1_SETALLONES:
6613     case X86::AVX_SET0:
6614     case X86::AVX512_256_SET0:
6615       Alignment = Align(32);
6616       break;
6617     case X86::V_SET0:
6618     case X86::V_SETALLONES:
6619     case X86::AVX512_128_SET0:
6620     case X86::FsFLD0F128:
6621     case X86::AVX512_FsFLD0F128:
6622       Alignment = Align(16);
6623       break;
6624     case X86::MMX_SET0:
6625     case X86::FsFLD0SD:
6626     case X86::AVX512_FsFLD0SD:
6627       Alignment = Align(8);
6628       break;
6629     case X86::FsFLD0SS:
6630     case X86::AVX512_FsFLD0SS:
6631       Alignment = Align(4);
6632       break;
6633     case X86::FsFLD0SH:
6634     case X86::AVX512_FsFLD0SH:
6635       Alignment = Align(2);
6636       break;
6637     default:
6638       return nullptr;
6639     }
6640   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
6641     unsigned NewOpc = 0;
6642     switch (MI.getOpcode()) {
6643     default: return nullptr;
6644     case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
6645     case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
6646     case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
6647     case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
6648     }
6649     // Change to CMPXXri r, 0 first.
6650     MI.setDesc(get(NewOpc));
6651     MI.getOperand(1).ChangeToImmediate(0);
6652   } else if (Ops.size() != 1)
6653     return nullptr;
6654 
6655   // Make sure the subregisters match.
6656   // Otherwise we risk changing the size of the load.
6657   if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
6658     return nullptr;
6659 
6660   SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
6661   switch (LoadMI.getOpcode()) {
6662   case X86::MMX_SET0:
6663   case X86::V_SET0:
6664   case X86::V_SETALLONES:
6665   case X86::AVX2_SETALLONES:
6666   case X86::AVX1_SETALLONES:
6667   case X86::AVX_SET0:
6668   case X86::AVX512_128_SET0:
6669   case X86::AVX512_256_SET0:
6670   case X86::AVX512_512_SET0:
6671   case X86::AVX512_512_SETALLONES:
6672   case X86::FsFLD0SH:
6673   case X86::AVX512_FsFLD0SH:
6674   case X86::FsFLD0SD:
6675   case X86::AVX512_FsFLD0SD:
6676   case X86::FsFLD0SS:
6677   case X86::AVX512_FsFLD0SS:
6678   case X86::FsFLD0F128:
6679   case X86::AVX512_FsFLD0F128: {
6680     // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
6681     // Create a constant-pool entry and operands to load from it.
6682 
6683     // Medium and large mode can't fold loads this way.
6684     if (MF.getTarget().getCodeModel() != CodeModel::Small &&
6685         MF.getTarget().getCodeModel() != CodeModel::Kernel)
6686       return nullptr;
6687 
6688     // x86-32 PIC requires a PIC base register for constant pools.
6689     unsigned PICBase = 0;
6690     // Since we're using Small or Kernel code model, we can always use
6691     // RIP-relative addressing for a smaller encoding.
6692     if (Subtarget.is64Bit()) {
6693       PICBase = X86::RIP;
6694     } else if (MF.getTarget().isPositionIndependent()) {
6695       // FIXME: PICBase = getGlobalBaseReg(&MF);
6696       // This doesn't work for several reasons.
6697       // 1. GlobalBaseReg may have been spilled.
6698       // 2. It may not be live at MI.
6699       return nullptr;
6700     }
6701 
6702     // Create a constant-pool entry.
6703     MachineConstantPool &MCP = *MF.getConstantPool();
6704     Type *Ty;
6705     unsigned Opc = LoadMI.getOpcode();
6706     if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS)
6707       Ty = Type::getFloatTy(MF.getFunction().getContext());
6708     else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD)
6709       Ty = Type::getDoubleTy(MF.getFunction().getContext());
6710     else if (Opc == X86::FsFLD0F128 || Opc == X86::AVX512_FsFLD0F128)
6711       Ty = Type::getFP128Ty(MF.getFunction().getContext());
6712     else if (Opc == X86::FsFLD0SH || Opc == X86::AVX512_FsFLD0SH)
6713       Ty = Type::getHalfTy(MF.getFunction().getContext());
6714     else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES)
6715       Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6716                                 16);
6717     else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 ||
6718              Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES)
6719       Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6720                                 8);
6721     else if (Opc == X86::MMX_SET0)
6722       Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6723                                 2);
6724     else
6725       Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6726                                 4);
6727 
6728     bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES ||
6729                       Opc == X86::AVX512_512_SETALLONES ||
6730                       Opc == X86::AVX1_SETALLONES);
6731     const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
6732                                     Constant::getNullValue(Ty);
6733     unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
6734 
6735     // Create operands to load from the constant pool entry.
6736     MOs.push_back(MachineOperand::CreateReg(PICBase, false));
6737     MOs.push_back(MachineOperand::CreateImm(1));
6738     MOs.push_back(MachineOperand::CreateReg(0, false));
6739     MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
6740     MOs.push_back(MachineOperand::CreateReg(0, false));
6741     break;
6742   }
6743   default: {
6744     if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
6745       return nullptr;
6746 
6747     // Folding a normal load. Just copy the load's address operands.
6748     MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
6749                LoadMI.operands_begin() + NumOps);
6750     break;
6751   }
6752   }
6753   return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
6754                                /*Size=*/0, Alignment, /*AllowCommute=*/true);
6755 }
6756 
6757 static SmallVector<MachineMemOperand *, 2>
6758 extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
6759   SmallVector<MachineMemOperand *, 2> LoadMMOs;
6760 
6761   for (MachineMemOperand *MMO : MMOs) {
6762     if (!MMO->isLoad())
6763       continue;
6764 
6765     if (!MMO->isStore()) {
6766       // Reuse the MMO.
6767       LoadMMOs.push_back(MMO);
6768     } else {
6769       // Clone the MMO and unset the store flag.
6770       LoadMMOs.push_back(MF.getMachineMemOperand(
6771           MMO, MMO->getFlags() & ~MachineMemOperand::MOStore));
6772     }
6773   }
6774 
6775   return LoadMMOs;
6776 }
6777 
6778 static SmallVector<MachineMemOperand *, 2>
6779 extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
6780   SmallVector<MachineMemOperand *, 2> StoreMMOs;
6781 
6782   for (MachineMemOperand *MMO : MMOs) {
6783     if (!MMO->isStore())
6784       continue;
6785 
6786     if (!MMO->isLoad()) {
6787       // Reuse the MMO.
6788       StoreMMOs.push_back(MMO);
6789     } else {
6790       // Clone the MMO and unset the load flag.
6791       StoreMMOs.push_back(MF.getMachineMemOperand(
6792           MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad));
6793     }
6794   }
6795 
6796   return StoreMMOs;
6797 }
6798 
6799 static unsigned getBroadcastOpcode(const X86MemoryFoldTableEntry *I,
6800                                    const TargetRegisterClass *RC,
6801                                    const X86Subtarget &STI) {
6802   assert(STI.hasAVX512() && "Expected at least AVX512!");
6803   unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC);
6804   assert((SpillSize == 64 || STI.hasVLX()) &&
6805          "Can't broadcast less than 64 bytes without AVX512VL!");
6806 
6807   switch (I->Flags & TB_BCAST_MASK) {
6808   default: llvm_unreachable("Unexpected broadcast type!");
6809   case TB_BCAST_D:
6810     switch (SpillSize) {
6811     default: llvm_unreachable("Unknown spill size");
6812     case 16: return X86::VPBROADCASTDZ128rm;
6813     case 32: return X86::VPBROADCASTDZ256rm;
6814     case 64: return X86::VPBROADCASTDZrm;
6815     }
6816     break;
6817   case TB_BCAST_Q:
6818     switch (SpillSize) {
6819     default: llvm_unreachable("Unknown spill size");
6820     case 16: return X86::VPBROADCASTQZ128rm;
6821     case 32: return X86::VPBROADCASTQZ256rm;
6822     case 64: return X86::VPBROADCASTQZrm;
6823     }
6824     break;
6825   case TB_BCAST_SS:
6826     switch (SpillSize) {
6827     default: llvm_unreachable("Unknown spill size");
6828     case 16: return X86::VBROADCASTSSZ128rm;
6829     case 32: return X86::VBROADCASTSSZ256rm;
6830     case 64: return X86::VBROADCASTSSZrm;
6831     }
6832     break;
6833   case TB_BCAST_SD:
6834     switch (SpillSize) {
6835     default: llvm_unreachable("Unknown spill size");
6836     case 16: return X86::VMOVDDUPZ128rm;
6837     case 32: return X86::VBROADCASTSDZ256rm;
6838     case 64: return X86::VBROADCASTSDZrm;
6839     }
6840     break;
6841   }
6842 }
6843 
6844 bool X86InstrInfo::unfoldMemoryOperand(
6845     MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
6846     bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
6847   const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode());
6848   if (I == nullptr)
6849     return false;
6850   unsigned Opc = I->DstOp;
6851   unsigned Index = I->Flags & TB_INDEX_MASK;
6852   bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
6853   bool FoldedStore = I->Flags & TB_FOLDED_STORE;
6854   bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
6855   if (UnfoldLoad && !FoldedLoad)
6856     return false;
6857   UnfoldLoad &= FoldedLoad;
6858   if (UnfoldStore && !FoldedStore)
6859     return false;
6860   UnfoldStore &= FoldedStore;
6861 
6862   const MCInstrDesc &MCID = get(Opc);
6863 
6864   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
6865   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6866   // TODO: Check if 32-byte or greater accesses are slow too?
6867   if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
6868       Subtarget.isUnalignedMem16Slow())
6869     // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
6870     // conservatively assume the address is unaligned. That's bad for
6871     // performance.
6872     return false;
6873   SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
6874   SmallVector<MachineOperand,2> BeforeOps;
6875   SmallVector<MachineOperand,2> AfterOps;
6876   SmallVector<MachineOperand,4> ImpOps;
6877   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
6878     MachineOperand &Op = MI.getOperand(i);
6879     if (i >= Index && i < Index + X86::AddrNumOperands)
6880       AddrOps.push_back(Op);
6881     else if (Op.isReg() && Op.isImplicit())
6882       ImpOps.push_back(Op);
6883     else if (i < Index)
6884       BeforeOps.push_back(Op);
6885     else if (i > Index)
6886       AfterOps.push_back(Op);
6887   }
6888 
6889   // Emit the load or broadcast instruction.
6890   if (UnfoldLoad) {
6891     auto MMOs = extractLoadMMOs(MI.memoperands(), MF);
6892 
6893     unsigned Opc;
6894     if (FoldedBCast) {
6895       Opc = getBroadcastOpcode(I, RC, Subtarget);
6896     } else {
6897       unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
6898       bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
6899       Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget);
6900     }
6901 
6902     DebugLoc DL;
6903     MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg);
6904     for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
6905       MIB.add(AddrOps[i]);
6906     MIB.setMemRefs(MMOs);
6907     NewMIs.push_back(MIB);
6908 
6909     if (UnfoldStore) {
6910       // Address operands cannot be marked isKill.
6911       for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
6912         MachineOperand &MO = NewMIs[0]->getOperand(i);
6913         if (MO.isReg())
6914           MO.setIsKill(false);
6915       }
6916     }
6917   }
6918 
6919   // Emit the data processing instruction.
6920   MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
6921   MachineInstrBuilder MIB(MF, DataMI);
6922 
6923   if (FoldedStore)
6924     MIB.addReg(Reg, RegState::Define);
6925   for (MachineOperand &BeforeOp : BeforeOps)
6926     MIB.add(BeforeOp);
6927   if (FoldedLoad)
6928     MIB.addReg(Reg);
6929   for (MachineOperand &AfterOp : AfterOps)
6930     MIB.add(AfterOp);
6931   for (MachineOperand &ImpOp : ImpOps) {
6932     MIB.addReg(ImpOp.getReg(),
6933                getDefRegState(ImpOp.isDef()) |
6934                RegState::Implicit |
6935                getKillRegState(ImpOp.isKill()) |
6936                getDeadRegState(ImpOp.isDead()) |
6937                getUndefRegState(ImpOp.isUndef()));
6938   }
6939   // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
6940   switch (DataMI->getOpcode()) {
6941   default: break;
6942   case X86::CMP64ri32:
6943   case X86::CMP64ri8:
6944   case X86::CMP32ri:
6945   case X86::CMP32ri8:
6946   case X86::CMP16ri:
6947   case X86::CMP16ri8:
6948   case X86::CMP8ri: {
6949     MachineOperand &MO0 = DataMI->getOperand(0);
6950     MachineOperand &MO1 = DataMI->getOperand(1);
6951     if (MO1.isImm() && MO1.getImm() == 0) {
6952       unsigned NewOpc;
6953       switch (DataMI->getOpcode()) {
6954       default: llvm_unreachable("Unreachable!");
6955       case X86::CMP64ri8:
6956       case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
6957       case X86::CMP32ri8:
6958       case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
6959       case X86::CMP16ri8:
6960       case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
6961       case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
6962       }
6963       DataMI->setDesc(get(NewOpc));
6964       MO1.ChangeToRegister(MO0.getReg(), false);
6965     }
6966   }
6967   }
6968   NewMIs.push_back(DataMI);
6969 
6970   // Emit the store instruction.
6971   if (UnfoldStore) {
6972     const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
6973     auto MMOs = extractStoreMMOs(MI.memoperands(), MF);
6974     unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*DstRC), 16);
6975     bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
6976     unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget);
6977     DebugLoc DL;
6978     MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
6979     for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
6980       MIB.add(AddrOps[i]);
6981     MIB.addReg(Reg, RegState::Kill);
6982     MIB.setMemRefs(MMOs);
6983     NewMIs.push_back(MIB);
6984   }
6985 
6986   return true;
6987 }
6988 
6989 bool
6990 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
6991                                   SmallVectorImpl<SDNode*> &NewNodes) const {
6992   if (!N->isMachineOpcode())
6993     return false;
6994 
6995   const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode());
6996   if (I == nullptr)
6997     return false;
6998   unsigned Opc = I->DstOp;
6999   unsigned Index = I->Flags & TB_INDEX_MASK;
7000   bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
7001   bool FoldedStore = I->Flags & TB_FOLDED_STORE;
7002   bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
7003   const MCInstrDesc &MCID = get(Opc);
7004   MachineFunction &MF = DAG.getMachineFunction();
7005   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7006   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
7007   unsigned NumDefs = MCID.NumDefs;
7008   std::vector<SDValue> AddrOps;
7009   std::vector<SDValue> BeforeOps;
7010   std::vector<SDValue> AfterOps;
7011   SDLoc dl(N);
7012   unsigned NumOps = N->getNumOperands();
7013   for (unsigned i = 0; i != NumOps-1; ++i) {
7014     SDValue Op = N->getOperand(i);
7015     if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
7016       AddrOps.push_back(Op);
7017     else if (i < Index-NumDefs)
7018       BeforeOps.push_back(Op);
7019     else if (i > Index-NumDefs)
7020       AfterOps.push_back(Op);
7021   }
7022   SDValue Chain = N->getOperand(NumOps-1);
7023   AddrOps.push_back(Chain);
7024 
7025   // Emit the load instruction.
7026   SDNode *Load = nullptr;
7027   if (FoldedLoad) {
7028     EVT VT = *TRI.legalclasstypes_begin(*RC);
7029     auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
7030     if (MMOs.empty() && RC == &X86::VR128RegClass &&
7031         Subtarget.isUnalignedMem16Slow())
7032       // Do not introduce a slow unaligned load.
7033       return false;
7034     // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
7035     // memory access is slow above.
7036 
7037     unsigned Opc;
7038     if (FoldedBCast) {
7039       Opc = getBroadcastOpcode(I, RC, Subtarget);
7040     } else {
7041       unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
7042       bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
7043       Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget);
7044     }
7045 
7046     Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps);
7047     NewNodes.push_back(Load);
7048 
7049     // Preserve memory reference information.
7050     DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs);
7051   }
7052 
7053   // Emit the data processing instruction.
7054   std::vector<EVT> VTs;
7055   const TargetRegisterClass *DstRC = nullptr;
7056   if (MCID.getNumDefs() > 0) {
7057     DstRC = getRegClass(MCID, 0, &RI, MF);
7058     VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
7059   }
7060   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
7061     EVT VT = N->getValueType(i);
7062     if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
7063       VTs.push_back(VT);
7064   }
7065   if (Load)
7066     BeforeOps.push_back(SDValue(Load, 0));
7067   llvm::append_range(BeforeOps, AfterOps);
7068   // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
7069   switch (Opc) {
7070     default: break;
7071     case X86::CMP64ri32:
7072     case X86::CMP64ri8:
7073     case X86::CMP32ri:
7074     case X86::CMP32ri8:
7075     case X86::CMP16ri:
7076     case X86::CMP16ri8:
7077     case X86::CMP8ri:
7078       if (isNullConstant(BeforeOps[1])) {
7079         switch (Opc) {
7080           default: llvm_unreachable("Unreachable!");
7081           case X86::CMP64ri8:
7082           case X86::CMP64ri32: Opc = X86::TEST64rr; break;
7083           case X86::CMP32ri8:
7084           case X86::CMP32ri:   Opc = X86::TEST32rr; break;
7085           case X86::CMP16ri8:
7086           case X86::CMP16ri:   Opc = X86::TEST16rr; break;
7087           case X86::CMP8ri:    Opc = X86::TEST8rr; break;
7088         }
7089         BeforeOps[1] = BeforeOps[0];
7090       }
7091   }
7092   SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
7093   NewNodes.push_back(NewNode);
7094 
7095   // Emit the store instruction.
7096   if (FoldedStore) {
7097     AddrOps.pop_back();
7098     AddrOps.push_back(SDValue(NewNode, 0));
7099     AddrOps.push_back(Chain);
7100     auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
7101     if (MMOs.empty() && RC == &X86::VR128RegClass &&
7102         Subtarget.isUnalignedMem16Slow())
7103       // Do not introduce a slow unaligned store.
7104       return false;
7105     // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
7106     // memory access is slow above.
7107     unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
7108     bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
7109     SDNode *Store =
7110         DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
7111                            dl, MVT::Other, AddrOps);
7112     NewNodes.push_back(Store);
7113 
7114     // Preserve memory reference information.
7115     DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs);
7116   }
7117 
7118   return true;
7119 }
7120 
7121 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
7122                                       bool UnfoldLoad, bool UnfoldStore,
7123                                       unsigned *LoadRegIndex) const {
7124   const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc);
7125   if (I == nullptr)
7126     return 0;
7127   bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
7128   bool FoldedStore = I->Flags & TB_FOLDED_STORE;
7129   if (UnfoldLoad && !FoldedLoad)
7130     return 0;
7131   if (UnfoldStore && !FoldedStore)
7132     return 0;
7133   if (LoadRegIndex)
7134     *LoadRegIndex = I->Flags & TB_INDEX_MASK;
7135   return I->DstOp;
7136 }
7137 
7138 bool
7139 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
7140                                      int64_t &Offset1, int64_t &Offset2) const {
7141   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
7142     return false;
7143   unsigned Opc1 = Load1->getMachineOpcode();
7144   unsigned Opc2 = Load2->getMachineOpcode();
7145   switch (Opc1) {
7146   default: return false;
7147   case X86::MOV8rm:
7148   case X86::MOV16rm:
7149   case X86::MOV32rm:
7150   case X86::MOV64rm:
7151   case X86::LD_Fp32m:
7152   case X86::LD_Fp64m:
7153   case X86::LD_Fp80m:
7154   case X86::MOVSSrm:
7155   case X86::MOVSSrm_alt:
7156   case X86::MOVSDrm:
7157   case X86::MOVSDrm_alt:
7158   case X86::MMX_MOVD64rm:
7159   case X86::MMX_MOVQ64rm:
7160   case X86::MOVAPSrm:
7161   case X86::MOVUPSrm:
7162   case X86::MOVAPDrm:
7163   case X86::MOVUPDrm:
7164   case X86::MOVDQArm:
7165   case X86::MOVDQUrm:
7166   // AVX load instructions
7167   case X86::VMOVSSrm:
7168   case X86::VMOVSSrm_alt:
7169   case X86::VMOVSDrm:
7170   case X86::VMOVSDrm_alt:
7171   case X86::VMOVAPSrm:
7172   case X86::VMOVUPSrm:
7173   case X86::VMOVAPDrm:
7174   case X86::VMOVUPDrm:
7175   case X86::VMOVDQArm:
7176   case X86::VMOVDQUrm:
7177   case X86::VMOVAPSYrm:
7178   case X86::VMOVUPSYrm:
7179   case X86::VMOVAPDYrm:
7180   case X86::VMOVUPDYrm:
7181   case X86::VMOVDQAYrm:
7182   case X86::VMOVDQUYrm:
7183   // AVX512 load instructions
7184   case X86::VMOVSSZrm:
7185   case X86::VMOVSSZrm_alt:
7186   case X86::VMOVSDZrm:
7187   case X86::VMOVSDZrm_alt:
7188   case X86::VMOVAPSZ128rm:
7189   case X86::VMOVUPSZ128rm:
7190   case X86::VMOVAPSZ128rm_NOVLX:
7191   case X86::VMOVUPSZ128rm_NOVLX:
7192   case X86::VMOVAPDZ128rm:
7193   case X86::VMOVUPDZ128rm:
7194   case X86::VMOVDQU8Z128rm:
7195   case X86::VMOVDQU16Z128rm:
7196   case X86::VMOVDQA32Z128rm:
7197   case X86::VMOVDQU32Z128rm:
7198   case X86::VMOVDQA64Z128rm:
7199   case X86::VMOVDQU64Z128rm:
7200   case X86::VMOVAPSZ256rm:
7201   case X86::VMOVUPSZ256rm:
7202   case X86::VMOVAPSZ256rm_NOVLX:
7203   case X86::VMOVUPSZ256rm_NOVLX:
7204   case X86::VMOVAPDZ256rm:
7205   case X86::VMOVUPDZ256rm:
7206   case X86::VMOVDQU8Z256rm:
7207   case X86::VMOVDQU16Z256rm:
7208   case X86::VMOVDQA32Z256rm:
7209   case X86::VMOVDQU32Z256rm:
7210   case X86::VMOVDQA64Z256rm:
7211   case X86::VMOVDQU64Z256rm:
7212   case X86::VMOVAPSZrm:
7213   case X86::VMOVUPSZrm:
7214   case X86::VMOVAPDZrm:
7215   case X86::VMOVUPDZrm:
7216   case X86::VMOVDQU8Zrm:
7217   case X86::VMOVDQU16Zrm:
7218   case X86::VMOVDQA32Zrm:
7219   case X86::VMOVDQU32Zrm:
7220   case X86::VMOVDQA64Zrm:
7221   case X86::VMOVDQU64Zrm:
7222   case X86::KMOVBkm:
7223   case X86::KMOVWkm:
7224   case X86::KMOVDkm:
7225   case X86::KMOVQkm:
7226     break;
7227   }
7228   switch (Opc2) {
7229   default: return false;
7230   case X86::MOV8rm:
7231   case X86::MOV16rm:
7232   case X86::MOV32rm:
7233   case X86::MOV64rm:
7234   case X86::LD_Fp32m:
7235   case X86::LD_Fp64m:
7236   case X86::LD_Fp80m:
7237   case X86::MOVSSrm:
7238   case X86::MOVSSrm_alt:
7239   case X86::MOVSDrm:
7240   case X86::MOVSDrm_alt:
7241   case X86::MMX_MOVD64rm:
7242   case X86::MMX_MOVQ64rm:
7243   case X86::MOVAPSrm:
7244   case X86::MOVUPSrm:
7245   case X86::MOVAPDrm:
7246   case X86::MOVUPDrm:
7247   case X86::MOVDQArm:
7248   case X86::MOVDQUrm:
7249   // AVX load instructions
7250   case X86::VMOVSSrm:
7251   case X86::VMOVSSrm_alt:
7252   case X86::VMOVSDrm:
7253   case X86::VMOVSDrm_alt:
7254   case X86::VMOVAPSrm:
7255   case X86::VMOVUPSrm:
7256   case X86::VMOVAPDrm:
7257   case X86::VMOVUPDrm:
7258   case X86::VMOVDQArm:
7259   case X86::VMOVDQUrm:
7260   case X86::VMOVAPSYrm:
7261   case X86::VMOVUPSYrm:
7262   case X86::VMOVAPDYrm:
7263   case X86::VMOVUPDYrm:
7264   case X86::VMOVDQAYrm:
7265   case X86::VMOVDQUYrm:
7266   // AVX512 load instructions
7267   case X86::VMOVSSZrm:
7268   case X86::VMOVSSZrm_alt:
7269   case X86::VMOVSDZrm:
7270   case X86::VMOVSDZrm_alt:
7271   case X86::VMOVAPSZ128rm:
7272   case X86::VMOVUPSZ128rm:
7273   case X86::VMOVAPSZ128rm_NOVLX:
7274   case X86::VMOVUPSZ128rm_NOVLX:
7275   case X86::VMOVAPDZ128rm:
7276   case X86::VMOVUPDZ128rm:
7277   case X86::VMOVDQU8Z128rm:
7278   case X86::VMOVDQU16Z128rm:
7279   case X86::VMOVDQA32Z128rm:
7280   case X86::VMOVDQU32Z128rm:
7281   case X86::VMOVDQA64Z128rm:
7282   case X86::VMOVDQU64Z128rm:
7283   case X86::VMOVAPSZ256rm:
7284   case X86::VMOVUPSZ256rm:
7285   case X86::VMOVAPSZ256rm_NOVLX:
7286   case X86::VMOVUPSZ256rm_NOVLX:
7287   case X86::VMOVAPDZ256rm:
7288   case X86::VMOVUPDZ256rm:
7289   case X86::VMOVDQU8Z256rm:
7290   case X86::VMOVDQU16Z256rm:
7291   case X86::VMOVDQA32Z256rm:
7292   case X86::VMOVDQU32Z256rm:
7293   case X86::VMOVDQA64Z256rm:
7294   case X86::VMOVDQU64Z256rm:
7295   case X86::VMOVAPSZrm:
7296   case X86::VMOVUPSZrm:
7297   case X86::VMOVAPDZrm:
7298   case X86::VMOVUPDZrm:
7299   case X86::VMOVDQU8Zrm:
7300   case X86::VMOVDQU16Zrm:
7301   case X86::VMOVDQA32Zrm:
7302   case X86::VMOVDQU32Zrm:
7303   case X86::VMOVDQA64Zrm:
7304   case X86::VMOVDQU64Zrm:
7305   case X86::KMOVBkm:
7306   case X86::KMOVWkm:
7307   case X86::KMOVDkm:
7308   case X86::KMOVQkm:
7309     break;
7310   }
7311 
7312   // Lambda to check if both the loads have the same value for an operand index.
7313   auto HasSameOp = [&](int I) {
7314     return Load1->getOperand(I) == Load2->getOperand(I);
7315   };
7316 
7317   // All operands except the displacement should match.
7318   if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
7319       !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
7320     return false;
7321 
7322   // Chain Operand must be the same.
7323   if (!HasSameOp(5))
7324     return false;
7325 
7326   // Now let's examine if the displacements are constants.
7327   auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp));
7328   auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp));
7329   if (!Disp1 || !Disp2)
7330     return false;
7331 
7332   Offset1 = Disp1->getSExtValue();
7333   Offset2 = Disp2->getSExtValue();
7334   return true;
7335 }
7336 
7337 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
7338                                            int64_t Offset1, int64_t Offset2,
7339                                            unsigned NumLoads) const {
7340   assert(Offset2 > Offset1);
7341   if ((Offset2 - Offset1) / 8 > 64)
7342     return false;
7343 
7344   unsigned Opc1 = Load1->getMachineOpcode();
7345   unsigned Opc2 = Load2->getMachineOpcode();
7346   if (Opc1 != Opc2)
7347     return false;  // FIXME: overly conservative?
7348 
7349   switch (Opc1) {
7350   default: break;
7351   case X86::LD_Fp32m:
7352   case X86::LD_Fp64m:
7353   case X86::LD_Fp80m:
7354   case X86::MMX_MOVD64rm:
7355   case X86::MMX_MOVQ64rm:
7356     return false;
7357   }
7358 
7359   EVT VT = Load1->getValueType(0);
7360   switch (VT.getSimpleVT().SimpleTy) {
7361   default:
7362     // XMM registers. In 64-bit mode we can be a bit more aggressive since we
7363     // have 16 of them to play with.
7364     if (Subtarget.is64Bit()) {
7365       if (NumLoads >= 3)
7366         return false;
7367     } else if (NumLoads) {
7368       return false;
7369     }
7370     break;
7371   case MVT::i8:
7372   case MVT::i16:
7373   case MVT::i32:
7374   case MVT::i64:
7375   case MVT::f32:
7376   case MVT::f64:
7377     if (NumLoads)
7378       return false;
7379     break;
7380   }
7381 
7382   return true;
7383 }
7384 
7385 bool X86InstrInfo::isSchedulingBoundary(const MachineInstr &MI,
7386                                         const MachineBasicBlock *MBB,
7387                                         const MachineFunction &MF) const {
7388 
7389   // ENDBR instructions should not be scheduled around.
7390   unsigned Opcode = MI.getOpcode();
7391   if (Opcode == X86::ENDBR64 || Opcode == X86::ENDBR32 ||
7392       Opcode == X86::PLDTILECFGV)
7393     return true;
7394 
7395   return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
7396 }
7397 
7398 bool X86InstrInfo::
7399 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
7400   assert(Cond.size() == 1 && "Invalid X86 branch condition!");
7401   X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
7402   Cond[0].setImm(GetOppositeBranchCondition(CC));
7403   return false;
7404 }
7405 
7406 bool X86InstrInfo::
7407 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
7408   // FIXME: Return false for x87 stack register classes for now. We can't
7409   // allow any loads of these registers before FpGet_ST0_80.
7410   return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
7411            RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
7412            RC == &X86::RFP80RegClass);
7413 }
7414 
7415 /// Return a virtual register initialized with the
7416 /// the global base register value. Output instructions required to
7417 /// initialize the register in the function entry block, if necessary.
7418 ///
7419 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
7420 ///
7421 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
7422   assert((!Subtarget.is64Bit() ||
7423           MF->getTarget().getCodeModel() == CodeModel::Medium ||
7424           MF->getTarget().getCodeModel() == CodeModel::Large) &&
7425          "X86-64 PIC uses RIP relative addressing");
7426 
7427   X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
7428   Register GlobalBaseReg = X86FI->getGlobalBaseReg();
7429   if (GlobalBaseReg != 0)
7430     return GlobalBaseReg;
7431 
7432   // Create the register. The code to initialize it is inserted
7433   // later, by the CGBR pass (below).
7434   MachineRegisterInfo &RegInfo = MF->getRegInfo();
7435   GlobalBaseReg = RegInfo.createVirtualRegister(
7436       Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
7437   X86FI->setGlobalBaseReg(GlobalBaseReg);
7438   return GlobalBaseReg;
7439 }
7440 
7441 // These are the replaceable SSE instructions. Some of these have Int variants
7442 // that we don't include here. We don't want to replace instructions selected
7443 // by intrinsics.
7444 static const uint16_t ReplaceableInstrs[][3] = {
7445   //PackedSingle     PackedDouble    PackedInt
7446   { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
7447   { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
7448   { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
7449   { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
7450   { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
7451   { X86::MOVLPSmr,   X86::MOVLPDmr,  X86::MOVPQI2QImr },
7452   { X86::MOVSDmr,    X86::MOVSDmr,   X86::MOVPQI2QImr },
7453   { X86::MOVSSmr,    X86::MOVSSmr,   X86::MOVPDI2DImr },
7454   { X86::MOVSDrm,    X86::MOVSDrm,   X86::MOVQI2PQIrm },
7455   { X86::MOVSDrm_alt,X86::MOVSDrm_alt,X86::MOVQI2PQIrm },
7456   { X86::MOVSSrm,    X86::MOVSSrm,   X86::MOVDI2PDIrm },
7457   { X86::MOVSSrm_alt,X86::MOVSSrm_alt,X86::MOVDI2PDIrm },
7458   { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
7459   { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
7460   { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
7461   { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
7462   { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
7463   { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
7464   { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
7465   { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
7466   { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
7467   { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm },
7468   { X86::MOVLHPSrr,  X86::UNPCKLPDrr, X86::PUNPCKLQDQrr },
7469   { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm },
7470   { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr },
7471   { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm },
7472   { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr },
7473   { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm },
7474   { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr },
7475   { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr },
7476   { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr },
7477   // AVX 128-bit support
7478   { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
7479   { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
7480   { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
7481   { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
7482   { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
7483   { X86::VMOVLPSmr,  X86::VMOVLPDmr,  X86::VMOVPQI2QImr },
7484   { X86::VMOVSDmr,   X86::VMOVSDmr,   X86::VMOVPQI2QImr },
7485   { X86::VMOVSSmr,   X86::VMOVSSmr,   X86::VMOVPDI2DImr },
7486   { X86::VMOVSDrm,   X86::VMOVSDrm,   X86::VMOVQI2PQIrm },
7487   { X86::VMOVSDrm_alt,X86::VMOVSDrm_alt,X86::VMOVQI2PQIrm },
7488   { X86::VMOVSSrm,   X86::VMOVSSrm,   X86::VMOVDI2PDIrm },
7489   { X86::VMOVSSrm_alt,X86::VMOVSSrm_alt,X86::VMOVDI2PDIrm },
7490   { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
7491   { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
7492   { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
7493   { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
7494   { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
7495   { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
7496   { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
7497   { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
7498   { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
7499   { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm },
7500   { X86::VMOVLHPSrr,  X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr },
7501   { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm },
7502   { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr },
7503   { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm },
7504   { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr },
7505   { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm },
7506   { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr },
7507   { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr },
7508   { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr },
7509   // AVX 256-bit support
7510   { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
7511   { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
7512   { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
7513   { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
7514   { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
7515   { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr },
7516   { X86::VPERMPSYrm,   X86::VPERMPSYrm,   X86::VPERMDYrm },
7517   { X86::VPERMPSYrr,   X86::VPERMPSYrr,   X86::VPERMDYrr },
7518   { X86::VPERMPDYmi,   X86::VPERMPDYmi,   X86::VPERMQYmi },
7519   { X86::VPERMPDYri,   X86::VPERMPDYri,   X86::VPERMQYri },
7520   // AVX512 support
7521   { X86::VMOVLPSZ128mr,  X86::VMOVLPDZ128mr,  X86::VMOVPQI2QIZmr  },
7522   { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr },
7523   { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr },
7524   { X86::VMOVNTPSZmr,    X86::VMOVNTPDZmr,    X86::VMOVNTDQZmr    },
7525   { X86::VMOVSDZmr,      X86::VMOVSDZmr,      X86::VMOVPQI2QIZmr  },
7526   { X86::VMOVSSZmr,      X86::VMOVSSZmr,      X86::VMOVPDI2DIZmr  },
7527   { X86::VMOVSDZrm,      X86::VMOVSDZrm,      X86::VMOVQI2PQIZrm  },
7528   { X86::VMOVSDZrm_alt,  X86::VMOVSDZrm_alt,  X86::VMOVQI2PQIZrm  },
7529   { X86::VMOVSSZrm,      X86::VMOVSSZrm,      X86::VMOVDI2PDIZrm  },
7530   { X86::VMOVSSZrm_alt,  X86::VMOVSSZrm_alt,  X86::VMOVDI2PDIZrm  },
7531   { X86::VBROADCASTSSZ128rr,X86::VBROADCASTSSZ128rr,X86::VPBROADCASTDZ128rr },
7532   { X86::VBROADCASTSSZ128rm,X86::VBROADCASTSSZ128rm,X86::VPBROADCASTDZ128rm },
7533   { X86::VBROADCASTSSZ256rr,X86::VBROADCASTSSZ256rr,X86::VPBROADCASTDZ256rr },
7534   { X86::VBROADCASTSSZ256rm,X86::VBROADCASTSSZ256rm,X86::VPBROADCASTDZ256rm },
7535   { X86::VBROADCASTSSZrr,   X86::VBROADCASTSSZrr,   X86::VPBROADCASTDZrr },
7536   { X86::VBROADCASTSSZrm,   X86::VBROADCASTSSZrm,   X86::VPBROADCASTDZrm },
7537   { X86::VMOVDDUPZ128rr,    X86::VMOVDDUPZ128rr,    X86::VPBROADCASTQZ128rr },
7538   { X86::VMOVDDUPZ128rm,    X86::VMOVDDUPZ128rm,    X86::VPBROADCASTQZ128rm },
7539   { X86::VBROADCASTSDZ256rr,X86::VBROADCASTSDZ256rr,X86::VPBROADCASTQZ256rr },
7540   { X86::VBROADCASTSDZ256rm,X86::VBROADCASTSDZ256rm,X86::VPBROADCASTQZ256rm },
7541   { X86::VBROADCASTSDZrr,   X86::VBROADCASTSDZrr,   X86::VPBROADCASTQZrr },
7542   { X86::VBROADCASTSDZrm,   X86::VBROADCASTSDZrm,   X86::VPBROADCASTQZrm },
7543   { X86::VINSERTF32x4Zrr,   X86::VINSERTF32x4Zrr,   X86::VINSERTI32x4Zrr },
7544   { X86::VINSERTF32x4Zrm,   X86::VINSERTF32x4Zrm,   X86::VINSERTI32x4Zrm },
7545   { X86::VINSERTF32x8Zrr,   X86::VINSERTF32x8Zrr,   X86::VINSERTI32x8Zrr },
7546   { X86::VINSERTF32x8Zrm,   X86::VINSERTF32x8Zrm,   X86::VINSERTI32x8Zrm },
7547   { X86::VINSERTF64x2Zrr,   X86::VINSERTF64x2Zrr,   X86::VINSERTI64x2Zrr },
7548   { X86::VINSERTF64x2Zrm,   X86::VINSERTF64x2Zrm,   X86::VINSERTI64x2Zrm },
7549   { X86::VINSERTF64x4Zrr,   X86::VINSERTF64x4Zrr,   X86::VINSERTI64x4Zrr },
7550   { X86::VINSERTF64x4Zrm,   X86::VINSERTF64x4Zrm,   X86::VINSERTI64x4Zrm },
7551   { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr },
7552   { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm },
7553   { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr },
7554   { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm },
7555   { X86::VEXTRACTF32x4Zrr,   X86::VEXTRACTF32x4Zrr,   X86::VEXTRACTI32x4Zrr },
7556   { X86::VEXTRACTF32x4Zmr,   X86::VEXTRACTF32x4Zmr,   X86::VEXTRACTI32x4Zmr },
7557   { X86::VEXTRACTF32x8Zrr,   X86::VEXTRACTF32x8Zrr,   X86::VEXTRACTI32x8Zrr },
7558   { X86::VEXTRACTF32x8Zmr,   X86::VEXTRACTF32x8Zmr,   X86::VEXTRACTI32x8Zmr },
7559   { X86::VEXTRACTF64x2Zrr,   X86::VEXTRACTF64x2Zrr,   X86::VEXTRACTI64x2Zrr },
7560   { X86::VEXTRACTF64x2Zmr,   X86::VEXTRACTF64x2Zmr,   X86::VEXTRACTI64x2Zmr },
7561   { X86::VEXTRACTF64x4Zrr,   X86::VEXTRACTF64x4Zrr,   X86::VEXTRACTI64x4Zrr },
7562   { X86::VEXTRACTF64x4Zmr,   X86::VEXTRACTF64x4Zmr,   X86::VEXTRACTI64x4Zmr },
7563   { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr },
7564   { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr },
7565   { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr },
7566   { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr },
7567   { X86::VPERMILPSmi,        X86::VPERMILPSmi,        X86::VPSHUFDmi },
7568   { X86::VPERMILPSri,        X86::VPERMILPSri,        X86::VPSHUFDri },
7569   { X86::VPERMILPSZ128mi,    X86::VPERMILPSZ128mi,    X86::VPSHUFDZ128mi },
7570   { X86::VPERMILPSZ128ri,    X86::VPERMILPSZ128ri,    X86::VPSHUFDZ128ri },
7571   { X86::VPERMILPSZ256mi,    X86::VPERMILPSZ256mi,    X86::VPSHUFDZ256mi },
7572   { X86::VPERMILPSZ256ri,    X86::VPERMILPSZ256ri,    X86::VPSHUFDZ256ri },
7573   { X86::VPERMILPSZmi,       X86::VPERMILPSZmi,       X86::VPSHUFDZmi },
7574   { X86::VPERMILPSZri,       X86::VPERMILPSZri,       X86::VPSHUFDZri },
7575   { X86::VPERMPSZ256rm,      X86::VPERMPSZ256rm,      X86::VPERMDZ256rm },
7576   { X86::VPERMPSZ256rr,      X86::VPERMPSZ256rr,      X86::VPERMDZ256rr },
7577   { X86::VPERMPDZ256mi,      X86::VPERMPDZ256mi,      X86::VPERMQZ256mi },
7578   { X86::VPERMPDZ256ri,      X86::VPERMPDZ256ri,      X86::VPERMQZ256ri },
7579   { X86::VPERMPDZ256rm,      X86::VPERMPDZ256rm,      X86::VPERMQZ256rm },
7580   { X86::VPERMPDZ256rr,      X86::VPERMPDZ256rr,      X86::VPERMQZ256rr },
7581   { X86::VPERMPSZrm,         X86::VPERMPSZrm,         X86::VPERMDZrm },
7582   { X86::VPERMPSZrr,         X86::VPERMPSZrr,         X86::VPERMDZrr },
7583   { X86::VPERMPDZmi,         X86::VPERMPDZmi,         X86::VPERMQZmi },
7584   { X86::VPERMPDZri,         X86::VPERMPDZri,         X86::VPERMQZri },
7585   { X86::VPERMPDZrm,         X86::VPERMPDZrm,         X86::VPERMQZrm },
7586   { X86::VPERMPDZrr,         X86::VPERMPDZrr,         X86::VPERMQZrr },
7587   { X86::VUNPCKLPDZ256rm,    X86::VUNPCKLPDZ256rm,    X86::VPUNPCKLQDQZ256rm },
7588   { X86::VUNPCKLPDZ256rr,    X86::VUNPCKLPDZ256rr,    X86::VPUNPCKLQDQZ256rr },
7589   { X86::VUNPCKHPDZ256rm,    X86::VUNPCKHPDZ256rm,    X86::VPUNPCKHQDQZ256rm },
7590   { X86::VUNPCKHPDZ256rr,    X86::VUNPCKHPDZ256rr,    X86::VPUNPCKHQDQZ256rr },
7591   { X86::VUNPCKLPSZ256rm,    X86::VUNPCKLPSZ256rm,    X86::VPUNPCKLDQZ256rm },
7592   { X86::VUNPCKLPSZ256rr,    X86::VUNPCKLPSZ256rr,    X86::VPUNPCKLDQZ256rr },
7593   { X86::VUNPCKHPSZ256rm,    X86::VUNPCKHPSZ256rm,    X86::VPUNPCKHDQZ256rm },
7594   { X86::VUNPCKHPSZ256rr,    X86::VUNPCKHPSZ256rr,    X86::VPUNPCKHDQZ256rr },
7595   { X86::VUNPCKLPDZ128rm,    X86::VUNPCKLPDZ128rm,    X86::VPUNPCKLQDQZ128rm },
7596   { X86::VMOVLHPSZrr,        X86::VUNPCKLPDZ128rr,    X86::VPUNPCKLQDQZ128rr },
7597   { X86::VUNPCKHPDZ128rm,    X86::VUNPCKHPDZ128rm,    X86::VPUNPCKHQDQZ128rm },
7598   { X86::VUNPCKHPDZ128rr,    X86::VUNPCKHPDZ128rr,    X86::VPUNPCKHQDQZ128rr },
7599   { X86::VUNPCKLPSZ128rm,    X86::VUNPCKLPSZ128rm,    X86::VPUNPCKLDQZ128rm },
7600   { X86::VUNPCKLPSZ128rr,    X86::VUNPCKLPSZ128rr,    X86::VPUNPCKLDQZ128rr },
7601   { X86::VUNPCKHPSZ128rm,    X86::VUNPCKHPSZ128rm,    X86::VPUNPCKHDQZ128rm },
7602   { X86::VUNPCKHPSZ128rr,    X86::VUNPCKHPSZ128rr,    X86::VPUNPCKHDQZ128rr },
7603   { X86::VUNPCKLPDZrm,       X86::VUNPCKLPDZrm,       X86::VPUNPCKLQDQZrm },
7604   { X86::VUNPCKLPDZrr,       X86::VUNPCKLPDZrr,       X86::VPUNPCKLQDQZrr },
7605   { X86::VUNPCKHPDZrm,       X86::VUNPCKHPDZrm,       X86::VPUNPCKHQDQZrm },
7606   { X86::VUNPCKHPDZrr,       X86::VUNPCKHPDZrr,       X86::VPUNPCKHQDQZrr },
7607   { X86::VUNPCKLPSZrm,       X86::VUNPCKLPSZrm,       X86::VPUNPCKLDQZrm },
7608   { X86::VUNPCKLPSZrr,       X86::VUNPCKLPSZrr,       X86::VPUNPCKLDQZrr },
7609   { X86::VUNPCKHPSZrm,       X86::VUNPCKHPSZrm,       X86::VPUNPCKHDQZrm },
7610   { X86::VUNPCKHPSZrr,       X86::VUNPCKHPSZrr,       X86::VPUNPCKHDQZrr },
7611   { X86::VEXTRACTPSZmr,      X86::VEXTRACTPSZmr,      X86::VPEXTRDZmr },
7612   { X86::VEXTRACTPSZrr,      X86::VEXTRACTPSZrr,      X86::VPEXTRDZrr },
7613 };
7614 
7615 static const uint16_t ReplaceableInstrsAVX2[][3] = {
7616   //PackedSingle       PackedDouble       PackedInt
7617   { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
7618   { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
7619   { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
7620   { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
7621   { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
7622   { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
7623   { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
7624   { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
7625   { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
7626   { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr },
7627   { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
7628   { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
7629   { X86::VMOVDDUPrm,     X86::VMOVDDUPrm,     X86::VPBROADCASTQrm},
7630   { X86::VMOVDDUPrr,     X86::VMOVDDUPrr,     X86::VPBROADCASTQrr},
7631   { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
7632   { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
7633   { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
7634   { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm},
7635   { X86::VBROADCASTF128,  X86::VBROADCASTF128,  X86::VBROADCASTI128 },
7636   { X86::VBLENDPSYrri,    X86::VBLENDPSYrri,    X86::VPBLENDDYrri },
7637   { X86::VBLENDPSYrmi,    X86::VBLENDPSYrmi,    X86::VPBLENDDYrmi },
7638   { X86::VPERMILPSYmi,    X86::VPERMILPSYmi,    X86::VPSHUFDYmi },
7639   { X86::VPERMILPSYri,    X86::VPERMILPSYri,    X86::VPSHUFDYri },
7640   { X86::VUNPCKLPDYrm,    X86::VUNPCKLPDYrm,    X86::VPUNPCKLQDQYrm },
7641   { X86::VUNPCKLPDYrr,    X86::VUNPCKLPDYrr,    X86::VPUNPCKLQDQYrr },
7642   { X86::VUNPCKHPDYrm,    X86::VUNPCKHPDYrm,    X86::VPUNPCKHQDQYrm },
7643   { X86::VUNPCKHPDYrr,    X86::VUNPCKHPDYrr,    X86::VPUNPCKHQDQYrr },
7644   { X86::VUNPCKLPSYrm,    X86::VUNPCKLPSYrm,    X86::VPUNPCKLDQYrm },
7645   { X86::VUNPCKLPSYrr,    X86::VUNPCKLPSYrr,    X86::VPUNPCKLDQYrr },
7646   { X86::VUNPCKHPSYrm,    X86::VUNPCKHPSYrm,    X86::VPUNPCKHDQYrm },
7647   { X86::VUNPCKHPSYrr,    X86::VUNPCKHPSYrr,    X86::VPUNPCKHDQYrr },
7648 };
7649 
7650 static const uint16_t ReplaceableInstrsFP[][3] = {
7651   //PackedSingle         PackedDouble
7652   { X86::MOVLPSrm,       X86::MOVLPDrm,      X86::INSTRUCTION_LIST_END },
7653   { X86::MOVHPSrm,       X86::MOVHPDrm,      X86::INSTRUCTION_LIST_END },
7654   { X86::MOVHPSmr,       X86::MOVHPDmr,      X86::INSTRUCTION_LIST_END },
7655   { X86::VMOVLPSrm,      X86::VMOVLPDrm,     X86::INSTRUCTION_LIST_END },
7656   { X86::VMOVHPSrm,      X86::VMOVHPDrm,     X86::INSTRUCTION_LIST_END },
7657   { X86::VMOVHPSmr,      X86::VMOVHPDmr,     X86::INSTRUCTION_LIST_END },
7658   { X86::VMOVLPSZ128rm,  X86::VMOVLPDZ128rm, X86::INSTRUCTION_LIST_END },
7659   { X86::VMOVHPSZ128rm,  X86::VMOVHPDZ128rm, X86::INSTRUCTION_LIST_END },
7660   { X86::VMOVHPSZ128mr,  X86::VMOVHPDZ128mr, X86::INSTRUCTION_LIST_END },
7661 };
7662 
7663 static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = {
7664   //PackedSingle       PackedDouble       PackedInt
7665   { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
7666   { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
7667   { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
7668   { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
7669 };
7670 
7671 static const uint16_t ReplaceableInstrsAVX512[][4] = {
7672   // Two integer columns for 64-bit and 32-bit elements.
7673   //PackedSingle        PackedDouble        PackedInt             PackedInt
7674   { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr  },
7675   { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm  },
7676   { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr  },
7677   { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr  },
7678   { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm  },
7679   { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr  },
7680   { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm  },
7681   { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr  },
7682   { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr  },
7683   { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm  },
7684   { X86::VMOVAPSZmr,    X86::VMOVAPDZmr,    X86::VMOVDQA64Zmr,    X86::VMOVDQA32Zmr     },
7685   { X86::VMOVAPSZrm,    X86::VMOVAPDZrm,    X86::VMOVDQA64Zrm,    X86::VMOVDQA32Zrm     },
7686   { X86::VMOVAPSZrr,    X86::VMOVAPDZrr,    X86::VMOVDQA64Zrr,    X86::VMOVDQA32Zrr     },
7687   { X86::VMOVUPSZmr,    X86::VMOVUPDZmr,    X86::VMOVDQU64Zmr,    X86::VMOVDQU32Zmr     },
7688   { X86::VMOVUPSZrm,    X86::VMOVUPDZrm,    X86::VMOVDQU64Zrm,    X86::VMOVDQU32Zrm     },
7689 };
7690 
7691 static const uint16_t ReplaceableInstrsAVX512DQ[][4] = {
7692   // Two integer columns for 64-bit and 32-bit elements.
7693   //PackedSingle        PackedDouble        PackedInt           PackedInt
7694   { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
7695   { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
7696   { X86::VANDPSZ128rm,  X86::VANDPDZ128rm,  X86::VPANDQZ128rm,  X86::VPANDDZ128rm  },
7697   { X86::VANDPSZ128rr,  X86::VANDPDZ128rr,  X86::VPANDQZ128rr,  X86::VPANDDZ128rr  },
7698   { X86::VORPSZ128rm,   X86::VORPDZ128rm,   X86::VPORQZ128rm,   X86::VPORDZ128rm   },
7699   { X86::VORPSZ128rr,   X86::VORPDZ128rr,   X86::VPORQZ128rr,   X86::VPORDZ128rr   },
7700   { X86::VXORPSZ128rm,  X86::VXORPDZ128rm,  X86::VPXORQZ128rm,  X86::VPXORDZ128rm  },
7701   { X86::VXORPSZ128rr,  X86::VXORPDZ128rr,  X86::VPXORQZ128rr,  X86::VPXORDZ128rr  },
7702   { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
7703   { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
7704   { X86::VANDPSZ256rm,  X86::VANDPDZ256rm,  X86::VPANDQZ256rm,  X86::VPANDDZ256rm  },
7705   { X86::VANDPSZ256rr,  X86::VANDPDZ256rr,  X86::VPANDQZ256rr,  X86::VPANDDZ256rr  },
7706   { X86::VORPSZ256rm,   X86::VORPDZ256rm,   X86::VPORQZ256rm,   X86::VPORDZ256rm   },
7707   { X86::VORPSZ256rr,   X86::VORPDZ256rr,   X86::VPORQZ256rr,   X86::VPORDZ256rr   },
7708   { X86::VXORPSZ256rm,  X86::VXORPDZ256rm,  X86::VPXORQZ256rm,  X86::VPXORDZ256rm  },
7709   { X86::VXORPSZ256rr,  X86::VXORPDZ256rr,  X86::VPXORQZ256rr,  X86::VPXORDZ256rr  },
7710   { X86::VANDNPSZrm,    X86::VANDNPDZrm,    X86::VPANDNQZrm,    X86::VPANDNDZrm    },
7711   { X86::VANDNPSZrr,    X86::VANDNPDZrr,    X86::VPANDNQZrr,    X86::VPANDNDZrr    },
7712   { X86::VANDPSZrm,     X86::VANDPDZrm,     X86::VPANDQZrm,     X86::VPANDDZrm     },
7713   { X86::VANDPSZrr,     X86::VANDPDZrr,     X86::VPANDQZrr,     X86::VPANDDZrr     },
7714   { X86::VORPSZrm,      X86::VORPDZrm,      X86::VPORQZrm,      X86::VPORDZrm      },
7715   { X86::VORPSZrr,      X86::VORPDZrr,      X86::VPORQZrr,      X86::VPORDZrr      },
7716   { X86::VXORPSZrm,     X86::VXORPDZrm,     X86::VPXORQZrm,     X86::VPXORDZrm     },
7717   { X86::VXORPSZrr,     X86::VXORPDZrr,     X86::VPXORQZrr,     X86::VPXORDZrr     },
7718 };
7719 
7720 static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = {
7721   // Two integer columns for 64-bit and 32-bit elements.
7722   //PackedSingle          PackedDouble
7723   //PackedInt             PackedInt
7724   { X86::VANDNPSZ128rmk,  X86::VANDNPDZ128rmk,
7725     X86::VPANDNQZ128rmk,  X86::VPANDNDZ128rmk  },
7726   { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz,
7727     X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz },
7728   { X86::VANDNPSZ128rrk,  X86::VANDNPDZ128rrk,
7729     X86::VPANDNQZ128rrk,  X86::VPANDNDZ128rrk  },
7730   { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz,
7731     X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz },
7732   { X86::VANDPSZ128rmk,   X86::VANDPDZ128rmk,
7733     X86::VPANDQZ128rmk,   X86::VPANDDZ128rmk   },
7734   { X86::VANDPSZ128rmkz,  X86::VANDPDZ128rmkz,
7735     X86::VPANDQZ128rmkz,  X86::VPANDDZ128rmkz  },
7736   { X86::VANDPSZ128rrk,   X86::VANDPDZ128rrk,
7737     X86::VPANDQZ128rrk,   X86::VPANDDZ128rrk   },
7738   { X86::VANDPSZ128rrkz,  X86::VANDPDZ128rrkz,
7739     X86::VPANDQZ128rrkz,  X86::VPANDDZ128rrkz  },
7740   { X86::VORPSZ128rmk,    X86::VORPDZ128rmk,
7741     X86::VPORQZ128rmk,    X86::VPORDZ128rmk    },
7742   { X86::VORPSZ128rmkz,   X86::VORPDZ128rmkz,
7743     X86::VPORQZ128rmkz,   X86::VPORDZ128rmkz   },
7744   { X86::VORPSZ128rrk,    X86::VORPDZ128rrk,
7745     X86::VPORQZ128rrk,    X86::VPORDZ128rrk    },
7746   { X86::VORPSZ128rrkz,   X86::VORPDZ128rrkz,
7747     X86::VPORQZ128rrkz,   X86::VPORDZ128rrkz   },
7748   { X86::VXORPSZ128rmk,   X86::VXORPDZ128rmk,
7749     X86::VPXORQZ128rmk,   X86::VPXORDZ128rmk   },
7750   { X86::VXORPSZ128rmkz,  X86::VXORPDZ128rmkz,
7751     X86::VPXORQZ128rmkz,  X86::VPXORDZ128rmkz  },
7752   { X86::VXORPSZ128rrk,   X86::VXORPDZ128rrk,
7753     X86::VPXORQZ128rrk,   X86::VPXORDZ128rrk   },
7754   { X86::VXORPSZ128rrkz,  X86::VXORPDZ128rrkz,
7755     X86::VPXORQZ128rrkz,  X86::VPXORDZ128rrkz  },
7756   { X86::VANDNPSZ256rmk,  X86::VANDNPDZ256rmk,
7757     X86::VPANDNQZ256rmk,  X86::VPANDNDZ256rmk  },
7758   { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz,
7759     X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz },
7760   { X86::VANDNPSZ256rrk,  X86::VANDNPDZ256rrk,
7761     X86::VPANDNQZ256rrk,  X86::VPANDNDZ256rrk  },
7762   { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz,
7763     X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz },
7764   { X86::VANDPSZ256rmk,   X86::VANDPDZ256rmk,
7765     X86::VPANDQZ256rmk,   X86::VPANDDZ256rmk   },
7766   { X86::VANDPSZ256rmkz,  X86::VANDPDZ256rmkz,
7767     X86::VPANDQZ256rmkz,  X86::VPANDDZ256rmkz  },
7768   { X86::VANDPSZ256rrk,   X86::VANDPDZ256rrk,
7769     X86::VPANDQZ256rrk,   X86::VPANDDZ256rrk   },
7770   { X86::VANDPSZ256rrkz,  X86::VANDPDZ256rrkz,
7771     X86::VPANDQZ256rrkz,  X86::VPANDDZ256rrkz  },
7772   { X86::VORPSZ256rmk,    X86::VORPDZ256rmk,
7773     X86::VPORQZ256rmk,    X86::VPORDZ256rmk    },
7774   { X86::VORPSZ256rmkz,   X86::VORPDZ256rmkz,
7775     X86::VPORQZ256rmkz,   X86::VPORDZ256rmkz   },
7776   { X86::VORPSZ256rrk,    X86::VORPDZ256rrk,
7777     X86::VPORQZ256rrk,    X86::VPORDZ256rrk    },
7778   { X86::VORPSZ256rrkz,   X86::VORPDZ256rrkz,
7779     X86::VPORQZ256rrkz,   X86::VPORDZ256rrkz   },
7780   { X86::VXORPSZ256rmk,   X86::VXORPDZ256rmk,
7781     X86::VPXORQZ256rmk,   X86::VPXORDZ256rmk   },
7782   { X86::VXORPSZ256rmkz,  X86::VXORPDZ256rmkz,
7783     X86::VPXORQZ256rmkz,  X86::VPXORDZ256rmkz  },
7784   { X86::VXORPSZ256rrk,   X86::VXORPDZ256rrk,
7785     X86::VPXORQZ256rrk,   X86::VPXORDZ256rrk   },
7786   { X86::VXORPSZ256rrkz,  X86::VXORPDZ256rrkz,
7787     X86::VPXORQZ256rrkz,  X86::VPXORDZ256rrkz  },
7788   { X86::VANDNPSZrmk,     X86::VANDNPDZrmk,
7789     X86::VPANDNQZrmk,     X86::VPANDNDZrmk     },
7790   { X86::VANDNPSZrmkz,    X86::VANDNPDZrmkz,
7791     X86::VPANDNQZrmkz,    X86::VPANDNDZrmkz    },
7792   { X86::VANDNPSZrrk,     X86::VANDNPDZrrk,
7793     X86::VPANDNQZrrk,     X86::VPANDNDZrrk     },
7794   { X86::VANDNPSZrrkz,    X86::VANDNPDZrrkz,
7795     X86::VPANDNQZrrkz,    X86::VPANDNDZrrkz    },
7796   { X86::VANDPSZrmk,      X86::VANDPDZrmk,
7797     X86::VPANDQZrmk,      X86::VPANDDZrmk      },
7798   { X86::VANDPSZrmkz,     X86::VANDPDZrmkz,
7799     X86::VPANDQZrmkz,     X86::VPANDDZrmkz     },
7800   { X86::VANDPSZrrk,      X86::VANDPDZrrk,
7801     X86::VPANDQZrrk,      X86::VPANDDZrrk      },
7802   { X86::VANDPSZrrkz,     X86::VANDPDZrrkz,
7803     X86::VPANDQZrrkz,     X86::VPANDDZrrkz     },
7804   { X86::VORPSZrmk,       X86::VORPDZrmk,
7805     X86::VPORQZrmk,       X86::VPORDZrmk       },
7806   { X86::VORPSZrmkz,      X86::VORPDZrmkz,
7807     X86::VPORQZrmkz,      X86::VPORDZrmkz      },
7808   { X86::VORPSZrrk,       X86::VORPDZrrk,
7809     X86::VPORQZrrk,       X86::VPORDZrrk       },
7810   { X86::VORPSZrrkz,      X86::VORPDZrrkz,
7811     X86::VPORQZrrkz,      X86::VPORDZrrkz      },
7812   { X86::VXORPSZrmk,      X86::VXORPDZrmk,
7813     X86::VPXORQZrmk,      X86::VPXORDZrmk      },
7814   { X86::VXORPSZrmkz,     X86::VXORPDZrmkz,
7815     X86::VPXORQZrmkz,     X86::VPXORDZrmkz     },
7816   { X86::VXORPSZrrk,      X86::VXORPDZrrk,
7817     X86::VPXORQZrrk,      X86::VPXORDZrrk      },
7818   { X86::VXORPSZrrkz,     X86::VXORPDZrrkz,
7819     X86::VPXORQZrrkz,     X86::VPXORDZrrkz     },
7820   // Broadcast loads can be handled the same as masked operations to avoid
7821   // changing element size.
7822   { X86::VANDNPSZ128rmb,  X86::VANDNPDZ128rmb,
7823     X86::VPANDNQZ128rmb,  X86::VPANDNDZ128rmb  },
7824   { X86::VANDPSZ128rmb,   X86::VANDPDZ128rmb,
7825     X86::VPANDQZ128rmb,   X86::VPANDDZ128rmb   },
7826   { X86::VORPSZ128rmb,    X86::VORPDZ128rmb,
7827     X86::VPORQZ128rmb,    X86::VPORDZ128rmb    },
7828   { X86::VXORPSZ128rmb,   X86::VXORPDZ128rmb,
7829     X86::VPXORQZ128rmb,   X86::VPXORDZ128rmb   },
7830   { X86::VANDNPSZ256rmb,  X86::VANDNPDZ256rmb,
7831     X86::VPANDNQZ256rmb,  X86::VPANDNDZ256rmb  },
7832   { X86::VANDPSZ256rmb,   X86::VANDPDZ256rmb,
7833     X86::VPANDQZ256rmb,   X86::VPANDDZ256rmb   },
7834   { X86::VORPSZ256rmb,    X86::VORPDZ256rmb,
7835     X86::VPORQZ256rmb,    X86::VPORDZ256rmb    },
7836   { X86::VXORPSZ256rmb,   X86::VXORPDZ256rmb,
7837     X86::VPXORQZ256rmb,   X86::VPXORDZ256rmb   },
7838   { X86::VANDNPSZrmb,     X86::VANDNPDZrmb,
7839     X86::VPANDNQZrmb,     X86::VPANDNDZrmb     },
7840   { X86::VANDPSZrmb,      X86::VANDPDZrmb,
7841     X86::VPANDQZrmb,      X86::VPANDDZrmb      },
7842   { X86::VANDPSZrmb,      X86::VANDPDZrmb,
7843     X86::VPANDQZrmb,      X86::VPANDDZrmb      },
7844   { X86::VORPSZrmb,       X86::VORPDZrmb,
7845     X86::VPORQZrmb,       X86::VPORDZrmb       },
7846   { X86::VXORPSZrmb,      X86::VXORPDZrmb,
7847     X86::VPXORQZrmb,      X86::VPXORDZrmb      },
7848   { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk,
7849     X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk },
7850   { X86::VANDPSZ128rmbk,  X86::VANDPDZ128rmbk,
7851     X86::VPANDQZ128rmbk,  X86::VPANDDZ128rmbk  },
7852   { X86::VORPSZ128rmbk,   X86::VORPDZ128rmbk,
7853     X86::VPORQZ128rmbk,   X86::VPORDZ128rmbk   },
7854   { X86::VXORPSZ128rmbk,  X86::VXORPDZ128rmbk,
7855     X86::VPXORQZ128rmbk,  X86::VPXORDZ128rmbk  },
7856   { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk,
7857     X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk },
7858   { X86::VANDPSZ256rmbk,  X86::VANDPDZ256rmbk,
7859     X86::VPANDQZ256rmbk,  X86::VPANDDZ256rmbk  },
7860   { X86::VORPSZ256rmbk,   X86::VORPDZ256rmbk,
7861     X86::VPORQZ256rmbk,   X86::VPORDZ256rmbk   },
7862   { X86::VXORPSZ256rmbk,  X86::VXORPDZ256rmbk,
7863     X86::VPXORQZ256rmbk,  X86::VPXORDZ256rmbk  },
7864   { X86::VANDNPSZrmbk,    X86::VANDNPDZrmbk,
7865     X86::VPANDNQZrmbk,    X86::VPANDNDZrmbk    },
7866   { X86::VANDPSZrmbk,     X86::VANDPDZrmbk,
7867     X86::VPANDQZrmbk,     X86::VPANDDZrmbk     },
7868   { X86::VANDPSZrmbk,     X86::VANDPDZrmbk,
7869     X86::VPANDQZrmbk,     X86::VPANDDZrmbk     },
7870   { X86::VORPSZrmbk,      X86::VORPDZrmbk,
7871     X86::VPORQZrmbk,      X86::VPORDZrmbk      },
7872   { X86::VXORPSZrmbk,     X86::VXORPDZrmbk,
7873     X86::VPXORQZrmbk,     X86::VPXORDZrmbk     },
7874   { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz,
7875     X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz},
7876   { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz,
7877     X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz },
7878   { X86::VORPSZ128rmbkz,  X86::VORPDZ128rmbkz,
7879     X86::VPORQZ128rmbkz,  X86::VPORDZ128rmbkz  },
7880   { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz,
7881     X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz },
7882   { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz,
7883     X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz},
7884   { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz,
7885     X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz },
7886   { X86::VORPSZ256rmbkz,  X86::VORPDZ256rmbkz,
7887     X86::VPORQZ256rmbkz,  X86::VPORDZ256rmbkz  },
7888   { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz,
7889     X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz },
7890   { X86::VANDNPSZrmbkz,   X86::VANDNPDZrmbkz,
7891     X86::VPANDNQZrmbkz,   X86::VPANDNDZrmbkz   },
7892   { X86::VANDPSZrmbkz,    X86::VANDPDZrmbkz,
7893     X86::VPANDQZrmbkz,    X86::VPANDDZrmbkz    },
7894   { X86::VANDPSZrmbkz,    X86::VANDPDZrmbkz,
7895     X86::VPANDQZrmbkz,    X86::VPANDDZrmbkz    },
7896   { X86::VORPSZrmbkz,     X86::VORPDZrmbkz,
7897     X86::VPORQZrmbkz,     X86::VPORDZrmbkz     },
7898   { X86::VXORPSZrmbkz,    X86::VXORPDZrmbkz,
7899     X86::VPXORQZrmbkz,    X86::VPXORDZrmbkz    },
7900 };
7901 
7902 // NOTE: These should only be used by the custom domain methods.
7903 static const uint16_t ReplaceableBlendInstrs[][3] = {
7904   //PackedSingle             PackedDouble             PackedInt
7905   { X86::BLENDPSrmi,         X86::BLENDPDrmi,         X86::PBLENDWrmi   },
7906   { X86::BLENDPSrri,         X86::BLENDPDrri,         X86::PBLENDWrri   },
7907   { X86::VBLENDPSrmi,        X86::VBLENDPDrmi,        X86::VPBLENDWrmi  },
7908   { X86::VBLENDPSrri,        X86::VBLENDPDrri,        X86::VPBLENDWrri  },
7909   { X86::VBLENDPSYrmi,       X86::VBLENDPDYrmi,       X86::VPBLENDWYrmi },
7910   { X86::VBLENDPSYrri,       X86::VBLENDPDYrri,       X86::VPBLENDWYrri },
7911 };
7912 static const uint16_t ReplaceableBlendAVX2Instrs[][3] = {
7913   //PackedSingle             PackedDouble             PackedInt
7914   { X86::VBLENDPSrmi,        X86::VBLENDPDrmi,        X86::VPBLENDDrmi  },
7915   { X86::VBLENDPSrri,        X86::VBLENDPDrri,        X86::VPBLENDDrri  },
7916   { X86::VBLENDPSYrmi,       X86::VBLENDPDYrmi,       X86::VPBLENDDYrmi },
7917   { X86::VBLENDPSYrri,       X86::VBLENDPDYrri,       X86::VPBLENDDYrri },
7918 };
7919 
7920 // Special table for changing EVEX logic instructions to VEX.
7921 // TODO: Should we run EVEX->VEX earlier?
7922 static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = {
7923   // Two integer columns for 64-bit and 32-bit elements.
7924   //PackedSingle     PackedDouble     PackedInt           PackedInt
7925   { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
7926   { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
7927   { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDQZ128rm,  X86::VPANDDZ128rm  },
7928   { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDQZ128rr,  X86::VPANDDZ128rr  },
7929   { X86::VORPSrm,    X86::VORPDrm,    X86::VPORQZ128rm,   X86::VPORDZ128rm   },
7930   { X86::VORPSrr,    X86::VORPDrr,    X86::VPORQZ128rr,   X86::VPORDZ128rr   },
7931   { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORQZ128rm,  X86::VPXORDZ128rm  },
7932   { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORQZ128rr,  X86::VPXORDZ128rr  },
7933   { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
7934   { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
7935   { X86::VANDPSYrm,  X86::VANDPDYrm,  X86::VPANDQZ256rm,  X86::VPANDDZ256rm  },
7936   { X86::VANDPSYrr,  X86::VANDPDYrr,  X86::VPANDQZ256rr,  X86::VPANDDZ256rr  },
7937   { X86::VORPSYrm,   X86::VORPDYrm,   X86::VPORQZ256rm,   X86::VPORDZ256rm   },
7938   { X86::VORPSYrr,   X86::VORPDYrr,   X86::VPORQZ256rr,   X86::VPORDZ256rr   },
7939   { X86::VXORPSYrm,  X86::VXORPDYrm,  X86::VPXORQZ256rm,  X86::VPXORDZ256rm  },
7940   { X86::VXORPSYrr,  X86::VXORPDYrr,  X86::VPXORQZ256rr,  X86::VPXORDZ256rr  },
7941 };
7942 
7943 // FIXME: Some shuffle and unpack instructions have equivalents in different
7944 // domains, but they require a bit more work than just switching opcodes.
7945 
7946 static const uint16_t *lookup(unsigned opcode, unsigned domain,
7947                               ArrayRef<uint16_t[3]> Table) {
7948   for (const uint16_t (&Row)[3] : Table)
7949     if (Row[domain-1] == opcode)
7950       return Row;
7951   return nullptr;
7952 }
7953 
7954 static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
7955                                     ArrayRef<uint16_t[4]> Table) {
7956   // If this is the integer domain make sure to check both integer columns.
7957   for (const uint16_t (&Row)[4] : Table)
7958     if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode))
7959       return Row;
7960   return nullptr;
7961 }
7962 
7963 // Helper to attempt to widen/narrow blend masks.
7964 static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
7965                             unsigned NewWidth, unsigned *pNewMask = nullptr) {
7966   assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&
7967          "Illegal blend mask scale");
7968   unsigned NewMask = 0;
7969 
7970   if ((OldWidth % NewWidth) == 0) {
7971     unsigned Scale = OldWidth / NewWidth;
7972     unsigned SubMask = (1u << Scale) - 1;
7973     for (unsigned i = 0; i != NewWidth; ++i) {
7974       unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
7975       if (Sub == SubMask)
7976         NewMask |= (1u << i);
7977       else if (Sub != 0x0)
7978         return false;
7979     }
7980   } else {
7981     unsigned Scale = NewWidth / OldWidth;
7982     unsigned SubMask = (1u << Scale) - 1;
7983     for (unsigned i = 0; i != OldWidth; ++i) {
7984       if (OldMask & (1 << i)) {
7985         NewMask |= (SubMask << (i * Scale));
7986       }
7987     }
7988   }
7989 
7990   if (pNewMask)
7991     *pNewMask = NewMask;
7992   return true;
7993 }
7994 
7995 uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const {
7996   unsigned Opcode = MI.getOpcode();
7997   unsigned NumOperands = MI.getDesc().getNumOperands();
7998 
7999   auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
8000     uint16_t validDomains = 0;
8001     if (MI.getOperand(NumOperands - 1).isImm()) {
8002       unsigned Imm = MI.getOperand(NumOperands - 1).getImm();
8003       if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4))
8004         validDomains |= 0x2; // PackedSingle
8005       if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2))
8006         validDomains |= 0x4; // PackedDouble
8007       if (!Is256 || Subtarget.hasAVX2())
8008         validDomains |= 0x8; // PackedInt
8009     }
8010     return validDomains;
8011   };
8012 
8013   switch (Opcode) {
8014   case X86::BLENDPDrmi:
8015   case X86::BLENDPDrri:
8016   case X86::VBLENDPDrmi:
8017   case X86::VBLENDPDrri:
8018     return GetBlendDomains(2, false);
8019   case X86::VBLENDPDYrmi:
8020   case X86::VBLENDPDYrri:
8021     return GetBlendDomains(4, true);
8022   case X86::BLENDPSrmi:
8023   case X86::BLENDPSrri:
8024   case X86::VBLENDPSrmi:
8025   case X86::VBLENDPSrri:
8026   case X86::VPBLENDDrmi:
8027   case X86::VPBLENDDrri:
8028     return GetBlendDomains(4, false);
8029   case X86::VBLENDPSYrmi:
8030   case X86::VBLENDPSYrri:
8031   case X86::VPBLENDDYrmi:
8032   case X86::VPBLENDDYrri:
8033     return GetBlendDomains(8, true);
8034   case X86::PBLENDWrmi:
8035   case X86::PBLENDWrri:
8036   case X86::VPBLENDWrmi:
8037   case X86::VPBLENDWrri:
8038   // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
8039   case X86::VPBLENDWYrmi:
8040   case X86::VPBLENDWYrri:
8041     return GetBlendDomains(8, false);
8042   case X86::VPANDDZ128rr:  case X86::VPANDDZ128rm:
8043   case X86::VPANDDZ256rr:  case X86::VPANDDZ256rm:
8044   case X86::VPANDQZ128rr:  case X86::VPANDQZ128rm:
8045   case X86::VPANDQZ256rr:  case X86::VPANDQZ256rm:
8046   case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
8047   case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
8048   case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
8049   case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
8050   case X86::VPORDZ128rr:   case X86::VPORDZ128rm:
8051   case X86::VPORDZ256rr:   case X86::VPORDZ256rm:
8052   case X86::VPORQZ128rr:   case X86::VPORQZ128rm:
8053   case X86::VPORQZ256rr:   case X86::VPORQZ256rm:
8054   case X86::VPXORDZ128rr:  case X86::VPXORDZ128rm:
8055   case X86::VPXORDZ256rr:  case X86::VPXORDZ256rm:
8056   case X86::VPXORQZ128rr:  case X86::VPXORQZ128rm:
8057   case X86::VPXORQZ256rr:  case X86::VPXORQZ256rm:
8058     // If we don't have DQI see if we can still switch from an EVEX integer
8059     // instruction to a VEX floating point instruction.
8060     if (Subtarget.hasDQI())
8061       return 0;
8062 
8063     if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16)
8064       return 0;
8065     if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16)
8066       return 0;
8067     // Register forms will have 3 operands. Memory form will have more.
8068     if (NumOperands == 3 &&
8069         RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16)
8070       return 0;
8071 
8072     // All domains are valid.
8073     return 0xe;
8074   case X86::MOVHLPSrr:
8075     // We can swap domains when both inputs are the same register.
8076     // FIXME: This doesn't catch all the cases we would like. If the input
8077     // register isn't KILLed by the instruction, the two address instruction
8078     // pass puts a COPY on one input. The other input uses the original
8079     // register. This prevents the same physical register from being used by
8080     // both inputs.
8081     if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
8082         MI.getOperand(0).getSubReg() == 0 &&
8083         MI.getOperand(1).getSubReg() == 0 &&
8084         MI.getOperand(2).getSubReg() == 0)
8085       return 0x6;
8086     return 0;
8087   case X86::SHUFPDrri:
8088     return 0x6;
8089   }
8090   return 0;
8091 }
8092 
8093 bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI,
8094                                             unsigned Domain) const {
8095   assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
8096   uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
8097   assert(dom && "Not an SSE instruction");
8098 
8099   unsigned Opcode = MI.getOpcode();
8100   unsigned NumOperands = MI.getDesc().getNumOperands();
8101 
8102   auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
8103     if (MI.getOperand(NumOperands - 1).isImm()) {
8104       unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255;
8105       Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
8106       unsigned NewImm = Imm;
8107 
8108       const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs);
8109       if (!table)
8110         table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
8111 
8112       if (Domain == 1) { // PackedSingle
8113         AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
8114       } else if (Domain == 2) { // PackedDouble
8115         AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm);
8116       } else if (Domain == 3) { // PackedInt
8117         if (Subtarget.hasAVX2()) {
8118           // If we are already VPBLENDW use that, else use VPBLENDD.
8119           if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
8120             table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
8121             AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
8122           }
8123         } else {
8124           assert(!Is256 && "128-bit vector expected");
8125           AdjustBlendMask(Imm, ImmWidth, 8, &NewImm);
8126         }
8127       }
8128 
8129       assert(table && table[Domain - 1] && "Unknown domain op");
8130       MI.setDesc(get(table[Domain - 1]));
8131       MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
8132     }
8133     return true;
8134   };
8135 
8136   switch (Opcode) {
8137   case X86::BLENDPDrmi:
8138   case X86::BLENDPDrri:
8139   case X86::VBLENDPDrmi:
8140   case X86::VBLENDPDrri:
8141     return SetBlendDomain(2, false);
8142   case X86::VBLENDPDYrmi:
8143   case X86::VBLENDPDYrri:
8144     return SetBlendDomain(4, true);
8145   case X86::BLENDPSrmi:
8146   case X86::BLENDPSrri:
8147   case X86::VBLENDPSrmi:
8148   case X86::VBLENDPSrri:
8149   case X86::VPBLENDDrmi:
8150   case X86::VPBLENDDrri:
8151     return SetBlendDomain(4, false);
8152   case X86::VBLENDPSYrmi:
8153   case X86::VBLENDPSYrri:
8154   case X86::VPBLENDDYrmi:
8155   case X86::VPBLENDDYrri:
8156     return SetBlendDomain(8, true);
8157   case X86::PBLENDWrmi:
8158   case X86::PBLENDWrri:
8159   case X86::VPBLENDWrmi:
8160   case X86::VPBLENDWrri:
8161     return SetBlendDomain(8, false);
8162   case X86::VPBLENDWYrmi:
8163   case X86::VPBLENDWYrri:
8164     return SetBlendDomain(16, true);
8165   case X86::VPANDDZ128rr:  case X86::VPANDDZ128rm:
8166   case X86::VPANDDZ256rr:  case X86::VPANDDZ256rm:
8167   case X86::VPANDQZ128rr:  case X86::VPANDQZ128rm:
8168   case X86::VPANDQZ256rr:  case X86::VPANDQZ256rm:
8169   case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
8170   case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
8171   case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
8172   case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
8173   case X86::VPORDZ128rr:   case X86::VPORDZ128rm:
8174   case X86::VPORDZ256rr:   case X86::VPORDZ256rm:
8175   case X86::VPORQZ128rr:   case X86::VPORQZ128rm:
8176   case X86::VPORQZ256rr:   case X86::VPORQZ256rm:
8177   case X86::VPXORDZ128rr:  case X86::VPXORDZ128rm:
8178   case X86::VPXORDZ256rr:  case X86::VPXORDZ256rm:
8179   case X86::VPXORQZ128rr:  case X86::VPXORQZ128rm:
8180   case X86::VPXORQZ256rr:  case X86::VPXORQZ256rm: {
8181     // Without DQI, convert EVEX instructions to VEX instructions.
8182     if (Subtarget.hasDQI())
8183       return false;
8184 
8185     const uint16_t *table = lookupAVX512(MI.getOpcode(), dom,
8186                                          ReplaceableCustomAVX512LogicInstrs);
8187     assert(table && "Instruction not found in table?");
8188     // Don't change integer Q instructions to D instructions and
8189     // use D intructions if we started with a PS instruction.
8190     if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
8191       Domain = 4;
8192     MI.setDesc(get(table[Domain - 1]));
8193     return true;
8194   }
8195   case X86::UNPCKHPDrr:
8196   case X86::MOVHLPSrr:
8197     // We just need to commute the instruction which will switch the domains.
8198     if (Domain != dom && Domain != 3 &&
8199         MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
8200         MI.getOperand(0).getSubReg() == 0 &&
8201         MI.getOperand(1).getSubReg() == 0 &&
8202         MI.getOperand(2).getSubReg() == 0) {
8203       commuteInstruction(MI, false);
8204       return true;
8205     }
8206     // We must always return true for MOVHLPSrr.
8207     if (Opcode == X86::MOVHLPSrr)
8208       return true;
8209     break;
8210   case X86::SHUFPDrri: {
8211     if (Domain == 1) {
8212       unsigned Imm = MI.getOperand(3).getImm();
8213       unsigned NewImm = 0x44;
8214       if (Imm & 1) NewImm |= 0x0a;
8215       if (Imm & 2) NewImm |= 0xa0;
8216       MI.getOperand(3).setImm(NewImm);
8217       MI.setDesc(get(X86::SHUFPSrri));
8218     }
8219     return true;
8220   }
8221   }
8222   return false;
8223 }
8224 
8225 std::pair<uint16_t, uint16_t>
8226 X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
8227   uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
8228   unsigned opcode = MI.getOpcode();
8229   uint16_t validDomains = 0;
8230   if (domain) {
8231     // Attempt to match for custom instructions.
8232     validDomains = getExecutionDomainCustom(MI);
8233     if (validDomains)
8234       return std::make_pair(domain, validDomains);
8235 
8236     if (lookup(opcode, domain, ReplaceableInstrs)) {
8237       validDomains = 0xe;
8238     } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
8239       validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
8240     } else if (lookup(opcode, domain, ReplaceableInstrsFP)) {
8241       validDomains = 0x6;
8242     } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
8243       // Insert/extract instructions should only effect domain if AVX2
8244       // is enabled.
8245       if (!Subtarget.hasAVX2())
8246         return std::make_pair(0, 0);
8247       validDomains = 0xe;
8248     } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
8249       validDomains = 0xe;
8250     } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain,
8251                                                   ReplaceableInstrsAVX512DQ)) {
8252       validDomains = 0xe;
8253     } else if (Subtarget.hasDQI()) {
8254       if (const uint16_t *table = lookupAVX512(opcode, domain,
8255                                              ReplaceableInstrsAVX512DQMasked)) {
8256         if (domain == 1 || (domain == 3 && table[3] == opcode))
8257           validDomains = 0xa;
8258         else
8259           validDomains = 0xc;
8260       }
8261     }
8262   }
8263   return std::make_pair(domain, validDomains);
8264 }
8265 
8266 void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
8267   assert(Domain>0 && Domain<4 && "Invalid execution domain");
8268   uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
8269   assert(dom && "Not an SSE instruction");
8270 
8271   // Attempt to match for custom instructions.
8272   if (setExecutionDomainCustom(MI, Domain))
8273     return;
8274 
8275   const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
8276   if (!table) { // try the other table
8277     assert((Subtarget.hasAVX2() || Domain < 3) &&
8278            "256-bit vector operations only available in AVX2");
8279     table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
8280   }
8281   if (!table) { // try the FP table
8282     table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP);
8283     assert((!table || Domain < 3) &&
8284            "Can only select PackedSingle or PackedDouble");
8285   }
8286   if (!table) { // try the other table
8287     assert(Subtarget.hasAVX2() &&
8288            "256-bit insert/extract only available in AVX2");
8289     table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
8290   }
8291   if (!table) { // try the AVX512 table
8292     assert(Subtarget.hasAVX512() && "Requires AVX-512");
8293     table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
8294     // Don't change integer Q instructions to D instructions.
8295     if (table && Domain == 3 && table[3] == MI.getOpcode())
8296       Domain = 4;
8297   }
8298   if (!table) { // try the AVX512DQ table
8299     assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
8300     table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
8301     // Don't change integer Q instructions to D instructions and
8302     // use D instructions if we started with a PS instruction.
8303     if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
8304       Domain = 4;
8305   }
8306   if (!table) { // try the AVX512DQMasked table
8307     assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
8308     table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
8309     if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
8310       Domain = 4;
8311   }
8312   assert(table && "Cannot change domain");
8313   MI.setDesc(get(table[Domain - 1]));
8314 }
8315 
8316 /// Return the noop instruction to use for a noop.
8317 MCInst X86InstrInfo::getNop() const {
8318   MCInst Nop;
8319   Nop.setOpcode(X86::NOOP);
8320   return Nop;
8321 }
8322 
8323 bool X86InstrInfo::isHighLatencyDef(int opc) const {
8324   switch (opc) {
8325   default: return false;
8326   case X86::DIVPDrm:
8327   case X86::DIVPDrr:
8328   case X86::DIVPSrm:
8329   case X86::DIVPSrr:
8330   case X86::DIVSDrm:
8331   case X86::DIVSDrm_Int:
8332   case X86::DIVSDrr:
8333   case X86::DIVSDrr_Int:
8334   case X86::DIVSSrm:
8335   case X86::DIVSSrm_Int:
8336   case X86::DIVSSrr:
8337   case X86::DIVSSrr_Int:
8338   case X86::SQRTPDm:
8339   case X86::SQRTPDr:
8340   case X86::SQRTPSm:
8341   case X86::SQRTPSr:
8342   case X86::SQRTSDm:
8343   case X86::SQRTSDm_Int:
8344   case X86::SQRTSDr:
8345   case X86::SQRTSDr_Int:
8346   case X86::SQRTSSm:
8347   case X86::SQRTSSm_Int:
8348   case X86::SQRTSSr:
8349   case X86::SQRTSSr_Int:
8350   // AVX instructions with high latency
8351   case X86::VDIVPDrm:
8352   case X86::VDIVPDrr:
8353   case X86::VDIVPDYrm:
8354   case X86::VDIVPDYrr:
8355   case X86::VDIVPSrm:
8356   case X86::VDIVPSrr:
8357   case X86::VDIVPSYrm:
8358   case X86::VDIVPSYrr:
8359   case X86::VDIVSDrm:
8360   case X86::VDIVSDrm_Int:
8361   case X86::VDIVSDrr:
8362   case X86::VDIVSDrr_Int:
8363   case X86::VDIVSSrm:
8364   case X86::VDIVSSrm_Int:
8365   case X86::VDIVSSrr:
8366   case X86::VDIVSSrr_Int:
8367   case X86::VSQRTPDm:
8368   case X86::VSQRTPDr:
8369   case X86::VSQRTPDYm:
8370   case X86::VSQRTPDYr:
8371   case X86::VSQRTPSm:
8372   case X86::VSQRTPSr:
8373   case X86::VSQRTPSYm:
8374   case X86::VSQRTPSYr:
8375   case X86::VSQRTSDm:
8376   case X86::VSQRTSDm_Int:
8377   case X86::VSQRTSDr:
8378   case X86::VSQRTSDr_Int:
8379   case X86::VSQRTSSm:
8380   case X86::VSQRTSSm_Int:
8381   case X86::VSQRTSSr:
8382   case X86::VSQRTSSr_Int:
8383   // AVX512 instructions with high latency
8384   case X86::VDIVPDZ128rm:
8385   case X86::VDIVPDZ128rmb:
8386   case X86::VDIVPDZ128rmbk:
8387   case X86::VDIVPDZ128rmbkz:
8388   case X86::VDIVPDZ128rmk:
8389   case X86::VDIVPDZ128rmkz:
8390   case X86::VDIVPDZ128rr:
8391   case X86::VDIVPDZ128rrk:
8392   case X86::VDIVPDZ128rrkz:
8393   case X86::VDIVPDZ256rm:
8394   case X86::VDIVPDZ256rmb:
8395   case X86::VDIVPDZ256rmbk:
8396   case X86::VDIVPDZ256rmbkz:
8397   case X86::VDIVPDZ256rmk:
8398   case X86::VDIVPDZ256rmkz:
8399   case X86::VDIVPDZ256rr:
8400   case X86::VDIVPDZ256rrk:
8401   case X86::VDIVPDZ256rrkz:
8402   case X86::VDIVPDZrrb:
8403   case X86::VDIVPDZrrbk:
8404   case X86::VDIVPDZrrbkz:
8405   case X86::VDIVPDZrm:
8406   case X86::VDIVPDZrmb:
8407   case X86::VDIVPDZrmbk:
8408   case X86::VDIVPDZrmbkz:
8409   case X86::VDIVPDZrmk:
8410   case X86::VDIVPDZrmkz:
8411   case X86::VDIVPDZrr:
8412   case X86::VDIVPDZrrk:
8413   case X86::VDIVPDZrrkz:
8414   case X86::VDIVPSZ128rm:
8415   case X86::VDIVPSZ128rmb:
8416   case X86::VDIVPSZ128rmbk:
8417   case X86::VDIVPSZ128rmbkz:
8418   case X86::VDIVPSZ128rmk:
8419   case X86::VDIVPSZ128rmkz:
8420   case X86::VDIVPSZ128rr:
8421   case X86::VDIVPSZ128rrk:
8422   case X86::VDIVPSZ128rrkz:
8423   case X86::VDIVPSZ256rm:
8424   case X86::VDIVPSZ256rmb:
8425   case X86::VDIVPSZ256rmbk:
8426   case X86::VDIVPSZ256rmbkz:
8427   case X86::VDIVPSZ256rmk:
8428   case X86::VDIVPSZ256rmkz:
8429   case X86::VDIVPSZ256rr:
8430   case X86::VDIVPSZ256rrk:
8431   case X86::VDIVPSZ256rrkz:
8432   case X86::VDIVPSZrrb:
8433   case X86::VDIVPSZrrbk:
8434   case X86::VDIVPSZrrbkz:
8435   case X86::VDIVPSZrm:
8436   case X86::VDIVPSZrmb:
8437   case X86::VDIVPSZrmbk:
8438   case X86::VDIVPSZrmbkz:
8439   case X86::VDIVPSZrmk:
8440   case X86::VDIVPSZrmkz:
8441   case X86::VDIVPSZrr:
8442   case X86::VDIVPSZrrk:
8443   case X86::VDIVPSZrrkz:
8444   case X86::VDIVSDZrm:
8445   case X86::VDIVSDZrr:
8446   case X86::VDIVSDZrm_Int:
8447   case X86::VDIVSDZrm_Intk:
8448   case X86::VDIVSDZrm_Intkz:
8449   case X86::VDIVSDZrr_Int:
8450   case X86::VDIVSDZrr_Intk:
8451   case X86::VDIVSDZrr_Intkz:
8452   case X86::VDIVSDZrrb_Int:
8453   case X86::VDIVSDZrrb_Intk:
8454   case X86::VDIVSDZrrb_Intkz:
8455   case X86::VDIVSSZrm:
8456   case X86::VDIVSSZrr:
8457   case X86::VDIVSSZrm_Int:
8458   case X86::VDIVSSZrm_Intk:
8459   case X86::VDIVSSZrm_Intkz:
8460   case X86::VDIVSSZrr_Int:
8461   case X86::VDIVSSZrr_Intk:
8462   case X86::VDIVSSZrr_Intkz:
8463   case X86::VDIVSSZrrb_Int:
8464   case X86::VDIVSSZrrb_Intk:
8465   case X86::VDIVSSZrrb_Intkz:
8466   case X86::VSQRTPDZ128m:
8467   case X86::VSQRTPDZ128mb:
8468   case X86::VSQRTPDZ128mbk:
8469   case X86::VSQRTPDZ128mbkz:
8470   case X86::VSQRTPDZ128mk:
8471   case X86::VSQRTPDZ128mkz:
8472   case X86::VSQRTPDZ128r:
8473   case X86::VSQRTPDZ128rk:
8474   case X86::VSQRTPDZ128rkz:
8475   case X86::VSQRTPDZ256m:
8476   case X86::VSQRTPDZ256mb:
8477   case X86::VSQRTPDZ256mbk:
8478   case X86::VSQRTPDZ256mbkz:
8479   case X86::VSQRTPDZ256mk:
8480   case X86::VSQRTPDZ256mkz:
8481   case X86::VSQRTPDZ256r:
8482   case X86::VSQRTPDZ256rk:
8483   case X86::VSQRTPDZ256rkz:
8484   case X86::VSQRTPDZm:
8485   case X86::VSQRTPDZmb:
8486   case X86::VSQRTPDZmbk:
8487   case X86::VSQRTPDZmbkz:
8488   case X86::VSQRTPDZmk:
8489   case X86::VSQRTPDZmkz:
8490   case X86::VSQRTPDZr:
8491   case X86::VSQRTPDZrb:
8492   case X86::VSQRTPDZrbk:
8493   case X86::VSQRTPDZrbkz:
8494   case X86::VSQRTPDZrk:
8495   case X86::VSQRTPDZrkz:
8496   case X86::VSQRTPSZ128m:
8497   case X86::VSQRTPSZ128mb:
8498   case X86::VSQRTPSZ128mbk:
8499   case X86::VSQRTPSZ128mbkz:
8500   case X86::VSQRTPSZ128mk:
8501   case X86::VSQRTPSZ128mkz:
8502   case X86::VSQRTPSZ128r:
8503   case X86::VSQRTPSZ128rk:
8504   case X86::VSQRTPSZ128rkz:
8505   case X86::VSQRTPSZ256m:
8506   case X86::VSQRTPSZ256mb:
8507   case X86::VSQRTPSZ256mbk:
8508   case X86::VSQRTPSZ256mbkz:
8509   case X86::VSQRTPSZ256mk:
8510   case X86::VSQRTPSZ256mkz:
8511   case X86::VSQRTPSZ256r:
8512   case X86::VSQRTPSZ256rk:
8513   case X86::VSQRTPSZ256rkz:
8514   case X86::VSQRTPSZm:
8515   case X86::VSQRTPSZmb:
8516   case X86::VSQRTPSZmbk:
8517   case X86::VSQRTPSZmbkz:
8518   case X86::VSQRTPSZmk:
8519   case X86::VSQRTPSZmkz:
8520   case X86::VSQRTPSZr:
8521   case X86::VSQRTPSZrb:
8522   case X86::VSQRTPSZrbk:
8523   case X86::VSQRTPSZrbkz:
8524   case X86::VSQRTPSZrk:
8525   case X86::VSQRTPSZrkz:
8526   case X86::VSQRTSDZm:
8527   case X86::VSQRTSDZm_Int:
8528   case X86::VSQRTSDZm_Intk:
8529   case X86::VSQRTSDZm_Intkz:
8530   case X86::VSQRTSDZr:
8531   case X86::VSQRTSDZr_Int:
8532   case X86::VSQRTSDZr_Intk:
8533   case X86::VSQRTSDZr_Intkz:
8534   case X86::VSQRTSDZrb_Int:
8535   case X86::VSQRTSDZrb_Intk:
8536   case X86::VSQRTSDZrb_Intkz:
8537   case X86::VSQRTSSZm:
8538   case X86::VSQRTSSZm_Int:
8539   case X86::VSQRTSSZm_Intk:
8540   case X86::VSQRTSSZm_Intkz:
8541   case X86::VSQRTSSZr:
8542   case X86::VSQRTSSZr_Int:
8543   case X86::VSQRTSSZr_Intk:
8544   case X86::VSQRTSSZr_Intkz:
8545   case X86::VSQRTSSZrb_Int:
8546   case X86::VSQRTSSZrb_Intk:
8547   case X86::VSQRTSSZrb_Intkz:
8548 
8549   case X86::VGATHERDPDYrm:
8550   case X86::VGATHERDPDZ128rm:
8551   case X86::VGATHERDPDZ256rm:
8552   case X86::VGATHERDPDZrm:
8553   case X86::VGATHERDPDrm:
8554   case X86::VGATHERDPSYrm:
8555   case X86::VGATHERDPSZ128rm:
8556   case X86::VGATHERDPSZ256rm:
8557   case X86::VGATHERDPSZrm:
8558   case X86::VGATHERDPSrm:
8559   case X86::VGATHERPF0DPDm:
8560   case X86::VGATHERPF0DPSm:
8561   case X86::VGATHERPF0QPDm:
8562   case X86::VGATHERPF0QPSm:
8563   case X86::VGATHERPF1DPDm:
8564   case X86::VGATHERPF1DPSm:
8565   case X86::VGATHERPF1QPDm:
8566   case X86::VGATHERPF1QPSm:
8567   case X86::VGATHERQPDYrm:
8568   case X86::VGATHERQPDZ128rm:
8569   case X86::VGATHERQPDZ256rm:
8570   case X86::VGATHERQPDZrm:
8571   case X86::VGATHERQPDrm:
8572   case X86::VGATHERQPSYrm:
8573   case X86::VGATHERQPSZ128rm:
8574   case X86::VGATHERQPSZ256rm:
8575   case X86::VGATHERQPSZrm:
8576   case X86::VGATHERQPSrm:
8577   case X86::VPGATHERDDYrm:
8578   case X86::VPGATHERDDZ128rm:
8579   case X86::VPGATHERDDZ256rm:
8580   case X86::VPGATHERDDZrm:
8581   case X86::VPGATHERDDrm:
8582   case X86::VPGATHERDQYrm:
8583   case X86::VPGATHERDQZ128rm:
8584   case X86::VPGATHERDQZ256rm:
8585   case X86::VPGATHERDQZrm:
8586   case X86::VPGATHERDQrm:
8587   case X86::VPGATHERQDYrm:
8588   case X86::VPGATHERQDZ128rm:
8589   case X86::VPGATHERQDZ256rm:
8590   case X86::VPGATHERQDZrm:
8591   case X86::VPGATHERQDrm:
8592   case X86::VPGATHERQQYrm:
8593   case X86::VPGATHERQQZ128rm:
8594   case X86::VPGATHERQQZ256rm:
8595   case X86::VPGATHERQQZrm:
8596   case X86::VPGATHERQQrm:
8597   case X86::VSCATTERDPDZ128mr:
8598   case X86::VSCATTERDPDZ256mr:
8599   case X86::VSCATTERDPDZmr:
8600   case X86::VSCATTERDPSZ128mr:
8601   case X86::VSCATTERDPSZ256mr:
8602   case X86::VSCATTERDPSZmr:
8603   case X86::VSCATTERPF0DPDm:
8604   case X86::VSCATTERPF0DPSm:
8605   case X86::VSCATTERPF0QPDm:
8606   case X86::VSCATTERPF0QPSm:
8607   case X86::VSCATTERPF1DPDm:
8608   case X86::VSCATTERPF1DPSm:
8609   case X86::VSCATTERPF1QPDm:
8610   case X86::VSCATTERPF1QPSm:
8611   case X86::VSCATTERQPDZ128mr:
8612   case X86::VSCATTERQPDZ256mr:
8613   case X86::VSCATTERQPDZmr:
8614   case X86::VSCATTERQPSZ128mr:
8615   case X86::VSCATTERQPSZ256mr:
8616   case X86::VSCATTERQPSZmr:
8617   case X86::VPSCATTERDDZ128mr:
8618   case X86::VPSCATTERDDZ256mr:
8619   case X86::VPSCATTERDDZmr:
8620   case X86::VPSCATTERDQZ128mr:
8621   case X86::VPSCATTERDQZ256mr:
8622   case X86::VPSCATTERDQZmr:
8623   case X86::VPSCATTERQDZ128mr:
8624   case X86::VPSCATTERQDZ256mr:
8625   case X86::VPSCATTERQDZmr:
8626   case X86::VPSCATTERQQZ128mr:
8627   case X86::VPSCATTERQQZ256mr:
8628   case X86::VPSCATTERQQZmr:
8629     return true;
8630   }
8631 }
8632 
8633 bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
8634                                          const MachineRegisterInfo *MRI,
8635                                          const MachineInstr &DefMI,
8636                                          unsigned DefIdx,
8637                                          const MachineInstr &UseMI,
8638                                          unsigned UseIdx) const {
8639   return isHighLatencyDef(DefMI.getOpcode());
8640 }
8641 
8642 bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
8643                                            const MachineBasicBlock *MBB) const {
8644   assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 &&
8645          Inst.getNumDefs() <= 2 && "Reassociation needs binary operators");
8646 
8647   // Integer binary math/logic instructions have a third source operand:
8648   // the EFLAGS register. That operand must be both defined here and never
8649   // used; ie, it must be dead. If the EFLAGS operand is live, then we can
8650   // not change anything because rearranging the operands could affect other
8651   // instructions that depend on the exact status flags (zero, sign, etc.)
8652   // that are set by using these particular operands with this operation.
8653   const MachineOperand *FlagDef = Inst.findRegisterDefOperand(X86::EFLAGS);
8654   assert((Inst.getNumDefs() == 1 || FlagDef) &&
8655          "Implicit def isn't flags?");
8656   if (FlagDef && !FlagDef->isDead())
8657     return false;
8658 
8659   return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
8660 }
8661 
8662 // TODO: There are many more machine instruction opcodes to match:
8663 //       1. Other data types (integer, vectors)
8664 //       2. Other math / logic operations (xor, or)
8665 //       3. Other forms of the same operation (intrinsics and other variants)
8666 bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
8667   switch (Inst.getOpcode()) {
8668   case X86::AND8rr:
8669   case X86::AND16rr:
8670   case X86::AND32rr:
8671   case X86::AND64rr:
8672   case X86::OR8rr:
8673   case X86::OR16rr:
8674   case X86::OR32rr:
8675   case X86::OR64rr:
8676   case X86::XOR8rr:
8677   case X86::XOR16rr:
8678   case X86::XOR32rr:
8679   case X86::XOR64rr:
8680   case X86::IMUL16rr:
8681   case X86::IMUL32rr:
8682   case X86::IMUL64rr:
8683   case X86::PANDrr:
8684   case X86::PORrr:
8685   case X86::PXORrr:
8686   case X86::ANDPDrr:
8687   case X86::ANDPSrr:
8688   case X86::ORPDrr:
8689   case X86::ORPSrr:
8690   case X86::XORPDrr:
8691   case X86::XORPSrr:
8692   case X86::PADDBrr:
8693   case X86::PADDWrr:
8694   case X86::PADDDrr:
8695   case X86::PADDQrr:
8696   case X86::PMULLWrr:
8697   case X86::PMULLDrr:
8698   case X86::PMAXSBrr:
8699   case X86::PMAXSDrr:
8700   case X86::PMAXSWrr:
8701   case X86::PMAXUBrr:
8702   case X86::PMAXUDrr:
8703   case X86::PMAXUWrr:
8704   case X86::PMINSBrr:
8705   case X86::PMINSDrr:
8706   case X86::PMINSWrr:
8707   case X86::PMINUBrr:
8708   case X86::PMINUDrr:
8709   case X86::PMINUWrr:
8710   case X86::VPANDrr:
8711   case X86::VPANDYrr:
8712   case X86::VPANDDZ128rr:
8713   case X86::VPANDDZ256rr:
8714   case X86::VPANDDZrr:
8715   case X86::VPANDQZ128rr:
8716   case X86::VPANDQZ256rr:
8717   case X86::VPANDQZrr:
8718   case X86::VPORrr:
8719   case X86::VPORYrr:
8720   case X86::VPORDZ128rr:
8721   case X86::VPORDZ256rr:
8722   case X86::VPORDZrr:
8723   case X86::VPORQZ128rr:
8724   case X86::VPORQZ256rr:
8725   case X86::VPORQZrr:
8726   case X86::VPXORrr:
8727   case X86::VPXORYrr:
8728   case X86::VPXORDZ128rr:
8729   case X86::VPXORDZ256rr:
8730   case X86::VPXORDZrr:
8731   case X86::VPXORQZ128rr:
8732   case X86::VPXORQZ256rr:
8733   case X86::VPXORQZrr:
8734   case X86::VANDPDrr:
8735   case X86::VANDPSrr:
8736   case X86::VANDPDYrr:
8737   case X86::VANDPSYrr:
8738   case X86::VANDPDZ128rr:
8739   case X86::VANDPSZ128rr:
8740   case X86::VANDPDZ256rr:
8741   case X86::VANDPSZ256rr:
8742   case X86::VANDPDZrr:
8743   case X86::VANDPSZrr:
8744   case X86::VORPDrr:
8745   case X86::VORPSrr:
8746   case X86::VORPDYrr:
8747   case X86::VORPSYrr:
8748   case X86::VORPDZ128rr:
8749   case X86::VORPSZ128rr:
8750   case X86::VORPDZ256rr:
8751   case X86::VORPSZ256rr:
8752   case X86::VORPDZrr:
8753   case X86::VORPSZrr:
8754   case X86::VXORPDrr:
8755   case X86::VXORPSrr:
8756   case X86::VXORPDYrr:
8757   case X86::VXORPSYrr:
8758   case X86::VXORPDZ128rr:
8759   case X86::VXORPSZ128rr:
8760   case X86::VXORPDZ256rr:
8761   case X86::VXORPSZ256rr:
8762   case X86::VXORPDZrr:
8763   case X86::VXORPSZrr:
8764   case X86::KADDBrr:
8765   case X86::KADDWrr:
8766   case X86::KADDDrr:
8767   case X86::KADDQrr:
8768   case X86::KANDBrr:
8769   case X86::KANDWrr:
8770   case X86::KANDDrr:
8771   case X86::KANDQrr:
8772   case X86::KORBrr:
8773   case X86::KORWrr:
8774   case X86::KORDrr:
8775   case X86::KORQrr:
8776   case X86::KXORBrr:
8777   case X86::KXORWrr:
8778   case X86::KXORDrr:
8779   case X86::KXORQrr:
8780   case X86::VPADDBrr:
8781   case X86::VPADDWrr:
8782   case X86::VPADDDrr:
8783   case X86::VPADDQrr:
8784   case X86::VPADDBYrr:
8785   case X86::VPADDWYrr:
8786   case X86::VPADDDYrr:
8787   case X86::VPADDQYrr:
8788   case X86::VPADDBZ128rr:
8789   case X86::VPADDWZ128rr:
8790   case X86::VPADDDZ128rr:
8791   case X86::VPADDQZ128rr:
8792   case X86::VPADDBZ256rr:
8793   case X86::VPADDWZ256rr:
8794   case X86::VPADDDZ256rr:
8795   case X86::VPADDQZ256rr:
8796   case X86::VPADDBZrr:
8797   case X86::VPADDWZrr:
8798   case X86::VPADDDZrr:
8799   case X86::VPADDQZrr:
8800   case X86::VPMULLWrr:
8801   case X86::VPMULLWYrr:
8802   case X86::VPMULLWZ128rr:
8803   case X86::VPMULLWZ256rr:
8804   case X86::VPMULLWZrr:
8805   case X86::VPMULLDrr:
8806   case X86::VPMULLDYrr:
8807   case X86::VPMULLDZ128rr:
8808   case X86::VPMULLDZ256rr:
8809   case X86::VPMULLDZrr:
8810   case X86::VPMULLQZ128rr:
8811   case X86::VPMULLQZ256rr:
8812   case X86::VPMULLQZrr:
8813   case X86::VPMAXSBrr:
8814   case X86::VPMAXSBYrr:
8815   case X86::VPMAXSBZ128rr:
8816   case X86::VPMAXSBZ256rr:
8817   case X86::VPMAXSBZrr:
8818   case X86::VPMAXSDrr:
8819   case X86::VPMAXSDYrr:
8820   case X86::VPMAXSDZ128rr:
8821   case X86::VPMAXSDZ256rr:
8822   case X86::VPMAXSDZrr:
8823   case X86::VPMAXSQZ128rr:
8824   case X86::VPMAXSQZ256rr:
8825   case X86::VPMAXSQZrr:
8826   case X86::VPMAXSWrr:
8827   case X86::VPMAXSWYrr:
8828   case X86::VPMAXSWZ128rr:
8829   case X86::VPMAXSWZ256rr:
8830   case X86::VPMAXSWZrr:
8831   case X86::VPMAXUBrr:
8832   case X86::VPMAXUBYrr:
8833   case X86::VPMAXUBZ128rr:
8834   case X86::VPMAXUBZ256rr:
8835   case X86::VPMAXUBZrr:
8836   case X86::VPMAXUDrr:
8837   case X86::VPMAXUDYrr:
8838   case X86::VPMAXUDZ128rr:
8839   case X86::VPMAXUDZ256rr:
8840   case X86::VPMAXUDZrr:
8841   case X86::VPMAXUQZ128rr:
8842   case X86::VPMAXUQZ256rr:
8843   case X86::VPMAXUQZrr:
8844   case X86::VPMAXUWrr:
8845   case X86::VPMAXUWYrr:
8846   case X86::VPMAXUWZ128rr:
8847   case X86::VPMAXUWZ256rr:
8848   case X86::VPMAXUWZrr:
8849   case X86::VPMINSBrr:
8850   case X86::VPMINSBYrr:
8851   case X86::VPMINSBZ128rr:
8852   case X86::VPMINSBZ256rr:
8853   case X86::VPMINSBZrr:
8854   case X86::VPMINSDrr:
8855   case X86::VPMINSDYrr:
8856   case X86::VPMINSDZ128rr:
8857   case X86::VPMINSDZ256rr:
8858   case X86::VPMINSDZrr:
8859   case X86::VPMINSQZ128rr:
8860   case X86::VPMINSQZ256rr:
8861   case X86::VPMINSQZrr:
8862   case X86::VPMINSWrr:
8863   case X86::VPMINSWYrr:
8864   case X86::VPMINSWZ128rr:
8865   case X86::VPMINSWZ256rr:
8866   case X86::VPMINSWZrr:
8867   case X86::VPMINUBrr:
8868   case X86::VPMINUBYrr:
8869   case X86::VPMINUBZ128rr:
8870   case X86::VPMINUBZ256rr:
8871   case X86::VPMINUBZrr:
8872   case X86::VPMINUDrr:
8873   case X86::VPMINUDYrr:
8874   case X86::VPMINUDZ128rr:
8875   case X86::VPMINUDZ256rr:
8876   case X86::VPMINUDZrr:
8877   case X86::VPMINUQZ128rr:
8878   case X86::VPMINUQZ256rr:
8879   case X86::VPMINUQZrr:
8880   case X86::VPMINUWrr:
8881   case X86::VPMINUWYrr:
8882   case X86::VPMINUWZ128rr:
8883   case X86::VPMINUWZ256rr:
8884   case X86::VPMINUWZrr:
8885   // Normal min/max instructions are not commutative because of NaN and signed
8886   // zero semantics, but these are. Thus, there's no need to check for global
8887   // relaxed math; the instructions themselves have the properties we need.
8888   case X86::MAXCPDrr:
8889   case X86::MAXCPSrr:
8890   case X86::MAXCSDrr:
8891   case X86::MAXCSSrr:
8892   case X86::MINCPDrr:
8893   case X86::MINCPSrr:
8894   case X86::MINCSDrr:
8895   case X86::MINCSSrr:
8896   case X86::VMAXCPDrr:
8897   case X86::VMAXCPSrr:
8898   case X86::VMAXCPDYrr:
8899   case X86::VMAXCPSYrr:
8900   case X86::VMAXCPDZ128rr:
8901   case X86::VMAXCPSZ128rr:
8902   case X86::VMAXCPDZ256rr:
8903   case X86::VMAXCPSZ256rr:
8904   case X86::VMAXCPDZrr:
8905   case X86::VMAXCPSZrr:
8906   case X86::VMAXCSDrr:
8907   case X86::VMAXCSSrr:
8908   case X86::VMAXCSDZrr:
8909   case X86::VMAXCSSZrr:
8910   case X86::VMINCPDrr:
8911   case X86::VMINCPSrr:
8912   case X86::VMINCPDYrr:
8913   case X86::VMINCPSYrr:
8914   case X86::VMINCPDZ128rr:
8915   case X86::VMINCPSZ128rr:
8916   case X86::VMINCPDZ256rr:
8917   case X86::VMINCPSZ256rr:
8918   case X86::VMINCPDZrr:
8919   case X86::VMINCPSZrr:
8920   case X86::VMINCSDrr:
8921   case X86::VMINCSSrr:
8922   case X86::VMINCSDZrr:
8923   case X86::VMINCSSZrr:
8924   case X86::VMAXCPHZ128rr:
8925   case X86::VMAXCPHZ256rr:
8926   case X86::VMAXCPHZrr:
8927   case X86::VMAXCSHZrr:
8928   case X86::VMINCPHZ128rr:
8929   case X86::VMINCPHZ256rr:
8930   case X86::VMINCPHZrr:
8931   case X86::VMINCSHZrr:
8932     return true;
8933   case X86::ADDPDrr:
8934   case X86::ADDPSrr:
8935   case X86::ADDSDrr:
8936   case X86::ADDSSrr:
8937   case X86::MULPDrr:
8938   case X86::MULPSrr:
8939   case X86::MULSDrr:
8940   case X86::MULSSrr:
8941   case X86::VADDPDrr:
8942   case X86::VADDPSrr:
8943   case X86::VADDPDYrr:
8944   case X86::VADDPSYrr:
8945   case X86::VADDPDZ128rr:
8946   case X86::VADDPSZ128rr:
8947   case X86::VADDPDZ256rr:
8948   case X86::VADDPSZ256rr:
8949   case X86::VADDPDZrr:
8950   case X86::VADDPSZrr:
8951   case X86::VADDSDrr:
8952   case X86::VADDSSrr:
8953   case X86::VADDSDZrr:
8954   case X86::VADDSSZrr:
8955   case X86::VMULPDrr:
8956   case X86::VMULPSrr:
8957   case X86::VMULPDYrr:
8958   case X86::VMULPSYrr:
8959   case X86::VMULPDZ128rr:
8960   case X86::VMULPSZ128rr:
8961   case X86::VMULPDZ256rr:
8962   case X86::VMULPSZ256rr:
8963   case X86::VMULPDZrr:
8964   case X86::VMULPSZrr:
8965   case X86::VMULSDrr:
8966   case X86::VMULSSrr:
8967   case X86::VMULSDZrr:
8968   case X86::VMULSSZrr:
8969   case X86::VADDPHZ128rr:
8970   case X86::VADDPHZ256rr:
8971   case X86::VADDPHZrr:
8972   case X86::VADDSHZrr:
8973   case X86::VMULPHZ128rr:
8974   case X86::VMULPHZ256rr:
8975   case X86::VMULPHZrr:
8976   case X86::VMULSHZrr:
8977     return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
8978            Inst.getFlag(MachineInstr::MIFlag::FmNsz);
8979   default:
8980     return false;
8981   }
8982 }
8983 
8984 /// If \p DescribedReg overlaps with the MOVrr instruction's destination
8985 /// register then, if possible, describe the value in terms of the source
8986 /// register.
8987 static Optional<ParamLoadedValue>
8988 describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg,
8989                          const TargetRegisterInfo *TRI) {
8990   Register DestReg = MI.getOperand(0).getReg();
8991   Register SrcReg = MI.getOperand(1).getReg();
8992 
8993   auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
8994 
8995   // If the described register is the destination, just return the source.
8996   if (DestReg == DescribedReg)
8997     return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
8998 
8999   // If the described register is a sub-register of the destination register,
9000   // then pick out the source register's corresponding sub-register.
9001   if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) {
9002     Register SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx);
9003     return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr);
9004   }
9005 
9006   // The remaining case to consider is when the described register is a
9007   // super-register of the destination register. MOV8rr and MOV16rr does not
9008   // write to any of the other bytes in the register, meaning that we'd have to
9009   // describe the value using a combination of the source register and the
9010   // non-overlapping bits in the described register, which is not currently
9011   // possible.
9012   if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr ||
9013       !TRI->isSuperRegister(DestReg, DescribedReg))
9014     return None;
9015 
9016   assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case");
9017   return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
9018 }
9019 
9020 Optional<ParamLoadedValue>
9021 X86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const {
9022   const MachineOperand *Op = nullptr;
9023   DIExpression *Expr = nullptr;
9024 
9025   const TargetRegisterInfo *TRI = &getRegisterInfo();
9026 
9027   switch (MI.getOpcode()) {
9028   case X86::LEA32r:
9029   case X86::LEA64r:
9030   case X86::LEA64_32r: {
9031     // We may need to describe a 64-bit parameter with a 32-bit LEA.
9032     if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
9033       return None;
9034 
9035     // Operand 4 could be global address. For now we do not support
9036     // such situation.
9037     if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm())
9038       return None;
9039 
9040     const MachineOperand &Op1 = MI.getOperand(1);
9041     const MachineOperand &Op2 = MI.getOperand(3);
9042     assert(Op2.isReg() && (Op2.getReg() == X86::NoRegister ||
9043                            Register::isPhysicalRegister(Op2.getReg())));
9044 
9045     // Omit situations like:
9046     // %rsi = lea %rsi, 4, ...
9047     if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) ||
9048         Op2.getReg() == MI.getOperand(0).getReg())
9049       return None;
9050     else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister &&
9051               TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) ||
9052              (Op2.getReg() != X86::NoRegister &&
9053               TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg())))
9054       return None;
9055 
9056     int64_t Coef = MI.getOperand(2).getImm();
9057     int64_t Offset = MI.getOperand(4).getImm();
9058     SmallVector<uint64_t, 8> Ops;
9059 
9060     if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) {
9061       Op = &Op1;
9062     } else if (Op1.isFI())
9063       Op = &Op1;
9064 
9065     if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) {
9066       Ops.push_back(dwarf::DW_OP_constu);
9067       Ops.push_back(Coef + 1);
9068       Ops.push_back(dwarf::DW_OP_mul);
9069     } else {
9070       if (Op && Op2.getReg() != X86::NoRegister) {
9071         int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false);
9072         if (dwarfReg < 0)
9073           return None;
9074         else if (dwarfReg < 32) {
9075           Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg);
9076           Ops.push_back(0);
9077         } else {
9078           Ops.push_back(dwarf::DW_OP_bregx);
9079           Ops.push_back(dwarfReg);
9080           Ops.push_back(0);
9081         }
9082       } else if (!Op) {
9083         assert(Op2.getReg() != X86::NoRegister);
9084         Op = &Op2;
9085       }
9086 
9087       if (Coef > 1) {
9088         assert(Op2.getReg() != X86::NoRegister);
9089         Ops.push_back(dwarf::DW_OP_constu);
9090         Ops.push_back(Coef);
9091         Ops.push_back(dwarf::DW_OP_mul);
9092       }
9093 
9094       if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) &&
9095           Op2.getReg() != X86::NoRegister) {
9096         Ops.push_back(dwarf::DW_OP_plus);
9097       }
9098     }
9099 
9100     DIExpression::appendOffset(Ops, Offset);
9101     Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops);
9102 
9103     return ParamLoadedValue(*Op, Expr);;
9104   }
9105   case X86::MOV8ri:
9106   case X86::MOV16ri:
9107     // TODO: Handle MOV8ri and MOV16ri.
9108     return None;
9109   case X86::MOV32ri:
9110   case X86::MOV64ri:
9111   case X86::MOV64ri32:
9112     // MOV32ri may be used for producing zero-extended 32-bit immediates in
9113     // 64-bit parameters, so we need to consider super-registers.
9114     if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
9115       return None;
9116     return ParamLoadedValue(MI.getOperand(1), Expr);
9117   case X86::MOV8rr:
9118   case X86::MOV16rr:
9119   case X86::MOV32rr:
9120   case X86::MOV64rr:
9121     return describeMOVrrLoadedValue(MI, Reg, TRI);
9122   case X86::XOR32rr: {
9123     // 64-bit parameters are zero-materialized using XOR32rr, so also consider
9124     // super-registers.
9125     if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
9126       return None;
9127     if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
9128       return ParamLoadedValue(MachineOperand::CreateImm(0), Expr);
9129     return None;
9130   }
9131   case X86::MOVSX64rr32: {
9132     // We may need to describe the lower 32 bits of the MOVSX; for example, in
9133     // cases like this:
9134     //
9135     //  $ebx = [...]
9136     //  $rdi = MOVSX64rr32 $ebx
9137     //  $esi = MOV32rr $edi
9138     if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg))
9139       return None;
9140 
9141     Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
9142 
9143     // If the described register is the destination register we need to
9144     // sign-extend the source register from 32 bits. The other case we handle
9145     // is when the described register is the 32-bit sub-register of the
9146     // destination register, in case we just need to return the source
9147     // register.
9148     if (Reg == MI.getOperand(0).getReg())
9149       Expr = DIExpression::appendExt(Expr, 32, 64, true);
9150     else
9151       assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) &&
9152              "Unhandled sub-register case for MOVSX64rr32");
9153 
9154     return ParamLoadedValue(MI.getOperand(1), Expr);
9155   }
9156   default:
9157     assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction");
9158     return TargetInstrInfo::describeLoadedValue(MI, Reg);
9159   }
9160 }
9161 
9162 /// This is an architecture-specific helper function of reassociateOps.
9163 /// Set special operand attributes for new instructions after reassociation.
9164 void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
9165                                          MachineInstr &OldMI2,
9166                                          MachineInstr &NewMI1,
9167                                          MachineInstr &NewMI2) const {
9168   // Propagate FP flags from the original instructions.
9169   // But clear poison-generating flags because those may not be valid now.
9170   // TODO: There should be a helper function for copying only fast-math-flags.
9171   uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
9172   NewMI1.setFlags(IntersectedFlags);
9173   NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
9174   NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
9175   NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
9176 
9177   NewMI2.setFlags(IntersectedFlags);
9178   NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
9179   NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
9180   NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
9181 
9182   // Integer instructions may define an implicit EFLAGS dest register operand.
9183   MachineOperand *OldFlagDef1 = OldMI1.findRegisterDefOperand(X86::EFLAGS);
9184   MachineOperand *OldFlagDef2 = OldMI2.findRegisterDefOperand(X86::EFLAGS);
9185 
9186   assert(!OldFlagDef1 == !OldFlagDef2 &&
9187          "Unexpected instruction type for reassociation");
9188 
9189   if (!OldFlagDef1 || !OldFlagDef2)
9190     return;
9191 
9192   assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() &&
9193          "Must have dead EFLAGS operand in reassociable instruction");
9194 
9195   MachineOperand *NewFlagDef1 = NewMI1.findRegisterDefOperand(X86::EFLAGS);
9196   MachineOperand *NewFlagDef2 = NewMI2.findRegisterDefOperand(X86::EFLAGS);
9197 
9198   assert(NewFlagDef1 && NewFlagDef2 &&
9199          "Unexpected operand in reassociable instruction");
9200 
9201   // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
9202   // of this pass or other passes. The EFLAGS operands must be dead in these new
9203   // instructions because the EFLAGS operands in the original instructions must
9204   // be dead in order for reassociation to occur.
9205   NewFlagDef1->setIsDead();
9206   NewFlagDef2->setIsDead();
9207 }
9208 
9209 std::pair<unsigned, unsigned>
9210 X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
9211   return std::make_pair(TF, 0u);
9212 }
9213 
9214 ArrayRef<std::pair<unsigned, const char *>>
9215 X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
9216   using namespace X86II;
9217   static const std::pair<unsigned, const char *> TargetFlags[] = {
9218       {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
9219       {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
9220       {MO_GOT, "x86-got"},
9221       {MO_GOTOFF, "x86-gotoff"},
9222       {MO_GOTPCREL, "x86-gotpcrel"},
9223       {MO_GOTPCREL_NORELAX, "x86-gotpcrel-norelax"},
9224       {MO_PLT, "x86-plt"},
9225       {MO_TLSGD, "x86-tlsgd"},
9226       {MO_TLSLD, "x86-tlsld"},
9227       {MO_TLSLDM, "x86-tlsldm"},
9228       {MO_GOTTPOFF, "x86-gottpoff"},
9229       {MO_INDNTPOFF, "x86-indntpoff"},
9230       {MO_TPOFF, "x86-tpoff"},
9231       {MO_DTPOFF, "x86-dtpoff"},
9232       {MO_NTPOFF, "x86-ntpoff"},
9233       {MO_GOTNTPOFF, "x86-gotntpoff"},
9234       {MO_DLLIMPORT, "x86-dllimport"},
9235       {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
9236       {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
9237       {MO_TLVP, "x86-tlvp"},
9238       {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
9239       {MO_SECREL, "x86-secrel"},
9240       {MO_COFFSTUB, "x86-coffstub"}};
9241   return makeArrayRef(TargetFlags);
9242 }
9243 
9244 namespace {
9245   /// Create Global Base Reg pass. This initializes the PIC
9246   /// global base register for x86-32.
9247   struct CGBR : public MachineFunctionPass {
9248     static char ID;
9249     CGBR() : MachineFunctionPass(ID) {}
9250 
9251     bool runOnMachineFunction(MachineFunction &MF) override {
9252       const X86TargetMachine *TM =
9253         static_cast<const X86TargetMachine *>(&MF.getTarget());
9254       const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
9255 
9256       // Don't do anything in the 64-bit small and kernel code models. They use
9257       // RIP-relative addressing for everything.
9258       if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small ||
9259                             TM->getCodeModel() == CodeModel::Kernel))
9260         return false;
9261 
9262       // Only emit a global base reg in PIC mode.
9263       if (!TM->isPositionIndependent())
9264         return false;
9265 
9266       X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
9267       Register GlobalBaseReg = X86FI->getGlobalBaseReg();
9268 
9269       // If we didn't need a GlobalBaseReg, don't insert code.
9270       if (GlobalBaseReg == 0)
9271         return false;
9272 
9273       // Insert the set of GlobalBaseReg into the first MBB of the function
9274       MachineBasicBlock &FirstMBB = MF.front();
9275       MachineBasicBlock::iterator MBBI = FirstMBB.begin();
9276       DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
9277       MachineRegisterInfo &RegInfo = MF.getRegInfo();
9278       const X86InstrInfo *TII = STI.getInstrInfo();
9279 
9280       Register PC;
9281       if (STI.isPICStyleGOT())
9282         PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
9283       else
9284         PC = GlobalBaseReg;
9285 
9286       if (STI.is64Bit()) {
9287         if (TM->getCodeModel() == CodeModel::Medium) {
9288           // In the medium code model, use a RIP-relative LEA to materialize the
9289           // GOT.
9290           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
9291               .addReg(X86::RIP)
9292               .addImm(0)
9293               .addReg(0)
9294               .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
9295               .addReg(0);
9296         } else if (TM->getCodeModel() == CodeModel::Large) {
9297           // In the large code model, we are aiming for this code, though the
9298           // register allocation may vary:
9299           //   leaq .LN$pb(%rip), %rax
9300           //   movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
9301           //   addq %rcx, %rax
9302           // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
9303           Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
9304           Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
9305           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg)
9306               .addReg(X86::RIP)
9307               .addImm(0)
9308               .addReg(0)
9309               .addSym(MF.getPICBaseSymbol())
9310               .addReg(0);
9311           std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol());
9312           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg)
9313               .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
9314                                  X86II::MO_PIC_BASE_OFFSET);
9315           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC)
9316               .addReg(PBReg, RegState::Kill)
9317               .addReg(GOTReg, RegState::Kill);
9318         } else {
9319           llvm_unreachable("unexpected code model");
9320         }
9321       } else {
9322         // Operand of MovePCtoStack is completely ignored by asm printer. It's
9323         // only used in JIT code emission as displacement to pc.
9324         BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
9325 
9326         // If we're using vanilla 'GOT' PIC style, we should use relative
9327         // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
9328         if (STI.isPICStyleGOT()) {
9329           // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
9330           // %some_register
9331           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
9332               .addReg(PC)
9333               .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
9334                                  X86II::MO_GOT_ABSOLUTE_ADDRESS);
9335         }
9336       }
9337 
9338       return true;
9339     }
9340 
9341     StringRef getPassName() const override {
9342       return "X86 PIC Global Base Reg Initialization";
9343     }
9344 
9345     void getAnalysisUsage(AnalysisUsage &AU) const override {
9346       AU.setPreservesCFG();
9347       MachineFunctionPass::getAnalysisUsage(AU);
9348     }
9349   };
9350 } // namespace
9351 
9352 char CGBR::ID = 0;
9353 FunctionPass*
9354 llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
9355 
9356 namespace {
9357   struct LDTLSCleanup : public MachineFunctionPass {
9358     static char ID;
9359     LDTLSCleanup() : MachineFunctionPass(ID) {}
9360 
9361     bool runOnMachineFunction(MachineFunction &MF) override {
9362       if (skipFunction(MF.getFunction()))
9363         return false;
9364 
9365       X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
9366       if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
9367         // No point folding accesses if there isn't at least two.
9368         return false;
9369       }
9370 
9371       MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
9372       return VisitNode(DT->getRootNode(), 0);
9373     }
9374 
9375     // Visit the dominator subtree rooted at Node in pre-order.
9376     // If TLSBaseAddrReg is non-null, then use that to replace any
9377     // TLS_base_addr instructions. Otherwise, create the register
9378     // when the first such instruction is seen, and then use it
9379     // as we encounter more instructions.
9380     bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
9381       MachineBasicBlock *BB = Node->getBlock();
9382       bool Changed = false;
9383 
9384       // Traverse the current block.
9385       for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
9386            ++I) {
9387         switch (I->getOpcode()) {
9388           case X86::TLS_base_addr32:
9389           case X86::TLS_base_addr64:
9390             if (TLSBaseAddrReg)
9391               I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
9392             else
9393               I = SetRegister(*I, &TLSBaseAddrReg);
9394             Changed = true;
9395             break;
9396           default:
9397             break;
9398         }
9399       }
9400 
9401       // Visit the children of this block in the dominator tree.
9402       for (auto I = Node->begin(), E = Node->end(); I != E; ++I) {
9403         Changed |= VisitNode(*I, TLSBaseAddrReg);
9404       }
9405 
9406       return Changed;
9407     }
9408 
9409     // Replace the TLS_base_addr instruction I with a copy from
9410     // TLSBaseAddrReg, returning the new instruction.
9411     MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
9412                                          unsigned TLSBaseAddrReg) {
9413       MachineFunction *MF = I.getParent()->getParent();
9414       const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
9415       const bool is64Bit = STI.is64Bit();
9416       const X86InstrInfo *TII = STI.getInstrInfo();
9417 
9418       // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
9419       MachineInstr *Copy =
9420           BuildMI(*I.getParent(), I, I.getDebugLoc(),
9421                   TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
9422               .addReg(TLSBaseAddrReg);
9423 
9424       // Erase the TLS_base_addr instruction.
9425       I.eraseFromParent();
9426 
9427       return Copy;
9428     }
9429 
9430     // Create a virtual register in *TLSBaseAddrReg, and populate it by
9431     // inserting a copy instruction after I. Returns the new instruction.
9432     MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
9433       MachineFunction *MF = I.getParent()->getParent();
9434       const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
9435       const bool is64Bit = STI.is64Bit();
9436       const X86InstrInfo *TII = STI.getInstrInfo();
9437 
9438       // Create a virtual register for the TLS base address.
9439       MachineRegisterInfo &RegInfo = MF->getRegInfo();
9440       *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
9441                                                       ? &X86::GR64RegClass
9442                                                       : &X86::GR32RegClass);
9443 
9444       // Insert a copy from RAX/EAX to TLSBaseAddrReg.
9445       MachineInstr *Next = I.getNextNode();
9446       MachineInstr *Copy =
9447           BuildMI(*I.getParent(), Next, I.getDebugLoc(),
9448                   TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
9449               .addReg(is64Bit ? X86::RAX : X86::EAX);
9450 
9451       return Copy;
9452     }
9453 
9454     StringRef getPassName() const override {
9455       return "Local Dynamic TLS Access Clean-up";
9456     }
9457 
9458     void getAnalysisUsage(AnalysisUsage &AU) const override {
9459       AU.setPreservesCFG();
9460       AU.addRequired<MachineDominatorTree>();
9461       MachineFunctionPass::getAnalysisUsage(AU);
9462     }
9463   };
9464 }
9465 
9466 char LDTLSCleanup::ID = 0;
9467 FunctionPass*
9468 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
9469 
9470 /// Constants defining how certain sequences should be outlined.
9471 ///
9472 /// \p MachineOutlinerDefault implies that the function is called with a call
9473 /// instruction, and a return must be emitted for the outlined function frame.
9474 ///
9475 /// That is,
9476 ///
9477 /// I1                                 OUTLINED_FUNCTION:
9478 /// I2 --> call OUTLINED_FUNCTION       I1
9479 /// I3                                  I2
9480 ///                                     I3
9481 ///                                     ret
9482 ///
9483 /// * Call construction overhead: 1 (call instruction)
9484 /// * Frame construction overhead: 1 (return instruction)
9485 ///
9486 /// \p MachineOutlinerTailCall implies that the function is being tail called.
9487 /// A jump is emitted instead of a call, and the return is already present in
9488 /// the outlined sequence. That is,
9489 ///
9490 /// I1                                 OUTLINED_FUNCTION:
9491 /// I2 --> jmp OUTLINED_FUNCTION       I1
9492 /// ret                                I2
9493 ///                                    ret
9494 ///
9495 /// * Call construction overhead: 1 (jump instruction)
9496 /// * Frame construction overhead: 0 (don't need to return)
9497 ///
9498 enum MachineOutlinerClass {
9499   MachineOutlinerDefault,
9500   MachineOutlinerTailCall
9501 };
9502 
9503 outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo(
9504     std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
9505   unsigned SequenceSize =
9506       std::accumulate(RepeatedSequenceLocs[0].front(),
9507                       std::next(RepeatedSequenceLocs[0].back()), 0,
9508                       [](unsigned Sum, const MachineInstr &MI) {
9509                         // FIXME: x86 doesn't implement getInstSizeInBytes, so
9510                         // we can't tell the cost.  Just assume each instruction
9511                         // is one byte.
9512                         if (MI.isDebugInstr() || MI.isKill())
9513                           return Sum;
9514                         return Sum + 1;
9515                       });
9516 
9517   // We check to see if CFI Instructions are present, and if they are
9518   // we find the number of CFI Instructions in the candidates.
9519   unsigned CFICount = 0;
9520   for (auto &I : make_range(RepeatedSequenceLocs[0].front(),
9521                             std::next(RepeatedSequenceLocs[0].back()))) {
9522     if (I.isCFIInstruction())
9523       CFICount++;
9524   }
9525 
9526   // We compare the number of found CFI Instructions to  the number of CFI
9527   // instructions in the parent function for each candidate.  We must check this
9528   // since if we outline one of the CFI instructions in a function, we have to
9529   // outline them all for correctness. If we do not, the address offsets will be
9530   // incorrect between the two sections of the program.
9531   for (outliner::Candidate &C : RepeatedSequenceLocs) {
9532     std::vector<MCCFIInstruction> CFIInstructions =
9533         C.getMF()->getFrameInstructions();
9534 
9535     if (CFICount > 0 && CFICount != CFIInstructions.size())
9536       return outliner::OutlinedFunction();
9537   }
9538 
9539   // FIXME: Use real size in bytes for call and ret instructions.
9540   if (RepeatedSequenceLocs[0].back()->isTerminator()) {
9541     for (outliner::Candidate &C : RepeatedSequenceLocs)
9542       C.setCallInfo(MachineOutlinerTailCall, 1);
9543 
9544     return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
9545                                       0, // Number of bytes to emit frame.
9546                                       MachineOutlinerTailCall // Type of frame.
9547     );
9548   }
9549 
9550   if (CFICount > 0)
9551     return outliner::OutlinedFunction();
9552 
9553   for (outliner::Candidate &C : RepeatedSequenceLocs)
9554     C.setCallInfo(MachineOutlinerDefault, 1);
9555 
9556   return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1,
9557                                     MachineOutlinerDefault);
9558 }
9559 
9560 bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF,
9561                                            bool OutlineFromLinkOnceODRs) const {
9562   const Function &F = MF.getFunction();
9563 
9564   // Does the function use a red zone? If it does, then we can't risk messing
9565   // with the stack.
9566   if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) {
9567     // It could have a red zone. If it does, then we don't want to touch it.
9568     const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
9569     if (!X86FI || X86FI->getUsesRedZone())
9570       return false;
9571   }
9572 
9573   // If we *don't* want to outline from things that could potentially be deduped
9574   // then return false.
9575   if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
9576       return false;
9577 
9578   // This function is viable for outlining, so return true.
9579   return true;
9580 }
9581 
9582 outliner::InstrType
9583 X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT,  unsigned Flags) const {
9584   MachineInstr &MI = *MIT;
9585   // Don't allow debug values to impact outlining type.
9586   if (MI.isDebugInstr() || MI.isIndirectDebugValue())
9587     return outliner::InstrType::Invisible;
9588 
9589   // At this point, KILL instructions don't really tell us much so we can go
9590   // ahead and skip over them.
9591   if (MI.isKill())
9592     return outliner::InstrType::Invisible;
9593 
9594   // Is this a tail call? If yes, we can outline as a tail call.
9595   if (isTailCall(MI))
9596     return outliner::InstrType::Legal;
9597 
9598   // Is this the terminator of a basic block?
9599   if (MI.isTerminator() || MI.isReturn()) {
9600 
9601     // Does its parent have any successors in its MachineFunction?
9602     if (MI.getParent()->succ_empty())
9603       return outliner::InstrType::Legal;
9604 
9605     // It does, so we can't tail call it.
9606     return outliner::InstrType::Illegal;
9607   }
9608 
9609   // Don't outline anything that modifies or reads from the stack pointer.
9610   //
9611   // FIXME: There are instructions which are being manually built without
9612   // explicit uses/defs so we also have to check the MCInstrDesc. We should be
9613   // able to remove the extra checks once those are fixed up. For example,
9614   // sometimes we might get something like %rax = POP64r 1. This won't be
9615   // caught by modifiesRegister or readsRegister even though the instruction
9616   // really ought to be formed so that modifiesRegister/readsRegister would
9617   // catch it.
9618   if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
9619       MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
9620       MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
9621     return outliner::InstrType::Illegal;
9622 
9623   // Outlined calls change the instruction pointer, so don't read from it.
9624   if (MI.readsRegister(X86::RIP, &RI) ||
9625       MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
9626       MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
9627     return outliner::InstrType::Illegal;
9628 
9629   // Positions can't safely be outlined.
9630   if (MI.isPosition())
9631     return outliner::InstrType::Illegal;
9632 
9633   // Make sure none of the operands of this instruction do anything tricky.
9634   for (const MachineOperand &MOP : MI.operands())
9635     if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
9636         MOP.isTargetIndex())
9637       return outliner::InstrType::Illegal;
9638 
9639   return outliner::InstrType::Legal;
9640 }
9641 
9642 void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB,
9643                                           MachineFunction &MF,
9644                                           const outliner::OutlinedFunction &OF)
9645                                           const {
9646   // If we're a tail call, we already have a return, so don't do anything.
9647   if (OF.FrameConstructionID == MachineOutlinerTailCall)
9648     return;
9649 
9650   // We're a normal call, so our sequence doesn't have a return instruction.
9651   // Add it in.
9652   MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RET64));
9653   MBB.insert(MBB.end(), retq);
9654 }
9655 
9656 MachineBasicBlock::iterator
9657 X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
9658                                  MachineBasicBlock::iterator &It,
9659                                  MachineFunction &MF,
9660                                  outliner::Candidate &C) const {
9661   // Is it a tail call?
9662   if (C.CallConstructionID == MachineOutlinerTailCall) {
9663     // Yes, just insert a JMP.
9664     It = MBB.insert(It,
9665                   BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
9666                       .addGlobalAddress(M.getNamedValue(MF.getName())));
9667   } else {
9668     // No, insert a call.
9669     It = MBB.insert(It,
9670                   BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
9671                       .addGlobalAddress(M.getNamedValue(MF.getName())));
9672   }
9673 
9674   return It;
9675 }
9676 
9677 #define GET_INSTRINFO_HELPERS
9678 #include "X86GenInstrInfo.inc"
9679