1 //===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_LIB_TARGET_X86_X86INSTRINFO_H
14 #define LLVM_LIB_TARGET_X86_X86INSTRINFO_H
15 
16 #include "MCTargetDesc/X86BaseInfo.h"
17 #include "X86InstrFMA3Info.h"
18 #include "X86RegisterInfo.h"
19 #include "llvm/CodeGen/ISDOpcodes.h"
20 #include "llvm/CodeGen/TargetInstrInfo.h"
21 #include <vector>
22 
23 #define GET_INSTRINFO_HEADER
24 #include "X86GenInstrInfo.inc"
25 
26 namespace llvm {
27 class X86Subtarget;
28 
29 namespace X86 {
30 
31 enum AsmComments {
32   // For instr that was compressed from EVEX to VEX.
33   AC_EVEX_2_VEX = MachineInstr::TAsmComments
34 };
35 
36 /// Return a pair of condition code for the given predicate and whether
37 /// the instruction operands should be swaped to match the condition code.
38 std::pair<CondCode, bool> getX86ConditionCode(CmpInst::Predicate Predicate);
39 
40 /// Return a cmov opcode for the given register size in bytes, and operand type.
41 unsigned getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand = false);
42 
43 /// Return the source operand # for condition code by \p MCID. If the
44 /// instruction doesn't have a condition code, return -1.
45 int getCondSrcNoFromDesc(const MCInstrDesc &MCID);
46 
47 /// Return the condition code of the instruction. If the instruction doesn't
48 /// have a condition code, return X86::COND_INVALID.
49 CondCode getCondFromMI(const MachineInstr &MI);
50 
51 // Turn JCC instruction into condition code.
52 CondCode getCondFromBranch(const MachineInstr &MI);
53 
54 // Turn SETCC instruction into condition code.
55 CondCode getCondFromSETCC(const MachineInstr &MI);
56 
57 // Turn CMOV instruction into condition code.
58 CondCode getCondFromCMov(const MachineInstr &MI);
59 
60 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
61 /// e.g. turning COND_E to COND_NE.
62 CondCode GetOppositeBranchCondition(CondCode CC);
63 
64 /// Get the VPCMP immediate for the given condition.
65 unsigned getVPCMPImmForCond(ISD::CondCode CC);
66 
67 /// Get the VPCMP immediate if the opcodes are swapped.
68 unsigned getSwappedVPCMPImm(unsigned Imm);
69 
70 /// Get the VPCOM immediate if the opcodes are swapped.
71 unsigned getSwappedVPCOMImm(unsigned Imm);
72 
73 /// Get the VCMP immediate if the opcodes are swapped.
74 unsigned getSwappedVCMPImm(unsigned Imm);
75 
76 /// Check if the instruction is X87 instruction.
77 bool isX87Instruction(MachineInstr &MI);
78 } // namespace X86
79 
80 /// isGlobalStubReference - Return true if the specified TargetFlag operand is
81 /// a reference to a stub for a global, not the global itself.
82 inline static bool isGlobalStubReference(unsigned char TargetFlag) {
83   switch (TargetFlag) {
84   case X86II::MO_DLLIMPORT:               // dllimport stub.
85   case X86II::MO_GOTPCREL:                // rip-relative GOT reference.
86   case X86II::MO_GOTPCREL_NORELAX:        // rip-relative GOT reference.
87   case X86II::MO_GOT:                     // normal GOT reference.
88   case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
89   case X86II::MO_DARWIN_NONLAZY:          // Normal $non_lazy_ptr ref.
90   case X86II::MO_COFFSTUB:                // COFF .refptr stub.
91     return true;
92   default:
93     return false;
94   }
95 }
96 
97 /// isGlobalRelativeToPICBase - Return true if the specified global value
98 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
99 /// is true, the addressing mode has the PIC base register added in (e.g. EBX).
100 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
101   switch (TargetFlag) {
102   case X86II::MO_GOTOFF:                  // isPICStyleGOT: local global.
103   case X86II::MO_GOT:                     // isPICStyleGOT: other global.
104   case X86II::MO_PIC_BASE_OFFSET:         // Darwin local global.
105   case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global.
106   case X86II::MO_TLVP:                    // ??? Pretty sure..
107     return true;
108   default:
109     return false;
110   }
111 }
112 
113 inline static bool isScale(const MachineOperand &MO) {
114   return MO.isImm() && (MO.getImm() == 1 || MO.getImm() == 2 ||
115                         MO.getImm() == 4 || MO.getImm() == 8);
116 }
117 
118 inline static bool isLeaMem(const MachineInstr &MI, unsigned Op) {
119   if (MI.getOperand(Op).isFI())
120     return true;
121   return Op + X86::AddrSegmentReg <= MI.getNumOperands() &&
122          MI.getOperand(Op + X86::AddrBaseReg).isReg() &&
123          isScale(MI.getOperand(Op + X86::AddrScaleAmt)) &&
124          MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
125          (MI.getOperand(Op + X86::AddrDisp).isImm() ||
126           MI.getOperand(Op + X86::AddrDisp).isGlobal() ||
127           MI.getOperand(Op + X86::AddrDisp).isCPI() ||
128           MI.getOperand(Op + X86::AddrDisp).isJTI());
129 }
130 
131 inline static bool isMem(const MachineInstr &MI, unsigned Op) {
132   if (MI.getOperand(Op).isFI())
133     return true;
134   return Op + X86::AddrNumOperands <= MI.getNumOperands() &&
135          MI.getOperand(Op + X86::AddrSegmentReg).isReg() && isLeaMem(MI, Op);
136 }
137 
138 class X86InstrInfo final : public X86GenInstrInfo {
139   X86Subtarget &Subtarget;
140   const X86RegisterInfo RI;
141 
142   virtual void anchor();
143 
144   bool AnalyzeBranchImpl(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
145                          MachineBasicBlock *&FBB,
146                          SmallVectorImpl<MachineOperand> &Cond,
147                          SmallVectorImpl<MachineInstr *> &CondBranches,
148                          bool AllowModify) const;
149 
150 public:
151   explicit X86InstrInfo(X86Subtarget &STI);
152 
153   /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
154   /// such, whenever a client has an instance of instruction info, it should
155   /// always be able to get register info as well (through this method).
156   ///
157   const X86RegisterInfo &getRegisterInfo() const { return RI; }
158 
159   /// Returns the stack pointer adjustment that happens inside the frame
160   /// setup..destroy sequence (e.g. by pushes, or inside the callee).
161   int64_t getFrameAdjustment(const MachineInstr &I) const {
162     assert(isFrameInstr(I));
163     if (isFrameSetup(I))
164       return I.getOperand(2).getImm();
165     return I.getOperand(1).getImm();
166   }
167 
168   /// Sets the stack pointer adjustment made inside the frame made up by this
169   /// instruction.
170   void setFrameAdjustment(MachineInstr &I, int64_t V) const {
171     assert(isFrameInstr(I));
172     if (isFrameSetup(I))
173       I.getOperand(2).setImm(V);
174     else
175       I.getOperand(1).setImm(V);
176   }
177 
178   /// getSPAdjust - This returns the stack pointer adjustment made by
179   /// this instruction. For x86, we need to handle more complex call
180   /// sequences involving PUSHes.
181   int getSPAdjust(const MachineInstr &MI) const override;
182 
183   /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
184   /// extension instruction. That is, it's like a copy where it's legal for the
185   /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
186   /// true, then it's expected the pre-extension value is available as a subreg
187   /// of the result register. This also returns the sub-register index in
188   /// SubIdx.
189   bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg,
190                              Register &DstReg, unsigned &SubIdx) const override;
191 
192   /// Returns true if the instruction has no behavior (specified or otherwise)
193   /// that is based on the value of any of its register operands
194   ///
195   /// Instructions are considered data invariant even if they set EFLAGS.
196   ///
197   /// A classical example of something that is inherently not data invariant is
198   /// an indirect jump -- the destination is loaded into icache based on the
199   /// bits set in the jump destination register.
200   ///
201   /// FIXME: This should become part of our instruction tables.
202   static bool isDataInvariant(MachineInstr &MI);
203 
204   /// Returns true if the instruction has no behavior (specified or otherwise)
205   /// that is based on the value loaded from memory or the value of any
206   /// non-address register operands.
207   ///
208   /// For example, if the latency of the instruction is dependent on the
209   /// particular bits set in any of the registers *or* any of the bits loaded
210   /// from memory.
211   ///
212   /// Instructions are considered data invariant even if they set EFLAGS.
213   ///
214   /// A classical example of something that is inherently not data invariant is
215   /// an indirect jump -- the destination is loaded into icache based on the
216   /// bits set in the jump destination register.
217   ///
218   /// FIXME: This should become part of our instruction tables.
219   static bool isDataInvariantLoad(MachineInstr &MI);
220 
221   unsigned isLoadFromStackSlot(const MachineInstr &MI,
222                                int &FrameIndex) const override;
223   unsigned isLoadFromStackSlot(const MachineInstr &MI,
224                                int &FrameIndex,
225                                unsigned &MemBytes) const override;
226   /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
227   /// stack locations as well.  This uses a heuristic so it isn't
228   /// reliable for correctness.
229   unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
230                                      int &FrameIndex) const override;
231 
232   unsigned isStoreToStackSlot(const MachineInstr &MI,
233                               int &FrameIndex) const override;
234   unsigned isStoreToStackSlot(const MachineInstr &MI,
235                               int &FrameIndex,
236                               unsigned &MemBytes) const override;
237   /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
238   /// stack locations as well.  This uses a heuristic so it isn't
239   /// reliable for correctness.
240   unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
241                                     int &FrameIndex) const override;
242 
243   bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const override;
244   void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
245                      Register DestReg, unsigned SubIdx,
246                      const MachineInstr &Orig,
247                      const TargetRegisterInfo &TRI) const override;
248 
249   /// Given an operand within a MachineInstr, insert preceding code to put it
250   /// into the right format for a particular kind of LEA instruction. This may
251   /// involve using an appropriate super-register instead (with an implicit use
252   /// of the original) or creating a new virtual register and inserting COPY
253   /// instructions to get the data into the right class.
254   ///
255   /// Reference parameters are set to indicate how caller should add this
256   /// operand to the LEA instruction.
257   bool classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
258                       unsigned LEAOpcode, bool AllowSP, Register &NewSrc,
259                       bool &isKill, MachineOperand &ImplicitOp,
260                       LiveVariables *LV, LiveIntervals *LIS) const;
261 
262   /// convertToThreeAddress - This method must be implemented by targets that
263   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
264   /// may be able to convert a two-address instruction into a true
265   /// three-address instruction on demand.  This allows the X86 target (for
266   /// example) to convert ADD and SHL instructions into LEA instructions if they
267   /// would require register copies due to two-addressness.
268   ///
269   /// This method returns a null pointer if the transformation cannot be
270   /// performed, otherwise it returns the new instruction.
271   ///
272   MachineInstr *convertToThreeAddress(MachineInstr &MI, LiveVariables *LV,
273                                       LiveIntervals *LIS) const override;
274 
275   /// Returns true iff the routine could find two commutable operands in the
276   /// given machine instruction.
277   /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
278   /// input values can be re-defined in this method only if the input values
279   /// are not pre-defined, which is designated by the special value
280   /// 'CommuteAnyOperandIndex' assigned to it.
281   /// If both of indices are pre-defined and refer to some operands, then the
282   /// method simply returns true if the corresponding operands are commutable
283   /// and returns false otherwise.
284   ///
285   /// For example, calling this method this way:
286   ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
287   ///     findCommutedOpIndices(MI, Op1, Op2);
288   /// can be interpreted as a query asking to find an operand that would be
289   /// commutable with the operand#1.
290   bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1,
291                              unsigned &SrcOpIdx2) const override;
292 
293   /// Returns true if we have preference on the operands order in MI, the
294   /// commute decision is returned in Commute.
295   bool hasCommutePreference(MachineInstr &MI, bool &Commute) const override;
296 
297   /// Returns an adjusted FMA opcode that must be used in FMA instruction that
298   /// performs the same computations as the given \p MI but which has the
299   /// operands \p SrcOpIdx1 and \p SrcOpIdx2 commuted.
300   /// It may return 0 if it is unsafe to commute the operands.
301   /// Note that a machine instruction (instead of its opcode) is passed as the
302   /// first parameter to make it possible to analyze the instruction's uses and
303   /// commute the first operand of FMA even when it seems unsafe when you look
304   /// at the opcode. For example, it is Ok to commute the first operand of
305   /// VFMADD*SD_Int, if ONLY the lowest 64-bit element of the result is used.
306   ///
307   /// The returned FMA opcode may differ from the opcode in the given \p MI.
308   /// For example, commuting the operands #1 and #3 in the following FMA
309   ///     FMA213 #1, #2, #3
310   /// results into instruction with adjusted opcode:
311   ///     FMA231 #3, #2, #1
312   unsigned
313   getFMA3OpcodeToCommuteOperands(const MachineInstr &MI, unsigned SrcOpIdx1,
314                                  unsigned SrcOpIdx2,
315                                  const X86InstrFMA3Group &FMA3Group) const;
316 
317   // Branch analysis.
318   bool isUnconditionalTailCall(const MachineInstr &MI) const override;
319   bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
320                                   const MachineInstr &TailCall) const override;
321   void replaceBranchWithTailCall(MachineBasicBlock &MBB,
322                                  SmallVectorImpl<MachineOperand> &Cond,
323                                  const MachineInstr &TailCall) const override;
324 
325   bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
326                      MachineBasicBlock *&FBB,
327                      SmallVectorImpl<MachineOperand> &Cond,
328                      bool AllowModify) const override;
329 
330   int getJumpTableIndex(const MachineInstr &MI) const override;
331 
332   std::optional<ExtAddrMode>
333   getAddrModeFromMemoryOp(const MachineInstr &MemI,
334                           const TargetRegisterInfo *TRI) const override;
335 
336   bool getConstValDefinedInReg(const MachineInstr &MI, const Register Reg,
337                                int64_t &ImmVal) const override;
338 
339   bool preservesZeroValueInReg(const MachineInstr *MI,
340                                const Register NullValueReg,
341                                const TargetRegisterInfo *TRI) const override;
342 
343   bool getMemOperandsWithOffsetWidth(
344       const MachineInstr &LdSt,
345       SmallVectorImpl<const MachineOperand *> &BaseOps, int64_t &Offset,
346       bool &OffsetIsScalable, unsigned &Width,
347       const TargetRegisterInfo *TRI) const override;
348   bool analyzeBranchPredicate(MachineBasicBlock &MBB,
349                               TargetInstrInfo::MachineBranchPredicate &MBP,
350                               bool AllowModify = false) const override;
351 
352   unsigned removeBranch(MachineBasicBlock &MBB,
353                         int *BytesRemoved = nullptr) const override;
354   unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
355                         MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
356                         const DebugLoc &DL,
357                         int *BytesAdded = nullptr) const override;
358   bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
359                        Register, Register, Register, int &, int &,
360                        int &) const override;
361   void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
362                     const DebugLoc &DL, Register DstReg,
363                     ArrayRef<MachineOperand> Cond, Register TrueReg,
364                     Register FalseReg) const override;
365   void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
366                    const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg,
367                    bool KillSrc) const override;
368   void storeRegToStackSlot(MachineBasicBlock &MBB,
369                            MachineBasicBlock::iterator MI, Register SrcReg,
370                            bool isKill, int FrameIndex,
371                            const TargetRegisterClass *RC,
372                            const TargetRegisterInfo *TRI,
373                            Register VReg) const override;
374 
375   void loadRegFromStackSlot(MachineBasicBlock &MBB,
376                             MachineBasicBlock::iterator MI, Register DestReg,
377                             int FrameIndex, const TargetRegisterClass *RC,
378                             const TargetRegisterInfo *TRI,
379                             Register VReg) const override;
380 
381   void loadStoreTileReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
382                         unsigned Opc, Register Reg, int FrameIdx,
383                         bool isKill = false) const;
384 
385   bool expandPostRAPseudo(MachineInstr &MI) const override;
386 
387   /// Check whether the target can fold a load that feeds a subreg operand
388   /// (or a subreg operand that feeds a store).
389   bool isSubregFoldable() const override { return true; }
390 
391   /// foldMemoryOperand - If this target supports it, fold a load or store of
392   /// the specified stack slot into the specified machine instruction for the
393   /// specified operand(s).  If this is possible, the target should perform the
394   /// folding and return true, otherwise it should return false.  If it folds
395   /// the instruction, it is likely that the MachineInstruction the iterator
396   /// references has been changed.
397   MachineInstr *
398   foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
399                         ArrayRef<unsigned> Ops,
400                         MachineBasicBlock::iterator InsertPt, int FrameIndex,
401                         LiveIntervals *LIS = nullptr,
402                         VirtRegMap *VRM = nullptr) const override;
403 
404   /// foldMemoryOperand - Same as the previous version except it allows folding
405   /// of any load and store from / to any address, not just from a specific
406   /// stack slot.
407   MachineInstr *foldMemoryOperandImpl(
408       MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
409       MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
410       LiveIntervals *LIS = nullptr) const override;
411 
412   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
413   /// a store or a load and a store into two or more instruction. If this is
414   /// possible, returns true as well as the new instructions by reference.
415   bool
416   unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
417                       bool UnfoldLoad, bool UnfoldStore,
418                       SmallVectorImpl<MachineInstr *> &NewMIs) const override;
419 
420   bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
421                            SmallVectorImpl<SDNode *> &NewNodes) const override;
422 
423   /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
424   /// instruction after load / store are unfolded from an instruction of the
425   /// specified opcode. It returns zero if the specified unfolding is not
426   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
427   /// index of the operand which will hold the register holding the loaded
428   /// value.
429   unsigned
430   getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
431                              unsigned *LoadRegIndex = nullptr) const override;
432 
433   /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
434   /// to determine if two loads are loading from the same base address. It
435   /// should only return true if the base pointers are the same and the
436   /// only differences between the two addresses are the offset. It also returns
437   /// the offsets by reference.
438   bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1,
439                                int64_t &Offset2) const override;
440 
441   /// isSchedulingBoundary - Overrides the isSchedulingBoundary from
442   ///	Codegen/TargetInstrInfo.cpp to make it capable of identifying ENDBR
443   /// intructions and prevent it from being re-scheduled.
444   bool isSchedulingBoundary(const MachineInstr &MI,
445                             const MachineBasicBlock *MBB,
446                             const MachineFunction &MF) const override;
447 
448   /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
449   /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads
450   /// should be scheduled togther. On some targets if two loads are loading from
451   /// addresses in the same cache line, it's better if they are scheduled
452   /// together. This function takes two integers that represent the load offsets
453   /// from the common base address. It returns true if it decides it's desirable
454   /// to schedule the two loads together. "NumLoads" is the number of loads that
455   /// have already been scheduled after Load1.
456   bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1,
457                                int64_t Offset2,
458                                unsigned NumLoads) const override;
459 
460   MCInst getNop() const override;
461 
462   bool
463   reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
464 
465   /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
466   /// instruction that defines the specified register class.
467   bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override;
468 
469   /// True if MI has a condition code def, e.g. EFLAGS, that is
470   /// not marked dead.
471   bool hasLiveCondCodeDef(MachineInstr &MI) const;
472 
473   /// getGlobalBaseReg - Return a virtual register initialized with the
474   /// the global base register value. Output instructions required to
475   /// initialize the register in the function entry block, if necessary.
476   ///
477   unsigned getGlobalBaseReg(MachineFunction *MF) const;
478 
479   std::pair<uint16_t, uint16_t>
480   getExecutionDomain(const MachineInstr &MI) const override;
481 
482   uint16_t getExecutionDomainCustom(const MachineInstr &MI) const;
483 
484   void setExecutionDomain(MachineInstr &MI, unsigned Domain) const override;
485 
486   bool setExecutionDomainCustom(MachineInstr &MI, unsigned Domain) const;
487 
488   unsigned
489   getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
490                                const TargetRegisterInfo *TRI) const override;
491   unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
492                                 const TargetRegisterInfo *TRI) const override;
493   void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
494                                  const TargetRegisterInfo *TRI) const override;
495 
496   MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
497                                       unsigned OpNum,
498                                       ArrayRef<MachineOperand> MOs,
499                                       MachineBasicBlock::iterator InsertPt,
500                                       unsigned Size, Align Alignment,
501                                       bool AllowCommute) const;
502 
503   bool isHighLatencyDef(int opc) const override;
504 
505   bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
506                              const MachineRegisterInfo *MRI,
507                              const MachineInstr &DefMI, unsigned DefIdx,
508                              const MachineInstr &UseMI,
509                              unsigned UseIdx) const override;
510 
511   bool useMachineCombiner() const override { return true; }
512 
513   bool isAssociativeAndCommutative(const MachineInstr &Inst,
514                                    bool Invert) const override;
515 
516   bool hasReassociableOperands(const MachineInstr &Inst,
517                                const MachineBasicBlock *MBB) const override;
518 
519   void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
520                              MachineInstr &NewMI1,
521                              MachineInstr &NewMI2) const override;
522 
523   /// analyzeCompare - For a comparison instruction, return the source registers
524   /// in SrcReg and SrcReg2 if having two register operands, and the value it
525   /// compares against in CmpValue. Return true if the comparison instruction
526   /// can be analyzed.
527   bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
528                       Register &SrcReg2, int64_t &CmpMask,
529                       int64_t &CmpValue) const override;
530 
531   /// optimizeCompareInstr - Check if there exists an earlier instruction that
532   /// operates on the same source operands and sets flags in the same way as
533   /// Compare; remove Compare if possible.
534   bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
535                             Register SrcReg2, int64_t CmpMask, int64_t CmpValue,
536                             const MachineRegisterInfo *MRI) const override;
537 
538   /// optimizeLoadInstr - Try to remove the load by folding it to a register
539   /// operand at the use. We fold the load instructions if and only if the
540   /// def and use are in the same BB. We only look at one load and see
541   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
542   /// defined by the load we are trying to fold. DefMI returns the machine
543   /// instruction that defines FoldAsLoadDefReg, and the function returns
544   /// the machine instruction generated due to folding.
545   MachineInstr *optimizeLoadInstr(MachineInstr &MI,
546                                   const MachineRegisterInfo *MRI,
547                                   Register &FoldAsLoadDefReg,
548                                   MachineInstr *&DefMI) const override;
549 
550   std::pair<unsigned, unsigned>
551   decomposeMachineOperandsTargetFlags(unsigned TF) const override;
552 
553   ArrayRef<std::pair<unsigned, const char *>>
554   getSerializableDirectMachineOperandTargetFlags() const override;
555 
556   std::optional<outliner::OutlinedFunction> getOutliningCandidateInfo(
557       std::vector<outliner::Candidate> &RepeatedSequenceLocs) const override;
558 
559   bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
560                                    bool OutlineFromLinkOnceODRs) const override;
561 
562   outliner::InstrType
563   getOutliningTypeImpl(MachineBasicBlock::iterator &MIT, unsigned Flags) const override;
564 
565   void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
566                           const outliner::OutlinedFunction &OF) const override;
567 
568   MachineBasicBlock::iterator
569   insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
570                      MachineBasicBlock::iterator &It, MachineFunction &MF,
571                      outliner::Candidate &C) const override;
572 
573   bool verifyInstruction(const MachineInstr &MI,
574                          StringRef &ErrInfo) const override;
575 #define GET_INSTRINFO_HELPER_DECLS
576 #include "X86GenInstrInfo.inc"
577 
578   static bool hasLockPrefix(const MachineInstr &MI) {
579     return MI.getDesc().TSFlags & X86II::LOCK;
580   }
581 
582   std::optional<ParamLoadedValue>
583   describeLoadedValue(const MachineInstr &MI, Register Reg) const override;
584 
585 protected:
586   /// Commutes the operands in the given instruction by changing the operands
587   /// order and/or changing the instruction's opcode and/or the immediate value
588   /// operand.
589   ///
590   /// The arguments 'CommuteOpIdx1' and 'CommuteOpIdx2' specify the operands
591   /// to be commuted.
592   ///
593   /// Do not call this method for a non-commutable instruction or
594   /// non-commutable operands.
595   /// Even though the instruction is commutable, the method may still
596   /// fail to commute the operands, null pointer is returned in such cases.
597   MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
598                                        unsigned CommuteOpIdx1,
599                                        unsigned CommuteOpIdx2) const override;
600 
601   /// If the specific machine instruction is a instruction that moves/copies
602   /// value from one register to another register return destination and source
603   /// registers as machine operands.
604   std::optional<DestSourcePair>
605   isCopyInstrImpl(const MachineInstr &MI) const override;
606 
607   /// Return true when there is potentially a faster code sequence for an
608   /// instruction chain ending in \p Root. All potential patterns are listed in
609   /// the \p Pattern vector. Pattern should be sorted in priority order since
610   /// the pattern evaluator stops checking as soon as it finds a faster
611   /// sequence.
612   bool
613   getMachineCombinerPatterns(MachineInstr &Root,
614                              SmallVectorImpl<MachineCombinerPattern> &Patterns,
615                              bool DoRegPressureReduce) const override;
616 
617   /// When getMachineCombinerPatterns() finds potential patterns,
618   /// this function generates the instructions that could replace the
619   /// original code sequence.
620   void genAlternativeCodeSequence(
621       MachineInstr &Root, MachineCombinerPattern Pattern,
622       SmallVectorImpl<MachineInstr *> &InsInstrs,
623       SmallVectorImpl<MachineInstr *> &DelInstrs,
624       DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const override;
625 
626   /// When calculate the latency of the root instruction, accumulate the
627   /// latency of the sequence to the root latency.
628   /// \param Root - Instruction that could be combined with one of its operands
629   /// For X86 instruction (vpmaddwd + vpmaddwd) -> vpdpwssd, the vpmaddwd
630   /// is not in the critical path, so the root latency only include vpmaddwd.
631   bool accumulateInstrSeqToRootLatency(MachineInstr &Root) const override {
632     return false;
633   }
634 
635 private:
636   /// This is a helper for convertToThreeAddress for 8 and 16-bit instructions.
637   /// We use 32-bit LEA to form 3-address code by promoting to a 32-bit
638   /// super-register and then truncating back down to a 8/16-bit sub-register.
639   MachineInstr *convertToThreeAddressWithLEA(unsigned MIOpc, MachineInstr &MI,
640                                              LiveVariables *LV,
641                                              LiveIntervals *LIS,
642                                              bool Is8BitOp) const;
643 
644   /// Handles memory folding for special case instructions, for instance those
645   /// requiring custom manipulation of the address.
646   MachineInstr *foldMemoryOperandCustom(MachineFunction &MF, MachineInstr &MI,
647                                         unsigned OpNum,
648                                         ArrayRef<MachineOperand> MOs,
649                                         MachineBasicBlock::iterator InsertPt,
650                                         unsigned Size, Align Alignment) const;
651 
652   /// isFrameOperand - Return true and the FrameIndex if the specified
653   /// operand and follow operands form a reference to the stack frame.
654   bool isFrameOperand(const MachineInstr &MI, unsigned int Op,
655                       int &FrameIndex) const;
656 
657   /// Returns true iff the routine could find two commutable operands in the
658   /// given machine instruction with 3 vector inputs.
659   /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
660   /// input values can be re-defined in this method only if the input values
661   /// are not pre-defined, which is designated by the special value
662   /// 'CommuteAnyOperandIndex' assigned to it.
663   /// If both of indices are pre-defined and refer to some operands, then the
664   /// method simply returns true if the corresponding operands are commutable
665   /// and returns false otherwise.
666   ///
667   /// For example, calling this method this way:
668   ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
669   ///     findThreeSrcCommutedOpIndices(MI, Op1, Op2);
670   /// can be interpreted as a query asking to find an operand that would be
671   /// commutable with the operand#1.
672   ///
673   /// If IsIntrinsic is set, operand 1 will be ignored for commuting.
674   bool findThreeSrcCommutedOpIndices(const MachineInstr &MI,
675                                      unsigned &SrcOpIdx1,
676                                      unsigned &SrcOpIdx2,
677                                      bool IsIntrinsic = false) const;
678 
679   /// Returns true when instruction \p FlagI produces the same flags as \p OI.
680   /// The caller should pass in the results of calling analyzeCompare on \p OI:
681   /// \p SrcReg, \p SrcReg2, \p ImmMask, \p ImmValue.
682   /// If the flags match \p OI as if it had the input operands swapped then the
683   /// function succeeds and sets \p IsSwapped to true.
684   ///
685   /// Examples of OI, FlagI pairs returning true:
686   ///   CMP %1, 42   and  CMP %1, 42
687   ///   CMP %1, %2   and  %3 = SUB %1, %2
688   ///   TEST %1, %1  and  %2 = SUB %1, 0
689   ///   CMP %1, %2   and  %3 = SUB %2, %1  ; IsSwapped=true
690   bool isRedundantFlagInstr(const MachineInstr &FlagI, Register SrcReg,
691                             Register SrcReg2, int64_t ImmMask, int64_t ImmValue,
692                             const MachineInstr &OI, bool *IsSwapped,
693                             int64_t *ImmDelta) const;
694 };
695 
696 } // namespace llvm
697 
698 #endif
699