1 //==-- X86LoadValueInjectionLoadHardening.cpp - LVI load hardening for x86 --=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// Description: This pass finds Load Value Injection (LVI) gadgets consisting
10 /// of a load from memory (i.e., SOURCE), and any operation that may transmit
11 /// the value loaded from memory over a covert channel, or use the value loaded
12 /// from memory to determine a branch/call target (i.e., SINK). After finding
13 /// all such gadgets in a given function, the pass minimally inserts LFENCE
14 /// instructions in such a manner that the following property is satisfied: for
15 /// all SOURCE+SINK pairs, all paths in the CFG from SOURCE to SINK contain at
16 /// least one LFENCE instruction. The algorithm that implements this minimal
17 /// insertion is influenced by an academic paper that minimally inserts memory
18 /// fences for high-performance concurrent programs:
19 ///         http://www.cs.ucr.edu/~lesani/companion/oopsla15/OOPSLA15.pdf
20 /// The algorithm implemented in this pass is as follows:
21 /// 1. Build a condensed CFG (i.e., a GadgetGraph) consisting only of the
22 /// following components:
23 ///    - SOURCE instructions (also includes function arguments)
24 ///    - SINK instructions
25 ///    - Basic block entry points
26 ///    - Basic block terminators
27 ///    - LFENCE instructions
28 /// 2. Analyze the GadgetGraph to determine which SOURCE+SINK pairs (i.e.,
29 /// gadgets) are already mitigated by existing LFENCEs. If all gadgets have been
30 /// mitigated, go to step 6.
31 /// 3. Use a heuristic or plugin to approximate minimal LFENCE insertion.
32 /// 4. Insert one LFENCE along each CFG edge that was cut in step 3.
33 /// 5. Go to step 2.
34 /// 6. If any LFENCEs were inserted, return `true` from runOnMachineFunction()
35 /// to tell LLVM that the function was modified.
36 ///
37 //===----------------------------------------------------------------------===//
38 
39 #include "ImmutableGraph.h"
40 #include "X86.h"
41 #include "X86Subtarget.h"
42 #include "X86TargetMachine.h"
43 #include "llvm/ADT/DenseMap.h"
44 #include "llvm/ADT/STLExtras.h"
45 #include "llvm/ADT/SmallSet.h"
46 #include "llvm/ADT/Statistic.h"
47 #include "llvm/ADT/StringRef.h"
48 #include "llvm/CodeGen/MachineBasicBlock.h"
49 #include "llvm/CodeGen/MachineDominanceFrontier.h"
50 #include "llvm/CodeGen/MachineDominators.h"
51 #include "llvm/CodeGen/MachineFunction.h"
52 #include "llvm/CodeGen/MachineFunctionPass.h"
53 #include "llvm/CodeGen/MachineInstr.h"
54 #include "llvm/CodeGen/MachineInstrBuilder.h"
55 #include "llvm/CodeGen/MachineLoopInfo.h"
56 #include "llvm/CodeGen/MachineRegisterInfo.h"
57 #include "llvm/CodeGen/RDFGraph.h"
58 #include "llvm/CodeGen/RDFLiveness.h"
59 #include "llvm/InitializePasses.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/DOTGraphTraits.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/DynamicLibrary.h"
64 #include "llvm/Support/GraphWriter.h"
65 #include "llvm/Support/raw_ostream.h"
66 
67 using namespace llvm;
68 
69 #define PASS_KEY "x86-lvi-load"
70 #define DEBUG_TYPE PASS_KEY
71 
72 STATISTIC(NumFences, "Number of LFENCEs inserted for LVI mitigation");
73 STATISTIC(NumFunctionsConsidered, "Number of functions analyzed");
74 STATISTIC(NumFunctionsMitigated, "Number of functions for which mitigations "
75                                  "were deployed");
76 STATISTIC(NumGadgets, "Number of LVI gadgets detected during analysis");
77 
78 static cl::opt<std::string> OptimizePluginPath(
79     PASS_KEY "-opt-plugin",
80     cl::desc("Specify a plugin to optimize LFENCE insertion"), cl::Hidden);
81 
82 static cl::opt<bool> NoConditionalBranches(
83     PASS_KEY "-no-cbranch",
84     cl::desc("Don't treat conditional branches as disclosure gadgets. This "
85              "may improve performance, at the cost of security."),
86     cl::init(false), cl::Hidden);
87 
88 static cl::opt<bool> EmitDot(
89     PASS_KEY "-dot",
90     cl::desc(
91         "For each function, emit a dot graph depicting potential LVI gadgets"),
92     cl::init(false), cl::Hidden);
93 
94 static cl::opt<bool> EmitDotOnly(
95     PASS_KEY "-dot-only",
96     cl::desc("For each function, emit a dot graph depicting potential LVI "
97              "gadgets, and do not insert any fences"),
98     cl::init(false), cl::Hidden);
99 
100 static cl::opt<bool> EmitDotVerify(
101     PASS_KEY "-dot-verify",
102     cl::desc("For each function, emit a dot graph to stdout depicting "
103              "potential LVI gadgets, used for testing purposes only"),
104     cl::init(false), cl::Hidden);
105 
106 static llvm::sys::DynamicLibrary OptimizeDL;
107 typedef int (*OptimizeCutT)(unsigned int *Nodes, unsigned int NodesSize,
108                             unsigned int *Edges, int *EdgeValues,
109                             int *CutEdges /* out */, unsigned int EdgesSize);
110 static OptimizeCutT OptimizeCut = nullptr;
111 
112 namespace {
113 
114 struct MachineGadgetGraph : ImmutableGraph<MachineInstr *, int> {
115   static constexpr int GadgetEdgeSentinel = -1;
116   static constexpr MachineInstr *const ArgNodeSentinel = nullptr;
117 
118   using GraphT = ImmutableGraph<MachineInstr *, int>;
119   using Node = typename GraphT::Node;
120   using Edge = typename GraphT::Edge;
121   using size_type = typename GraphT::size_type;
122   MachineGadgetGraph(std::unique_ptr<Node[]> Nodes,
123                      std::unique_ptr<Edge[]> Edges, size_type NodesSize,
124                      size_type EdgesSize, int NumFences = 0, int NumGadgets = 0)
125       : GraphT(std::move(Nodes), std::move(Edges), NodesSize, EdgesSize),
126         NumFences(NumFences), NumGadgets(NumGadgets) {}
127   static inline bool isCFGEdge(const Edge &E) {
128     return E.getValue() != GadgetEdgeSentinel;
129   }
130   static inline bool isGadgetEdge(const Edge &E) {
131     return E.getValue() == GadgetEdgeSentinel;
132   }
133   int NumFences;
134   int NumGadgets;
135 };
136 
137 class X86LoadValueInjectionLoadHardeningPass : public MachineFunctionPass {
138 public:
139   X86LoadValueInjectionLoadHardeningPass() : MachineFunctionPass(ID) {}
140 
141   StringRef getPassName() const override {
142     return "X86 Load Value Injection (LVI) Load Hardening";
143   }
144   void getAnalysisUsage(AnalysisUsage &AU) const override;
145   bool runOnMachineFunction(MachineFunction &MF) override;
146 
147   static char ID;
148 
149 private:
150   using GraphBuilder = ImmutableGraphBuilder<MachineGadgetGraph>;
151   using Edge = MachineGadgetGraph::Edge;
152   using Node = MachineGadgetGraph::Node;
153   using EdgeSet = MachineGadgetGraph::EdgeSet;
154   using NodeSet = MachineGadgetGraph::NodeSet;
155 
156   const X86Subtarget *STI = nullptr;
157   const TargetInstrInfo *TII = nullptr;
158   const TargetRegisterInfo *TRI = nullptr;
159 
160   std::unique_ptr<MachineGadgetGraph>
161   getGadgetGraph(MachineFunction &MF, const MachineLoopInfo &MLI,
162                  const MachineDominatorTree &MDT,
163                  const MachineDominanceFrontier &MDF) const;
164   int hardenLoadsWithPlugin(MachineFunction &MF,
165                             std::unique_ptr<MachineGadgetGraph> Graph) const;
166   int hardenLoadsWithHeuristic(MachineFunction &MF,
167                                std::unique_ptr<MachineGadgetGraph> Graph) const;
168   int elimMitigatedEdgesAndNodes(MachineGadgetGraph &G,
169                                  EdgeSet &ElimEdges /* in, out */,
170                                  NodeSet &ElimNodes /* in, out */) const;
171   std::unique_ptr<MachineGadgetGraph>
172   trimMitigatedEdges(std::unique_ptr<MachineGadgetGraph> Graph) const;
173   int insertFences(MachineFunction &MF, MachineGadgetGraph &G,
174                    EdgeSet &CutEdges /* in, out */) const;
175   bool instrUsesRegToAccessMemory(const MachineInstr &I, unsigned Reg) const;
176   bool instrUsesRegToBranch(const MachineInstr &I, unsigned Reg) const;
177   inline bool isFence(const MachineInstr *MI) const {
178     return MI && (MI->getOpcode() == X86::LFENCE ||
179                   (STI->useLVIControlFlowIntegrity() && MI->isCall()));
180   }
181 };
182 
183 } // end anonymous namespace
184 
185 namespace llvm {
186 
187 template <>
188 struct GraphTraits<MachineGadgetGraph *>
189     : GraphTraits<ImmutableGraph<MachineInstr *, int> *> {};
190 
191 template <>
192 struct DOTGraphTraits<MachineGadgetGraph *> : DefaultDOTGraphTraits {
193   using GraphType = MachineGadgetGraph;
194   using Traits = llvm::GraphTraits<GraphType *>;
195   using NodeRef = typename Traits::NodeRef;
196   using EdgeRef = typename Traits::EdgeRef;
197   using ChildIteratorType = typename Traits::ChildIteratorType;
198   using ChildEdgeIteratorType = typename Traits::ChildEdgeIteratorType;
199 
200   DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {}
201 
202   std::string getNodeLabel(NodeRef Node, GraphType *) {
203     if (Node->getValue() == MachineGadgetGraph::ArgNodeSentinel)
204       return "ARGS";
205 
206     std::string Str;
207     raw_string_ostream OS(Str);
208     OS << *Node->getValue();
209     return OS.str();
210   }
211 
212   static std::string getNodeAttributes(NodeRef Node, GraphType *) {
213     MachineInstr *MI = Node->getValue();
214     if (MI == MachineGadgetGraph::ArgNodeSentinel)
215       return "color = blue";
216     if (MI->getOpcode() == X86::LFENCE)
217       return "color = green";
218     return "";
219   }
220 
221   static std::string getEdgeAttributes(NodeRef, ChildIteratorType E,
222                                        GraphType *) {
223     int EdgeVal = (*E.getCurrent()).getValue();
224     return EdgeVal >= 0 ? "label = " + std::to_string(EdgeVal)
225                         : "color = red, style = \"dashed\"";
226   }
227 };
228 
229 } // end namespace llvm
230 
231 constexpr MachineInstr *MachineGadgetGraph::ArgNodeSentinel;
232 constexpr int MachineGadgetGraph::GadgetEdgeSentinel;
233 
234 char X86LoadValueInjectionLoadHardeningPass::ID = 0;
235 
236 void X86LoadValueInjectionLoadHardeningPass::getAnalysisUsage(
237     AnalysisUsage &AU) const {
238   MachineFunctionPass::getAnalysisUsage(AU);
239   AU.addRequired<MachineLoopInfo>();
240   AU.addRequired<MachineDominatorTree>();
241   AU.addRequired<MachineDominanceFrontier>();
242   AU.setPreservesCFG();
243 }
244 
245 static void writeGadgetGraph(raw_ostream &OS, MachineFunction &MF,
246                              MachineGadgetGraph *G) {
247   WriteGraph(OS, G, /*ShortNames*/ false,
248              "Speculative gadgets for \"" + MF.getName() + "\" function");
249 }
250 
251 bool X86LoadValueInjectionLoadHardeningPass::runOnMachineFunction(
252     MachineFunction &MF) {
253   LLVM_DEBUG(dbgs() << "***** " << getPassName() << " : " << MF.getName()
254                     << " *****\n");
255   STI = &MF.getSubtarget<X86Subtarget>();
256   if (!STI->useLVILoadHardening())
257     return false;
258 
259   // FIXME: support 32-bit
260   if (!STI->is64Bit())
261     report_fatal_error("LVI load hardening is only supported on 64-bit", false);
262 
263   // Don't skip functions with the "optnone" attr but participate in opt-bisect.
264   const Function &F = MF.getFunction();
265   if (!F.hasOptNone() && skipFunction(F))
266     return false;
267 
268   ++NumFunctionsConsidered;
269   TII = STI->getInstrInfo();
270   TRI = STI->getRegisterInfo();
271   LLVM_DEBUG(dbgs() << "Building gadget graph...\n");
272   const auto &MLI = getAnalysis<MachineLoopInfo>();
273   const auto &MDT = getAnalysis<MachineDominatorTree>();
274   const auto &MDF = getAnalysis<MachineDominanceFrontier>();
275   std::unique_ptr<MachineGadgetGraph> Graph = getGadgetGraph(MF, MLI, MDT, MDF);
276   LLVM_DEBUG(dbgs() << "Building gadget graph... Done\n");
277   if (Graph == nullptr)
278     return false; // didn't find any gadgets
279 
280   if (EmitDotVerify) {
281     writeGadgetGraph(outs(), MF, Graph.get());
282     return false;
283   }
284 
285   if (EmitDot || EmitDotOnly) {
286     LLVM_DEBUG(dbgs() << "Emitting gadget graph...\n");
287     std::error_code FileError;
288     std::string FileName = "lvi.";
289     FileName += MF.getName();
290     FileName += ".dot";
291     raw_fd_ostream FileOut(FileName, FileError);
292     if (FileError)
293       errs() << FileError.message();
294     writeGadgetGraph(FileOut, MF, Graph.get());
295     FileOut.close();
296     LLVM_DEBUG(dbgs() << "Emitting gadget graph... Done\n");
297     if (EmitDotOnly)
298       return false;
299   }
300 
301   int FencesInserted;
302   if (!OptimizePluginPath.empty()) {
303     if (!OptimizeDL.isValid()) {
304       std::string ErrorMsg;
305       OptimizeDL = llvm::sys::DynamicLibrary::getPermanentLibrary(
306           OptimizePluginPath.c_str(), &ErrorMsg);
307       if (!ErrorMsg.empty())
308         report_fatal_error(Twine("Failed to load opt plugin: \"") + ErrorMsg +
309                            "\"");
310       OptimizeCut = (OptimizeCutT)OptimizeDL.getAddressOfSymbol("optimize_cut");
311       if (!OptimizeCut)
312         report_fatal_error("Invalid optimization plugin");
313     }
314     FencesInserted = hardenLoadsWithPlugin(MF, std::move(Graph));
315   } else { // Use the default greedy heuristic
316     FencesInserted = hardenLoadsWithHeuristic(MF, std::move(Graph));
317   }
318 
319   if (FencesInserted > 0)
320     ++NumFunctionsMitigated;
321   NumFences += FencesInserted;
322   return (FencesInserted > 0);
323 }
324 
325 std::unique_ptr<MachineGadgetGraph>
326 X86LoadValueInjectionLoadHardeningPass::getGadgetGraph(
327     MachineFunction &MF, const MachineLoopInfo &MLI,
328     const MachineDominatorTree &MDT,
329     const MachineDominanceFrontier &MDF) const {
330   using namespace rdf;
331 
332   // Build the Register Dataflow Graph using the RDF framework
333   DataFlowGraph DFG{MF, *TII, *TRI, MDT, MDF};
334   DFG.build();
335   Liveness L{MF.getRegInfo(), DFG};
336   L.computePhiInfo();
337 
338   GraphBuilder Builder;
339   using GraphIter = typename GraphBuilder::BuilderNodeRef;
340   DenseMap<MachineInstr *, GraphIter> NodeMap;
341   int FenceCount = 0, GadgetCount = 0;
342   auto MaybeAddNode = [&NodeMap, &Builder](MachineInstr *MI) {
343     auto Ref = NodeMap.find(MI);
344     if (Ref == NodeMap.end()) {
345       auto I = Builder.addVertex(MI);
346       NodeMap[MI] = I;
347       return std::pair<GraphIter, bool>{I, true};
348     }
349     return std::pair<GraphIter, bool>{Ref->getSecond(), false};
350   };
351 
352   // The `Transmitters` map memoizes transmitters found for each def. If a def
353   // has not yet been analyzed, then it will not appear in the map. If a def
354   // has been analyzed and was determined not to have any transmitters, then
355   // its list of transmitters will be empty.
356   DenseMap<NodeId, std::vector<NodeId>> Transmitters;
357 
358   // Analyze all machine instructions to find gadgets and LFENCEs, adding
359   // each interesting value to `Nodes`
360   auto AnalyzeDef = [&](NodeAddr<DefNode *> SourceDef) {
361     SmallSet<NodeId, 8> UsesVisited, DefsVisited;
362     std::function<void(NodeAddr<DefNode *>)> AnalyzeDefUseChain =
363         [&](NodeAddr<DefNode *> Def) {
364           if (Transmitters.contains(Def.Id))
365             return; // Already analyzed `Def`
366 
367           // Use RDF to find all the uses of `Def`
368           rdf::NodeSet Uses;
369           RegisterRef DefReg = Def.Addr->getRegRef(DFG);
370           for (auto UseID : L.getAllReachedUses(DefReg, Def)) {
371             auto Use = DFG.addr<UseNode *>(UseID);
372             if (Use.Addr->getFlags() & NodeAttrs::PhiRef) { // phi node
373               NodeAddr<PhiNode *> Phi = Use.Addr->getOwner(DFG);
374               for (const auto& I : L.getRealUses(Phi.Id)) {
375                 if (DFG.getPRI().alias(RegisterRef(I.first), DefReg)) {
376                   for (const auto &UA : I.second)
377                     Uses.emplace(UA.first);
378                 }
379               }
380             } else { // not a phi node
381               Uses.emplace(UseID);
382             }
383           }
384 
385           // For each use of `Def`, we want to know whether:
386           // (1) The use can leak the Def'ed value,
387           // (2) The use can further propagate the Def'ed value to more defs
388           for (auto UseID : Uses) {
389             if (!UsesVisited.insert(UseID).second)
390               continue; // Already visited this use of `Def`
391 
392             auto Use = DFG.addr<UseNode *>(UseID);
393             assert(!(Use.Addr->getFlags() & NodeAttrs::PhiRef));
394             MachineOperand &UseMO = Use.Addr->getOp();
395             MachineInstr &UseMI = *UseMO.getParent();
396             assert(UseMO.isReg());
397 
398             // We naively assume that an instruction propagates any loaded
399             // uses to all defs unless the instruction is a call, in which
400             // case all arguments will be treated as gadget sources during
401             // analysis of the callee function.
402             if (UseMI.isCall())
403               continue;
404 
405             // Check whether this use can transmit (leak) its value.
406             if (instrUsesRegToAccessMemory(UseMI, UseMO.getReg()) ||
407                 (!NoConditionalBranches &&
408                  instrUsesRegToBranch(UseMI, UseMO.getReg()))) {
409               Transmitters[Def.Id].push_back(Use.Addr->getOwner(DFG).Id);
410               if (UseMI.mayLoad())
411                 continue; // Found a transmitting load -- no need to continue
412                           // traversing its defs (i.e., this load will become
413                           // a new gadget source anyways).
414             }
415 
416             // Check whether the use propagates to more defs.
417             NodeAddr<InstrNode *> Owner{Use.Addr->getOwner(DFG)};
418             rdf::NodeList AnalyzedChildDefs;
419             for (const auto &ChildDef :
420                  Owner.Addr->members_if(DataFlowGraph::IsDef, DFG)) {
421               if (!DefsVisited.insert(ChildDef.Id).second)
422                 continue; // Already visited this def
423               if (Def.Addr->getAttrs() & NodeAttrs::Dead)
424                 continue;
425               if (Def.Id == ChildDef.Id)
426                 continue; // `Def` uses itself (e.g., increment loop counter)
427 
428               AnalyzeDefUseChain(ChildDef);
429 
430               // `Def` inherits all of its child defs' transmitters.
431               for (auto TransmitterId : Transmitters[ChildDef.Id])
432                 Transmitters[Def.Id].push_back(TransmitterId);
433             }
434           }
435 
436           // Note that this statement adds `Def.Id` to the map if no
437           // transmitters were found for `Def`.
438           auto &DefTransmitters = Transmitters[Def.Id];
439 
440           // Remove duplicate transmitters
441           llvm::sort(DefTransmitters);
442           DefTransmitters.erase(
443               std::unique(DefTransmitters.begin(), DefTransmitters.end()),
444               DefTransmitters.end());
445         };
446 
447     // Find all of the transmitters
448     AnalyzeDefUseChain(SourceDef);
449     auto &SourceDefTransmitters = Transmitters[SourceDef.Id];
450     if (SourceDefTransmitters.empty())
451       return; // No transmitters for `SourceDef`
452 
453     MachineInstr *Source = SourceDef.Addr->getFlags() & NodeAttrs::PhiRef
454                                ? MachineGadgetGraph::ArgNodeSentinel
455                                : SourceDef.Addr->getOp().getParent();
456     auto GadgetSource = MaybeAddNode(Source);
457     // Each transmitter is a sink for `SourceDef`.
458     for (auto TransmitterId : SourceDefTransmitters) {
459       MachineInstr *Sink = DFG.addr<StmtNode *>(TransmitterId).Addr->getCode();
460       auto GadgetSink = MaybeAddNode(Sink);
461       // Add the gadget edge to the graph.
462       Builder.addEdge(MachineGadgetGraph::GadgetEdgeSentinel,
463                       GadgetSource.first, GadgetSink.first);
464       ++GadgetCount;
465     }
466   };
467 
468   LLVM_DEBUG(dbgs() << "Analyzing def-use chains to find gadgets\n");
469   // Analyze function arguments
470   NodeAddr<BlockNode *> EntryBlock = DFG.getFunc().Addr->getEntryBlock(DFG);
471   for (NodeAddr<PhiNode *> ArgPhi :
472        EntryBlock.Addr->members_if(DataFlowGraph::IsPhi, DFG)) {
473     NodeList Defs = ArgPhi.Addr->members_if(DataFlowGraph::IsDef, DFG);
474     llvm::for_each(Defs, AnalyzeDef);
475   }
476   // Analyze every instruction in MF
477   for (NodeAddr<BlockNode *> BA : DFG.getFunc().Addr->members(DFG)) {
478     for (NodeAddr<StmtNode *> SA :
479          BA.Addr->members_if(DataFlowGraph::IsCode<NodeAttrs::Stmt>, DFG)) {
480       MachineInstr *MI = SA.Addr->getCode();
481       if (isFence(MI)) {
482         MaybeAddNode(MI);
483         ++FenceCount;
484       } else if (MI->mayLoad()) {
485         NodeList Defs = SA.Addr->members_if(DataFlowGraph::IsDef, DFG);
486         llvm::for_each(Defs, AnalyzeDef);
487       }
488     }
489   }
490   LLVM_DEBUG(dbgs() << "Found " << FenceCount << " fences\n");
491   LLVM_DEBUG(dbgs() << "Found " << GadgetCount << " gadgets\n");
492   if (GadgetCount == 0)
493     return nullptr;
494   NumGadgets += GadgetCount;
495 
496   // Traverse CFG to build the rest of the graph
497   SmallSet<MachineBasicBlock *, 8> BlocksVisited;
498   std::function<void(MachineBasicBlock *, GraphIter, unsigned)> TraverseCFG =
499       [&](MachineBasicBlock *MBB, GraphIter GI, unsigned ParentDepth) {
500         unsigned LoopDepth = MLI.getLoopDepth(MBB);
501         if (!MBB->empty()) {
502           // Always add the first instruction in each block
503           auto NI = MBB->begin();
504           auto BeginBB = MaybeAddNode(&*NI);
505           Builder.addEdge(ParentDepth, GI, BeginBB.first);
506           if (!BlocksVisited.insert(MBB).second)
507             return;
508 
509           // Add any instructions within the block that are gadget components
510           GI = BeginBB.first;
511           while (++NI != MBB->end()) {
512             auto Ref = NodeMap.find(&*NI);
513             if (Ref != NodeMap.end()) {
514               Builder.addEdge(LoopDepth, GI, Ref->getSecond());
515               GI = Ref->getSecond();
516             }
517           }
518 
519           // Always add the terminator instruction, if one exists
520           auto T = MBB->getFirstTerminator();
521           if (T != MBB->end()) {
522             auto EndBB = MaybeAddNode(&*T);
523             if (EndBB.second)
524               Builder.addEdge(LoopDepth, GI, EndBB.first);
525             GI = EndBB.first;
526           }
527         }
528         for (MachineBasicBlock *Succ : MBB->successors())
529           TraverseCFG(Succ, GI, LoopDepth);
530       };
531   // ArgNodeSentinel is a pseudo-instruction that represents MF args in the
532   // GadgetGraph
533   GraphIter ArgNode = MaybeAddNode(MachineGadgetGraph::ArgNodeSentinel).first;
534   TraverseCFG(&MF.front(), ArgNode, 0);
535   std::unique_ptr<MachineGadgetGraph> G{Builder.get(FenceCount, GadgetCount)};
536   LLVM_DEBUG(dbgs() << "Found " << G->nodes_size() << " nodes\n");
537   return G;
538 }
539 
540 // Returns the number of remaining gadget edges that could not be eliminated
541 int X86LoadValueInjectionLoadHardeningPass::elimMitigatedEdgesAndNodes(
542     MachineGadgetGraph &G, EdgeSet &ElimEdges /* in, out */,
543     NodeSet &ElimNodes /* in, out */) const {
544   if (G.NumFences > 0) {
545     // Eliminate fences and CFG edges that ingress and egress the fence, as
546     // they are trivially mitigated.
547     for (const Edge &E : G.edges()) {
548       const Node *Dest = E.getDest();
549       if (isFence(Dest->getValue())) {
550         ElimNodes.insert(*Dest);
551         ElimEdges.insert(E);
552         for (const Edge &DE : Dest->edges())
553           ElimEdges.insert(DE);
554       }
555     }
556   }
557 
558   // Find and eliminate gadget edges that have been mitigated.
559   int RemainingGadgets = 0;
560   NodeSet ReachableNodes{G};
561   for (const Node &RootN : G.nodes()) {
562     if (llvm::none_of(RootN.edges(), MachineGadgetGraph::isGadgetEdge))
563       continue; // skip this node if it isn't a gadget source
564 
565     // Find all of the nodes that are CFG-reachable from RootN using DFS
566     ReachableNodes.clear();
567     std::function<void(const Node *, bool)> FindReachableNodes =
568         [&](const Node *N, bool FirstNode) {
569           if (!FirstNode)
570             ReachableNodes.insert(*N);
571           for (const Edge &E : N->edges()) {
572             const Node *Dest = E.getDest();
573             if (MachineGadgetGraph::isCFGEdge(E) && !ElimEdges.contains(E) &&
574                 !ReachableNodes.contains(*Dest))
575               FindReachableNodes(Dest, false);
576           }
577         };
578     FindReachableNodes(&RootN, true);
579 
580     // Any gadget whose sink is unreachable has been mitigated
581     for (const Edge &E : RootN.edges()) {
582       if (MachineGadgetGraph::isGadgetEdge(E)) {
583         if (ReachableNodes.contains(*E.getDest())) {
584           // This gadget's sink is reachable
585           ++RemainingGadgets;
586         } else { // This gadget's sink is unreachable, and therefore mitigated
587           ElimEdges.insert(E);
588         }
589       }
590     }
591   }
592   return RemainingGadgets;
593 }
594 
595 std::unique_ptr<MachineGadgetGraph>
596 X86LoadValueInjectionLoadHardeningPass::trimMitigatedEdges(
597     std::unique_ptr<MachineGadgetGraph> Graph) const {
598   NodeSet ElimNodes{*Graph};
599   EdgeSet ElimEdges{*Graph};
600   int RemainingGadgets =
601       elimMitigatedEdgesAndNodes(*Graph, ElimEdges, ElimNodes);
602   if (ElimEdges.empty() && ElimNodes.empty()) {
603     Graph->NumFences = 0;
604     Graph->NumGadgets = RemainingGadgets;
605   } else {
606     Graph = GraphBuilder::trim(*Graph, ElimNodes, ElimEdges, 0 /* NumFences */,
607                                RemainingGadgets);
608   }
609   return Graph;
610 }
611 
612 int X86LoadValueInjectionLoadHardeningPass::hardenLoadsWithPlugin(
613     MachineFunction &MF, std::unique_ptr<MachineGadgetGraph> Graph) const {
614   int FencesInserted = 0;
615 
616   do {
617     LLVM_DEBUG(dbgs() << "Eliminating mitigated paths...\n");
618     Graph = trimMitigatedEdges(std::move(Graph));
619     LLVM_DEBUG(dbgs() << "Eliminating mitigated paths... Done\n");
620     if (Graph->NumGadgets == 0)
621       break;
622 
623     LLVM_DEBUG(dbgs() << "Cutting edges...\n");
624     EdgeSet CutEdges{*Graph};
625     auto Nodes = std::make_unique<unsigned int[]>(Graph->nodes_size() +
626                                                   1 /* terminator node */);
627     auto Edges = std::make_unique<unsigned int[]>(Graph->edges_size());
628     auto EdgeCuts = std::make_unique<int[]>(Graph->edges_size());
629     auto EdgeValues = std::make_unique<int[]>(Graph->edges_size());
630     for (const Node &N : Graph->nodes()) {
631       Nodes[Graph->getNodeIndex(N)] = Graph->getEdgeIndex(*N.edges_begin());
632     }
633     Nodes[Graph->nodes_size()] = Graph->edges_size(); // terminator node
634     for (const Edge &E : Graph->edges()) {
635       Edges[Graph->getEdgeIndex(E)] = Graph->getNodeIndex(*E.getDest());
636       EdgeValues[Graph->getEdgeIndex(E)] = E.getValue();
637     }
638     OptimizeCut(Nodes.get(), Graph->nodes_size(), Edges.get(), EdgeValues.get(),
639                 EdgeCuts.get(), Graph->edges_size());
640     for (int I = 0; I < Graph->edges_size(); ++I)
641       if (EdgeCuts[I])
642         CutEdges.set(I);
643     LLVM_DEBUG(dbgs() << "Cutting edges... Done\n");
644     LLVM_DEBUG(dbgs() << "Cut " << CutEdges.count() << " edges\n");
645 
646     LLVM_DEBUG(dbgs() << "Inserting LFENCEs...\n");
647     FencesInserted += insertFences(MF, *Graph, CutEdges);
648     LLVM_DEBUG(dbgs() << "Inserting LFENCEs... Done\n");
649     LLVM_DEBUG(dbgs() << "Inserted " << FencesInserted << " fences\n");
650 
651     Graph = GraphBuilder::trim(*Graph, NodeSet{*Graph}, CutEdges);
652   } while (true);
653 
654   return FencesInserted;
655 }
656 
657 int X86LoadValueInjectionLoadHardeningPass::hardenLoadsWithHeuristic(
658     MachineFunction &MF, std::unique_ptr<MachineGadgetGraph> Graph) const {
659   // If `MF` does not have any fences, then no gadgets would have been
660   // mitigated at this point.
661   if (Graph->NumFences > 0) {
662     LLVM_DEBUG(dbgs() << "Eliminating mitigated paths...\n");
663     Graph = trimMitigatedEdges(std::move(Graph));
664     LLVM_DEBUG(dbgs() << "Eliminating mitigated paths... Done\n");
665   }
666 
667   if (Graph->NumGadgets == 0)
668     return 0;
669 
670   LLVM_DEBUG(dbgs() << "Cutting edges...\n");
671   EdgeSet CutEdges{*Graph};
672 
673   // Begin by collecting all ingress CFG edges for each node
674   DenseMap<const Node *, SmallVector<const Edge *, 2>> IngressEdgeMap;
675   for (const Edge &E : Graph->edges())
676     if (MachineGadgetGraph::isCFGEdge(E))
677       IngressEdgeMap[E.getDest()].push_back(&E);
678 
679   // For each gadget edge, make cuts that guarantee the gadget will be
680   // mitigated. A computationally efficient way to achieve this is to either:
681   // (a) cut all egress CFG edges from the gadget source, or
682   // (b) cut all ingress CFG edges to the gadget sink.
683   //
684   // Moreover, the algorithm tries not to make a cut into a loop by preferring
685   // to make a (b)-type cut if the gadget source resides at a greater loop depth
686   // than the gadget sink, or an (a)-type cut otherwise.
687   for (const Node &N : Graph->nodes()) {
688     for (const Edge &E : N.edges()) {
689       if (!MachineGadgetGraph::isGadgetEdge(E))
690         continue;
691 
692       SmallVector<const Edge *, 2> EgressEdges;
693       SmallVector<const Edge *, 2> &IngressEdges = IngressEdgeMap[E.getDest()];
694       for (const Edge &EgressEdge : N.edges())
695         if (MachineGadgetGraph::isCFGEdge(EgressEdge))
696           EgressEdges.push_back(&EgressEdge);
697 
698       int EgressCutCost = 0, IngressCutCost = 0;
699       for (const Edge *EgressEdge : EgressEdges)
700         if (!CutEdges.contains(*EgressEdge))
701           EgressCutCost += EgressEdge->getValue();
702       for (const Edge *IngressEdge : IngressEdges)
703         if (!CutEdges.contains(*IngressEdge))
704           IngressCutCost += IngressEdge->getValue();
705 
706       auto &EdgesToCut =
707           IngressCutCost < EgressCutCost ? IngressEdges : EgressEdges;
708       for (const Edge *E : EdgesToCut)
709         CutEdges.insert(*E);
710     }
711   }
712   LLVM_DEBUG(dbgs() << "Cutting edges... Done\n");
713   LLVM_DEBUG(dbgs() << "Cut " << CutEdges.count() << " edges\n");
714 
715   LLVM_DEBUG(dbgs() << "Inserting LFENCEs...\n");
716   int FencesInserted = insertFences(MF, *Graph, CutEdges);
717   LLVM_DEBUG(dbgs() << "Inserting LFENCEs... Done\n");
718   LLVM_DEBUG(dbgs() << "Inserted " << FencesInserted << " fences\n");
719 
720   return FencesInserted;
721 }
722 
723 int X86LoadValueInjectionLoadHardeningPass::insertFences(
724     MachineFunction &MF, MachineGadgetGraph &G,
725     EdgeSet &CutEdges /* in, out */) const {
726   int FencesInserted = 0;
727   for (const Node &N : G.nodes()) {
728     for (const Edge &E : N.edges()) {
729       if (CutEdges.contains(E)) {
730         MachineInstr *MI = N.getValue(), *Prev;
731         MachineBasicBlock *MBB;                  // Insert an LFENCE in this MBB
732         MachineBasicBlock::iterator InsertionPt; // ...at this point
733         if (MI == MachineGadgetGraph::ArgNodeSentinel) {
734           // insert LFENCE at beginning of entry block
735           MBB = &MF.front();
736           InsertionPt = MBB->begin();
737           Prev = nullptr;
738         } else if (MI->isBranch()) { // insert the LFENCE before the branch
739           MBB = MI->getParent();
740           InsertionPt = MI;
741           Prev = MI->getPrevNode();
742           // Remove all egress CFG edges from this branch because the inserted
743           // LFENCE prevents gadgets from crossing the branch.
744           for (const Edge &E : N.edges()) {
745             if (MachineGadgetGraph::isCFGEdge(E))
746               CutEdges.insert(E);
747           }
748         } else { // insert the LFENCE after the instruction
749           MBB = MI->getParent();
750           InsertionPt = MI->getNextNode() ? MI->getNextNode() : MBB->end();
751           Prev = InsertionPt == MBB->end()
752                      ? (MBB->empty() ? nullptr : &MBB->back())
753                      : InsertionPt->getPrevNode();
754         }
755         // Ensure this insertion is not redundant (two LFENCEs in sequence).
756         if ((InsertionPt == MBB->end() || !isFence(&*InsertionPt)) &&
757             (!Prev || !isFence(Prev))) {
758           BuildMI(*MBB, InsertionPt, DebugLoc(), TII->get(X86::LFENCE));
759           ++FencesInserted;
760         }
761       }
762     }
763   }
764   return FencesInserted;
765 }
766 
767 bool X86LoadValueInjectionLoadHardeningPass::instrUsesRegToAccessMemory(
768     const MachineInstr &MI, unsigned Reg) const {
769   if (!MI.mayLoadOrStore() || MI.getOpcode() == X86::MFENCE ||
770       MI.getOpcode() == X86::SFENCE || MI.getOpcode() == X86::LFENCE)
771     return false;
772 
773   const int MemRefBeginIdx = X86::getFirstAddrOperandIdx(MI);
774   if (MemRefBeginIdx < 0) {
775     LLVM_DEBUG(dbgs() << "Warning: unable to obtain memory operand for loading "
776                          "instruction:\n";
777                MI.print(dbgs()); dbgs() << '\n';);
778     return false;
779   }
780 
781   const MachineOperand &BaseMO =
782       MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
783   const MachineOperand &IndexMO =
784       MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
785   return (BaseMO.isReg() && BaseMO.getReg() != X86::NoRegister &&
786           TRI->regsOverlap(BaseMO.getReg(), Reg)) ||
787          (IndexMO.isReg() && IndexMO.getReg() != X86::NoRegister &&
788           TRI->regsOverlap(IndexMO.getReg(), Reg));
789 }
790 
791 bool X86LoadValueInjectionLoadHardeningPass::instrUsesRegToBranch(
792     const MachineInstr &MI, unsigned Reg) const {
793   if (!MI.isConditionalBranch())
794     return false;
795   for (const MachineOperand &Use : MI.uses())
796     if (Use.isReg() && Use.getReg() == Reg)
797       return true;
798   return false;
799 }
800 
801 INITIALIZE_PASS_BEGIN(X86LoadValueInjectionLoadHardeningPass, PASS_KEY,
802                       "X86 LVI load hardening", false, false)
803 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
804 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
805 INITIALIZE_PASS_DEPENDENCY(MachineDominanceFrontier)
806 INITIALIZE_PASS_END(X86LoadValueInjectionLoadHardeningPass, PASS_KEY,
807                     "X86 LVI load hardening", false, false)
808 
809 FunctionPass *llvm::createX86LoadValueInjectionLoadHardeningPass() {
810   return new X86LoadValueInjectionLoadHardeningPass();
811 }
812