1 //===-- X86RegisterInfo.cpp - X86 Register Information --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of the TargetRegisterInfo class.
10 // This file is responsible for the frame pointer elimination optimization
11 // on X86.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "X86RegisterInfo.h"
16 #include "X86FrameLowering.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/CodeGen/LiveRegMatrix.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetFrameLowering.h"
28 #include "llvm/CodeGen/TargetInstrInfo.h"
29 #include "llvm/CodeGen/TileShapeInfo.h"
30 #include "llvm/CodeGen/VirtRegMap.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include "llvm/Target/TargetOptions.h"
38 
39 using namespace llvm;
40 
41 #define GET_REGINFO_TARGET_DESC
42 #include "X86GenRegisterInfo.inc"
43 
44 static cl::opt<bool>
45 EnableBasePointer("x86-use-base-pointer", cl::Hidden, cl::init(true),
46           cl::desc("Enable use of a base pointer for complex stack frames"));
47 
48 X86RegisterInfo::X86RegisterInfo(const Triple &TT)
49     : X86GenRegisterInfo((TT.isArch64Bit() ? X86::RIP : X86::EIP),
50                          X86_MC::getDwarfRegFlavour(TT, false),
51                          X86_MC::getDwarfRegFlavour(TT, true),
52                          (TT.isArch64Bit() ? X86::RIP : X86::EIP)) {
53   X86_MC::initLLVMToSEHAndCVRegMapping(this);
54 
55   // Cache some information.
56   Is64Bit = TT.isArch64Bit();
57   IsWin64 = Is64Bit && TT.isOSWindows();
58 
59   // Use a callee-saved register as the base pointer.  These registers must
60   // not conflict with any ABI requirements.  For example, in 32-bit mode PIC
61   // requires GOT in the EBX register before function calls via PLT GOT pointer.
62   if (Is64Bit) {
63     SlotSize = 8;
64     // This matches the simplified 32-bit pointer code in the data layout
65     // computation.
66     // FIXME: Should use the data layout?
67     bool Use64BitReg = !TT.isX32();
68     StackPtr = Use64BitReg ? X86::RSP : X86::ESP;
69     FramePtr = Use64BitReg ? X86::RBP : X86::EBP;
70     BasePtr = Use64BitReg ? X86::RBX : X86::EBX;
71   } else {
72     SlotSize = 4;
73     StackPtr = X86::ESP;
74     FramePtr = X86::EBP;
75     BasePtr = X86::ESI;
76   }
77 }
78 
79 int
80 X86RegisterInfo::getSEHRegNum(unsigned i) const {
81   return getEncodingValue(i);
82 }
83 
84 const TargetRegisterClass *
85 X86RegisterInfo::getSubClassWithSubReg(const TargetRegisterClass *RC,
86                                        unsigned Idx) const {
87   // The sub_8bit sub-register index is more constrained in 32-bit mode.
88   // It behaves just like the sub_8bit_hi index.
89   if (!Is64Bit && Idx == X86::sub_8bit)
90     Idx = X86::sub_8bit_hi;
91 
92   // Forward to TableGen's default version.
93   return X86GenRegisterInfo::getSubClassWithSubReg(RC, Idx);
94 }
95 
96 const TargetRegisterClass *
97 X86RegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
98                                           const TargetRegisterClass *B,
99                                           unsigned SubIdx) const {
100   // The sub_8bit sub-register index is more constrained in 32-bit mode.
101   if (!Is64Bit && SubIdx == X86::sub_8bit) {
102     A = X86GenRegisterInfo::getSubClassWithSubReg(A, X86::sub_8bit_hi);
103     if (!A)
104       return nullptr;
105   }
106   return X86GenRegisterInfo::getMatchingSuperRegClass(A, B, SubIdx);
107 }
108 
109 const TargetRegisterClass *
110 X86RegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC,
111                                            const MachineFunction &MF) const {
112   // Don't allow super-classes of GR8_NOREX.  This class is only used after
113   // extracting sub_8bit_hi sub-registers.  The H sub-registers cannot be copied
114   // to the full GR8 register class in 64-bit mode, so we cannot allow the
115   // reigster class inflation.
116   //
117   // The GR8_NOREX class is always used in a way that won't be constrained to a
118   // sub-class, so sub-classes like GR8_ABCD_L are allowed to expand to the
119   // full GR8 class.
120   if (RC == &X86::GR8_NOREXRegClass)
121     return RC;
122 
123   const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
124 
125   const TargetRegisterClass *Super = RC;
126   TargetRegisterClass::sc_iterator I = RC->getSuperClasses();
127   do {
128     switch (Super->getID()) {
129     case X86::FR32RegClassID:
130     case X86::FR64RegClassID:
131       // If AVX-512 isn't supported we should only inflate to these classes.
132       if (!Subtarget.hasAVX512() &&
133           getRegSizeInBits(*Super) == getRegSizeInBits(*RC))
134         return Super;
135       break;
136     case X86::VR128RegClassID:
137     case X86::VR256RegClassID:
138       // If VLX isn't supported we should only inflate to these classes.
139       if (!Subtarget.hasVLX() &&
140           getRegSizeInBits(*Super) == getRegSizeInBits(*RC))
141         return Super;
142       break;
143     case X86::VR128XRegClassID:
144     case X86::VR256XRegClassID:
145       // If VLX isn't support we shouldn't inflate to these classes.
146       if (Subtarget.hasVLX() &&
147           getRegSizeInBits(*Super) == getRegSizeInBits(*RC))
148         return Super;
149       break;
150     case X86::FR32XRegClassID:
151     case X86::FR64XRegClassID:
152       // If AVX-512 isn't support we shouldn't inflate to these classes.
153       if (Subtarget.hasAVX512() &&
154           getRegSizeInBits(*Super) == getRegSizeInBits(*RC))
155         return Super;
156       break;
157     case X86::GR8RegClassID:
158     case X86::GR16RegClassID:
159     case X86::GR32RegClassID:
160     case X86::GR64RegClassID:
161     case X86::RFP32RegClassID:
162     case X86::RFP64RegClassID:
163     case X86::RFP80RegClassID:
164     case X86::VR512_0_15RegClassID:
165     case X86::VR512RegClassID:
166       // Don't return a super-class that would shrink the spill size.
167       // That can happen with the vector and float classes.
168       if (getRegSizeInBits(*Super) == getRegSizeInBits(*RC))
169         return Super;
170     }
171     Super = *I++;
172   } while (Super);
173   return RC;
174 }
175 
176 const TargetRegisterClass *
177 X86RegisterInfo::getPointerRegClass(const MachineFunction &MF,
178                                     unsigned Kind) const {
179   const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
180   switch (Kind) {
181   default: llvm_unreachable("Unexpected Kind in getPointerRegClass!");
182   case 0: // Normal GPRs.
183     if (Subtarget.isTarget64BitLP64())
184       return &X86::GR64RegClass;
185     // If the target is 64bit but we have been told to use 32bit addresses,
186     // we can still use 64-bit register as long as we know the high bits
187     // are zeros.
188     // Reflect that in the returned register class.
189     if (Is64Bit) {
190       // When the target also allows 64-bit frame pointer and we do have a
191       // frame, this is fine to use it for the address accesses as well.
192       const X86FrameLowering *TFI = getFrameLowering(MF);
193       return TFI->hasFP(MF) && TFI->Uses64BitFramePtr
194                  ? &X86::LOW32_ADDR_ACCESS_RBPRegClass
195                  : &X86::LOW32_ADDR_ACCESSRegClass;
196     }
197     return &X86::GR32RegClass;
198   case 1: // Normal GPRs except the stack pointer (for encoding reasons).
199     if (Subtarget.isTarget64BitLP64())
200       return &X86::GR64_NOSPRegClass;
201     // NOSP does not contain RIP, so no special case here.
202     return &X86::GR32_NOSPRegClass;
203   case 2: // NOREX GPRs.
204     if (Subtarget.isTarget64BitLP64())
205       return &X86::GR64_NOREXRegClass;
206     return &X86::GR32_NOREXRegClass;
207   case 3: // NOREX GPRs except the stack pointer (for encoding reasons).
208     if (Subtarget.isTarget64BitLP64())
209       return &X86::GR64_NOREX_NOSPRegClass;
210     // NOSP does not contain RIP, so no special case here.
211     return &X86::GR32_NOREX_NOSPRegClass;
212   case 4: // Available for tailcall (not callee-saved GPRs).
213     return getGPRsForTailCall(MF);
214   }
215 }
216 
217 bool X86RegisterInfo::shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
218                                            unsigned DefSubReg,
219                                            const TargetRegisterClass *SrcRC,
220                                            unsigned SrcSubReg) const {
221   // Prevent rewriting a copy where the destination size is larger than the
222   // input size. See PR41619.
223   // FIXME: Should this be factored into the base implementation somehow.
224   if (DefRC->hasSuperClassEq(&X86::GR64RegClass) && DefSubReg == 0 &&
225       SrcRC->hasSuperClassEq(&X86::GR64RegClass) && SrcSubReg == X86::sub_32bit)
226     return false;
227 
228   return TargetRegisterInfo::shouldRewriteCopySrc(DefRC, DefSubReg,
229                                                   SrcRC, SrcSubReg);
230 }
231 
232 const TargetRegisterClass *
233 X86RegisterInfo::getGPRsForTailCall(const MachineFunction &MF) const {
234   const Function &F = MF.getFunction();
235   if (IsWin64 || (F.getCallingConv() == CallingConv::Win64))
236     return &X86::GR64_TCW64RegClass;
237   else if (Is64Bit)
238     return &X86::GR64_TCRegClass;
239 
240   bool hasHipeCC = (F.getCallingConv() == CallingConv::HiPE);
241   if (hasHipeCC)
242     return &X86::GR32RegClass;
243   return &X86::GR32_TCRegClass;
244 }
245 
246 const TargetRegisterClass *
247 X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
248   if (RC == &X86::CCRRegClass) {
249     if (Is64Bit)
250       return &X86::GR64RegClass;
251     else
252       return &X86::GR32RegClass;
253   }
254   return RC;
255 }
256 
257 unsigned
258 X86RegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
259                                      MachineFunction &MF) const {
260   const X86FrameLowering *TFI = getFrameLowering(MF);
261 
262   unsigned FPDiff = TFI->hasFP(MF) ? 1 : 0;
263   switch (RC->getID()) {
264   default:
265     return 0;
266   case X86::GR32RegClassID:
267     return 4 - FPDiff;
268   case X86::GR64RegClassID:
269     return 12 - FPDiff;
270   case X86::VR128RegClassID:
271     return Is64Bit ? 10 : 4;
272   case X86::VR64RegClassID:
273     return 4;
274   }
275 }
276 
277 const MCPhysReg *
278 X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
279   assert(MF && "MachineFunction required");
280 
281   const X86Subtarget &Subtarget = MF->getSubtarget<X86Subtarget>();
282   const Function &F = MF->getFunction();
283   bool HasSSE = Subtarget.hasSSE1();
284   bool HasAVX = Subtarget.hasAVX();
285   bool HasAVX512 = Subtarget.hasAVX512();
286   bool CallsEHReturn = MF->callsEHReturn();
287 
288   CallingConv::ID CC = F.getCallingConv();
289 
290   // If attribute NoCallerSavedRegisters exists then we set X86_INTR calling
291   // convention because it has the CSR list.
292   if (MF->getFunction().hasFnAttribute("no_caller_saved_registers"))
293     CC = CallingConv::X86_INTR;
294 
295   // If atribute specified, override the CSRs normally specified by the
296   // calling convention and use the empty set instead.
297   if (MF->getFunction().hasFnAttribute("no_callee_saved_registers"))
298     return CSR_NoRegs_SaveList;
299 
300   switch (CC) {
301   case CallingConv::GHC:
302   case CallingConv::HiPE:
303     return CSR_NoRegs_SaveList;
304   case CallingConv::AnyReg:
305     if (HasAVX)
306       return CSR_64_AllRegs_AVX_SaveList;
307     return CSR_64_AllRegs_SaveList;
308   case CallingConv::PreserveMost:
309     return CSR_64_RT_MostRegs_SaveList;
310   case CallingConv::PreserveAll:
311     if (HasAVX)
312       return CSR_64_RT_AllRegs_AVX_SaveList;
313     return CSR_64_RT_AllRegs_SaveList;
314   case CallingConv::CXX_FAST_TLS:
315     if (Is64Bit)
316       return MF->getInfo<X86MachineFunctionInfo>()->isSplitCSR() ?
317              CSR_64_CXX_TLS_Darwin_PE_SaveList : CSR_64_TLS_Darwin_SaveList;
318     break;
319   case CallingConv::Intel_OCL_BI: {
320     if (HasAVX512 && IsWin64)
321       return CSR_Win64_Intel_OCL_BI_AVX512_SaveList;
322     if (HasAVX512 && Is64Bit)
323       return CSR_64_Intel_OCL_BI_AVX512_SaveList;
324     if (HasAVX && IsWin64)
325       return CSR_Win64_Intel_OCL_BI_AVX_SaveList;
326     if (HasAVX && Is64Bit)
327       return CSR_64_Intel_OCL_BI_AVX_SaveList;
328     if (!HasAVX && !IsWin64 && Is64Bit)
329       return CSR_64_Intel_OCL_BI_SaveList;
330     break;
331   }
332   case CallingConv::HHVM:
333     return CSR_64_HHVM_SaveList;
334   case CallingConv::X86_RegCall:
335     if (Is64Bit) {
336       if (IsWin64) {
337         return (HasSSE ? CSR_Win64_RegCall_SaveList :
338                          CSR_Win64_RegCall_NoSSE_SaveList);
339       } else {
340         return (HasSSE ? CSR_SysV64_RegCall_SaveList :
341                          CSR_SysV64_RegCall_NoSSE_SaveList);
342       }
343     } else {
344       return (HasSSE ? CSR_32_RegCall_SaveList :
345                        CSR_32_RegCall_NoSSE_SaveList);
346     }
347   case CallingConv::CFGuard_Check:
348     assert(!Is64Bit && "CFGuard check mechanism only used on 32-bit X86");
349     return (HasSSE ? CSR_Win32_CFGuard_Check_SaveList
350                    : CSR_Win32_CFGuard_Check_NoSSE_SaveList);
351   case CallingConv::Cold:
352     if (Is64Bit)
353       return CSR_64_MostRegs_SaveList;
354     break;
355   case CallingConv::Win64:
356     if (!HasSSE)
357       return CSR_Win64_NoSSE_SaveList;
358     return CSR_Win64_SaveList;
359   case CallingConv::SwiftTail:
360     if (!Is64Bit)
361       return CSR_32_SaveList;
362     return IsWin64 ? CSR_Win64_SwiftTail_SaveList : CSR_64_SwiftTail_SaveList;
363   case CallingConv::X86_64_SysV:
364     if (CallsEHReturn)
365       return CSR_64EHRet_SaveList;
366     return CSR_64_SaveList;
367   case CallingConv::X86_INTR:
368     if (Is64Bit) {
369       if (HasAVX512)
370         return CSR_64_AllRegs_AVX512_SaveList;
371       if (HasAVX)
372         return CSR_64_AllRegs_AVX_SaveList;
373       if (HasSSE)
374         return CSR_64_AllRegs_SaveList;
375       return CSR_64_AllRegs_NoSSE_SaveList;
376     } else {
377       if (HasAVX512)
378         return CSR_32_AllRegs_AVX512_SaveList;
379       if (HasAVX)
380         return CSR_32_AllRegs_AVX_SaveList;
381       if (HasSSE)
382         return CSR_32_AllRegs_SSE_SaveList;
383       return CSR_32_AllRegs_SaveList;
384     }
385   default:
386     break;
387   }
388 
389   if (Is64Bit) {
390     bool IsSwiftCC = Subtarget.getTargetLowering()->supportSwiftError() &&
391                      F.getAttributes().hasAttrSomewhere(Attribute::SwiftError);
392     if (IsSwiftCC)
393       return IsWin64 ? CSR_Win64_SwiftError_SaveList
394                      : CSR_64_SwiftError_SaveList;
395 
396     if (IsWin64)
397       return HasSSE ? CSR_Win64_SaveList : CSR_Win64_NoSSE_SaveList;
398     if (CallsEHReturn)
399       return CSR_64EHRet_SaveList;
400     return CSR_64_SaveList;
401   }
402 
403   return CallsEHReturn ? CSR_32EHRet_SaveList : CSR_32_SaveList;
404 }
405 
406 const MCPhysReg *X86RegisterInfo::getCalleeSavedRegsViaCopy(
407     const MachineFunction *MF) const {
408   assert(MF && "Invalid MachineFunction pointer.");
409   if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
410       MF->getInfo<X86MachineFunctionInfo>()->isSplitCSR())
411     return CSR_64_CXX_TLS_Darwin_ViaCopy_SaveList;
412   return nullptr;
413 }
414 
415 const uint32_t *
416 X86RegisterInfo::getCallPreservedMask(const MachineFunction &MF,
417                                       CallingConv::ID CC) const {
418   const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
419   bool HasSSE = Subtarget.hasSSE1();
420   bool HasAVX = Subtarget.hasAVX();
421   bool HasAVX512 = Subtarget.hasAVX512();
422 
423   switch (CC) {
424   case CallingConv::GHC:
425   case CallingConv::HiPE:
426     return CSR_NoRegs_RegMask;
427   case CallingConv::AnyReg:
428     if (HasAVX)
429       return CSR_64_AllRegs_AVX_RegMask;
430     return CSR_64_AllRegs_RegMask;
431   case CallingConv::PreserveMost:
432     return CSR_64_RT_MostRegs_RegMask;
433   case CallingConv::PreserveAll:
434     if (HasAVX)
435       return CSR_64_RT_AllRegs_AVX_RegMask;
436     return CSR_64_RT_AllRegs_RegMask;
437   case CallingConv::CXX_FAST_TLS:
438     if (Is64Bit)
439       return CSR_64_TLS_Darwin_RegMask;
440     break;
441   case CallingConv::Intel_OCL_BI: {
442     if (HasAVX512 && IsWin64)
443       return CSR_Win64_Intel_OCL_BI_AVX512_RegMask;
444     if (HasAVX512 && Is64Bit)
445       return CSR_64_Intel_OCL_BI_AVX512_RegMask;
446     if (HasAVX && IsWin64)
447       return CSR_Win64_Intel_OCL_BI_AVX_RegMask;
448     if (HasAVX && Is64Bit)
449       return CSR_64_Intel_OCL_BI_AVX_RegMask;
450     if (!HasAVX && !IsWin64 && Is64Bit)
451       return CSR_64_Intel_OCL_BI_RegMask;
452     break;
453   }
454   case CallingConv::HHVM:
455     return CSR_64_HHVM_RegMask;
456   case CallingConv::X86_RegCall:
457     if (Is64Bit) {
458       if (IsWin64) {
459         return (HasSSE ? CSR_Win64_RegCall_RegMask :
460                          CSR_Win64_RegCall_NoSSE_RegMask);
461       } else {
462         return (HasSSE ? CSR_SysV64_RegCall_RegMask :
463                          CSR_SysV64_RegCall_NoSSE_RegMask);
464       }
465     } else {
466       return (HasSSE ? CSR_32_RegCall_RegMask :
467                        CSR_32_RegCall_NoSSE_RegMask);
468     }
469   case CallingConv::CFGuard_Check:
470     assert(!Is64Bit && "CFGuard check mechanism only used on 32-bit X86");
471     return (HasSSE ? CSR_Win32_CFGuard_Check_RegMask
472                    : CSR_Win32_CFGuard_Check_NoSSE_RegMask);
473   case CallingConv::Cold:
474     if (Is64Bit)
475       return CSR_64_MostRegs_RegMask;
476     break;
477   case CallingConv::Win64:
478     return CSR_Win64_RegMask;
479   case CallingConv::SwiftTail:
480     if (!Is64Bit)
481       return CSR_32_RegMask;
482     return IsWin64 ? CSR_Win64_SwiftTail_RegMask : CSR_64_SwiftTail_RegMask;
483   case CallingConv::X86_64_SysV:
484     return CSR_64_RegMask;
485   case CallingConv::X86_INTR:
486     if (Is64Bit) {
487       if (HasAVX512)
488         return CSR_64_AllRegs_AVX512_RegMask;
489       if (HasAVX)
490         return CSR_64_AllRegs_AVX_RegMask;
491       if (HasSSE)
492         return CSR_64_AllRegs_RegMask;
493       return CSR_64_AllRegs_NoSSE_RegMask;
494     } else {
495       if (HasAVX512)
496         return CSR_32_AllRegs_AVX512_RegMask;
497       if (HasAVX)
498         return CSR_32_AllRegs_AVX_RegMask;
499       if (HasSSE)
500         return CSR_32_AllRegs_SSE_RegMask;
501       return CSR_32_AllRegs_RegMask;
502     }
503   default:
504     break;
505   }
506 
507   // Unlike getCalleeSavedRegs(), we don't have MMI so we can't check
508   // callsEHReturn().
509   if (Is64Bit) {
510     const Function &F = MF.getFunction();
511     bool IsSwiftCC = Subtarget.getTargetLowering()->supportSwiftError() &&
512                      F.getAttributes().hasAttrSomewhere(Attribute::SwiftError);
513     if (IsSwiftCC)
514       return IsWin64 ? CSR_Win64_SwiftError_RegMask : CSR_64_SwiftError_RegMask;
515 
516     return IsWin64 ? CSR_Win64_RegMask : CSR_64_RegMask;
517   }
518 
519   return CSR_32_RegMask;
520 }
521 
522 const uint32_t*
523 X86RegisterInfo::getNoPreservedMask() const {
524   return CSR_NoRegs_RegMask;
525 }
526 
527 const uint32_t *X86RegisterInfo::getDarwinTLSCallPreservedMask() const {
528   return CSR_64_TLS_Darwin_RegMask;
529 }
530 
531 BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
532   BitVector Reserved(getNumRegs());
533   const X86FrameLowering *TFI = getFrameLowering(MF);
534 
535   // Set the floating point control register as reserved.
536   Reserved.set(X86::FPCW);
537 
538   // Set the floating point status register as reserved.
539   Reserved.set(X86::FPSW);
540 
541   // Set the SIMD floating point control register as reserved.
542   Reserved.set(X86::MXCSR);
543 
544   // Set the stack-pointer register and its aliases as reserved.
545   for (const MCPhysReg &SubReg : subregs_inclusive(X86::RSP))
546     Reserved.set(SubReg);
547 
548   // Set the Shadow Stack Pointer as reserved.
549   Reserved.set(X86::SSP);
550 
551   // Set the instruction pointer register and its aliases as reserved.
552   for (const MCPhysReg &SubReg : subregs_inclusive(X86::RIP))
553     Reserved.set(SubReg);
554 
555   // Set the frame-pointer register and its aliases as reserved if needed.
556   if (TFI->hasFP(MF)) {
557     for (const MCPhysReg &SubReg : subregs_inclusive(X86::RBP))
558       Reserved.set(SubReg);
559   }
560 
561   // Set the base-pointer register and its aliases as reserved if needed.
562   if (hasBasePointer(MF)) {
563     CallingConv::ID CC = MF.getFunction().getCallingConv();
564     const uint32_t *RegMask = getCallPreservedMask(MF, CC);
565     if (MachineOperand::clobbersPhysReg(RegMask, getBaseRegister()))
566       report_fatal_error(
567         "Stack realignment in presence of dynamic allocas is not supported with"
568         "this calling convention.");
569 
570     Register BasePtr = getX86SubSuperRegister(getBaseRegister(), 64);
571     for (const MCPhysReg &SubReg : subregs_inclusive(BasePtr))
572       Reserved.set(SubReg);
573   }
574 
575   // Mark the segment registers as reserved.
576   Reserved.set(X86::CS);
577   Reserved.set(X86::SS);
578   Reserved.set(X86::DS);
579   Reserved.set(X86::ES);
580   Reserved.set(X86::FS);
581   Reserved.set(X86::GS);
582 
583   // Mark the floating point stack registers as reserved.
584   for (unsigned n = 0; n != 8; ++n)
585     Reserved.set(X86::ST0 + n);
586 
587   // Reserve the registers that only exist in 64-bit mode.
588   if (!Is64Bit) {
589     // These 8-bit registers are part of the x86-64 extension even though their
590     // super-registers are old 32-bits.
591     Reserved.set(X86::SIL);
592     Reserved.set(X86::DIL);
593     Reserved.set(X86::BPL);
594     Reserved.set(X86::SPL);
595     Reserved.set(X86::SIH);
596     Reserved.set(X86::DIH);
597     Reserved.set(X86::BPH);
598     Reserved.set(X86::SPH);
599 
600     for (unsigned n = 0; n != 8; ++n) {
601       // R8, R9, ...
602       for (MCRegAliasIterator AI(X86::R8 + n, this, true); AI.isValid(); ++AI)
603         Reserved.set(*AI);
604 
605       // XMM8, XMM9, ...
606       for (MCRegAliasIterator AI(X86::XMM8 + n, this, true); AI.isValid(); ++AI)
607         Reserved.set(*AI);
608     }
609   }
610   if (!Is64Bit || !MF.getSubtarget<X86Subtarget>().hasAVX512()) {
611     for (unsigned n = 16; n != 32; ++n) {
612       for (MCRegAliasIterator AI(X86::XMM0 + n, this, true); AI.isValid(); ++AI)
613         Reserved.set(*AI);
614     }
615   }
616 
617   assert(checkAllSuperRegsMarked(Reserved,
618                                  {X86::SIL, X86::DIL, X86::BPL, X86::SPL,
619                                   X86::SIH, X86::DIH, X86::BPH, X86::SPH}));
620   return Reserved;
621 }
622 
623 bool X86RegisterInfo::isArgumentRegister(const MachineFunction &MF,
624                                          MCRegister Reg) const {
625   const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
626   const TargetRegisterInfo &TRI = *ST.getRegisterInfo();
627   auto IsSubReg = [&](MCRegister RegA, MCRegister RegB) {
628     return TRI.isSuperOrSubRegisterEq(RegA, RegB);
629   };
630 
631   if (!ST.is64Bit())
632     return llvm::any_of(
633                SmallVector<MCRegister>{X86::EAX, X86::ECX, X86::EDX},
634                [&](MCRegister &RegA) { return IsSubReg(RegA, Reg); }) ||
635            (ST.hasMMX() && X86::VR64RegClass.contains(Reg));
636 
637   CallingConv::ID CC = MF.getFunction().getCallingConv();
638 
639   if (CC == CallingConv::X86_64_SysV && IsSubReg(X86::RAX, Reg))
640     return true;
641 
642   if (llvm::any_of(
643           SmallVector<MCRegister>{X86::RDX, X86::RCX, X86::R8, X86::R9},
644           [&](MCRegister &RegA) { return IsSubReg(RegA, Reg); }))
645     return true;
646 
647   if (CC != CallingConv::Win64 &&
648       llvm::any_of(SmallVector<MCRegister>{X86::RDI, X86::RSI},
649                    [&](MCRegister &RegA) { return IsSubReg(RegA, Reg); }))
650     return true;
651 
652   if (ST.hasSSE1() &&
653       llvm::any_of(SmallVector<MCRegister>{X86::XMM0, X86::XMM1, X86::XMM2,
654                                            X86::XMM3, X86::XMM4, X86::XMM5,
655                                            X86::XMM6, X86::XMM7},
656                    [&](MCRegister &RegA) { return IsSubReg(RegA, Reg); }))
657     return true;
658 
659   return X86GenRegisterInfo::isArgumentRegister(MF, Reg);
660 }
661 
662 bool X86RegisterInfo::isFixedRegister(const MachineFunction &MF,
663                                       MCRegister PhysReg) const {
664   const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
665   const TargetRegisterInfo &TRI = *ST.getRegisterInfo();
666 
667   // Stack pointer.
668   if (TRI.isSuperOrSubRegisterEq(X86::RSP, PhysReg))
669     return true;
670 
671   // Don't use the frame pointer if it's being used.
672   const X86FrameLowering &TFI = *getFrameLowering(MF);
673   if (TFI.hasFP(MF) && TRI.isSuperOrSubRegisterEq(X86::RBP, PhysReg))
674     return true;
675 
676   return X86GenRegisterInfo::isFixedRegister(MF, PhysReg);
677 }
678 
679 bool X86RegisterInfo::isTileRegisterClass(const TargetRegisterClass *RC) const {
680   return RC->getID() == X86::TILERegClassID;
681 }
682 
683 void X86RegisterInfo::adjustStackMapLiveOutMask(uint32_t *Mask) const {
684   // Check if the EFLAGS register is marked as live-out. This shouldn't happen,
685   // because the calling convention defines the EFLAGS register as NOT
686   // preserved.
687   //
688   // Unfortunatelly the EFLAGS show up as live-out after branch folding. Adding
689   // an assert to track this and clear the register afterwards to avoid
690   // unnecessary crashes during release builds.
691   assert(!(Mask[X86::EFLAGS / 32] & (1U << (X86::EFLAGS % 32))) &&
692          "EFLAGS are not live-out from a patchpoint.");
693 
694   // Also clean other registers that don't need preserving (IP).
695   for (auto Reg : {X86::EFLAGS, X86::RIP, X86::EIP, X86::IP})
696     Mask[Reg / 32] &= ~(1U << (Reg % 32));
697 }
698 
699 //===----------------------------------------------------------------------===//
700 // Stack Frame Processing methods
701 //===----------------------------------------------------------------------===//
702 
703 static bool CantUseSP(const MachineFrameInfo &MFI) {
704   return MFI.hasVarSizedObjects() || MFI.hasOpaqueSPAdjustment();
705 }
706 
707 bool X86RegisterInfo::hasBasePointer(const MachineFunction &MF) const {
708   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
709   if (X86FI->hasPreallocatedCall())
710     return true;
711 
712   const MachineFrameInfo &MFI = MF.getFrameInfo();
713 
714   if (!EnableBasePointer)
715     return false;
716 
717   // When we need stack realignment, we can't address the stack from the frame
718   // pointer.  When we have dynamic allocas or stack-adjusting inline asm, we
719   // can't address variables from the stack pointer.  MS inline asm can
720   // reference locals while also adjusting the stack pointer.  When we can't
721   // use both the SP and the FP, we need a separate base pointer register.
722   bool CantUseFP = hasStackRealignment(MF);
723   return CantUseFP && CantUseSP(MFI);
724 }
725 
726 bool X86RegisterInfo::canRealignStack(const MachineFunction &MF) const {
727   if (!TargetRegisterInfo::canRealignStack(MF))
728     return false;
729 
730   const MachineFrameInfo &MFI = MF.getFrameInfo();
731   const MachineRegisterInfo *MRI = &MF.getRegInfo();
732 
733   // Stack realignment requires a frame pointer.  If we already started
734   // register allocation with frame pointer elimination, it is too late now.
735   if (!MRI->canReserveReg(FramePtr))
736     return false;
737 
738   // If a base pointer is necessary.  Check that it isn't too late to reserve
739   // it.
740   if (CantUseSP(MFI))
741     return MRI->canReserveReg(BasePtr);
742   return true;
743 }
744 
745 // tryOptimizeLEAtoMOV - helper function that tries to replace a LEA instruction
746 // of the form 'lea (%esp), %ebx' --> 'mov %esp, %ebx'.
747 // TODO: In this case we should be really trying first to entirely eliminate
748 // this instruction which is a plain copy.
749 static bool tryOptimizeLEAtoMOV(MachineBasicBlock::iterator II) {
750   MachineInstr &MI = *II;
751   unsigned Opc = II->getOpcode();
752   // Check if this is a LEA of the form 'lea (%esp), %ebx'
753   if ((Opc != X86::LEA32r && Opc != X86::LEA64r && Opc != X86::LEA64_32r) ||
754       MI.getOperand(2).getImm() != 1 ||
755       MI.getOperand(3).getReg() != X86::NoRegister ||
756       MI.getOperand(4).getImm() != 0 ||
757       MI.getOperand(5).getReg() != X86::NoRegister)
758     return false;
759   Register BasePtr = MI.getOperand(1).getReg();
760   // In X32 mode, ensure the base-pointer is a 32-bit operand, so the LEA will
761   // be replaced with a 32-bit operand MOV which will zero extend the upper
762   // 32-bits of the super register.
763   if (Opc == X86::LEA64_32r)
764     BasePtr = getX86SubSuperRegister(BasePtr, 32);
765   Register NewDestReg = MI.getOperand(0).getReg();
766   const X86InstrInfo *TII =
767       MI.getParent()->getParent()->getSubtarget<X86Subtarget>().getInstrInfo();
768   TII->copyPhysReg(*MI.getParent(), II, MI.getDebugLoc(), NewDestReg, BasePtr,
769                    MI.getOperand(1).isKill());
770   MI.eraseFromParent();
771   return true;
772 }
773 
774 static bool isFuncletReturnInstr(MachineInstr &MI) {
775   switch (MI.getOpcode()) {
776   case X86::CATCHRET:
777   case X86::CLEANUPRET:
778     return true;
779   default:
780     return false;
781   }
782   llvm_unreachable("impossible");
783 }
784 
785 bool
786 X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
787                                      int SPAdj, unsigned FIOperandNum,
788                                      RegScavenger *RS) const {
789   MachineInstr &MI = *II;
790   MachineBasicBlock &MBB = *MI.getParent();
791   MachineFunction &MF = *MBB.getParent();
792   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
793   bool IsEHFuncletEpilogue = MBBI == MBB.end() ? false
794                                                : isFuncletReturnInstr(*MBBI);
795   const X86FrameLowering *TFI = getFrameLowering(MF);
796   int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
797 
798   // Determine base register and offset.
799   int FIOffset;
800   Register BasePtr;
801   if (MI.isReturn()) {
802     assert((!hasStackRealignment(MF) ||
803             MF.getFrameInfo().isFixedObjectIndex(FrameIndex)) &&
804            "Return instruction can only reference SP relative frame objects");
805     FIOffset =
806         TFI->getFrameIndexReferenceSP(MF, FrameIndex, BasePtr, 0).getFixed();
807   } else if (TFI->Is64Bit && (MBB.isEHFuncletEntry() || IsEHFuncletEpilogue)) {
808     FIOffset = TFI->getWin64EHFrameIndexRef(MF, FrameIndex, BasePtr);
809   } else {
810     FIOffset = TFI->getFrameIndexReference(MF, FrameIndex, BasePtr).getFixed();
811   }
812 
813   // LOCAL_ESCAPE uses a single offset, with no register. It only works in the
814   // simple FP case, and doesn't work with stack realignment. On 32-bit, the
815   // offset is from the traditional base pointer location.  On 64-bit, the
816   // offset is from the SP at the end of the prologue, not the FP location. This
817   // matches the behavior of llvm.frameaddress.
818   unsigned Opc = MI.getOpcode();
819   if (Opc == TargetOpcode::LOCAL_ESCAPE) {
820     MachineOperand &FI = MI.getOperand(FIOperandNum);
821     FI.ChangeToImmediate(FIOffset);
822     return false;
823   }
824 
825   // For LEA64_32r when BasePtr is 32-bits (X32) we can use full-size 64-bit
826   // register as source operand, semantic is the same and destination is
827   // 32-bits. It saves one byte per lea in code since 0x67 prefix is avoided.
828   // Don't change BasePtr since it is used later for stack adjustment.
829   Register MachineBasePtr = BasePtr;
830   if (Opc == X86::LEA64_32r && X86::GR32RegClass.contains(BasePtr))
831     MachineBasePtr = getX86SubSuperRegister(BasePtr, 64);
832 
833   // This must be part of a four operand memory reference.  Replace the
834   // FrameIndex with base register.  Add an offset to the offset.
835   MI.getOperand(FIOperandNum).ChangeToRegister(MachineBasePtr, false);
836 
837   if (BasePtr == StackPtr)
838     FIOffset += SPAdj;
839 
840   // The frame index format for stackmaps and patchpoints is different from the
841   // X86 format. It only has a FI and an offset.
842   if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
843     assert(BasePtr == FramePtr && "Expected the FP as base register");
844     int64_t Offset = MI.getOperand(FIOperandNum + 1).getImm() + FIOffset;
845     MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset);
846     return false;
847   }
848 
849   if (MI.getOperand(FIOperandNum+3).isImm()) {
850     // Offset is a 32-bit integer.
851     int Imm = (int)(MI.getOperand(FIOperandNum + 3).getImm());
852     int Offset = FIOffset + Imm;
853     assert((!Is64Bit || isInt<32>((long long)FIOffset + Imm)) &&
854            "Requesting 64-bit offset in 32-bit immediate!");
855     if (Offset != 0 || !tryOptimizeLEAtoMOV(II))
856       MI.getOperand(FIOperandNum + 3).ChangeToImmediate(Offset);
857   } else {
858     // Offset is symbolic. This is extremely rare.
859     uint64_t Offset = FIOffset +
860       (uint64_t)MI.getOperand(FIOperandNum+3).getOffset();
861     MI.getOperand(FIOperandNum + 3).setOffset(Offset);
862   }
863   return false;
864 }
865 
866 unsigned X86RegisterInfo::findDeadCallerSavedReg(
867     MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI) const {
868   const MachineFunction *MF = MBB.getParent();
869   if (MF->callsEHReturn())
870     return 0;
871 
872   const TargetRegisterClass &AvailableRegs = *getGPRsForTailCall(*MF);
873 
874   if (MBBI == MBB.end())
875     return 0;
876 
877   switch (MBBI->getOpcode()) {
878   default:
879     return 0;
880   case TargetOpcode::PATCHABLE_RET:
881   case X86::RET:
882   case X86::RET32:
883   case X86::RET64:
884   case X86::RETI32:
885   case X86::RETI64:
886   case X86::TCRETURNdi:
887   case X86::TCRETURNri:
888   case X86::TCRETURNmi:
889   case X86::TCRETURNdi64:
890   case X86::TCRETURNri64:
891   case X86::TCRETURNmi64:
892   case X86::EH_RETURN:
893   case X86::EH_RETURN64: {
894     SmallSet<uint16_t, 8> Uses;
895     for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
896       MachineOperand &MO = MBBI->getOperand(I);
897       if (!MO.isReg() || MO.isDef())
898         continue;
899       Register Reg = MO.getReg();
900       if (!Reg)
901         continue;
902       for (MCRegAliasIterator AI(Reg, this, true); AI.isValid(); ++AI)
903         Uses.insert(*AI);
904     }
905 
906     for (auto CS : AvailableRegs)
907       if (!Uses.count(CS) && CS != X86::RIP && CS != X86::RSP && CS != X86::ESP)
908         return CS;
909   }
910   }
911 
912   return 0;
913 }
914 
915 Register X86RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
916   const X86FrameLowering *TFI = getFrameLowering(MF);
917   return TFI->hasFP(MF) ? FramePtr : StackPtr;
918 }
919 
920 unsigned
921 X86RegisterInfo::getPtrSizedFrameRegister(const MachineFunction &MF) const {
922   const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
923   Register FrameReg = getFrameRegister(MF);
924   if (Subtarget.isTarget64BitILP32())
925     FrameReg = getX86SubSuperRegister(FrameReg, 32);
926   return FrameReg;
927 }
928 
929 unsigned
930 X86RegisterInfo::getPtrSizedStackRegister(const MachineFunction &MF) const {
931   const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
932   Register StackReg = getStackRegister();
933   if (Subtarget.isTarget64BitILP32())
934     StackReg = getX86SubSuperRegister(StackReg, 32);
935   return StackReg;
936 }
937 
938 static ShapeT getTileShape(Register VirtReg, VirtRegMap *VRM,
939                            const MachineRegisterInfo *MRI) {
940   if (VRM->hasShape(VirtReg))
941     return VRM->getShape(VirtReg);
942 
943   const MachineOperand &Def = *MRI->def_begin(VirtReg);
944   MachineInstr *MI = const_cast<MachineInstr *>(Def.getParent());
945   unsigned OpCode = MI->getOpcode();
946   switch (OpCode) {
947   default:
948     llvm_unreachable("Unexpected machine instruction on tile register!");
949     break;
950   case X86::COPY: {
951     Register SrcReg = MI->getOperand(1).getReg();
952     ShapeT Shape = getTileShape(SrcReg, VRM, MRI);
953     VRM->assignVirt2Shape(VirtReg, Shape);
954     return Shape;
955   }
956   // We only collect the tile shape that is defined.
957   case X86::PTILELOADDV:
958   case X86::PTILELOADDT1V:
959   case X86::PTDPBSSDV:
960   case X86::PTDPBSUDV:
961   case X86::PTDPBUSDV:
962   case X86::PTDPBUUDV:
963   case X86::PTILEZEROV:
964   case X86::PTDPBF16PSV:
965   case X86::PTDPFP16PSV:
966     MachineOperand &MO1 = MI->getOperand(1);
967     MachineOperand &MO2 = MI->getOperand(2);
968     ShapeT Shape(&MO1, &MO2, MRI);
969     VRM->assignVirt2Shape(VirtReg, Shape);
970     return Shape;
971   }
972 }
973 
974 bool X86RegisterInfo::getRegAllocationHints(Register VirtReg,
975                                             ArrayRef<MCPhysReg> Order,
976                                             SmallVectorImpl<MCPhysReg> &Hints,
977                                             const MachineFunction &MF,
978                                             const VirtRegMap *VRM,
979                                             const LiveRegMatrix *Matrix) const {
980   const MachineRegisterInfo *MRI = &MF.getRegInfo();
981   const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
982   bool BaseImplRetVal = TargetRegisterInfo::getRegAllocationHints(
983       VirtReg, Order, Hints, MF, VRM, Matrix);
984 
985   if (RC.getID() != X86::TILERegClassID)
986     return BaseImplRetVal;
987 
988   ShapeT VirtShape = getTileShape(VirtReg, const_cast<VirtRegMap *>(VRM), MRI);
989   auto AddHint = [&](MCPhysReg PhysReg) {
990     Register VReg = Matrix->getOneVReg(PhysReg);
991     if (VReg == MCRegister::NoRegister) { // Not allocated yet
992       Hints.push_back(PhysReg);
993       return;
994     }
995     ShapeT PhysShape = getTileShape(VReg, const_cast<VirtRegMap *>(VRM), MRI);
996     if (PhysShape == VirtShape)
997       Hints.push_back(PhysReg);
998   };
999 
1000   SmallSet<MCPhysReg, 4> CopyHints;
1001   CopyHints.insert(Hints.begin(), Hints.end());
1002   Hints.clear();
1003   for (auto Hint : CopyHints) {
1004     if (RC.contains(Hint) && !MRI->isReserved(Hint))
1005       AddHint(Hint);
1006   }
1007   for (MCPhysReg PhysReg : Order) {
1008     if (!CopyHints.count(PhysReg) && RC.contains(PhysReg) &&
1009         !MRI->isReserved(PhysReg))
1010       AddHint(PhysReg);
1011   }
1012 
1013 #define DEBUG_TYPE "tile-hint"
1014   LLVM_DEBUG({
1015     dbgs() << "Hints for virtual register " << format_hex(VirtReg, 8) << "\n";
1016     for (auto Hint : Hints) {
1017       dbgs() << "tmm" << Hint << ",";
1018     }
1019     dbgs() << "\n";
1020   });
1021 #undef DEBUG_TYPE
1022 
1023   return true;
1024 }
1025