1 //===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the XCoreTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "XCoreISelLowering.h"
14 #include "XCore.h"
15 #include "XCoreMachineFunctionInfo.h"
16 #include "XCoreSubtarget.h"
17 #include "XCoreTargetMachine.h"
18 #include "XCoreTargetObjectFile.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/IR/CallingConv.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/IntrinsicsXCore.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/KnownBits.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "xcore-lower"
43 
44 const char *XCoreTargetLowering::
45 getTargetNodeName(unsigned Opcode) const
46 {
47   switch ((XCoreISD::NodeType)Opcode)
48   {
49     case XCoreISD::FIRST_NUMBER      : break;
50     case XCoreISD::BL                : return "XCoreISD::BL";
51     case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
52     case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
53     case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
54     case XCoreISD::LDWSP             : return "XCoreISD::LDWSP";
55     case XCoreISD::STWSP             : return "XCoreISD::STWSP";
56     case XCoreISD::RETSP             : return "XCoreISD::RETSP";
57     case XCoreISD::LADD              : return "XCoreISD::LADD";
58     case XCoreISD::LSUB              : return "XCoreISD::LSUB";
59     case XCoreISD::LMUL              : return "XCoreISD::LMUL";
60     case XCoreISD::MACCU             : return "XCoreISD::MACCU";
61     case XCoreISD::MACCS             : return "XCoreISD::MACCS";
62     case XCoreISD::CRC8              : return "XCoreISD::CRC8";
63     case XCoreISD::BR_JT             : return "XCoreISD::BR_JT";
64     case XCoreISD::BR_JT32           : return "XCoreISD::BR_JT32";
65     case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET";
66     case XCoreISD::EH_RETURN         : return "XCoreISD::EH_RETURN";
67     case XCoreISD::MEMBARRIER        : return "XCoreISD::MEMBARRIER";
68   }
69   return nullptr;
70 }
71 
72 XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM,
73                                          const XCoreSubtarget &Subtarget)
74     : TargetLowering(TM), TM(TM), Subtarget(Subtarget) {
75 
76   // Set up the register classes.
77   addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
78 
79   // Compute derived properties from the register classes
80   computeRegisterProperties(Subtarget.getRegisterInfo());
81 
82   setStackPointerRegisterToSaveRestore(XCore::SP);
83 
84   setSchedulingPreference(Sched::Source);
85 
86   // Use i32 for setcc operations results (slt, sgt, ...).
87   setBooleanContents(ZeroOrOneBooleanContent);
88   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
89 
90   // XCore does not have the NodeTypes below.
91   setOperationAction(ISD::BR_CC,     MVT::i32,   Expand);
92   setOperationAction(ISD::SELECT_CC, MVT::i32,   Expand);
93 
94   // 64bit
95   setOperationAction(ISD::ADD, MVT::i64, Custom);
96   setOperationAction(ISD::SUB, MVT::i64, Custom);
97   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
98   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
99   setOperationAction(ISD::MULHS, MVT::i32, Expand);
100   setOperationAction(ISD::MULHU, MVT::i32, Expand);
101   setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
102   setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
103   setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
104 
105   // Bit Manipulation
106   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
107   setOperationAction(ISD::ROTL , MVT::i32, Expand);
108   setOperationAction(ISD::ROTR , MVT::i32, Expand);
109   setOperationAction(ISD::BITREVERSE , MVT::i32, Legal);
110 
111   setOperationAction(ISD::TRAP, MVT::Other, Legal);
112 
113   // Jump tables.
114   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
115 
116   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
117   setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
118 
119   // Conversion of i64 -> double produces constantpool nodes
120   setOperationAction(ISD::ConstantPool, MVT::i32,   Custom);
121 
122   // Loads
123   for (MVT VT : MVT::integer_valuetypes()) {
124     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
125     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
126     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
127 
128     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
129     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand);
130   }
131 
132   // Custom expand misaligned loads / stores.
133   setOperationAction(ISD::LOAD, MVT::i32, Custom);
134   setOperationAction(ISD::STORE, MVT::i32, Custom);
135 
136   // Varargs
137   setOperationAction(ISD::VAEND, MVT::Other, Expand);
138   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
139   setOperationAction(ISD::VAARG, MVT::Other, Custom);
140   setOperationAction(ISD::VASTART, MVT::Other, Custom);
141 
142   // Dynamic stack
143   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
144   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
145   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
146 
147   // Exception handling
148   setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
149   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
150 
151   // Atomic operations
152   // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
153   // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
154   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
155   setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
156   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
157 
158   // TRAMPOLINE is custom lowered.
159   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
160   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
161 
162   // We want to custom lower some of our intrinsics.
163   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
164 
165   MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
166   MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
167     = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
168 
169   // We have target-specific dag combine patterns for the following nodes:
170   setTargetDAGCombine(ISD::STORE);
171   setTargetDAGCombine(ISD::ADD);
172   setTargetDAGCombine(ISD::INTRINSIC_VOID);
173   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
174 
175   setMinFunctionAlignment(Align(2));
176   setPrefFunctionAlignment(Align(4));
177 }
178 
179 bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
180   if (Val.getOpcode() != ISD::LOAD)
181     return false;
182 
183   EVT VT1 = Val.getValueType();
184   if (!VT1.isSimple() || !VT1.isInteger() ||
185       !VT2.isSimple() || !VT2.isInteger())
186     return false;
187 
188   switch (VT1.getSimpleVT().SimpleTy) {
189   default: break;
190   case MVT::i8:
191     return true;
192   }
193 
194   return false;
195 }
196 
197 SDValue XCoreTargetLowering::
198 LowerOperation(SDValue Op, SelectionDAG &DAG) const {
199   switch (Op.getOpcode())
200   {
201   case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
202   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
203   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
204   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
205   case ISD::BR_JT:              return LowerBR_JT(Op, DAG);
206   case ISD::LOAD:               return LowerLOAD(Op, DAG);
207   case ISD::STORE:              return LowerSTORE(Op, DAG);
208   case ISD::VAARG:              return LowerVAARG(Op, DAG);
209   case ISD::VASTART:            return LowerVASTART(Op, DAG);
210   case ISD::SMUL_LOHI:          return LowerSMUL_LOHI(Op, DAG);
211   case ISD::UMUL_LOHI:          return LowerUMUL_LOHI(Op, DAG);
212   // FIXME: Remove these when LegalizeDAGTypes lands.
213   case ISD::ADD:
214   case ISD::SUB:                return ExpandADDSUB(Op.getNode(), DAG);
215   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
216   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
217   case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
218   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
219   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
220   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
221   case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
222   case ISD::ATOMIC_LOAD:        return LowerATOMIC_LOAD(Op, DAG);
223   case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op, DAG);
224   default:
225     llvm_unreachable("unimplemented operand");
226   }
227 }
228 
229 /// ReplaceNodeResults - Replace the results of node with an illegal result
230 /// type with new values built out of custom code.
231 void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
232                                              SmallVectorImpl<SDValue>&Results,
233                                              SelectionDAG &DAG) const {
234   switch (N->getOpcode()) {
235   default:
236     llvm_unreachable("Don't know how to custom expand this!");
237   case ISD::ADD:
238   case ISD::SUB:
239     Results.push_back(ExpandADDSUB(N, DAG));
240     return;
241   }
242 }
243 
244 //===----------------------------------------------------------------------===//
245 //  Misc Lower Operation implementation
246 //===----------------------------------------------------------------------===//
247 
248 SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA,
249                                                      const GlobalValue *GV,
250                                                      SelectionDAG &DAG) const {
251   // FIXME there is no actual debug info here
252   SDLoc dl(GA);
253 
254   if (GV->getValueType()->isFunctionTy())
255     return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
256 
257   const auto *GVar = dyn_cast<GlobalVariable>(GV);
258   if ((GV->hasSection() && GV->getSection().startswith(".cp.")) ||
259       (GVar && GVar->isConstant() && GV->hasLocalLinkage()))
260     return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
261 
262   return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
263 }
264 
265 static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) {
266   if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small)
267     return true;
268 
269   Type *ObjType = GV->getValueType();
270   if (!ObjType->isSized())
271     return false;
272 
273   auto &DL = GV->getParent()->getDataLayout();
274   unsigned ObjSize = DL.getTypeAllocSize(ObjType);
275   return ObjSize < CodeModelLargeSize && ObjSize != 0;
276 }
277 
278 SDValue XCoreTargetLowering::
279 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
280 {
281   const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
282   const GlobalValue *GV = GN->getGlobal();
283   SDLoc DL(GN);
284   int64_t Offset = GN->getOffset();
285   if (IsSmallObject(GV, *this)) {
286     // We can only fold positive offsets that are a multiple of the word size.
287     int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
288     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
289     GA = getGlobalAddressWrapper(GA, GV, DAG);
290     // Handle the rest of the offset.
291     if (Offset != FoldedOffset) {
292       SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, DL, MVT::i32);
293       GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
294     }
295     return GA;
296   } else {
297     // Ideally we would not fold in offset with an index <= 11.
298     Type *Ty = Type::getInt8PtrTy(*DAG.getContext());
299     Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty);
300     Ty = Type::getInt32Ty(*DAG.getContext());
301     Constant *Idx = ConstantInt::get(Ty, Offset);
302     Constant *GAI = ConstantExpr::getGetElementPtr(
303         Type::getInt8Ty(*DAG.getContext()), GA, Idx);
304     SDValue CP = DAG.getConstantPool(GAI, MVT::i32);
305     return DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL,
306                        DAG.getEntryNode(), CP, MachinePointerInfo());
307   }
308 }
309 
310 SDValue XCoreTargetLowering::
311 LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
312 {
313   SDLoc DL(Op);
314   auto PtrVT = getPointerTy(DAG.getDataLayout());
315   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
316   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
317 
318   return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, PtrVT, Result);
319 }
320 
321 SDValue XCoreTargetLowering::
322 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
323 {
324   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
325   // FIXME there isn't really debug info here
326   SDLoc dl(CP);
327   EVT PtrVT = Op.getValueType();
328   SDValue Res;
329   if (CP->isMachineConstantPoolEntry()) {
330     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
331                                     CP->getAlign(), CP->getOffset());
332   } else {
333     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
334                                     CP->getOffset());
335   }
336   return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
337 }
338 
339 unsigned XCoreTargetLowering::getJumpTableEncoding() const {
340   return MachineJumpTableInfo::EK_Inline;
341 }
342 
343 SDValue XCoreTargetLowering::
344 LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
345 {
346   SDValue Chain = Op.getOperand(0);
347   SDValue Table = Op.getOperand(1);
348   SDValue Index = Op.getOperand(2);
349   SDLoc dl(Op);
350   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
351   unsigned JTI = JT->getIndex();
352   MachineFunction &MF = DAG.getMachineFunction();
353   const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
354   SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
355 
356   unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
357   if (NumEntries <= 32) {
358     return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
359   }
360   assert((NumEntries >> 31) == 0);
361   SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
362                                     DAG.getConstant(1, dl, MVT::i32));
363   return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
364                      ScaledIndex);
365 }
366 
367 SDValue XCoreTargetLowering::lowerLoadWordFromAlignedBasePlusOffset(
368     const SDLoc &DL, SDValue Chain, SDValue Base, int64_t Offset,
369     SelectionDAG &DAG) const {
370   auto PtrVT = getPointerTy(DAG.getDataLayout());
371   if ((Offset & 0x3) == 0) {
372     return DAG.getLoad(PtrVT, DL, Chain, Base, MachinePointerInfo());
373   }
374   // Lower to pair of consecutive word aligned loads plus some bit shifting.
375   int32_t HighOffset = alignTo(Offset, 4);
376   int32_t LowOffset = HighOffset - 4;
377   SDValue LowAddr, HighAddr;
378   if (GlobalAddressSDNode *GASD =
379         dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
380     LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
381                                    LowOffset);
382     HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
383                                     HighOffset);
384   } else {
385     LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
386                           DAG.getConstant(LowOffset, DL, MVT::i32));
387     HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
388                            DAG.getConstant(HighOffset, DL, MVT::i32));
389   }
390   SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, DL, MVT::i32);
391   SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, DL, MVT::i32);
392 
393   SDValue Low = DAG.getLoad(PtrVT, DL, Chain, LowAddr, MachinePointerInfo());
394   SDValue High = DAG.getLoad(PtrVT, DL, Chain, HighAddr, MachinePointerInfo());
395   SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
396   SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
397   SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
398   Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
399                       High.getValue(1));
400   SDValue Ops[] = { Result, Chain };
401   return DAG.getMergeValues(Ops, DL);
402 }
403 
404 static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
405 {
406   KnownBits Known = DAG.computeKnownBits(Value);
407   return Known.countMinTrailingZeros() >= 2;
408 }
409 
410 SDValue XCoreTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
411   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
412   LLVMContext &Context = *DAG.getContext();
413   LoadSDNode *LD = cast<LoadSDNode>(Op);
414   assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
415          "Unexpected extension type");
416   assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
417 
418   if (allowsMemoryAccessForAlignment(Context, DAG.getDataLayout(),
419                                      LD->getMemoryVT(), *LD->getMemOperand()))
420     return SDValue();
421 
422   SDValue Chain = LD->getChain();
423   SDValue BasePtr = LD->getBasePtr();
424   SDLoc DL(Op);
425 
426   if (!LD->isVolatile()) {
427     const GlobalValue *GV;
428     int64_t Offset = 0;
429     if (DAG.isBaseWithConstantOffset(BasePtr) &&
430         isWordAligned(BasePtr->getOperand(0), DAG)) {
431       SDValue NewBasePtr = BasePtr->getOperand(0);
432       Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
433       return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
434                                                     Offset, DAG);
435     }
436     if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
437         GV->getPointerAlignment(DAG.getDataLayout()) >= 4) {
438       SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
439                                                 BasePtr->getValueType(0));
440       return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
441                                                     Offset, DAG);
442     }
443   }
444 
445   if (LD->getAlignment() == 2) {
446     SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain, BasePtr,
447                                  LD->getPointerInfo(), MVT::i16, Align(2),
448                                  LD->getMemOperand()->getFlags());
449     SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
450                                    DAG.getConstant(2, DL, MVT::i32));
451     SDValue High =
452         DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, HighAddr,
453                        LD->getPointerInfo().getWithOffset(2), MVT::i16,
454                        Align(2), LD->getMemOperand()->getFlags());
455     SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
456                                       DAG.getConstant(16, DL, MVT::i32));
457     SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
458     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
459                              High.getValue(1));
460     SDValue Ops[] = { Result, Chain };
461     return DAG.getMergeValues(Ops, DL);
462   }
463 
464   // Lower to a call to __misaligned_load(BasePtr).
465   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(Context);
466   TargetLowering::ArgListTy Args;
467   TargetLowering::ArgListEntry Entry;
468 
469   Entry.Ty = IntPtrTy;
470   Entry.Node = BasePtr;
471   Args.push_back(Entry);
472 
473   TargetLowering::CallLoweringInfo CLI(DAG);
474   CLI.setDebugLoc(DL).setChain(Chain).setLibCallee(
475       CallingConv::C, IntPtrTy,
476       DAG.getExternalSymbol("__misaligned_load",
477                             getPointerTy(DAG.getDataLayout())),
478       std::move(Args));
479 
480   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
481   SDValue Ops[] = { CallResult.first, CallResult.second };
482   return DAG.getMergeValues(Ops, DL);
483 }
484 
485 SDValue XCoreTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
486   LLVMContext &Context = *DAG.getContext();
487   StoreSDNode *ST = cast<StoreSDNode>(Op);
488   assert(!ST->isTruncatingStore() && "Unexpected store type");
489   assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
490 
491   if (allowsMemoryAccessForAlignment(Context, DAG.getDataLayout(),
492                                      ST->getMemoryVT(), *ST->getMemOperand()))
493     return SDValue();
494 
495   SDValue Chain = ST->getChain();
496   SDValue BasePtr = ST->getBasePtr();
497   SDValue Value = ST->getValue();
498   SDLoc dl(Op);
499 
500   if (ST->getAlignment() == 2) {
501     SDValue Low = Value;
502     SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
503                                DAG.getConstant(16, dl, MVT::i32));
504     SDValue StoreLow =
505         DAG.getTruncStore(Chain, dl, Low, BasePtr, ST->getPointerInfo(),
506                           MVT::i16, Align(2), ST->getMemOperand()->getFlags());
507     SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
508                                    DAG.getConstant(2, dl, MVT::i32));
509     SDValue StoreHigh = DAG.getTruncStore(
510         Chain, dl, High, HighAddr, ST->getPointerInfo().getWithOffset(2),
511         MVT::i16, Align(2), ST->getMemOperand()->getFlags());
512     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
513   }
514 
515   // Lower to a call to __misaligned_store(BasePtr, Value).
516   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(Context);
517   TargetLowering::ArgListTy Args;
518   TargetLowering::ArgListEntry Entry;
519 
520   Entry.Ty = IntPtrTy;
521   Entry.Node = BasePtr;
522   Args.push_back(Entry);
523 
524   Entry.Node = Value;
525   Args.push_back(Entry);
526 
527   TargetLowering::CallLoweringInfo CLI(DAG);
528   CLI.setDebugLoc(dl).setChain(Chain).setCallee(
529       CallingConv::C, Type::getVoidTy(Context),
530       DAG.getExternalSymbol("__misaligned_store",
531                             getPointerTy(DAG.getDataLayout())),
532       std::move(Args));
533 
534   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
535   return CallResult.second;
536 }
537 
538 SDValue XCoreTargetLowering::
539 LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
540 {
541   assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
542          "Unexpected operand to lower!");
543   SDLoc dl(Op);
544   SDValue LHS = Op.getOperand(0);
545   SDValue RHS = Op.getOperand(1);
546   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
547   SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
548                            DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
549                            LHS, RHS);
550   SDValue Lo(Hi.getNode(), 1);
551   SDValue Ops[] = { Lo, Hi };
552   return DAG.getMergeValues(Ops, dl);
553 }
554 
555 SDValue XCoreTargetLowering::
556 LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
557 {
558   assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
559          "Unexpected operand to lower!");
560   SDLoc dl(Op);
561   SDValue LHS = Op.getOperand(0);
562   SDValue RHS = Op.getOperand(1);
563   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
564   SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
565                            DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
566                            Zero, Zero);
567   SDValue Lo(Hi.getNode(), 1);
568   SDValue Ops[] = { Lo, Hi };
569   return DAG.getMergeValues(Ops, dl);
570 }
571 
572 /// isADDADDMUL - Return whether Op is in a form that is equivalent to
573 /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
574 /// each intermediate result in the calculation must also have a single use.
575 /// If the Op is in the correct form the constituent parts are written to Mul0,
576 /// Mul1, Addend0 and Addend1.
577 static bool
578 isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
579             SDValue &Addend1, bool requireIntermediatesHaveOneUse)
580 {
581   if (Op.getOpcode() != ISD::ADD)
582     return false;
583   SDValue N0 = Op.getOperand(0);
584   SDValue N1 = Op.getOperand(1);
585   SDValue AddOp;
586   SDValue OtherOp;
587   if (N0.getOpcode() == ISD::ADD) {
588     AddOp = N0;
589     OtherOp = N1;
590   } else if (N1.getOpcode() == ISD::ADD) {
591     AddOp = N1;
592     OtherOp = N0;
593   } else {
594     return false;
595   }
596   if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
597     return false;
598   if (OtherOp.getOpcode() == ISD::MUL) {
599     // add(add(a,b),mul(x,y))
600     if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
601       return false;
602     Mul0 = OtherOp.getOperand(0);
603     Mul1 = OtherOp.getOperand(1);
604     Addend0 = AddOp.getOperand(0);
605     Addend1 = AddOp.getOperand(1);
606     return true;
607   }
608   if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
609     // add(add(mul(x,y),a),b)
610     if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
611       return false;
612     Mul0 = AddOp.getOperand(0).getOperand(0);
613     Mul1 = AddOp.getOperand(0).getOperand(1);
614     Addend0 = AddOp.getOperand(1);
615     Addend1 = OtherOp;
616     return true;
617   }
618   if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
619     // add(add(a,mul(x,y)),b)
620     if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
621       return false;
622     Mul0 = AddOp.getOperand(1).getOperand(0);
623     Mul1 = AddOp.getOperand(1).getOperand(1);
624     Addend0 = AddOp.getOperand(0);
625     Addend1 = OtherOp;
626     return true;
627   }
628   return false;
629 }
630 
631 SDValue XCoreTargetLowering::
632 TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
633 {
634   SDValue Mul;
635   SDValue Other;
636   if (N->getOperand(0).getOpcode() == ISD::MUL) {
637     Mul = N->getOperand(0);
638     Other = N->getOperand(1);
639   } else if (N->getOperand(1).getOpcode() == ISD::MUL) {
640     Mul = N->getOperand(1);
641     Other = N->getOperand(0);
642   } else {
643     return SDValue();
644   }
645   SDLoc dl(N);
646   SDValue LL, RL, AddendL, AddendH;
647   LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
648                    Mul.getOperand(0), DAG.getConstant(0, dl, MVT::i32));
649   RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
650                    Mul.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
651   AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
652                         Other, DAG.getConstant(0, dl, MVT::i32));
653   AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
654                         Other, DAG.getConstant(1, dl, MVT::i32));
655   APInt HighMask = APInt::getHighBitsSet(64, 32);
656   unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
657   unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
658   if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
659       DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
660     // The inputs are both zero-extended.
661     SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
662                              DAG.getVTList(MVT::i32, MVT::i32), AddendH,
663                              AddendL, LL, RL);
664     SDValue Lo(Hi.getNode(), 1);
665     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
666   }
667   if (LHSSB > 32 && RHSSB > 32) {
668     // The inputs are both sign-extended.
669     SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
670                              DAG.getVTList(MVT::i32, MVT::i32), AddendH,
671                              AddendL, LL, RL);
672     SDValue Lo(Hi.getNode(), 1);
673     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
674   }
675   SDValue LH, RH;
676   LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
677                    Mul.getOperand(0), DAG.getConstant(1, dl, MVT::i32));
678   RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
679                    Mul.getOperand(1), DAG.getConstant(1, dl, MVT::i32));
680   SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
681                            DAG.getVTList(MVT::i32, MVT::i32), AddendH,
682                            AddendL, LL, RL);
683   SDValue Lo(Hi.getNode(), 1);
684   RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
685   LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
686   Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
687   Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
688   return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
689 }
690 
691 SDValue XCoreTargetLowering::
692 ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
693 {
694   assert(N->getValueType(0) == MVT::i64 &&
695          (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
696         "Unknown operand to lower!");
697 
698   if (N->getOpcode() == ISD::ADD)
699     if (SDValue Result = TryExpandADDWithMul(N, DAG))
700       return Result;
701 
702   SDLoc dl(N);
703 
704   // Extract components
705   SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
706                              N->getOperand(0),
707                              DAG.getConstant(0, dl, MVT::i32));
708   SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
709                              N->getOperand(0),
710                              DAG.getConstant(1, dl, MVT::i32));
711   SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
712                              N->getOperand(1),
713                              DAG.getConstant(0, dl, MVT::i32));
714   SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
715                              N->getOperand(1),
716                              DAG.getConstant(1, dl, MVT::i32));
717 
718   // Expand
719   unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
720                                                    XCoreISD::LSUB;
721   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
722   SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
723                            LHSL, RHSL, Zero);
724   SDValue Carry(Lo.getNode(), 1);
725 
726   SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
727                            LHSH, RHSH, Carry);
728   SDValue Ignored(Hi.getNode(), 1);
729   // Merge the pieces
730   return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
731 }
732 
733 SDValue XCoreTargetLowering::
734 LowerVAARG(SDValue Op, SelectionDAG &DAG) const
735 {
736   // Whist llvm does not support aggregate varargs we can ignore
737   // the possibility of the ValueType being an implicit byVal vararg.
738   SDNode *Node = Op.getNode();
739   EVT VT = Node->getValueType(0); // not an aggregate
740   SDValue InChain = Node->getOperand(0);
741   SDValue VAListPtr = Node->getOperand(1);
742   EVT PtrVT = VAListPtr.getValueType();
743   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
744   SDLoc dl(Node);
745   SDValue VAList =
746       DAG.getLoad(PtrVT, dl, InChain, VAListPtr, MachinePointerInfo(SV));
747   // Increment the pointer, VAList, to the next vararg
748   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
749                                 DAG.getIntPtrConstant(VT.getSizeInBits() / 8,
750                                                       dl));
751   // Store the incremented VAList to the legalized pointer
752   InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
753                          MachinePointerInfo(SV));
754   // Load the actual argument out of the pointer VAList
755   return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo());
756 }
757 
758 SDValue XCoreTargetLowering::
759 LowerVASTART(SDValue Op, SelectionDAG &DAG) const
760 {
761   SDLoc dl(Op);
762   // vastart stores the address of the VarArgsFrameIndex slot into the
763   // memory location argument
764   MachineFunction &MF = DAG.getMachineFunction();
765   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
766   SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
767   return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
768                       MachinePointerInfo());
769 }
770 
771 SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
772                                             SelectionDAG &DAG) const {
773   // This nodes represent llvm.frameaddress on the DAG.
774   // It takes one operand, the index of the frame address to return.
775   // An index of zero corresponds to the current function's frame address.
776   // An index of one to the parent's frame address, and so on.
777   // Depths > 0 not supported yet!
778   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
779     return SDValue();
780 
781   MachineFunction &MF = DAG.getMachineFunction();
782   const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
783   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
784                             RegInfo->getFrameRegister(MF), MVT::i32);
785 }
786 
787 SDValue XCoreTargetLowering::
788 LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
789   // This nodes represent llvm.returnaddress on the DAG.
790   // It takes one operand, the index of the return address to return.
791   // An index of zero corresponds to the current function's return address.
792   // An index of one to the parent's return address, and so on.
793   // Depths > 0 not supported yet!
794   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
795     return SDValue();
796 
797   MachineFunction &MF = DAG.getMachineFunction();
798   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
799   int FI = XFI->createLRSpillSlot(MF);
800   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
801   return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
802                      DAG.getEntryNode(), FIN,
803                      MachinePointerInfo::getFixedStack(MF, FI));
804 }
805 
806 SDValue XCoreTargetLowering::
807 LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const {
808   // This node represents offset from frame pointer to first on-stack argument.
809   // This is needed for correct stack adjustment during unwind.
810   // However, we don't know the offset until after the frame has be finalised.
811   // This is done during the XCoreFTAOElim pass.
812   return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32);
813 }
814 
815 SDValue XCoreTargetLowering::
816 LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
817   // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
818   // This node represents 'eh_return' gcc dwarf builtin, which is used to
819   // return from exception. The general meaning is: adjust stack by OFFSET and
820   // pass execution to HANDLER.
821   MachineFunction &MF = DAG.getMachineFunction();
822   SDValue Chain     = Op.getOperand(0);
823   SDValue Offset    = Op.getOperand(1);
824   SDValue Handler   = Op.getOperand(2);
825   SDLoc dl(Op);
826 
827   // Absolute SP = (FP + FrameToArgs) + Offset
828   const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
829   SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
830                             RegInfo->getFrameRegister(MF), MVT::i32);
831   SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
832                                     MVT::i32);
833   Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs);
834   Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset);
835 
836   // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
837   // which leaves 2 caller saved registers, R2 & R3 for us to use.
838   unsigned StackReg = XCore::R2;
839   unsigned HandlerReg = XCore::R3;
840 
841   SDValue OutChains[] = {
842     DAG.getCopyToReg(Chain, dl, StackReg, Stack),
843     DAG.getCopyToReg(Chain, dl, HandlerReg, Handler)
844   };
845 
846   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
847 
848   return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain,
849                      DAG.getRegister(StackReg, MVT::i32),
850                      DAG.getRegister(HandlerReg, MVT::i32));
851 
852 }
853 
854 SDValue XCoreTargetLowering::
855 LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
856   return Op.getOperand(0);
857 }
858 
859 SDValue XCoreTargetLowering::
860 LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
861   SDValue Chain = Op.getOperand(0);
862   SDValue Trmp = Op.getOperand(1); // trampoline
863   SDValue FPtr = Op.getOperand(2); // nested function
864   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
865 
866   const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
867 
868   // .align 4
869   // LDAPF_u10 r11, nest
870   // LDW_2rus r11, r11[0]
871   // STWSP_ru6 r11, sp[0]
872   // LDAPF_u10 r11, fptr
873   // LDW_2rus r11, r11[0]
874   // BAU_1r r11
875   // nest:
876   // .word nest
877   // fptr:
878   // .word fptr
879   SDValue OutChains[5];
880 
881   SDValue Addr = Trmp;
882 
883   SDLoc dl(Op);
884   OutChains[0] =
885       DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, dl, MVT::i32), Addr,
886                    MachinePointerInfo(TrmpAddr));
887 
888   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
889                      DAG.getConstant(4, dl, MVT::i32));
890   OutChains[1] =
891       DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, dl, MVT::i32), Addr,
892                    MachinePointerInfo(TrmpAddr, 4));
893 
894   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
895                      DAG.getConstant(8, dl, MVT::i32));
896   OutChains[2] =
897       DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, dl, MVT::i32), Addr,
898                    MachinePointerInfo(TrmpAddr, 8));
899 
900   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
901                      DAG.getConstant(12, dl, MVT::i32));
902   OutChains[3] =
903       DAG.getStore(Chain, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 12));
904 
905   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
906                      DAG.getConstant(16, dl, MVT::i32));
907   OutChains[4] =
908       DAG.getStore(Chain, dl, FPtr, Addr, MachinePointerInfo(TrmpAddr, 16));
909 
910   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
911 }
912 
913 SDValue XCoreTargetLowering::
914 LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
915   SDLoc DL(Op);
916   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
917   switch (IntNo) {
918     case Intrinsic::xcore_crc8:
919       EVT VT = Op.getValueType();
920       SDValue Data =
921         DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
922                     Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
923       SDValue Crc(Data.getNode(), 1);
924       SDValue Results[] = { Crc, Data };
925       return DAG.getMergeValues(Results, DL);
926   }
927   return SDValue();
928 }
929 
930 SDValue XCoreTargetLowering::
931 LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
932   SDLoc DL(Op);
933   return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
934 }
935 
936 SDValue XCoreTargetLowering::
937 LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
938   AtomicSDNode *N = cast<AtomicSDNode>(Op);
939   assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP");
940   assert((N->getSuccessOrdering() == AtomicOrdering::Unordered ||
941           N->getSuccessOrdering() == AtomicOrdering::Monotonic) &&
942          "setInsertFencesForAtomic(true) expects unordered / monotonic");
943   if (N->getMemoryVT() == MVT::i32) {
944     if (N->getAlignment() < 4)
945       report_fatal_error("atomic load must be aligned");
946     return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
947                        N->getChain(), N->getBasePtr(), N->getPointerInfo(),
948                        N->getAlignment(), N->getMemOperand()->getFlags(),
949                        N->getAAInfo(), N->getRanges());
950   }
951   if (N->getMemoryVT() == MVT::i16) {
952     if (N->getAlignment() < 2)
953       report_fatal_error("atomic load must be aligned");
954     return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
955                           N->getBasePtr(), N->getPointerInfo(), MVT::i16,
956                           N->getAlignment(), N->getMemOperand()->getFlags(),
957                           N->getAAInfo());
958   }
959   if (N->getMemoryVT() == MVT::i8)
960     return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
961                           N->getBasePtr(), N->getPointerInfo(), MVT::i8,
962                           N->getAlignment(), N->getMemOperand()->getFlags(),
963                           N->getAAInfo());
964   return SDValue();
965 }
966 
967 SDValue XCoreTargetLowering::
968 LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
969   AtomicSDNode *N = cast<AtomicSDNode>(Op);
970   assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP");
971   assert((N->getSuccessOrdering() == AtomicOrdering::Unordered ||
972           N->getSuccessOrdering() == AtomicOrdering::Monotonic) &&
973          "setInsertFencesForAtomic(true) expects unordered / monotonic");
974   if (N->getMemoryVT() == MVT::i32) {
975     if (N->getAlignment() < 4)
976       report_fatal_error("atomic store must be aligned");
977     return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(), N->getBasePtr(),
978                         N->getPointerInfo(), N->getAlignment(),
979                         N->getMemOperand()->getFlags(), N->getAAInfo());
980   }
981   if (N->getMemoryVT() == MVT::i16) {
982     if (N->getAlignment() < 2)
983       report_fatal_error("atomic store must be aligned");
984     return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
985                              N->getBasePtr(), N->getPointerInfo(), MVT::i16,
986                              N->getAlignment(), N->getMemOperand()->getFlags(),
987                              N->getAAInfo());
988   }
989   if (N->getMemoryVT() == MVT::i8)
990     return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
991                              N->getBasePtr(), N->getPointerInfo(), MVT::i8,
992                              N->getAlignment(), N->getMemOperand()->getFlags(),
993                              N->getAAInfo());
994   return SDValue();
995 }
996 
997 MachineMemOperand::Flags
998 XCoreTargetLowering::getTargetMMOFlags(const Instruction &I) const {
999   // Because of how we convert atomic_load and atomic_store to normal loads and
1000   // stores in the DAG, we need to ensure that the MMOs are marked volatile
1001   // since DAGCombine hasn't been updated to account for atomic, but non
1002   // volatile loads.  (See D57601)
1003   if (auto *SI = dyn_cast<StoreInst>(&I))
1004     if (SI->isAtomic())
1005       return MachineMemOperand::MOVolatile;
1006   if (auto *LI = dyn_cast<LoadInst>(&I))
1007     if (LI->isAtomic())
1008       return MachineMemOperand::MOVolatile;
1009   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
1010     if (AI->isAtomic())
1011       return MachineMemOperand::MOVolatile;
1012   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
1013     if (AI->isAtomic())
1014       return MachineMemOperand::MOVolatile;
1015   return MachineMemOperand::MONone;
1016 }
1017 
1018 //===----------------------------------------------------------------------===//
1019 //                      Calling Convention Implementation
1020 //===----------------------------------------------------------------------===//
1021 
1022 #include "XCoreGenCallingConv.inc"
1023 
1024 //===----------------------------------------------------------------------===//
1025 //                  Call Calling Convention Implementation
1026 //===----------------------------------------------------------------------===//
1027 
1028 /// XCore call implementation
1029 SDValue
1030 XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1031                                SmallVectorImpl<SDValue> &InVals) const {
1032   SelectionDAG &DAG                     = CLI.DAG;
1033   SDLoc &dl                             = CLI.DL;
1034   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1035   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1036   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1037   SDValue Chain                         = CLI.Chain;
1038   SDValue Callee                        = CLI.Callee;
1039   bool &isTailCall                      = CLI.IsTailCall;
1040   CallingConv::ID CallConv              = CLI.CallConv;
1041   bool isVarArg                         = CLI.IsVarArg;
1042 
1043   // XCore target does not yet support tail call optimization.
1044   isTailCall = false;
1045 
1046   // For now, only CallingConv::C implemented
1047   switch (CallConv)
1048   {
1049     default:
1050       report_fatal_error("Unsupported calling convention");
1051     case CallingConv::Fast:
1052     case CallingConv::C:
1053       return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
1054                             Outs, OutVals, Ins, dl, DAG, InVals);
1055   }
1056 }
1057 
1058 /// LowerCallResult - Lower the result values of a call into the
1059 /// appropriate copies out of appropriate physical registers / memory locations.
1060 static SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
1061                                const SmallVectorImpl<CCValAssign> &RVLocs,
1062                                const SDLoc &dl, SelectionDAG &DAG,
1063                                SmallVectorImpl<SDValue> &InVals) {
1064   SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs;
1065   // Copy results out of physical registers.
1066   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1067     const CCValAssign &VA = RVLocs[i];
1068     if (VA.isRegLoc()) {
1069       Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(),
1070                                  InFlag).getValue(1);
1071       InFlag = Chain.getValue(2);
1072       InVals.push_back(Chain.getValue(0));
1073     } else {
1074       assert(VA.isMemLoc());
1075       ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(),
1076                                              InVals.size()));
1077       // Reserve space for this result.
1078       InVals.push_back(SDValue());
1079     }
1080   }
1081 
1082   // Copy results out of memory.
1083   SmallVector<SDValue, 4> MemOpChains;
1084   for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) {
1085     int offset = ResultMemLocs[i].first;
1086     unsigned index = ResultMemLocs[i].second;
1087     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
1088     SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, dl, MVT::i32) };
1089     SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops);
1090     InVals[index] = load;
1091     MemOpChains.push_back(load.getValue(1));
1092   }
1093 
1094   // Transform all loads nodes into one single node because
1095   // all load nodes are independent of each other.
1096   if (!MemOpChains.empty())
1097     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1098 
1099   return Chain;
1100 }
1101 
1102 /// LowerCCCCallTo - functions arguments are copied from virtual
1103 /// regs to (physical regs)/(stack frame), CALLSEQ_START and
1104 /// CALLSEQ_END are emitted.
1105 /// TODO: isTailCall, sret.
1106 SDValue XCoreTargetLowering::LowerCCCCallTo(
1107     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
1108     bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
1109     const SmallVectorImpl<SDValue> &OutVals,
1110     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1111     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1112 
1113   // Analyze operands of the call, assigning locations to each operand.
1114   SmallVector<CCValAssign, 16> ArgLocs;
1115   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1116                  *DAG.getContext());
1117 
1118   // The ABI dictates there should be one stack slot available to the callee
1119   // on function entry (for saving lr).
1120   CCInfo.AllocateStack(4, Align(4));
1121 
1122   CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
1123 
1124   SmallVector<CCValAssign, 16> RVLocs;
1125   // Analyze return values to determine the number of bytes of stack required.
1126   CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1127                     *DAG.getContext());
1128   RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), Align(4));
1129   RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
1130 
1131   // Get a count of how many bytes are to be pushed on the stack.
1132   unsigned NumBytes = RetCCInfo.getNextStackOffset();
1133   auto PtrVT = getPointerTy(DAG.getDataLayout());
1134 
1135   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
1136 
1137   SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
1138   SmallVector<SDValue, 12> MemOpChains;
1139 
1140   // Walk the register/memloc assignments, inserting copies/loads.
1141   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1142     CCValAssign &VA = ArgLocs[i];
1143     SDValue Arg = OutVals[i];
1144 
1145     // Promote the value if needed.
1146     switch (VA.getLocInfo()) {
1147       default: llvm_unreachable("Unknown loc info!");
1148       case CCValAssign::Full: break;
1149       case CCValAssign::SExt:
1150         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1151         break;
1152       case CCValAssign::ZExt:
1153         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1154         break;
1155       case CCValAssign::AExt:
1156         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1157         break;
1158     }
1159 
1160     // Arguments that can be passed on register must be kept at
1161     // RegsToPass vector
1162     if (VA.isRegLoc()) {
1163       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1164     } else {
1165       assert(VA.isMemLoc());
1166 
1167       int Offset = VA.getLocMemOffset();
1168 
1169       MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
1170                                         Chain, Arg,
1171                                         DAG.getConstant(Offset/4, dl,
1172                                                         MVT::i32)));
1173     }
1174   }
1175 
1176   // Transform all store nodes into one single node because
1177   // all store nodes are independent of each other.
1178   if (!MemOpChains.empty())
1179     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1180 
1181   // Build a sequence of copy-to-reg nodes chained together with token
1182   // chain and flag operands which copy the outgoing args into registers.
1183   // The InFlag in necessary since all emitted instructions must be
1184   // stuck together.
1185   SDValue InFlag;
1186   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1187     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1188                              RegsToPass[i].second, InFlag);
1189     InFlag = Chain.getValue(1);
1190   }
1191 
1192   // If the callee is a GlobalAddress node (quite common, every direct call is)
1193   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1194   // Likewise ExternalSymbol -> TargetExternalSymbol.
1195   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1196     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
1197   else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1198     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
1199 
1200   // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
1201   //             = Chain, Callee, Reg#1, Reg#2, ...
1202   //
1203   // Returns a chain & a flag for retval copy to use.
1204   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1205   SmallVector<SDValue, 8> Ops;
1206   Ops.push_back(Chain);
1207   Ops.push_back(Callee);
1208 
1209   // Add argument registers to the end of the list so that they are
1210   // known live into the call.
1211   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1212     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1213                                   RegsToPass[i].second.getValueType()));
1214 
1215   if (InFlag.getNode())
1216     Ops.push_back(InFlag);
1217 
1218   Chain  = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops);
1219   InFlag = Chain.getValue(1);
1220 
1221   // Create the CALLSEQ_END node.
1222   Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true),
1223                              DAG.getConstant(0, dl, PtrVT, true), InFlag, dl);
1224   InFlag = Chain.getValue(1);
1225 
1226   // Handle result values, copying them out of physregs into vregs that we
1227   // return.
1228   return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals);
1229 }
1230 
1231 //===----------------------------------------------------------------------===//
1232 //             Formal Arguments Calling Convention Implementation
1233 //===----------------------------------------------------------------------===//
1234 
1235 namespace {
1236   struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
1237 }
1238 
1239 /// XCore formal arguments implementation
1240 SDValue XCoreTargetLowering::LowerFormalArguments(
1241     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1242     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1243     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1244   switch (CallConv)
1245   {
1246     default:
1247       report_fatal_error("Unsupported calling convention");
1248     case CallingConv::C:
1249     case CallingConv::Fast:
1250       return LowerCCCArguments(Chain, CallConv, isVarArg,
1251                                Ins, dl, DAG, InVals);
1252   }
1253 }
1254 
1255 /// LowerCCCArguments - transform physical registers into
1256 /// virtual registers and generate load operations for
1257 /// arguments places on the stack.
1258 /// TODO: sret
1259 SDValue XCoreTargetLowering::LowerCCCArguments(
1260     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1261     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1262     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1263   MachineFunction &MF = DAG.getMachineFunction();
1264   MachineFrameInfo &MFI = MF.getFrameInfo();
1265   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1266   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1267 
1268   // Assign locations to all of the incoming arguments.
1269   SmallVector<CCValAssign, 16> ArgLocs;
1270   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1271                  *DAG.getContext());
1272 
1273   CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
1274 
1275   unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
1276 
1277   unsigned LRSaveSize = StackSlotSize;
1278 
1279   if (!isVarArg)
1280     XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize);
1281 
1282   // All getCopyFromReg ops must precede any getMemcpys to prevent the
1283   // scheduler clobbering a register before it has been copied.
1284   // The stages are:
1285   // 1. CopyFromReg (and load) arg & vararg registers.
1286   // 2. Chain CopyFromReg nodes into a TokenFactor.
1287   // 3. Memcpy 'byVal' args & push final InVals.
1288   // 4. Chain mem ops nodes into a TokenFactor.
1289   SmallVector<SDValue, 4> CFRegNode;
1290   SmallVector<ArgDataPair, 4> ArgData;
1291   SmallVector<SDValue, 4> MemOps;
1292 
1293   // 1a. CopyFromReg (and load) arg registers.
1294   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1295 
1296     CCValAssign &VA = ArgLocs[i];
1297     SDValue ArgIn;
1298 
1299     if (VA.isRegLoc()) {
1300       // Arguments passed in registers
1301       EVT RegVT = VA.getLocVT();
1302       switch (RegVT.getSimpleVT().SimpleTy) {
1303       default:
1304         {
1305 #ifndef NDEBUG
1306           errs() << "LowerFormalArguments Unhandled argument type: "
1307                  << RegVT.getEVTString() << "\n";
1308 #endif
1309           llvm_unreachable(nullptr);
1310         }
1311       case MVT::i32:
1312         Register VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1313         RegInfo.addLiveIn(VA.getLocReg(), VReg);
1314         ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
1315         CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
1316       }
1317     } else {
1318       // sanity check
1319       assert(VA.isMemLoc());
1320       // Load the argument to a virtual register
1321       unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
1322       if (ObjSize > StackSlotSize) {
1323         errs() << "LowerFormalArguments Unhandled argument type: "
1324                << EVT(VA.getLocVT()).getEVTString()
1325                << "\n";
1326       }
1327       // Create the frame index object for this incoming parameter...
1328       int FI = MFI.CreateFixedObject(ObjSize,
1329                                      LRSaveSize + VA.getLocMemOffset(),
1330                                      true);
1331 
1332       // Create the SelectionDAG nodes corresponding to a load
1333       //from this parameter
1334       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1335       ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1336                           MachinePointerInfo::getFixedStack(MF, FI));
1337     }
1338     const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
1339     ArgData.push_back(ADP);
1340   }
1341 
1342   // 1b. CopyFromReg vararg registers.
1343   if (isVarArg) {
1344     // Argument registers
1345     static const MCPhysReg ArgRegs[] = {
1346       XCore::R0, XCore::R1, XCore::R2, XCore::R3
1347     };
1348     XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1349     unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs);
1350     if (FirstVAReg < array_lengthof(ArgRegs)) {
1351       int offset = 0;
1352       // Save remaining registers, storing higher register numbers at a higher
1353       // address
1354       for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
1355         // Create a stack slot
1356         int FI = MFI.CreateFixedObject(4, offset, true);
1357         if (i == (int)FirstVAReg) {
1358           XFI->setVarArgsFrameIndex(FI);
1359         }
1360         offset -= StackSlotSize;
1361         SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1362         // Move argument from phys reg -> virt reg
1363         Register VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1364         RegInfo.addLiveIn(ArgRegs[i], VReg);
1365         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1366         CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
1367         // Move argument from virt reg -> stack
1368         SDValue Store =
1369             DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
1370         MemOps.push_back(Store);
1371       }
1372     } else {
1373       // This will point to the next argument passed via stack.
1374       XFI->setVarArgsFrameIndex(
1375         MFI.CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
1376                               true));
1377     }
1378   }
1379 
1380   // 2. chain CopyFromReg nodes into a TokenFactor.
1381   if (!CFRegNode.empty())
1382     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode);
1383 
1384   // 3. Memcpy 'byVal' args & push final InVals.
1385   // Aggregates passed "byVal" need to be copied by the callee.
1386   // The callee will use a pointer to this copy, rather than the original
1387   // pointer.
1388   for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(),
1389                                                     ArgDE = ArgData.end();
1390        ArgDI != ArgDE; ++ArgDI) {
1391     if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) {
1392       unsigned Size = ArgDI->Flags.getByValSize();
1393       Align Alignment =
1394           std::max(Align(StackSlotSize), ArgDI->Flags.getNonZeroByValAlign());
1395       // Create a new object on the stack and copy the pointee into it.
1396       int FI = MFI.CreateStackObject(Size, Alignment, false);
1397       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1398       InVals.push_back(FIN);
1399       MemOps.push_back(DAG.getMemcpy(
1400           Chain, dl, FIN, ArgDI->SDV, DAG.getConstant(Size, dl, MVT::i32),
1401           Alignment, false, false, false, MachinePointerInfo(),
1402           MachinePointerInfo()));
1403     } else {
1404       InVals.push_back(ArgDI->SDV);
1405     }
1406   }
1407 
1408   // 4, chain mem ops nodes into a TokenFactor.
1409   if (!MemOps.empty()) {
1410     MemOps.push_back(Chain);
1411     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
1412   }
1413 
1414   return Chain;
1415 }
1416 
1417 //===----------------------------------------------------------------------===//
1418 //               Return Value Calling Convention Implementation
1419 //===----------------------------------------------------------------------===//
1420 
1421 bool XCoreTargetLowering::
1422 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1423                bool isVarArg,
1424                const SmallVectorImpl<ISD::OutputArg> &Outs,
1425                LLVMContext &Context) const {
1426   SmallVector<CCValAssign, 16> RVLocs;
1427   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1428   if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
1429     return false;
1430   if (CCInfo.getNextStackOffset() != 0 && isVarArg)
1431     return false;
1432   return true;
1433 }
1434 
1435 SDValue
1436 XCoreTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1437                                  bool isVarArg,
1438                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
1439                                  const SmallVectorImpl<SDValue> &OutVals,
1440                                  const SDLoc &dl, SelectionDAG &DAG) const {
1441 
1442   XCoreFunctionInfo *XFI =
1443     DAG.getMachineFunction().getInfo<XCoreFunctionInfo>();
1444   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1445 
1446   // CCValAssign - represent the assignment of
1447   // the return value to a location
1448   SmallVector<CCValAssign, 16> RVLocs;
1449 
1450   // CCState - Info about the registers and stack slot.
1451   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1452                  *DAG.getContext());
1453 
1454   // Analyze return values.
1455   if (!isVarArg)
1456     CCInfo.AllocateStack(XFI->getReturnStackOffset(), Align(4));
1457 
1458   CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
1459 
1460   SDValue Flag;
1461   SmallVector<SDValue, 4> RetOps(1, Chain);
1462 
1463   // Return on XCore is always a "retsp 0"
1464   RetOps.push_back(DAG.getConstant(0, dl, MVT::i32));
1465 
1466   SmallVector<SDValue, 4> MemOpChains;
1467   // Handle return values that must be copied to memory.
1468   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1469     CCValAssign &VA = RVLocs[i];
1470     if (VA.isRegLoc())
1471       continue;
1472     assert(VA.isMemLoc());
1473     if (isVarArg) {
1474       report_fatal_error("Can't return value from vararg function in memory");
1475     }
1476 
1477     int Offset = VA.getLocMemOffset();
1478     unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
1479     // Create the frame index object for the memory location.
1480     int FI = MFI.CreateFixedObject(ObjSize, Offset, false);
1481 
1482     // Create a SelectionDAG node corresponding to a store
1483     // to this memory location.
1484     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1485     MemOpChains.push_back(DAG.getStore(
1486         Chain, dl, OutVals[i], FIN,
1487         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
1488   }
1489 
1490   // Transform all store nodes into one single node because
1491   // all stores are independent of each other.
1492   if (!MemOpChains.empty())
1493     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1494 
1495   // Now handle return values copied to registers.
1496   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1497     CCValAssign &VA = RVLocs[i];
1498     if (!VA.isRegLoc())
1499       continue;
1500     // Copy the result values into the output registers.
1501     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1502 
1503     // guarantee that all emitted copies are
1504     // stuck together, avoiding something bad
1505     Flag = Chain.getValue(1);
1506     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1507   }
1508 
1509   RetOps[0] = Chain;  // Update chain.
1510 
1511   // Add the flag if we have it.
1512   if (Flag.getNode())
1513     RetOps.push_back(Flag);
1514 
1515   return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps);
1516 }
1517 
1518 //===----------------------------------------------------------------------===//
1519 //  Other Lowering Code
1520 //===----------------------------------------------------------------------===//
1521 
1522 MachineBasicBlock *
1523 XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1524                                                  MachineBasicBlock *BB) const {
1525   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1526   DebugLoc dl = MI.getDebugLoc();
1527   assert((MI.getOpcode() == XCore::SELECT_CC) &&
1528          "Unexpected instr type to insert");
1529 
1530   // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
1531   // control-flow pattern.  The incoming instruction knows the destination vreg
1532   // to set, the condition code register to branch on, the true/false values to
1533   // select between, and a branch opcode to use.
1534   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1535   MachineFunction::iterator It = ++BB->getIterator();
1536 
1537   //  thisMBB:
1538   //  ...
1539   //   TrueVal = ...
1540   //   cmpTY ccX, r1, r2
1541   //   bCC copy1MBB
1542   //   fallthrough --> copy0MBB
1543   MachineBasicBlock *thisMBB = BB;
1544   MachineFunction *F = BB->getParent();
1545   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1546   MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
1547   F->insert(It, copy0MBB);
1548   F->insert(It, sinkMBB);
1549 
1550   // Transfer the remainder of BB and its successor edges to sinkMBB.
1551   sinkMBB->splice(sinkMBB->begin(), BB,
1552                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
1553   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1554 
1555   // Next, add the true and fallthrough blocks as its successors.
1556   BB->addSuccessor(copy0MBB);
1557   BB->addSuccessor(sinkMBB);
1558 
1559   BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
1560       .addReg(MI.getOperand(1).getReg())
1561       .addMBB(sinkMBB);
1562 
1563   //  copy0MBB:
1564   //   %FalseValue = ...
1565   //   # fallthrough to sinkMBB
1566   BB = copy0MBB;
1567 
1568   // Update machine-CFG edges
1569   BB->addSuccessor(sinkMBB);
1570 
1571   //  sinkMBB:
1572   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1573   //  ...
1574   BB = sinkMBB;
1575   BuildMI(*BB, BB->begin(), dl, TII.get(XCore::PHI), MI.getOperand(0).getReg())
1576       .addReg(MI.getOperand(3).getReg())
1577       .addMBB(copy0MBB)
1578       .addReg(MI.getOperand(2).getReg())
1579       .addMBB(thisMBB);
1580 
1581   MI.eraseFromParent(); // The pseudo instruction is gone now.
1582   return BB;
1583 }
1584 
1585 //===----------------------------------------------------------------------===//
1586 // Target Optimization Hooks
1587 //===----------------------------------------------------------------------===//
1588 
1589 SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
1590                                              DAGCombinerInfo &DCI) const {
1591   SelectionDAG &DAG = DCI.DAG;
1592   SDLoc dl(N);
1593   switch (N->getOpcode()) {
1594   default: break;
1595   case ISD::INTRINSIC_VOID:
1596     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
1597     case Intrinsic::xcore_outt:
1598     case Intrinsic::xcore_outct:
1599     case Intrinsic::xcore_chkct: {
1600       SDValue OutVal = N->getOperand(3);
1601       // These instructions ignore the high bits.
1602       if (OutVal.hasOneUse()) {
1603         unsigned BitWidth = OutVal.getValueSizeInBits();
1604         APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
1605         KnownBits Known;
1606         TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1607                                               !DCI.isBeforeLegalizeOps());
1608         const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1609         if (TLI.ShrinkDemandedConstant(OutVal, DemandedMask, TLO) ||
1610             TLI.SimplifyDemandedBits(OutVal, DemandedMask, Known, TLO))
1611           DCI.CommitTargetLoweringOpt(TLO);
1612       }
1613       break;
1614     }
1615     case Intrinsic::xcore_setpt: {
1616       SDValue Time = N->getOperand(3);
1617       // This instruction ignores the high bits.
1618       if (Time.hasOneUse()) {
1619         unsigned BitWidth = Time.getValueSizeInBits();
1620         APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
1621         KnownBits Known;
1622         TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1623                                               !DCI.isBeforeLegalizeOps());
1624         const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1625         if (TLI.ShrinkDemandedConstant(Time, DemandedMask, TLO) ||
1626             TLI.SimplifyDemandedBits(Time, DemandedMask, Known, TLO))
1627           DCI.CommitTargetLoweringOpt(TLO);
1628       }
1629       break;
1630     }
1631     }
1632     break;
1633   case XCoreISD::LADD: {
1634     SDValue N0 = N->getOperand(0);
1635     SDValue N1 = N->getOperand(1);
1636     SDValue N2 = N->getOperand(2);
1637     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1638     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1639     EVT VT = N0.getValueType();
1640 
1641     // canonicalize constant to RHS
1642     if (N0C && !N1C)
1643       return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
1644 
1645     // fold (ladd 0, 0, x) -> 0, x & 1
1646     if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1647       SDValue Carry = DAG.getConstant(0, dl, VT);
1648       SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
1649                                    DAG.getConstant(1, dl, VT));
1650       SDValue Ops[] = { Result, Carry };
1651       return DAG.getMergeValues(Ops, dl);
1652     }
1653 
1654     // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
1655     // low bit set
1656     if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1657       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1658                                          VT.getSizeInBits() - 1);
1659       KnownBits Known = DAG.computeKnownBits(N2);
1660       if ((Known.Zero & Mask) == Mask) {
1661         SDValue Carry = DAG.getConstant(0, dl, VT);
1662         SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
1663         SDValue Ops[] = { Result, Carry };
1664         return DAG.getMergeValues(Ops, dl);
1665       }
1666     }
1667   }
1668   break;
1669   case XCoreISD::LSUB: {
1670     SDValue N0 = N->getOperand(0);
1671     SDValue N1 = N->getOperand(1);
1672     SDValue N2 = N->getOperand(2);
1673     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1674     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1675     EVT VT = N0.getValueType();
1676 
1677     // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
1678     if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1679       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1680                                          VT.getSizeInBits() - 1);
1681       KnownBits Known = DAG.computeKnownBits(N2);
1682       if ((Known.Zero & Mask) == Mask) {
1683         SDValue Borrow = N2;
1684         SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
1685                                      DAG.getConstant(0, dl, VT), N2);
1686         SDValue Ops[] = { Result, Borrow };
1687         return DAG.getMergeValues(Ops, dl);
1688       }
1689     }
1690 
1691     // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
1692     // low bit set
1693     if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1694       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1695                                          VT.getSizeInBits() - 1);
1696       KnownBits Known = DAG.computeKnownBits(N2);
1697       if ((Known.Zero & Mask) == Mask) {
1698         SDValue Borrow = DAG.getConstant(0, dl, VT);
1699         SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
1700         SDValue Ops[] = { Result, Borrow };
1701         return DAG.getMergeValues(Ops, dl);
1702       }
1703     }
1704   }
1705   break;
1706   case XCoreISD::LMUL: {
1707     SDValue N0 = N->getOperand(0);
1708     SDValue N1 = N->getOperand(1);
1709     SDValue N2 = N->getOperand(2);
1710     SDValue N3 = N->getOperand(3);
1711     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1712     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1713     EVT VT = N0.getValueType();
1714     // Canonicalize multiplicative constant to RHS. If both multiplicative
1715     // operands are constant canonicalize smallest to RHS.
1716     if ((N0C && !N1C) ||
1717         (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
1718       return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
1719                          N1, N0, N2, N3);
1720 
1721     // lmul(x, 0, a, b)
1722     if (N1C && N1C->isNullValue()) {
1723       // If the high result is unused fold to add(a, b)
1724       if (N->hasNUsesOfValue(0, 0)) {
1725         SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
1726         SDValue Ops[] = { Lo, Lo };
1727         return DAG.getMergeValues(Ops, dl);
1728       }
1729       // Otherwise fold to ladd(a, b, 0)
1730       SDValue Result =
1731         DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
1732       SDValue Carry(Result.getNode(), 1);
1733       SDValue Ops[] = { Carry, Result };
1734       return DAG.getMergeValues(Ops, dl);
1735     }
1736   }
1737   break;
1738   case ISD::ADD: {
1739     // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
1740     // lmul(x, y, a, b). The high result of lmul will be ignored.
1741     // This is only profitable if the intermediate results are unused
1742     // elsewhere.
1743     SDValue Mul0, Mul1, Addend0, Addend1;
1744     if (N->getValueType(0) == MVT::i32 &&
1745         isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
1746       SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
1747                                     DAG.getVTList(MVT::i32, MVT::i32), Mul0,
1748                                     Mul1, Addend0, Addend1);
1749       SDValue Result(Ignored.getNode(), 1);
1750       return Result;
1751     }
1752     APInt HighMask = APInt::getHighBitsSet(64, 32);
1753     // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
1754     // lmul(x, y, a, b) if all operands are zero-extended. We do this
1755     // before type legalization as it is messy to match the operands after
1756     // that.
1757     if (N->getValueType(0) == MVT::i64 &&
1758         isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
1759         DAG.MaskedValueIsZero(Mul0, HighMask) &&
1760         DAG.MaskedValueIsZero(Mul1, HighMask) &&
1761         DAG.MaskedValueIsZero(Addend0, HighMask) &&
1762         DAG.MaskedValueIsZero(Addend1, HighMask)) {
1763       SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1764                                   Mul0, DAG.getConstant(0, dl, MVT::i32));
1765       SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1766                                   Mul1, DAG.getConstant(0, dl, MVT::i32));
1767       SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1768                                      Addend0, DAG.getConstant(0, dl, MVT::i32));
1769       SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1770                                      Addend1, DAG.getConstant(0, dl, MVT::i32));
1771       SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
1772                                DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
1773                                Addend0L, Addend1L);
1774       SDValue Lo(Hi.getNode(), 1);
1775       return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
1776     }
1777   }
1778   break;
1779   case ISD::STORE: {
1780     // Replace unaligned store of unaligned load with memmove.
1781     StoreSDNode *ST = cast<StoreSDNode>(N);
1782     if (!DCI.isBeforeLegalize() ||
1783         allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
1784                                        ST->getMemoryVT(),
1785                                        *ST->getMemOperand()) ||
1786         ST->isVolatile() || ST->isIndexed()) {
1787       break;
1788     }
1789     SDValue Chain = ST->getChain();
1790 
1791     unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
1792     assert((StoreBits % 8) == 0 &&
1793            "Store size in bits must be a multiple of 8");
1794     unsigned Alignment = ST->getAlignment();
1795 
1796     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
1797       if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
1798         LD->getAlignment() == Alignment &&
1799         !LD->isVolatile() && !LD->isIndexed() &&
1800         Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
1801         bool isTail = isInTailCallPosition(DAG, ST, Chain);
1802         return DAG.getMemmove(Chain, dl, ST->getBasePtr(), LD->getBasePtr(),
1803                               DAG.getConstant(StoreBits / 8, dl, MVT::i32),
1804                               Align(Alignment), false, isTail,
1805                               ST->getPointerInfo(), LD->getPointerInfo());
1806       }
1807     }
1808     break;
1809   }
1810   }
1811   return SDValue();
1812 }
1813 
1814 void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1815                                                         KnownBits &Known,
1816                                                         const APInt &DemandedElts,
1817                                                         const SelectionDAG &DAG,
1818                                                         unsigned Depth) const {
1819   Known.resetAll();
1820   switch (Op.getOpcode()) {
1821   default: break;
1822   case XCoreISD::LADD:
1823   case XCoreISD::LSUB:
1824     if (Op.getResNo() == 1) {
1825       // Top bits of carry / borrow are clear.
1826       Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1827                                          Known.getBitWidth() - 1);
1828     }
1829     break;
1830   case ISD::INTRINSIC_W_CHAIN:
1831     {
1832       unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1833       switch (IntNo) {
1834       case Intrinsic::xcore_getts:
1835         // High bits are known to be zero.
1836         Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1837                                            Known.getBitWidth() - 16);
1838         break;
1839       case Intrinsic::xcore_int:
1840       case Intrinsic::xcore_inct:
1841         // High bits are known to be zero.
1842         Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1843                                            Known.getBitWidth() - 8);
1844         break;
1845       case Intrinsic::xcore_testct:
1846         // Result is either 0 or 1.
1847         Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1848                                            Known.getBitWidth() - 1);
1849         break;
1850       case Intrinsic::xcore_testwct:
1851         // Result is in the range 0 - 4.
1852         Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1853                                            Known.getBitWidth() - 3);
1854         break;
1855       }
1856     }
1857     break;
1858   }
1859 }
1860 
1861 //===----------------------------------------------------------------------===//
1862 //  Addressing mode description hooks
1863 //===----------------------------------------------------------------------===//
1864 
1865 static inline bool isImmUs(int64_t val)
1866 {
1867   return (val >= 0 && val <= 11);
1868 }
1869 
1870 static inline bool isImmUs2(int64_t val)
1871 {
1872   return (val%2 == 0 && isImmUs(val/2));
1873 }
1874 
1875 static inline bool isImmUs4(int64_t val)
1876 {
1877   return (val%4 == 0 && isImmUs(val/4));
1878 }
1879 
1880 /// isLegalAddressingMode - Return true if the addressing mode represented
1881 /// by AM is legal for this target, for a load/store of the specified type.
1882 bool XCoreTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1883                                                 const AddrMode &AM, Type *Ty,
1884                                                 unsigned AS,
1885                                                 Instruction *I) const {
1886   if (Ty->getTypeID() == Type::VoidTyID)
1887     return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
1888 
1889   unsigned Size = DL.getTypeAllocSize(Ty);
1890   if (AM.BaseGV) {
1891     return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
1892                  AM.BaseOffs%4 == 0;
1893   }
1894 
1895   switch (Size) {
1896   case 1:
1897     // reg + imm
1898     if (AM.Scale == 0) {
1899       return isImmUs(AM.BaseOffs);
1900     }
1901     // reg + reg
1902     return AM.Scale == 1 && AM.BaseOffs == 0;
1903   case 2:
1904   case 3:
1905     // reg + imm
1906     if (AM.Scale == 0) {
1907       return isImmUs2(AM.BaseOffs);
1908     }
1909     // reg + reg<<1
1910     return AM.Scale == 2 && AM.BaseOffs == 0;
1911   default:
1912     // reg + imm
1913     if (AM.Scale == 0) {
1914       return isImmUs4(AM.BaseOffs);
1915     }
1916     // reg + reg<<2
1917     return AM.Scale == 4 && AM.BaseOffs == 0;
1918   }
1919 }
1920 
1921 //===----------------------------------------------------------------------===//
1922 //                           XCore Inline Assembly Support
1923 //===----------------------------------------------------------------------===//
1924 
1925 std::pair<unsigned, const TargetRegisterClass *>
1926 XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1927                                                   StringRef Constraint,
1928                                                   MVT VT) const {
1929   if (Constraint.size() == 1) {
1930     switch (Constraint[0]) {
1931     default : break;
1932     case 'r':
1933       return std::make_pair(0U, &XCore::GRRegsRegClass);
1934     }
1935   }
1936   // Use the default implementation in TargetLowering to convert the register
1937   // constraint into a member of a register class.
1938   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1939 }
1940