1 //===- Attributor.cpp - Module-wide attribute deduction -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an interprocedural pass that deduces and/or propagates
10 // attributes. This is done in an abstract interpretation style fixpoint
11 // iteration. See the Attributor.h file comment and the class descriptions in
12 // that file for more information.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/Attributor.h"
17 
18 #include "llvm/ADT/GraphTraits.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/TinyPtrVector.h"
22 #include "llvm/Analysis/InlineCost.h"
23 #include "llvm/Analysis/LazyValueInfo.h"
24 #include "llvm/Analysis/MemorySSAUpdater.h"
25 #include "llvm/Analysis/MustExecute.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/NoFolder.h"
30 #include "llvm/IR/Verifier.h"
31 #include "llvm/InitializePasses.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/DebugCounter.h"
36 #include "llvm/Support/FileSystem.h"
37 #include "llvm/Support/GraphWriter.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
40 #include "llvm/Transforms/Utils/Cloning.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 
43 #include <cassert>
44 #include <string>
45 
46 using namespace llvm;
47 
48 #define DEBUG_TYPE "attributor"
49 
50 DEBUG_COUNTER(ManifestDBGCounter, "attributor-manifest",
51               "Determine what attributes are manifested in the IR");
52 
53 STATISTIC(NumFnDeleted, "Number of function deleted");
54 STATISTIC(NumFnWithExactDefinition,
55           "Number of functions with exact definitions");
56 STATISTIC(NumFnWithoutExactDefinition,
57           "Number of functions without exact definitions");
58 STATISTIC(NumFnShallowWrappersCreated, "Number of shallow wrappers created");
59 STATISTIC(NumAttributesTimedOut,
60           "Number of abstract attributes timed out before fixpoint");
61 STATISTIC(NumAttributesValidFixpoint,
62           "Number of abstract attributes in a valid fixpoint state");
63 STATISTIC(NumAttributesManifested,
64           "Number of abstract attributes manifested in IR");
65 STATISTIC(NumAttributesFixedDueToRequiredDependences,
66           "Number of abstract attributes fixed due to required dependences");
67 
68 // TODO: Determine a good default value.
69 //
70 // In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
71 // (when run with the first 5 abstract attributes). The results also indicate
72 // that we never reach 32 iterations but always find a fixpoint sooner.
73 //
74 // This will become more evolved once we perform two interleaved fixpoint
75 // iterations: bottom-up and top-down.
76 static cl::opt<unsigned>
77     MaxFixpointIterations("attributor-max-iterations", cl::Hidden,
78                           cl::desc("Maximal number of fixpoint iterations."),
79                           cl::init(32));
80 
81 static cl::opt<unsigned, true> MaxInitializationChainLengthX(
82     "attributor-max-initialization-chain-length", cl::Hidden,
83     cl::desc(
84         "Maximal number of chained initializations (to avoid stack overflows)"),
85     cl::location(MaxInitializationChainLength), cl::init(1024));
86 unsigned llvm::MaxInitializationChainLength;
87 
88 static cl::opt<bool> VerifyMaxFixpointIterations(
89     "attributor-max-iterations-verify", cl::Hidden,
90     cl::desc("Verify that max-iterations is a tight bound for a fixpoint"),
91     cl::init(false));
92 
93 static cl::opt<bool> AnnotateDeclarationCallSites(
94     "attributor-annotate-decl-cs", cl::Hidden,
95     cl::desc("Annotate call sites of function declarations."), cl::init(false));
96 
97 static cl::opt<bool> EnableHeapToStack("enable-heap-to-stack-conversion",
98                                        cl::init(true), cl::Hidden);
99 
100 static cl::opt<bool>
101     AllowShallowWrappers("attributor-allow-shallow-wrappers", cl::Hidden,
102                          cl::desc("Allow the Attributor to create shallow "
103                                   "wrappers for non-exact definitions."),
104                          cl::init(false));
105 
106 static cl::opt<bool>
107     AllowDeepWrapper("attributor-allow-deep-wrappers", cl::Hidden,
108                      cl::desc("Allow the Attributor to use IP information "
109                               "derived from non-exact functions via cloning"),
110                      cl::init(false));
111 
112 // These options can only used for debug builds.
113 #ifndef NDEBUG
114 static cl::list<std::string>
115     SeedAllowList("attributor-seed-allow-list", cl::Hidden,
116                   cl::desc("Comma seperated list of attribute names that are "
117                            "allowed to be seeded."),
118                   cl::ZeroOrMore, cl::CommaSeparated);
119 
120 static cl::list<std::string> FunctionSeedAllowList(
121     "attributor-function-seed-allow-list", cl::Hidden,
122     cl::desc("Comma seperated list of function names that are "
123              "allowed to be seeded."),
124     cl::ZeroOrMore, cl::CommaSeparated);
125 #endif
126 
127 static cl::opt<bool>
128     DumpDepGraph("attributor-dump-dep-graph", cl::Hidden,
129                  cl::desc("Dump the dependency graph to dot files."),
130                  cl::init(false));
131 
132 static cl::opt<std::string> DepGraphDotFileNamePrefix(
133     "attributor-depgraph-dot-filename-prefix", cl::Hidden,
134     cl::desc("The prefix used for the CallGraph dot file names."));
135 
136 static cl::opt<bool> ViewDepGraph("attributor-view-dep-graph", cl::Hidden,
137                                   cl::desc("View the dependency graph."),
138                                   cl::init(false));
139 
140 static cl::opt<bool> PrintDependencies("attributor-print-dep", cl::Hidden,
141                                        cl::desc("Print attribute dependencies"),
142                                        cl::init(false));
143 
144 /// Logic operators for the change status enum class.
145 ///
146 ///{
147 ChangeStatus llvm::operator|(ChangeStatus L, ChangeStatus R) {
148   return L == ChangeStatus::CHANGED ? L : R;
149 }
150 ChangeStatus llvm::operator&(ChangeStatus L, ChangeStatus R) {
151   return L == ChangeStatus::UNCHANGED ? L : R;
152 }
153 ///}
154 
155 /// Return true if \p New is equal or worse than \p Old.
156 static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
157   if (!Old.isIntAttribute())
158     return true;
159 
160   return Old.getValueAsInt() >= New.getValueAsInt();
161 }
162 
163 /// Return true if the information provided by \p Attr was added to the
164 /// attribute list \p Attrs. This is only the case if it was not already present
165 /// in \p Attrs at the position describe by \p PK and \p AttrIdx.
166 static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
167                              AttributeList &Attrs, int AttrIdx) {
168 
169   if (Attr.isEnumAttribute()) {
170     Attribute::AttrKind Kind = Attr.getKindAsEnum();
171     if (Attrs.hasAttribute(AttrIdx, Kind))
172       if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
173         return false;
174     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
175     return true;
176   }
177   if (Attr.isStringAttribute()) {
178     StringRef Kind = Attr.getKindAsString();
179     if (Attrs.hasAttribute(AttrIdx, Kind))
180       if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
181         return false;
182     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
183     return true;
184   }
185   if (Attr.isIntAttribute()) {
186     Attribute::AttrKind Kind = Attr.getKindAsEnum();
187     if (Attrs.hasAttribute(AttrIdx, Kind))
188       if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
189         return false;
190     Attrs = Attrs.removeAttribute(Ctx, AttrIdx, Kind);
191     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
192     return true;
193   }
194 
195   llvm_unreachable("Expected enum or string attribute!");
196 }
197 
198 Argument *IRPosition::getAssociatedArgument() const {
199   if (getPositionKind() == IRP_ARGUMENT)
200     return cast<Argument>(&getAnchorValue());
201 
202   // Not an Argument and no argument number means this is not a call site
203   // argument, thus we cannot find a callback argument to return.
204   int ArgNo = getCallSiteArgNo();
205   if (ArgNo < 0)
206     return nullptr;
207 
208   // Use abstract call sites to make the connection between the call site
209   // values and the ones in callbacks. If a callback was found that makes use
210   // of the underlying call site operand, we want the corresponding callback
211   // callee argument and not the direct callee argument.
212   Optional<Argument *> CBCandidateArg;
213   SmallVector<const Use *, 4> CallbackUses;
214   const auto &CB = cast<CallBase>(getAnchorValue());
215   AbstractCallSite::getCallbackUses(CB, CallbackUses);
216   for (const Use *U : CallbackUses) {
217     AbstractCallSite ACS(U);
218     assert(ACS && ACS.isCallbackCall());
219     if (!ACS.getCalledFunction())
220       continue;
221 
222     for (unsigned u = 0, e = ACS.getNumArgOperands(); u < e; u++) {
223 
224       // Test if the underlying call site operand is argument number u of the
225       // callback callee.
226       if (ACS.getCallArgOperandNo(u) != ArgNo)
227         continue;
228 
229       assert(ACS.getCalledFunction()->arg_size() > u &&
230              "ACS mapped into var-args arguments!");
231       if (CBCandidateArg.hasValue()) {
232         CBCandidateArg = nullptr;
233         break;
234       }
235       CBCandidateArg = ACS.getCalledFunction()->getArg(u);
236     }
237   }
238 
239   // If we found a unique callback candidate argument, return it.
240   if (CBCandidateArg.hasValue() && CBCandidateArg.getValue())
241     return CBCandidateArg.getValue();
242 
243   // If no callbacks were found, or none used the underlying call site operand
244   // exclusively, use the direct callee argument if available.
245   const Function *Callee = CB.getCalledFunction();
246   if (Callee && Callee->arg_size() > unsigned(ArgNo))
247     return Callee->getArg(ArgNo);
248 
249   return nullptr;
250 }
251 
252 ChangeStatus AbstractAttribute::update(Attributor &A) {
253   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
254   if (getState().isAtFixpoint())
255     return HasChanged;
256 
257   LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");
258 
259   HasChanged = updateImpl(A);
260 
261   LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
262                     << "\n");
263 
264   return HasChanged;
265 }
266 
267 ChangeStatus
268 IRAttributeManifest::manifestAttrs(Attributor &A, const IRPosition &IRP,
269                                    const ArrayRef<Attribute> &DeducedAttrs) {
270   Function *ScopeFn = IRP.getAnchorScope();
271   IRPosition::Kind PK = IRP.getPositionKind();
272 
273   // In the following some generic code that will manifest attributes in
274   // DeducedAttrs if they improve the current IR. Due to the different
275   // annotation positions we use the underlying AttributeList interface.
276 
277   AttributeList Attrs;
278   switch (PK) {
279   case IRPosition::IRP_INVALID:
280   case IRPosition::IRP_FLOAT:
281     return ChangeStatus::UNCHANGED;
282   case IRPosition::IRP_ARGUMENT:
283   case IRPosition::IRP_FUNCTION:
284   case IRPosition::IRP_RETURNED:
285     Attrs = ScopeFn->getAttributes();
286     break;
287   case IRPosition::IRP_CALL_SITE:
288   case IRPosition::IRP_CALL_SITE_RETURNED:
289   case IRPosition::IRP_CALL_SITE_ARGUMENT:
290     Attrs = cast<CallBase>(IRP.getAnchorValue()).getAttributes();
291     break;
292   }
293 
294   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
295   LLVMContext &Ctx = IRP.getAnchorValue().getContext();
296   for (const Attribute &Attr : DeducedAttrs) {
297     if (!addIfNotExistent(Ctx, Attr, Attrs, IRP.getAttrIdx()))
298       continue;
299 
300     HasChanged = ChangeStatus::CHANGED;
301   }
302 
303   if (HasChanged == ChangeStatus::UNCHANGED)
304     return HasChanged;
305 
306   switch (PK) {
307   case IRPosition::IRP_ARGUMENT:
308   case IRPosition::IRP_FUNCTION:
309   case IRPosition::IRP_RETURNED:
310     ScopeFn->setAttributes(Attrs);
311     break;
312   case IRPosition::IRP_CALL_SITE:
313   case IRPosition::IRP_CALL_SITE_RETURNED:
314   case IRPosition::IRP_CALL_SITE_ARGUMENT:
315     cast<CallBase>(IRP.getAnchorValue()).setAttributes(Attrs);
316     break;
317   case IRPosition::IRP_INVALID:
318   case IRPosition::IRP_FLOAT:
319     break;
320   }
321 
322   return HasChanged;
323 }
324 
325 const IRPosition IRPosition::EmptyKey(DenseMapInfo<void *>::getEmptyKey());
326 const IRPosition
327     IRPosition::TombstoneKey(DenseMapInfo<void *>::getTombstoneKey());
328 
329 SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) {
330   IRPositions.emplace_back(IRP);
331 
332   // Helper to determine if operand bundles on a call site are benin or
333   // potentially problematic. We handle only llvm.assume for now.
334   auto CanIgnoreOperandBundles = [](const CallBase &CB) {
335     return (isa<IntrinsicInst>(CB) &&
336             cast<IntrinsicInst>(CB).getIntrinsicID() == Intrinsic ::assume);
337   };
338 
339   const auto *CB = dyn_cast<CallBase>(&IRP.getAnchorValue());
340   switch (IRP.getPositionKind()) {
341   case IRPosition::IRP_INVALID:
342   case IRPosition::IRP_FLOAT:
343   case IRPosition::IRP_FUNCTION:
344     return;
345   case IRPosition::IRP_ARGUMENT:
346   case IRPosition::IRP_RETURNED:
347     IRPositions.emplace_back(IRPosition::function(*IRP.getAnchorScope()));
348     return;
349   case IRPosition::IRP_CALL_SITE:
350     assert(CB && "Expected call site!");
351     // TODO: We need to look at the operand bundles similar to the redirection
352     //       in CallBase.
353     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB))
354       if (const Function *Callee = CB->getCalledFunction())
355         IRPositions.emplace_back(IRPosition::function(*Callee));
356     return;
357   case IRPosition::IRP_CALL_SITE_RETURNED:
358     assert(CB && "Expected call site!");
359     // TODO: We need to look at the operand bundles similar to the redirection
360     //       in CallBase.
361     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
362       if (const Function *Callee = CB->getCalledFunction()) {
363         IRPositions.emplace_back(IRPosition::returned(*Callee));
364         IRPositions.emplace_back(IRPosition::function(*Callee));
365         for (const Argument &Arg : Callee->args())
366           if (Arg.hasReturnedAttr()) {
367             IRPositions.emplace_back(
368                 IRPosition::callsite_argument(*CB, Arg.getArgNo()));
369             IRPositions.emplace_back(
370                 IRPosition::value(*CB->getArgOperand(Arg.getArgNo())));
371             IRPositions.emplace_back(IRPosition::argument(Arg));
372           }
373       }
374     }
375     IRPositions.emplace_back(IRPosition::callsite_function(*CB));
376     return;
377   case IRPosition::IRP_CALL_SITE_ARGUMENT: {
378     assert(CB && "Expected call site!");
379     // TODO: We need to look at the operand bundles similar to the redirection
380     //       in CallBase.
381     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
382       const Function *Callee = CB->getCalledFunction();
383       if (Callee) {
384         if (Argument *Arg = IRP.getAssociatedArgument())
385           IRPositions.emplace_back(IRPosition::argument(*Arg));
386         IRPositions.emplace_back(IRPosition::function(*Callee));
387       }
388     }
389     IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue()));
390     return;
391   }
392   }
393 }
394 
395 bool IRPosition::hasAttr(ArrayRef<Attribute::AttrKind> AKs,
396                          bool IgnoreSubsumingPositions, Attributor *A) const {
397   SmallVector<Attribute, 4> Attrs;
398   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
399     for (Attribute::AttrKind AK : AKs)
400       if (EquivIRP.getAttrsFromIRAttr(AK, Attrs))
401         return true;
402     // The first position returned by the SubsumingPositionIterator is
403     // always the position itself. If we ignore subsuming positions we
404     // are done after the first iteration.
405     if (IgnoreSubsumingPositions)
406       break;
407   }
408   if (A)
409     for (Attribute::AttrKind AK : AKs)
410       if (getAttrsFromAssumes(AK, Attrs, *A))
411         return true;
412   return false;
413 }
414 
415 void IRPosition::getAttrs(ArrayRef<Attribute::AttrKind> AKs,
416                           SmallVectorImpl<Attribute> &Attrs,
417                           bool IgnoreSubsumingPositions, Attributor *A) const {
418   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
419     for (Attribute::AttrKind AK : AKs)
420       EquivIRP.getAttrsFromIRAttr(AK, Attrs);
421     // The first position returned by the SubsumingPositionIterator is
422     // always the position itself. If we ignore subsuming positions we
423     // are done after the first iteration.
424     if (IgnoreSubsumingPositions)
425       break;
426   }
427   if (A)
428     for (Attribute::AttrKind AK : AKs)
429       getAttrsFromAssumes(AK, Attrs, *A);
430 }
431 
432 bool IRPosition::getAttrsFromIRAttr(Attribute::AttrKind AK,
433                                     SmallVectorImpl<Attribute> &Attrs) const {
434   if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT)
435     return false;
436 
437   AttributeList AttrList;
438   if (const auto *CB = dyn_cast<CallBase>(&getAnchorValue()))
439     AttrList = CB->getAttributes();
440   else
441     AttrList = getAssociatedFunction()->getAttributes();
442 
443   bool HasAttr = AttrList.hasAttribute(getAttrIdx(), AK);
444   if (HasAttr)
445     Attrs.push_back(AttrList.getAttribute(getAttrIdx(), AK));
446   return HasAttr;
447 }
448 
449 bool IRPosition::getAttrsFromAssumes(Attribute::AttrKind AK,
450                                      SmallVectorImpl<Attribute> &Attrs,
451                                      Attributor &A) const {
452   assert(getPositionKind() != IRP_INVALID && "Did expect a valid position!");
453   Value &AssociatedValue = getAssociatedValue();
454 
455   const Assume2KnowledgeMap &A2K =
456       A.getInfoCache().getKnowledgeMap().lookup({&AssociatedValue, AK});
457 
458   // Check if we found any potential assume use, if not we don't need to create
459   // explorer iterators.
460   if (A2K.empty())
461     return false;
462 
463   LLVMContext &Ctx = AssociatedValue.getContext();
464   unsigned AttrsSize = Attrs.size();
465   MustBeExecutedContextExplorer &Explorer =
466       A.getInfoCache().getMustBeExecutedContextExplorer();
467   auto EIt = Explorer.begin(getCtxI()), EEnd = Explorer.end(getCtxI());
468   for (auto &It : A2K)
469     if (Explorer.findInContextOf(It.first, EIt, EEnd))
470       Attrs.push_back(Attribute::get(Ctx, AK, It.second.Max));
471   return AttrsSize != Attrs.size();
472 }
473 
474 void IRPosition::verify() {
475 #ifdef EXPENSIVE_CHECKS
476   switch (getPositionKind()) {
477   case IRP_INVALID:
478     assert(!Enc.getOpaqueValue() &&
479            "Expected a nullptr for an invalid position!");
480     return;
481   case IRP_FLOAT:
482     assert((!isa<CallBase>(&getAssociatedValue()) &&
483             !isa<Argument>(&getAssociatedValue())) &&
484            "Expected specialized kind for call base and argument values!");
485     return;
486   case IRP_RETURNED:
487     assert(isa<Function>(getAsValuePtr()) &&
488            "Expected function for a 'returned' position!");
489     assert(getAsValuePtr() == &getAssociatedValue() &&
490            "Associated value mismatch!");
491     return;
492   case IRP_CALL_SITE_RETURNED:
493     assert((isa<CallBase>(getAsValuePtr())) &&
494            "Expected call base for 'call site returned' position!");
495     assert(getAsValuePtr() == &getAssociatedValue() &&
496            "Associated value mismatch!");
497     return;
498   case IRP_CALL_SITE:
499     assert((isa<CallBase>(getAsValuePtr())) &&
500            "Expected call base for 'call site function' position!");
501     assert(getAsValuePtr() == &getAssociatedValue() &&
502            "Associated value mismatch!");
503     return;
504   case IRP_FUNCTION:
505     assert(isa<Function>(getAsValuePtr()) &&
506            "Expected function for a 'function' position!");
507     assert(getAsValuePtr() == &getAssociatedValue() &&
508            "Associated value mismatch!");
509     return;
510   case IRP_ARGUMENT:
511     assert(isa<Argument>(getAsValuePtr()) &&
512            "Expected argument for a 'argument' position!");
513     assert(getAsValuePtr() == &getAssociatedValue() &&
514            "Associated value mismatch!");
515     return;
516   case IRP_CALL_SITE_ARGUMENT: {
517     Use *U = getAsUsePtr();
518     assert(U && "Expected use for a 'call site argument' position!");
519     assert(isa<CallBase>(U->getUser()) &&
520            "Expected call base user for a 'call site argument' position!");
521     assert(cast<CallBase>(U->getUser())->isArgOperand(U) &&
522            "Expected call base argument operand for a 'call site argument' "
523            "position");
524     assert(cast<CallBase>(U->getUser())->getArgOperandNo(U) ==
525                unsigned(getCallSiteArgNo()) &&
526            "Argument number mismatch!");
527     assert(U->get() == &getAssociatedValue() && "Associated value mismatch!");
528     return;
529   }
530   }
531 #endif
532 }
533 
534 Optional<Constant *>
535 Attributor::getAssumedConstant(const Value &V, const AbstractAttribute &AA,
536                                bool &UsedAssumedInformation) {
537   const auto &ValueSimplifyAA = getAAFor<AAValueSimplify>(
538       AA, IRPosition::value(V), /* TrackDependence */ false);
539   Optional<Value *> SimplifiedV =
540       ValueSimplifyAA.getAssumedSimplifiedValue(*this);
541   bool IsKnown = ValueSimplifyAA.isKnown();
542   UsedAssumedInformation |= !IsKnown;
543   if (!SimplifiedV.hasValue()) {
544     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
545     return llvm::None;
546   }
547   if (isa_and_nonnull<UndefValue>(SimplifiedV.getValue())) {
548     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
549     return llvm::None;
550   }
551   Constant *CI = dyn_cast_or_null<Constant>(SimplifiedV.getValue());
552   if (CI && CI->getType() != V.getType()) {
553     // TODO: Check for a save conversion.
554     return nullptr;
555   }
556   if (CI)
557     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
558   return CI;
559 }
560 
561 Attributor::~Attributor() {
562   // The abstract attributes are allocated via the BumpPtrAllocator Allocator,
563   // thus we cannot delete them. We can, and want to, destruct them though.
564   for (auto &DepAA : DG.SyntheticRoot.Deps) {
565     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
566     AA->~AbstractAttribute();
567   }
568 }
569 
570 bool Attributor::isAssumedDead(const AbstractAttribute &AA,
571                                const AAIsDead *FnLivenessAA,
572                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
573   const IRPosition &IRP = AA.getIRPosition();
574   if (!Functions.count(IRP.getAnchorScope()))
575     return false;
576   return isAssumedDead(IRP, &AA, FnLivenessAA, CheckBBLivenessOnly, DepClass);
577 }
578 
579 bool Attributor::isAssumedDead(const Use &U,
580                                const AbstractAttribute *QueryingAA,
581                                const AAIsDead *FnLivenessAA,
582                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
583   Instruction *UserI = dyn_cast<Instruction>(U.getUser());
584   if (!UserI)
585     return isAssumedDead(IRPosition::value(*U.get()), QueryingAA, FnLivenessAA,
586                          CheckBBLivenessOnly, DepClass);
587 
588   if (auto *CB = dyn_cast<CallBase>(UserI)) {
589     // For call site argument uses we can check if the argument is
590     // unused/dead.
591     if (CB->isArgOperand(&U)) {
592       const IRPosition &CSArgPos =
593           IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
594       return isAssumedDead(CSArgPos, QueryingAA, FnLivenessAA,
595                            CheckBBLivenessOnly, DepClass);
596     }
597   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(UserI)) {
598     const IRPosition &RetPos = IRPosition::returned(*RI->getFunction());
599     return isAssumedDead(RetPos, QueryingAA, FnLivenessAA, CheckBBLivenessOnly,
600                          DepClass);
601   } else if (PHINode *PHI = dyn_cast<PHINode>(UserI)) {
602     BasicBlock *IncomingBB = PHI->getIncomingBlock(U);
603     return isAssumedDead(*IncomingBB->getTerminator(), QueryingAA, FnLivenessAA,
604                          CheckBBLivenessOnly, DepClass);
605   }
606 
607   return isAssumedDead(IRPosition::value(*UserI), QueryingAA, FnLivenessAA,
608                        CheckBBLivenessOnly, DepClass);
609 }
610 
611 bool Attributor::isAssumedDead(const Instruction &I,
612                                const AbstractAttribute *QueryingAA,
613                                const AAIsDead *FnLivenessAA,
614                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
615   if (!FnLivenessAA)
616     FnLivenessAA = lookupAAFor<AAIsDead>(IRPosition::function(*I.getFunction()),
617                                          QueryingAA,
618                                          /* TrackDependence */ false);
619 
620   // If we have a context instruction and a liveness AA we use it.
621   if (FnLivenessAA &&
622       FnLivenessAA->getIRPosition().getAnchorScope() == I.getFunction() &&
623       FnLivenessAA->isAssumedDead(&I)) {
624     if (QueryingAA)
625       recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
626     return true;
627   }
628 
629   if (CheckBBLivenessOnly)
630     return false;
631 
632   const AAIsDead &IsDeadAA = getOrCreateAAFor<AAIsDead>(
633       IRPosition::value(I), QueryingAA, /* TrackDependence */ false);
634   // Don't check liveness for AAIsDead.
635   if (QueryingAA == &IsDeadAA)
636     return false;
637 
638   if (IsDeadAA.isAssumedDead()) {
639     if (QueryingAA)
640       recordDependence(IsDeadAA, *QueryingAA, DepClass);
641     return true;
642   }
643 
644   return false;
645 }
646 
647 bool Attributor::isAssumedDead(const IRPosition &IRP,
648                                const AbstractAttribute *QueryingAA,
649                                const AAIsDead *FnLivenessAA,
650                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
651   Instruction *CtxI = IRP.getCtxI();
652   if (CtxI &&
653       isAssumedDead(*CtxI, QueryingAA, FnLivenessAA,
654                     /* CheckBBLivenessOnly */ true,
655                     CheckBBLivenessOnly ? DepClass : DepClassTy::OPTIONAL))
656     return true;
657 
658   if (CheckBBLivenessOnly)
659     return false;
660 
661   // If we haven't succeeded we query the specific liveness info for the IRP.
662   const AAIsDead *IsDeadAA;
663   if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE)
664     IsDeadAA = &getOrCreateAAFor<AAIsDead>(
665         IRPosition::callsite_returned(cast<CallBase>(IRP.getAssociatedValue())),
666         QueryingAA, /* TrackDependence */ false);
667   else
668     IsDeadAA = &getOrCreateAAFor<AAIsDead>(IRP, QueryingAA,
669                                            /* TrackDependence */ false);
670   // Don't check liveness for AAIsDead.
671   if (QueryingAA == IsDeadAA)
672     return false;
673 
674   if (IsDeadAA->isAssumedDead()) {
675     if (QueryingAA)
676       recordDependence(*IsDeadAA, *QueryingAA, DepClass);
677     return true;
678   }
679 
680   return false;
681 }
682 
683 bool Attributor::checkForAllUses(function_ref<bool(const Use &, bool &)> Pred,
684                                  const AbstractAttribute &QueryingAA,
685                                  const Value &V, DepClassTy LivenessDepClass) {
686 
687   // Check the trivial case first as it catches void values.
688   if (V.use_empty())
689     return true;
690 
691   // If the value is replaced by another one, for now a constant, we do not have
692   // uses. Note that this requires users of `checkForAllUses` to not recurse but
693   // instead use the `follow` callback argument to look at transitive users,
694   // however, that should be clear from the presence of the argument.
695   bool UsedAssumedInformation = false;
696   Optional<Constant *> C =
697       getAssumedConstant(V, QueryingAA, UsedAssumedInformation);
698   if (C.hasValue() && C.getValue()) {
699     LLVM_DEBUG(dbgs() << "[Attributor] Value is simplified, uses skipped: " << V
700                       << " -> " << *C.getValue() << "\n");
701     return true;
702   }
703 
704   const IRPosition &IRP = QueryingAA.getIRPosition();
705   SmallVector<const Use *, 16> Worklist;
706   SmallPtrSet<const Use *, 16> Visited;
707 
708   for (const Use &U : V.uses())
709     Worklist.push_back(&U);
710 
711   LLVM_DEBUG(dbgs() << "[Attributor] Got " << Worklist.size()
712                     << " initial uses to check\n");
713 
714   const Function *ScopeFn = IRP.getAnchorScope();
715   const auto *LivenessAA =
716       ScopeFn ? &getAAFor<AAIsDead>(QueryingAA, IRPosition::function(*ScopeFn),
717                                     /* TrackDependence */ false)
718               : nullptr;
719 
720   while (!Worklist.empty()) {
721     const Use *U = Worklist.pop_back_val();
722     if (!Visited.insert(U).second)
723       continue;
724     LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << **U << " in "
725                       << *U->getUser() << "\n");
726     if (isAssumedDead(*U, &QueryingAA, LivenessAA,
727                       /* CheckBBLivenessOnly */ false, LivenessDepClass)) {
728       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
729       continue;
730     }
731     if (U->getUser()->isDroppable()) {
732       LLVM_DEBUG(dbgs() << "[Attributor] Droppable user, skip!\n");
733       continue;
734     }
735 
736     bool Follow = false;
737     if (!Pred(*U, Follow))
738       return false;
739     if (!Follow)
740       continue;
741     for (const Use &UU : U->getUser()->uses())
742       Worklist.push_back(&UU);
743   }
744 
745   return true;
746 }
747 
748 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
749                                       const AbstractAttribute &QueryingAA,
750                                       bool RequireAllCallSites,
751                                       bool &AllCallSitesKnown) {
752   // We can try to determine information from
753   // the call sites. However, this is only possible all call sites are known,
754   // hence the function has internal linkage.
755   const IRPosition &IRP = QueryingAA.getIRPosition();
756   const Function *AssociatedFunction = IRP.getAssociatedFunction();
757   if (!AssociatedFunction) {
758     LLVM_DEBUG(dbgs() << "[Attributor] No function associated with " << IRP
759                       << "\n");
760     AllCallSitesKnown = false;
761     return false;
762   }
763 
764   return checkForAllCallSites(Pred, *AssociatedFunction, RequireAllCallSites,
765                               &QueryingAA, AllCallSitesKnown);
766 }
767 
768 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
769                                       const Function &Fn,
770                                       bool RequireAllCallSites,
771                                       const AbstractAttribute *QueryingAA,
772                                       bool &AllCallSitesKnown) {
773   if (RequireAllCallSites && !Fn.hasLocalLinkage()) {
774     LLVM_DEBUG(
775         dbgs()
776         << "[Attributor] Function " << Fn.getName()
777         << " has no internal linkage, hence not all call sites are known\n");
778     AllCallSitesKnown = false;
779     return false;
780   }
781 
782   // If we do not require all call sites we might not see all.
783   AllCallSitesKnown = RequireAllCallSites;
784 
785   SmallVector<const Use *, 8> Uses(make_pointer_range(Fn.uses()));
786   for (unsigned u = 0; u < Uses.size(); ++u) {
787     const Use &U = *Uses[u];
788     LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << *U << " in "
789                       << *U.getUser() << "\n");
790     if (isAssumedDead(U, QueryingAA, nullptr, /* CheckBBLivenessOnly */ true)) {
791       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
792       continue;
793     }
794     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) {
795       if (CE->isCast() && CE->getType()->isPointerTy() &&
796           CE->getType()->getPointerElementType()->isFunctionTy()) {
797         for (const Use &CEU : CE->uses())
798           Uses.push_back(&CEU);
799         continue;
800       }
801     }
802 
803     AbstractCallSite ACS(&U);
804     if (!ACS) {
805       LLVM_DEBUG(dbgs() << "[Attributor] Function " << Fn.getName()
806                         << " has non call site use " << *U.get() << " in "
807                         << *U.getUser() << "\n");
808       // BlockAddress users are allowed.
809       if (isa<BlockAddress>(U.getUser()))
810         continue;
811       return false;
812     }
813 
814     const Use *EffectiveUse =
815         ACS.isCallbackCall() ? &ACS.getCalleeUseForCallback() : &U;
816     if (!ACS.isCallee(EffectiveUse)) {
817       if (!RequireAllCallSites)
818         continue;
819       LLVM_DEBUG(dbgs() << "[Attributor] User " << EffectiveUse->getUser()
820                         << " is an invalid use of " << Fn.getName() << "\n");
821       return false;
822     }
823 
824     // Make sure the arguments that can be matched between the call site and the
825     // callee argee on their type. It is unlikely they do not and it doesn't
826     // make sense for all attributes to know/care about this.
827     assert(&Fn == ACS.getCalledFunction() && "Expected known callee");
828     unsigned MinArgsParams =
829         std::min(size_t(ACS.getNumArgOperands()), Fn.arg_size());
830     for (unsigned u = 0; u < MinArgsParams; ++u) {
831       Value *CSArgOp = ACS.getCallArgOperand(u);
832       if (CSArgOp && Fn.getArg(u)->getType() != CSArgOp->getType()) {
833         LLVM_DEBUG(
834             dbgs() << "[Attributor] Call site / callee argument type mismatch ["
835                    << u << "@" << Fn.getName() << ": "
836                    << *Fn.getArg(u)->getType() << " vs. "
837                    << *ACS.getCallArgOperand(u)->getType() << "\n");
838         return false;
839       }
840     }
841 
842     if (Pred(ACS))
843       continue;
844 
845     LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for "
846                       << *ACS.getInstruction() << "\n");
847     return false;
848   }
849 
850   return true;
851 }
852 
853 bool Attributor::checkForAllReturnedValuesAndReturnInsts(
854     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred,
855     const AbstractAttribute &QueryingAA) {
856 
857   const IRPosition &IRP = QueryingAA.getIRPosition();
858   // Since we need to provide return instructions we have to have an exact
859   // definition.
860   const Function *AssociatedFunction = IRP.getAssociatedFunction();
861   if (!AssociatedFunction)
862     return false;
863 
864   // If this is a call site query we use the call site specific return values
865   // and liveness information.
866   // TODO: use the function scope once we have call site AAReturnedValues.
867   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
868   const auto &AARetVal = getAAFor<AAReturnedValues>(QueryingAA, QueryIRP);
869   if (!AARetVal.getState().isValidState())
870     return false;
871 
872   return AARetVal.checkForAllReturnedValuesAndReturnInsts(Pred);
873 }
874 
875 bool Attributor::checkForAllReturnedValues(
876     function_ref<bool(Value &)> Pred, const AbstractAttribute &QueryingAA) {
877 
878   const IRPosition &IRP = QueryingAA.getIRPosition();
879   const Function *AssociatedFunction = IRP.getAssociatedFunction();
880   if (!AssociatedFunction)
881     return false;
882 
883   // TODO: use the function scope once we have call site AAReturnedValues.
884   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
885   const auto &AARetVal = getAAFor<AAReturnedValues>(QueryingAA, QueryIRP);
886   if (!AARetVal.getState().isValidState())
887     return false;
888 
889   return AARetVal.checkForAllReturnedValuesAndReturnInsts(
890       [&](Value &RV, const SmallSetVector<ReturnInst *, 4> &) {
891         return Pred(RV);
892       });
893 }
894 
895 static bool checkForAllInstructionsImpl(
896     Attributor *A, InformationCache::OpcodeInstMapTy &OpcodeInstMap,
897     function_ref<bool(Instruction &)> Pred, const AbstractAttribute *QueryingAA,
898     const AAIsDead *LivenessAA, const ArrayRef<unsigned> &Opcodes,
899     bool CheckBBLivenessOnly = false) {
900   for (unsigned Opcode : Opcodes) {
901     // Check if we have instructions with this opcode at all first.
902     auto *Insts = OpcodeInstMap.lookup(Opcode);
903     if (!Insts)
904       continue;
905 
906     for (Instruction *I : *Insts) {
907       // Skip dead instructions.
908       if (A && A->isAssumedDead(IRPosition::value(*I), QueryingAA, LivenessAA,
909                                 CheckBBLivenessOnly))
910         continue;
911 
912       if (!Pred(*I))
913         return false;
914     }
915   }
916   return true;
917 }
918 
919 bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
920                                          const AbstractAttribute &QueryingAA,
921                                          const ArrayRef<unsigned> &Opcodes,
922                                          bool CheckBBLivenessOnly) {
923 
924   const IRPosition &IRP = QueryingAA.getIRPosition();
925   // Since we need to provide instructions we have to have an exact definition.
926   const Function *AssociatedFunction = IRP.getAssociatedFunction();
927   if (!AssociatedFunction)
928     return false;
929 
930   // TODO: use the function scope once we have call site AAReturnedValues.
931   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
932   const auto *LivenessAA =
933       CheckBBLivenessOnly ? nullptr
934                           : &(getAAFor<AAIsDead>(QueryingAA, QueryIRP,
935                                                  /* TrackDependence */ false));
936 
937   auto &OpcodeInstMap =
938       InfoCache.getOpcodeInstMapForFunction(*AssociatedFunction);
939   if (!checkForAllInstructionsImpl(this, OpcodeInstMap, Pred, &QueryingAA,
940                                    LivenessAA, Opcodes, CheckBBLivenessOnly))
941     return false;
942 
943   return true;
944 }
945 
946 bool Attributor::checkForAllReadWriteInstructions(
947     function_ref<bool(Instruction &)> Pred, AbstractAttribute &QueryingAA) {
948 
949   const Function *AssociatedFunction =
950       QueryingAA.getIRPosition().getAssociatedFunction();
951   if (!AssociatedFunction)
952     return false;
953 
954   // TODO: use the function scope once we have call site AAReturnedValues.
955   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
956   const auto &LivenessAA =
957       getAAFor<AAIsDead>(QueryingAA, QueryIRP, /* TrackDependence */ false);
958 
959   for (Instruction *I :
960        InfoCache.getReadOrWriteInstsForFunction(*AssociatedFunction)) {
961     // Skip dead instructions.
962     if (isAssumedDead(IRPosition::value(*I), &QueryingAA, &LivenessAA))
963       continue;
964 
965     if (!Pred(*I))
966       return false;
967   }
968 
969   return true;
970 }
971 
972 void Attributor::runTillFixpoint() {
973   TimeTraceScope TimeScope("Attributor::runTillFixpoint");
974   LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
975                     << DG.SyntheticRoot.Deps.size()
976                     << " abstract attributes.\n");
977 
978   // Now that all abstract attributes are collected and initialized we start
979   // the abstract analysis.
980 
981   unsigned IterationCounter = 1;
982 
983   SmallVector<AbstractAttribute *, 32> ChangedAAs;
984   SetVector<AbstractAttribute *> Worklist, InvalidAAs;
985   Worklist.insert(DG.SyntheticRoot.begin(), DG.SyntheticRoot.end());
986 
987   do {
988     // Remember the size to determine new attributes.
989     size_t NumAAs = DG.SyntheticRoot.Deps.size();
990     LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
991                       << ", Worklist size: " << Worklist.size() << "\n");
992 
993     // For invalid AAs we can fix dependent AAs that have a required dependence,
994     // thereby folding long dependence chains in a single step without the need
995     // to run updates.
996     for (unsigned u = 0; u < InvalidAAs.size(); ++u) {
997       AbstractAttribute *InvalidAA = InvalidAAs[u];
998 
999       // Check the dependences to fast track invalidation.
1000       LLVM_DEBUG(dbgs() << "[Attributor] InvalidAA: " << *InvalidAA << " has "
1001                         << InvalidAA->Deps.size()
1002                         << " required & optional dependences\n");
1003       while (!InvalidAA->Deps.empty()) {
1004         const auto &Dep = InvalidAA->Deps.back();
1005         InvalidAA->Deps.pop_back();
1006         AbstractAttribute *DepAA = cast<AbstractAttribute>(Dep.getPointer());
1007         if (Dep.getInt() == unsigned(DepClassTy::OPTIONAL)) {
1008           Worklist.insert(DepAA);
1009           continue;
1010         }
1011         DepAA->getState().indicatePessimisticFixpoint();
1012         assert(DepAA->getState().isAtFixpoint() && "Expected fixpoint state!");
1013         if (!DepAA->getState().isValidState())
1014           InvalidAAs.insert(DepAA);
1015         else
1016           ChangedAAs.push_back(DepAA);
1017       }
1018     }
1019 
1020     // Add all abstract attributes that are potentially dependent on one that
1021     // changed to the work list.
1022     for (AbstractAttribute *ChangedAA : ChangedAAs)
1023       while (!ChangedAA->Deps.empty()) {
1024         Worklist.insert(
1025             cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1026         ChangedAA->Deps.pop_back();
1027       }
1028 
1029     LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounter
1030                       << ", Worklist+Dependent size: " << Worklist.size()
1031                       << "\n");
1032 
1033     // Reset the changed and invalid set.
1034     ChangedAAs.clear();
1035     InvalidAAs.clear();
1036 
1037     // Update all abstract attribute in the work list and record the ones that
1038     // changed.
1039     for (AbstractAttribute *AA : Worklist) {
1040       const auto &AAState = AA->getState();
1041       if (!AAState.isAtFixpoint())
1042         if (updateAA(*AA) == ChangeStatus::CHANGED)
1043           ChangedAAs.push_back(AA);
1044 
1045       // Use the InvalidAAs vector to propagate invalid states fast transitively
1046       // without requiring updates.
1047       if (!AAState.isValidState())
1048         InvalidAAs.insert(AA);
1049     }
1050 
1051     // Add attributes to the changed set if they have been created in the last
1052     // iteration.
1053     ChangedAAs.append(DG.SyntheticRoot.begin() + NumAAs,
1054                       DG.SyntheticRoot.end());
1055 
1056     // Reset the work list and repopulate with the changed abstract attributes.
1057     // Note that dependent ones are added above.
1058     Worklist.clear();
1059     Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());
1060 
1061   } while (!Worklist.empty() && (IterationCounter++ < MaxFixpointIterations ||
1062                                  VerifyMaxFixpointIterations));
1063 
1064   LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
1065                     << IterationCounter << "/" << MaxFixpointIterations
1066                     << " iterations\n");
1067 
1068   // Reset abstract arguments not settled in a sound fixpoint by now. This
1069   // happens when we stopped the fixpoint iteration early. Note that only the
1070   // ones marked as "changed" *and* the ones transitively depending on them
1071   // need to be reverted to a pessimistic state. Others might not be in a
1072   // fixpoint state but we can use the optimistic results for them anyway.
1073   SmallPtrSet<AbstractAttribute *, 32> Visited;
1074   for (unsigned u = 0; u < ChangedAAs.size(); u++) {
1075     AbstractAttribute *ChangedAA = ChangedAAs[u];
1076     if (!Visited.insert(ChangedAA).second)
1077       continue;
1078 
1079     AbstractState &State = ChangedAA->getState();
1080     if (!State.isAtFixpoint()) {
1081       State.indicatePessimisticFixpoint();
1082 
1083       NumAttributesTimedOut++;
1084     }
1085 
1086     while (!ChangedAA->Deps.empty()) {
1087       ChangedAAs.push_back(
1088           cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1089       ChangedAA->Deps.pop_back();
1090     }
1091   }
1092 
1093   LLVM_DEBUG({
1094     if (!Visited.empty())
1095       dbgs() << "\n[Attributor] Finalized " << Visited.size()
1096              << " abstract attributes.\n";
1097   });
1098 
1099   if (VerifyMaxFixpointIterations &&
1100       IterationCounter != MaxFixpointIterations) {
1101     errs() << "\n[Attributor] Fixpoint iteration done after: "
1102            << IterationCounter << "/" << MaxFixpointIterations
1103            << " iterations\n";
1104     llvm_unreachable("The fixpoint was not reached with exactly the number of "
1105                      "specified iterations!");
1106   }
1107 }
1108 
1109 ChangeStatus Attributor::manifestAttributes() {
1110   TimeTraceScope TimeScope("Attributor::manifestAttributes");
1111   size_t NumFinalAAs = DG.SyntheticRoot.Deps.size();
1112 
1113   unsigned NumManifested = 0;
1114   unsigned NumAtFixpoint = 0;
1115   ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
1116   for (auto &DepAA : DG.SyntheticRoot.Deps) {
1117     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
1118     AbstractState &State = AA->getState();
1119 
1120     // If there is not already a fixpoint reached, we can now take the
1121     // optimistic state. This is correct because we enforced a pessimistic one
1122     // on abstract attributes that were transitively dependent on a changed one
1123     // already above.
1124     if (!State.isAtFixpoint())
1125       State.indicateOptimisticFixpoint();
1126 
1127     // If the state is invalid, we do not try to manifest it.
1128     if (!State.isValidState())
1129       continue;
1130 
1131     // Skip dead code.
1132     if (isAssumedDead(*AA, nullptr, /* CheckBBLivenessOnly */ true))
1133       continue;
1134     // Check if the manifest debug counter that allows skipping manifestation of
1135     // AAs
1136     if (!DebugCounter::shouldExecute(ManifestDBGCounter))
1137       continue;
1138     // Manifest the state and record if we changed the IR.
1139     ChangeStatus LocalChange = AA->manifest(*this);
1140     if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled())
1141       AA->trackStatistics();
1142     LLVM_DEBUG(dbgs() << "[Attributor] Manifest " << LocalChange << " : " << *AA
1143                       << "\n");
1144 
1145     ManifestChange = ManifestChange | LocalChange;
1146 
1147     NumAtFixpoint++;
1148     NumManifested += (LocalChange == ChangeStatus::CHANGED);
1149   }
1150 
1151   (void)NumManifested;
1152   (void)NumAtFixpoint;
1153   LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
1154                     << " arguments while " << NumAtFixpoint
1155                     << " were in a valid fixpoint state\n");
1156 
1157   NumAttributesManifested += NumManifested;
1158   NumAttributesValidFixpoint += NumAtFixpoint;
1159 
1160   (void)NumFinalAAs;
1161   if (NumFinalAAs != DG.SyntheticRoot.Deps.size()) {
1162     for (unsigned u = NumFinalAAs; u < DG.SyntheticRoot.Deps.size(); ++u)
1163       errs() << "Unexpected abstract attribute: "
1164              << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1165              << " :: "
1166              << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1167                     ->getIRPosition()
1168                     .getAssociatedValue()
1169              << "\n";
1170     llvm_unreachable("Expected the final number of abstract attributes to "
1171                      "remain unchanged!");
1172   }
1173   return ManifestChange;
1174 }
1175 
1176 void Attributor::identifyDeadInternalFunctions() {
1177   // Identify dead internal functions and delete them. This happens outside
1178   // the other fixpoint analysis as we might treat potentially dead functions
1179   // as live to lower the number of iterations. If they happen to be dead, the
1180   // below fixpoint loop will identify and eliminate them.
1181   SmallVector<Function *, 8> InternalFns;
1182   for (Function *F : Functions)
1183     if (F->hasLocalLinkage())
1184       InternalFns.push_back(F);
1185 
1186   SmallPtrSet<Function *, 8> LiveInternalFns;
1187   bool FoundLiveInternal = true;
1188   while (FoundLiveInternal) {
1189     FoundLiveInternal = false;
1190     for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) {
1191       Function *F = InternalFns[u];
1192       if (!F)
1193         continue;
1194 
1195       bool AllCallSitesKnown;
1196       if (checkForAllCallSites(
1197               [&](AbstractCallSite ACS) {
1198                 Function *Callee = ACS.getInstruction()->getFunction();
1199                 return ToBeDeletedFunctions.count(Callee) ||
1200                        (Functions.count(Callee) && Callee->hasLocalLinkage() &&
1201                         !LiveInternalFns.count(Callee));
1202               },
1203               *F, true, nullptr, AllCallSitesKnown)) {
1204         continue;
1205       }
1206 
1207       LiveInternalFns.insert(F);
1208       InternalFns[u] = nullptr;
1209       FoundLiveInternal = true;
1210     }
1211   }
1212 
1213   for (unsigned u = 0, e = InternalFns.size(); u < e; ++u)
1214     if (Function *F = InternalFns[u])
1215       ToBeDeletedFunctions.insert(F);
1216 }
1217 
1218 ChangeStatus Attributor::cleanupIR() {
1219   TimeTraceScope TimeScope("Attributor::cleanupIR");
1220   // Delete stuff at the end to avoid invalid references and a nice order.
1221   LLVM_DEBUG(dbgs() << "\n[Attributor] Delete at least "
1222                     << ToBeDeletedFunctions.size() << " functions and "
1223                     << ToBeDeletedBlocks.size() << " blocks and "
1224                     << ToBeDeletedInsts.size() << " instructions and "
1225                     << ToBeChangedUses.size() << " uses\n");
1226 
1227   SmallVector<WeakTrackingVH, 32> DeadInsts;
1228   SmallVector<Instruction *, 32> TerminatorsToFold;
1229 
1230   for (auto &It : ToBeChangedUses) {
1231     Use *U = It.first;
1232     Value *NewV = It.second;
1233     Value *OldV = U->get();
1234 
1235     // Do not replace uses in returns if the value is a must-tail call we will
1236     // not delete.
1237     if (isa<ReturnInst>(U->getUser()))
1238       if (auto *CI = dyn_cast<CallInst>(OldV->stripPointerCasts()))
1239         if (CI->isMustTailCall() && !ToBeDeletedInsts.count(CI))
1240           continue;
1241 
1242     LLVM_DEBUG(dbgs() << "Use " << *NewV << " in " << *U->getUser()
1243                       << " instead of " << *OldV << "\n");
1244     U->set(NewV);
1245     // Do not modify call instructions outside the SCC.
1246     if (auto *CB = dyn_cast<CallBase>(OldV))
1247       if (!Functions.count(CB->getCaller()))
1248         continue;
1249     if (Instruction *I = dyn_cast<Instruction>(OldV)) {
1250       CGModifiedFunctions.insert(I->getFunction());
1251       if (!isa<PHINode>(I) && !ToBeDeletedInsts.count(I) &&
1252           isInstructionTriviallyDead(I))
1253         DeadInsts.push_back(I);
1254     }
1255     if (isa<Constant>(NewV) && isa<BranchInst>(U->getUser())) {
1256       Instruction *UserI = cast<Instruction>(U->getUser());
1257       if (isa<UndefValue>(NewV)) {
1258         ToBeChangedToUnreachableInsts.insert(UserI);
1259       } else {
1260         TerminatorsToFold.push_back(UserI);
1261       }
1262     }
1263   }
1264   for (auto &V : InvokeWithDeadSuccessor)
1265     if (InvokeInst *II = dyn_cast_or_null<InvokeInst>(V)) {
1266       bool UnwindBBIsDead = II->hasFnAttr(Attribute::NoUnwind);
1267       bool NormalBBIsDead = II->hasFnAttr(Attribute::NoReturn);
1268       bool Invoke2CallAllowed =
1269           !AAIsDead::mayCatchAsynchronousExceptions(*II->getFunction());
1270       assert((UnwindBBIsDead || NormalBBIsDead) &&
1271              "Invoke does not have dead successors!");
1272       BasicBlock *BB = II->getParent();
1273       BasicBlock *NormalDestBB = II->getNormalDest();
1274       if (UnwindBBIsDead) {
1275         Instruction *NormalNextIP = &NormalDestBB->front();
1276         if (Invoke2CallAllowed) {
1277           changeToCall(II);
1278           NormalNextIP = BB->getTerminator();
1279         }
1280         if (NormalBBIsDead)
1281           ToBeChangedToUnreachableInsts.insert(NormalNextIP);
1282       } else {
1283         assert(NormalBBIsDead && "Broken invariant!");
1284         if (!NormalDestBB->getUniquePredecessor())
1285           NormalDestBB = SplitBlockPredecessors(NormalDestBB, {BB}, ".dead");
1286         ToBeChangedToUnreachableInsts.insert(&NormalDestBB->front());
1287       }
1288     }
1289   for (Instruction *I : TerminatorsToFold) {
1290     CGModifiedFunctions.insert(I->getFunction());
1291     ConstantFoldTerminator(I->getParent());
1292   }
1293   for (auto &V : ToBeChangedToUnreachableInsts)
1294     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
1295       CGModifiedFunctions.insert(I->getFunction());
1296       changeToUnreachable(I, /* UseLLVMTrap */ false);
1297     }
1298 
1299   for (auto &V : ToBeDeletedInsts) {
1300     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
1301       I->dropDroppableUses();
1302       CGModifiedFunctions.insert(I->getFunction());
1303       if (!I->getType()->isVoidTy())
1304         I->replaceAllUsesWith(UndefValue::get(I->getType()));
1305       if (!isa<PHINode>(I) && isInstructionTriviallyDead(I))
1306         DeadInsts.push_back(I);
1307       else
1308         I->eraseFromParent();
1309     }
1310   }
1311 
1312   LLVM_DEBUG(dbgs() << "[Attributor] DeadInsts size: " << DeadInsts.size()
1313                     << "\n");
1314 
1315   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
1316 
1317   if (unsigned NumDeadBlocks = ToBeDeletedBlocks.size()) {
1318     SmallVector<BasicBlock *, 8> ToBeDeletedBBs;
1319     ToBeDeletedBBs.reserve(NumDeadBlocks);
1320     for (BasicBlock *BB : ToBeDeletedBlocks) {
1321       CGModifiedFunctions.insert(BB->getParent());
1322       ToBeDeletedBBs.push_back(BB);
1323     }
1324     // Actually we do not delete the blocks but squash them into a single
1325     // unreachable but untangling branches that jump here is something we need
1326     // to do in a more generic way.
1327     DetatchDeadBlocks(ToBeDeletedBBs, nullptr);
1328   }
1329 
1330   identifyDeadInternalFunctions();
1331 
1332   // Rewrite the functions as requested during manifest.
1333   ChangeStatus ManifestChange = rewriteFunctionSignatures(CGModifiedFunctions);
1334 
1335   for (Function *Fn : CGModifiedFunctions)
1336     if (!ToBeDeletedFunctions.count(Fn))
1337       CGUpdater.reanalyzeFunction(*Fn);
1338 
1339   for (Function *Fn : ToBeDeletedFunctions) {
1340     if (!Functions.count(Fn))
1341       continue;
1342     CGUpdater.removeFunction(*Fn);
1343   }
1344 
1345   if (!ToBeChangedUses.empty())
1346     ManifestChange = ChangeStatus::CHANGED;
1347 
1348   if (!ToBeChangedToUnreachableInsts.empty())
1349     ManifestChange = ChangeStatus::CHANGED;
1350 
1351   if (!ToBeDeletedFunctions.empty())
1352     ManifestChange = ChangeStatus::CHANGED;
1353 
1354   if (!ToBeDeletedBlocks.empty())
1355     ManifestChange = ChangeStatus::CHANGED;
1356 
1357   if (!ToBeDeletedInsts.empty())
1358     ManifestChange = ChangeStatus::CHANGED;
1359 
1360   if (!InvokeWithDeadSuccessor.empty())
1361     ManifestChange = ChangeStatus::CHANGED;
1362 
1363   if (!DeadInsts.empty())
1364     ManifestChange = ChangeStatus::CHANGED;
1365 
1366   NumFnDeleted += ToBeDeletedFunctions.size();
1367 
1368   LLVM_DEBUG(dbgs() << "[Attributor] Deleted " << ToBeDeletedFunctions.size()
1369                     << " functions after manifest.\n");
1370 
1371 #ifdef EXPENSIVE_CHECKS
1372   for (Function *F : Functions) {
1373     if (ToBeDeletedFunctions.count(F))
1374       continue;
1375     assert(!verifyFunction(*F, &errs()) && "Module verification failed!");
1376   }
1377 #endif
1378 
1379   return ManifestChange;
1380 }
1381 
1382 ChangeStatus Attributor::run() {
1383   TimeTraceScope TimeScope("Attributor::run");
1384 
1385   Phase = AttributorPhase::UPDATE;
1386   runTillFixpoint();
1387 
1388   // dump graphs on demand
1389   if (DumpDepGraph)
1390     DG.dumpGraph();
1391 
1392   if (ViewDepGraph)
1393     DG.viewGraph();
1394 
1395   if (PrintDependencies)
1396     DG.print();
1397 
1398   Phase = AttributorPhase::MANIFEST;
1399   ChangeStatus ManifestChange = manifestAttributes();
1400 
1401   Phase = AttributorPhase::CLEANUP;
1402   ChangeStatus CleanupChange = cleanupIR();
1403 
1404   return ManifestChange | CleanupChange;
1405 }
1406 
1407 ChangeStatus Attributor::updateAA(AbstractAttribute &AA) {
1408   TimeTraceScope TimeScope(
1409       AA.getName() + std::to_string(AA.getIRPosition().getPositionKind()) +
1410       "::updateAA");
1411   assert(Phase == AttributorPhase::UPDATE &&
1412          "We can update AA only in the update stage!");
1413 
1414   // Use a new dependence vector for this update.
1415   DependenceVector DV;
1416   DependenceStack.push_back(&DV);
1417 
1418   auto &AAState = AA.getState();
1419   ChangeStatus CS = ChangeStatus::UNCHANGED;
1420   if (!isAssumedDead(AA, nullptr, /* CheckBBLivenessOnly */ true))
1421     CS = AA.update(*this);
1422 
1423   if (DV.empty()) {
1424     // If the attribute did not query any non-fix information, the state
1425     // will not change and we can indicate that right away.
1426     AAState.indicateOptimisticFixpoint();
1427   }
1428 
1429   if (!AAState.isAtFixpoint())
1430     rememberDependences();
1431 
1432   // Verify the stack was used properly, that is we pop the dependence vector we
1433   // put there earlier.
1434   DependenceVector *PoppedDV = DependenceStack.pop_back_val();
1435   (void)PoppedDV;
1436   assert(PoppedDV == &DV && "Inconsistent usage of the dependence stack!");
1437 
1438   return CS;
1439 }
1440 
1441 void Attributor::createShallowWrapper(Function &F) {
1442   assert(!F.isDeclaration() && "Cannot create a wrapper around a declaration!");
1443 
1444   Module &M = *F.getParent();
1445   LLVMContext &Ctx = M.getContext();
1446   FunctionType *FnTy = F.getFunctionType();
1447 
1448   Function *Wrapper =
1449       Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(), F.getName());
1450   F.setName(""); // set the inside function anonymous
1451   M.getFunctionList().insert(F.getIterator(), Wrapper);
1452 
1453   F.setLinkage(GlobalValue::InternalLinkage);
1454 
1455   F.replaceAllUsesWith(Wrapper);
1456   assert(F.use_empty() && "Uses remained after wrapper was created!");
1457 
1458   // Move the COMDAT section to the wrapper.
1459   // TODO: Check if we need to keep it for F as well.
1460   Wrapper->setComdat(F.getComdat());
1461   F.setComdat(nullptr);
1462 
1463   // Copy all metadata and attributes but keep them on F as well.
1464   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1465   F.getAllMetadata(MDs);
1466   for (auto MDIt : MDs)
1467     Wrapper->addMetadata(MDIt.first, *MDIt.second);
1468   Wrapper->setAttributes(F.getAttributes());
1469 
1470   // Create the call in the wrapper.
1471   BasicBlock *EntryBB = BasicBlock::Create(Ctx, "entry", Wrapper);
1472 
1473   SmallVector<Value *, 8> Args;
1474   Argument *FArgIt = F.arg_begin();
1475   for (Argument &Arg : Wrapper->args()) {
1476     Args.push_back(&Arg);
1477     Arg.setName((FArgIt++)->getName());
1478   }
1479 
1480   CallInst *CI = CallInst::Create(&F, Args, "", EntryBB);
1481   CI->setTailCall(true);
1482   CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoInline);
1483   ReturnInst::Create(Ctx, CI->getType()->isVoidTy() ? nullptr : CI, EntryBB);
1484 
1485   NumFnShallowWrappersCreated++;
1486 }
1487 
1488 /// Make another copy of the function \p F such that the copied version has
1489 /// internal linkage afterwards and can be analysed. Then we replace all uses
1490 /// of the original function to the copied one
1491 ///
1492 /// Only non-exactly defined functions that have `linkonce_odr` or `weak_odr`
1493 /// linkage can be internalized because these linkages guarantee that other
1494 /// definitions with the same name have the same semantics as this one
1495 ///
1496 static Function *internalizeFunction(Function &F) {
1497   assert(AllowDeepWrapper && "Cannot create a copy if not allowed.");
1498   assert(!F.isDeclaration() && !F.hasExactDefinition() &&
1499          !GlobalValue::isInterposableLinkage(F.getLinkage()) &&
1500          "Trying to internalize function which cannot be internalized.");
1501 
1502   Module &M = *F.getParent();
1503   FunctionType *FnTy = F.getFunctionType();
1504 
1505   // create a copy of the current function
1506   Function *Copied = Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(),
1507                                       F.getName() + ".internalized");
1508   ValueToValueMapTy VMap;
1509   auto *NewFArgIt = Copied->arg_begin();
1510   for (auto &Arg : F.args()) {
1511     auto ArgName = Arg.getName();
1512     NewFArgIt->setName(ArgName);
1513     VMap[&Arg] = &(*NewFArgIt++);
1514   }
1515   SmallVector<ReturnInst *, 8> Returns;
1516 
1517   // Copy the body of the original function to the new one
1518   CloneFunctionInto(Copied, &F, VMap, /* ModuleLevelChanges */ false, Returns);
1519 
1520   // Set the linakage and visibility late as CloneFunctionInto has some implicit
1521   // requirements.
1522   Copied->setVisibility(GlobalValue::DefaultVisibility);
1523   Copied->setLinkage(GlobalValue::PrivateLinkage);
1524 
1525   // Copy metadata
1526   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1527   F.getAllMetadata(MDs);
1528   for (auto MDIt : MDs)
1529     Copied->addMetadata(MDIt.first, *MDIt.second);
1530 
1531   M.getFunctionList().insert(F.getIterator(), Copied);
1532   F.replaceAllUsesWith(Copied);
1533   Copied->setDSOLocal(true);
1534 
1535   return Copied;
1536 }
1537 
1538 bool Attributor::isValidFunctionSignatureRewrite(
1539     Argument &Arg, ArrayRef<Type *> ReplacementTypes) {
1540 
1541   auto CallSiteCanBeChanged = [](AbstractCallSite ACS) {
1542     // Forbid the call site to cast the function return type. If we need to
1543     // rewrite these functions we need to re-create a cast for the new call site
1544     // (if the old had uses).
1545     if (!ACS.getCalledFunction() ||
1546         ACS.getInstruction()->getType() !=
1547             ACS.getCalledFunction()->getReturnType())
1548       return false;
1549     // Forbid must-tail calls for now.
1550     return !ACS.isCallbackCall() && !ACS.getInstruction()->isMustTailCall();
1551   };
1552 
1553   Function *Fn = Arg.getParent();
1554   // Avoid var-arg functions for now.
1555   if (Fn->isVarArg()) {
1556     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite var-args functions\n");
1557     return false;
1558   }
1559 
1560   // Avoid functions with complicated argument passing semantics.
1561   AttributeList FnAttributeList = Fn->getAttributes();
1562   if (FnAttributeList.hasAttrSomewhere(Attribute::Nest) ||
1563       FnAttributeList.hasAttrSomewhere(Attribute::StructRet) ||
1564       FnAttributeList.hasAttrSomewhere(Attribute::InAlloca) ||
1565       FnAttributeList.hasAttrSomewhere(Attribute::Preallocated)) {
1566     LLVM_DEBUG(
1567         dbgs() << "[Attributor] Cannot rewrite due to complex attribute\n");
1568     return false;
1569   }
1570 
1571   // Avoid callbacks for now.
1572   bool AllCallSitesKnown;
1573   if (!checkForAllCallSites(CallSiteCanBeChanged, *Fn, true, nullptr,
1574                             AllCallSitesKnown)) {
1575     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite all call sites\n");
1576     return false;
1577   }
1578 
1579   auto InstPred = [](Instruction &I) {
1580     if (auto *CI = dyn_cast<CallInst>(&I))
1581       return !CI->isMustTailCall();
1582     return true;
1583   };
1584 
1585   // Forbid must-tail calls for now.
1586   // TODO:
1587   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn);
1588   if (!checkForAllInstructionsImpl(nullptr, OpcodeInstMap, InstPred, nullptr,
1589                                    nullptr, {Instruction::Call})) {
1590     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite due to instructions\n");
1591     return false;
1592   }
1593 
1594   return true;
1595 }
1596 
1597 bool Attributor::registerFunctionSignatureRewrite(
1598     Argument &Arg, ArrayRef<Type *> ReplacementTypes,
1599     ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB,
1600     ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB) {
1601   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
1602                     << Arg.getParent()->getName() << " with "
1603                     << ReplacementTypes.size() << " replacements\n");
1604   assert(isValidFunctionSignatureRewrite(Arg, ReplacementTypes) &&
1605          "Cannot register an invalid rewrite");
1606 
1607   Function *Fn = Arg.getParent();
1608   SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
1609       ArgumentReplacementMap[Fn];
1610   if (ARIs.empty())
1611     ARIs.resize(Fn->arg_size());
1612 
1613   // If we have a replacement already with less than or equal new arguments,
1614   // ignore this request.
1615   std::unique_ptr<ArgumentReplacementInfo> &ARI = ARIs[Arg.getArgNo()];
1616   if (ARI && ARI->getNumReplacementArgs() <= ReplacementTypes.size()) {
1617     LLVM_DEBUG(dbgs() << "[Attributor] Existing rewrite is preferred\n");
1618     return false;
1619   }
1620 
1621   // If we have a replacement already but we like the new one better, delete
1622   // the old.
1623   ARI.reset();
1624 
1625   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
1626                     << Arg.getParent()->getName() << " with "
1627                     << ReplacementTypes.size() << " replacements\n");
1628 
1629   // Remember the replacement.
1630   ARI.reset(new ArgumentReplacementInfo(*this, Arg, ReplacementTypes,
1631                                         std::move(CalleeRepairCB),
1632                                         std::move(ACSRepairCB)));
1633 
1634   return true;
1635 }
1636 
1637 bool Attributor::shouldSeedAttribute(AbstractAttribute &AA) {
1638   bool Result = true;
1639 #ifndef NDEBUG
1640   if (SeedAllowList.size() != 0)
1641     Result =
1642         std::count(SeedAllowList.begin(), SeedAllowList.end(), AA.getName());
1643   Function *Fn = AA.getAnchorScope();
1644   if (FunctionSeedAllowList.size() != 0 && Fn)
1645     Result &= std::count(FunctionSeedAllowList.begin(),
1646                          FunctionSeedAllowList.end(), Fn->getName());
1647 #endif
1648   return Result;
1649 }
1650 
1651 ChangeStatus Attributor::rewriteFunctionSignatures(
1652     SmallPtrSetImpl<Function *> &ModifiedFns) {
1653   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1654 
1655   for (auto &It : ArgumentReplacementMap) {
1656     Function *OldFn = It.getFirst();
1657 
1658     // Deleted functions do not require rewrites.
1659     if (!Functions.count(OldFn) || ToBeDeletedFunctions.count(OldFn))
1660       continue;
1661 
1662     const SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
1663         It.getSecond();
1664     assert(ARIs.size() == OldFn->arg_size() && "Inconsistent state!");
1665 
1666     SmallVector<Type *, 16> NewArgumentTypes;
1667     SmallVector<AttributeSet, 16> NewArgumentAttributes;
1668 
1669     // Collect replacement argument types and copy over existing attributes.
1670     AttributeList OldFnAttributeList = OldFn->getAttributes();
1671     for (Argument &Arg : OldFn->args()) {
1672       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
1673               ARIs[Arg.getArgNo()]) {
1674         NewArgumentTypes.append(ARI->ReplacementTypes.begin(),
1675                                 ARI->ReplacementTypes.end());
1676         NewArgumentAttributes.append(ARI->getNumReplacementArgs(),
1677                                      AttributeSet());
1678       } else {
1679         NewArgumentTypes.push_back(Arg.getType());
1680         NewArgumentAttributes.push_back(
1681             OldFnAttributeList.getParamAttributes(Arg.getArgNo()));
1682       }
1683     }
1684 
1685     FunctionType *OldFnTy = OldFn->getFunctionType();
1686     Type *RetTy = OldFnTy->getReturnType();
1687 
1688     // Construct the new function type using the new arguments types.
1689     FunctionType *NewFnTy =
1690         FunctionType::get(RetTy, NewArgumentTypes, OldFnTy->isVarArg());
1691 
1692     LLVM_DEBUG(dbgs() << "[Attributor] Function rewrite '" << OldFn->getName()
1693                       << "' from " << *OldFn->getFunctionType() << " to "
1694                       << *NewFnTy << "\n");
1695 
1696     // Create the new function body and insert it into the module.
1697     Function *NewFn = Function::Create(NewFnTy, OldFn->getLinkage(),
1698                                        OldFn->getAddressSpace(), "");
1699     OldFn->getParent()->getFunctionList().insert(OldFn->getIterator(), NewFn);
1700     NewFn->takeName(OldFn);
1701     NewFn->copyAttributesFrom(OldFn);
1702 
1703     // Patch the pointer to LLVM function in debug info descriptor.
1704     NewFn->setSubprogram(OldFn->getSubprogram());
1705     OldFn->setSubprogram(nullptr);
1706 
1707     // Recompute the parameter attributes list based on the new arguments for
1708     // the function.
1709     LLVMContext &Ctx = OldFn->getContext();
1710     NewFn->setAttributes(AttributeList::get(
1711         Ctx, OldFnAttributeList.getFnAttributes(),
1712         OldFnAttributeList.getRetAttributes(), NewArgumentAttributes));
1713 
1714     // Since we have now created the new function, splice the body of the old
1715     // function right into the new function, leaving the old rotting hulk of the
1716     // function empty.
1717     NewFn->getBasicBlockList().splice(NewFn->begin(),
1718                                       OldFn->getBasicBlockList());
1719 
1720     // Fixup block addresses to reference new function.
1721     SmallVector<BlockAddress *, 8u> BlockAddresses;
1722     for (User *U : OldFn->users())
1723       if (auto *BA = dyn_cast<BlockAddress>(U))
1724         BlockAddresses.push_back(BA);
1725     for (auto *BA : BlockAddresses)
1726       BA->replaceAllUsesWith(BlockAddress::get(NewFn, BA->getBasicBlock()));
1727 
1728     // Set of all "call-like" instructions that invoke the old function mapped
1729     // to their new replacements.
1730     SmallVector<std::pair<CallBase *, CallBase *>, 8> CallSitePairs;
1731 
1732     // Callback to create a new "call-like" instruction for a given one.
1733     auto CallSiteReplacementCreator = [&](AbstractCallSite ACS) {
1734       CallBase *OldCB = cast<CallBase>(ACS.getInstruction());
1735       const AttributeList &OldCallAttributeList = OldCB->getAttributes();
1736 
1737       // Collect the new argument operands for the replacement call site.
1738       SmallVector<Value *, 16> NewArgOperands;
1739       SmallVector<AttributeSet, 16> NewArgOperandAttributes;
1740       for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); ++OldArgNum) {
1741         unsigned NewFirstArgNum = NewArgOperands.size();
1742         (void)NewFirstArgNum; // only used inside assert.
1743         if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
1744                 ARIs[OldArgNum]) {
1745           if (ARI->ACSRepairCB)
1746             ARI->ACSRepairCB(*ARI, ACS, NewArgOperands);
1747           assert(ARI->getNumReplacementArgs() + NewFirstArgNum ==
1748                      NewArgOperands.size() &&
1749                  "ACS repair callback did not provide as many operand as new "
1750                  "types were registered!");
1751           // TODO: Exose the attribute set to the ACS repair callback
1752           NewArgOperandAttributes.append(ARI->ReplacementTypes.size(),
1753                                          AttributeSet());
1754         } else {
1755           NewArgOperands.push_back(ACS.getCallArgOperand(OldArgNum));
1756           NewArgOperandAttributes.push_back(
1757               OldCallAttributeList.getParamAttributes(OldArgNum));
1758         }
1759       }
1760 
1761       assert(NewArgOperands.size() == NewArgOperandAttributes.size() &&
1762              "Mismatch # argument operands vs. # argument operand attributes!");
1763       assert(NewArgOperands.size() == NewFn->arg_size() &&
1764              "Mismatch # argument operands vs. # function arguments!");
1765 
1766       SmallVector<OperandBundleDef, 4> OperandBundleDefs;
1767       OldCB->getOperandBundlesAsDefs(OperandBundleDefs);
1768 
1769       // Create a new call or invoke instruction to replace the old one.
1770       CallBase *NewCB;
1771       if (InvokeInst *II = dyn_cast<InvokeInst>(OldCB)) {
1772         NewCB =
1773             InvokeInst::Create(NewFn, II->getNormalDest(), II->getUnwindDest(),
1774                                NewArgOperands, OperandBundleDefs, "", OldCB);
1775       } else {
1776         auto *NewCI = CallInst::Create(NewFn, NewArgOperands, OperandBundleDefs,
1777                                        "", OldCB);
1778         NewCI->setTailCallKind(cast<CallInst>(OldCB)->getTailCallKind());
1779         NewCB = NewCI;
1780       }
1781 
1782       // Copy over various properties and the new attributes.
1783       NewCB->copyMetadata(*OldCB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
1784       NewCB->setCallingConv(OldCB->getCallingConv());
1785       NewCB->takeName(OldCB);
1786       NewCB->setAttributes(AttributeList::get(
1787           Ctx, OldCallAttributeList.getFnAttributes(),
1788           OldCallAttributeList.getRetAttributes(), NewArgOperandAttributes));
1789 
1790       CallSitePairs.push_back({OldCB, NewCB});
1791       return true;
1792     };
1793 
1794     // Use the CallSiteReplacementCreator to create replacement call sites.
1795     bool AllCallSitesKnown;
1796     bool Success = checkForAllCallSites(CallSiteReplacementCreator, *OldFn,
1797                                         true, nullptr, AllCallSitesKnown);
1798     (void)Success;
1799     assert(Success && "Assumed call site replacement to succeed!");
1800 
1801     // Rewire the arguments.
1802     Argument *OldFnArgIt = OldFn->arg_begin();
1803     Argument *NewFnArgIt = NewFn->arg_begin();
1804     for (unsigned OldArgNum = 0; OldArgNum < ARIs.size();
1805          ++OldArgNum, ++OldFnArgIt) {
1806       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
1807               ARIs[OldArgNum]) {
1808         if (ARI->CalleeRepairCB)
1809           ARI->CalleeRepairCB(*ARI, *NewFn, NewFnArgIt);
1810         NewFnArgIt += ARI->ReplacementTypes.size();
1811       } else {
1812         NewFnArgIt->takeName(&*OldFnArgIt);
1813         OldFnArgIt->replaceAllUsesWith(&*NewFnArgIt);
1814         ++NewFnArgIt;
1815       }
1816     }
1817 
1818     // Eliminate the instructions *after* we visited all of them.
1819     for (auto &CallSitePair : CallSitePairs) {
1820       CallBase &OldCB = *CallSitePair.first;
1821       CallBase &NewCB = *CallSitePair.second;
1822       assert(OldCB.getType() == NewCB.getType() &&
1823              "Cannot handle call sites with different types!");
1824       ModifiedFns.insert(OldCB.getFunction());
1825       CGUpdater.replaceCallSite(OldCB, NewCB);
1826       OldCB.replaceAllUsesWith(&NewCB);
1827       OldCB.eraseFromParent();
1828     }
1829 
1830     // Replace the function in the call graph (if any).
1831     CGUpdater.replaceFunctionWith(*OldFn, *NewFn);
1832 
1833     // If the old function was modified and needed to be reanalyzed, the new one
1834     // does now.
1835     if (ModifiedFns.erase(OldFn))
1836       ModifiedFns.insert(NewFn);
1837 
1838     Changed = ChangeStatus::CHANGED;
1839   }
1840 
1841   return Changed;
1842 }
1843 
1844 void InformationCache::initializeInformationCache(const Function &CF,
1845                                                   FunctionInfo &FI) {
1846   // As we do not modify the function here we can remove the const
1847   // withouth breaking implicit assumptions. At the end of the day, we could
1848   // initialize the cache eagerly which would look the same to the users.
1849   Function &F = const_cast<Function &>(CF);
1850 
1851   // Walk all instructions to find interesting instructions that might be
1852   // queried by abstract attributes during their initialization or update.
1853   // This has to happen before we create attributes.
1854 
1855   for (Instruction &I : instructions(&F)) {
1856     bool IsInterestingOpcode = false;
1857 
1858     // To allow easy access to all instructions in a function with a given
1859     // opcode we store them in the InfoCache. As not all opcodes are interesting
1860     // to concrete attributes we only cache the ones that are as identified in
1861     // the following switch.
1862     // Note: There are no concrete attributes now so this is initially empty.
1863     switch (I.getOpcode()) {
1864     default:
1865       assert(!isa<CallBase>(&I) &&
1866              "New call base instruction type needs to be known in the "
1867              "Attributor.");
1868       break;
1869     case Instruction::Call:
1870       // Calls are interesting on their own, additionally:
1871       // For `llvm.assume` calls we also fill the KnowledgeMap as we find them.
1872       // For `must-tail` calls we remember the caller and callee.
1873       if (IntrinsicInst *Assume = dyn_cast<IntrinsicInst>(&I)) {
1874         if (Assume->getIntrinsicID() == Intrinsic::assume)
1875           fillMapFromAssume(*Assume, KnowledgeMap);
1876       } else if (cast<CallInst>(I).isMustTailCall()) {
1877         FI.ContainsMustTailCall = true;
1878         if (const Function *Callee = cast<CallInst>(I).getCalledFunction())
1879           getFunctionInfo(*Callee).CalledViaMustTail = true;
1880       }
1881       LLVM_FALLTHROUGH;
1882     case Instruction::CallBr:
1883     case Instruction::Invoke:
1884     case Instruction::CleanupRet:
1885     case Instruction::CatchSwitch:
1886     case Instruction::AtomicRMW:
1887     case Instruction::AtomicCmpXchg:
1888     case Instruction::Br:
1889     case Instruction::Resume:
1890     case Instruction::Ret:
1891     case Instruction::Load:
1892       // The alignment of a pointer is interesting for loads.
1893     case Instruction::Store:
1894       // The alignment of a pointer is interesting for stores.
1895       IsInterestingOpcode = true;
1896     }
1897     if (IsInterestingOpcode) {
1898       auto *&Insts = FI.OpcodeInstMap[I.getOpcode()];
1899       if (!Insts)
1900         Insts = new (Allocator) InstructionVectorTy();
1901       Insts->push_back(&I);
1902     }
1903     if (I.mayReadOrWriteMemory())
1904       FI.RWInsts.push_back(&I);
1905   }
1906 
1907   if (F.hasFnAttribute(Attribute::AlwaysInline) &&
1908       isInlineViable(F).isSuccess())
1909     InlineableFunctions.insert(&F);
1910 }
1911 
1912 AAResults *InformationCache::getAAResultsForFunction(const Function &F) {
1913   return AG.getAnalysis<AAManager>(F);
1914 }
1915 
1916 InformationCache::FunctionInfo::~FunctionInfo() {
1917   // The instruction vectors are allocated using a BumpPtrAllocator, we need to
1918   // manually destroy them.
1919   for (auto &It : OpcodeInstMap)
1920     It.getSecond()->~InstructionVectorTy();
1921 }
1922 
1923 void Attributor::recordDependence(const AbstractAttribute &FromAA,
1924                                   const AbstractAttribute &ToAA,
1925                                   DepClassTy DepClass) {
1926   // If we are outside of an update, thus before the actual fixpoint iteration
1927   // started (= when we create AAs), we do not track dependences because we will
1928   // put all AAs into the initial worklist anyway.
1929   if (DependenceStack.empty())
1930     return;
1931   if (FromAA.getState().isAtFixpoint())
1932     return;
1933   DependenceStack.back()->push_back({&FromAA, &ToAA, DepClass});
1934 }
1935 
1936 void Attributor::rememberDependences() {
1937   assert(!DependenceStack.empty() && "No dependences to remember!");
1938 
1939   for (DepInfo &DI : *DependenceStack.back()) {
1940     auto &DepAAs = const_cast<AbstractAttribute &>(*DI.FromAA).Deps;
1941     DepAAs.push_back(AbstractAttribute::DepTy(
1942         const_cast<AbstractAttribute *>(DI.ToAA), unsigned(DI.DepClass)));
1943   }
1944 }
1945 
1946 void Attributor::identifyDefaultAbstractAttributes(Function &F) {
1947   if (!VisitedFunctions.insert(&F).second)
1948     return;
1949   if (F.isDeclaration())
1950     return;
1951 
1952   // In non-module runs we need to look at the call sites of a function to
1953   // determine if it is part of a must-tail call edge. This will influence what
1954   // attributes we can derive.
1955   InformationCache::FunctionInfo &FI = InfoCache.getFunctionInfo(F);
1956   if (!isModulePass() && !FI.CalledViaMustTail) {
1957     for (const Use &U : F.uses())
1958       if (const auto *CB = dyn_cast<CallBase>(U.getUser()))
1959         if (CB->isCallee(&U) && CB->isMustTailCall())
1960           FI.CalledViaMustTail = true;
1961   }
1962 
1963   IRPosition FPos = IRPosition::function(F);
1964 
1965   // Check for dead BasicBlocks in every function.
1966   // We need dead instruction detection because we do not want to deal with
1967   // broken IR in which SSA rules do not apply.
1968   getOrCreateAAFor<AAIsDead>(FPos);
1969 
1970   // Every function might be "will-return".
1971   getOrCreateAAFor<AAWillReturn>(FPos);
1972 
1973   // Every function might contain instructions that cause "undefined behavior".
1974   getOrCreateAAFor<AAUndefinedBehavior>(FPos);
1975 
1976   // Every function can be nounwind.
1977   getOrCreateAAFor<AANoUnwind>(FPos);
1978 
1979   // Every function might be marked "nosync"
1980   getOrCreateAAFor<AANoSync>(FPos);
1981 
1982   // Every function might be "no-free".
1983   getOrCreateAAFor<AANoFree>(FPos);
1984 
1985   // Every function might be "no-return".
1986   getOrCreateAAFor<AANoReturn>(FPos);
1987 
1988   // Every function might be "no-recurse".
1989   getOrCreateAAFor<AANoRecurse>(FPos);
1990 
1991   // Every function might be "readnone/readonly/writeonly/...".
1992   getOrCreateAAFor<AAMemoryBehavior>(FPos);
1993 
1994   // Every function can be "readnone/argmemonly/inaccessiblememonly/...".
1995   getOrCreateAAFor<AAMemoryLocation>(FPos);
1996 
1997   // Every function might be applicable for Heap-To-Stack conversion.
1998   if (EnableHeapToStack)
1999     getOrCreateAAFor<AAHeapToStack>(FPos);
2000 
2001   // Return attributes are only appropriate if the return type is non void.
2002   Type *ReturnType = F.getReturnType();
2003   if (!ReturnType->isVoidTy()) {
2004     // Argument attribute "returned" --- Create only one per function even
2005     // though it is an argument attribute.
2006     getOrCreateAAFor<AAReturnedValues>(FPos);
2007 
2008     IRPosition RetPos = IRPosition::returned(F);
2009 
2010     // Every returned value might be dead.
2011     getOrCreateAAFor<AAIsDead>(RetPos);
2012 
2013     // Every function might be simplified.
2014     getOrCreateAAFor<AAValueSimplify>(RetPos);
2015 
2016     // Every returned value might be marked noundef.
2017     getOrCreateAAFor<AANoUndef>(RetPos);
2018 
2019     if (ReturnType->isPointerTy()) {
2020 
2021       // Every function with pointer return type might be marked align.
2022       getOrCreateAAFor<AAAlign>(RetPos);
2023 
2024       // Every function with pointer return type might be marked nonnull.
2025       getOrCreateAAFor<AANonNull>(RetPos);
2026 
2027       // Every function with pointer return type might be marked noalias.
2028       getOrCreateAAFor<AANoAlias>(RetPos);
2029 
2030       // Every function with pointer return type might be marked
2031       // dereferenceable.
2032       getOrCreateAAFor<AADereferenceable>(RetPos);
2033     }
2034   }
2035 
2036   for (Argument &Arg : F.args()) {
2037     IRPosition ArgPos = IRPosition::argument(Arg);
2038 
2039     // Every argument might be simplified.
2040     getOrCreateAAFor<AAValueSimplify>(ArgPos);
2041 
2042     // Every argument might be dead.
2043     getOrCreateAAFor<AAIsDead>(ArgPos);
2044 
2045     // Every argument might be marked noundef.
2046     getOrCreateAAFor<AANoUndef>(ArgPos);
2047 
2048     if (Arg.getType()->isPointerTy()) {
2049       // Every argument with pointer type might be marked nonnull.
2050       getOrCreateAAFor<AANonNull>(ArgPos);
2051 
2052       // Every argument with pointer type might be marked noalias.
2053       getOrCreateAAFor<AANoAlias>(ArgPos);
2054 
2055       // Every argument with pointer type might be marked dereferenceable.
2056       getOrCreateAAFor<AADereferenceable>(ArgPos);
2057 
2058       // Every argument with pointer type might be marked align.
2059       getOrCreateAAFor<AAAlign>(ArgPos);
2060 
2061       // Every argument with pointer type might be marked nocapture.
2062       getOrCreateAAFor<AANoCapture>(ArgPos);
2063 
2064       // Every argument with pointer type might be marked
2065       // "readnone/readonly/writeonly/..."
2066       getOrCreateAAFor<AAMemoryBehavior>(ArgPos);
2067 
2068       // Every argument with pointer type might be marked nofree.
2069       getOrCreateAAFor<AANoFree>(ArgPos);
2070 
2071       // Every argument with pointer type might be privatizable (or promotable)
2072       getOrCreateAAFor<AAPrivatizablePtr>(ArgPos);
2073     }
2074   }
2075 
2076   auto CallSitePred = [&](Instruction &I) -> bool {
2077     auto &CB = cast<CallBase>(I);
2078     IRPosition CBRetPos = IRPosition::callsite_returned(CB);
2079 
2080     // Call sites might be dead if they do not have side effects and no live
2081     // users. The return value might be dead if there are no live users.
2082     getOrCreateAAFor<AAIsDead>(CBRetPos);
2083 
2084     Function *Callee = CB.getCalledFunction();
2085     // TODO: Even if the callee is not known now we might be able to simplify
2086     //       the call/callee.
2087     if (!Callee)
2088       return true;
2089 
2090     // Skip declarations except if annotations on their call sites were
2091     // explicitly requested.
2092     if (!AnnotateDeclarationCallSites && Callee->isDeclaration() &&
2093         !Callee->hasMetadata(LLVMContext::MD_callback))
2094       return true;
2095 
2096     if (!Callee->getReturnType()->isVoidTy() && !CB.use_empty()) {
2097 
2098       IRPosition CBRetPos = IRPosition::callsite_returned(CB);
2099 
2100       // Call site return integer values might be limited by a constant range.
2101       if (Callee->getReturnType()->isIntegerTy())
2102         getOrCreateAAFor<AAValueConstantRange>(CBRetPos);
2103     }
2104 
2105     for (int I = 0, E = CB.getNumArgOperands(); I < E; ++I) {
2106 
2107       IRPosition CBArgPos = IRPosition::callsite_argument(CB, I);
2108 
2109       // Every call site argument might be dead.
2110       getOrCreateAAFor<AAIsDead>(CBArgPos);
2111 
2112       // Call site argument might be simplified.
2113       getOrCreateAAFor<AAValueSimplify>(CBArgPos);
2114 
2115       // Every call site argument might be marked "noundef".
2116       getOrCreateAAFor<AANoUndef>(CBArgPos);
2117 
2118       if (!CB.getArgOperand(I)->getType()->isPointerTy())
2119         continue;
2120 
2121       // Call site argument attribute "non-null".
2122       getOrCreateAAFor<AANonNull>(CBArgPos);
2123 
2124       // Call site argument attribute "nocapture".
2125       getOrCreateAAFor<AANoCapture>(CBArgPos);
2126 
2127       // Call site argument attribute "no-alias".
2128       getOrCreateAAFor<AANoAlias>(CBArgPos);
2129 
2130       // Call site argument attribute "dereferenceable".
2131       getOrCreateAAFor<AADereferenceable>(CBArgPos);
2132 
2133       // Call site argument attribute "align".
2134       getOrCreateAAFor<AAAlign>(CBArgPos);
2135 
2136       // Call site argument attribute
2137       // "readnone/readonly/writeonly/..."
2138       getOrCreateAAFor<AAMemoryBehavior>(CBArgPos);
2139 
2140       // Call site argument attribute "nofree".
2141       getOrCreateAAFor<AANoFree>(CBArgPos);
2142     }
2143     return true;
2144   };
2145 
2146   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
2147   bool Success;
2148   Success = checkForAllInstructionsImpl(
2149       nullptr, OpcodeInstMap, CallSitePred, nullptr, nullptr,
2150       {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
2151        (unsigned)Instruction::Call});
2152   (void)Success;
2153   assert(Success && "Expected the check call to be successful!");
2154 
2155   auto LoadStorePred = [&](Instruction &I) -> bool {
2156     if (isa<LoadInst>(I))
2157       getOrCreateAAFor<AAAlign>(
2158           IRPosition::value(*cast<LoadInst>(I).getPointerOperand()));
2159     else
2160       getOrCreateAAFor<AAAlign>(
2161           IRPosition::value(*cast<StoreInst>(I).getPointerOperand()));
2162     return true;
2163   };
2164   Success = checkForAllInstructionsImpl(
2165       nullptr, OpcodeInstMap, LoadStorePred, nullptr, nullptr,
2166       {(unsigned)Instruction::Load, (unsigned)Instruction::Store});
2167   (void)Success;
2168   assert(Success && "Expected the check call to be successful!");
2169 }
2170 
2171 /// Helpers to ease debugging through output streams and print calls.
2172 ///
2173 ///{
2174 raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
2175   return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
2176 }
2177 
2178 raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) {
2179   switch (AP) {
2180   case IRPosition::IRP_INVALID:
2181     return OS << "inv";
2182   case IRPosition::IRP_FLOAT:
2183     return OS << "flt";
2184   case IRPosition::IRP_RETURNED:
2185     return OS << "fn_ret";
2186   case IRPosition::IRP_CALL_SITE_RETURNED:
2187     return OS << "cs_ret";
2188   case IRPosition::IRP_FUNCTION:
2189     return OS << "fn";
2190   case IRPosition::IRP_CALL_SITE:
2191     return OS << "cs";
2192   case IRPosition::IRP_ARGUMENT:
2193     return OS << "arg";
2194   case IRPosition::IRP_CALL_SITE_ARGUMENT:
2195     return OS << "cs_arg";
2196   }
2197   llvm_unreachable("Unknown attribute position!");
2198 }
2199 
2200 raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) {
2201   const Value &AV = Pos.getAssociatedValue();
2202   return OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " ["
2203             << Pos.getAnchorValue().getName() << "@" << Pos.getCallSiteArgNo()
2204             << "]}";
2205 }
2206 
2207 raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerRangeState &S) {
2208   OS << "range-state(" << S.getBitWidth() << ")<";
2209   S.getKnown().print(OS);
2210   OS << " / ";
2211   S.getAssumed().print(OS);
2212   OS << ">";
2213 
2214   return OS << static_cast<const AbstractState &>(S);
2215 }
2216 
2217 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
2218   return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
2219 }
2220 
2221 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
2222   AA.print(OS);
2223   return OS;
2224 }
2225 
2226 raw_ostream &llvm::operator<<(raw_ostream &OS,
2227                               const PotentialConstantIntValuesState &S) {
2228   OS << "set-state(< {";
2229   if (!S.isValidState())
2230     OS << "full-set";
2231   else {
2232     for (auto &it : S.getAssumedSet())
2233       OS << it << ", ";
2234     if (S.undefIsContained())
2235       OS << "undef ";
2236   }
2237   OS << "} >)";
2238 
2239   return OS;
2240 }
2241 
2242 void AbstractAttribute::print(raw_ostream &OS) const {
2243   OS << "[";
2244   OS << getName();
2245   OS << "] for CtxI ";
2246 
2247   if (auto *I = getCtxI()) {
2248     OS << "'";
2249     I->print(OS);
2250     OS << "'";
2251   } else
2252     OS << "<<null inst>>";
2253 
2254   OS << " at position " << getIRPosition() << " with state " << getAsStr()
2255      << '\n';
2256 }
2257 
2258 void AbstractAttribute::printWithDeps(raw_ostream &OS) const {
2259   print(OS);
2260 
2261   for (const auto &DepAA : Deps) {
2262     auto *AA = DepAA.getPointer();
2263     OS << "  updates ";
2264     AA->print(OS);
2265   }
2266 
2267   OS << '\n';
2268 }
2269 ///}
2270 
2271 /// ----------------------------------------------------------------------------
2272 ///                       Pass (Manager) Boilerplate
2273 /// ----------------------------------------------------------------------------
2274 
2275 static bool runAttributorOnFunctions(InformationCache &InfoCache,
2276                                      SetVector<Function *> &Functions,
2277                                      AnalysisGetter &AG,
2278                                      CallGraphUpdater &CGUpdater) {
2279   if (Functions.empty())
2280     return false;
2281 
2282   LLVM_DEBUG(dbgs() << "[Attributor] Run on module with " << Functions.size()
2283                     << " functions.\n");
2284 
2285   // Create an Attributor and initially empty information cache that is filled
2286   // while we identify default attribute opportunities.
2287   Attributor A(Functions, InfoCache, CGUpdater);
2288 
2289   // Create shallow wrappers for all functions that are not IPO amendable
2290   if (AllowShallowWrappers)
2291     for (Function *F : Functions)
2292       if (!A.isFunctionIPOAmendable(*F))
2293         Attributor::createShallowWrapper(*F);
2294 
2295   // Internalize non-exact functions
2296   // TODO: for now we eagerly internalize functions without calculating the
2297   //       cost, we need a cost interface to determine whether internalizing
2298   //       a function is "benefitial"
2299   if (AllowDeepWrapper) {
2300     unsigned FunSize = Functions.size();
2301     for (unsigned u = 0; u < FunSize; u++) {
2302       Function *F = Functions[u];
2303       if (!F->isDeclaration() && !F->isDefinitionExact() && F->getNumUses() &&
2304           !GlobalValue::isInterposableLinkage(F->getLinkage())) {
2305         Function *NewF = internalizeFunction(*F);
2306         Functions.insert(NewF);
2307 
2308         // Update call graph
2309         CGUpdater.replaceFunctionWith(*F, *NewF);
2310         for (const Use &U : NewF->uses())
2311           if (CallBase *CB = dyn_cast<CallBase>(U.getUser())) {
2312             auto *CallerF = CB->getCaller();
2313             CGUpdater.reanalyzeFunction(*CallerF);
2314           }
2315       }
2316     }
2317   }
2318 
2319   for (Function *F : Functions) {
2320     if (F->hasExactDefinition())
2321       NumFnWithExactDefinition++;
2322     else
2323       NumFnWithoutExactDefinition++;
2324 
2325     // We look at internal functions only on-demand but if any use is not a
2326     // direct call or outside the current set of analyzed functions, we have
2327     // to do it eagerly.
2328     if (F->hasLocalLinkage()) {
2329       if (llvm::all_of(F->uses(), [&Functions](const Use &U) {
2330             const auto *CB = dyn_cast<CallBase>(U.getUser());
2331             return CB && CB->isCallee(&U) &&
2332                    Functions.count(const_cast<Function *>(CB->getCaller()));
2333           }))
2334         continue;
2335     }
2336 
2337     // Populate the Attributor with abstract attribute opportunities in the
2338     // function and the information cache with IR information.
2339     A.identifyDefaultAbstractAttributes(*F);
2340   }
2341 
2342   ChangeStatus Changed = A.run();
2343 
2344   LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions.size()
2345                     << " functions, result: " << Changed << ".\n");
2346   return Changed == ChangeStatus::CHANGED;
2347 }
2348 
2349 void AADepGraph::viewGraph() { llvm::ViewGraph(this, "Dependency Graph"); }
2350 
2351 void AADepGraph::dumpGraph() {
2352   static std::atomic<int> CallTimes;
2353   std::string Prefix;
2354 
2355   if (!DepGraphDotFileNamePrefix.empty())
2356     Prefix = DepGraphDotFileNamePrefix;
2357   else
2358     Prefix = "dep_graph";
2359   std::string Filename =
2360       Prefix + "_" + std::to_string(CallTimes.load()) + ".dot";
2361 
2362   outs() << "Dependency graph dump to " << Filename << ".\n";
2363 
2364   std::error_code EC;
2365 
2366   raw_fd_ostream File(Filename, EC, sys::fs::OF_Text);
2367   if (!EC)
2368     llvm::WriteGraph(File, this);
2369 
2370   CallTimes++;
2371 }
2372 
2373 void AADepGraph::print() {
2374   for (auto DepAA : SyntheticRoot.Deps)
2375     cast<AbstractAttribute>(DepAA.getPointer())->printWithDeps(outs());
2376 }
2377 
2378 PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
2379   FunctionAnalysisManager &FAM =
2380       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2381   AnalysisGetter AG(FAM);
2382 
2383   SetVector<Function *> Functions;
2384   for (Function &F : M)
2385     Functions.insert(&F);
2386 
2387   CallGraphUpdater CGUpdater;
2388   BumpPtrAllocator Allocator;
2389   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
2390   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater)) {
2391     // FIXME: Think about passes we will preserve and add them here.
2392     return PreservedAnalyses::none();
2393   }
2394   return PreservedAnalyses::all();
2395 }
2396 
2397 PreservedAnalyses AttributorCGSCCPass::run(LazyCallGraph::SCC &C,
2398                                            CGSCCAnalysisManager &AM,
2399                                            LazyCallGraph &CG,
2400                                            CGSCCUpdateResult &UR) {
2401   FunctionAnalysisManager &FAM =
2402       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
2403   AnalysisGetter AG(FAM);
2404 
2405   SetVector<Function *> Functions;
2406   for (LazyCallGraph::Node &N : C)
2407     Functions.insert(&N.getFunction());
2408 
2409   if (Functions.empty())
2410     return PreservedAnalyses::all();
2411 
2412   Module &M = *Functions.back()->getParent();
2413   CallGraphUpdater CGUpdater;
2414   CGUpdater.initialize(CG, C, AM, UR);
2415   BumpPtrAllocator Allocator;
2416   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
2417   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater)) {
2418     // FIXME: Think about passes we will preserve and add them here.
2419     PreservedAnalyses PA;
2420     PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
2421     return PA;
2422   }
2423   return PreservedAnalyses::all();
2424 }
2425 
2426 namespace llvm {
2427 
2428 template <> struct GraphTraits<AADepGraphNode *> {
2429   using NodeRef = AADepGraphNode *;
2430   using DepTy = PointerIntPair<AADepGraphNode *, 1>;
2431   using EdgeRef = PointerIntPair<AADepGraphNode *, 1>;
2432 
2433   static NodeRef getEntryNode(AADepGraphNode *DGN) { return DGN; }
2434   static NodeRef DepGetVal(DepTy &DT) { return DT.getPointer(); }
2435 
2436   using ChildIteratorType =
2437       mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
2438   using ChildEdgeIteratorType = TinyPtrVector<DepTy>::iterator;
2439 
2440   static ChildIteratorType child_begin(NodeRef N) { return N->child_begin(); }
2441 
2442   static ChildIteratorType child_end(NodeRef N) { return N->child_end(); }
2443 };
2444 
2445 template <>
2446 struct GraphTraits<AADepGraph *> : public GraphTraits<AADepGraphNode *> {
2447   static NodeRef getEntryNode(AADepGraph *DG) { return DG->GetEntryNode(); }
2448 
2449   using nodes_iterator =
2450       mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
2451 
2452   static nodes_iterator nodes_begin(AADepGraph *DG) { return DG->begin(); }
2453 
2454   static nodes_iterator nodes_end(AADepGraph *DG) { return DG->end(); }
2455 };
2456 
2457 template <> struct DOTGraphTraits<AADepGraph *> : public DefaultDOTGraphTraits {
2458   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2459 
2460   static std::string getNodeLabel(const AADepGraphNode *Node,
2461                                   const AADepGraph *DG) {
2462     std::string AAString;
2463     raw_string_ostream O(AAString);
2464     Node->print(O);
2465     return AAString;
2466   }
2467 };
2468 
2469 } // end namespace llvm
2470 
2471 namespace {
2472 
2473 struct AttributorLegacyPass : public ModulePass {
2474   static char ID;
2475 
2476   AttributorLegacyPass() : ModulePass(ID) {
2477     initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry());
2478   }
2479 
2480   bool runOnModule(Module &M) override {
2481     if (skipModule(M))
2482       return false;
2483 
2484     AnalysisGetter AG;
2485     SetVector<Function *> Functions;
2486     for (Function &F : M)
2487       Functions.insert(&F);
2488 
2489     CallGraphUpdater CGUpdater;
2490     BumpPtrAllocator Allocator;
2491     InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
2492     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater);
2493   }
2494 
2495   void getAnalysisUsage(AnalysisUsage &AU) const override {
2496     // FIXME: Think about passes we will preserve and add them here.
2497     AU.addRequired<TargetLibraryInfoWrapperPass>();
2498   }
2499 };
2500 
2501 struct AttributorCGSCCLegacyPass : public CallGraphSCCPass {
2502   static char ID;
2503 
2504   AttributorCGSCCLegacyPass() : CallGraphSCCPass(ID) {
2505     initializeAttributorCGSCCLegacyPassPass(*PassRegistry::getPassRegistry());
2506   }
2507 
2508   bool runOnSCC(CallGraphSCC &SCC) override {
2509     if (skipSCC(SCC))
2510       return false;
2511 
2512     SetVector<Function *> Functions;
2513     for (CallGraphNode *CGN : SCC)
2514       if (Function *Fn = CGN->getFunction())
2515         if (!Fn->isDeclaration())
2516           Functions.insert(Fn);
2517 
2518     if (Functions.empty())
2519       return false;
2520 
2521     AnalysisGetter AG;
2522     CallGraph &CG = const_cast<CallGraph &>(SCC.getCallGraph());
2523     CallGraphUpdater CGUpdater;
2524     CGUpdater.initialize(CG, SCC);
2525     Module &M = *Functions.back()->getParent();
2526     BumpPtrAllocator Allocator;
2527     InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
2528     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater);
2529   }
2530 
2531   void getAnalysisUsage(AnalysisUsage &AU) const override {
2532     // FIXME: Think about passes we will preserve and add them here.
2533     AU.addRequired<TargetLibraryInfoWrapperPass>();
2534     CallGraphSCCPass::getAnalysisUsage(AU);
2535   }
2536 };
2537 
2538 } // end anonymous namespace
2539 
2540 Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); }
2541 Pass *llvm::createAttributorCGSCCLegacyPass() {
2542   return new AttributorCGSCCLegacyPass();
2543 }
2544 
2545 char AttributorLegacyPass::ID = 0;
2546 char AttributorCGSCCLegacyPass::ID = 0;
2547 
2548 INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",
2549                       "Deduce and propagate attributes", false, false)
2550 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2551 INITIALIZE_PASS_END(AttributorLegacyPass, "attributor",
2552                     "Deduce and propagate attributes", false, false)
2553 INITIALIZE_PASS_BEGIN(AttributorCGSCCLegacyPass, "attributor-cgscc",
2554                       "Deduce and propagate attributes (CGSCC pass)", false,
2555                       false)
2556 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2557 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
2558 INITIALIZE_PASS_END(AttributorCGSCCLegacyPass, "attributor-cgscc",
2559                     "Deduce and propagate attributes (CGSCC pass)", false,
2560                     false)
2561