1 //===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a transformation that attaches !callees metadata to
10 // indirect call sites. For a given call site, the metadata, if present,
11 // indicates the set of functions the call site could possibly target at
12 // run-time. This metadata is added to indirect call sites when the set of
13 // possible targets can be determined by analysis and is known to be small. The
14 // analysis driving the transformation is similar to constant propagation and
15 // makes uses of the generic sparse propagation solver.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/IPO/CalledValuePropagation.h"
20 #include "llvm/Analysis/SparsePropagation.h"
21 #include "llvm/Analysis/ValueLatticeUtils.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/MDBuilder.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Transforms/IPO.h"
26 
27 using namespace llvm;
28 
29 #define DEBUG_TYPE "called-value-propagation"
30 
31 /// The maximum number of functions to track per lattice value. Once the number
32 /// of functions a call site can possibly target exceeds this threshold, it's
33 /// lattice value becomes overdefined. The number of possible lattice values is
34 /// bounded by Ch(F, M), where F is the number of functions in the module and M
35 /// is MaxFunctionsPerValue. As such, this value should be kept very small. We
36 /// likely can't do anything useful for call sites with a large number of
37 /// possible targets, anyway.
38 static cl::opt<unsigned> MaxFunctionsPerValue(
39     "cvp-max-functions-per-value", cl::Hidden, cl::init(4),
40     cl::desc("The maximum number of functions to track per lattice value"));
41 
42 namespace {
43 /// To enable interprocedural analysis, we assign LLVM values to the following
44 /// groups. The register group represents SSA registers, the return group
45 /// represents the return values of functions, and the memory group represents
46 /// in-memory values. An LLVM Value can technically be in more than one group.
47 /// It's necessary to distinguish these groups so we can, for example, track a
48 /// global variable separately from the value stored at its location.
49 enum class IPOGrouping { Register, Return, Memory };
50 
51 /// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings.
52 using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>;
53 
54 /// The lattice value type used by our custom lattice function. It holds the
55 /// lattice state, and a set of functions.
56 class CVPLatticeVal {
57 public:
58   /// The states of the lattice values. Only the FunctionSet state is
59   /// interesting. It indicates the set of functions to which an LLVM value may
60   /// refer.
61   enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked };
62 
63   /// Comparator for sorting the functions set. We want to keep the order
64   /// deterministic for testing, etc.
65   struct Compare {
operator ()__anon30341f130111::CVPLatticeVal::Compare66     bool operator()(const Function *LHS, const Function *RHS) const {
67       return LHS->getName() < RHS->getName();
68     }
69   };
70 
71   CVPLatticeVal() = default;
CVPLatticeVal(CVPLatticeStateTy LatticeState)72   CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {}
CVPLatticeVal(std::vector<Function * > && Functions)73   CVPLatticeVal(std::vector<Function *> &&Functions)
74       : LatticeState(FunctionSet), Functions(std::move(Functions)) {
75     assert(llvm::is_sorted(this->Functions, Compare()));
76   }
77 
78   /// Get a reference to the functions held by this lattice value. The number
79   /// of functions will be zero for states other than FunctionSet.
getFunctions() const80   const std::vector<Function *> &getFunctions() const {
81     return Functions;
82   }
83 
84   /// Returns true if the lattice value is in the FunctionSet state.
isFunctionSet() const85   bool isFunctionSet() const { return LatticeState == FunctionSet; }
86 
operator ==(const CVPLatticeVal & RHS) const87   bool operator==(const CVPLatticeVal &RHS) const {
88     return LatticeState == RHS.LatticeState && Functions == RHS.Functions;
89   }
90 
operator !=(const CVPLatticeVal & RHS) const91   bool operator!=(const CVPLatticeVal &RHS) const {
92     return LatticeState != RHS.LatticeState || Functions != RHS.Functions;
93   }
94 
95 private:
96   /// Holds the state this lattice value is in.
97   CVPLatticeStateTy LatticeState = Undefined;
98 
99   /// Holds functions indicating the possible targets of call sites. This set
100   /// is empty for lattice values in the undefined, overdefined, and untracked
101   /// states. The maximum size of the set is controlled by
102   /// MaxFunctionsPerValue. Since most LLVM values are expected to be in
103   /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be
104   /// small and efficiently copyable.
105   // FIXME: This could be a TinyPtrVector and/or merge with LatticeState.
106   std::vector<Function *> Functions;
107 };
108 
109 /// The custom lattice function used by the generic sparse propagation solver.
110 /// It handles merging lattice values and computing new lattice values for
111 /// constants, arguments, values returned from trackable functions, and values
112 /// located in trackable global variables. It also computes the lattice values
113 /// that change as a result of executing instructions.
114 class CVPLatticeFunc
115     : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> {
116 public:
CVPLatticeFunc()117   CVPLatticeFunc()
118       : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined),
119                                 CVPLatticeVal(CVPLatticeVal::Overdefined),
120                                 CVPLatticeVal(CVPLatticeVal::Untracked)) {}
121 
122   /// Compute and return a CVPLatticeVal for the given CVPLatticeKey.
ComputeLatticeVal(CVPLatticeKey Key)123   CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override {
124     switch (Key.getInt()) {
125     case IPOGrouping::Register:
126       if (isa<Instruction>(Key.getPointer())) {
127         return getUndefVal();
128       } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) {
129         if (canTrackArgumentsInterprocedurally(A->getParent()))
130           return getUndefVal();
131       } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) {
132         return computeConstant(C);
133       }
134       return getOverdefinedVal();
135     case IPOGrouping::Memory:
136     case IPOGrouping::Return:
137       if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) {
138         if (canTrackGlobalVariableInterprocedurally(GV))
139           return computeConstant(GV->getInitializer());
140       } else if (auto *F = cast<Function>(Key.getPointer()))
141         if (canTrackReturnsInterprocedurally(F))
142           return getUndefVal();
143     }
144     return getOverdefinedVal();
145   }
146 
147   /// Merge the two given lattice values. The interesting cases are merging two
148   /// FunctionSet values and a FunctionSet value with an Undefined value. For
149   /// these cases, we simply union the function sets. If the size of the union
150   /// is greater than the maximum functions we track, the merged value is
151   /// overdefined.
MergeValues(CVPLatticeVal X,CVPLatticeVal Y)152   CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override {
153     if (X == getOverdefinedVal() || Y == getOverdefinedVal())
154       return getOverdefinedVal();
155     if (X == getUndefVal() && Y == getUndefVal())
156       return getUndefVal();
157     std::vector<Function *> Union;
158     std::set_union(X.getFunctions().begin(), X.getFunctions().end(),
159                    Y.getFunctions().begin(), Y.getFunctions().end(),
160                    std::back_inserter(Union), CVPLatticeVal::Compare{});
161     if (Union.size() > MaxFunctionsPerValue)
162       return getOverdefinedVal();
163     return CVPLatticeVal(std::move(Union));
164   }
165 
166   /// Compute the lattice values that change as a result of executing the given
167   /// instruction. The changed values are stored in \p ChangedValues. We handle
168   /// just a few kinds of instructions since we're only propagating values that
169   /// can be called.
ComputeInstructionState(Instruction & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)170   void ComputeInstructionState(
171       Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
172       SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override {
173     switch (I.getOpcode()) {
174     case Instruction::Call:
175     case Instruction::Invoke:
176       return visitCallBase(cast<CallBase>(I), ChangedValues, SS);
177     case Instruction::Load:
178       return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS);
179     case Instruction::Ret:
180       return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS);
181     case Instruction::Select:
182       return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS);
183     case Instruction::Store:
184       return visitStore(*cast<StoreInst>(&I), ChangedValues, SS);
185     default:
186       return visitInst(I, ChangedValues, SS);
187     }
188   }
189 
190   /// Print the given CVPLatticeVal to the specified stream.
PrintLatticeVal(CVPLatticeVal LV,raw_ostream & OS)191   void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override {
192     if (LV == getUndefVal())
193       OS << "Undefined  ";
194     else if (LV == getOverdefinedVal())
195       OS << "Overdefined";
196     else if (LV == getUntrackedVal())
197       OS << "Untracked  ";
198     else
199       OS << "FunctionSet";
200   }
201 
202   /// Print the given CVPLatticeKey to the specified stream.
PrintLatticeKey(CVPLatticeKey Key,raw_ostream & OS)203   void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override {
204     if (Key.getInt() == IPOGrouping::Register)
205       OS << "<reg> ";
206     else if (Key.getInt() == IPOGrouping::Memory)
207       OS << "<mem> ";
208     else if (Key.getInt() == IPOGrouping::Return)
209       OS << "<ret> ";
210     if (isa<Function>(Key.getPointer()))
211       OS << Key.getPointer()->getName();
212     else
213       OS << *Key.getPointer();
214   }
215 
216   /// We collect a set of indirect calls when visiting call sites. This method
217   /// returns a reference to that set.
getIndirectCalls()218   SmallPtrSetImpl<CallBase *> &getIndirectCalls() { return IndirectCalls; }
219 
220 private:
221   /// Holds the indirect calls we encounter during the analysis. We will attach
222   /// metadata to these calls after the analysis indicating the functions the
223   /// calls can possibly target.
224   SmallPtrSet<CallBase *, 32> IndirectCalls;
225 
226   /// Compute a new lattice value for the given constant. The constant, after
227   /// stripping any pointer casts, should be a Function. We ignore null
228   /// pointers as an optimization, since calling these values is undefined
229   /// behavior.
computeConstant(Constant * C)230   CVPLatticeVal computeConstant(Constant *C) {
231     if (isa<ConstantPointerNull>(C))
232       return CVPLatticeVal(CVPLatticeVal::FunctionSet);
233     if (auto *F = dyn_cast<Function>(C->stripPointerCasts()))
234       return CVPLatticeVal({F});
235     return getOverdefinedVal();
236   }
237 
238   /// Handle return instructions. The function's return state is the merge of
239   /// the returned value state and the function's return state.
visitReturn(ReturnInst & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)240   void visitReturn(ReturnInst &I,
241                    DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
242                    SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
243     Function *F = I.getParent()->getParent();
244     if (F->getReturnType()->isVoidTy())
245       return;
246     auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register);
247     auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
248     ChangedValues[RetF] =
249         MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
250   }
251 
252   /// Handle call sites. The state of a called function's formal arguments is
253   /// the merge of the argument state with the call sites corresponding actual
254   /// argument state. The call site state is the merge of the call site state
255   /// with the returned value state of the called function.
visitCallBase(CallBase & CB,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)256   void visitCallBase(CallBase &CB,
257                      DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
258                      SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
259     Function *F = CB.getCalledFunction();
260     auto RegI = CVPLatticeKey(&CB, IPOGrouping::Register);
261 
262     // If this is an indirect call, save it so we can quickly revisit it when
263     // attaching metadata.
264     if (!F)
265       IndirectCalls.insert(&CB);
266 
267     // If we can't track the function's return values, there's nothing to do.
268     if (!F || !canTrackReturnsInterprocedurally(F)) {
269       // Void return, No need to create and update CVPLattice state as no one
270       // can use it.
271       if (CB.getType()->isVoidTy())
272         return;
273       ChangedValues[RegI] = getOverdefinedVal();
274       return;
275     }
276 
277     // Inform the solver that the called function is executable, and perform
278     // the merges for the arguments and return value.
279     SS.MarkBlockExecutable(&F->front());
280     auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
281     for (Argument &A : F->args()) {
282       auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register);
283       auto RegActual =
284           CVPLatticeKey(CB.getArgOperand(A.getArgNo()), IPOGrouping::Register);
285       ChangedValues[RegFormal] =
286           MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual));
287     }
288 
289     // Void return, No need to create and update CVPLattice state as no one can
290     // use it.
291     if (CB.getType()->isVoidTy())
292       return;
293 
294     ChangedValues[RegI] =
295         MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
296   }
297 
298   /// Handle select instructions. The select instruction state is the merge the
299   /// true and false value states.
visitSelect(SelectInst & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)300   void visitSelect(SelectInst &I,
301                    DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
302                    SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
303     auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
304     auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register);
305     auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register);
306     ChangedValues[RegI] =
307         MergeValues(SS.getValueState(RegT), SS.getValueState(RegF));
308   }
309 
310   /// Handle load instructions. If the pointer operand of the load is a global
311   /// variable, we attempt to track the value. The loaded value state is the
312   /// merge of the loaded value state with the global variable state.
visitLoad(LoadInst & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)313   void visitLoad(LoadInst &I,
314                  DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
315                  SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
316     auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
317     if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) {
318       auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
319       ChangedValues[RegI] =
320           MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
321     } else {
322       ChangedValues[RegI] = getOverdefinedVal();
323     }
324   }
325 
326   /// Handle store instructions. If the pointer operand of the store is a
327   /// global variable, we attempt to track the value. The global variable state
328   /// is the merge of the stored value state with the global variable state.
visitStore(StoreInst & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)329   void visitStore(StoreInst &I,
330                   DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
331                   SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
332     auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand());
333     if (!GV)
334       return;
335     auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register);
336     auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
337     ChangedValues[MemGV] =
338         MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
339   }
340 
341   /// Handle all other instructions. All other instructions are marked
342   /// overdefined.
visitInst(Instruction & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)343   void visitInst(Instruction &I,
344                  DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
345                  SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
346     // Simply bail if this instruction has no user.
347     if (I.use_empty())
348       return;
349     auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
350     ChangedValues[RegI] = getOverdefinedVal();
351   }
352 };
353 } // namespace
354 
355 namespace llvm {
356 /// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver
357 /// must translate between LatticeKeys and LLVM Values when adding Values to
358 /// its work list and inspecting the state of control-flow related values.
359 template <> struct LatticeKeyInfo<CVPLatticeKey> {
getValueFromLatticeKeyllvm::LatticeKeyInfo360   static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) {
361     return Key.getPointer();
362   }
getLatticeKeyFromValuellvm::LatticeKeyInfo363   static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) {
364     return CVPLatticeKey(V, IPOGrouping::Register);
365   }
366 };
367 } // namespace llvm
368 
runCVP(Module & M)369 static bool runCVP(Module &M) {
370   // Our custom lattice function and generic sparse propagation solver.
371   CVPLatticeFunc Lattice;
372   SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice);
373 
374   // For each function in the module, if we can't track its arguments, let the
375   // generic solver assume it is executable.
376   for (Function &F : M)
377     if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F))
378       Solver.MarkBlockExecutable(&F.front());
379 
380   // Solver our custom lattice. In doing so, we will also build a set of
381   // indirect call sites.
382   Solver.Solve();
383 
384   // Attach metadata to the indirect call sites that were collected indicating
385   // the set of functions they can possibly target.
386   bool Changed = false;
387   MDBuilder MDB(M.getContext());
388   for (CallBase *C : Lattice.getIndirectCalls()) {
389     auto RegI = CVPLatticeKey(C->getCalledOperand(), IPOGrouping::Register);
390     CVPLatticeVal LV = Solver.getExistingValueState(RegI);
391     if (!LV.isFunctionSet() || LV.getFunctions().empty())
392       continue;
393     MDNode *Callees = MDB.createCallees(LV.getFunctions());
394     C->setMetadata(LLVMContext::MD_callees, Callees);
395     Changed = true;
396   }
397 
398   return Changed;
399 }
400 
run(Module & M,ModuleAnalysisManager &)401 PreservedAnalyses CalledValuePropagationPass::run(Module &M,
402                                                   ModuleAnalysisManager &) {
403   runCVP(M);
404   return PreservedAnalyses::all();
405 }
406