1 //===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass deletes dead arguments from internal functions.  Dead argument
10 // elimination removes arguments which are directly dead, as well as arguments
11 // only passed into function calls as dead arguments of other functions.  This
12 // pass also deletes dead return values in a similar way.
13 //
14 // This pass is often useful as a cleanup pass to run after aggressive
15 // interprocedural passes, which add possibly-dead arguments or return values.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/Attributes.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DIBuilder.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/NoFolder.h"
35 #include "llvm/IR/PassManager.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/Use.h"
38 #include "llvm/IR/User.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/InitializePasses.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/IPO.h"
46 #include "llvm/Transforms/IPO/DeadArgumentElimination.h"
47 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
48 #include <cassert>
49 #include <utility>
50 #include <vector>
51 
52 using namespace llvm;
53 
54 #define DEBUG_TYPE "deadargelim"
55 
56 STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
57 STATISTIC(NumRetValsEliminated, "Number of unused return values removed");
58 STATISTIC(NumArgumentsReplacedWithPoison,
59           "Number of unread args replaced with poison");
60 
61 namespace {
62 
63 /// The dead argument elimination pass.
64 class DAE : public ModulePass {
65 protected:
66   // DAH uses this to specify a different ID.
67   explicit DAE(char &ID) : ModulePass(ID) {}
68 
69 public:
70   static char ID; // Pass identification, replacement for typeid
71 
72   DAE() : ModulePass(ID) {
73     initializeDAEPass(*PassRegistry::getPassRegistry());
74   }
75 
76   bool runOnModule(Module &M) override {
77     if (skipModule(M))
78       return false;
79     DeadArgumentEliminationPass DAEP(shouldHackArguments());
80     ModuleAnalysisManager DummyMAM;
81     PreservedAnalyses PA = DAEP.run(M, DummyMAM);
82     return !PA.areAllPreserved();
83   }
84 
85   virtual bool shouldHackArguments() const { return false; }
86 };
87 
88 } // end anonymous namespace
89 
90 char DAE::ID = 0;
91 
92 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
93 
94 namespace {
95 
96 /// The DeadArgumentHacking pass, same as dead argument elimination, but deletes
97 /// arguments to functions which are external. This is only for use by bugpoint.
98 struct DAH : public DAE {
99   static char ID;
100 
101   DAH() : DAE(ID) {}
102 
103   bool shouldHackArguments() const override { return true; }
104 };
105 
106 } // end anonymous namespace
107 
108 char DAH::ID = 0;
109 
110 INITIALIZE_PASS(DAH, "deadarghaX0r",
111                 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)", false,
112                 false)
113 
114 /// This pass removes arguments from functions which are not used by the body of
115 /// the function.
116 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
117 
118 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
119 
120 /// If this is an function that takes a ... list, and if llvm.vastart is never
121 /// called, the varargs list is dead for the function.
122 bool DeadArgumentEliminationPass::deleteDeadVarargs(Function &F) {
123   assert(F.getFunctionType()->isVarArg() && "Function isn't varargs!");
124   if (F.isDeclaration() || !F.hasLocalLinkage())
125     return false;
126 
127   // Ensure that the function is only directly called.
128   if (F.hasAddressTaken())
129     return false;
130 
131   // Don't touch naked functions. The assembly might be using an argument, or
132   // otherwise rely on the frame layout in a way that this analysis will not
133   // see.
134   if (F.hasFnAttribute(Attribute::Naked)) {
135     return false;
136   }
137 
138   // Okay, we know we can transform this function if safe.  Scan its body
139   // looking for calls marked musttail or calls to llvm.vastart.
140   for (BasicBlock &BB : F) {
141     for (Instruction &I : BB) {
142       CallInst *CI = dyn_cast<CallInst>(&I);
143       if (!CI)
144         continue;
145       if (CI->isMustTailCall())
146         return false;
147       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
148         if (II->getIntrinsicID() == Intrinsic::vastart)
149           return false;
150       }
151     }
152   }
153 
154   // If we get here, there are no calls to llvm.vastart in the function body,
155   // remove the "..." and adjust all the calls.
156 
157   // Start by computing a new prototype for the function, which is the same as
158   // the old function, but doesn't have isVarArg set.
159   FunctionType *FTy = F.getFunctionType();
160 
161   std::vector<Type *> Params(FTy->param_begin(), FTy->param_end());
162   FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false);
163   unsigned NumArgs = Params.size();
164 
165   // Create the new function body and insert it into the module...
166   Function *NF = Function::Create(NFTy, F.getLinkage(), F.getAddressSpace());
167   NF->copyAttributesFrom(&F);
168   NF->setComdat(F.getComdat());
169   F.getParent()->getFunctionList().insert(F.getIterator(), NF);
170   NF->takeName(&F);
171 
172   // Loop over all the callers of the function, transforming the call sites
173   // to pass in a smaller number of arguments into the new function.
174   //
175   std::vector<Value *> Args;
176   for (User *U : llvm::make_early_inc_range(F.users())) {
177     CallBase *CB = dyn_cast<CallBase>(U);
178     if (!CB)
179       continue;
180 
181     // Pass all the same arguments.
182     Args.assign(CB->arg_begin(), CB->arg_begin() + NumArgs);
183 
184     // Drop any attributes that were on the vararg arguments.
185     AttributeList PAL = CB->getAttributes();
186     if (!PAL.isEmpty()) {
187       SmallVector<AttributeSet, 8> ArgAttrs;
188       for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo)
189         ArgAttrs.push_back(PAL.getParamAttrs(ArgNo));
190       PAL = AttributeList::get(F.getContext(), PAL.getFnAttrs(),
191                                PAL.getRetAttrs(), ArgAttrs);
192     }
193 
194     SmallVector<OperandBundleDef, 1> OpBundles;
195     CB->getOperandBundlesAsDefs(OpBundles);
196 
197     CallBase *NewCB = nullptr;
198     if (InvokeInst *II = dyn_cast<InvokeInst>(CB)) {
199       NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
200                                  Args, OpBundles, "", CB);
201     } else {
202       NewCB = CallInst::Create(NF, Args, OpBundles, "", CB);
203       cast<CallInst>(NewCB)->setTailCallKind(
204           cast<CallInst>(CB)->getTailCallKind());
205     }
206     NewCB->setCallingConv(CB->getCallingConv());
207     NewCB->setAttributes(PAL);
208     NewCB->copyMetadata(*CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
209 
210     Args.clear();
211 
212     if (!CB->use_empty())
213       CB->replaceAllUsesWith(NewCB);
214 
215     NewCB->takeName(CB);
216 
217     // Finally, remove the old call from the program, reducing the use-count of
218     // F.
219     CB->eraseFromParent();
220   }
221 
222   // Since we have now created the new function, splice the body of the old
223   // function right into the new function, leaving the old rotting hulk of the
224   // function empty.
225   NF->splice(NF->begin(), &F);
226 
227   // Loop over the argument list, transferring uses of the old arguments over to
228   // the new arguments, also transferring over the names as well.  While we're
229   // at it, remove the dead arguments from the DeadArguments list.
230   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(),
231                               I2 = NF->arg_begin();
232        I != E; ++I, ++I2) {
233     // Move the name and users over to the new version.
234     I->replaceAllUsesWith(&*I2);
235     I2->takeName(&*I);
236   }
237 
238   // Clone metadata from the old function, including debug info descriptor.
239   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
240   F.getAllMetadata(MDs);
241   for (auto [KindID, Node] : MDs)
242     NF->addMetadata(KindID, *Node);
243 
244   // Fix up any BlockAddresses that refer to the function.
245   F.replaceAllUsesWith(ConstantExpr::getBitCast(NF, F.getType()));
246   // Delete the bitcast that we just created, so that NF does not
247   // appear to be address-taken.
248   NF->removeDeadConstantUsers();
249   // Finally, nuke the old function.
250   F.eraseFromParent();
251   return true;
252 }
253 
254 /// Checks if the given function has any arguments that are unused, and changes
255 /// the caller parameters to be poison instead.
256 bool DeadArgumentEliminationPass::removeDeadArgumentsFromCallers(Function &F) {
257   // We cannot change the arguments if this TU does not define the function or
258   // if the linker may choose a function body from another TU, even if the
259   // nominal linkage indicates that other copies of the function have the same
260   // semantics. In the below example, the dead load from %p may not have been
261   // eliminated from the linker-chosen copy of f, so replacing %p with poison
262   // in callers may introduce undefined behavior.
263   //
264   // define linkonce_odr void @f(i32* %p) {
265   //   %v = load i32 %p
266   //   ret void
267   // }
268   if (!F.hasExactDefinition())
269     return false;
270 
271   // Functions with local linkage should already have been handled, except if
272   // they are fully alive (e.g., called indirectly) and except for the fragile
273   // (variadic) ones. In these cases, we may still be able to improve their
274   // statically known call sites.
275   if ((F.hasLocalLinkage() && !LiveFunctions.count(&F)) &&
276       !F.getFunctionType()->isVarArg())
277     return false;
278 
279   // Don't touch naked functions. The assembly might be using an argument, or
280   // otherwise rely on the frame layout in a way that this analysis will not
281   // see.
282   if (F.hasFnAttribute(Attribute::Naked))
283     return false;
284 
285   if (F.use_empty())
286     return false;
287 
288   SmallVector<unsigned, 8> UnusedArgs;
289   bool Changed = false;
290 
291   AttributeMask UBImplyingAttributes =
292       AttributeFuncs::getUBImplyingAttributes();
293   for (Argument &Arg : F.args()) {
294     if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() &&
295         !Arg.hasPassPointeeByValueCopyAttr()) {
296       if (Arg.isUsedByMetadata()) {
297         Arg.replaceAllUsesWith(PoisonValue::get(Arg.getType()));
298         Changed = true;
299       }
300       UnusedArgs.push_back(Arg.getArgNo());
301       F.removeParamAttrs(Arg.getArgNo(), UBImplyingAttributes);
302     }
303   }
304 
305   if (UnusedArgs.empty())
306     return false;
307 
308   for (Use &U : F.uses()) {
309     CallBase *CB = dyn_cast<CallBase>(U.getUser());
310     if (!CB || !CB->isCallee(&U) ||
311         CB->getFunctionType() != F.getFunctionType())
312       continue;
313 
314     // Now go through all unused args and replace them with poison.
315     for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
316       unsigned ArgNo = UnusedArgs[I];
317 
318       Value *Arg = CB->getArgOperand(ArgNo);
319       CB->setArgOperand(ArgNo, PoisonValue::get(Arg->getType()));
320       CB->removeParamAttrs(ArgNo, UBImplyingAttributes);
321 
322       ++NumArgumentsReplacedWithPoison;
323       Changed = true;
324     }
325   }
326 
327   return Changed;
328 }
329 
330 /// Convenience function that returns the number of return values. It returns 0
331 /// for void functions and 1 for functions not returning a struct. It returns
332 /// the number of struct elements for functions returning a struct.
333 static unsigned numRetVals(const Function *F) {
334   Type *RetTy = F->getReturnType();
335   if (RetTy->isVoidTy())
336     return 0;
337   if (StructType *STy = dyn_cast<StructType>(RetTy))
338     return STy->getNumElements();
339   if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
340     return ATy->getNumElements();
341   return 1;
342 }
343 
344 /// Returns the sub-type a function will return at a given Idx. Should
345 /// correspond to the result type of an ExtractValue instruction executed with
346 /// just that one Idx (i.e. only top-level structure is considered).
347 static Type *getRetComponentType(const Function *F, unsigned Idx) {
348   Type *RetTy = F->getReturnType();
349   assert(!RetTy->isVoidTy() && "void type has no subtype");
350 
351   if (StructType *STy = dyn_cast<StructType>(RetTy))
352     return STy->getElementType(Idx);
353   if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
354     return ATy->getElementType();
355   return RetTy;
356 }
357 
358 /// Checks Use for liveness in LiveValues. If Use is not live, it adds Use to
359 /// the MaybeLiveUses argument. Returns the determined liveness of Use.
360 DeadArgumentEliminationPass::Liveness
361 DeadArgumentEliminationPass::markIfNotLive(RetOrArg Use,
362                                            UseVector &MaybeLiveUses) {
363   // We're live if our use or its Function is already marked as live.
364   if (isLive(Use))
365     return Live;
366 
367   // We're maybe live otherwise, but remember that we must become live if
368   // Use becomes live.
369   MaybeLiveUses.push_back(Use);
370   return MaybeLive;
371 }
372 
373 /// Looks at a single use of an argument or return value and determines if it
374 /// should be alive or not. Adds this use to MaybeLiveUses if it causes the
375 /// used value to become MaybeLive.
376 ///
377 /// RetValNum is the return value number to use when this use is used in a
378 /// return instruction. This is used in the recursion, you should always leave
379 /// it at 0.
380 DeadArgumentEliminationPass::Liveness
381 DeadArgumentEliminationPass::surveyUse(const Use *U, UseVector &MaybeLiveUses,
382                                        unsigned RetValNum) {
383   const User *V = U->getUser();
384   if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
385     // The value is returned from a function. It's only live when the
386     // function's return value is live. We use RetValNum here, for the case
387     // that U is really a use of an insertvalue instruction that uses the
388     // original Use.
389     const Function *F = RI->getParent()->getParent();
390     if (RetValNum != -1U) {
391       RetOrArg Use = createRet(F, RetValNum);
392       // We might be live, depending on the liveness of Use.
393       return markIfNotLive(Use, MaybeLiveUses);
394     }
395 
396     DeadArgumentEliminationPass::Liveness Result = MaybeLive;
397     for (unsigned Ri = 0; Ri < numRetVals(F); ++Ri) {
398       RetOrArg Use = createRet(F, Ri);
399       // We might be live, depending on the liveness of Use. If any
400       // sub-value is live, then the entire value is considered live. This
401       // is a conservative choice, and better tracking is possible.
402       DeadArgumentEliminationPass::Liveness SubResult =
403           markIfNotLive(Use, MaybeLiveUses);
404       if (Result != Live)
405         Result = SubResult;
406     }
407     return Result;
408   }
409 
410   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
411     if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex() &&
412         IV->hasIndices())
413       // The use we are examining is inserted into an aggregate. Our liveness
414       // depends on all uses of that aggregate, but if it is used as a return
415       // value, only index at which we were inserted counts.
416       RetValNum = *IV->idx_begin();
417 
418     // Note that if we are used as the aggregate operand to the insertvalue,
419     // we don't change RetValNum, but do survey all our uses.
420 
421     Liveness Result = MaybeLive;
422     for (const Use &UU : IV->uses()) {
423       Result = surveyUse(&UU, MaybeLiveUses, RetValNum);
424       if (Result == Live)
425         break;
426     }
427     return Result;
428   }
429 
430   if (const auto *CB = dyn_cast<CallBase>(V)) {
431     const Function *F = CB->getCalledFunction();
432     if (F) {
433       // Used in a direct call.
434 
435       // The function argument is live if it is used as a bundle operand.
436       if (CB->isBundleOperand(U))
437         return Live;
438 
439       // Find the argument number. We know for sure that this use is an
440       // argument, since if it was the function argument this would be an
441       // indirect call and that we know can't be looking at a value of the
442       // label type (for the invoke instruction).
443       unsigned ArgNo = CB->getArgOperandNo(U);
444 
445       if (ArgNo >= F->getFunctionType()->getNumParams())
446         // The value is passed in through a vararg! Must be live.
447         return Live;
448 
449       assert(CB->getArgOperand(ArgNo) == CB->getOperand(U->getOperandNo()) &&
450              "Argument is not where we expected it");
451 
452       // Value passed to a normal call. It's only live when the corresponding
453       // argument to the called function turns out live.
454       RetOrArg Use = createArg(F, ArgNo);
455       return markIfNotLive(Use, MaybeLiveUses);
456     }
457   }
458   // Used in any other way? Value must be live.
459   return Live;
460 }
461 
462 /// Looks at all the uses of the given value
463 /// Returns the Liveness deduced from the uses of this value.
464 ///
465 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
466 /// the result is Live, MaybeLiveUses might be modified but its content should
467 /// be ignored (since it might not be complete).
468 DeadArgumentEliminationPass::Liveness
469 DeadArgumentEliminationPass::surveyUses(const Value *V,
470                                         UseVector &MaybeLiveUses) {
471   // Assume it's dead (which will only hold if there are no uses at all..).
472   Liveness Result = MaybeLive;
473   // Check each use.
474   for (const Use &U : V->uses()) {
475     Result = surveyUse(&U, MaybeLiveUses);
476     if (Result == Live)
477       break;
478   }
479   return Result;
480 }
481 
482 /// Performs the initial survey of the specified function, checking out whether
483 /// it uses any of its incoming arguments or whether any callers use the return
484 /// value. This fills in the LiveValues set and Uses map.
485 ///
486 /// We consider arguments of non-internal functions to be intrinsically alive as
487 /// well as arguments to functions which have their "address taken".
488 void DeadArgumentEliminationPass::surveyFunction(const Function &F) {
489   // Functions with inalloca/preallocated parameters are expecting args in a
490   // particular register and memory layout.
491   if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
492       F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
493     markLive(F);
494     return;
495   }
496 
497   // Don't touch naked functions. The assembly might be using an argument, or
498   // otherwise rely on the frame layout in a way that this analysis will not
499   // see.
500   if (F.hasFnAttribute(Attribute::Naked)) {
501     markLive(F);
502     return;
503   }
504 
505   unsigned RetCount = numRetVals(&F);
506 
507   // Assume all return values are dead
508   using RetVals = SmallVector<Liveness, 5>;
509 
510   RetVals RetValLiveness(RetCount, MaybeLive);
511 
512   using RetUses = SmallVector<UseVector, 5>;
513 
514   // These vectors map each return value to the uses that make it MaybeLive, so
515   // we can add those to the Uses map if the return value really turns out to be
516   // MaybeLive. Initialized to a list of RetCount empty lists.
517   RetUses MaybeLiveRetUses(RetCount);
518 
519   bool HasMustTailCalls = false;
520   for (const BasicBlock &BB : F) {
521     // If we have any returns of `musttail` results - the signature can't
522     // change
523     if (BB.getTerminatingMustTailCall() != nullptr)
524       HasMustTailCalls = true;
525   }
526 
527   if (HasMustTailCalls) {
528     LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
529                       << " has musttail calls\n");
530   }
531 
532   if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) {
533     markLive(F);
534     return;
535   }
536 
537   LLVM_DEBUG(
538       dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: "
539              << F.getName() << "\n");
540   // Keep track of the number of live retvals, so we can skip checks once all
541   // of them turn out to be live.
542   unsigned NumLiveRetVals = 0;
543 
544   bool HasMustTailCallers = false;
545 
546   // Loop all uses of the function.
547   for (const Use &U : F.uses()) {
548     // If the function is PASSED IN as an argument, its address has been
549     // taken.
550     const auto *CB = dyn_cast<CallBase>(U.getUser());
551     if (!CB || !CB->isCallee(&U) ||
552         CB->getFunctionType() != F.getFunctionType()) {
553       markLive(F);
554       return;
555     }
556 
557     // The number of arguments for `musttail` call must match the number of
558     // arguments of the caller
559     if (CB->isMustTailCall())
560       HasMustTailCallers = true;
561 
562     // If we end up here, we are looking at a direct call to our function.
563 
564     // Now, check how our return value(s) is/are used in this caller. Don't
565     // bother checking return values if all of them are live already.
566     if (NumLiveRetVals == RetCount)
567       continue;
568 
569     // Check all uses of the return value.
570     for (const Use &UU : CB->uses()) {
571       if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(UU.getUser())) {
572         // This use uses a part of our return value, survey the uses of
573         // that part and store the results for this index only.
574         unsigned Idx = *Ext->idx_begin();
575         if (RetValLiveness[Idx] != Live) {
576           RetValLiveness[Idx] = surveyUses(Ext, MaybeLiveRetUses[Idx]);
577           if (RetValLiveness[Idx] == Live)
578             NumLiveRetVals++;
579         }
580       } else {
581         // Used by something else than extractvalue. Survey, but assume that the
582         // result applies to all sub-values.
583         UseVector MaybeLiveAggregateUses;
584         if (surveyUse(&UU, MaybeLiveAggregateUses) == Live) {
585           NumLiveRetVals = RetCount;
586           RetValLiveness.assign(RetCount, Live);
587           break;
588         }
589 
590         for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
591           if (RetValLiveness[Ri] != Live)
592             MaybeLiveRetUses[Ri].append(MaybeLiveAggregateUses.begin(),
593                                         MaybeLiveAggregateUses.end());
594         }
595       }
596     }
597   }
598 
599   if (HasMustTailCallers) {
600     LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
601                       << " has musttail callers\n");
602   }
603 
604   // Now we've inspected all callers, record the liveness of our return values.
605   for (unsigned Ri = 0; Ri != RetCount; ++Ri)
606     markValue(createRet(&F, Ri), RetValLiveness[Ri], MaybeLiveRetUses[Ri]);
607 
608   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: "
609                     << F.getName() << "\n");
610 
611   // Now, check all of our arguments.
612   unsigned ArgI = 0;
613   UseVector MaybeLiveArgUses;
614   for (Function::const_arg_iterator AI = F.arg_begin(), E = F.arg_end();
615        AI != E; ++AI, ++ArgI) {
616     Liveness Result;
617     if (F.getFunctionType()->isVarArg() || HasMustTailCallers ||
618         HasMustTailCalls) {
619       // Variadic functions will already have a va_arg function expanded inside
620       // them, making them potentially very sensitive to ABI changes resulting
621       // from removing arguments entirely, so don't. For example AArch64 handles
622       // register and stack HFAs very differently, and this is reflected in the
623       // IR which has already been generated.
624       //
625       // `musttail` calls to this function restrict argument removal attempts.
626       // The signature of the caller must match the signature of the function.
627       //
628       // `musttail` calls in this function prevents us from changing its
629       // signature
630       Result = Live;
631     } else {
632       // See what the effect of this use is (recording any uses that cause
633       // MaybeLive in MaybeLiveArgUses).
634       Result = surveyUses(&*AI, MaybeLiveArgUses);
635     }
636 
637     // Mark the result.
638     markValue(createArg(&F, ArgI), Result, MaybeLiveArgUses);
639     // Clear the vector again for the next iteration.
640     MaybeLiveArgUses.clear();
641   }
642 }
643 
644 /// Marks the liveness of RA depending on L. If L is MaybeLive, it also takes
645 /// all uses in MaybeLiveUses and records them in Uses, such that RA will be
646 /// marked live if any use in MaybeLiveUses gets marked live later on.
647 void DeadArgumentEliminationPass::markValue(const RetOrArg &RA, Liveness L,
648                                             const UseVector &MaybeLiveUses) {
649   switch (L) {
650   case Live:
651     markLive(RA);
652     break;
653   case MaybeLive:
654     assert(!isLive(RA) && "Use is already live!");
655     for (const auto &MaybeLiveUse : MaybeLiveUses) {
656       if (isLive(MaybeLiveUse)) {
657         // A use is live, so this value is live.
658         markLive(RA);
659         break;
660       }
661       // Note any uses of this value, so this value can be
662       // marked live whenever one of the uses becomes live.
663       Uses.emplace(MaybeLiveUse, RA);
664     }
665     break;
666   }
667 }
668 
669 /// Mark the given Function as alive, meaning that it cannot be changed in any
670 /// way. Additionally, mark any values that are used as this function's
671 /// parameters or by its return values (according to Uses) live as well.
672 void DeadArgumentEliminationPass::markLive(const Function &F) {
673   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: "
674                     << F.getName() << "\n");
675   // Mark the function as live.
676   LiveFunctions.insert(&F);
677   // Mark all arguments as live.
678   for (unsigned ArgI = 0, E = F.arg_size(); ArgI != E; ++ArgI)
679     propagateLiveness(createArg(&F, ArgI));
680   // Mark all return values as live.
681   for (unsigned Ri = 0, E = numRetVals(&F); Ri != E; ++Ri)
682     propagateLiveness(createRet(&F, Ri));
683 }
684 
685 /// Mark the given return value or argument as live. Additionally, mark any
686 /// values that are used by this value (according to Uses) live as well.
687 void DeadArgumentEliminationPass::markLive(const RetOrArg &RA) {
688   if (isLive(RA))
689     return; // Already marked Live.
690 
691   LiveValues.insert(RA);
692 
693   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking "
694                     << RA.getDescription() << " live\n");
695   propagateLiveness(RA);
696 }
697 
698 bool DeadArgumentEliminationPass::isLive(const RetOrArg &RA) {
699   return LiveFunctions.count(RA.F) || LiveValues.count(RA);
700 }
701 
702 /// Given that RA is a live value, propagate it's liveness to any other values
703 /// it uses (according to Uses).
704 void DeadArgumentEliminationPass::propagateLiveness(const RetOrArg &RA) {
705   // We don't use upper_bound (or equal_range) here, because our recursive call
706   // to ourselves is likely to cause the upper_bound (which is the first value
707   // not belonging to RA) to become erased and the iterator invalidated.
708   UseMap::iterator Begin = Uses.lower_bound(RA);
709   UseMap::iterator E = Uses.end();
710   UseMap::iterator I;
711   for (I = Begin; I != E && I->first == RA; ++I)
712     markLive(I->second);
713 
714   // Erase RA from the Uses map (from the lower bound to wherever we ended up
715   // after the loop).
716   Uses.erase(Begin, I);
717 }
718 
719 /// Remove any arguments and return values from F that are not in LiveValues.
720 /// Transform the function and all the callees of the function to not have these
721 /// arguments and return values.
722 bool DeadArgumentEliminationPass::removeDeadStuffFromFunction(Function *F) {
723   // Don't modify fully live functions
724   if (LiveFunctions.count(F))
725     return false;
726 
727   // Start by computing a new prototype for the function, which is the same as
728   // the old function, but has fewer arguments and a different return type.
729   FunctionType *FTy = F->getFunctionType();
730   std::vector<Type *> Params;
731 
732   // Keep track of if we have a live 'returned' argument
733   bool HasLiveReturnedArg = false;
734 
735   // Set up to build a new list of parameter attributes.
736   SmallVector<AttributeSet, 8> ArgAttrVec;
737   const AttributeList &PAL = F->getAttributes();
738 
739   // Remember which arguments are still alive.
740   SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
741   // Construct the new parameter list from non-dead arguments. Also construct
742   // a new set of parameter attributes to correspond. Skip the first parameter
743   // attribute, since that belongs to the return value.
744   unsigned ArgI = 0;
745   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
746        ++I, ++ArgI) {
747     RetOrArg Arg = createArg(F, ArgI);
748     if (LiveValues.erase(Arg)) {
749       Params.push_back(I->getType());
750       ArgAlive[ArgI] = true;
751       ArgAttrVec.push_back(PAL.getParamAttrs(ArgI));
752       HasLiveReturnedArg |= PAL.hasParamAttr(ArgI, Attribute::Returned);
753     } else {
754       ++NumArgumentsEliminated;
755       LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument "
756                         << ArgI << " (" << I->getName() << ") from "
757                         << F->getName() << "\n");
758     }
759   }
760 
761   // Find out the new return value.
762   Type *RetTy = FTy->getReturnType();
763   Type *NRetTy = nullptr;
764   unsigned RetCount = numRetVals(F);
765 
766   // -1 means unused, other numbers are the new index
767   SmallVector<int, 5> NewRetIdxs(RetCount, -1);
768   std::vector<Type *> RetTypes;
769 
770   // If there is a function with a live 'returned' argument but a dead return
771   // value, then there are two possible actions:
772   // 1) Eliminate the return value and take off the 'returned' attribute on the
773   //    argument.
774   // 2) Retain the 'returned' attribute and treat the return value (but not the
775   //    entire function) as live so that it is not eliminated.
776   //
777   // It's not clear in the general case which option is more profitable because,
778   // even in the absence of explicit uses of the return value, code generation
779   // is free to use the 'returned' attribute to do things like eliding
780   // save/restores of registers across calls. Whether this happens is target and
781   // ABI-specific as well as depending on the amount of register pressure, so
782   // there's no good way for an IR-level pass to figure this out.
783   //
784   // Fortunately, the only places where 'returned' is currently generated by
785   // the FE are places where 'returned' is basically free and almost always a
786   // performance win, so the second option can just be used always for now.
787   //
788   // This should be revisited if 'returned' is ever applied more liberally.
789   if (RetTy->isVoidTy() || HasLiveReturnedArg) {
790     NRetTy = RetTy;
791   } else {
792     // Look at each of the original return values individually.
793     for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
794       RetOrArg Ret = createRet(F, Ri);
795       if (LiveValues.erase(Ret)) {
796         RetTypes.push_back(getRetComponentType(F, Ri));
797         NewRetIdxs[Ri] = RetTypes.size() - 1;
798       } else {
799         ++NumRetValsEliminated;
800         LLVM_DEBUG(
801             dbgs() << "DeadArgumentEliminationPass - Removing return value "
802                    << Ri << " from " << F->getName() << "\n");
803       }
804     }
805     if (RetTypes.size() > 1) {
806       // More than one return type? Reduce it down to size.
807       if (StructType *STy = dyn_cast<StructType>(RetTy)) {
808         // Make the new struct packed if we used to return a packed struct
809         // already.
810         NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
811       } else {
812         assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
813         NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
814       }
815     } else if (RetTypes.size() == 1)
816       // One return type? Just a simple value then, but only if we didn't use to
817       // return a struct with that simple value before.
818       NRetTy = RetTypes.front();
819     else if (RetTypes.empty())
820       // No return types? Make it void, but only if we didn't use to return {}.
821       NRetTy = Type::getVoidTy(F->getContext());
822   }
823 
824   assert(NRetTy && "No new return type found?");
825 
826   // The existing function return attributes.
827   AttrBuilder RAttrs(F->getContext(), PAL.getRetAttrs());
828 
829   // Remove any incompatible attributes, but only if we removed all return
830   // values. Otherwise, ensure that we don't have any conflicting attributes
831   // here. Currently, this should not be possible, but special handling might be
832   // required when new return value attributes are added.
833   if (NRetTy->isVoidTy())
834     RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
835   else
836     assert(!RAttrs.overlaps(AttributeFuncs::typeIncompatible(NRetTy)) &&
837            "Return attributes no longer compatible?");
838 
839   AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
840 
841   // Strip allocsize attributes. They might refer to the deleted arguments.
842   AttributeSet FnAttrs =
843       PAL.getFnAttrs().removeAttribute(F->getContext(), Attribute::AllocSize);
844 
845   // Reconstruct the AttributesList based on the vector we constructed.
846   assert(ArgAttrVec.size() == Params.size());
847   AttributeList NewPAL =
848       AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
849 
850   // Create the new function type based on the recomputed parameters.
851   FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
852 
853   // No change?
854   if (NFTy == FTy)
855     return false;
856 
857   // Create the new function body and insert it into the module...
858   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace());
859   NF->copyAttributesFrom(F);
860   NF->setComdat(F->getComdat());
861   NF->setAttributes(NewPAL);
862   // Insert the new function before the old function, so we won't be processing
863   // it again.
864   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
865   NF->takeName(F);
866 
867   // Loop over all the callers of the function, transforming the call sites to
868   // pass in a smaller number of arguments into the new function.
869   std::vector<Value *> Args;
870   while (!F->use_empty()) {
871     CallBase &CB = cast<CallBase>(*F->user_back());
872 
873     ArgAttrVec.clear();
874     const AttributeList &CallPAL = CB.getAttributes();
875 
876     // Adjust the call return attributes in case the function was changed to
877     // return void.
878     AttrBuilder RAttrs(F->getContext(), CallPAL.getRetAttrs());
879     RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
880     AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
881 
882     // Declare these outside of the loops, so we can reuse them for the second
883     // loop, which loops the varargs.
884     auto *I = CB.arg_begin();
885     unsigned Pi = 0;
886     // Loop over those operands, corresponding to the normal arguments to the
887     // original function, and add those that are still alive.
888     for (unsigned E = FTy->getNumParams(); Pi != E; ++I, ++Pi)
889       if (ArgAlive[Pi]) {
890         Args.push_back(*I);
891         // Get original parameter attributes, but skip return attributes.
892         AttributeSet Attrs = CallPAL.getParamAttrs(Pi);
893         if (NRetTy != RetTy && Attrs.hasAttribute(Attribute::Returned)) {
894           // If the return type has changed, then get rid of 'returned' on the
895           // call site. The alternative is to make all 'returned' attributes on
896           // call sites keep the return value alive just like 'returned'
897           // attributes on function declaration, but it's less clearly a win and
898           // this is not an expected case anyway
899           ArgAttrVec.push_back(AttributeSet::get(
900               F->getContext(), AttrBuilder(F->getContext(), Attrs)
901                                    .removeAttribute(Attribute::Returned)));
902         } else {
903           // Otherwise, use the original attributes.
904           ArgAttrVec.push_back(Attrs);
905         }
906       }
907 
908     // Push any varargs arguments on the list. Don't forget their attributes.
909     for (auto *E = CB.arg_end(); I != E; ++I, ++Pi) {
910       Args.push_back(*I);
911       ArgAttrVec.push_back(CallPAL.getParamAttrs(Pi));
912     }
913 
914     // Reconstruct the AttributesList based on the vector we constructed.
915     assert(ArgAttrVec.size() == Args.size());
916 
917     // Again, be sure to remove any allocsize attributes, since their indices
918     // may now be incorrect.
919     AttributeSet FnAttrs = CallPAL.getFnAttrs().removeAttribute(
920         F->getContext(), Attribute::AllocSize);
921 
922     AttributeList NewCallPAL =
923         AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
924 
925     SmallVector<OperandBundleDef, 1> OpBundles;
926     CB.getOperandBundlesAsDefs(OpBundles);
927 
928     CallBase *NewCB = nullptr;
929     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
930       NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
931                                  Args, OpBundles, "", CB.getParent());
932     } else {
933       NewCB = CallInst::Create(NFTy, NF, Args, OpBundles, "", &CB);
934       cast<CallInst>(NewCB)->setTailCallKind(
935           cast<CallInst>(&CB)->getTailCallKind());
936     }
937     NewCB->setCallingConv(CB.getCallingConv());
938     NewCB->setAttributes(NewCallPAL);
939     NewCB->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
940     Args.clear();
941     ArgAttrVec.clear();
942 
943     if (!CB.use_empty() || CB.isUsedByMetadata()) {
944       if (NewCB->getType() == CB.getType()) {
945         // Return type not changed? Just replace users then.
946         CB.replaceAllUsesWith(NewCB);
947         NewCB->takeName(&CB);
948       } else if (NewCB->getType()->isVoidTy()) {
949         // If the return value is dead, replace any uses of it with poison
950         // (any non-debug value uses will get removed later on).
951         if (!CB.getType()->isX86_MMXTy())
952           CB.replaceAllUsesWith(PoisonValue::get(CB.getType()));
953       } else {
954         assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
955                "Return type changed, but not into a void. The old return type"
956                " must have been a struct or an array!");
957         Instruction *InsertPt = &CB;
958         if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
959           BasicBlock *NewEdge =
960               SplitEdge(NewCB->getParent(), II->getNormalDest());
961           InsertPt = &*NewEdge->getFirstInsertionPt();
962         }
963 
964         // We used to return a struct or array. Instead of doing smart stuff
965         // with all the uses, we will just rebuild it using extract/insertvalue
966         // chaining and let instcombine clean that up.
967         //
968         // Start out building up our return value from poison
969         Value *RetVal = PoisonValue::get(RetTy);
970         for (unsigned Ri = 0; Ri != RetCount; ++Ri)
971           if (NewRetIdxs[Ri] != -1) {
972             Value *V;
973             IRBuilder<NoFolder> IRB(InsertPt);
974             if (RetTypes.size() > 1)
975               // We are still returning a struct, so extract the value from our
976               // return value
977               V = IRB.CreateExtractValue(NewCB, NewRetIdxs[Ri], "newret");
978             else
979               // We are now returning a single element, so just insert that
980               V = NewCB;
981             // Insert the value at the old position
982             RetVal = IRB.CreateInsertValue(RetVal, V, Ri, "oldret");
983           }
984         // Now, replace all uses of the old call instruction with the return
985         // struct we built
986         CB.replaceAllUsesWith(RetVal);
987         NewCB->takeName(&CB);
988       }
989     }
990 
991     // Finally, remove the old call from the program, reducing the use-count of
992     // F.
993     CB.eraseFromParent();
994   }
995 
996   // Since we have now created the new function, splice the body of the old
997   // function right into the new function, leaving the old rotting hulk of the
998   // function empty.
999   NF->splice(NF->begin(), F);
1000 
1001   // Loop over the argument list, transferring uses of the old arguments over to
1002   // the new arguments, also transferring over the names as well.
1003   ArgI = 0;
1004   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
1005                               I2 = NF->arg_begin();
1006        I != E; ++I, ++ArgI)
1007     if (ArgAlive[ArgI]) {
1008       // If this is a live argument, move the name and users over to the new
1009       // version.
1010       I->replaceAllUsesWith(&*I2);
1011       I2->takeName(&*I);
1012       ++I2;
1013     } else {
1014       // If this argument is dead, replace any uses of it with poison
1015       // (any non-debug value uses will get removed later on).
1016       if (!I->getType()->isX86_MMXTy())
1017         I->replaceAllUsesWith(PoisonValue::get(I->getType()));
1018     }
1019 
1020   // If we change the return value of the function we must rewrite any return
1021   // instructions.  Check this now.
1022   if (F->getReturnType() != NF->getReturnType())
1023     for (BasicBlock &BB : *NF)
1024       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
1025         IRBuilder<NoFolder> IRB(RI);
1026         Value *RetVal = nullptr;
1027 
1028         if (!NFTy->getReturnType()->isVoidTy()) {
1029           assert(RetTy->isStructTy() || RetTy->isArrayTy());
1030           // The original return value was a struct or array, insert
1031           // extractvalue/insertvalue chains to extract only the values we need
1032           // to return and insert them into our new result.
1033           // This does generate messy code, but we'll let it to instcombine to
1034           // clean that up.
1035           Value *OldRet = RI->getOperand(0);
1036           // Start out building up our return value from poison
1037           RetVal = PoisonValue::get(NRetTy);
1038           for (unsigned RetI = 0; RetI != RetCount; ++RetI)
1039             if (NewRetIdxs[RetI] != -1) {
1040               Value *EV = IRB.CreateExtractValue(OldRet, RetI, "oldret");
1041 
1042               if (RetTypes.size() > 1) {
1043                 // We're still returning a struct, so reinsert the value into
1044                 // our new return value at the new index
1045 
1046                 RetVal = IRB.CreateInsertValue(RetVal, EV, NewRetIdxs[RetI],
1047                                                "newret");
1048               } else {
1049                 // We are now only returning a simple value, so just return the
1050                 // extracted value.
1051                 RetVal = EV;
1052               }
1053             }
1054         }
1055         // Replace the return instruction with one returning the new return
1056         // value (possibly 0 if we became void).
1057         auto *NewRet = ReturnInst::Create(F->getContext(), RetVal, RI);
1058         NewRet->setDebugLoc(RI->getDebugLoc());
1059         RI->eraseFromParent();
1060       }
1061 
1062   // Clone metadata from the old function, including debug info descriptor.
1063   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1064   F->getAllMetadata(MDs);
1065   for (auto [KindID, Node] : MDs)
1066     NF->addMetadata(KindID, *Node);
1067 
1068   // If either the return value(s) or argument(s) are removed, then probably the
1069   // function does not follow standard calling conventions anymore. Hence, add
1070   // DW_CC_nocall to DISubroutineType to inform debugger that it may not be safe
1071   // to call this function or try to interpret the return value.
1072   if (NFTy != FTy && NF->getSubprogram()) {
1073     DISubprogram *SP = NF->getSubprogram();
1074     auto Temp = SP->getType()->cloneWithCC(llvm::dwarf::DW_CC_nocall);
1075     SP->replaceType(MDNode::replaceWithPermanent(std::move(Temp)));
1076   }
1077 
1078   // Now that the old function is dead, delete it.
1079   F->eraseFromParent();
1080 
1081   return true;
1082 }
1083 
1084 PreservedAnalyses DeadArgumentEliminationPass::run(Module &M,
1085                                                    ModuleAnalysisManager &) {
1086   bool Changed = false;
1087 
1088   // First pass: Do a simple check to see if any functions can have their "..."
1089   // removed.  We can do this if they never call va_start.  This loop cannot be
1090   // fused with the next loop, because deleting a function invalidates
1091   // information computed while surveying other functions.
1092   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n");
1093   for (Function &F : llvm::make_early_inc_range(M))
1094     if (F.getFunctionType()->isVarArg())
1095       Changed |= deleteDeadVarargs(F);
1096 
1097   // Second phase: Loop through the module, determining which arguments are
1098   // live. We assume all arguments are dead unless proven otherwise (allowing us
1099   // to determine that dead arguments passed into recursive functions are dead).
1100   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n");
1101   for (auto &F : M)
1102     surveyFunction(F);
1103 
1104   // Now, remove all dead arguments and return values from each function in
1105   // turn.  We use make_early_inc_range here because functions will probably get
1106   // removed (i.e. replaced by new ones).
1107   for (Function &F : llvm::make_early_inc_range(M))
1108     Changed |= removeDeadStuffFromFunction(&F);
1109 
1110   // Finally, look for any unused parameters in functions with non-local
1111   // linkage and replace the passed in parameters with poison.
1112   for (auto &F : M)
1113     Changed |= removeDeadArgumentsFromCallers(F);
1114 
1115   if (!Changed)
1116     return PreservedAnalyses::all();
1117   return PreservedAnalyses::none();
1118 }
1119