1 //===- FunctionSpecialization.cpp - Function Specialization ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This specialises functions with constant parameters. Constant parameters
10 // like function pointers and constant globals are propagated to the callee by
11 // specializing the function. The main benefit of this pass at the moment is
12 // that indirect calls are transformed into direct calls, which provides inline
13 // opportunities that the inliner would not have been able to achieve. That's
14 // why function specialisation is run before the inliner in the optimisation
15 // pipeline; that is by design. Otherwise, we would only benefit from constant
16 // passing, which is a valid use-case too, but hasn't been explored much in
17 // terms of performance uplifts, cost-model and compile-time impact.
18 //
19 // Current limitations:
20 // - It does not yet handle integer ranges. We do support "literal constants",
21 //   but that's off by default under an option.
22 // - The cost-model could be further looked into (it mainly focuses on inlining
23 //   benefits),
24 //
25 // Ideas:
26 // - With a function specialization attribute for arguments, we could have
27 //   a direct way to steer function specialization, avoiding the cost-model,
28 //   and thus control compile-times / code-size.
29 //
30 // Todos:
31 // - Specializing recursive functions relies on running the transformation a
32 //   number of times, which is controlled by option
33 //   `func-specialization-max-iters`. Thus, increasing this value and the
34 //   number of iterations, will linearly increase the number of times recursive
35 //   functions get specialized, see also the discussion in
36 //   https://reviews.llvm.org/D106426 for details. Perhaps there is a
37 //   compile-time friendlier way to control/limit the number of specialisations
38 //   for recursive functions.
39 // - Don't transform the function if function specialization does not trigger;
40 //   the SCCPSolver may make IR changes.
41 //
42 // References:
43 // - 2021 LLVM Dev Mtg “Introducing function specialisation, and can we enable
44 //   it by default?”, https://www.youtube.com/watch?v=zJiCjeXgV5Q
45 //
46 //===----------------------------------------------------------------------===//
47 
48 #include "llvm/Transforms/IPO/FunctionSpecialization.h"
49 #include "llvm/ADT/Statistic.h"
50 #include "llvm/Analysis/CodeMetrics.h"
51 #include "llvm/Analysis/ConstantFolding.h"
52 #include "llvm/Analysis/InlineCost.h"
53 #include "llvm/Analysis/InstructionSimplify.h"
54 #include "llvm/Analysis/TargetTransformInfo.h"
55 #include "llvm/Analysis/ValueLattice.h"
56 #include "llvm/Analysis/ValueLatticeUtils.h"
57 #include "llvm/Analysis/ValueTracking.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/Transforms/Scalar/SCCP.h"
60 #include "llvm/Transforms/Utils/Cloning.h"
61 #include "llvm/Transforms/Utils/SCCPSolver.h"
62 #include "llvm/Transforms/Utils/SizeOpts.h"
63 #include <cmath>
64 
65 using namespace llvm;
66 
67 #define DEBUG_TYPE "function-specialization"
68 
69 STATISTIC(NumSpecsCreated, "Number of specializations created");
70 
71 static cl::opt<bool> ForceSpecialization(
72     "force-specialization", cl::init(false), cl::Hidden, cl::desc(
73     "Force function specialization for every call site with a constant "
74     "argument"));
75 
76 static cl::opt<unsigned> MaxClones(
77     "funcspec-max-clones", cl::init(3), cl::Hidden, cl::desc(
78     "The maximum number of clones allowed for a single function "
79     "specialization"));
80 
81 static cl::opt<unsigned> MaxIncomingPhiValues(
82     "funcspec-max-incoming-phi-values", cl::init(4), cl::Hidden, cl::desc(
83     "The maximum number of incoming values a PHI node can have to be "
84     "considered during the specialization bonus estimation"));
85 
86 static cl::opt<unsigned> MinFunctionSize(
87     "funcspec-min-function-size", cl::init(100), cl::Hidden, cl::desc(
88     "Don't specialize functions that have less than this number of "
89     "instructions"));
90 
91 static cl::opt<bool> SpecializeOnAddress(
92     "funcspec-on-address", cl::init(false), cl::Hidden, cl::desc(
93     "Enable function specialization on the address of global values"));
94 
95 // Disabled by default as it can significantly increase compilation times.
96 //
97 // https://llvm-compile-time-tracker.com
98 // https://github.com/nikic/llvm-compile-time-tracker
99 static cl::opt<bool> SpecializeLiteralConstant(
100     "funcspec-for-literal-constant", cl::init(false), cl::Hidden, cl::desc(
101     "Enable specialization of functions that take a literal constant as an "
102     "argument"));
103 
104 // Estimates the instruction cost of all the basic blocks in \p WorkList.
105 // The successors of such blocks are added to the list as long as they are
106 // executable and they have a unique predecessor. \p WorkList represents
107 // the basic blocks of a specialization which become dead once we replace
108 // instructions that are known to be constants. The aim here is to estimate
109 // the combination of size and latency savings in comparison to the non
110 // specialized version of the function.
111 static Cost estimateBasicBlocks(SmallVectorImpl<BasicBlock *> &WorkList,
112                                 DenseSet<BasicBlock *> &DeadBlocks,
113                                 ConstMap &KnownConstants, SCCPSolver &Solver,
114                                 BlockFrequencyInfo &BFI,
115                                 TargetTransformInfo &TTI) {
116   Cost Bonus = 0;
117 
118   // Accumulate the instruction cost of each basic block weighted by frequency.
119   while (!WorkList.empty()) {
120     BasicBlock *BB = WorkList.pop_back_val();
121 
122     uint64_t Weight = BFI.getBlockFreq(BB).getFrequency() /
123                       BFI.getEntryFreq();
124     if (!Weight)
125       continue;
126 
127     // These blocks are considered dead as far as the InstCostVisitor is
128     // concerned. They haven't been proven dead yet by the Solver, but
129     // may become if we propagate the constant specialization arguments.
130     if (!DeadBlocks.insert(BB).second)
131       continue;
132 
133     for (Instruction &I : *BB) {
134       // Disregard SSA copies.
135       if (auto *II = dyn_cast<IntrinsicInst>(&I))
136         if (II->getIntrinsicID() == Intrinsic::ssa_copy)
137           continue;
138       // If it's a known constant we have already accounted for it.
139       if (KnownConstants.contains(&I))
140         continue;
141 
142       Bonus += Weight *
143           TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
144 
145       LLVM_DEBUG(dbgs() << "FnSpecialization:     Bonus " << Bonus
146                         << " after user " << I << "\n");
147     }
148 
149     // Keep adding dead successors to the list as long as they are
150     // executable and they have a unique predecessor.
151     for (BasicBlock *SuccBB : successors(BB))
152       if (Solver.isBlockExecutable(SuccBB) &&
153           SuccBB->getUniquePredecessor() == BB)
154         WorkList.push_back(SuccBB);
155   }
156   return Bonus;
157 }
158 
159 static Constant *findConstantFor(Value *V, ConstMap &KnownConstants) {
160   if (auto *C = dyn_cast<Constant>(V))
161     return C;
162   if (auto It = KnownConstants.find(V); It != KnownConstants.end())
163     return It->second;
164   return nullptr;
165 }
166 
167 Cost InstCostVisitor::getBonusFromPendingPHIs() {
168   Cost Bonus = 0;
169   while (!PendingPHIs.empty()) {
170     Instruction *Phi = PendingPHIs.pop_back_val();
171     Bonus += getUserBonus(Phi);
172   }
173   return Bonus;
174 }
175 
176 Cost InstCostVisitor::getUserBonus(Instruction *User, Value *Use, Constant *C) {
177   // Cache the iterator before visiting.
178   LastVisited = Use ? KnownConstants.insert({Use, C}).first
179                     : KnownConstants.end();
180 
181   if (auto *I = dyn_cast<SwitchInst>(User))
182     return estimateSwitchInst(*I);
183 
184   if (auto *I = dyn_cast<BranchInst>(User))
185     return estimateBranchInst(*I);
186 
187   C = visit(*User);
188   if (!C)
189     return 0;
190 
191   KnownConstants.insert({User, C});
192 
193   uint64_t Weight = BFI.getBlockFreq(User->getParent()).getFrequency() /
194                     BFI.getEntryFreq();
195   if (!Weight)
196     return 0;
197 
198   Cost Bonus = Weight *
199       TTI.getInstructionCost(User, TargetTransformInfo::TCK_SizeAndLatency);
200 
201   LLVM_DEBUG(dbgs() << "FnSpecialization:     Bonus " << Bonus
202                     << " for user " << *User << "\n");
203 
204   for (auto *U : User->users())
205     if (auto *UI = dyn_cast<Instruction>(U))
206       if (UI != User && Solver.isBlockExecutable(UI->getParent()))
207         Bonus += getUserBonus(UI, User, C);
208 
209   return Bonus;
210 }
211 
212 Cost InstCostVisitor::estimateSwitchInst(SwitchInst &I) {
213   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
214 
215   if (I.getCondition() != LastVisited->first)
216     return 0;
217 
218   auto *C = dyn_cast<ConstantInt>(LastVisited->second);
219   if (!C)
220     return 0;
221 
222   BasicBlock *Succ = I.findCaseValue(C)->getCaseSuccessor();
223   // Initialize the worklist with the dead basic blocks. These are the
224   // destination labels which are different from the one corresponding
225   // to \p C. They should be executable and have a unique predecessor.
226   SmallVector<BasicBlock *> WorkList;
227   for (const auto &Case : I.cases()) {
228     BasicBlock *BB = Case.getCaseSuccessor();
229     if (BB == Succ || !Solver.isBlockExecutable(BB) ||
230         BB->getUniquePredecessor() != I.getParent())
231       continue;
232     WorkList.push_back(BB);
233   }
234 
235   return estimateBasicBlocks(WorkList, DeadBlocks, KnownConstants, Solver, BFI,
236                              TTI);
237 }
238 
239 Cost InstCostVisitor::estimateBranchInst(BranchInst &I) {
240   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
241 
242   if (I.getCondition() != LastVisited->first)
243     return 0;
244 
245   BasicBlock *Succ = I.getSuccessor(LastVisited->second->isOneValue());
246   // Initialize the worklist with the dead successor as long as
247   // it is executable and has a unique predecessor.
248   SmallVector<BasicBlock *> WorkList;
249   if (Solver.isBlockExecutable(Succ) &&
250       Succ->getUniquePredecessor() == I.getParent())
251     WorkList.push_back(Succ);
252 
253   return estimateBasicBlocks(WorkList, DeadBlocks, KnownConstants, Solver, BFI,
254                              TTI);
255 }
256 
257 Constant *InstCostVisitor::visitPHINode(PHINode &I) {
258   if (I.getNumIncomingValues() > MaxIncomingPhiValues)
259     return nullptr;
260 
261   bool Inserted = VisitedPHIs.insert(&I).second;
262   Constant *Const = nullptr;
263 
264   for (unsigned Idx = 0, E = I.getNumIncomingValues(); Idx != E; ++Idx) {
265     Value *V = I.getIncomingValue(Idx);
266     if (auto *Inst = dyn_cast<Instruction>(V))
267       if (Inst == &I || DeadBlocks.contains(I.getIncomingBlock(Idx)))
268         continue;
269     Constant *C = findConstantFor(V, KnownConstants);
270     if (!C) {
271       if (Inserted)
272         PendingPHIs.push_back(&I);
273       return nullptr;
274     }
275     if (!Const)
276       Const = C;
277     else if (C != Const)
278       return nullptr;
279   }
280   return Const;
281 }
282 
283 Constant *InstCostVisitor::visitFreezeInst(FreezeInst &I) {
284   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
285 
286   if (isGuaranteedNotToBeUndefOrPoison(LastVisited->second))
287     return LastVisited->second;
288   return nullptr;
289 }
290 
291 Constant *InstCostVisitor::visitCallBase(CallBase &I) {
292   Function *F = I.getCalledFunction();
293   if (!F || !canConstantFoldCallTo(&I, F))
294     return nullptr;
295 
296   SmallVector<Constant *, 8> Operands;
297   Operands.reserve(I.getNumOperands());
298 
299   for (unsigned Idx = 0, E = I.getNumOperands() - 1; Idx != E; ++Idx) {
300     Value *V = I.getOperand(Idx);
301     Constant *C = findConstantFor(V, KnownConstants);
302     if (!C)
303       return nullptr;
304     Operands.push_back(C);
305   }
306 
307   auto Ops = ArrayRef(Operands.begin(), Operands.end());
308   return ConstantFoldCall(&I, F, Ops);
309 }
310 
311 Constant *InstCostVisitor::visitLoadInst(LoadInst &I) {
312   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
313 
314   if (isa<ConstantPointerNull>(LastVisited->second))
315     return nullptr;
316   return ConstantFoldLoadFromConstPtr(LastVisited->second, I.getType(), DL);
317 }
318 
319 Constant *InstCostVisitor::visitGetElementPtrInst(GetElementPtrInst &I) {
320   SmallVector<Constant *, 8> Operands;
321   Operands.reserve(I.getNumOperands());
322 
323   for (unsigned Idx = 0, E = I.getNumOperands(); Idx != E; ++Idx) {
324     Value *V = I.getOperand(Idx);
325     Constant *C = findConstantFor(V, KnownConstants);
326     if (!C)
327       return nullptr;
328     Operands.push_back(C);
329   }
330 
331   auto Ops = ArrayRef(Operands.begin(), Operands.end());
332   return ConstantFoldInstOperands(&I, Ops, DL);
333 }
334 
335 Constant *InstCostVisitor::visitSelectInst(SelectInst &I) {
336   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
337 
338   if (I.getCondition() != LastVisited->first)
339     return nullptr;
340 
341   Value *V = LastVisited->second->isZeroValue() ? I.getFalseValue()
342                                                 : I.getTrueValue();
343   Constant *C = findConstantFor(V, KnownConstants);
344   return C;
345 }
346 
347 Constant *InstCostVisitor::visitCastInst(CastInst &I) {
348   return ConstantFoldCastOperand(I.getOpcode(), LastVisited->second,
349                                  I.getType(), DL);
350 }
351 
352 Constant *InstCostVisitor::visitCmpInst(CmpInst &I) {
353   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
354 
355   bool Swap = I.getOperand(1) == LastVisited->first;
356   Value *V = Swap ? I.getOperand(0) : I.getOperand(1);
357   Constant *Other = findConstantFor(V, KnownConstants);
358   if (!Other)
359     return nullptr;
360 
361   Constant *Const = LastVisited->second;
362   return Swap ?
363         ConstantFoldCompareInstOperands(I.getPredicate(), Other, Const, DL)
364       : ConstantFoldCompareInstOperands(I.getPredicate(), Const, Other, DL);
365 }
366 
367 Constant *InstCostVisitor::visitUnaryOperator(UnaryOperator &I) {
368   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
369 
370   return ConstantFoldUnaryOpOperand(I.getOpcode(), LastVisited->second, DL);
371 }
372 
373 Constant *InstCostVisitor::visitBinaryOperator(BinaryOperator &I) {
374   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
375 
376   bool Swap = I.getOperand(1) == LastVisited->first;
377   Value *V = Swap ? I.getOperand(0) : I.getOperand(1);
378   Constant *Other = findConstantFor(V, KnownConstants);
379   if (!Other)
380     return nullptr;
381 
382   Constant *Const = LastVisited->second;
383   return dyn_cast_or_null<Constant>(Swap ?
384         simplifyBinOp(I.getOpcode(), Other, Const, SimplifyQuery(DL))
385       : simplifyBinOp(I.getOpcode(), Const, Other, SimplifyQuery(DL)));
386 }
387 
388 Constant *FunctionSpecializer::getPromotableAlloca(AllocaInst *Alloca,
389                                                    CallInst *Call) {
390   Value *StoreValue = nullptr;
391   for (auto *User : Alloca->users()) {
392     // We can't use llvm::isAllocaPromotable() as that would fail because of
393     // the usage in the CallInst, which is what we check here.
394     if (User == Call)
395       continue;
396     if (auto *Bitcast = dyn_cast<BitCastInst>(User)) {
397       if (!Bitcast->hasOneUse() || *Bitcast->user_begin() != Call)
398         return nullptr;
399       continue;
400     }
401 
402     if (auto *Store = dyn_cast<StoreInst>(User)) {
403       // This is a duplicate store, bail out.
404       if (StoreValue || Store->isVolatile())
405         return nullptr;
406       StoreValue = Store->getValueOperand();
407       continue;
408     }
409     // Bail if there is any other unknown usage.
410     return nullptr;
411   }
412 
413   if (!StoreValue)
414     return nullptr;
415 
416   return getCandidateConstant(StoreValue);
417 }
418 
419 // A constant stack value is an AllocaInst that has a single constant
420 // value stored to it. Return this constant if such an alloca stack value
421 // is a function argument.
422 Constant *FunctionSpecializer::getConstantStackValue(CallInst *Call,
423                                                      Value *Val) {
424   if (!Val)
425     return nullptr;
426   Val = Val->stripPointerCasts();
427   if (auto *ConstVal = dyn_cast<ConstantInt>(Val))
428     return ConstVal;
429   auto *Alloca = dyn_cast<AllocaInst>(Val);
430   if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy())
431     return nullptr;
432   return getPromotableAlloca(Alloca, Call);
433 }
434 
435 // To support specializing recursive functions, it is important to propagate
436 // constant arguments because after a first iteration of specialisation, a
437 // reduced example may look like this:
438 //
439 //     define internal void @RecursiveFn(i32* arg1) {
440 //       %temp = alloca i32, align 4
441 //       store i32 2 i32* %temp, align 4
442 //       call void @RecursiveFn.1(i32* nonnull %temp)
443 //       ret void
444 //     }
445 //
446 // Before a next iteration, we need to propagate the constant like so
447 // which allows further specialization in next iterations.
448 //
449 //     @funcspec.arg = internal constant i32 2
450 //
451 //     define internal void @someFunc(i32* arg1) {
452 //       call void @otherFunc(i32* nonnull @funcspec.arg)
453 //       ret void
454 //     }
455 //
456 // See if there are any new constant values for the callers of \p F via
457 // stack variables and promote them to global variables.
458 void FunctionSpecializer::promoteConstantStackValues(Function *F) {
459   for (User *U : F->users()) {
460 
461     auto *Call = dyn_cast<CallInst>(U);
462     if (!Call)
463       continue;
464 
465     if (!Solver.isBlockExecutable(Call->getParent()))
466       continue;
467 
468     for (const Use &U : Call->args()) {
469       unsigned Idx = Call->getArgOperandNo(&U);
470       Value *ArgOp = Call->getArgOperand(Idx);
471       Type *ArgOpType = ArgOp->getType();
472 
473       if (!Call->onlyReadsMemory(Idx) || !ArgOpType->isPointerTy())
474         continue;
475 
476       auto *ConstVal = getConstantStackValue(Call, ArgOp);
477       if (!ConstVal)
478         continue;
479 
480       Value *GV = new GlobalVariable(M, ConstVal->getType(), true,
481                                      GlobalValue::InternalLinkage, ConstVal,
482                                      "funcspec.arg");
483       if (ArgOpType != ConstVal->getType())
484         GV = ConstantExpr::getBitCast(cast<Constant>(GV), ArgOpType);
485 
486       Call->setArgOperand(Idx, GV);
487     }
488   }
489 }
490 
491 // ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics
492 // interfere with the promoteConstantStackValues() optimization.
493 static void removeSSACopy(Function &F) {
494   for (BasicBlock &BB : F) {
495     for (Instruction &Inst : llvm::make_early_inc_range(BB)) {
496       auto *II = dyn_cast<IntrinsicInst>(&Inst);
497       if (!II)
498         continue;
499       if (II->getIntrinsicID() != Intrinsic::ssa_copy)
500         continue;
501       Inst.replaceAllUsesWith(II->getOperand(0));
502       Inst.eraseFromParent();
503     }
504   }
505 }
506 
507 /// Remove any ssa_copy intrinsics that may have been introduced.
508 void FunctionSpecializer::cleanUpSSA() {
509   for (Function *F : Specializations)
510     removeSSACopy(*F);
511 }
512 
513 
514 template <> struct llvm::DenseMapInfo<SpecSig> {
515   static inline SpecSig getEmptyKey() { return {~0U, {}}; }
516 
517   static inline SpecSig getTombstoneKey() { return {~1U, {}}; }
518 
519   static unsigned getHashValue(const SpecSig &S) {
520     return static_cast<unsigned>(hash_value(S));
521   }
522 
523   static bool isEqual(const SpecSig &LHS, const SpecSig &RHS) {
524     return LHS == RHS;
525   }
526 };
527 
528 FunctionSpecializer::~FunctionSpecializer() {
529   LLVM_DEBUG(
530     if (NumSpecsCreated > 0)
531       dbgs() << "FnSpecialization: Created " << NumSpecsCreated
532              << " specializations in module " << M.getName() << "\n");
533   // Eliminate dead code.
534   removeDeadFunctions();
535   cleanUpSSA();
536 }
537 
538 /// Attempt to specialize functions in the module to enable constant
539 /// propagation across function boundaries.
540 ///
541 /// \returns true if at least one function is specialized.
542 bool FunctionSpecializer::run() {
543   // Find possible specializations for each function.
544   SpecMap SM;
545   SmallVector<Spec, 32> AllSpecs;
546   unsigned NumCandidates = 0;
547   for (Function &F : M) {
548     if (!isCandidateFunction(&F))
549       continue;
550 
551     auto [It, Inserted] = FunctionMetrics.try_emplace(&F);
552     CodeMetrics &Metrics = It->second;
553     //Analyze the function.
554     if (Inserted) {
555       SmallPtrSet<const Value *, 32> EphValues;
556       CodeMetrics::collectEphemeralValues(&F, &GetAC(F), EphValues);
557       for (BasicBlock &BB : F)
558         Metrics.analyzeBasicBlock(&BB, GetTTI(F), EphValues);
559     }
560 
561     // If the code metrics reveal that we shouldn't duplicate the function,
562     // or if the code size implies that this function is easy to get inlined,
563     // then we shouldn't specialize it.
564     if (Metrics.notDuplicatable || !Metrics.NumInsts.isValid() ||
565         (!ForceSpecialization && !F.hasFnAttribute(Attribute::NoInline) &&
566          Metrics.NumInsts < MinFunctionSize))
567       continue;
568 
569     // TODO: For now only consider recursive functions when running multiple
570     // times. This should change if specialization on literal constants gets
571     // enabled.
572     if (!Inserted && !Metrics.isRecursive && !SpecializeLiteralConstant)
573       continue;
574 
575     LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization cost for "
576                       << F.getName() << " is " << Metrics.NumInsts << "\n");
577 
578     if (Inserted && Metrics.isRecursive)
579       promoteConstantStackValues(&F);
580 
581     if (!findSpecializations(&F, Metrics.NumInsts, AllSpecs, SM)) {
582       LLVM_DEBUG(
583           dbgs() << "FnSpecialization: No possible specializations found for "
584                  << F.getName() << "\n");
585       continue;
586     }
587 
588     ++NumCandidates;
589   }
590 
591   if (!NumCandidates) {
592     LLVM_DEBUG(
593         dbgs()
594         << "FnSpecialization: No possible specializations found in module\n");
595     return false;
596   }
597 
598   // Choose the most profitable specialisations, which fit in the module
599   // specialization budget, which is derived from maximum number of
600   // specializations per specialization candidate function.
601   auto CompareScore = [&AllSpecs](unsigned I, unsigned J) {
602     return AllSpecs[I].Score > AllSpecs[J].Score;
603   };
604   const unsigned NSpecs =
605       std::min(NumCandidates * MaxClones, unsigned(AllSpecs.size()));
606   SmallVector<unsigned> BestSpecs(NSpecs + 1);
607   std::iota(BestSpecs.begin(), BestSpecs.begin() + NSpecs, 0);
608   if (AllSpecs.size() > NSpecs) {
609     LLVM_DEBUG(dbgs() << "FnSpecialization: Number of candidates exceed "
610                       << "the maximum number of clones threshold.\n"
611                       << "FnSpecialization: Specializing the "
612                       << NSpecs
613                       << " most profitable candidates.\n");
614     std::make_heap(BestSpecs.begin(), BestSpecs.begin() + NSpecs, CompareScore);
615     for (unsigned I = NSpecs, N = AllSpecs.size(); I < N; ++I) {
616       BestSpecs[NSpecs] = I;
617       std::push_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore);
618       std::pop_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore);
619     }
620   }
621 
622   LLVM_DEBUG(dbgs() << "FnSpecialization: List of specializations \n";
623              for (unsigned I = 0; I < NSpecs; ++I) {
624                const Spec &S = AllSpecs[BestSpecs[I]];
625                dbgs() << "FnSpecialization: Function " << S.F->getName()
626                       << " , score " << S.Score << "\n";
627                for (const ArgInfo &Arg : S.Sig.Args)
628                  dbgs() << "FnSpecialization:   FormalArg = "
629                         << Arg.Formal->getNameOrAsOperand()
630                         << ", ActualArg = " << Arg.Actual->getNameOrAsOperand()
631                         << "\n";
632              });
633 
634   // Create the chosen specializations.
635   SmallPtrSet<Function *, 8> OriginalFuncs;
636   SmallVector<Function *> Clones;
637   for (unsigned I = 0; I < NSpecs; ++I) {
638     Spec &S = AllSpecs[BestSpecs[I]];
639     S.Clone = createSpecialization(S.F, S.Sig);
640 
641     // Update the known call sites to call the clone.
642     for (CallBase *Call : S.CallSites) {
643       LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *Call
644                         << " to call " << S.Clone->getName() << "\n");
645       Call->setCalledFunction(S.Clone);
646     }
647 
648     Clones.push_back(S.Clone);
649     OriginalFuncs.insert(S.F);
650   }
651 
652   Solver.solveWhileResolvedUndefsIn(Clones);
653 
654   // Update the rest of the call sites - these are the recursive calls, calls
655   // to discarded specialisations and calls that may match a specialisation
656   // after the solver runs.
657   for (Function *F : OriginalFuncs) {
658     auto [Begin, End] = SM[F];
659     updateCallSites(F, AllSpecs.begin() + Begin, AllSpecs.begin() + End);
660   }
661 
662   for (Function *F : Clones) {
663     if (F->getReturnType()->isVoidTy())
664       continue;
665     if (F->getReturnType()->isStructTy()) {
666       auto *STy = cast<StructType>(F->getReturnType());
667       if (!Solver.isStructLatticeConstant(F, STy))
668         continue;
669     } else {
670       auto It = Solver.getTrackedRetVals().find(F);
671       assert(It != Solver.getTrackedRetVals().end() &&
672              "Return value ought to be tracked");
673       if (SCCPSolver::isOverdefined(It->second))
674         continue;
675     }
676     for (User *U : F->users()) {
677       if (auto *CS = dyn_cast<CallBase>(U)) {
678         //The user instruction does not call our function.
679         if (CS->getCalledFunction() != F)
680           continue;
681         Solver.resetLatticeValueFor(CS);
682       }
683     }
684   }
685 
686   // Rerun the solver to notify the users of the modified callsites.
687   Solver.solveWhileResolvedUndefs();
688 
689   for (Function *F : OriginalFuncs)
690     if (FunctionMetrics[F].isRecursive)
691       promoteConstantStackValues(F);
692 
693   return true;
694 }
695 
696 void FunctionSpecializer::removeDeadFunctions() {
697   for (Function *F : FullySpecialized) {
698     LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead function "
699                       << F->getName() << "\n");
700     if (FAM)
701       FAM->clear(*F, F->getName());
702     F->eraseFromParent();
703   }
704   FullySpecialized.clear();
705 }
706 
707 /// Clone the function \p F and remove the ssa_copy intrinsics added by
708 /// the SCCPSolver in the cloned version.
709 static Function *cloneCandidateFunction(Function *F) {
710   ValueToValueMapTy Mappings;
711   Function *Clone = CloneFunction(F, Mappings);
712   removeSSACopy(*Clone);
713   return Clone;
714 }
715 
716 bool FunctionSpecializer::findSpecializations(Function *F, Cost SpecCost,
717                                               SmallVectorImpl<Spec> &AllSpecs,
718                                               SpecMap &SM) {
719   // A mapping from a specialisation signature to the index of the respective
720   // entry in the all specialisation array. Used to ensure uniqueness of
721   // specialisations.
722   DenseMap<SpecSig, unsigned> UniqueSpecs;
723 
724   // Get a list of interesting arguments.
725   SmallVector<Argument *> Args;
726   for (Argument &Arg : F->args())
727     if (isArgumentInteresting(&Arg))
728       Args.push_back(&Arg);
729 
730   if (Args.empty())
731     return false;
732 
733   for (User *U : F->users()) {
734     if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
735       continue;
736     auto &CS = *cast<CallBase>(U);
737 
738     // The user instruction does not call our function.
739     if (CS.getCalledFunction() != F)
740       continue;
741 
742     // If the call site has attribute minsize set, that callsite won't be
743     // specialized.
744     if (CS.hasFnAttr(Attribute::MinSize))
745       continue;
746 
747     // If the parent of the call site will never be executed, we don't need
748     // to worry about the passed value.
749     if (!Solver.isBlockExecutable(CS.getParent()))
750       continue;
751 
752     // Examine arguments and create a specialisation candidate from the
753     // constant operands of this call site.
754     SpecSig S;
755     for (Argument *A : Args) {
756       Constant *C = getCandidateConstant(CS.getArgOperand(A->getArgNo()));
757       if (!C)
758         continue;
759       LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting argument "
760                         << A->getName() << " : " << C->getNameOrAsOperand()
761                         << "\n");
762       S.Args.push_back({A, C});
763     }
764 
765     if (S.Args.empty())
766       continue;
767 
768     // Check if we have encountered the same specialisation already.
769     if (auto It = UniqueSpecs.find(S); It != UniqueSpecs.end()) {
770       // Existing specialisation. Add the call to the list to rewrite, unless
771       // it's a recursive call. A specialisation, generated because of a
772       // recursive call may end up as not the best specialisation for all
773       // the cloned instances of this call, which result from specialising
774       // functions. Hence we don't rewrite the call directly, but match it with
775       // the best specialisation once all specialisations are known.
776       if (CS.getFunction() == F)
777         continue;
778       const unsigned Index = It->second;
779       AllSpecs[Index].CallSites.push_back(&CS);
780     } else {
781       // Calculate the specialisation gain.
782       Cost Score = 0;
783       InstCostVisitor Visitor = getInstCostVisitorFor(F);
784       for (ArgInfo &A : S.Args)
785         Score += getSpecializationBonus(A.Formal, A.Actual, Visitor);
786       Score += Visitor.getBonusFromPendingPHIs();
787 
788       LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization score = "
789                         << Score << "\n");
790 
791       // Discard unprofitable specialisations.
792       if (!ForceSpecialization && Score <= SpecCost)
793         continue;
794 
795       // Create a new specialisation entry.
796       auto &Spec = AllSpecs.emplace_back(F, S, Score);
797       if (CS.getFunction() != F)
798         Spec.CallSites.push_back(&CS);
799       const unsigned Index = AllSpecs.size() - 1;
800       UniqueSpecs[S] = Index;
801       if (auto [It, Inserted] = SM.try_emplace(F, Index, Index + 1); !Inserted)
802         It->second.second = Index + 1;
803     }
804   }
805 
806   return !UniqueSpecs.empty();
807 }
808 
809 bool FunctionSpecializer::isCandidateFunction(Function *F) {
810   if (F->isDeclaration() || F->arg_empty())
811     return false;
812 
813   if (F->hasFnAttribute(Attribute::NoDuplicate))
814     return false;
815 
816   // Do not specialize the cloned function again.
817   if (Specializations.contains(F))
818     return false;
819 
820   // If we're optimizing the function for size, we shouldn't specialize it.
821   if (F->hasOptSize() ||
822       shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass))
823     return false;
824 
825   // Exit if the function is not executable. There's no point in specializing
826   // a dead function.
827   if (!Solver.isBlockExecutable(&F->getEntryBlock()))
828     return false;
829 
830   // It wastes time to specialize a function which would get inlined finally.
831   if (F->hasFnAttribute(Attribute::AlwaysInline))
832     return false;
833 
834   LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName()
835                     << "\n");
836   return true;
837 }
838 
839 Function *FunctionSpecializer::createSpecialization(Function *F,
840                                                     const SpecSig &S) {
841   Function *Clone = cloneCandidateFunction(F);
842 
843   // The original function does not neccessarily have internal linkage, but the
844   // clone must.
845   Clone->setLinkage(GlobalValue::InternalLinkage);
846 
847   // Initialize the lattice state of the arguments of the function clone,
848   // marking the argument on which we specialized the function constant
849   // with the given value.
850   Solver.setLatticeValueForSpecializationArguments(Clone, S.Args);
851   Solver.markBlockExecutable(&Clone->front());
852   Solver.addArgumentTrackedFunction(Clone);
853   Solver.addTrackedFunction(Clone);
854 
855   // Mark all the specialized functions
856   Specializations.insert(Clone);
857   ++NumSpecsCreated;
858 
859   return Clone;
860 }
861 
862 /// Compute a bonus for replacing argument \p A with constant \p C.
863 Cost FunctionSpecializer::getSpecializationBonus(Argument *A, Constant *C,
864                                                  InstCostVisitor &Visitor) {
865   LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for constant: "
866                     << C->getNameOrAsOperand() << "\n");
867 
868   Cost TotalCost = 0;
869   for (auto *U : A->users())
870     if (auto *UI = dyn_cast<Instruction>(U))
871       if (Solver.isBlockExecutable(UI->getParent()))
872         TotalCost += Visitor.getUserBonus(UI, A, C);
873 
874   LLVM_DEBUG(dbgs() << "FnSpecialization:   Accumulated user bonus "
875                     << TotalCost << " for argument " << *A << "\n");
876 
877   // The below heuristic is only concerned with exposing inlining
878   // opportunities via indirect call promotion. If the argument is not a
879   // (potentially casted) function pointer, give up.
880   //
881   // TODO: Perhaps we should consider checking such inlining opportunities
882   // while traversing the users of the specialization arguments ?
883   Function *CalledFunction = dyn_cast<Function>(C->stripPointerCasts());
884   if (!CalledFunction)
885     return TotalCost;
886 
887   // Get TTI for the called function (used for the inline cost).
888   auto &CalleeTTI = (GetTTI)(*CalledFunction);
889 
890   // Look at all the call sites whose called value is the argument.
891   // Specializing the function on the argument would allow these indirect
892   // calls to be promoted to direct calls. If the indirect call promotion
893   // would likely enable the called function to be inlined, specializing is a
894   // good idea.
895   int Bonus = 0;
896   for (User *U : A->users()) {
897     if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
898       continue;
899     auto *CS = cast<CallBase>(U);
900     if (CS->getCalledOperand() != A)
901       continue;
902     if (CS->getFunctionType() != CalledFunction->getFunctionType())
903       continue;
904 
905     // Get the cost of inlining the called function at this call site. Note
906     // that this is only an estimate. The called function may eventually
907     // change in a way that leads to it not being inlined here, even though
908     // inlining looks profitable now. For example, one of its called
909     // functions may be inlined into it, making the called function too large
910     // to be inlined into this call site.
911     //
912     // We apply a boost for performing indirect call promotion by increasing
913     // the default threshold by the threshold for indirect calls.
914     auto Params = getInlineParams();
915     Params.DefaultThreshold += InlineConstants::IndirectCallThreshold;
916     InlineCost IC =
917         getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI);
918 
919     // We clamp the bonus for this call to be between zero and the default
920     // threshold.
921     if (IC.isAlways())
922       Bonus += Params.DefaultThreshold;
923     else if (IC.isVariable() && IC.getCostDelta() > 0)
924       Bonus += IC.getCostDelta();
925 
926     LLVM_DEBUG(dbgs() << "FnSpecialization:   Inlining bonus " << Bonus
927                       << " for user " << *U << "\n");
928   }
929 
930   return TotalCost + Bonus;
931 }
932 
933 /// Determine if it is possible to specialise the function for constant values
934 /// of the formal parameter \p A.
935 bool FunctionSpecializer::isArgumentInteresting(Argument *A) {
936   // No point in specialization if the argument is unused.
937   if (A->user_empty())
938     return false;
939 
940   Type *Ty = A->getType();
941   if (!Ty->isPointerTy() && (!SpecializeLiteralConstant ||
942       (!Ty->isIntegerTy() && !Ty->isFloatingPointTy() && !Ty->isStructTy())))
943     return false;
944 
945   // SCCP solver does not record an argument that will be constructed on
946   // stack.
947   if (A->hasByValAttr() && !A->getParent()->onlyReadsMemory())
948     return false;
949 
950   // For non-argument-tracked functions every argument is overdefined.
951   if (!Solver.isArgumentTrackedFunction(A->getParent()))
952     return true;
953 
954   // Check the lattice value and decide if we should attemt to specialize,
955   // based on this argument. No point in specialization, if the lattice value
956   // is already a constant.
957   bool IsOverdefined = Ty->isStructTy()
958     ? any_of(Solver.getStructLatticeValueFor(A), SCCPSolver::isOverdefined)
959     : SCCPSolver::isOverdefined(Solver.getLatticeValueFor(A));
960 
961   LLVM_DEBUG(
962     if (IsOverdefined)
963       dbgs() << "FnSpecialization: Found interesting parameter "
964              << A->getNameOrAsOperand() << "\n";
965     else
966       dbgs() << "FnSpecialization: Nothing to do, parameter "
967              << A->getNameOrAsOperand() << " is already constant\n";
968   );
969   return IsOverdefined;
970 }
971 
972 /// Check if the value \p V  (an actual argument) is a constant or can only
973 /// have a constant value. Return that constant.
974 Constant *FunctionSpecializer::getCandidateConstant(Value *V) {
975   if (isa<PoisonValue>(V))
976     return nullptr;
977 
978   // Select for possible specialisation values that are constants or
979   // are deduced to be constants or constant ranges with a single element.
980   Constant *C = dyn_cast<Constant>(V);
981   if (!C)
982     C = Solver.getConstantOrNull(V);
983 
984   // Don't specialize on (anything derived from) the address of a non-constant
985   // global variable, unless explicitly enabled.
986   if (C && C->getType()->isPointerTy() && !C->isNullValue())
987     if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C));
988         GV && !(GV->isConstant() || SpecializeOnAddress))
989       return nullptr;
990 
991   return C;
992 }
993 
994 void FunctionSpecializer::updateCallSites(Function *F, const Spec *Begin,
995                                           const Spec *End) {
996   // Collect the call sites that need updating.
997   SmallVector<CallBase *> ToUpdate;
998   for (User *U : F->users())
999     if (auto *CS = dyn_cast<CallBase>(U);
1000         CS && CS->getCalledFunction() == F &&
1001         Solver.isBlockExecutable(CS->getParent()))
1002       ToUpdate.push_back(CS);
1003 
1004   unsigned NCallsLeft = ToUpdate.size();
1005   for (CallBase *CS : ToUpdate) {
1006     bool ShouldDecrementCount = CS->getFunction() == F;
1007 
1008     // Find the best matching specialisation.
1009     const Spec *BestSpec = nullptr;
1010     for (const Spec &S : make_range(Begin, End)) {
1011       if (!S.Clone || (BestSpec && S.Score <= BestSpec->Score))
1012         continue;
1013 
1014       if (any_of(S.Sig.Args, [CS, this](const ArgInfo &Arg) {
1015             unsigned ArgNo = Arg.Formal->getArgNo();
1016             return getCandidateConstant(CS->getArgOperand(ArgNo)) != Arg.Actual;
1017           }))
1018         continue;
1019 
1020       BestSpec = &S;
1021     }
1022 
1023     if (BestSpec) {
1024       LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *CS
1025                         << " to call " << BestSpec->Clone->getName() << "\n");
1026       CS->setCalledFunction(BestSpec->Clone);
1027       ShouldDecrementCount = true;
1028     }
1029 
1030     if (ShouldDecrementCount)
1031       --NCallsLeft;
1032   }
1033 
1034   // If the function has been completely specialized, the original function
1035   // is no longer needed. Mark it unreachable.
1036   if (NCallsLeft == 0 && Solver.isArgumentTrackedFunction(F)) {
1037     Solver.markFunctionUnreachable(F);
1038     FullySpecialized.insert(F);
1039   }
1040 }
1041