1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms simple global variables that never have their address
10 // taken.  If obviously true, it marks read/write globals as constant, deletes
11 // variables only stored to, etc.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/GlobalOpt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/BinaryFormat/Dwarf.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GetElementPtrTypeIterator.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Use.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/InitializePasses.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/AtomicOrdering.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/IPO.h"
65 #include "llvm/Transforms/Utils/CtorUtils.h"
66 #include "llvm/Transforms/Utils/Evaluator.h"
67 #include "llvm/Transforms/Utils/GlobalStatus.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include <cassert>
70 #include <cstdint>
71 #include <utility>
72 #include <vector>
73 
74 using namespace llvm;
75 
76 #define DEBUG_TYPE "globalopt"
77 
78 STATISTIC(NumMarked    , "Number of globals marked constant");
79 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
80 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
81 STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
82 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
83 STATISTIC(NumDeleted   , "Number of globals deleted");
84 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
85 STATISTIC(NumLocalized , "Number of globals localized");
86 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
87 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
88 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
89 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
90 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
91 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
92 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
93 STATISTIC(NumInternalFunc, "Number of internal functions");
94 STATISTIC(NumColdCC, "Number of functions marked coldcc");
95 
96 static cl::opt<bool>
97     EnableColdCCStressTest("enable-coldcc-stress-test",
98                            cl::desc("Enable stress test of coldcc by adding "
99                                     "calling conv to all internal functions."),
100                            cl::init(false), cl::Hidden);
101 
102 static cl::opt<int> ColdCCRelFreq(
103     "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
104     cl::desc(
105         "Maximum block frequency, expressed as a percentage of caller's "
106         "entry frequency, for a call site to be considered cold for enabling"
107         "coldcc"));
108 
109 /// Is this global variable possibly used by a leak checker as a root?  If so,
110 /// we might not really want to eliminate the stores to it.
111 static bool isLeakCheckerRoot(GlobalVariable *GV) {
112   // A global variable is a root if it is a pointer, or could plausibly contain
113   // a pointer.  There are two challenges; one is that we could have a struct
114   // the has an inner member which is a pointer.  We recurse through the type to
115   // detect these (up to a point).  The other is that we may actually be a union
116   // of a pointer and another type, and so our LLVM type is an integer which
117   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
118   // potentially contained here.
119 
120   if (GV->hasPrivateLinkage())
121     return false;
122 
123   SmallVector<Type *, 4> Types;
124   Types.push_back(GV->getValueType());
125 
126   unsigned Limit = 20;
127   do {
128     Type *Ty = Types.pop_back_val();
129     switch (Ty->getTypeID()) {
130       default: break;
131       case Type::PointerTyID: return true;
132       case Type::ArrayTyID:
133       case Type::VectorTyID: {
134         SequentialType *STy = cast<SequentialType>(Ty);
135         Types.push_back(STy->getElementType());
136         break;
137       }
138       case Type::StructTyID: {
139         StructType *STy = cast<StructType>(Ty);
140         if (STy->isOpaque()) return true;
141         for (StructType::element_iterator I = STy->element_begin(),
142                  E = STy->element_end(); I != E; ++I) {
143           Type *InnerTy = *I;
144           if (isa<PointerType>(InnerTy)) return true;
145           if (isa<CompositeType>(InnerTy))
146             Types.push_back(InnerTy);
147         }
148         break;
149       }
150     }
151     if (--Limit == 0) return true;
152   } while (!Types.empty());
153   return false;
154 }
155 
156 /// Given a value that is stored to a global but never read, determine whether
157 /// it's safe to remove the store and the chain of computation that feeds the
158 /// store.
159 static bool IsSafeComputationToRemove(
160     Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
161   do {
162     if (isa<Constant>(V))
163       return true;
164     if (!V->hasOneUse())
165       return false;
166     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
167         isa<GlobalValue>(V))
168       return false;
169     if (isAllocationFn(V, GetTLI))
170       return true;
171 
172     Instruction *I = cast<Instruction>(V);
173     if (I->mayHaveSideEffects())
174       return false;
175     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
176       if (!GEP->hasAllConstantIndices())
177         return false;
178     } else if (I->getNumOperands() != 1) {
179       return false;
180     }
181 
182     V = I->getOperand(0);
183   } while (true);
184 }
185 
186 /// This GV is a pointer root.  Loop over all users of the global and clean up
187 /// any that obviously don't assign the global a value that isn't dynamically
188 /// allocated.
189 static bool
190 CleanupPointerRootUsers(GlobalVariable *GV,
191                         function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
192   // A brief explanation of leak checkers.  The goal is to find bugs where
193   // pointers are forgotten, causing an accumulating growth in memory
194   // usage over time.  The common strategy for leak checkers is to whitelist the
195   // memory pointed to by globals at exit.  This is popular because it also
196   // solves another problem where the main thread of a C++ program may shut down
197   // before other threads that are still expecting to use those globals.  To
198   // handle that case, we expect the program may create a singleton and never
199   // destroy it.
200 
201   bool Changed = false;
202 
203   // If Dead[n].first is the only use of a malloc result, we can delete its
204   // chain of computation and the store to the global in Dead[n].second.
205   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
206 
207   // Constants can't be pointers to dynamically allocated memory.
208   for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
209        UI != E;) {
210     User *U = *UI++;
211     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
212       Value *V = SI->getValueOperand();
213       if (isa<Constant>(V)) {
214         Changed = true;
215         SI->eraseFromParent();
216       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
217         if (I->hasOneUse())
218           Dead.push_back(std::make_pair(I, SI));
219       }
220     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
221       if (isa<Constant>(MSI->getValue())) {
222         Changed = true;
223         MSI->eraseFromParent();
224       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
225         if (I->hasOneUse())
226           Dead.push_back(std::make_pair(I, MSI));
227       }
228     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
229       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
230       if (MemSrc && MemSrc->isConstant()) {
231         Changed = true;
232         MTI->eraseFromParent();
233       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
234         if (I->hasOneUse())
235           Dead.push_back(std::make_pair(I, MTI));
236       }
237     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
238       if (CE->use_empty()) {
239         CE->destroyConstant();
240         Changed = true;
241       }
242     } else if (Constant *C = dyn_cast<Constant>(U)) {
243       if (isSafeToDestroyConstant(C)) {
244         C->destroyConstant();
245         // This could have invalidated UI, start over from scratch.
246         Dead.clear();
247         CleanupPointerRootUsers(GV, GetTLI);
248         return true;
249       }
250     }
251   }
252 
253   for (int i = 0, e = Dead.size(); i != e; ++i) {
254     if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) {
255       Dead[i].second->eraseFromParent();
256       Instruction *I = Dead[i].first;
257       do {
258         if (isAllocationFn(I, GetTLI))
259           break;
260         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
261         if (!J)
262           break;
263         I->eraseFromParent();
264         I = J;
265       } while (true);
266       I->eraseFromParent();
267     }
268   }
269 
270   return Changed;
271 }
272 
273 /// We just marked GV constant.  Loop over all users of the global, cleaning up
274 /// the obvious ones.  This is largely just a quick scan over the use list to
275 /// clean up the easy and obvious cruft.  This returns true if it made a change.
276 static bool CleanupConstantGlobalUsers(
277     Value *V, Constant *Init, const DataLayout &DL,
278     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
279   bool Changed = false;
280   // Note that we need to use a weak value handle for the worklist items. When
281   // we delete a constant array, we may also be holding pointer to one of its
282   // elements (or an element of one of its elements if we're dealing with an
283   // array of arrays) in the worklist.
284   SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end());
285   while (!WorkList.empty()) {
286     Value *UV = WorkList.pop_back_val();
287     if (!UV)
288       continue;
289 
290     User *U = cast<User>(UV);
291 
292     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
293       if (Init) {
294         // Replace the load with the initializer.
295         LI->replaceAllUsesWith(Init);
296         LI->eraseFromParent();
297         Changed = true;
298       }
299     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
300       // Store must be unreachable or storing Init into the global.
301       SI->eraseFromParent();
302       Changed = true;
303     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
304       if (CE->getOpcode() == Instruction::GetElementPtr) {
305         Constant *SubInit = nullptr;
306         if (Init)
307           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
308         Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, GetTLI);
309       } else if ((CE->getOpcode() == Instruction::BitCast &&
310                   CE->getType()->isPointerTy()) ||
311                  CE->getOpcode() == Instruction::AddrSpaceCast) {
312         // Pointer cast, delete any stores and memsets to the global.
313         Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, GetTLI);
314       }
315 
316       if (CE->use_empty()) {
317         CE->destroyConstant();
318         Changed = true;
319       }
320     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
321       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
322       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
323       // and will invalidate our notion of what Init is.
324       Constant *SubInit = nullptr;
325       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
326         ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
327             ConstantFoldInstruction(GEP, DL, &GetTLI(*GEP->getFunction())));
328         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
329           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
330 
331         // If the initializer is an all-null value and we have an inbounds GEP,
332         // we already know what the result of any load from that GEP is.
333         // TODO: Handle splats.
334         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
335           SubInit = Constant::getNullValue(GEP->getResultElementType());
336       }
337       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, GetTLI);
338 
339       if (GEP->use_empty()) {
340         GEP->eraseFromParent();
341         Changed = true;
342       }
343     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
344       if (MI->getRawDest() == V) {
345         MI->eraseFromParent();
346         Changed = true;
347       }
348 
349     } else if (Constant *C = dyn_cast<Constant>(U)) {
350       // If we have a chain of dead constantexprs or other things dangling from
351       // us, and if they are all dead, nuke them without remorse.
352       if (isSafeToDestroyConstant(C)) {
353         C->destroyConstant();
354         CleanupConstantGlobalUsers(V, Init, DL, GetTLI);
355         return true;
356       }
357     }
358   }
359   return Changed;
360 }
361 
362 static bool isSafeSROAElementUse(Value *V);
363 
364 /// Return true if the specified GEP is a safe user of a derived
365 /// expression from a global that we want to SROA.
366 static bool isSafeSROAGEP(User *U) {
367   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
368   // don't like < 3 operand CE's, and we don't like non-constant integer
369   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
370   // value of C.
371   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
372       !cast<Constant>(U->getOperand(1))->isNullValue())
373     return false;
374 
375   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
376   ++GEPI; // Skip over the pointer index.
377 
378   // For all other level we require that the indices are constant and inrange.
379   // In particular, consider: A[0][i].  We cannot know that the user isn't doing
380   // invalid things like allowing i to index an out-of-range subscript that
381   // accesses A[1]. This can also happen between different members of a struct
382   // in llvm IR.
383   for (; GEPI != E; ++GEPI) {
384     if (GEPI.isStruct())
385       continue;
386 
387     ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
388     if (!IdxVal || (GEPI.isBoundedSequential() &&
389                     IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
390       return false;
391   }
392 
393   return llvm::all_of(U->users(),
394                       [](User *UU) { return isSafeSROAElementUse(UU); });
395 }
396 
397 /// Return true if the specified instruction is a safe user of a derived
398 /// expression from a global that we want to SROA.
399 static bool isSafeSROAElementUse(Value *V) {
400   // We might have a dead and dangling constant hanging off of here.
401   if (Constant *C = dyn_cast<Constant>(V))
402     return isSafeToDestroyConstant(C);
403 
404   Instruction *I = dyn_cast<Instruction>(V);
405   if (!I) return false;
406 
407   // Loads are ok.
408   if (isa<LoadInst>(I)) return true;
409 
410   // Stores *to* the pointer are ok.
411   if (StoreInst *SI = dyn_cast<StoreInst>(I))
412     return SI->getOperand(0) != V;
413 
414   // Otherwise, it must be a GEP. Check it and its users are safe to SRA.
415   return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I);
416 }
417 
418 /// Look at all uses of the global and decide whether it is safe for us to
419 /// perform this transformation.
420 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
421   for (User *U : GV->users()) {
422     // The user of the global must be a GEP Inst or a ConstantExpr GEP.
423     if (!isa<GetElementPtrInst>(U) &&
424         (!isa<ConstantExpr>(U) ||
425         cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
426       return false;
427 
428     // Check the gep and it's users are safe to SRA
429     if (!isSafeSROAGEP(U))
430       return false;
431   }
432 
433   return true;
434 }
435 
436 static bool CanDoGlobalSRA(GlobalVariable *GV) {
437   Constant *Init = GV->getInitializer();
438 
439   if (isa<StructType>(Init->getType())) {
440     // nothing to check
441   } else if (SequentialType *STy = dyn_cast<SequentialType>(Init->getType())) {
442     if (STy->getNumElements() > 16 && GV->hasNUsesOrMore(16))
443       return false; // It's not worth it.
444   } else
445     return false;
446 
447   return GlobalUsersSafeToSRA(GV);
448 }
449 
450 /// Copy over the debug info for a variable to its SRA replacements.
451 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
452                                  uint64_t FragmentOffsetInBits,
453                                  uint64_t FragmentSizeInBits) {
454   SmallVector<DIGlobalVariableExpression *, 1> GVs;
455   GV->getDebugInfo(GVs);
456   for (auto *GVE : GVs) {
457     DIVariable *Var = GVE->getVariable();
458     Optional<uint64_t> VarSize = Var->getSizeInBits();
459 
460     DIExpression *Expr = GVE->getExpression();
461     // If the FragmentSize is smaller than the variable,
462     // emit a fragment expression.
463     // If the variable size is unknown a fragment must be
464     // emitted to be safe.
465     if (!VarSize || FragmentSizeInBits < *VarSize) {
466       if (auto E = DIExpression::createFragmentExpression(
467               Expr, FragmentOffsetInBits, FragmentSizeInBits))
468         Expr = *E;
469       else
470         return;
471     }
472     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
473     NGV->addDebugInfo(NGVE);
474   }
475 }
476 
477 /// Perform scalar replacement of aggregates on the specified global variable.
478 /// This opens the door for other optimizations by exposing the behavior of the
479 /// program in a more fine-grained way.  We have determined that this
480 /// transformation is safe already.  We return the first global variable we
481 /// insert so that the caller can reprocess it.
482 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
483   // Make sure this global only has simple uses that we can SRA.
484   if (!CanDoGlobalSRA(GV))
485     return nullptr;
486 
487   assert(GV->hasLocalLinkage());
488   Constant *Init = GV->getInitializer();
489   Type *Ty = Init->getType();
490 
491   std::map<unsigned, GlobalVariable *> NewGlobals;
492 
493   // Get the alignment of the global, either explicit or target-specific.
494   unsigned StartAlignment = GV->getAlignment();
495   if (StartAlignment == 0)
496     StartAlignment = DL.getABITypeAlignment(GV->getType());
497 
498   // Loop over all users and create replacement variables for used aggregate
499   // elements.
500   for (User *GEP : GV->users()) {
501     assert(((isa<ConstantExpr>(GEP) && cast<ConstantExpr>(GEP)->getOpcode() ==
502                                            Instruction::GetElementPtr) ||
503             isa<GetElementPtrInst>(GEP)) &&
504            "NonGEP CE's are not SRAable!");
505 
506     // Ignore the 1th operand, which has to be zero or else the program is quite
507     // broken (undefined).  Get the 2nd operand, which is the structure or array
508     // index.
509     unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
510     if (NewGlobals.count(ElementIdx) == 1)
511       continue; // we`ve already created replacement variable
512     assert(NewGlobals.count(ElementIdx) == 0);
513 
514     Type *ElTy = nullptr;
515     if (StructType *STy = dyn_cast<StructType>(Ty))
516       ElTy = STy->getElementType(ElementIdx);
517     else if (SequentialType *STy = dyn_cast<SequentialType>(Ty))
518       ElTy = STy->getElementType();
519     assert(ElTy);
520 
521     Constant *In = Init->getAggregateElement(ElementIdx);
522     assert(In && "Couldn't get element of initializer?");
523 
524     GlobalVariable *NGV = new GlobalVariable(
525         ElTy, false, GlobalVariable::InternalLinkage, In,
526         GV->getName() + "." + Twine(ElementIdx), GV->getThreadLocalMode(),
527         GV->getType()->getAddressSpace());
528     NGV->setExternallyInitialized(GV->isExternallyInitialized());
529     NGV->copyAttributesFrom(GV);
530     NewGlobals.insert(std::make_pair(ElementIdx, NGV));
531 
532     if (StructType *STy = dyn_cast<StructType>(Ty)) {
533       const StructLayout &Layout = *DL.getStructLayout(STy);
534 
535       // Calculate the known alignment of the field.  If the original aggregate
536       // had 256 byte alignment for example, something might depend on that:
537       // propagate info to each field.
538       uint64_t FieldOffset = Layout.getElementOffset(ElementIdx);
539       Align NewAlign(MinAlign(StartAlignment, FieldOffset));
540       if (NewAlign >
541           Align(DL.getABITypeAlignment(STy->getElementType(ElementIdx))))
542         NGV->setAlignment(NewAlign);
543 
544       // Copy over the debug info for the variable.
545       uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType());
546       uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(ElementIdx);
547       transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size);
548     } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
549       uint64_t EltSize = DL.getTypeAllocSize(ElTy);
550       Align EltAlign(DL.getABITypeAlignment(ElTy));
551       uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy);
552 
553       // Calculate the known alignment of the field.  If the original aggregate
554       // had 256 byte alignment for example, something might depend on that:
555       // propagate info to each field.
556       Align NewAlign(MinAlign(StartAlignment, EltSize * ElementIdx));
557       if (NewAlign > EltAlign)
558         NGV->setAlignment(NewAlign);
559       transferSRADebugInfo(GV, NGV, FragmentSizeInBits * ElementIdx,
560                            FragmentSizeInBits);
561     }
562   }
563 
564   if (NewGlobals.empty())
565     return nullptr;
566 
567   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
568   for (auto NewGlobalVar : NewGlobals)
569     Globals.push_back(NewGlobalVar.second);
570 
571   LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
572 
573   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
574 
575   // Loop over all of the uses of the global, replacing the constantexpr geps,
576   // with smaller constantexpr geps or direct references.
577   while (!GV->use_empty()) {
578     User *GEP = GV->user_back();
579     assert(((isa<ConstantExpr>(GEP) &&
580              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
581             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
582 
583     // Ignore the 1th operand, which has to be zero or else the program is quite
584     // broken (undefined).  Get the 2nd operand, which is the structure or array
585     // index.
586     unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
587     assert(NewGlobals.count(ElementIdx) == 1);
588 
589     Value *NewPtr = NewGlobals[ElementIdx];
590     Type *NewTy = NewGlobals[ElementIdx]->getValueType();
591 
592     // Form a shorter GEP if needed.
593     if (GEP->getNumOperands() > 3) {
594       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
595         SmallVector<Constant*, 8> Idxs;
596         Idxs.push_back(NullInt);
597         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
598           Idxs.push_back(CE->getOperand(i));
599         NewPtr =
600             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
601       } else {
602         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
603         SmallVector<Value*, 8> Idxs;
604         Idxs.push_back(NullInt);
605         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
606           Idxs.push_back(GEPI->getOperand(i));
607         NewPtr = GetElementPtrInst::Create(
608             NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(ElementIdx),
609             GEPI);
610       }
611     }
612     GEP->replaceAllUsesWith(NewPtr);
613 
614     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
615       GEPI->eraseFromParent();
616     else
617       cast<ConstantExpr>(GEP)->destroyConstant();
618   }
619 
620   // Delete the old global, now that it is dead.
621   Globals.erase(GV);
622   ++NumSRA;
623 
624   assert(NewGlobals.size() > 0);
625   return NewGlobals.begin()->second;
626 }
627 
628 /// Return true if all users of the specified value will trap if the value is
629 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
630 /// reprocessing them.
631 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
632                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
633   for (const User *U : V->users()) {
634     if (const Instruction *I = dyn_cast<Instruction>(U)) {
635       // If null pointer is considered valid, then all uses are non-trapping.
636       // Non address-space 0 globals have already been pruned by the caller.
637       if (NullPointerIsDefined(I->getFunction()))
638         return false;
639     }
640     if (isa<LoadInst>(U)) {
641       // Will trap.
642     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
643       if (SI->getOperand(0) == V) {
644         //cerr << "NONTRAPPING USE: " << *U;
645         return false;  // Storing the value.
646       }
647     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
648       if (CI->getCalledValue() != V) {
649         //cerr << "NONTRAPPING USE: " << *U;
650         return false;  // Not calling the ptr
651       }
652     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
653       if (II->getCalledValue() != V) {
654         //cerr << "NONTRAPPING USE: " << *U;
655         return false;  // Not calling the ptr
656       }
657     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
658       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
659     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
660       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
661     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
662       // If we've already seen this phi node, ignore it, it has already been
663       // checked.
664       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
665         return false;
666     } else if (isa<ICmpInst>(U) &&
667                isa<ConstantPointerNull>(U->getOperand(1))) {
668       // Ignore icmp X, null
669     } else {
670       //cerr << "NONTRAPPING USE: " << *U;
671       return false;
672     }
673   }
674   return true;
675 }
676 
677 /// Return true if all uses of any loads from GV will trap if the loaded value
678 /// is null.  Note that this also permits comparisons of the loaded value
679 /// against null, as a special case.
680 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
681   for (const User *U : GV->users())
682     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
683       SmallPtrSet<const PHINode*, 8> PHIs;
684       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
685         return false;
686     } else if (isa<StoreInst>(U)) {
687       // Ignore stores to the global.
688     } else {
689       // We don't know or understand this user, bail out.
690       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
691       return false;
692     }
693   return true;
694 }
695 
696 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
697   bool Changed = false;
698   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
699     Instruction *I = cast<Instruction>(*UI++);
700     // Uses are non-trapping if null pointer is considered valid.
701     // Non address-space 0 globals are already pruned by the caller.
702     if (NullPointerIsDefined(I->getFunction()))
703       return false;
704     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
705       LI->setOperand(0, NewV);
706       Changed = true;
707     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
708       if (SI->getOperand(1) == V) {
709         SI->setOperand(1, NewV);
710         Changed = true;
711       }
712     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
713       CallSite CS(I);
714       if (CS.getCalledValue() == V) {
715         // Calling through the pointer!  Turn into a direct call, but be careful
716         // that the pointer is not also being passed as an argument.
717         CS.setCalledFunction(NewV);
718         Changed = true;
719         bool PassedAsArg = false;
720         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
721           if (CS.getArgument(i) == V) {
722             PassedAsArg = true;
723             CS.setArgument(i, NewV);
724           }
725 
726         if (PassedAsArg) {
727           // Being passed as an argument also.  Be careful to not invalidate UI!
728           UI = V->user_begin();
729         }
730       }
731     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
732       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
733                                 ConstantExpr::getCast(CI->getOpcode(),
734                                                       NewV, CI->getType()));
735       if (CI->use_empty()) {
736         Changed = true;
737         CI->eraseFromParent();
738       }
739     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
740       // Should handle GEP here.
741       SmallVector<Constant*, 8> Idxs;
742       Idxs.reserve(GEPI->getNumOperands()-1);
743       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
744            i != e; ++i)
745         if (Constant *C = dyn_cast<Constant>(*i))
746           Idxs.push_back(C);
747         else
748           break;
749       if (Idxs.size() == GEPI->getNumOperands()-1)
750         Changed |= OptimizeAwayTrappingUsesOfValue(
751             GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(),
752                                                  NewV, Idxs));
753       if (GEPI->use_empty()) {
754         Changed = true;
755         GEPI->eraseFromParent();
756       }
757     }
758   }
759 
760   return Changed;
761 }
762 
763 /// The specified global has only one non-null value stored into it.  If there
764 /// are uses of the loaded value that would trap if the loaded value is
765 /// dynamically null, then we know that they cannot be reachable with a null
766 /// optimize away the load.
767 static bool OptimizeAwayTrappingUsesOfLoads(
768     GlobalVariable *GV, Constant *LV, const DataLayout &DL,
769     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
770   bool Changed = false;
771 
772   // Keep track of whether we are able to remove all the uses of the global
773   // other than the store that defines it.
774   bool AllNonStoreUsesGone = true;
775 
776   // Replace all uses of loads with uses of uses of the stored value.
777   for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
778     User *GlobalUser = *GUI++;
779     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
780       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
781       // If we were able to delete all uses of the loads
782       if (LI->use_empty()) {
783         LI->eraseFromParent();
784         Changed = true;
785       } else {
786         AllNonStoreUsesGone = false;
787       }
788     } else if (isa<StoreInst>(GlobalUser)) {
789       // Ignore the store that stores "LV" to the global.
790       assert(GlobalUser->getOperand(1) == GV &&
791              "Must be storing *to* the global");
792     } else {
793       AllNonStoreUsesGone = false;
794 
795       // If we get here we could have other crazy uses that are transitively
796       // loaded.
797       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
798               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
799               isa<BitCastInst>(GlobalUser) ||
800               isa<GetElementPtrInst>(GlobalUser)) &&
801              "Only expect load and stores!");
802     }
803   }
804 
805   if (Changed) {
806     LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
807                       << "\n");
808     ++NumGlobUses;
809   }
810 
811   // If we nuked all of the loads, then none of the stores are needed either,
812   // nor is the global.
813   if (AllNonStoreUsesGone) {
814     if (isLeakCheckerRoot(GV)) {
815       Changed |= CleanupPointerRootUsers(GV, GetTLI);
816     } else {
817       Changed = true;
818       CleanupConstantGlobalUsers(GV, nullptr, DL, GetTLI);
819     }
820     if (GV->use_empty()) {
821       LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
822       Changed = true;
823       GV->eraseFromParent();
824       ++NumDeleted;
825     }
826   }
827   return Changed;
828 }
829 
830 /// Walk the use list of V, constant folding all of the instructions that are
831 /// foldable.
832 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
833                                 TargetLibraryInfo *TLI) {
834   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
835     if (Instruction *I = dyn_cast<Instruction>(*UI++))
836       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
837         I->replaceAllUsesWith(NewC);
838 
839         // Advance UI to the next non-I use to avoid invalidating it!
840         // Instructions could multiply use V.
841         while (UI != E && *UI == I)
842           ++UI;
843         if (isInstructionTriviallyDead(I, TLI))
844           I->eraseFromParent();
845       }
846 }
847 
848 /// This function takes the specified global variable, and transforms the
849 /// program as if it always contained the result of the specified malloc.
850 /// Because it is always the result of the specified malloc, there is no reason
851 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
852 /// loads of GV as uses of the new global.
853 static GlobalVariable *
854 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
855                               ConstantInt *NElements, const DataLayout &DL,
856                               TargetLibraryInfo *TLI) {
857   LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
858                     << '\n');
859 
860   Type *GlobalType;
861   if (NElements->getZExtValue() == 1)
862     GlobalType = AllocTy;
863   else
864     // If we have an array allocation, the global variable is of an array.
865     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
866 
867   // Create the new global variable.  The contents of the malloc'd memory is
868   // undefined, so initialize with an undef value.
869   GlobalVariable *NewGV = new GlobalVariable(
870       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
871       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
872       GV->getThreadLocalMode());
873 
874   // If there are bitcast users of the malloc (which is typical, usually we have
875   // a malloc + bitcast) then replace them with uses of the new global.  Update
876   // other users to use the global as well.
877   BitCastInst *TheBC = nullptr;
878   while (!CI->use_empty()) {
879     Instruction *User = cast<Instruction>(CI->user_back());
880     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
881       if (BCI->getType() == NewGV->getType()) {
882         BCI->replaceAllUsesWith(NewGV);
883         BCI->eraseFromParent();
884       } else {
885         BCI->setOperand(0, NewGV);
886       }
887     } else {
888       if (!TheBC)
889         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
890       User->replaceUsesOfWith(CI, TheBC);
891     }
892   }
893 
894   Constant *RepValue = NewGV;
895   if (NewGV->getType() != GV->getValueType())
896     RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
897 
898   // If there is a comparison against null, we will insert a global bool to
899   // keep track of whether the global was initialized yet or not.
900   GlobalVariable *InitBool =
901     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
902                        GlobalValue::InternalLinkage,
903                        ConstantInt::getFalse(GV->getContext()),
904                        GV->getName()+".init", GV->getThreadLocalMode());
905   bool InitBoolUsed = false;
906 
907   // Loop over all uses of GV, processing them in turn.
908   while (!GV->use_empty()) {
909     if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
910       // The global is initialized when the store to it occurs.
911       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false,
912                     None, SI->getOrdering(), SI->getSyncScopeID(), SI);
913       SI->eraseFromParent();
914       continue;
915     }
916 
917     LoadInst *LI = cast<LoadInst>(GV->user_back());
918     while (!LI->use_empty()) {
919       Use &LoadUse = *LI->use_begin();
920       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
921       if (!ICI) {
922         LoadUse = RepValue;
923         continue;
924       }
925 
926       // Replace the cmp X, 0 with a use of the bool value.
927       // Sink the load to where the compare was, if atomic rules allow us to.
928       Value *LV = new LoadInst(InitBool->getValueType(), InitBool,
929                                InitBool->getName() + ".val", false, None,
930                                LI->getOrdering(), LI->getSyncScopeID(),
931                                LI->isUnordered() ? (Instruction *)ICI : LI);
932       InitBoolUsed = true;
933       switch (ICI->getPredicate()) {
934       default: llvm_unreachable("Unknown ICmp Predicate!");
935       case ICmpInst::ICMP_ULT:
936       case ICmpInst::ICMP_SLT:   // X < null -> always false
937         LV = ConstantInt::getFalse(GV->getContext());
938         break;
939       case ICmpInst::ICMP_ULE:
940       case ICmpInst::ICMP_SLE:
941       case ICmpInst::ICMP_EQ:
942         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
943         break;
944       case ICmpInst::ICMP_NE:
945       case ICmpInst::ICMP_UGE:
946       case ICmpInst::ICMP_SGE:
947       case ICmpInst::ICMP_UGT:
948       case ICmpInst::ICMP_SGT:
949         break;  // no change.
950       }
951       ICI->replaceAllUsesWith(LV);
952       ICI->eraseFromParent();
953     }
954     LI->eraseFromParent();
955   }
956 
957   // If the initialization boolean was used, insert it, otherwise delete it.
958   if (!InitBoolUsed) {
959     while (!InitBool->use_empty())  // Delete initializations
960       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
961     delete InitBool;
962   } else
963     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
964 
965   // Now the GV is dead, nuke it and the malloc..
966   GV->eraseFromParent();
967   CI->eraseFromParent();
968 
969   // To further other optimizations, loop over all users of NewGV and try to
970   // constant prop them.  This will promote GEP instructions with constant
971   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
972   ConstantPropUsersOf(NewGV, DL, TLI);
973   if (RepValue != NewGV)
974     ConstantPropUsersOf(RepValue, DL, TLI);
975 
976   return NewGV;
977 }
978 
979 /// Scan the use-list of V checking to make sure that there are no complex uses
980 /// of V.  We permit simple things like dereferencing the pointer, but not
981 /// storing through the address, unless it is to the specified global.
982 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
983                                                       const GlobalVariable *GV,
984                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
985   for (const User *U : V->users()) {
986     const Instruction *Inst = cast<Instruction>(U);
987 
988     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
989       continue; // Fine, ignore.
990     }
991 
992     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
993       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
994         return false;  // Storing the pointer itself... bad.
995       continue; // Otherwise, storing through it, or storing into GV... fine.
996     }
997 
998     // Must index into the array and into the struct.
999     if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
1000       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
1001         return false;
1002       continue;
1003     }
1004 
1005     if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
1006       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
1007       // cycles.
1008       if (PHIs.insert(PN).second)
1009         if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
1010           return false;
1011       continue;
1012     }
1013 
1014     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
1015       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
1016         return false;
1017       continue;
1018     }
1019 
1020     return false;
1021   }
1022   return true;
1023 }
1024 
1025 /// The Alloc pointer is stored into GV somewhere.  Transform all uses of the
1026 /// allocation into loads from the global and uses of the resultant pointer.
1027 /// Further, delete the store into GV.  This assumes that these value pass the
1028 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1029 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1030                                           GlobalVariable *GV) {
1031   while (!Alloc->use_empty()) {
1032     Instruction *U = cast<Instruction>(*Alloc->user_begin());
1033     Instruction *InsertPt = U;
1034     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1035       // If this is the store of the allocation into the global, remove it.
1036       if (SI->getOperand(1) == GV) {
1037         SI->eraseFromParent();
1038         continue;
1039       }
1040     } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1041       // Insert the load in the corresponding predecessor, not right before the
1042       // PHI.
1043       InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
1044     } else if (isa<BitCastInst>(U)) {
1045       // Must be bitcast between the malloc and store to initialize the global.
1046       ReplaceUsesOfMallocWithGlobal(U, GV);
1047       U->eraseFromParent();
1048       continue;
1049     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1050       // If this is a "GEP bitcast" and the user is a store to the global, then
1051       // just process it as a bitcast.
1052       if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1053         if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
1054           if (SI->getOperand(1) == GV) {
1055             // Must be bitcast GEP between the malloc and store to initialize
1056             // the global.
1057             ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1058             GEPI->eraseFromParent();
1059             continue;
1060           }
1061     }
1062 
1063     // Insert a load from the global, and use it instead of the malloc.
1064     Value *NL =
1065         new LoadInst(GV->getValueType(), GV, GV->getName() + ".val", InsertPt);
1066     U->replaceUsesOfWith(Alloc, NL);
1067   }
1068 }
1069 
1070 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to
1071 /// perform heap SRA on.  This permits GEP's that index through the array and
1072 /// struct field, icmps of null, and PHIs.
1073 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1074                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
1075                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
1076   // We permit two users of the load: setcc comparing against the null
1077   // pointer, and a getelementptr of a specific form.
1078   for (const User *U : V->users()) {
1079     const Instruction *UI = cast<Instruction>(U);
1080 
1081     // Comparison against null is ok.
1082     if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1083       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1084         return false;
1085       continue;
1086     }
1087 
1088     // getelementptr is also ok, but only a simple form.
1089     if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1090       // Must index into the array and into the struct.
1091       if (GEPI->getNumOperands() < 3)
1092         return false;
1093 
1094       // Otherwise the GEP is ok.
1095       continue;
1096     }
1097 
1098     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1099       if (!LoadUsingPHIsPerLoad.insert(PN).second)
1100         // This means some phi nodes are dependent on each other.
1101         // Avoid infinite looping!
1102         return false;
1103       if (!LoadUsingPHIs.insert(PN).second)
1104         // If we have already analyzed this PHI, then it is safe.
1105         continue;
1106 
1107       // Make sure all uses of the PHI are simple enough to transform.
1108       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1109                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
1110         return false;
1111 
1112       continue;
1113     }
1114 
1115     // Otherwise we don't know what this is, not ok.
1116     return false;
1117   }
1118 
1119   return true;
1120 }
1121 
1122 /// If all users of values loaded from GV are simple enough to perform HeapSRA,
1123 /// return true.
1124 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1125                                                     Instruction *StoredVal) {
1126   SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1127   SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1128   for (const User *U : GV->users())
1129     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1130       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1131                                           LoadUsingPHIsPerLoad))
1132         return false;
1133       LoadUsingPHIsPerLoad.clear();
1134     }
1135 
1136   // If we reach here, we know that all uses of the loads and transitive uses
1137   // (through PHI nodes) are simple enough to transform.  However, we don't know
1138   // that all inputs the to the PHI nodes are in the same equivalence sets.
1139   // Check to verify that all operands of the PHIs are either PHIS that can be
1140   // transformed, loads from GV, or MI itself.
1141   for (const PHINode *PN : LoadUsingPHIs) {
1142     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1143       Value *InVal = PN->getIncomingValue(op);
1144 
1145       // PHI of the stored value itself is ok.
1146       if (InVal == StoredVal) continue;
1147 
1148       if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1149         // One of the PHIs in our set is (optimistically) ok.
1150         if (LoadUsingPHIs.count(InPN))
1151           continue;
1152         return false;
1153       }
1154 
1155       // Load from GV is ok.
1156       if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1157         if (LI->getOperand(0) == GV)
1158           continue;
1159 
1160       // UNDEF? NULL?
1161 
1162       // Anything else is rejected.
1163       return false;
1164     }
1165   }
1166 
1167   return true;
1168 }
1169 
1170 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1171               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1172                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1173   std::vector<Value *> &FieldVals = InsertedScalarizedValues[V];
1174 
1175   if (FieldNo >= FieldVals.size())
1176     FieldVals.resize(FieldNo+1);
1177 
1178   // If we already have this value, just reuse the previously scalarized
1179   // version.
1180   if (Value *FieldVal = FieldVals[FieldNo])
1181     return FieldVal;
1182 
1183   // Depending on what instruction this is, we have several cases.
1184   Value *Result;
1185   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1186     // This is a scalarized version of the load from the global.  Just create
1187     // a new Load of the scalarized global.
1188     Value *V = GetHeapSROAValue(LI->getOperand(0), FieldNo,
1189                                 InsertedScalarizedValues, PHIsToRewrite);
1190     Result = new LoadInst(V->getType()->getPointerElementType(), V,
1191                           LI->getName() + ".f" + Twine(FieldNo), LI);
1192   } else {
1193     PHINode *PN = cast<PHINode>(V);
1194     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1195     // field.
1196 
1197     PointerType *PTy = cast<PointerType>(PN->getType());
1198     StructType *ST = cast<StructType>(PTy->getElementType());
1199 
1200     unsigned AS = PTy->getAddressSpace();
1201     PHINode *NewPN =
1202       PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
1203                      PN->getNumIncomingValues(),
1204                      PN->getName()+".f"+Twine(FieldNo), PN);
1205     Result = NewPN;
1206     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1207   }
1208 
1209   return FieldVals[FieldNo] = Result;
1210 }
1211 
1212 /// Given a load instruction and a value derived from the load, rewrite the
1213 /// derived value to use the HeapSRoA'd load.
1214 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1215               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1216                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1217   // If this is a comparison against null, handle it.
1218   if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1219     assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1220     // If we have a setcc of the loaded pointer, we can use a setcc of any
1221     // field.
1222     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1223                                    InsertedScalarizedValues, PHIsToRewrite);
1224 
1225     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1226                               Constant::getNullValue(NPtr->getType()),
1227                               SCI->getName());
1228     SCI->replaceAllUsesWith(New);
1229     SCI->eraseFromParent();
1230     return;
1231   }
1232 
1233   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1234   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1235     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1236            && "Unexpected GEPI!");
1237 
1238     // Load the pointer for this field.
1239     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1240     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1241                                      InsertedScalarizedValues, PHIsToRewrite);
1242 
1243     // Create the new GEP idx vector.
1244     SmallVector<Value*, 8> GEPIdx;
1245     GEPIdx.push_back(GEPI->getOperand(1));
1246     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1247 
1248     Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
1249                                              GEPI->getName(), GEPI);
1250     GEPI->replaceAllUsesWith(NGEPI);
1251     GEPI->eraseFromParent();
1252     return;
1253   }
1254 
1255   // Recursively transform the users of PHI nodes.  This will lazily create the
1256   // PHIs that are needed for individual elements.  Keep track of what PHIs we
1257   // see in InsertedScalarizedValues so that we don't get infinite loops (very
1258   // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1259   // already been seen first by another load, so its uses have already been
1260   // processed.
1261   PHINode *PN = cast<PHINode>(LoadUser);
1262   if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1263                                               std::vector<Value *>())).second)
1264     return;
1265 
1266   // If this is the first time we've seen this PHI, recursively process all
1267   // users.
1268   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1269     Instruction *User = cast<Instruction>(*UI++);
1270     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1271   }
1272 }
1273 
1274 /// We are performing Heap SRoA on a global.  Ptr is a value loaded from the
1275 /// global.  Eliminate all uses of Ptr, making them use FieldGlobals instead.
1276 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1277 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1278               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1279                   std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) {
1280   for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1281     Instruction *User = cast<Instruction>(*UI++);
1282     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1283   }
1284 
1285   if (Load->use_empty()) {
1286     Load->eraseFromParent();
1287     InsertedScalarizedValues.erase(Load);
1288   }
1289 }
1290 
1291 /// CI is an allocation of an array of structures.  Break it up into multiple
1292 /// allocations of arrays of the fields.
1293 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1294                                             Value *NElems, const DataLayout &DL,
1295                                             const TargetLibraryInfo *TLI) {
1296   LLVM_DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI
1297                     << '\n');
1298   Type *MAT = getMallocAllocatedType(CI, TLI);
1299   StructType *STy = cast<StructType>(MAT);
1300 
1301   // There is guaranteed to be at least one use of the malloc (storing
1302   // it into GV).  If there are other uses, change them to be uses of
1303   // the global to simplify later code.  This also deletes the store
1304   // into GV.
1305   ReplaceUsesOfMallocWithGlobal(CI, GV);
1306 
1307   // Okay, at this point, there are no users of the malloc.  Insert N
1308   // new mallocs at the same place as CI, and N globals.
1309   std::vector<Value *> FieldGlobals;
1310   std::vector<Value *> FieldMallocs;
1311 
1312   SmallVector<OperandBundleDef, 1> OpBundles;
1313   CI->getOperandBundlesAsDefs(OpBundles);
1314 
1315   unsigned AS = GV->getType()->getPointerAddressSpace();
1316   for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1317     Type *FieldTy = STy->getElementType(FieldNo);
1318     PointerType *PFieldTy = PointerType::get(FieldTy, AS);
1319 
1320     GlobalVariable *NGV = new GlobalVariable(
1321         *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
1322         Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
1323         nullptr, GV->getThreadLocalMode());
1324     NGV->copyAttributesFrom(GV);
1325     FieldGlobals.push_back(NGV);
1326 
1327     unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
1328     if (StructType *ST = dyn_cast<StructType>(FieldTy))
1329       TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
1330     Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1331     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1332                                         ConstantInt::get(IntPtrTy, TypeSize),
1333                                         NElems, OpBundles, nullptr,
1334                                         CI->getName() + ".f" + Twine(FieldNo));
1335     FieldMallocs.push_back(NMI);
1336     new StoreInst(NMI, NGV, CI);
1337   }
1338 
1339   // The tricky aspect of this transformation is handling the case when malloc
1340   // fails.  In the original code, malloc failing would set the result pointer
1341   // of malloc to null.  In this case, some mallocs could succeed and others
1342   // could fail.  As such, we emit code that looks like this:
1343   //    F0 = malloc(field0)
1344   //    F1 = malloc(field1)
1345   //    F2 = malloc(field2)
1346   //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1347   //      if (F0) { free(F0); F0 = 0; }
1348   //      if (F1) { free(F1); F1 = 0; }
1349   //      if (F2) { free(F2); F2 = 0; }
1350   //    }
1351   // The malloc can also fail if its argument is too large.
1352   Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1353   Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1354                                   ConstantZero, "isneg");
1355   for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1356     Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1357                              Constant::getNullValue(FieldMallocs[i]->getType()),
1358                                "isnull");
1359     RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1360   }
1361 
1362   // Split the basic block at the old malloc.
1363   BasicBlock *OrigBB = CI->getParent();
1364   BasicBlock *ContBB =
1365       OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
1366 
1367   // Create the block to check the first condition.  Put all these blocks at the
1368   // end of the function as they are unlikely to be executed.
1369   BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1370                                                 "malloc_ret_null",
1371                                                 OrigBB->getParent());
1372 
1373   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1374   // branch on RunningOr.
1375   OrigBB->getTerminator()->eraseFromParent();
1376   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1377 
1378   // Within the NullPtrBlock, we need to emit a comparison and branch for each
1379   // pointer, because some may be null while others are not.
1380   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1381     Value *GVVal =
1382         new LoadInst(cast<GlobalVariable>(FieldGlobals[i])->getValueType(),
1383                      FieldGlobals[i], "tmp", NullPtrBlock);
1384     Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1385                               Constant::getNullValue(GVVal->getType()));
1386     BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1387                                                OrigBB->getParent());
1388     BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1389                                                OrigBB->getParent());
1390     Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1391                                          Cmp, NullPtrBlock);
1392 
1393     // Fill in FreeBlock.
1394     CallInst::CreateFree(GVVal, OpBundles, BI);
1395     new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1396                   FreeBlock);
1397     BranchInst::Create(NextBlock, FreeBlock);
1398 
1399     NullPtrBlock = NextBlock;
1400   }
1401 
1402   BranchInst::Create(ContBB, NullPtrBlock);
1403 
1404   // CI is no longer needed, remove it.
1405   CI->eraseFromParent();
1406 
1407   /// As we process loads, if we can't immediately update all uses of the load,
1408   /// keep track of what scalarized loads are inserted for a given load.
1409   DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues;
1410   InsertedScalarizedValues[GV] = FieldGlobals;
1411 
1412   std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite;
1413 
1414   // Okay, the malloc site is completely handled.  All of the uses of GV are now
1415   // loads, and all uses of those loads are simple.  Rewrite them to use loads
1416   // of the per-field globals instead.
1417   for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1418     Instruction *User = cast<Instruction>(*UI++);
1419 
1420     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1421       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1422       continue;
1423     }
1424 
1425     // Must be a store of null.
1426     StoreInst *SI = cast<StoreInst>(User);
1427     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1428            "Unexpected heap-sra user!");
1429 
1430     // Insert a store of null into each global.
1431     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1432       Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
1433       Constant *Null = Constant::getNullValue(ValTy);
1434       new StoreInst(Null, FieldGlobals[i], SI);
1435     }
1436     // Erase the original store.
1437     SI->eraseFromParent();
1438   }
1439 
1440   // While we have PHIs that are interesting to rewrite, do it.
1441   while (!PHIsToRewrite.empty()) {
1442     PHINode *PN = PHIsToRewrite.back().first;
1443     unsigned FieldNo = PHIsToRewrite.back().second;
1444     PHIsToRewrite.pop_back();
1445     PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1446     assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1447 
1448     // Add all the incoming values.  This can materialize more phis.
1449     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1450       Value *InVal = PN->getIncomingValue(i);
1451       InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1452                                PHIsToRewrite);
1453       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1454     }
1455   }
1456 
1457   // Drop all inter-phi links and any loads that made it this far.
1458   for (DenseMap<Value *, std::vector<Value *>>::iterator
1459        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1460        I != E; ++I) {
1461     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1462       PN->dropAllReferences();
1463     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1464       LI->dropAllReferences();
1465   }
1466 
1467   // Delete all the phis and loads now that inter-references are dead.
1468   for (DenseMap<Value *, std::vector<Value *>>::iterator
1469        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1470        I != E; ++I) {
1471     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1472       PN->eraseFromParent();
1473     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1474       LI->eraseFromParent();
1475   }
1476 
1477   // The old global is now dead, remove it.
1478   GV->eraseFromParent();
1479 
1480   ++NumHeapSRA;
1481   return cast<GlobalVariable>(FieldGlobals[0]);
1482 }
1483 
1484 /// This function is called when we see a pointer global variable with a single
1485 /// value stored it that is a malloc or cast of malloc.
1486 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1487                                                Type *AllocTy,
1488                                                AtomicOrdering Ordering,
1489                                                const DataLayout &DL,
1490                                                TargetLibraryInfo *TLI) {
1491   // If this is a malloc of an abstract type, don't touch it.
1492   if (!AllocTy->isSized())
1493     return false;
1494 
1495   // We can't optimize this global unless all uses of it are *known* to be
1496   // of the malloc value, not of the null initializer value (consider a use
1497   // that compares the global's value against zero to see if the malloc has
1498   // been reached).  To do this, we check to see if all uses of the global
1499   // would trap if the global were null: this proves that they must all
1500   // happen after the malloc.
1501   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1502     return false;
1503 
1504   // We can't optimize this if the malloc itself is used in a complex way,
1505   // for example, being stored into multiple globals.  This allows the
1506   // malloc to be stored into the specified global, loaded icmp'd, and
1507   // GEP'd.  These are all things we could transform to using the global
1508   // for.
1509   SmallPtrSet<const PHINode*, 8> PHIs;
1510   if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1511     return false;
1512 
1513   // If we have a global that is only initialized with a fixed size malloc,
1514   // transform the program to use global memory instead of malloc'd memory.
1515   // This eliminates dynamic allocation, avoids an indirection accessing the
1516   // data, and exposes the resultant global to further GlobalOpt.
1517   // We cannot optimize the malloc if we cannot determine malloc array size.
1518   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1519   if (!NElems)
1520     return false;
1521 
1522   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1523     // Restrict this transformation to only working on small allocations
1524     // (2048 bytes currently), as we don't want to introduce a 16M global or
1525     // something.
1526     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1527       OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1528       return true;
1529     }
1530 
1531   // If the allocation is an array of structures, consider transforming this
1532   // into multiple malloc'd arrays, one for each field.  This is basically
1533   // SRoA for malloc'd memory.
1534 
1535   if (Ordering != AtomicOrdering::NotAtomic)
1536     return false;
1537 
1538   // If this is an allocation of a fixed size array of structs, analyze as a
1539   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1540   if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1541     if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1542       AllocTy = AT->getElementType();
1543 
1544   StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1545   if (!AllocSTy)
1546     return false;
1547 
1548   // This the structure has an unreasonable number of fields, leave it
1549   // alone.
1550   if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1551       AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1552 
1553     // If this is a fixed size array, transform the Malloc to be an alloc of
1554     // structs.  malloc [100 x struct],1 -> malloc struct, 100
1555     if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1556       Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1557       unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
1558       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1559       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1560       SmallVector<OperandBundleDef, 1> OpBundles;
1561       CI->getOperandBundlesAsDefs(OpBundles);
1562       Instruction *Malloc =
1563           CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements,
1564                                  OpBundles, nullptr, CI->getName());
1565       Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1566       CI->replaceAllUsesWith(Cast);
1567       CI->eraseFromParent();
1568       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1569         CI = cast<CallInst>(BCI->getOperand(0));
1570       else
1571         CI = cast<CallInst>(Malloc);
1572     }
1573 
1574     PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
1575                          TLI);
1576     return true;
1577   }
1578 
1579   return false;
1580 }
1581 
1582 // Try to optimize globals based on the knowledge that only one value (besides
1583 // its initializer) is ever stored to the global.
1584 static bool
1585 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1586                          AtomicOrdering Ordering, const DataLayout &DL,
1587                          function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1588   // Ignore no-op GEPs and bitcasts.
1589   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1590 
1591   // If we are dealing with a pointer global that is initialized to null and
1592   // only has one (non-null) value stored into it, then we can optimize any
1593   // users of the loaded value (often calls and loads) that would trap if the
1594   // value was null.
1595   if (GV->getInitializer()->getType()->isPointerTy() &&
1596       GV->getInitializer()->isNullValue() &&
1597       !NullPointerIsDefined(
1598           nullptr /* F */,
1599           GV->getInitializer()->getType()->getPointerAddressSpace())) {
1600     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1601       if (GV->getInitializer()->getType() != SOVC->getType())
1602         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1603 
1604       // Optimize away any trapping uses of the loaded value.
1605       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI))
1606         return true;
1607     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) {
1608       auto *TLI = &GetTLI(*CI->getFunction());
1609       Type *MallocType = getMallocAllocatedType(CI, TLI);
1610       if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1611                                                            Ordering, DL, TLI))
1612         return true;
1613     }
1614   }
1615 
1616   return false;
1617 }
1618 
1619 /// At this point, we have learned that the only two values ever stored into GV
1620 /// are its initializer and OtherVal.  See if we can shrink the global into a
1621 /// boolean and select between the two values whenever it is used.  This exposes
1622 /// the values to other scalar optimizations.
1623 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1624   Type *GVElType = GV->getValueType();
1625 
1626   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1627   // an FP value, pointer or vector, don't do this optimization because a select
1628   // between them is very expensive and unlikely to lead to later
1629   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1630   // where v1 and v2 both require constant pool loads, a big loss.
1631   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1632       GVElType->isFloatingPointTy() ||
1633       GVElType->isPointerTy() || GVElType->isVectorTy())
1634     return false;
1635 
1636   // Walk the use list of the global seeing if all the uses are load or store.
1637   // If there is anything else, bail out.
1638   for (User *U : GV->users())
1639     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1640       return false;
1641 
1642   LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1643 
1644   // Create the new global, initializing it to false.
1645   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1646                                              false,
1647                                              GlobalValue::InternalLinkage,
1648                                         ConstantInt::getFalse(GV->getContext()),
1649                                              GV->getName()+".b",
1650                                              GV->getThreadLocalMode(),
1651                                              GV->getType()->getAddressSpace());
1652   NewGV->copyAttributesFrom(GV);
1653   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1654 
1655   Constant *InitVal = GV->getInitializer();
1656   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1657          "No reason to shrink to bool!");
1658 
1659   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1660   GV->getDebugInfo(GVs);
1661 
1662   // If initialized to zero and storing one into the global, we can use a cast
1663   // instead of a select to synthesize the desired value.
1664   bool IsOneZero = false;
1665   bool EmitOneOrZero = true;
1666   auto *CI = dyn_cast<ConstantInt>(OtherVal);
1667   if (CI && CI->getValue().getActiveBits() <= 64) {
1668     IsOneZero = InitVal->isNullValue() && CI->isOne();
1669 
1670     auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer());
1671     if (CIInit && CIInit->getValue().getActiveBits() <= 64) {
1672       uint64_t ValInit = CIInit->getZExtValue();
1673       uint64_t ValOther = CI->getZExtValue();
1674       uint64_t ValMinus = ValOther - ValInit;
1675 
1676       for(auto *GVe : GVs){
1677         DIGlobalVariable *DGV = GVe->getVariable();
1678         DIExpression *E = GVe->getExpression();
1679         const DataLayout &DL = GV->getParent()->getDataLayout();
1680         unsigned SizeInOctets =
1681           DL.getTypeAllocSizeInBits(NewGV->getType()->getElementType()) / 8;
1682 
1683         // It is expected that the address of global optimized variable is on
1684         // top of the stack. After optimization, value of that variable will
1685         // be ether 0 for initial value or 1 for other value. The following
1686         // expression should return constant integer value depending on the
1687         // value at global object address:
1688         // val * (ValOther - ValInit) + ValInit:
1689         // DW_OP_deref DW_OP_constu <ValMinus>
1690         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1691         SmallVector<uint64_t, 12> Ops = {
1692             dwarf::DW_OP_deref_size, SizeInOctets,
1693             dwarf::DW_OP_constu, ValMinus,
1694             dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
1695             dwarf::DW_OP_plus};
1696         bool WithStackValue = true;
1697         E = DIExpression::prependOpcodes(E, Ops, WithStackValue);
1698         DIGlobalVariableExpression *DGVE =
1699           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1700         NewGV->addDebugInfo(DGVE);
1701      }
1702      EmitOneOrZero = false;
1703     }
1704   }
1705 
1706   if (EmitOneOrZero) {
1707      // FIXME: This will only emit address for debugger on which will
1708      // be written only 0 or 1.
1709      for(auto *GV : GVs)
1710        NewGV->addDebugInfo(GV);
1711    }
1712 
1713   while (!GV->use_empty()) {
1714     Instruction *UI = cast<Instruction>(GV->user_back());
1715     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1716       // Change the store into a boolean store.
1717       bool StoringOther = SI->getOperand(0) == OtherVal;
1718       // Only do this if we weren't storing a loaded value.
1719       Value *StoreVal;
1720       if (StoringOther || SI->getOperand(0) == InitVal) {
1721         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1722                                     StoringOther);
1723       } else {
1724         // Otherwise, we are storing a previously loaded copy.  To do this,
1725         // change the copy from copying the original value to just copying the
1726         // bool.
1727         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1728 
1729         // If we've already replaced the input, StoredVal will be a cast or
1730         // select instruction.  If not, it will be a load of the original
1731         // global.
1732         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1733           assert(LI->getOperand(0) == GV && "Not a copy!");
1734           // Insert a new load, to preserve the saved value.
1735           StoreVal = new LoadInst(NewGV->getValueType(), NewGV,
1736                                   LI->getName() + ".b", false, None,
1737                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1738         } else {
1739           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1740                  "This is not a form that we understand!");
1741           StoreVal = StoredVal->getOperand(0);
1742           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1743         }
1744       }
1745       StoreInst *NSI =
1746           new StoreInst(StoreVal, NewGV, false, None, SI->getOrdering(),
1747                         SI->getSyncScopeID(), SI);
1748       NSI->setDebugLoc(SI->getDebugLoc());
1749     } else {
1750       // Change the load into a load of bool then a select.
1751       LoadInst *LI = cast<LoadInst>(UI);
1752       LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV,
1753                                    LI->getName() + ".b", false, None,
1754                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1755       Instruction *NSI;
1756       if (IsOneZero)
1757         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1758       else
1759         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1760       NSI->takeName(LI);
1761       // Since LI is split into two instructions, NLI and NSI both inherit the
1762       // same DebugLoc
1763       NLI->setDebugLoc(LI->getDebugLoc());
1764       NSI->setDebugLoc(LI->getDebugLoc());
1765       LI->replaceAllUsesWith(NSI);
1766     }
1767     UI->eraseFromParent();
1768   }
1769 
1770   // Retain the name of the old global variable. People who are debugging their
1771   // programs may expect these variables to be named the same.
1772   NewGV->takeName(GV);
1773   GV->eraseFromParent();
1774   return true;
1775 }
1776 
1777 static bool deleteIfDead(
1778     GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1779   GV.removeDeadConstantUsers();
1780 
1781   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1782     return false;
1783 
1784   if (const Comdat *C = GV.getComdat())
1785     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1786       return false;
1787 
1788   bool Dead;
1789   if (auto *F = dyn_cast<Function>(&GV))
1790     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1791   else
1792     Dead = GV.use_empty();
1793   if (!Dead)
1794     return false;
1795 
1796   LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1797   GV.eraseFromParent();
1798   ++NumDeleted;
1799   return true;
1800 }
1801 
1802 static bool isPointerValueDeadOnEntryToFunction(
1803     const Function *F, GlobalValue *GV,
1804     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1805   // Find all uses of GV. We expect them all to be in F, and if we can't
1806   // identify any of the uses we bail out.
1807   //
1808   // On each of these uses, identify if the memory that GV points to is
1809   // used/required/live at the start of the function. If it is not, for example
1810   // if the first thing the function does is store to the GV, the GV can
1811   // possibly be demoted.
1812   //
1813   // We don't do an exhaustive search for memory operations - simply look
1814   // through bitcasts as they're quite common and benign.
1815   const DataLayout &DL = GV->getParent()->getDataLayout();
1816   SmallVector<LoadInst *, 4> Loads;
1817   SmallVector<StoreInst *, 4> Stores;
1818   for (auto *U : GV->users()) {
1819     if (Operator::getOpcode(U) == Instruction::BitCast) {
1820       for (auto *UU : U->users()) {
1821         if (auto *LI = dyn_cast<LoadInst>(UU))
1822           Loads.push_back(LI);
1823         else if (auto *SI = dyn_cast<StoreInst>(UU))
1824           Stores.push_back(SI);
1825         else
1826           return false;
1827       }
1828       continue;
1829     }
1830 
1831     Instruction *I = dyn_cast<Instruction>(U);
1832     if (!I)
1833       return false;
1834     assert(I->getParent()->getParent() == F);
1835 
1836     if (auto *LI = dyn_cast<LoadInst>(I))
1837       Loads.push_back(LI);
1838     else if (auto *SI = dyn_cast<StoreInst>(I))
1839       Stores.push_back(SI);
1840     else
1841       return false;
1842   }
1843 
1844   // We have identified all uses of GV into loads and stores. Now check if all
1845   // of them are known not to depend on the value of the global at the function
1846   // entry point. We do this by ensuring that every load is dominated by at
1847   // least one store.
1848   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1849 
1850   // The below check is quadratic. Check we're not going to do too many tests.
1851   // FIXME: Even though this will always have worst-case quadratic time, we
1852   // could put effort into minimizing the average time by putting stores that
1853   // have been shown to dominate at least one load at the beginning of the
1854   // Stores array, making subsequent dominance checks more likely to succeed
1855   // early.
1856   //
1857   // The threshold here is fairly large because global->local demotion is a
1858   // very powerful optimization should it fire.
1859   const unsigned Threshold = 100;
1860   if (Loads.size() * Stores.size() > Threshold)
1861     return false;
1862 
1863   for (auto *L : Loads) {
1864     auto *LTy = L->getType();
1865     if (none_of(Stores, [&](const StoreInst *S) {
1866           auto *STy = S->getValueOperand()->getType();
1867           // The load is only dominated by the store if DomTree says so
1868           // and the number of bits loaded in L is less than or equal to
1869           // the number of bits stored in S.
1870           return DT.dominates(S, L) &&
1871                  DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
1872         }))
1873       return false;
1874   }
1875   // All loads have known dependences inside F, so the global can be localized.
1876   return true;
1877 }
1878 
1879 /// C may have non-instruction users. Can all of those users be turned into
1880 /// instructions?
1881 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1882   // We don't do this exhaustively. The most common pattern that we really need
1883   // to care about is a constant GEP or constant bitcast - so just looking
1884   // through one single ConstantExpr.
1885   //
1886   // The set of constants that this function returns true for must be able to be
1887   // handled by makeAllConstantUsesInstructions.
1888   for (auto *U : C->users()) {
1889     if (isa<Instruction>(U))
1890       continue;
1891     if (!isa<ConstantExpr>(U))
1892       // Non instruction, non-constantexpr user; cannot convert this.
1893       return false;
1894     for (auto *UU : U->users())
1895       if (!isa<Instruction>(UU))
1896         // A constantexpr used by another constant. We don't try and recurse any
1897         // further but just bail out at this point.
1898         return false;
1899   }
1900 
1901   return true;
1902 }
1903 
1904 /// C may have non-instruction users, and
1905 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1906 /// non-instruction users to instructions.
1907 static void makeAllConstantUsesInstructions(Constant *C) {
1908   SmallVector<ConstantExpr*,4> Users;
1909   for (auto *U : C->users()) {
1910     if (isa<ConstantExpr>(U))
1911       Users.push_back(cast<ConstantExpr>(U));
1912     else
1913       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1914       // should not have returned true for C.
1915       assert(
1916           isa<Instruction>(U) &&
1917           "Can't transform non-constantexpr non-instruction to instruction!");
1918   }
1919 
1920   SmallVector<Value*,4> UUsers;
1921   for (auto *U : Users) {
1922     UUsers.clear();
1923     for (auto *UU : U->users())
1924       UUsers.push_back(UU);
1925     for (auto *UU : UUsers) {
1926       Instruction *UI = cast<Instruction>(UU);
1927       Instruction *NewU = U->getAsInstruction();
1928       NewU->insertBefore(UI);
1929       UI->replaceUsesOfWith(U, NewU);
1930     }
1931     // We've replaced all the uses, so destroy the constant. (destroyConstant
1932     // will update value handles and metadata.)
1933     U->destroyConstant();
1934   }
1935 }
1936 
1937 /// Analyze the specified global variable and optimize
1938 /// it if possible.  If we make a change, return true.
1939 static bool
1940 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS,
1941                       function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1942                       function_ref<DominatorTree &(Function &)> LookupDomTree) {
1943   auto &DL = GV->getParent()->getDataLayout();
1944   // If this is a first class global and has only one accessing function and
1945   // this function is non-recursive, we replace the global with a local alloca
1946   // in this function.
1947   //
1948   // NOTE: It doesn't make sense to promote non-single-value types since we
1949   // are just replacing static memory to stack memory.
1950   //
1951   // If the global is in different address space, don't bring it to stack.
1952   if (!GS.HasMultipleAccessingFunctions &&
1953       GS.AccessingFunction &&
1954       GV->getValueType()->isSingleValueType() &&
1955       GV->getType()->getAddressSpace() == 0 &&
1956       !GV->isExternallyInitialized() &&
1957       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1958       GS.AccessingFunction->doesNotRecurse() &&
1959       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1960                                           LookupDomTree)) {
1961     const DataLayout &DL = GV->getParent()->getDataLayout();
1962 
1963     LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1964     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1965                                                    ->getEntryBlock().begin());
1966     Type *ElemTy = GV->getValueType();
1967     // FIXME: Pass Global's alignment when globals have alignment
1968     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1969                                         GV->getName(), &FirstI);
1970     if (!isa<UndefValue>(GV->getInitializer()))
1971       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1972 
1973     makeAllConstantUsesInstructions(GV);
1974 
1975     GV->replaceAllUsesWith(Alloca);
1976     GV->eraseFromParent();
1977     ++NumLocalized;
1978     return true;
1979   }
1980 
1981   // If the global is never loaded (but may be stored to), it is dead.
1982   // Delete it now.
1983   if (!GS.IsLoaded) {
1984     LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1985 
1986     bool Changed;
1987     if (isLeakCheckerRoot(GV)) {
1988       // Delete any constant stores to the global.
1989       Changed = CleanupPointerRootUsers(GV, GetTLI);
1990     } else {
1991       // Delete any stores we can find to the global.  We may not be able to
1992       // make it completely dead though.
1993       Changed =
1994           CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
1995     }
1996 
1997     // If the global is dead now, delete it.
1998     if (GV->use_empty()) {
1999       GV->eraseFromParent();
2000       ++NumDeleted;
2001       Changed = true;
2002     }
2003     return Changed;
2004 
2005   }
2006   if (GS.StoredType <= GlobalStatus::InitializerStored) {
2007     LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
2008 
2009     // Don't actually mark a global constant if it's atomic because atomic loads
2010     // are implemented by a trivial cmpxchg in some edge-cases and that usually
2011     // requires write access to the variable even if it's not actually changed.
2012     if (GS.Ordering == AtomicOrdering::NotAtomic)
2013       GV->setConstant(true);
2014 
2015     // Clean up any obviously simplifiable users now.
2016     CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
2017 
2018     // If the global is dead now, just nuke it.
2019     if (GV->use_empty()) {
2020       LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
2021                         << "all users and delete global!\n");
2022       GV->eraseFromParent();
2023       ++NumDeleted;
2024       return true;
2025     }
2026 
2027     // Fall through to the next check; see if we can optimize further.
2028     ++NumMarked;
2029   }
2030   if (!GV->getInitializer()->getType()->isSingleValueType()) {
2031     const DataLayout &DL = GV->getParent()->getDataLayout();
2032     if (SRAGlobal(GV, DL))
2033       return true;
2034   }
2035   if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
2036     // If the initial value for the global was an undef value, and if only
2037     // one other value was stored into it, we can just change the
2038     // initializer to be the stored value, then delete all stores to the
2039     // global.  This allows us to mark it constant.
2040     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
2041       if (isa<UndefValue>(GV->getInitializer())) {
2042         // Change the initial value here.
2043         GV->setInitializer(SOVConstant);
2044 
2045         // Clean up any obviously simplifiable users now.
2046         CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
2047 
2048         if (GV->use_empty()) {
2049           LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
2050                             << "simplify all users and delete global!\n");
2051           GV->eraseFromParent();
2052           ++NumDeleted;
2053         }
2054         ++NumSubstitute;
2055         return true;
2056       }
2057 
2058     // Try to optimize globals based on the knowledge that only one value
2059     // (besides its initializer) is ever stored to the global.
2060     if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL,
2061                                  GetTLI))
2062       return true;
2063 
2064     // Otherwise, if the global was not a boolean, we can shrink it to be a
2065     // boolean.
2066     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
2067       if (GS.Ordering == AtomicOrdering::NotAtomic) {
2068         if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
2069           ++NumShrunkToBool;
2070           return true;
2071         }
2072       }
2073     }
2074   }
2075 
2076   return false;
2077 }
2078 
2079 /// Analyze the specified global variable and optimize it if possible.  If we
2080 /// make a change, return true.
2081 static bool
2082 processGlobal(GlobalValue &GV,
2083               function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2084               function_ref<DominatorTree &(Function &)> LookupDomTree) {
2085   if (GV.getName().startswith("llvm."))
2086     return false;
2087 
2088   GlobalStatus GS;
2089 
2090   if (GlobalStatus::analyzeGlobal(&GV, GS))
2091     return false;
2092 
2093   bool Changed = false;
2094   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
2095     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
2096                                                : GlobalValue::UnnamedAddr::Local;
2097     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
2098       GV.setUnnamedAddr(NewUnnamedAddr);
2099       NumUnnamed++;
2100       Changed = true;
2101     }
2102   }
2103 
2104   // Do more involved optimizations if the global is internal.
2105   if (!GV.hasLocalLinkage())
2106     return Changed;
2107 
2108   auto *GVar = dyn_cast<GlobalVariable>(&GV);
2109   if (!GVar)
2110     return Changed;
2111 
2112   if (GVar->isConstant() || !GVar->hasInitializer())
2113     return Changed;
2114 
2115   return processInternalGlobal(GVar, GS, GetTLI, LookupDomTree) || Changed;
2116 }
2117 
2118 /// Walk all of the direct calls of the specified function, changing them to
2119 /// FastCC.
2120 static void ChangeCalleesToFastCall(Function *F) {
2121   for (User *U : F->users()) {
2122     if (isa<BlockAddress>(U))
2123       continue;
2124     CallSite CS(cast<Instruction>(U));
2125     CS.setCallingConv(CallingConv::Fast);
2126   }
2127 }
2128 
2129 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs,
2130                                Attribute::AttrKind A) {
2131   unsigned AttrIndex;
2132   if (Attrs.hasAttrSomewhere(A, &AttrIndex))
2133     return Attrs.removeAttribute(C, AttrIndex, A);
2134   return Attrs;
2135 }
2136 
2137 static void RemoveAttribute(Function *F, Attribute::AttrKind A) {
2138   F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A));
2139   for (User *U : F->users()) {
2140     if (isa<BlockAddress>(U))
2141       continue;
2142     CallSite CS(cast<Instruction>(U));
2143     CS.setAttributes(StripAttr(F->getContext(), CS.getAttributes(), A));
2144   }
2145 }
2146 
2147 /// Return true if this is a calling convention that we'd like to change.  The
2148 /// idea here is that we don't want to mess with the convention if the user
2149 /// explicitly requested something with performance implications like coldcc,
2150 /// GHC, or anyregcc.
2151 static bool hasChangeableCC(Function *F) {
2152   CallingConv::ID CC = F->getCallingConv();
2153 
2154   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
2155   if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
2156     return false;
2157 
2158   // FIXME: Change CC for the whole chain of musttail calls when possible.
2159   //
2160   // Can't change CC of the function that either has musttail calls, or is a
2161   // musttail callee itself
2162   for (User *U : F->users()) {
2163     if (isa<BlockAddress>(U))
2164       continue;
2165     CallInst* CI = dyn_cast<CallInst>(U);
2166     if (!CI)
2167       continue;
2168 
2169     if (CI->isMustTailCall())
2170       return false;
2171   }
2172 
2173   for (BasicBlock &BB : *F)
2174     if (BB.getTerminatingMustTailCall())
2175       return false;
2176 
2177   return true;
2178 }
2179 
2180 /// Return true if the block containing the call site has a BlockFrequency of
2181 /// less than ColdCCRelFreq% of the entry block.
2182 static bool isColdCallSite(CallSite CS, BlockFrequencyInfo &CallerBFI) {
2183   const BranchProbability ColdProb(ColdCCRelFreq, 100);
2184   auto CallSiteBB = CS.getInstruction()->getParent();
2185   auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
2186   auto CallerEntryFreq =
2187       CallerBFI.getBlockFreq(&(CS.getCaller()->getEntryBlock()));
2188   return CallSiteFreq < CallerEntryFreq * ColdProb;
2189 }
2190 
2191 // This function checks if the input function F is cold at all call sites. It
2192 // also looks each call site's containing function, returning false if the
2193 // caller function contains other non cold calls. The input vector AllCallsCold
2194 // contains a list of functions that only have call sites in cold blocks.
2195 static bool
2196 isValidCandidateForColdCC(Function &F,
2197                           function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2198                           const std::vector<Function *> &AllCallsCold) {
2199 
2200   if (F.user_empty())
2201     return false;
2202 
2203   for (User *U : F.users()) {
2204     if (isa<BlockAddress>(U))
2205       continue;
2206 
2207     CallSite CS(cast<Instruction>(U));
2208     Function *CallerFunc = CS.getInstruction()->getParent()->getParent();
2209     BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
2210     if (!isColdCallSite(CS, CallerBFI))
2211       return false;
2212     auto It = std::find(AllCallsCold.begin(), AllCallsCold.end(), CallerFunc);
2213     if (It == AllCallsCold.end())
2214       return false;
2215   }
2216   return true;
2217 }
2218 
2219 static void changeCallSitesToColdCC(Function *F) {
2220   for (User *U : F->users()) {
2221     if (isa<BlockAddress>(U))
2222       continue;
2223     CallSite CS(cast<Instruction>(U));
2224     CS.setCallingConv(CallingConv::Cold);
2225   }
2226 }
2227 
2228 // This function iterates over all the call instructions in the input Function
2229 // and checks that all call sites are in cold blocks and are allowed to use the
2230 // coldcc calling convention.
2231 static bool
2232 hasOnlyColdCalls(Function &F,
2233                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
2234   for (BasicBlock &BB : F) {
2235     for (Instruction &I : BB) {
2236       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2237         CallSite CS(cast<Instruction>(CI));
2238         // Skip over isline asm instructions since they aren't function calls.
2239         if (CI->isInlineAsm())
2240           continue;
2241         Function *CalledFn = CI->getCalledFunction();
2242         if (!CalledFn)
2243           return false;
2244         if (!CalledFn->hasLocalLinkage())
2245           return false;
2246         // Skip over instrinsics since they won't remain as function calls.
2247         if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
2248           continue;
2249         // Check if it's valid to use coldcc calling convention.
2250         if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
2251             CalledFn->hasAddressTaken())
2252           return false;
2253         BlockFrequencyInfo &CallerBFI = GetBFI(F);
2254         if (!isColdCallSite(CS, CallerBFI))
2255           return false;
2256       }
2257     }
2258   }
2259   return true;
2260 }
2261 
2262 static bool
2263 OptimizeFunctions(Module &M,
2264                   function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2265                   function_ref<TargetTransformInfo &(Function &)> GetTTI,
2266                   function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2267                   function_ref<DominatorTree &(Function &)> LookupDomTree,
2268                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2269 
2270   bool Changed = false;
2271 
2272   std::vector<Function *> AllCallsCold;
2273   for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) {
2274     Function *F = &*FI++;
2275     if (hasOnlyColdCalls(*F, GetBFI))
2276       AllCallsCold.push_back(F);
2277   }
2278 
2279   // Optimize functions.
2280   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2281     Function *F = &*FI++;
2282 
2283     // Don't perform global opt pass on naked functions; we don't want fast
2284     // calling conventions for naked functions.
2285     if (F->hasFnAttribute(Attribute::Naked))
2286       continue;
2287 
2288     // Functions without names cannot be referenced outside this module.
2289     if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
2290       F->setLinkage(GlobalValue::InternalLinkage);
2291 
2292     if (deleteIfDead(*F, NotDiscardableComdats)) {
2293       Changed = true;
2294       continue;
2295     }
2296 
2297     // LLVM's definition of dominance allows instructions that are cyclic
2298     // in unreachable blocks, e.g.:
2299     // %pat = select i1 %condition, @global, i16* %pat
2300     // because any instruction dominates an instruction in a block that's
2301     // not reachable from entry.
2302     // So, remove unreachable blocks from the function, because a) there's
2303     // no point in analyzing them and b) GlobalOpt should otherwise grow
2304     // some more complicated logic to break these cycles.
2305     // Removing unreachable blocks might invalidate the dominator so we
2306     // recalculate it.
2307     if (!F->isDeclaration()) {
2308       if (removeUnreachableBlocks(*F)) {
2309         auto &DT = LookupDomTree(*F);
2310         DT.recalculate(*F);
2311         Changed = true;
2312       }
2313     }
2314 
2315     Changed |= processGlobal(*F, GetTLI, LookupDomTree);
2316 
2317     if (!F->hasLocalLinkage())
2318       continue;
2319 
2320     // If we have an inalloca parameter that we can safely remove the
2321     // inalloca attribute from, do so. This unlocks optimizations that
2322     // wouldn't be safe in the presence of inalloca.
2323     // FIXME: We should also hoist alloca affected by this to the entry
2324     // block if possible.
2325     if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca) &&
2326         !F->hasAddressTaken()) {
2327       RemoveAttribute(F, Attribute::InAlloca);
2328       Changed = true;
2329     }
2330 
2331     if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) {
2332       NumInternalFunc++;
2333       TargetTransformInfo &TTI = GetTTI(*F);
2334       // Change the calling convention to coldcc if either stress testing is
2335       // enabled or the target would like to use coldcc on functions which are
2336       // cold at all call sites and the callers contain no other non coldcc
2337       // calls.
2338       if (EnableColdCCStressTest ||
2339           (TTI.useColdCCForColdCall(*F) &&
2340            isValidCandidateForColdCC(*F, GetBFI, AllCallsCold))) {
2341         F->setCallingConv(CallingConv::Cold);
2342         changeCallSitesToColdCC(F);
2343         Changed = true;
2344         NumColdCC++;
2345       }
2346     }
2347 
2348     if (hasChangeableCC(F) && !F->isVarArg() &&
2349         !F->hasAddressTaken()) {
2350       // If this function has a calling convention worth changing, is not a
2351       // varargs function, and is only called directly, promote it to use the
2352       // Fast calling convention.
2353       F->setCallingConv(CallingConv::Fast);
2354       ChangeCalleesToFastCall(F);
2355       ++NumFastCallFns;
2356       Changed = true;
2357     }
2358 
2359     if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2360         !F->hasAddressTaken()) {
2361       // The function is not used by a trampoline intrinsic, so it is safe
2362       // to remove the 'nest' attribute.
2363       RemoveAttribute(F, Attribute::Nest);
2364       ++NumNestRemoved;
2365       Changed = true;
2366     }
2367   }
2368   return Changed;
2369 }
2370 
2371 static bool
2372 OptimizeGlobalVars(Module &M,
2373                    function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2374                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2375                    SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2376   bool Changed = false;
2377 
2378   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2379        GVI != E; ) {
2380     GlobalVariable *GV = &*GVI++;
2381     // Global variables without names cannot be referenced outside this module.
2382     if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2383       GV->setLinkage(GlobalValue::InternalLinkage);
2384     // Simplify the initializer.
2385     if (GV->hasInitializer())
2386       if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
2387         auto &DL = M.getDataLayout();
2388         // TLI is not used in the case of a Constant, so use default nullptr
2389         // for that optional parameter, since we don't have a Function to
2390         // provide GetTLI anyway.
2391         Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr);
2392         if (New && New != C)
2393           GV->setInitializer(New);
2394       }
2395 
2396     if (deleteIfDead(*GV, NotDiscardableComdats)) {
2397       Changed = true;
2398       continue;
2399     }
2400 
2401     Changed |= processGlobal(*GV, GetTLI, LookupDomTree);
2402   }
2403   return Changed;
2404 }
2405 
2406 /// Evaluate a piece of a constantexpr store into a global initializer.  This
2407 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
2408 /// GEP operands of Addr [0, OpNo) have been stepped into.
2409 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2410                                    ConstantExpr *Addr, unsigned OpNo) {
2411   // Base case of the recursion.
2412   if (OpNo == Addr->getNumOperands()) {
2413     assert(Val->getType() == Init->getType() && "Type mismatch!");
2414     return Val;
2415   }
2416 
2417   SmallVector<Constant*, 32> Elts;
2418   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2419     // Break up the constant into its elements.
2420     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2421       Elts.push_back(Init->getAggregateElement(i));
2422 
2423     // Replace the element that we are supposed to.
2424     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2425     unsigned Idx = CU->getZExtValue();
2426     assert(Idx < STy->getNumElements() && "Struct index out of range!");
2427     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2428 
2429     // Return the modified struct.
2430     return ConstantStruct::get(STy, Elts);
2431   }
2432 
2433   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2434   SequentialType *InitTy = cast<SequentialType>(Init->getType());
2435   uint64_t NumElts = InitTy->getNumElements();
2436 
2437   // Break up the array into elements.
2438   for (uint64_t i = 0, e = NumElts; i != e; ++i)
2439     Elts.push_back(Init->getAggregateElement(i));
2440 
2441   assert(CI->getZExtValue() < NumElts);
2442   Elts[CI->getZExtValue()] =
2443     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2444 
2445   if (Init->getType()->isArrayTy())
2446     return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2447   return ConstantVector::get(Elts);
2448 }
2449 
2450 /// We have decided that Addr (which satisfies the predicate
2451 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2452 static void CommitValueTo(Constant *Val, Constant *Addr) {
2453   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2454     assert(GV->hasInitializer());
2455     GV->setInitializer(Val);
2456     return;
2457   }
2458 
2459   ConstantExpr *CE = cast<ConstantExpr>(Addr);
2460   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2461   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2462 }
2463 
2464 /// Given a map of address -> value, where addresses are expected to be some form
2465 /// of either a global or a constant GEP, set the initializer for the address to
2466 /// be the value. This performs mostly the same function as CommitValueTo()
2467 /// and EvaluateStoreInto() but is optimized to be more efficient for the common
2468 /// case where the set of addresses are GEPs sharing the same underlying global,
2469 /// processing the GEPs in batches rather than individually.
2470 ///
2471 /// To give an example, consider the following C++ code adapted from the clang
2472 /// regression tests:
2473 /// struct S {
2474 ///  int n = 10;
2475 ///  int m = 2 * n;
2476 ///  S(int a) : n(a) {}
2477 /// };
2478 ///
2479 /// template<typename T>
2480 /// struct U {
2481 ///  T *r = &q;
2482 ///  T q = 42;
2483 ///  U *p = this;
2484 /// };
2485 ///
2486 /// U<S> e;
2487 ///
2488 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of
2489 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
2490 /// members. This batch algorithm will simply use general CommitValueTo() method
2491 /// to handle the complex nested S struct initialization of 'q', before
2492 /// processing the outermost members in a single batch. Using CommitValueTo() to
2493 /// handle member in the outer struct is inefficient when the struct/array is
2494 /// very large as we end up creating and destroy constant arrays for each
2495 /// initialization.
2496 /// For the above case, we expect the following IR to be generated:
2497 ///
2498 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
2499 /// %struct.S = type { i32, i32 }
2500 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
2501 ///                                                  i64 0, i32 1),
2502 ///                         %struct.S { i32 42, i32 84 }, %struct.U* @e }
2503 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
2504 /// constant expression, while the other two elements of @e are "simple".
2505 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) {
2506   SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs;
2507   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs;
2508   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs;
2509   SimpleCEs.reserve(Mem.size());
2510 
2511   for (const auto &I : Mem) {
2512     if (auto *GV = dyn_cast<GlobalVariable>(I.first)) {
2513       GVs.push_back(std::make_pair(GV, I.second));
2514     } else {
2515       ConstantExpr *GEP = cast<ConstantExpr>(I.first);
2516       // We don't handle the deeply recursive case using the batch method.
2517       if (GEP->getNumOperands() > 3)
2518         ComplexCEs.push_back(std::make_pair(GEP, I.second));
2519       else
2520         SimpleCEs.push_back(std::make_pair(GEP, I.second));
2521     }
2522   }
2523 
2524   // The algorithm below doesn't handle cases like nested structs, so use the
2525   // slower fully general method if we have to.
2526   for (auto ComplexCE : ComplexCEs)
2527     CommitValueTo(ComplexCE.second, ComplexCE.first);
2528 
2529   for (auto GVPair : GVs) {
2530     assert(GVPair.first->hasInitializer());
2531     GVPair.first->setInitializer(GVPair.second);
2532   }
2533 
2534   if (SimpleCEs.empty())
2535     return;
2536 
2537   // We cache a single global's initializer elements in the case where the
2538   // subsequent address/val pair uses the same one. This avoids throwing away and
2539   // rebuilding the constant struct/vector/array just because one element is
2540   // modified at a time.
2541   SmallVector<Constant *, 32> Elts;
2542   Elts.reserve(SimpleCEs.size());
2543   GlobalVariable *CurrentGV = nullptr;
2544 
2545   auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) {
2546     Constant *Init = GV->getInitializer();
2547     Type *Ty = Init->getType();
2548     if (Update) {
2549       if (CurrentGV) {
2550         assert(CurrentGV && "Expected a GV to commit to!");
2551         Type *CurrentInitTy = CurrentGV->getInitializer()->getType();
2552         // We have a valid cache that needs to be committed.
2553         if (StructType *STy = dyn_cast<StructType>(CurrentInitTy))
2554           CurrentGV->setInitializer(ConstantStruct::get(STy, Elts));
2555         else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy))
2556           CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts));
2557         else
2558           CurrentGV->setInitializer(ConstantVector::get(Elts));
2559       }
2560       if (CurrentGV == GV)
2561         return;
2562       // Need to clear and set up cache for new initializer.
2563       CurrentGV = GV;
2564       Elts.clear();
2565       unsigned NumElts;
2566       if (auto *STy = dyn_cast<StructType>(Ty))
2567         NumElts = STy->getNumElements();
2568       else
2569         NumElts = cast<SequentialType>(Ty)->getNumElements();
2570       for (unsigned i = 0, e = NumElts; i != e; ++i)
2571         Elts.push_back(Init->getAggregateElement(i));
2572     }
2573   };
2574 
2575   for (auto CEPair : SimpleCEs) {
2576     ConstantExpr *GEP = CEPair.first;
2577     Constant *Val = CEPair.second;
2578 
2579     GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0));
2580     commitAndSetupCache(GV, GV != CurrentGV);
2581     ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2));
2582     Elts[CI->getZExtValue()] = Val;
2583   }
2584   // The last initializer in the list needs to be committed, others
2585   // will be committed on a new initializer being processed.
2586   commitAndSetupCache(CurrentGV, true);
2587 }
2588 
2589 /// Evaluate static constructors in the function, if we can.  Return true if we
2590 /// can, false otherwise.
2591 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2592                                       TargetLibraryInfo *TLI) {
2593   // Call the function.
2594   Evaluator Eval(DL, TLI);
2595   Constant *RetValDummy;
2596   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2597                                            SmallVector<Constant*, 0>());
2598 
2599   if (EvalSuccess) {
2600     ++NumCtorsEvaluated;
2601 
2602     // We succeeded at evaluation: commit the result.
2603     LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2604                       << F->getName() << "' to "
2605                       << Eval.getMutatedMemory().size() << " stores.\n");
2606     BatchCommitValueTo(Eval.getMutatedMemory());
2607     for (GlobalVariable *GV : Eval.getInvariants())
2608       GV->setConstant(true);
2609   }
2610 
2611   return EvalSuccess;
2612 }
2613 
2614 static int compareNames(Constant *const *A, Constant *const *B) {
2615   Value *AStripped = (*A)->stripPointerCasts();
2616   Value *BStripped = (*B)->stripPointerCasts();
2617   return AStripped->getName().compare(BStripped->getName());
2618 }
2619 
2620 static void setUsedInitializer(GlobalVariable &V,
2621                                const SmallPtrSetImpl<GlobalValue *> &Init) {
2622   if (Init.empty()) {
2623     V.eraseFromParent();
2624     return;
2625   }
2626 
2627   // Type of pointer to the array of pointers.
2628   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2629 
2630   SmallVector<Constant *, 8> UsedArray;
2631   for (GlobalValue *GV : Init) {
2632     Constant *Cast
2633       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2634     UsedArray.push_back(Cast);
2635   }
2636   // Sort to get deterministic order.
2637   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2638   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2639 
2640   Module *M = V.getParent();
2641   V.removeFromParent();
2642   GlobalVariable *NV =
2643       new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2644                          ConstantArray::get(ATy, UsedArray), "");
2645   NV->takeName(&V);
2646   NV->setSection("llvm.metadata");
2647   delete &V;
2648 }
2649 
2650 namespace {
2651 
2652 /// An easy to access representation of llvm.used and llvm.compiler.used.
2653 class LLVMUsed {
2654   SmallPtrSet<GlobalValue *, 8> Used;
2655   SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2656   GlobalVariable *UsedV;
2657   GlobalVariable *CompilerUsedV;
2658 
2659 public:
2660   LLVMUsed(Module &M) {
2661     UsedV = collectUsedGlobalVariables(M, Used, false);
2662     CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2663   }
2664 
2665   using iterator = SmallPtrSet<GlobalValue *, 8>::iterator;
2666   using used_iterator_range = iterator_range<iterator>;
2667 
2668   iterator usedBegin() { return Used.begin(); }
2669   iterator usedEnd() { return Used.end(); }
2670 
2671   used_iterator_range used() {
2672     return used_iterator_range(usedBegin(), usedEnd());
2673   }
2674 
2675   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2676   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2677 
2678   used_iterator_range compilerUsed() {
2679     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2680   }
2681 
2682   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2683 
2684   bool compilerUsedCount(GlobalValue *GV) const {
2685     return CompilerUsed.count(GV);
2686   }
2687 
2688   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2689   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2690   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2691 
2692   bool compilerUsedInsert(GlobalValue *GV) {
2693     return CompilerUsed.insert(GV).second;
2694   }
2695 
2696   void syncVariablesAndSets() {
2697     if (UsedV)
2698       setUsedInitializer(*UsedV, Used);
2699     if (CompilerUsedV)
2700       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2701   }
2702 };
2703 
2704 } // end anonymous namespace
2705 
2706 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2707   if (GA.use_empty()) // No use at all.
2708     return false;
2709 
2710   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2711          "We should have removed the duplicated "
2712          "element from llvm.compiler.used");
2713   if (!GA.hasOneUse())
2714     // Strictly more than one use. So at least one is not in llvm.used and
2715     // llvm.compiler.used.
2716     return true;
2717 
2718   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2719   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2720 }
2721 
2722 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2723                                                const LLVMUsed &U) {
2724   unsigned N = 2;
2725   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2726          "We should have removed the duplicated "
2727          "element from llvm.compiler.used");
2728   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2729     ++N;
2730   return V.hasNUsesOrMore(N);
2731 }
2732 
2733 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2734   if (!GA.hasLocalLinkage())
2735     return true;
2736 
2737   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2738 }
2739 
2740 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2741                              bool &RenameTarget) {
2742   RenameTarget = false;
2743   bool Ret = false;
2744   if (hasUseOtherThanLLVMUsed(GA, U))
2745     Ret = true;
2746 
2747   // If the alias is externally visible, we may still be able to simplify it.
2748   if (!mayHaveOtherReferences(GA, U))
2749     return Ret;
2750 
2751   // If the aliasee has internal linkage, give it the name and linkage
2752   // of the alias, and delete the alias.  This turns:
2753   //   define internal ... @f(...)
2754   //   @a = alias ... @f
2755   // into:
2756   //   define ... @a(...)
2757   Constant *Aliasee = GA.getAliasee();
2758   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2759   if (!Target->hasLocalLinkage())
2760     return Ret;
2761 
2762   // Do not perform the transform if multiple aliases potentially target the
2763   // aliasee. This check also ensures that it is safe to replace the section
2764   // and other attributes of the aliasee with those of the alias.
2765   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2766     return Ret;
2767 
2768   RenameTarget = true;
2769   return true;
2770 }
2771 
2772 static bool
2773 OptimizeGlobalAliases(Module &M,
2774                       SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2775   bool Changed = false;
2776   LLVMUsed Used(M);
2777 
2778   for (GlobalValue *GV : Used.used())
2779     Used.compilerUsedErase(GV);
2780 
2781   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2782        I != E;) {
2783     GlobalAlias *J = &*I++;
2784 
2785     // Aliases without names cannot be referenced outside this module.
2786     if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2787       J->setLinkage(GlobalValue::InternalLinkage);
2788 
2789     if (deleteIfDead(*J, NotDiscardableComdats)) {
2790       Changed = true;
2791       continue;
2792     }
2793 
2794     // If the alias can change at link time, nothing can be done - bail out.
2795     if (J->isInterposable())
2796       continue;
2797 
2798     Constant *Aliasee = J->getAliasee();
2799     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2800     // We can't trivially replace the alias with the aliasee if the aliasee is
2801     // non-trivial in some way.
2802     // TODO: Try to handle non-zero GEPs of local aliasees.
2803     if (!Target)
2804       continue;
2805     Target->removeDeadConstantUsers();
2806 
2807     // Make all users of the alias use the aliasee instead.
2808     bool RenameTarget;
2809     if (!hasUsesToReplace(*J, Used, RenameTarget))
2810       continue;
2811 
2812     J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2813     ++NumAliasesResolved;
2814     Changed = true;
2815 
2816     if (RenameTarget) {
2817       // Give the aliasee the name, linkage and other attributes of the alias.
2818       Target->takeName(&*J);
2819       Target->setLinkage(J->getLinkage());
2820       Target->setDSOLocal(J->isDSOLocal());
2821       Target->setVisibility(J->getVisibility());
2822       Target->setDLLStorageClass(J->getDLLStorageClass());
2823 
2824       if (Used.usedErase(&*J))
2825         Used.usedInsert(Target);
2826 
2827       if (Used.compilerUsedErase(&*J))
2828         Used.compilerUsedInsert(Target);
2829     } else if (mayHaveOtherReferences(*J, Used))
2830       continue;
2831 
2832     // Delete the alias.
2833     M.getAliasList().erase(J);
2834     ++NumAliasesRemoved;
2835     Changed = true;
2836   }
2837 
2838   Used.syncVariablesAndSets();
2839 
2840   return Changed;
2841 }
2842 
2843 static Function *
2844 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
2845   // Hack to get a default TLI before we have actual Function.
2846   auto FuncIter = M.begin();
2847   if (FuncIter == M.end())
2848     return nullptr;
2849   auto *TLI = &GetTLI(*FuncIter);
2850 
2851   LibFunc F = LibFunc_cxa_atexit;
2852   if (!TLI->has(F))
2853     return nullptr;
2854 
2855   Function *Fn = M.getFunction(TLI->getName(F));
2856   if (!Fn)
2857     return nullptr;
2858 
2859   // Now get the actual TLI for Fn.
2860   TLI = &GetTLI(*Fn);
2861 
2862   // Make sure that the function has the correct prototype.
2863   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2864     return nullptr;
2865 
2866   return Fn;
2867 }
2868 
2869 /// Returns whether the given function is an empty C++ destructor and can
2870 /// therefore be eliminated.
2871 /// Note that we assume that other optimization passes have already simplified
2872 /// the code so we simply check for 'ret'.
2873 static bool cxxDtorIsEmpty(const Function &Fn) {
2874   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2875   // nounwind, but that doesn't seem worth doing.
2876   if (Fn.isDeclaration())
2877     return false;
2878 
2879   for (auto &I : Fn.getEntryBlock()) {
2880     if (isa<DbgInfoIntrinsic>(I))
2881       continue;
2882     if (isa<ReturnInst>(I))
2883       return true;
2884     break;
2885   }
2886   return false;
2887 }
2888 
2889 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2890   /// Itanium C++ ABI p3.3.5:
2891   ///
2892   ///   After constructing a global (or local static) object, that will require
2893   ///   destruction on exit, a termination function is registered as follows:
2894   ///
2895   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2896   ///
2897   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2898   ///   call f(p) when DSO d is unloaded, before all such termination calls
2899   ///   registered before this one. It returns zero if registration is
2900   ///   successful, nonzero on failure.
2901 
2902   // This pass will look for calls to __cxa_atexit where the function is trivial
2903   // and remove them.
2904   bool Changed = false;
2905 
2906   for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
2907        I != E;) {
2908     // We're only interested in calls. Theoretically, we could handle invoke
2909     // instructions as well, but neither llvm-gcc nor clang generate invokes
2910     // to __cxa_atexit.
2911     CallInst *CI = dyn_cast<CallInst>(*I++);
2912     if (!CI)
2913       continue;
2914 
2915     Function *DtorFn =
2916       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2917     if (!DtorFn || !cxxDtorIsEmpty(*DtorFn))
2918       continue;
2919 
2920     // Just remove the call.
2921     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2922     CI->eraseFromParent();
2923 
2924     ++NumCXXDtorsRemoved;
2925 
2926     Changed |= true;
2927   }
2928 
2929   return Changed;
2930 }
2931 
2932 static bool optimizeGlobalsInModule(
2933     Module &M, const DataLayout &DL,
2934     function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2935     function_ref<TargetTransformInfo &(Function &)> GetTTI,
2936     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2937     function_ref<DominatorTree &(Function &)> LookupDomTree) {
2938   SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
2939   bool Changed = false;
2940   bool LocalChange = true;
2941   while (LocalChange) {
2942     LocalChange = false;
2943 
2944     NotDiscardableComdats.clear();
2945     for (const GlobalVariable &GV : M.globals())
2946       if (const Comdat *C = GV.getComdat())
2947         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2948           NotDiscardableComdats.insert(C);
2949     for (Function &F : M)
2950       if (const Comdat *C = F.getComdat())
2951         if (!F.isDefTriviallyDead())
2952           NotDiscardableComdats.insert(C);
2953     for (GlobalAlias &GA : M.aliases())
2954       if (const Comdat *C = GA.getComdat())
2955         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2956           NotDiscardableComdats.insert(C);
2957 
2958     // Delete functions that are trivially dead, ccc -> fastcc
2959     LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree,
2960                                      NotDiscardableComdats);
2961 
2962     // Optimize global_ctors list.
2963     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2964       return EvaluateStaticConstructor(F, DL, &GetTLI(*F));
2965     });
2966 
2967     // Optimize non-address-taken globals.
2968     LocalChange |=
2969         OptimizeGlobalVars(M, GetTLI, LookupDomTree, NotDiscardableComdats);
2970 
2971     // Resolve aliases, when possible.
2972     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2973 
2974     // Try to remove trivial global destructors if they are not removed
2975     // already.
2976     Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI);
2977     if (CXAAtExitFn)
2978       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2979 
2980     Changed |= LocalChange;
2981   }
2982 
2983   // TODO: Move all global ctors functions to the end of the module for code
2984   // layout.
2985 
2986   return Changed;
2987 }
2988 
2989 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2990     auto &DL = M.getDataLayout();
2991     auto &FAM =
2992         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2993     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2994       return FAM.getResult<DominatorTreeAnalysis>(F);
2995     };
2996     auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
2997       return FAM.getResult<TargetLibraryAnalysis>(F);
2998     };
2999     auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
3000       return FAM.getResult<TargetIRAnalysis>(F);
3001     };
3002 
3003     auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
3004       return FAM.getResult<BlockFrequencyAnalysis>(F);
3005     };
3006 
3007     if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree))
3008       return PreservedAnalyses::all();
3009     return PreservedAnalyses::none();
3010 }
3011 
3012 namespace {
3013 
3014 struct GlobalOptLegacyPass : public ModulePass {
3015   static char ID; // Pass identification, replacement for typeid
3016 
3017   GlobalOptLegacyPass() : ModulePass(ID) {
3018     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
3019   }
3020 
3021   bool runOnModule(Module &M) override {
3022     if (skipModule(M))
3023       return false;
3024 
3025     auto &DL = M.getDataLayout();
3026     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
3027       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
3028     };
3029     auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
3030       return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3031     };
3032     auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
3033       return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3034     };
3035 
3036     auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
3037       return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
3038     };
3039 
3040     return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI,
3041                                    LookupDomTree);
3042   }
3043 
3044   void getAnalysisUsage(AnalysisUsage &AU) const override {
3045     AU.addRequired<TargetLibraryInfoWrapperPass>();
3046     AU.addRequired<TargetTransformInfoWrapperPass>();
3047     AU.addRequired<DominatorTreeWrapperPass>();
3048     AU.addRequired<BlockFrequencyInfoWrapperPass>();
3049   }
3050 };
3051 
3052 } // end anonymous namespace
3053 
3054 char GlobalOptLegacyPass::ID = 0;
3055 
3056 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
3057                       "Global Variable Optimizer", false, false)
3058 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3059 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3060 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
3061 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3062 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
3063                     "Global Variable Optimizer", false, false)
3064 
3065 ModulePass *llvm::createGlobalOptimizerPass() {
3066   return new GlobalOptLegacyPass();
3067 }
3068