1 //===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 // Implementation for the IROutliner which is used by the IROutliner Pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/IROutliner.h"
15 #include "llvm/Analysis/IRSimilarityIdentifier.h"
16 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/IR/Attributes.h"
19 #include "llvm/IR/DIBuilder.h"
20 #include "llvm/IR/DebugInfo.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Mangler.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Transforms/IPO.h"
27 #include <optional>
28 #include <vector>
29 
30 #define DEBUG_TYPE "iroutliner"
31 
32 using namespace llvm;
33 using namespace IRSimilarity;
34 
35 // A command flag to be used for debugging to exclude branches from similarity
36 // matching and outlining.
37 namespace llvm {
38 extern cl::opt<bool> DisableBranches;
39 
40 // A command flag to be used for debugging to indirect calls from similarity
41 // matching and outlining.
42 extern cl::opt<bool> DisableIndirectCalls;
43 
44 // A command flag to be used for debugging to exclude intrinsics from similarity
45 // matching and outlining.
46 extern cl::opt<bool> DisableIntrinsics;
47 
48 } // namespace llvm
49 
50 // Set to true if the user wants the ir outliner to run on linkonceodr linkage
51 // functions. This is false by default because the linker can dedupe linkonceodr
52 // functions. Since the outliner is confined to a single module (modulo LTO),
53 // this is off by default. It should, however, be the default behavior in
54 // LTO.
55 static cl::opt<bool> EnableLinkOnceODRIROutlining(
56     "enable-linkonceodr-ir-outlining", cl::Hidden,
57     cl::desc("Enable the IR outliner on linkonceodr functions"),
58     cl::init(false));
59 
60 // This is a debug option to test small pieces of code to ensure that outlining
61 // works correctly.
62 static cl::opt<bool> NoCostModel(
63     "ir-outlining-no-cost", cl::init(false), cl::ReallyHidden,
64     cl::desc("Debug option to outline greedily, without restriction that "
65              "calculated benefit outweighs cost"));
66 
67 /// The OutlinableGroup holds all the overarching information for outlining
68 /// a set of regions that are structurally similar to one another, such as the
69 /// types of the overall function, the output blocks, the sets of stores needed
70 /// and a list of the different regions. This information is used in the
71 /// deduplication of extracted regions with the same structure.
72 struct OutlinableGroup {
73   /// The sections that could be outlined
74   std::vector<OutlinableRegion *> Regions;
75 
76   /// The argument types for the function created as the overall function to
77   /// replace the extracted function for each region.
78   std::vector<Type *> ArgumentTypes;
79   /// The FunctionType for the overall function.
80   FunctionType *OutlinedFunctionType = nullptr;
81   /// The Function for the collective overall function.
82   Function *OutlinedFunction = nullptr;
83 
84   /// Flag for whether we should not consider this group of OutlinableRegions
85   /// for extraction.
86   bool IgnoreGroup = false;
87 
88   /// The return blocks for the overall function.
89   DenseMap<Value *, BasicBlock *> EndBBs;
90 
91   /// The PHIBlocks with their corresponding return block based on the return
92   /// value as the key.
93   DenseMap<Value *, BasicBlock *> PHIBlocks;
94 
95   /// A set containing the different GVN store sets needed. Each array contains
96   /// a sorted list of the different values that need to be stored into output
97   /// registers.
98   DenseSet<ArrayRef<unsigned>> OutputGVNCombinations;
99 
100   /// Flag for whether the \ref ArgumentTypes have been defined after the
101   /// extraction of the first region.
102   bool InputTypesSet = false;
103 
104   /// The number of input values in \ref ArgumentTypes.  Anything after this
105   /// index in ArgumentTypes is an output argument.
106   unsigned NumAggregateInputs = 0;
107 
108   /// The mapping of the canonical numbering of the values in outlined sections
109   /// to specific arguments.
110   DenseMap<unsigned, unsigned> CanonicalNumberToAggArg;
111 
112   /// The number of branches in the region target a basic block that is outside
113   /// of the region.
114   unsigned BranchesToOutside = 0;
115 
116   /// Tracker counting backwards from the highest unsigned value possible to
117   /// avoid conflicting with the GVNs of assigned values.  We start at -3 since
118   /// -2 and -1 are assigned by the DenseMap.
119   unsigned PHINodeGVNTracker = -3;
120 
121   DenseMap<unsigned,
122            std::pair<std::pair<unsigned, unsigned>, SmallVector<unsigned, 2>>>
123       PHINodeGVNToGVNs;
124   DenseMap<hash_code, unsigned> GVNsToPHINodeGVN;
125 
126   /// The number of instructions that will be outlined by extracting \ref
127   /// Regions.
128   InstructionCost Benefit = 0;
129   /// The number of added instructions needed for the outlining of the \ref
130   /// Regions.
131   InstructionCost Cost = 0;
132 
133   /// The argument that needs to be marked with the swifterr attribute.  If not
134   /// needed, there is no value.
135   std::optional<unsigned> SwiftErrorArgument;
136 
137   /// For the \ref Regions, we look at every Value.  If it is a constant,
138   /// we check whether it is the same in Region.
139   ///
140   /// \param [in,out] NotSame contains the global value numbers where the
141   /// constant is not always the same, and must be passed in as an argument.
142   void findSameConstants(DenseSet<unsigned> &NotSame);
143 
144   /// For the regions, look at each set of GVN stores needed and account for
145   /// each combination.  Add an argument to the argument types if there is
146   /// more than one combination.
147   ///
148   /// \param [in] M - The module we are outlining from.
149   void collectGVNStoreSets(Module &M);
150 };
151 
152 /// Move the contents of \p SourceBB to before the last instruction of \p
153 /// TargetBB.
154 /// \param SourceBB - the BasicBlock to pull Instructions from.
155 /// \param TargetBB - the BasicBlock to put Instruction into.
156 static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) {
157   for (Instruction &I : llvm::make_early_inc_range(SourceBB))
158     I.moveBefore(TargetBB, TargetBB.end());
159 }
160 
161 /// A function to sort the keys of \p Map, which must be a mapping of constant
162 /// values to basic blocks and return it in \p SortedKeys
163 ///
164 /// \param SortedKeys - The vector the keys will be return in and sorted.
165 /// \param Map - The DenseMap containing keys to sort.
166 static void getSortedConstantKeys(std::vector<Value *> &SortedKeys,
167                                   DenseMap<Value *, BasicBlock *> &Map) {
168   for (auto &VtoBB : Map)
169     SortedKeys.push_back(VtoBB.first);
170 
171   // Here we expect to have either 1 value that is void (nullptr) or multiple
172   // values that are all constant integers.
173   if (SortedKeys.size() == 1) {
174     assert(!SortedKeys[0] && "Expected a single void value.");
175     return;
176   }
177 
178   stable_sort(SortedKeys, [](const Value *LHS, const Value *RHS) {
179     assert(LHS && RHS && "Expected non void values.");
180     const ConstantInt *LHSC = cast<ConstantInt>(LHS);
181     const ConstantInt *RHSC = cast<ConstantInt>(RHS);
182 
183     return LHSC->getLimitedValue() < RHSC->getLimitedValue();
184   });
185 }
186 
187 Value *OutlinableRegion::findCorrespondingValueIn(const OutlinableRegion &Other,
188                                                   Value *V) {
189   std::optional<unsigned> GVN = Candidate->getGVN(V);
190   assert(GVN && "No GVN for incoming value");
191   std::optional<unsigned> CanonNum = Candidate->getCanonicalNum(*GVN);
192   std::optional<unsigned> FirstGVN =
193       Other.Candidate->fromCanonicalNum(*CanonNum);
194   std::optional<Value *> FoundValueOpt = Other.Candidate->fromGVN(*FirstGVN);
195   return FoundValueOpt.value_or(nullptr);
196 }
197 
198 BasicBlock *
199 OutlinableRegion::findCorrespondingBlockIn(const OutlinableRegion &Other,
200                                            BasicBlock *BB) {
201   Instruction *FirstNonPHI = BB->getFirstNonPHI();
202   assert(FirstNonPHI && "block is empty?");
203   Value *CorrespondingVal = findCorrespondingValueIn(Other, FirstNonPHI);
204   if (!CorrespondingVal)
205     return nullptr;
206   BasicBlock *CorrespondingBlock =
207       cast<Instruction>(CorrespondingVal)->getParent();
208   return CorrespondingBlock;
209 }
210 
211 /// Rewrite the BranchInsts in the incoming blocks to \p PHIBlock that are found
212 /// in \p Included to branch to BasicBlock \p Replace if they currently branch
213 /// to the BasicBlock \p Find.  This is used to fix up the incoming basic blocks
214 /// when PHINodes are included in outlined regions.
215 ///
216 /// \param PHIBlock - The BasicBlock containing the PHINodes that need to be
217 /// checked.
218 /// \param Find - The successor block to be replaced.
219 /// \param Replace - The new succesor block to branch to.
220 /// \param Included - The set of blocks about to be outlined.
221 static void replaceTargetsFromPHINode(BasicBlock *PHIBlock, BasicBlock *Find,
222                                       BasicBlock *Replace,
223                                       DenseSet<BasicBlock *> &Included) {
224   for (PHINode &PN : PHIBlock->phis()) {
225     for (unsigned Idx = 0, PNEnd = PN.getNumIncomingValues(); Idx != PNEnd;
226          ++Idx) {
227       // Check if the incoming block is included in the set of blocks being
228       // outlined.
229       BasicBlock *Incoming = PN.getIncomingBlock(Idx);
230       if (!Included.contains(Incoming))
231         continue;
232 
233       BranchInst *BI = dyn_cast<BranchInst>(Incoming->getTerminator());
234       assert(BI && "Not a branch instruction?");
235       // Look over the branching instructions into this block to see if we
236       // used to branch to Find in this outlined block.
237       for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ != End;
238            Succ++) {
239         // If we have found the block to replace, we do so here.
240         if (BI->getSuccessor(Succ) != Find)
241           continue;
242         BI->setSuccessor(Succ, Replace);
243       }
244     }
245   }
246 }
247 
248 
249 void OutlinableRegion::splitCandidate() {
250   assert(!CandidateSplit && "Candidate already split!");
251 
252   Instruction *BackInst = Candidate->backInstruction();
253 
254   Instruction *EndInst = nullptr;
255   // Check whether the last instruction is a terminator, if it is, we do
256   // not split on the following instruction. We leave the block as it is.  We
257   // also check that this is not the last instruction in the Module, otherwise
258   // the check for whether the current following instruction matches the
259   // previously recorded instruction will be incorrect.
260   if (!BackInst->isTerminator() ||
261       BackInst->getParent() != &BackInst->getFunction()->back()) {
262     EndInst = Candidate->end()->Inst;
263     assert(EndInst && "Expected an end instruction?");
264   }
265 
266   // We check if the current instruction following the last instruction in the
267   // region is the same as the recorded instruction following the last
268   // instruction. If they do not match, there could be problems in rewriting
269   // the program after outlining, so we ignore it.
270   if (!BackInst->isTerminator() &&
271       EndInst != BackInst->getNextNonDebugInstruction())
272     return;
273 
274   Instruction *StartInst = (*Candidate->begin()).Inst;
275   assert(StartInst && "Expected a start instruction?");
276   StartBB = StartInst->getParent();
277   PrevBB = StartBB;
278 
279   DenseSet<BasicBlock *> BBSet;
280   Candidate->getBasicBlocks(BBSet);
281 
282   // We iterate over the instructions in the region, if we find a PHINode, we
283   // check if there are predecessors outside of the region, if there are,
284   // we ignore this region since we are unable to handle the severing of the
285   // phi node right now.
286 
287   // TODO: Handle extraneous inputs for PHINodes through variable number of
288   // inputs, similar to how outputs are handled.
289   BasicBlock::iterator It = StartInst->getIterator();
290   EndBB = BackInst->getParent();
291   BasicBlock *IBlock;
292   BasicBlock *PHIPredBlock = nullptr;
293   bool EndBBTermAndBackInstDifferent = EndBB->getTerminator() != BackInst;
294   while (PHINode *PN = dyn_cast<PHINode>(&*It)) {
295     unsigned NumPredsOutsideRegion = 0;
296     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
297       if (!BBSet.contains(PN->getIncomingBlock(i))) {
298         PHIPredBlock = PN->getIncomingBlock(i);
299         ++NumPredsOutsideRegion;
300         continue;
301       }
302 
303       // We must consider the case there the incoming block to the PHINode is
304       // the same as the final block of the OutlinableRegion.  If this is the
305       // case, the branch from this block must also be outlined to be valid.
306       IBlock = PN->getIncomingBlock(i);
307       if (IBlock == EndBB && EndBBTermAndBackInstDifferent) {
308         PHIPredBlock = PN->getIncomingBlock(i);
309         ++NumPredsOutsideRegion;
310       }
311     }
312 
313     if (NumPredsOutsideRegion > 1)
314       return;
315 
316     It++;
317   }
318 
319   // If the region starts with a PHINode, but is not the initial instruction of
320   // the BasicBlock, we ignore this region for now.
321   if (isa<PHINode>(StartInst) && StartInst != &*StartBB->begin())
322     return;
323 
324   // If the region ends with a PHINode, but does not contain all of the phi node
325   // instructions of the region, we ignore it for now.
326   if (isa<PHINode>(BackInst) &&
327       BackInst != &*std::prev(EndBB->getFirstInsertionPt()))
328     return;
329 
330   // The basic block gets split like so:
331   // block:                 block:
332   //   inst1                  inst1
333   //   inst2                  inst2
334   //   region1               br block_to_outline
335   //   region2              block_to_outline:
336   //   region3          ->    region1
337   //   region4                region2
338   //   inst3                  region3
339   //   inst4                  region4
340   //                          br block_after_outline
341   //                        block_after_outline:
342   //                          inst3
343   //                          inst4
344 
345   std::string OriginalName = PrevBB->getName().str();
346 
347   StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline");
348   PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, StartBB);
349   // If there was a PHINode with an incoming block outside the region,
350   // make sure is correctly updated in the newly split block.
351   if (PHIPredBlock)
352     PrevBB->replaceSuccessorsPhiUsesWith(PHIPredBlock, PrevBB);
353 
354   CandidateSplit = true;
355   if (!BackInst->isTerminator()) {
356     EndBB = EndInst->getParent();
357     FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline");
358     EndBB->replaceSuccessorsPhiUsesWith(EndBB, FollowBB);
359     FollowBB->replaceSuccessorsPhiUsesWith(PrevBB, FollowBB);
360   } else {
361     EndBB = BackInst->getParent();
362     EndsInBranch = true;
363     FollowBB = nullptr;
364   }
365 
366   // Refind the basic block set.
367   BBSet.clear();
368   Candidate->getBasicBlocks(BBSet);
369   // For the phi nodes in the new starting basic block of the region, we
370   // reassign the targets of the basic blocks branching instructions.
371   replaceTargetsFromPHINode(StartBB, PrevBB, StartBB, BBSet);
372   if (FollowBB)
373     replaceTargetsFromPHINode(FollowBB, EndBB, FollowBB, BBSet);
374 }
375 
376 void OutlinableRegion::reattachCandidate() {
377   assert(CandidateSplit && "Candidate is not split!");
378 
379   // The basic block gets reattached like so:
380   // block:                        block:
381   //   inst1                         inst1
382   //   inst2                         inst2
383   //   br block_to_outline           region1
384   // block_to_outline:        ->     region2
385   //   region1                       region3
386   //   region2                       region4
387   //   region3                       inst3
388   //   region4                       inst4
389   //   br block_after_outline
390   // block_after_outline:
391   //   inst3
392   //   inst4
393   assert(StartBB != nullptr && "StartBB for Candidate is not defined!");
394 
395   assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!");
396   // Make sure PHINode references to the block we are merging into are
397   // updated to be incoming blocks from the predecessor to the current block.
398 
399   // NOTE: If this is updated such that the outlined block can have more than
400   // one incoming block to a PHINode, this logic will have to updated
401   // to handle multiple precessors instead.
402 
403   // We only need to update this if the outlined section contains a PHINode, if
404   // it does not, then the incoming block was never changed in the first place.
405   // On the other hand, if PrevBB has no predecessors, it means that all
406   // incoming blocks to the first block are contained in the region, and there
407   // will be nothing to update.
408   Instruction *StartInst = (*Candidate->begin()).Inst;
409   if (isa<PHINode>(StartInst) && !PrevBB->hasNPredecessors(0)) {
410     assert(!PrevBB->hasNPredecessorsOrMore(2) &&
411          "PrevBB has more than one predecessor. Should be 0 or 1.");
412     BasicBlock *BeforePrevBB = PrevBB->getSinglePredecessor();
413     PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, BeforePrevBB);
414   }
415   PrevBB->getTerminator()->eraseFromParent();
416 
417   // If we reattaching after outlining, we iterate over the phi nodes to
418   // the initial block, and reassign the branch instructions of the incoming
419   // blocks to the block we are remerging into.
420   if (!ExtractedFunction) {
421     DenseSet<BasicBlock *> BBSet;
422     Candidate->getBasicBlocks(BBSet);
423 
424     replaceTargetsFromPHINode(StartBB, StartBB, PrevBB, BBSet);
425     if (!EndsInBranch)
426       replaceTargetsFromPHINode(FollowBB, FollowBB, EndBB, BBSet);
427   }
428 
429   moveBBContents(*StartBB, *PrevBB);
430 
431   BasicBlock *PlacementBB = PrevBB;
432   if (StartBB != EndBB)
433     PlacementBB = EndBB;
434   if (!EndsInBranch && PlacementBB->getUniqueSuccessor() != nullptr) {
435     assert(FollowBB != nullptr && "FollowBB for Candidate is not defined!");
436     assert(PlacementBB->getTerminator() && "Terminator removed from EndBB!");
437     PlacementBB->getTerminator()->eraseFromParent();
438     moveBBContents(*FollowBB, *PlacementBB);
439     PlacementBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB);
440     FollowBB->eraseFromParent();
441   }
442 
443   PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB);
444   StartBB->eraseFromParent();
445 
446   // Make sure to save changes back to the StartBB.
447   StartBB = PrevBB;
448   EndBB = nullptr;
449   PrevBB = nullptr;
450   FollowBB = nullptr;
451 
452   CandidateSplit = false;
453 }
454 
455 /// Find whether \p V matches the Constants previously found for the \p GVN.
456 ///
457 /// \param V - The value to check for consistency.
458 /// \param GVN - The global value number assigned to \p V.
459 /// \param GVNToConstant - The mapping of global value number to Constants.
460 /// \returns true if the Value matches the Constant mapped to by V and false if
461 /// it \p V is a Constant but does not match.
462 /// \returns std::nullopt if \p V is not a Constant.
463 static std::optional<bool>
464 constantMatches(Value *V, unsigned GVN,
465                 DenseMap<unsigned, Constant *> &GVNToConstant) {
466   // See if we have a constants
467   Constant *CST = dyn_cast<Constant>(V);
468   if (!CST)
469     return std::nullopt;
470 
471   // Holds a mapping from a global value number to a Constant.
472   DenseMap<unsigned, Constant *>::iterator GVNToConstantIt;
473   bool Inserted;
474 
475 
476   // If we have a constant, try to make a new entry in the GVNToConstant.
477   std::tie(GVNToConstantIt, Inserted) =
478       GVNToConstant.insert(std::make_pair(GVN, CST));
479   // If it was found and is not equal, it is not the same. We do not
480   // handle this case yet, and exit early.
481   if (Inserted || (GVNToConstantIt->second == CST))
482     return true;
483 
484   return false;
485 }
486 
487 InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) {
488   InstructionCost Benefit = 0;
489 
490   // Estimate the benefit of outlining a specific sections of the program.  We
491   // delegate mostly this task to the TargetTransformInfo so that if the target
492   // has specific changes, we can have a more accurate estimate.
493 
494   // However, getInstructionCost delegates the code size calculation for
495   // arithmetic instructions to getArithmeticInstrCost in
496   // include/Analysis/TargetTransformImpl.h, where it always estimates that the
497   // code size for a division and remainder instruction to be equal to 4, and
498   // everything else to 1.  This is not an accurate representation of the
499   // division instruction for targets that have a native division instruction.
500   // To be overly conservative, we only add 1 to the number of instructions for
501   // each division instruction.
502   for (IRInstructionData &ID : *Candidate) {
503     Instruction *I = ID.Inst;
504     switch (I->getOpcode()) {
505     case Instruction::FDiv:
506     case Instruction::FRem:
507     case Instruction::SDiv:
508     case Instruction::SRem:
509     case Instruction::UDiv:
510     case Instruction::URem:
511       Benefit += 1;
512       break;
513     default:
514       Benefit += TTI.getInstructionCost(I, TargetTransformInfo::TCK_CodeSize);
515       break;
516     }
517   }
518 
519   return Benefit;
520 }
521 
522 /// Check the \p OutputMappings structure for value \p Input, if it exists
523 /// it has been used as an output for outlining, and has been renamed, and we
524 /// return the new value, otherwise, we return the same value.
525 ///
526 /// \param OutputMappings [in] - The mapping of values to their renamed value
527 /// after being used as an output for an outlined region.
528 /// \param Input [in] - The value to find the remapped value of, if it exists.
529 /// \return The remapped value if it has been renamed, and the same value if has
530 /// not.
531 static Value *findOutputMapping(const DenseMap<Value *, Value *> OutputMappings,
532                                 Value *Input) {
533   DenseMap<Value *, Value *>::const_iterator OutputMapping =
534       OutputMappings.find(Input);
535   if (OutputMapping != OutputMappings.end())
536     return OutputMapping->second;
537   return Input;
538 }
539 
540 /// Find whether \p Region matches the global value numbering to Constant
541 /// mapping found so far.
542 ///
543 /// \param Region - The OutlinableRegion we are checking for constants
544 /// \param GVNToConstant - The mapping of global value number to Constants.
545 /// \param NotSame - The set of global value numbers that do not have the same
546 /// constant in each region.
547 /// \returns true if all Constants are the same in every use of a Constant in \p
548 /// Region and false if not
549 static bool
550 collectRegionsConstants(OutlinableRegion &Region,
551                         DenseMap<unsigned, Constant *> &GVNToConstant,
552                         DenseSet<unsigned> &NotSame) {
553   bool ConstantsTheSame = true;
554 
555   IRSimilarityCandidate &C = *Region.Candidate;
556   for (IRInstructionData &ID : C) {
557 
558     // Iterate over the operands in an instruction. If the global value number,
559     // assigned by the IRSimilarityCandidate, has been seen before, we check if
560     // the the number has been found to be not the same value in each instance.
561     for (Value *V : ID.OperVals) {
562       std::optional<unsigned> GVNOpt = C.getGVN(V);
563       assert(GVNOpt && "Expected a GVN for operand?");
564       unsigned GVN = *GVNOpt;
565 
566       // Check if this global value has been found to not be the same already.
567       if (NotSame.contains(GVN)) {
568         if (isa<Constant>(V))
569           ConstantsTheSame = false;
570         continue;
571       }
572 
573       // If it has been the same so far, we check the value for if the
574       // associated Constant value match the previous instances of the same
575       // global value number.  If the global value does not map to a Constant,
576       // it is considered to not be the same value.
577       std::optional<bool> ConstantMatches =
578           constantMatches(V, GVN, GVNToConstant);
579       if (ConstantMatches) {
580         if (*ConstantMatches)
581           continue;
582         else
583           ConstantsTheSame = false;
584       }
585 
586       // While this value is a register, it might not have been previously,
587       // make sure we don't already have a constant mapped to this global value
588       // number.
589       if (GVNToConstant.contains(GVN))
590         ConstantsTheSame = false;
591 
592       NotSame.insert(GVN);
593     }
594   }
595 
596   return ConstantsTheSame;
597 }
598 
599 void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) {
600   DenseMap<unsigned, Constant *> GVNToConstant;
601 
602   for (OutlinableRegion *Region : Regions)
603     collectRegionsConstants(*Region, GVNToConstant, NotSame);
604 }
605 
606 void OutlinableGroup::collectGVNStoreSets(Module &M) {
607   for (OutlinableRegion *OS : Regions)
608     OutputGVNCombinations.insert(OS->GVNStores);
609 
610   // We are adding an extracted argument to decide between which output path
611   // to use in the basic block.  It is used in a switch statement and only
612   // needs to be an integer.
613   if (OutputGVNCombinations.size() > 1)
614     ArgumentTypes.push_back(Type::getInt32Ty(M.getContext()));
615 }
616 
617 /// Get the subprogram if it exists for one of the outlined regions.
618 ///
619 /// \param [in] Group - The set of regions to find a subprogram for.
620 /// \returns the subprogram if it exists, or nullptr.
621 static DISubprogram *getSubprogramOrNull(OutlinableGroup &Group) {
622   for (OutlinableRegion *OS : Group.Regions)
623     if (Function *F = OS->Call->getFunction())
624       if (DISubprogram *SP = F->getSubprogram())
625         return SP;
626 
627   return nullptr;
628 }
629 
630 Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group,
631                                      unsigned FunctionNameSuffix) {
632   assert(!Group.OutlinedFunction && "Function is already defined!");
633 
634   Type *RetTy = Type::getVoidTy(M.getContext());
635   // All extracted functions _should_ have the same return type at this point
636   // since the similarity identifier ensures that all branches outside of the
637   // region occur in the same place.
638 
639   // NOTE: Should we ever move to the model that uses a switch at every point
640   // needed, meaning that we could branch within the region or out, it is
641   // possible that we will need to switch to using the most general case all of
642   // the time.
643   for (OutlinableRegion *R : Group.Regions) {
644     Type *ExtractedFuncType = R->ExtractedFunction->getReturnType();
645     if ((RetTy->isVoidTy() && !ExtractedFuncType->isVoidTy()) ||
646         (RetTy->isIntegerTy(1) && ExtractedFuncType->isIntegerTy(16)))
647       RetTy = ExtractedFuncType;
648   }
649 
650   Group.OutlinedFunctionType = FunctionType::get(
651       RetTy, Group.ArgumentTypes, false);
652 
653   // These functions will only be called from within the same module, so
654   // we can set an internal linkage.
655   Group.OutlinedFunction = Function::Create(
656       Group.OutlinedFunctionType, GlobalValue::InternalLinkage,
657       "outlined_ir_func_" + std::to_string(FunctionNameSuffix), M);
658 
659   // Transfer the swifterr attribute to the correct function parameter.
660   if (Group.SwiftErrorArgument)
661     Group.OutlinedFunction->addParamAttr(*Group.SwiftErrorArgument,
662                                          Attribute::SwiftError);
663 
664   Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize);
665   Group.OutlinedFunction->addFnAttr(Attribute::MinSize);
666 
667   // If there's a DISubprogram associated with this outlined function, then
668   // emit debug info for the outlined function.
669   if (DISubprogram *SP = getSubprogramOrNull(Group)) {
670     Function *F = Group.OutlinedFunction;
671     // We have a DISubprogram. Get its DICompileUnit.
672     DICompileUnit *CU = SP->getUnit();
673     DIBuilder DB(M, true, CU);
674     DIFile *Unit = SP->getFile();
675     Mangler Mg;
676     // Get the mangled name of the function for the linkage name.
677     std::string Dummy;
678     llvm::raw_string_ostream MangledNameStream(Dummy);
679     Mg.getNameWithPrefix(MangledNameStream, F, false);
680 
681     DISubprogram *OutlinedSP = DB.createFunction(
682         Unit /* Context */, F->getName(), MangledNameStream.str(),
683         Unit /* File */,
684         0 /* Line 0 is reserved for compiler-generated code. */,
685         DB.createSubroutineType(
686             DB.getOrCreateTypeArray(std::nullopt)), /* void type */
687         0, /* Line 0 is reserved for compiler-generated code. */
688         DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
689         /* Outlined code is optimized code by definition. */
690         DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
691 
692     // Don't add any new variables to the subprogram.
693     DB.finalizeSubprogram(OutlinedSP);
694 
695     // Attach subprogram to the function.
696     F->setSubprogram(OutlinedSP);
697     // We're done with the DIBuilder.
698     DB.finalize();
699   }
700 
701   return Group.OutlinedFunction;
702 }
703 
704 /// Move each BasicBlock in \p Old to \p New.
705 ///
706 /// \param [in] Old - The function to move the basic blocks from.
707 /// \param [in] New - The function to move the basic blocks to.
708 /// \param [out] NewEnds - The return blocks of the new overall function.
709 static void moveFunctionData(Function &Old, Function &New,
710                              DenseMap<Value *, BasicBlock *> &NewEnds) {
711   for (BasicBlock &CurrBB : llvm::make_early_inc_range(Old)) {
712     CurrBB.removeFromParent();
713     CurrBB.insertInto(&New);
714     Instruction *I = CurrBB.getTerminator();
715 
716     // For each block we find a return instruction is, it is a potential exit
717     // path for the function.  We keep track of each block based on the return
718     // value here.
719     if (ReturnInst *RI = dyn_cast<ReturnInst>(I))
720       NewEnds.insert(std::make_pair(RI->getReturnValue(), &CurrBB));
721 
722     std::vector<Instruction *> DebugInsts;
723 
724     for (Instruction &Val : CurrBB) {
725       // We must handle the scoping of called functions differently than
726       // other outlined instructions.
727       if (!isa<CallInst>(&Val)) {
728         // Remove the debug information for outlined functions.
729         Val.setDebugLoc(DebugLoc());
730 
731         // Loop info metadata may contain line locations. Update them to have no
732         // value in the new subprogram since the outlined code could be from
733         // several locations.
734         auto updateLoopInfoLoc = [&New](Metadata *MD) -> Metadata * {
735           if (DISubprogram *SP = New.getSubprogram())
736             if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
737               return DILocation::get(New.getContext(), Loc->getLine(),
738                                      Loc->getColumn(), SP, nullptr);
739           return MD;
740         };
741         updateLoopMetadataDebugLocations(Val, updateLoopInfoLoc);
742         continue;
743       }
744 
745       // From this point we are only handling call instructions.
746       CallInst *CI = cast<CallInst>(&Val);
747 
748       // We add any debug statements here, to be removed after.  Since the
749       // instructions originate from many different locations in the program,
750       // it will cause incorrect reporting from a debugger if we keep the
751       // same debug instructions.
752       if (isa<DbgInfoIntrinsic>(CI)) {
753         DebugInsts.push_back(&Val);
754         continue;
755       }
756 
757       // Edit the scope of called functions inside of outlined functions.
758       if (DISubprogram *SP = New.getSubprogram()) {
759         DILocation *DI = DILocation::get(New.getContext(), 0, 0, SP);
760         Val.setDebugLoc(DI);
761       }
762     }
763 
764     for (Instruction *I : DebugInsts)
765       I->eraseFromParent();
766   }
767 }
768 
769 /// Find the the constants that will need to be lifted into arguments
770 /// as they are not the same in each instance of the region.
771 ///
772 /// \param [in] C - The IRSimilarityCandidate containing the region we are
773 /// analyzing.
774 /// \param [in] NotSame - The set of global value numbers that do not have a
775 /// single Constant across all OutlinableRegions similar to \p C.
776 /// \param [out] Inputs - The list containing the global value numbers of the
777 /// arguments needed for the region of code.
778 static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame,
779                           std::vector<unsigned> &Inputs) {
780   DenseSet<unsigned> Seen;
781   // Iterate over the instructions, and find what constants will need to be
782   // extracted into arguments.
783   for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end();
784        IDIt != EndIDIt; IDIt++) {
785     for (Value *V : (*IDIt).OperVals) {
786       // Since these are stored before any outlining, they will be in the
787       // global value numbering.
788       unsigned GVN = *C.getGVN(V);
789       if (isa<Constant>(V))
790         if (NotSame.contains(GVN) && !Seen.contains(GVN)) {
791           Inputs.push_back(GVN);
792           Seen.insert(GVN);
793         }
794     }
795   }
796 }
797 
798 /// Find the GVN for the inputs that have been found by the CodeExtractor.
799 ///
800 /// \param [in] C - The IRSimilarityCandidate containing the region we are
801 /// analyzing.
802 /// \param [in] CurrentInputs - The set of inputs found by the
803 /// CodeExtractor.
804 /// \param [in] OutputMappings - The mapping of values that have been replaced
805 /// by a new output value.
806 /// \param [out] EndInputNumbers - The global value numbers for the extracted
807 /// arguments.
808 static void mapInputsToGVNs(IRSimilarityCandidate &C,
809                             SetVector<Value *> &CurrentInputs,
810                             const DenseMap<Value *, Value *> &OutputMappings,
811                             std::vector<unsigned> &EndInputNumbers) {
812   // Get the Global Value Number for each input.  We check if the Value has been
813   // replaced by a different value at output, and use the original value before
814   // replacement.
815   for (Value *Input : CurrentInputs) {
816     assert(Input && "Have a nullptr as an input");
817     if (OutputMappings.contains(Input))
818       Input = OutputMappings.find(Input)->second;
819     assert(C.getGVN(Input) && "Could not find a numbering for the given input");
820     EndInputNumbers.push_back(*C.getGVN(Input));
821   }
822 }
823 
824 /// Find the original value for the \p ArgInput values if any one of them was
825 /// replaced during a previous extraction.
826 ///
827 /// \param [in] ArgInputs - The inputs to be extracted by the code extractor.
828 /// \param [in] OutputMappings - The mapping of values that have been replaced
829 /// by a new output value.
830 /// \param [out] RemappedArgInputs - The remapped values according to
831 /// \p OutputMappings that will be extracted.
832 static void
833 remapExtractedInputs(const ArrayRef<Value *> ArgInputs,
834                      const DenseMap<Value *, Value *> &OutputMappings,
835                      SetVector<Value *> &RemappedArgInputs) {
836   // Get the global value number for each input that will be extracted as an
837   // argument by the code extractor, remapping if needed for reloaded values.
838   for (Value *Input : ArgInputs) {
839     if (OutputMappings.contains(Input))
840       Input = OutputMappings.find(Input)->second;
841     RemappedArgInputs.insert(Input);
842   }
843 }
844 
845 /// Find the input GVNs and the output values for a region of Instructions.
846 /// Using the code extractor, we collect the inputs to the extracted function.
847 ///
848 /// The \p Region can be identified as needing to be ignored in this function.
849 /// It should be checked whether it should be ignored after a call to this
850 /// function.
851 ///
852 /// \param [in,out] Region - The region of code to be analyzed.
853 /// \param [out] InputGVNs - The global value numbers for the extracted
854 /// arguments.
855 /// \param [in] NotSame - The global value numbers in the region that do not
856 /// have the same constant value in the regions structurally similar to
857 /// \p Region.
858 /// \param [in] OutputMappings - The mapping of values that have been replaced
859 /// by a new output value after extraction.
860 /// \param [out] ArgInputs - The values of the inputs to the extracted function.
861 /// \param [out] Outputs - The set of values extracted by the CodeExtractor
862 /// as outputs.
863 static void getCodeExtractorArguments(
864     OutlinableRegion &Region, std::vector<unsigned> &InputGVNs,
865     DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings,
866     SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) {
867   IRSimilarityCandidate &C = *Region.Candidate;
868 
869   // OverallInputs are the inputs to the region found by the CodeExtractor,
870   // SinkCands and HoistCands are used by the CodeExtractor to find sunken
871   // allocas of values whose lifetimes are contained completely within the
872   // outlined region. PremappedInputs are the arguments found by the
873   // CodeExtractor, removing conditions such as sunken allocas, but that
874   // may need to be remapped due to the extracted output values replacing
875   // the original values. We use DummyOutputs for this first run of finding
876   // inputs and outputs since the outputs could change during findAllocas,
877   // the correct set of extracted outputs will be in the final Outputs ValueSet.
878   SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands,
879       DummyOutputs;
880 
881   // Use the code extractor to get the inputs and outputs, without sunken
882   // allocas or removing llvm.assumes.
883   CodeExtractor *CE = Region.CE;
884   CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands);
885   assert(Region.StartBB && "Region must have a start BasicBlock!");
886   Function *OrigF = Region.StartBB->getParent();
887   CodeExtractorAnalysisCache CEAC(*OrigF);
888   BasicBlock *Dummy = nullptr;
889 
890   // The region may be ineligible due to VarArgs in the parent function. In this
891   // case we ignore the region.
892   if (!CE->isEligible()) {
893     Region.IgnoreRegion = true;
894     return;
895   }
896 
897   // Find if any values are going to be sunk into the function when extracted
898   CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy);
899   CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands);
900 
901   // TODO: Support regions with sunken allocas: values whose lifetimes are
902   // contained completely within the outlined region.  These are not guaranteed
903   // to be the same in every region, so we must elevate them all to arguments
904   // when they appear.  If these values are not equal, it means there is some
905   // Input in OverallInputs that was removed for ArgInputs.
906   if (OverallInputs.size() != PremappedInputs.size()) {
907     Region.IgnoreRegion = true;
908     return;
909   }
910 
911   findConstants(C, NotSame, InputGVNs);
912 
913   mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs);
914 
915   remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings,
916                        ArgInputs);
917 
918   // Sort the GVNs, since we now have constants included in the \ref InputGVNs
919   // we need to make sure they are in a deterministic order.
920   stable_sort(InputGVNs);
921 }
922 
923 /// Look over the inputs and map each input argument to an argument in the
924 /// overall function for the OutlinableRegions.  This creates a way to replace
925 /// the arguments of the extracted function with the arguments of the new
926 /// overall function.
927 ///
928 /// \param [in,out] Region - The region of code to be analyzed.
929 /// \param [in] InputGVNs - The global value numbering of the input values
930 /// collected.
931 /// \param [in] ArgInputs - The values of the arguments to the extracted
932 /// function.
933 static void
934 findExtractedInputToOverallInputMapping(OutlinableRegion &Region,
935                                         std::vector<unsigned> &InputGVNs,
936                                         SetVector<Value *> &ArgInputs) {
937 
938   IRSimilarityCandidate &C = *Region.Candidate;
939   OutlinableGroup &Group = *Region.Parent;
940 
941   // This counts the argument number in the overall function.
942   unsigned TypeIndex = 0;
943 
944   // This counts the argument number in the extracted function.
945   unsigned OriginalIndex = 0;
946 
947   // Find the mapping of the extracted arguments to the arguments for the
948   // overall function. Since there may be extra arguments in the overall
949   // function to account for the extracted constants, we have two different
950   // counters as we find extracted arguments, and as we come across overall
951   // arguments.
952 
953   // Additionally, in our first pass, for the first extracted function,
954   // we find argument locations for the canonical value numbering.  This
955   // numbering overrides any discovered location for the extracted code.
956   for (unsigned InputVal : InputGVNs) {
957     std::optional<unsigned> CanonicalNumberOpt = C.getCanonicalNum(InputVal);
958     assert(CanonicalNumberOpt && "Canonical number not found?");
959     unsigned CanonicalNumber = *CanonicalNumberOpt;
960 
961     std::optional<Value *> InputOpt = C.fromGVN(InputVal);
962     assert(InputOpt && "Global value number not found?");
963     Value *Input = *InputOpt;
964 
965     DenseMap<unsigned, unsigned>::iterator AggArgIt =
966         Group.CanonicalNumberToAggArg.find(CanonicalNumber);
967 
968     if (!Group.InputTypesSet) {
969       Group.ArgumentTypes.push_back(Input->getType());
970       // If the input value has a swifterr attribute, make sure to mark the
971       // argument in the overall function.
972       if (Input->isSwiftError()) {
973         assert(
974             !Group.SwiftErrorArgument &&
975             "Argument already marked with swifterr for this OutlinableGroup!");
976         Group.SwiftErrorArgument = TypeIndex;
977       }
978     }
979 
980     // Check if we have a constant. If we do add it to the overall argument
981     // number to Constant map for the region, and continue to the next input.
982     if (Constant *CST = dyn_cast<Constant>(Input)) {
983       if (AggArgIt != Group.CanonicalNumberToAggArg.end())
984         Region.AggArgToConstant.insert(std::make_pair(AggArgIt->second, CST));
985       else {
986         Group.CanonicalNumberToAggArg.insert(
987             std::make_pair(CanonicalNumber, TypeIndex));
988         Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST));
989       }
990       TypeIndex++;
991       continue;
992     }
993 
994     // It is not a constant, we create the mapping from extracted argument list
995     // to the overall argument list, using the canonical location, if it exists.
996     assert(ArgInputs.count(Input) && "Input cannot be found!");
997 
998     if (AggArgIt != Group.CanonicalNumberToAggArg.end()) {
999       if (OriginalIndex != AggArgIt->second)
1000         Region.ChangedArgOrder = true;
1001       Region.ExtractedArgToAgg.insert(
1002           std::make_pair(OriginalIndex, AggArgIt->second));
1003       Region.AggArgToExtracted.insert(
1004           std::make_pair(AggArgIt->second, OriginalIndex));
1005     } else {
1006       Group.CanonicalNumberToAggArg.insert(
1007           std::make_pair(CanonicalNumber, TypeIndex));
1008       Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex));
1009       Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex));
1010     }
1011     OriginalIndex++;
1012     TypeIndex++;
1013   }
1014 
1015   // If the function type definitions for the OutlinableGroup holding the region
1016   // have not been set, set the length of the inputs here.  We should have the
1017   // same inputs for all of the different regions contained in the
1018   // OutlinableGroup since they are all structurally similar to one another.
1019   if (!Group.InputTypesSet) {
1020     Group.NumAggregateInputs = TypeIndex;
1021     Group.InputTypesSet = true;
1022   }
1023 
1024   Region.NumExtractedInputs = OriginalIndex;
1025 }
1026 
1027 /// Check if the \p V has any uses outside of the region other than \p PN.
1028 ///
1029 /// \param V [in] - The value to check.
1030 /// \param PHILoc [in] - The location in the PHINode of \p V.
1031 /// \param PN [in] - The PHINode using \p V.
1032 /// \param Exits [in] - The potential blocks we exit to from the outlined
1033 /// region.
1034 /// \param BlocksInRegion [in] - The basic blocks contained in the region.
1035 /// \returns true if \p V has any use soutside its region other than \p PN.
1036 static bool outputHasNonPHI(Value *V, unsigned PHILoc, PHINode &PN,
1037                             SmallPtrSet<BasicBlock *, 1> &Exits,
1038                             DenseSet<BasicBlock *> &BlocksInRegion) {
1039   // We check to see if the value is used by the PHINode from some other
1040   // predecessor not included in the region.  If it is, we make sure
1041   // to keep it as an output.
1042   if (any_of(llvm::seq<unsigned>(0, PN.getNumIncomingValues()),
1043              [PHILoc, &PN, V, &BlocksInRegion](unsigned Idx) {
1044                return (Idx != PHILoc && V == PN.getIncomingValue(Idx) &&
1045                        !BlocksInRegion.contains(PN.getIncomingBlock(Idx)));
1046              }))
1047     return true;
1048 
1049   // Check if the value is used by any other instructions outside the region.
1050   return any_of(V->users(), [&Exits, &BlocksInRegion](User *U) {
1051     Instruction *I = dyn_cast<Instruction>(U);
1052     if (!I)
1053       return false;
1054 
1055     // If the use of the item is inside the region, we skip it.  Uses
1056     // inside the region give us useful information about how the item could be
1057     // used as an output.
1058     BasicBlock *Parent = I->getParent();
1059     if (BlocksInRegion.contains(Parent))
1060       return false;
1061 
1062     // If it's not a PHINode then we definitely know the use matters.  This
1063     // output value will not completely combined with another item in a PHINode
1064     // as it is directly reference by another non-phi instruction
1065     if (!isa<PHINode>(I))
1066       return true;
1067 
1068     // If we have a PHINode outside one of the exit locations, then it
1069     // can be considered an outside use as well.  If there is a PHINode
1070     // contained in the Exit where this values use matters, it will be
1071     // caught when we analyze that PHINode.
1072     if (!Exits.contains(Parent))
1073       return true;
1074 
1075     return false;
1076   });
1077 }
1078 
1079 /// Test whether \p CurrentExitFromRegion contains any PhiNodes that should be
1080 /// considered outputs. A PHINodes is an output when more than one incoming
1081 /// value has been marked by the CodeExtractor as an output.
1082 ///
1083 /// \param CurrentExitFromRegion [in] - The block to analyze.
1084 /// \param PotentialExitsFromRegion [in] - The potential exit blocks from the
1085 /// region.
1086 /// \param RegionBlocks [in] - The basic blocks in the region.
1087 /// \param Outputs [in, out] - The existing outputs for the region, we may add
1088 /// PHINodes to this as we find that they replace output values.
1089 /// \param OutputsReplacedByPHINode [out] - A set containing outputs that are
1090 /// totally replaced  by a PHINode.
1091 /// \param OutputsWithNonPhiUses [out] - A set containing outputs that are used
1092 /// in PHINodes, but have other uses, and should still be considered outputs.
1093 static void analyzeExitPHIsForOutputUses(
1094     BasicBlock *CurrentExitFromRegion,
1095     SmallPtrSet<BasicBlock *, 1> &PotentialExitsFromRegion,
1096     DenseSet<BasicBlock *> &RegionBlocks, SetVector<Value *> &Outputs,
1097     DenseSet<Value *> &OutputsReplacedByPHINode,
1098     DenseSet<Value *> &OutputsWithNonPhiUses) {
1099   for (PHINode &PN : CurrentExitFromRegion->phis()) {
1100     // Find all incoming values from the outlining region.
1101     SmallVector<unsigned, 2> IncomingVals;
1102     for (unsigned I = 0, E = PN.getNumIncomingValues(); I < E; ++I)
1103       if (RegionBlocks.contains(PN.getIncomingBlock(I)))
1104         IncomingVals.push_back(I);
1105 
1106     // Do not process PHI if there are no predecessors from region.
1107     unsigned NumIncomingVals = IncomingVals.size();
1108     if (NumIncomingVals == 0)
1109       continue;
1110 
1111     // If there is one predecessor, we mark it as a value that needs to be kept
1112     // as an output.
1113     if (NumIncomingVals == 1) {
1114       Value *V = PN.getIncomingValue(*IncomingVals.begin());
1115       OutputsWithNonPhiUses.insert(V);
1116       OutputsReplacedByPHINode.erase(V);
1117       continue;
1118     }
1119 
1120     // This PHINode will be used as an output value, so we add it to our list.
1121     Outputs.insert(&PN);
1122 
1123     // Not all of the incoming values should be ignored as other inputs and
1124     // outputs may have uses in outlined region.  If they have other uses
1125     // outside of the single PHINode we should not skip over it.
1126     for (unsigned Idx : IncomingVals) {
1127       Value *V = PN.getIncomingValue(Idx);
1128       if (outputHasNonPHI(V, Idx, PN, PotentialExitsFromRegion, RegionBlocks)) {
1129         OutputsWithNonPhiUses.insert(V);
1130         OutputsReplacedByPHINode.erase(V);
1131         continue;
1132       }
1133       if (!OutputsWithNonPhiUses.contains(V))
1134         OutputsReplacedByPHINode.insert(V);
1135     }
1136   }
1137 }
1138 
1139 // Represents the type for the unsigned number denoting the output number for
1140 // phi node, along with the canonical number for the exit block.
1141 using ArgLocWithBBCanon = std::pair<unsigned, unsigned>;
1142 // The list of canonical numbers for the incoming values to a PHINode.
1143 using CanonList = SmallVector<unsigned, 2>;
1144 // The pair type representing the set of canonical values being combined in the
1145 // PHINode, along with the location data for the PHINode.
1146 using PHINodeData = std::pair<ArgLocWithBBCanon, CanonList>;
1147 
1148 /// Encode \p PND as an integer for easy lookup based on the argument location,
1149 /// the parent BasicBlock canonical numbering, and the canonical numbering of
1150 /// the values stored in the PHINode.
1151 ///
1152 /// \param PND - The data to hash.
1153 /// \returns The hash code of \p PND.
1154 static hash_code encodePHINodeData(PHINodeData &PND) {
1155   return llvm::hash_combine(
1156       llvm::hash_value(PND.first.first), llvm::hash_value(PND.first.second),
1157       llvm::hash_combine_range(PND.second.begin(), PND.second.end()));
1158 }
1159 
1160 /// Create a special GVN for PHINodes that will be used outside of
1161 /// the region.  We create a hash code based on the Canonical number of the
1162 /// parent BasicBlock, the canonical numbering of the values stored in the
1163 /// PHINode and the aggregate argument location.  This is used to find whether
1164 /// this PHINode type has been given a canonical numbering already.  If not, we
1165 /// assign it a value and store it for later use.  The value is returned to
1166 /// identify different output schemes for the set of regions.
1167 ///
1168 /// \param Region - The region that \p PN is an output for.
1169 /// \param PN - The PHINode we are analyzing.
1170 /// \param Blocks - The blocks for the region we are analyzing.
1171 /// \param AggArgIdx - The argument \p PN will be stored into.
1172 /// \returns An optional holding the assigned canonical number, or std::nullopt
1173 /// if there is some attribute of the PHINode blocking it from being used.
1174 static std::optional<unsigned> getGVNForPHINode(OutlinableRegion &Region,
1175                                                 PHINode *PN,
1176                                                 DenseSet<BasicBlock *> &Blocks,
1177                                                 unsigned AggArgIdx) {
1178   OutlinableGroup &Group = *Region.Parent;
1179   IRSimilarityCandidate &Cand = *Region.Candidate;
1180   BasicBlock *PHIBB = PN->getParent();
1181   CanonList PHIGVNs;
1182   Value *Incoming;
1183   BasicBlock *IncomingBlock;
1184   for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) {
1185     Incoming = PN->getIncomingValue(Idx);
1186     IncomingBlock = PN->getIncomingBlock(Idx);
1187     // If we cannot find a GVN, and the incoming block is included in the region
1188     // this means that the input to the PHINode is not included in the region we
1189     // are trying to analyze, meaning, that if it was outlined, we would be
1190     // adding an extra input.  We ignore this case for now, and so ignore the
1191     // region.
1192     std::optional<unsigned> OGVN = Cand.getGVN(Incoming);
1193     if (!OGVN && Blocks.contains(IncomingBlock)) {
1194       Region.IgnoreRegion = true;
1195       return std::nullopt;
1196     }
1197 
1198     // If the incoming block isn't in the region, we don't have to worry about
1199     // this incoming value.
1200     if (!Blocks.contains(IncomingBlock))
1201       continue;
1202 
1203     // Collect the canonical numbers of the values in the PHINode.
1204     unsigned GVN = *OGVN;
1205     OGVN = Cand.getCanonicalNum(GVN);
1206     assert(OGVN && "No GVN found for incoming value?");
1207     PHIGVNs.push_back(*OGVN);
1208 
1209     // Find the incoming block and use the canonical numbering as well to define
1210     // the hash for the PHINode.
1211     OGVN = Cand.getGVN(IncomingBlock);
1212 
1213     // If there is no number for the incoming block, it is because we have
1214     // split the candidate basic blocks.  So we use the previous block that it
1215     // was split from to find the valid global value numbering for the PHINode.
1216     if (!OGVN) {
1217       assert(Cand.getStartBB() == IncomingBlock &&
1218              "Unknown basic block used in exit path PHINode.");
1219 
1220       BasicBlock *PrevBlock = nullptr;
1221       // Iterate over the predecessors to the incoming block of the
1222       // PHINode, when we find a block that is not contained in the region
1223       // we know that this is the first block that we split from, and should
1224       // have a valid global value numbering.
1225       for (BasicBlock *Pred : predecessors(IncomingBlock))
1226         if (!Blocks.contains(Pred)) {
1227           PrevBlock = Pred;
1228           break;
1229         }
1230       assert(PrevBlock && "Expected a predecessor not in the reigon!");
1231       OGVN = Cand.getGVN(PrevBlock);
1232     }
1233     GVN = *OGVN;
1234     OGVN = Cand.getCanonicalNum(GVN);
1235     assert(OGVN && "No GVN found for incoming block?");
1236     PHIGVNs.push_back(*OGVN);
1237   }
1238 
1239   // Now that we have the GVNs for the incoming values, we are going to combine
1240   // them with the GVN of the incoming bock, and the output location of the
1241   // PHINode to generate a hash value representing this instance of the PHINode.
1242   DenseMap<hash_code, unsigned>::iterator GVNToPHIIt;
1243   DenseMap<unsigned, PHINodeData>::iterator PHIToGVNIt;
1244   std::optional<unsigned> BBGVN = Cand.getGVN(PHIBB);
1245   assert(BBGVN && "Could not find GVN for the incoming block!");
1246 
1247   BBGVN = Cand.getCanonicalNum(*BBGVN);
1248   assert(BBGVN && "Could not find canonical number for the incoming block!");
1249   // Create a pair of the exit block canonical value, and the aggregate
1250   // argument location, connected to the canonical numbers stored in the
1251   // PHINode.
1252   PHINodeData TemporaryPair =
1253       std::make_pair(std::make_pair(*BBGVN, AggArgIdx), PHIGVNs);
1254   hash_code PHINodeDataHash = encodePHINodeData(TemporaryPair);
1255 
1256   // Look for and create a new entry in our connection between canonical
1257   // numbers for PHINodes, and the set of objects we just created.
1258   GVNToPHIIt = Group.GVNsToPHINodeGVN.find(PHINodeDataHash);
1259   if (GVNToPHIIt == Group.GVNsToPHINodeGVN.end()) {
1260     bool Inserted = false;
1261     std::tie(PHIToGVNIt, Inserted) = Group.PHINodeGVNToGVNs.insert(
1262         std::make_pair(Group.PHINodeGVNTracker, TemporaryPair));
1263     std::tie(GVNToPHIIt, Inserted) = Group.GVNsToPHINodeGVN.insert(
1264         std::make_pair(PHINodeDataHash, Group.PHINodeGVNTracker--));
1265   }
1266 
1267   return GVNToPHIIt->second;
1268 }
1269 
1270 /// Create a mapping of the output arguments for the \p Region to the output
1271 /// arguments of the overall outlined function.
1272 ///
1273 /// \param [in,out] Region - The region of code to be analyzed.
1274 /// \param [in] Outputs - The values found by the code extractor.
1275 static void
1276 findExtractedOutputToOverallOutputMapping(Module &M, OutlinableRegion &Region,
1277                                           SetVector<Value *> &Outputs) {
1278   OutlinableGroup &Group = *Region.Parent;
1279   IRSimilarityCandidate &C = *Region.Candidate;
1280 
1281   SmallVector<BasicBlock *> BE;
1282   DenseSet<BasicBlock *> BlocksInRegion;
1283   C.getBasicBlocks(BlocksInRegion, BE);
1284 
1285   // Find the exits to the region.
1286   SmallPtrSet<BasicBlock *, 1> Exits;
1287   for (BasicBlock *Block : BE)
1288     for (BasicBlock *Succ : successors(Block))
1289       if (!BlocksInRegion.contains(Succ))
1290         Exits.insert(Succ);
1291 
1292   // After determining which blocks exit to PHINodes, we add these PHINodes to
1293   // the set of outputs to be processed.  We also check the incoming values of
1294   // the PHINodes for whether they should no longer be considered outputs.
1295   DenseSet<Value *> OutputsReplacedByPHINode;
1296   DenseSet<Value *> OutputsWithNonPhiUses;
1297   for (BasicBlock *ExitBB : Exits)
1298     analyzeExitPHIsForOutputUses(ExitBB, Exits, BlocksInRegion, Outputs,
1299                                  OutputsReplacedByPHINode,
1300                                  OutputsWithNonPhiUses);
1301 
1302   // This counts the argument number in the extracted function.
1303   unsigned OriginalIndex = Region.NumExtractedInputs;
1304 
1305   // This counts the argument number in the overall function.
1306   unsigned TypeIndex = Group.NumAggregateInputs;
1307   bool TypeFound;
1308   DenseSet<unsigned> AggArgsUsed;
1309 
1310   // Iterate over the output types and identify if there is an aggregate pointer
1311   // type whose base type matches the current output type. If there is, we mark
1312   // that we will use this output register for this value. If not we add another
1313   // type to the overall argument type list. We also store the GVNs used for
1314   // stores to identify which values will need to be moved into an special
1315   // block that holds the stores to the output registers.
1316   for (Value *Output : Outputs) {
1317     TypeFound = false;
1318     // We can do this since it is a result value, and will have a number
1319     // that is necessarily the same. BUT if in the future, the instructions
1320     // do not have to be in same order, but are functionally the same, we will
1321     // have to use a different scheme, as one-to-one correspondence is not
1322     // guaranteed.
1323     unsigned ArgumentSize = Group.ArgumentTypes.size();
1324 
1325     // If the output is combined in a PHINode, we make sure to skip over it.
1326     if (OutputsReplacedByPHINode.contains(Output))
1327       continue;
1328 
1329     unsigned AggArgIdx = 0;
1330     for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) {
1331       if (!isa<PointerType>(Group.ArgumentTypes[Jdx]))
1332         continue;
1333 
1334       if (AggArgsUsed.contains(Jdx))
1335         continue;
1336 
1337       TypeFound = true;
1338       AggArgsUsed.insert(Jdx);
1339       Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx));
1340       Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex));
1341       AggArgIdx = Jdx;
1342       break;
1343     }
1344 
1345     // We were unable to find an unused type in the output type set that matches
1346     // the output, so we add a pointer type to the argument types of the overall
1347     // function to handle this output and create a mapping to it.
1348     if (!TypeFound) {
1349       Group.ArgumentTypes.push_back(Output->getType()->getPointerTo(
1350           M.getDataLayout().getAllocaAddrSpace()));
1351       // Mark the new pointer type as the last value in the aggregate argument
1352       // list.
1353       unsigned ArgTypeIdx = Group.ArgumentTypes.size() - 1;
1354       AggArgsUsed.insert(ArgTypeIdx);
1355       Region.ExtractedArgToAgg.insert(
1356           std::make_pair(OriginalIndex, ArgTypeIdx));
1357       Region.AggArgToExtracted.insert(
1358           std::make_pair(ArgTypeIdx, OriginalIndex));
1359       AggArgIdx = ArgTypeIdx;
1360     }
1361 
1362     // TODO: Adapt to the extra input from the PHINode.
1363     PHINode *PN = dyn_cast<PHINode>(Output);
1364 
1365     std::optional<unsigned> GVN;
1366     if (PN && !BlocksInRegion.contains(PN->getParent())) {
1367       // Values outside the region can be combined into PHINode when we
1368       // have multiple exits. We collect both of these into a list to identify
1369       // which values are being used in the PHINode. Each list identifies a
1370       // different PHINode, and a different output. We store the PHINode as it's
1371       // own canonical value.  These canonical values are also dependent on the
1372       // output argument it is saved to.
1373 
1374       // If two PHINodes have the same canonical values, but different aggregate
1375       // argument locations, then they will have distinct Canonical Values.
1376       GVN = getGVNForPHINode(Region, PN, BlocksInRegion, AggArgIdx);
1377       if (!GVN)
1378         return;
1379     } else {
1380       // If we do not have a PHINode we use the global value numbering for the
1381       // output value, to find the canonical number to add to the set of stored
1382       // values.
1383       GVN = C.getGVN(Output);
1384       GVN = C.getCanonicalNum(*GVN);
1385     }
1386 
1387     // Each region has a potentially unique set of outputs.  We save which
1388     // values are output in a list of canonical values so we can differentiate
1389     // among the different store schemes.
1390     Region.GVNStores.push_back(*GVN);
1391 
1392     OriginalIndex++;
1393     TypeIndex++;
1394   }
1395 
1396   // We sort the stored values to make sure that we are not affected by analysis
1397   // order when determining what combination of items were stored.
1398   stable_sort(Region.GVNStores);
1399 }
1400 
1401 void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region,
1402                                       DenseSet<unsigned> &NotSame) {
1403   std::vector<unsigned> Inputs;
1404   SetVector<Value *> ArgInputs, Outputs;
1405 
1406   getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs,
1407                             Outputs);
1408 
1409   if (Region.IgnoreRegion)
1410     return;
1411 
1412   // Map the inputs found by the CodeExtractor to the arguments found for
1413   // the overall function.
1414   findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs);
1415 
1416   // Map the outputs found by the CodeExtractor to the arguments found for
1417   // the overall function.
1418   findExtractedOutputToOverallOutputMapping(M, Region, Outputs);
1419 }
1420 
1421 /// Replace the extracted function in the Region with a call to the overall
1422 /// function constructed from the deduplicated similar regions, replacing and
1423 /// remapping the values passed to the extracted function as arguments to the
1424 /// new arguments of the overall function.
1425 ///
1426 /// \param [in] M - The module to outline from.
1427 /// \param [in] Region - The regions of extracted code to be replaced with a new
1428 /// function.
1429 /// \returns a call instruction with the replaced function.
1430 CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) {
1431   std::vector<Value *> NewCallArgs;
1432   DenseMap<unsigned, unsigned>::iterator ArgPair;
1433 
1434   OutlinableGroup &Group = *Region.Parent;
1435   CallInst *Call = Region.Call;
1436   assert(Call && "Call to replace is nullptr?");
1437   Function *AggFunc = Group.OutlinedFunction;
1438   assert(AggFunc && "Function to replace with is nullptr?");
1439 
1440   // If the arguments are the same size, there are not values that need to be
1441   // made into an argument, the argument ordering has not been change, or
1442   // different output registers to handle.  We can simply replace the called
1443   // function in this case.
1444   if (!Region.ChangedArgOrder && AggFunc->arg_size() == Call->arg_size()) {
1445     LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
1446                       << *AggFunc << " with same number of arguments\n");
1447     Call->setCalledFunction(AggFunc);
1448     return Call;
1449   }
1450 
1451   // We have a different number of arguments than the new function, so
1452   // we need to use our previously mappings off extracted argument to overall
1453   // function argument, and constants to overall function argument to create the
1454   // new argument list.
1455   for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) {
1456 
1457     if (AggArgIdx == AggFunc->arg_size() - 1 &&
1458         Group.OutputGVNCombinations.size() > 1) {
1459       // If we are on the last argument, and we need to differentiate between
1460       // output blocks, add an integer to the argument list to determine
1461       // what block to take
1462       LLVM_DEBUG(dbgs() << "Set switch block argument to "
1463                         << Region.OutputBlockNum << "\n");
1464       NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()),
1465                                              Region.OutputBlockNum));
1466       continue;
1467     }
1468 
1469     ArgPair = Region.AggArgToExtracted.find(AggArgIdx);
1470     if (ArgPair != Region.AggArgToExtracted.end()) {
1471       Value *ArgumentValue = Call->getArgOperand(ArgPair->second);
1472       // If we found the mapping from the extracted function to the overall
1473       // function, we simply add it to the argument list.  We use the same
1474       // value, it just needs to honor the new order of arguments.
1475       LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
1476                         << *ArgumentValue << "\n");
1477       NewCallArgs.push_back(ArgumentValue);
1478       continue;
1479     }
1480 
1481     // If it is a constant, we simply add it to the argument list as a value.
1482     if (Region.AggArgToConstant.contains(AggArgIdx)) {
1483       Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second;
1484       LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
1485                         << *CST << "\n");
1486       NewCallArgs.push_back(CST);
1487       continue;
1488     }
1489 
1490     // Add a nullptr value if the argument is not found in the extracted
1491     // function.  If we cannot find a value, it means it is not in use
1492     // for the region, so we should not pass anything to it.
1493     LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n");
1494     NewCallArgs.push_back(ConstantPointerNull::get(
1495         static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType())));
1496   }
1497 
1498   LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
1499                     << *AggFunc << " with new set of arguments\n");
1500   // Create the new call instruction and erase the old one.
1501   Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "",
1502                           Call);
1503 
1504   // It is possible that the call to the outlined function is either the first
1505   // instruction is in the new block, the last instruction, or both.  If either
1506   // of these is the case, we need to make sure that we replace the instruction
1507   // in the IRInstructionData struct with the new call.
1508   CallInst *OldCall = Region.Call;
1509   if (Region.NewFront->Inst == OldCall)
1510     Region.NewFront->Inst = Call;
1511   if (Region.NewBack->Inst == OldCall)
1512     Region.NewBack->Inst = Call;
1513 
1514   // Transfer any debug information.
1515   Call->setDebugLoc(Region.Call->getDebugLoc());
1516   // Since our output may determine which branch we go to, we make sure to
1517   // propogate this new call value through the module.
1518   OldCall->replaceAllUsesWith(Call);
1519 
1520   // Remove the old instruction.
1521   OldCall->eraseFromParent();
1522   Region.Call = Call;
1523 
1524   // Make sure that the argument in the new function has the SwiftError
1525   // argument.
1526   if (Group.SwiftErrorArgument)
1527     Call->addParamAttr(*Group.SwiftErrorArgument, Attribute::SwiftError);
1528 
1529   return Call;
1530 }
1531 
1532 /// Find or create a BasicBlock in the outlined function containing PhiBlocks
1533 /// for \p RetVal.
1534 ///
1535 /// \param Group - The OutlinableGroup containing the information about the
1536 /// overall outlined function.
1537 /// \param RetVal - The return value or exit option that we are currently
1538 /// evaluating.
1539 /// \returns The found or newly created BasicBlock to contain the needed
1540 /// PHINodes to be used as outputs.
1541 static BasicBlock *findOrCreatePHIBlock(OutlinableGroup &Group, Value *RetVal) {
1542   DenseMap<Value *, BasicBlock *>::iterator PhiBlockForRetVal,
1543       ReturnBlockForRetVal;
1544   PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
1545   ReturnBlockForRetVal = Group.EndBBs.find(RetVal);
1546   assert(ReturnBlockForRetVal != Group.EndBBs.end() &&
1547          "Could not find output value!");
1548   BasicBlock *ReturnBB = ReturnBlockForRetVal->second;
1549 
1550   // Find if a PHIBlock exists for this return value already.  If it is
1551   // the first time we are analyzing this, we will not, so we record it.
1552   PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
1553   if (PhiBlockForRetVal != Group.PHIBlocks.end())
1554     return PhiBlockForRetVal->second;
1555 
1556   // If we did not find a block, we create one, and insert it into the
1557   // overall function and record it.
1558   bool Inserted = false;
1559   BasicBlock *PHIBlock = BasicBlock::Create(ReturnBB->getContext(), "phi_block",
1560                                             ReturnBB->getParent());
1561   std::tie(PhiBlockForRetVal, Inserted) =
1562       Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
1563 
1564   // We find the predecessors of the return block in the newly created outlined
1565   // function in order to point them to the new PHIBlock rather than the already
1566   // existing return block.
1567   SmallVector<BranchInst *, 2> BranchesToChange;
1568   for (BasicBlock *Pred : predecessors(ReturnBB))
1569     BranchesToChange.push_back(cast<BranchInst>(Pred->getTerminator()));
1570 
1571   // Now we mark the branch instructions found, and change the references of the
1572   // return block to the newly created PHIBlock.
1573   for (BranchInst *BI : BranchesToChange)
1574     for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ < End; Succ++) {
1575       if (BI->getSuccessor(Succ) != ReturnBB)
1576         continue;
1577       BI->setSuccessor(Succ, PHIBlock);
1578     }
1579 
1580   BranchInst::Create(ReturnBB, PHIBlock);
1581 
1582   return PhiBlockForRetVal->second;
1583 }
1584 
1585 /// For the function call now representing the \p Region, find the passed value
1586 /// to that call that represents Argument \p A at the call location if the
1587 /// call has already been replaced with a call to the  overall, aggregate
1588 /// function.
1589 ///
1590 /// \param A - The Argument to get the passed value for.
1591 /// \param Region - The extracted Region corresponding to the outlined function.
1592 /// \returns The Value representing \p A at the call site.
1593 static Value *
1594 getPassedArgumentInAlreadyOutlinedFunction(const Argument *A,
1595                                            const OutlinableRegion &Region) {
1596   // If we don't need to adjust the argument number at all (since the call
1597   // has already been replaced by a call to the overall outlined function)
1598   // we can just get the specified argument.
1599   return Region.Call->getArgOperand(A->getArgNo());
1600 }
1601 
1602 /// For the function call now representing the \p Region, find the passed value
1603 /// to that call that represents Argument \p A at the call location if the
1604 /// call has only been replaced by the call to the aggregate function.
1605 ///
1606 /// \param A - The Argument to get the passed value for.
1607 /// \param Region - The extracted Region corresponding to the outlined function.
1608 /// \returns The Value representing \p A at the call site.
1609 static Value *
1610 getPassedArgumentAndAdjustArgumentLocation(const Argument *A,
1611                                            const OutlinableRegion &Region) {
1612   unsigned ArgNum = A->getArgNo();
1613 
1614   // If it is a constant, we can look at our mapping from when we created
1615   // the outputs to figure out what the constant value is.
1616   if (Region.AggArgToConstant.count(ArgNum))
1617     return Region.AggArgToConstant.find(ArgNum)->second;
1618 
1619   // If it is not a constant, and we are not looking at the overall function, we
1620   // need to adjust which argument we are looking at.
1621   ArgNum = Region.AggArgToExtracted.find(ArgNum)->second;
1622   return Region.Call->getArgOperand(ArgNum);
1623 }
1624 
1625 /// Find the canonical numbering for the incoming Values into the PHINode \p PN.
1626 ///
1627 /// \param PN [in] - The PHINode that we are finding the canonical numbers for.
1628 /// \param Region [in] - The OutlinableRegion containing \p PN.
1629 /// \param OutputMappings [in] - The mapping of output values from outlined
1630 /// region to their original values.
1631 /// \param CanonNums [out] - The canonical numbering for the incoming values to
1632 /// \p PN paired with their incoming block.
1633 /// \param ReplacedWithOutlinedCall - A flag to use the extracted function call
1634 /// of \p Region rather than the overall function's call.
1635 static void findCanonNumsForPHI(
1636     PHINode *PN, OutlinableRegion &Region,
1637     const DenseMap<Value *, Value *> &OutputMappings,
1638     SmallVector<std::pair<unsigned, BasicBlock *>> &CanonNums,
1639     bool ReplacedWithOutlinedCall = true) {
1640   // Iterate over the incoming values.
1641   for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) {
1642     Value *IVal = PN->getIncomingValue(Idx);
1643     BasicBlock *IBlock = PN->getIncomingBlock(Idx);
1644     // If we have an argument as incoming value, we need to grab the passed
1645     // value from the call itself.
1646     if (Argument *A = dyn_cast<Argument>(IVal)) {
1647       if (ReplacedWithOutlinedCall)
1648         IVal = getPassedArgumentInAlreadyOutlinedFunction(A, Region);
1649       else
1650         IVal = getPassedArgumentAndAdjustArgumentLocation(A, Region);
1651     }
1652 
1653     // Get the original value if it has been replaced by an output value.
1654     IVal = findOutputMapping(OutputMappings, IVal);
1655 
1656     // Find and add the canonical number for the incoming value.
1657     std::optional<unsigned> GVN = Region.Candidate->getGVN(IVal);
1658     assert(GVN && "No GVN for incoming value");
1659     std::optional<unsigned> CanonNum = Region.Candidate->getCanonicalNum(*GVN);
1660     assert(CanonNum && "No Canonical Number for GVN");
1661     CanonNums.push_back(std::make_pair(*CanonNum, IBlock));
1662   }
1663 }
1664 
1665 /// Find, or add PHINode \p PN to the combined PHINode Block \p OverallPHIBlock
1666 /// in order to condense the number of instructions added to the outlined
1667 /// function.
1668 ///
1669 /// \param PN [in] - The PHINode that we are finding the canonical numbers for.
1670 /// \param Region [in] - The OutlinableRegion containing \p PN.
1671 /// \param OverallPhiBlock [in] - The overall PHIBlock we are trying to find
1672 /// \p PN in.
1673 /// \param OutputMappings [in] - The mapping of output values from outlined
1674 /// region to their original values.
1675 /// \param UsedPHIs [in, out] - The PHINodes in the block that have already been
1676 /// matched.
1677 /// \return the newly found or created PHINode in \p OverallPhiBlock.
1678 static PHINode*
1679 findOrCreatePHIInBlock(PHINode &PN, OutlinableRegion &Region,
1680                        BasicBlock *OverallPhiBlock,
1681                        const DenseMap<Value *, Value *> &OutputMappings,
1682                        DenseSet<PHINode *> &UsedPHIs) {
1683   OutlinableGroup &Group = *Region.Parent;
1684 
1685 
1686   // A list of the canonical numbering assigned to each incoming value, paired
1687   // with the incoming block for the PHINode passed into this function.
1688   SmallVector<std::pair<unsigned, BasicBlock *>> PNCanonNums;
1689 
1690   // We have to use the extracted function since we have merged this region into
1691   // the overall function yet.  We make sure to reassign the argument numbering
1692   // since it is possible that the argument ordering is different between the
1693   // functions.
1694   findCanonNumsForPHI(&PN, Region, OutputMappings, PNCanonNums,
1695                       /* ReplacedWithOutlinedCall = */ false);
1696 
1697   OutlinableRegion *FirstRegion = Group.Regions[0];
1698 
1699   // A list of the canonical numbering assigned to each incoming value, paired
1700   // with the incoming block for the PHINode that we are currently comparing
1701   // the passed PHINode to.
1702   SmallVector<std::pair<unsigned, BasicBlock *>> CurrentCanonNums;
1703 
1704   // Find the Canonical Numbering for each PHINode, if it matches, we replace
1705   // the uses of the PHINode we are searching for, with the found PHINode.
1706   for (PHINode &CurrPN : OverallPhiBlock->phis()) {
1707     // If this PHINode has already been matched to another PHINode to be merged,
1708     // we skip it.
1709     if (UsedPHIs.contains(&CurrPN))
1710       continue;
1711 
1712     CurrentCanonNums.clear();
1713     findCanonNumsForPHI(&CurrPN, *FirstRegion, OutputMappings, CurrentCanonNums,
1714                         /* ReplacedWithOutlinedCall = */ true);
1715 
1716     // If the list of incoming values is not the same length, then they cannot
1717     // match since there is not an analogue for each incoming value.
1718     if (PNCanonNums.size() != CurrentCanonNums.size())
1719       continue;
1720 
1721     bool FoundMatch = true;
1722 
1723     // We compare the canonical value for each incoming value in the passed
1724     // in PHINode to one already present in the outlined region.  If the
1725     // incoming values do not match, then the PHINodes do not match.
1726 
1727     // We also check to make sure that the incoming block matches as well by
1728     // finding the corresponding incoming block in the combined outlined region
1729     // for the current outlined region.
1730     for (unsigned Idx = 0, Edx = PNCanonNums.size(); Idx < Edx; ++Idx) {
1731       std::pair<unsigned, BasicBlock *> ToCompareTo = CurrentCanonNums[Idx];
1732       std::pair<unsigned, BasicBlock *> ToAdd = PNCanonNums[Idx];
1733       if (ToCompareTo.first != ToAdd.first) {
1734         FoundMatch = false;
1735         break;
1736       }
1737 
1738       BasicBlock *CorrespondingBlock =
1739           Region.findCorrespondingBlockIn(*FirstRegion, ToAdd.second);
1740       assert(CorrespondingBlock && "Found block is nullptr");
1741       if (CorrespondingBlock != ToCompareTo.second) {
1742         FoundMatch = false;
1743         break;
1744       }
1745     }
1746 
1747     // If all incoming values and branches matched, then we can merge
1748     // into the found PHINode.
1749     if (FoundMatch) {
1750       UsedPHIs.insert(&CurrPN);
1751       return &CurrPN;
1752     }
1753   }
1754 
1755   // If we've made it here, it means we weren't able to replace the PHINode, so
1756   // we must insert it ourselves.
1757   PHINode *NewPN = cast<PHINode>(PN.clone());
1758   NewPN->insertBefore(&*OverallPhiBlock->begin());
1759   for (unsigned Idx = 0, Edx = NewPN->getNumIncomingValues(); Idx < Edx;
1760        Idx++) {
1761     Value *IncomingVal = NewPN->getIncomingValue(Idx);
1762     BasicBlock *IncomingBlock = NewPN->getIncomingBlock(Idx);
1763 
1764     // Find corresponding basic block in the overall function for the incoming
1765     // block.
1766     BasicBlock *BlockToUse =
1767         Region.findCorrespondingBlockIn(*FirstRegion, IncomingBlock);
1768     NewPN->setIncomingBlock(Idx, BlockToUse);
1769 
1770     // If we have an argument we make sure we replace using the argument from
1771     // the correct function.
1772     if (Argument *A = dyn_cast<Argument>(IncomingVal)) {
1773       Value *Val = Group.OutlinedFunction->getArg(A->getArgNo());
1774       NewPN->setIncomingValue(Idx, Val);
1775       continue;
1776     }
1777 
1778     // Find the corresponding value in the overall function.
1779     IncomingVal = findOutputMapping(OutputMappings, IncomingVal);
1780     Value *Val = Region.findCorrespondingValueIn(*FirstRegion, IncomingVal);
1781     assert(Val && "Value is nullptr?");
1782     DenseMap<Value *, Value *>::iterator RemappedIt =
1783         FirstRegion->RemappedArguments.find(Val);
1784     if (RemappedIt != FirstRegion->RemappedArguments.end())
1785       Val = RemappedIt->second;
1786     NewPN->setIncomingValue(Idx, Val);
1787   }
1788   return NewPN;
1789 }
1790 
1791 // Within an extracted function, replace the argument uses of the extracted
1792 // region with the arguments of the function for an OutlinableGroup.
1793 //
1794 /// \param [in] Region - The region of extracted code to be changed.
1795 /// \param [in,out] OutputBBs - The BasicBlock for the output stores for this
1796 /// region.
1797 /// \param [in] FirstFunction - A flag to indicate whether we are using this
1798 /// function to define the overall outlined function for all the regions, or
1799 /// if we are operating on one of the following regions.
1800 static void
1801 replaceArgumentUses(OutlinableRegion &Region,
1802                     DenseMap<Value *, BasicBlock *> &OutputBBs,
1803                     const DenseMap<Value *, Value *> &OutputMappings,
1804                     bool FirstFunction = false) {
1805   OutlinableGroup &Group = *Region.Parent;
1806   assert(Region.ExtractedFunction && "Region has no extracted function?");
1807 
1808   Function *DominatingFunction = Region.ExtractedFunction;
1809   if (FirstFunction)
1810     DominatingFunction = Group.OutlinedFunction;
1811   DominatorTree DT(*DominatingFunction);
1812   DenseSet<PHINode *> UsedPHIs;
1813 
1814   for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size();
1815        ArgIdx++) {
1816     assert(Region.ExtractedArgToAgg.contains(ArgIdx) &&
1817            "No mapping from extracted to outlined?");
1818     unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second;
1819     Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx);
1820     Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx);
1821     // The argument is an input, so we can simply replace it with the overall
1822     // argument value
1823     if (ArgIdx < Region.NumExtractedInputs) {
1824       LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function "
1825                         << *Region.ExtractedFunction << " with " << *AggArg
1826                         << " in function " << *Group.OutlinedFunction << "\n");
1827       Arg->replaceAllUsesWith(AggArg);
1828       Value *V = Region.Call->getArgOperand(ArgIdx);
1829       Region.RemappedArguments.insert(std::make_pair(V, AggArg));
1830       continue;
1831     }
1832 
1833     // If we are replacing an output, we place the store value in its own
1834     // block inside the overall function before replacing the use of the output
1835     // in the function.
1836     assert(Arg->hasOneUse() && "Output argument can only have one use");
1837     User *InstAsUser = Arg->user_back();
1838     assert(InstAsUser && "User is nullptr!");
1839 
1840     Instruction *I = cast<Instruction>(InstAsUser);
1841     BasicBlock *BB = I->getParent();
1842     SmallVector<BasicBlock *, 4> Descendants;
1843     DT.getDescendants(BB, Descendants);
1844     bool EdgeAdded = false;
1845     if (Descendants.size() == 0) {
1846       EdgeAdded = true;
1847       DT.insertEdge(&DominatingFunction->getEntryBlock(), BB);
1848       DT.getDescendants(BB, Descendants);
1849     }
1850 
1851     // Iterate over the following blocks, looking for return instructions,
1852     // if we find one, find the corresponding output block for the return value
1853     // and move our store instruction there.
1854     for (BasicBlock *DescendBB : Descendants) {
1855       ReturnInst *RI = dyn_cast<ReturnInst>(DescendBB->getTerminator());
1856       if (!RI)
1857         continue;
1858       Value *RetVal = RI->getReturnValue();
1859       auto VBBIt = OutputBBs.find(RetVal);
1860       assert(VBBIt != OutputBBs.end() && "Could not find output value!");
1861 
1862       // If this is storing a PHINode, we must make sure it is included in the
1863       // overall function.
1864       StoreInst *SI = cast<StoreInst>(I);
1865 
1866       Value *ValueOperand = SI->getValueOperand();
1867 
1868       StoreInst *NewI = cast<StoreInst>(I->clone());
1869       NewI->setDebugLoc(DebugLoc());
1870       BasicBlock *OutputBB = VBBIt->second;
1871       NewI->insertInto(OutputBB, OutputBB->end());
1872       LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to "
1873                         << *OutputBB << "\n");
1874 
1875       // If this is storing a PHINode, we must make sure it is included in the
1876       // overall function.
1877       if (!isa<PHINode>(ValueOperand) ||
1878           Region.Candidate->getGVN(ValueOperand).has_value()) {
1879         if (FirstFunction)
1880           continue;
1881         Value *CorrVal =
1882             Region.findCorrespondingValueIn(*Group.Regions[0], ValueOperand);
1883         assert(CorrVal && "Value is nullptr?");
1884         NewI->setOperand(0, CorrVal);
1885         continue;
1886       }
1887       PHINode *PN = cast<PHINode>(SI->getValueOperand());
1888       // If it has a value, it was not split by the code extractor, which
1889       // is what we are looking for.
1890       if (Region.Candidate->getGVN(PN))
1891         continue;
1892 
1893       // We record the parent block for the PHINode in the Region so that
1894       // we can exclude it from checks later on.
1895       Region.PHIBlocks.insert(std::make_pair(RetVal, PN->getParent()));
1896 
1897       // If this is the first function, we do not need to worry about mergiing
1898       // this with any other block in the overall outlined function, so we can
1899       // just continue.
1900       if (FirstFunction) {
1901         BasicBlock *PHIBlock = PN->getParent();
1902         Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
1903         continue;
1904       }
1905 
1906       // We look for the aggregate block that contains the PHINodes leading into
1907       // this exit path. If we can't find one, we create one.
1908       BasicBlock *OverallPhiBlock = findOrCreatePHIBlock(Group, RetVal);
1909 
1910       // For our PHINode, we find the combined canonical numbering, and
1911       // attempt to find a matching PHINode in the overall PHIBlock.  If we
1912       // cannot, we copy the PHINode and move it into this new block.
1913       PHINode *NewPN = findOrCreatePHIInBlock(*PN, Region, OverallPhiBlock,
1914                                               OutputMappings, UsedPHIs);
1915       NewI->setOperand(0, NewPN);
1916     }
1917 
1918     // If we added an edge for basic blocks without a predecessor, we remove it
1919     // here.
1920     if (EdgeAdded)
1921       DT.deleteEdge(&DominatingFunction->getEntryBlock(), BB);
1922     I->eraseFromParent();
1923 
1924     LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function "
1925                       << *Region.ExtractedFunction << " with " << *AggArg
1926                       << " in function " << *Group.OutlinedFunction << "\n");
1927     Arg->replaceAllUsesWith(AggArg);
1928   }
1929 }
1930 
1931 /// Within an extracted function, replace the constants that need to be lifted
1932 /// into arguments with the actual argument.
1933 ///
1934 /// \param Region [in] - The region of extracted code to be changed.
1935 void replaceConstants(OutlinableRegion &Region) {
1936   OutlinableGroup &Group = *Region.Parent;
1937   // Iterate over the constants that need to be elevated into arguments
1938   for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) {
1939     unsigned AggArgIdx = Const.first;
1940     Function *OutlinedFunction = Group.OutlinedFunction;
1941     assert(OutlinedFunction && "Overall Function is not defined?");
1942     Constant *CST = Const.second;
1943     Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx);
1944     // Identify the argument it will be elevated to, and replace instances of
1945     // that constant in the function.
1946 
1947     // TODO: If in the future constants do not have one global value number,
1948     // i.e. a constant 1 could be mapped to several values, this check will
1949     // have to be more strict.  It cannot be using only replaceUsesWithIf.
1950 
1951     LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST
1952                       << " in function " << *OutlinedFunction << " with "
1953                       << *Arg << "\n");
1954     CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) {
1955       if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
1956         return I->getFunction() == OutlinedFunction;
1957       return false;
1958     });
1959   }
1960 }
1961 
1962 /// It is possible that there is a basic block that already performs the same
1963 /// stores. This returns a duplicate block, if it exists
1964 ///
1965 /// \param OutputBBs [in] the blocks we are looking for a duplicate of.
1966 /// \param OutputStoreBBs [in] The existing output blocks.
1967 /// \returns an optional value with the number output block if there is a match.
1968 std::optional<unsigned> findDuplicateOutputBlock(
1969     DenseMap<Value *, BasicBlock *> &OutputBBs,
1970     std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
1971 
1972   bool Mismatch = false;
1973   unsigned MatchingNum = 0;
1974   // We compare the new set output blocks to the other sets of output blocks.
1975   // If they are the same number, and have identical instructions, they are
1976   // considered to be the same.
1977   for (DenseMap<Value *, BasicBlock *> &CompBBs : OutputStoreBBs) {
1978     Mismatch = false;
1979     for (std::pair<Value *, BasicBlock *> &VToB : CompBBs) {
1980       DenseMap<Value *, BasicBlock *>::iterator OutputBBIt =
1981           OutputBBs.find(VToB.first);
1982       if (OutputBBIt == OutputBBs.end()) {
1983         Mismatch = true;
1984         break;
1985       }
1986 
1987       BasicBlock *CompBB = VToB.second;
1988       BasicBlock *OutputBB = OutputBBIt->second;
1989       if (CompBB->size() - 1 != OutputBB->size()) {
1990         Mismatch = true;
1991         break;
1992       }
1993 
1994       BasicBlock::iterator NIt = OutputBB->begin();
1995       for (Instruction &I : *CompBB) {
1996         if (isa<BranchInst>(&I))
1997           continue;
1998 
1999         if (!I.isIdenticalTo(&(*NIt))) {
2000           Mismatch = true;
2001           break;
2002         }
2003 
2004         NIt++;
2005       }
2006     }
2007 
2008     if (!Mismatch)
2009       return MatchingNum;
2010 
2011     MatchingNum++;
2012   }
2013 
2014   return std::nullopt;
2015 }
2016 
2017 /// Remove empty output blocks from the outlined region.
2018 ///
2019 /// \param BlocksToPrune - Mapping of return values output blocks for the \p
2020 /// Region.
2021 /// \param Region - The OutlinableRegion we are analyzing.
2022 static bool
2023 analyzeAndPruneOutputBlocks(DenseMap<Value *, BasicBlock *> &BlocksToPrune,
2024                             OutlinableRegion &Region) {
2025   bool AllRemoved = true;
2026   Value *RetValueForBB;
2027   BasicBlock *NewBB;
2028   SmallVector<Value *, 4> ToRemove;
2029   // Iterate over the output blocks created in the outlined section.
2030   for (std::pair<Value *, BasicBlock *> &VtoBB : BlocksToPrune) {
2031     RetValueForBB = VtoBB.first;
2032     NewBB = VtoBB.second;
2033 
2034     // If there are no instructions, we remove it from the module, and also
2035     // mark the value for removal from the return value to output block mapping.
2036     if (NewBB->size() == 0) {
2037       NewBB->eraseFromParent();
2038       ToRemove.push_back(RetValueForBB);
2039       continue;
2040     }
2041 
2042     // Mark that we could not remove all the blocks since they were not all
2043     // empty.
2044     AllRemoved = false;
2045   }
2046 
2047   // Remove the return value from the mapping.
2048   for (Value *V : ToRemove)
2049     BlocksToPrune.erase(V);
2050 
2051   // Mark the region as having the no output scheme.
2052   if (AllRemoved)
2053     Region.OutputBlockNum = -1;
2054 
2055   return AllRemoved;
2056 }
2057 
2058 /// For the outlined section, move needed the StoreInsts for the output
2059 /// registers into their own block. Then, determine if there is a duplicate
2060 /// output block already created.
2061 ///
2062 /// \param [in] OG - The OutlinableGroup of regions to be outlined.
2063 /// \param [in] Region - The OutlinableRegion that is being analyzed.
2064 /// \param [in,out] OutputBBs - the blocks that stores for this region will be
2065 /// placed in.
2066 /// \param [in] EndBBs - the final blocks of the extracted function.
2067 /// \param [in] OutputMappings - OutputMappings the mapping of values that have
2068 /// been replaced by a new output value.
2069 /// \param [in,out] OutputStoreBBs - The existing output blocks.
2070 static void alignOutputBlockWithAggFunc(
2071     OutlinableGroup &OG, OutlinableRegion &Region,
2072     DenseMap<Value *, BasicBlock *> &OutputBBs,
2073     DenseMap<Value *, BasicBlock *> &EndBBs,
2074     const DenseMap<Value *, Value *> &OutputMappings,
2075     std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
2076   // If none of the output blocks have any instructions, this means that we do
2077   // not have to determine if it matches any of the other output schemes, and we
2078   // don't have to do anything else.
2079   if (analyzeAndPruneOutputBlocks(OutputBBs, Region))
2080     return;
2081 
2082   // Determine is there is a duplicate set of blocks.
2083   std::optional<unsigned> MatchingBB =
2084       findDuplicateOutputBlock(OutputBBs, OutputStoreBBs);
2085 
2086   // If there is, we remove the new output blocks.  If it does not,
2087   // we add it to our list of sets of output blocks.
2088   if (MatchingBB) {
2089     LLVM_DEBUG(dbgs() << "Set output block for region in function"
2090                       << Region.ExtractedFunction << " to " << *MatchingBB);
2091 
2092     Region.OutputBlockNum = *MatchingBB;
2093     for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs)
2094       VtoBB.second->eraseFromParent();
2095     return;
2096   }
2097 
2098   Region.OutputBlockNum = OutputStoreBBs.size();
2099 
2100   Value *RetValueForBB;
2101   BasicBlock *NewBB;
2102   OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
2103   for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) {
2104     RetValueForBB = VtoBB.first;
2105     NewBB = VtoBB.second;
2106     DenseMap<Value *, BasicBlock *>::iterator VBBIt =
2107         EndBBs.find(RetValueForBB);
2108     LLVM_DEBUG(dbgs() << "Create output block for region in"
2109                       << Region.ExtractedFunction << " to "
2110                       << *NewBB);
2111     BranchInst::Create(VBBIt->second, NewBB);
2112     OutputStoreBBs.back().insert(std::make_pair(RetValueForBB, NewBB));
2113   }
2114 }
2115 
2116 /// Takes in a mapping, \p OldMap of ConstantValues to BasicBlocks, sorts keys,
2117 /// before creating a basic block for each \p NewMap, and inserting into the new
2118 /// block. Each BasicBlock is named with the scheme "<basename>_<key_idx>".
2119 ///
2120 /// \param OldMap [in] - The mapping to base the new mapping off of.
2121 /// \param NewMap [out] - The output mapping using the keys of \p OldMap.
2122 /// \param ParentFunc [in] - The function to put the new basic block in.
2123 /// \param BaseName [in] - The start of the BasicBlock names to be appended to
2124 /// by an index value.
2125 static void createAndInsertBasicBlocks(DenseMap<Value *, BasicBlock *> &OldMap,
2126                                        DenseMap<Value *, BasicBlock *> &NewMap,
2127                                        Function *ParentFunc, Twine BaseName) {
2128   unsigned Idx = 0;
2129   std::vector<Value *> SortedKeys;
2130 
2131   getSortedConstantKeys(SortedKeys, OldMap);
2132 
2133   for (Value *RetVal : SortedKeys) {
2134     BasicBlock *NewBB = BasicBlock::Create(
2135         ParentFunc->getContext(),
2136         Twine(BaseName) + Twine("_") + Twine(static_cast<unsigned>(Idx++)),
2137         ParentFunc);
2138     NewMap.insert(std::make_pair(RetVal, NewBB));
2139   }
2140 }
2141 
2142 /// Create the switch statement for outlined function to differentiate between
2143 /// all the output blocks.
2144 ///
2145 /// For the outlined section, determine if an outlined block already exists that
2146 /// matches the needed stores for the extracted section.
2147 /// \param [in] M - The module we are outlining from.
2148 /// \param [in] OG - The group of regions to be outlined.
2149 /// \param [in] EndBBs - The final blocks of the extracted function.
2150 /// \param [in,out] OutputStoreBBs - The existing output blocks.
2151 void createSwitchStatement(
2152     Module &M, OutlinableGroup &OG, DenseMap<Value *, BasicBlock *> &EndBBs,
2153     std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
2154   // We only need the switch statement if there is more than one store
2155   // combination, or there is more than one set of output blocks.  The first
2156   // will occur when we store different sets of values for two different
2157   // regions.  The second will occur when we have two outputs that are combined
2158   // in a PHINode outside of the region in one outlined instance, and are used
2159   // seaparately in another. This will create the same set of OutputGVNs, but
2160   // will generate two different output schemes.
2161   if (OG.OutputGVNCombinations.size() > 1) {
2162     Function *AggFunc = OG.OutlinedFunction;
2163     // Create a final block for each different return block.
2164     DenseMap<Value *, BasicBlock *> ReturnBBs;
2165     createAndInsertBasicBlocks(OG.EndBBs, ReturnBBs, AggFunc, "final_block");
2166 
2167     for (std::pair<Value *, BasicBlock *> &RetBlockPair : ReturnBBs) {
2168       std::pair<Value *, BasicBlock *> &OutputBlock =
2169           *OG.EndBBs.find(RetBlockPair.first);
2170       BasicBlock *ReturnBlock = RetBlockPair.second;
2171       BasicBlock *EndBB = OutputBlock.second;
2172       Instruction *Term = EndBB->getTerminator();
2173       // Move the return value to the final block instead of the original exit
2174       // stub.
2175       Term->moveBefore(*ReturnBlock, ReturnBlock->end());
2176       // Put the switch statement in the old end basic block for the function
2177       // with a fall through to the new return block.
2178       LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for "
2179                         << OutputStoreBBs.size() << "\n");
2180       SwitchInst *SwitchI =
2181           SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1),
2182                              ReturnBlock, OutputStoreBBs.size(), EndBB);
2183 
2184       unsigned Idx = 0;
2185       for (DenseMap<Value *, BasicBlock *> &OutputStoreBB : OutputStoreBBs) {
2186         DenseMap<Value *, BasicBlock *>::iterator OSBBIt =
2187             OutputStoreBB.find(OutputBlock.first);
2188 
2189         if (OSBBIt == OutputStoreBB.end())
2190           continue;
2191 
2192         BasicBlock *BB = OSBBIt->second;
2193         SwitchI->addCase(
2194             ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), BB);
2195         Term = BB->getTerminator();
2196         Term->setSuccessor(0, ReturnBlock);
2197         Idx++;
2198       }
2199     }
2200     return;
2201   }
2202 
2203   assert(OutputStoreBBs.size() < 2 && "Different store sets not handled!");
2204 
2205   // If there needs to be stores, move them from the output blocks to their
2206   // corresponding ending block.  We do not check that the OutputGVNCombinations
2207   // is equal to 1 here since that could just been the case where there are 0
2208   // outputs. Instead, we check whether there is more than one set of output
2209   // blocks since this is the only case where we would have to move the
2210   // stores, and erase the extraneous blocks.
2211   if (OutputStoreBBs.size() == 1) {
2212     LLVM_DEBUG(dbgs() << "Move store instructions to the end block in "
2213                       << *OG.OutlinedFunction << "\n");
2214     DenseMap<Value *, BasicBlock *> OutputBlocks = OutputStoreBBs[0];
2215     for (std::pair<Value *, BasicBlock *> &VBPair : OutputBlocks) {
2216       DenseMap<Value *, BasicBlock *>::iterator EndBBIt =
2217           EndBBs.find(VBPair.first);
2218       assert(EndBBIt != EndBBs.end() && "Could not find end block");
2219       BasicBlock *EndBB = EndBBIt->second;
2220       BasicBlock *OutputBB = VBPair.second;
2221       Instruction *Term = OutputBB->getTerminator();
2222       Term->eraseFromParent();
2223       Term = EndBB->getTerminator();
2224       moveBBContents(*OutputBB, *EndBB);
2225       Term->moveBefore(*EndBB, EndBB->end());
2226       OutputBB->eraseFromParent();
2227     }
2228   }
2229 }
2230 
2231 /// Fill the new function that will serve as the replacement function for all of
2232 /// the extracted regions of a certain structure from the first region in the
2233 /// list of regions.  Replace this first region's extracted function with the
2234 /// new overall function.
2235 ///
2236 /// \param [in] M - The module we are outlining from.
2237 /// \param [in] CurrentGroup - The group of regions to be outlined.
2238 /// \param [in,out] OutputStoreBBs - The output blocks for each different
2239 /// set of stores needed for the different functions.
2240 /// \param [in,out] FuncsToRemove - Extracted functions to erase from module
2241 /// once outlining is complete.
2242 /// \param [in] OutputMappings - Extracted functions to erase from module
2243 /// once outlining is complete.
2244 static void fillOverallFunction(
2245     Module &M, OutlinableGroup &CurrentGroup,
2246     std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs,
2247     std::vector<Function *> &FuncsToRemove,
2248     const DenseMap<Value *, Value *> &OutputMappings) {
2249   OutlinableRegion *CurrentOS = CurrentGroup.Regions[0];
2250 
2251   // Move first extracted function's instructions into new function.
2252   LLVM_DEBUG(dbgs() << "Move instructions from "
2253                     << *CurrentOS->ExtractedFunction << " to instruction "
2254                     << *CurrentGroup.OutlinedFunction << "\n");
2255   moveFunctionData(*CurrentOS->ExtractedFunction,
2256                    *CurrentGroup.OutlinedFunction, CurrentGroup.EndBBs);
2257 
2258   // Transfer the attributes from the function to the new function.
2259   for (Attribute A : CurrentOS->ExtractedFunction->getAttributes().getFnAttrs())
2260     CurrentGroup.OutlinedFunction->addFnAttr(A);
2261 
2262   // Create a new set of output blocks for the first extracted function.
2263   DenseMap<Value *, BasicBlock *> NewBBs;
2264   createAndInsertBasicBlocks(CurrentGroup.EndBBs, NewBBs,
2265                              CurrentGroup.OutlinedFunction, "output_block_0");
2266   CurrentOS->OutputBlockNum = 0;
2267 
2268   replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings, true);
2269   replaceConstants(*CurrentOS);
2270 
2271   // We first identify if any output blocks are empty, if they are we remove
2272   // them. We then create a branch instruction to the basic block to the return
2273   // block for the function for each non empty output block.
2274   if (!analyzeAndPruneOutputBlocks(NewBBs, *CurrentOS)) {
2275     OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
2276     for (std::pair<Value *, BasicBlock *> &VToBB : NewBBs) {
2277       DenseMap<Value *, BasicBlock *>::iterator VBBIt =
2278           CurrentGroup.EndBBs.find(VToBB.first);
2279       BasicBlock *EndBB = VBBIt->second;
2280       BranchInst::Create(EndBB, VToBB.second);
2281       OutputStoreBBs.back().insert(VToBB);
2282     }
2283   }
2284 
2285   // Replace the call to the extracted function with the outlined function.
2286   CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
2287 
2288   // We only delete the extracted functions at the end since we may need to
2289   // reference instructions contained in them for mapping purposes.
2290   FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
2291 }
2292 
2293 void IROutliner::deduplicateExtractedSections(
2294     Module &M, OutlinableGroup &CurrentGroup,
2295     std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) {
2296   createFunction(M, CurrentGroup, OutlinedFunctionNum);
2297 
2298   std::vector<DenseMap<Value *, BasicBlock *>> OutputStoreBBs;
2299 
2300   OutlinableRegion *CurrentOS;
2301 
2302   fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove,
2303                       OutputMappings);
2304 
2305   std::vector<Value *> SortedKeys;
2306   for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) {
2307     CurrentOS = CurrentGroup.Regions[Idx];
2308     AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction,
2309                                                *CurrentOS->ExtractedFunction);
2310 
2311     // Create a set of BasicBlocks, one for each return block, to hold the
2312     // needed store instructions.
2313     DenseMap<Value *, BasicBlock *> NewBBs;
2314     createAndInsertBasicBlocks(
2315         CurrentGroup.EndBBs, NewBBs, CurrentGroup.OutlinedFunction,
2316         "output_block_" + Twine(static_cast<unsigned>(Idx)));
2317     replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings);
2318     alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBBs,
2319                                 CurrentGroup.EndBBs, OutputMappings,
2320                                 OutputStoreBBs);
2321 
2322     CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
2323     FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
2324   }
2325 
2326   // Create a switch statement to handle the different output schemes.
2327   createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBBs, OutputStoreBBs);
2328 
2329   OutlinedFunctionNum++;
2330 }
2331 
2332 /// Checks that the next instruction in the InstructionDataList matches the
2333 /// next instruction in the module.  If they do not, there could be the
2334 /// possibility that extra code has been inserted, and we must ignore it.
2335 ///
2336 /// \param ID - The IRInstructionData to check the next instruction of.
2337 /// \returns true if the InstructionDataList and actual instruction match.
2338 static bool nextIRInstructionDataMatchesNextInst(IRInstructionData &ID) {
2339   // We check if there is a discrepancy between the InstructionDataList
2340   // and the actual next instruction in the module.  If there is, it means
2341   // that an extra instruction was added, likely by the CodeExtractor.
2342 
2343   // Since we do not have any similarity data about this particular
2344   // instruction, we cannot confidently outline it, and must discard this
2345   // candidate.
2346   IRInstructionDataList::iterator NextIDIt = std::next(ID.getIterator());
2347   Instruction *NextIDLInst = NextIDIt->Inst;
2348   Instruction *NextModuleInst = nullptr;
2349   if (!ID.Inst->isTerminator())
2350     NextModuleInst = ID.Inst->getNextNonDebugInstruction();
2351   else if (NextIDLInst != nullptr)
2352     NextModuleInst =
2353         &*NextIDIt->Inst->getParent()->instructionsWithoutDebug().begin();
2354 
2355   if (NextIDLInst && NextIDLInst != NextModuleInst)
2356     return false;
2357 
2358   return true;
2359 }
2360 
2361 bool IROutliner::isCompatibleWithAlreadyOutlinedCode(
2362     const OutlinableRegion &Region) {
2363   IRSimilarityCandidate *IRSC = Region.Candidate;
2364   unsigned StartIdx = IRSC->getStartIdx();
2365   unsigned EndIdx = IRSC->getEndIdx();
2366 
2367   // A check to make sure that we are not about to attempt to outline something
2368   // that has already been outlined.
2369   for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2370     if (Outlined.contains(Idx))
2371       return false;
2372 
2373   // We check if the recorded instruction matches the actual next instruction,
2374   // if it does not, we fix it in the InstructionDataList.
2375   if (!Region.Candidate->backInstruction()->isTerminator()) {
2376     Instruction *NewEndInst =
2377         Region.Candidate->backInstruction()->getNextNonDebugInstruction();
2378     assert(NewEndInst && "Next instruction is a nullptr?");
2379     if (Region.Candidate->end()->Inst != NewEndInst) {
2380       IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
2381       IRInstructionData *NewEndIRID = new (InstDataAllocator.Allocate())
2382           IRInstructionData(*NewEndInst,
2383                             InstructionClassifier.visit(*NewEndInst), *IDL);
2384 
2385       // Insert the first IRInstructionData of the new region after the
2386       // last IRInstructionData of the IRSimilarityCandidate.
2387       IDL->insert(Region.Candidate->end(), *NewEndIRID);
2388     }
2389   }
2390 
2391   return none_of(*IRSC, [this](IRInstructionData &ID) {
2392     if (!nextIRInstructionDataMatchesNextInst(ID))
2393       return true;
2394 
2395     return !this->InstructionClassifier.visit(ID.Inst);
2396   });
2397 }
2398 
2399 void IROutliner::pruneIncompatibleRegions(
2400     std::vector<IRSimilarityCandidate> &CandidateVec,
2401     OutlinableGroup &CurrentGroup) {
2402   bool PreviouslyOutlined;
2403 
2404   // Sort from beginning to end, so the IRSimilarityCandidates are in order.
2405   stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS,
2406                                const IRSimilarityCandidate &RHS) {
2407     return LHS.getStartIdx() < RHS.getStartIdx();
2408   });
2409 
2410   IRSimilarityCandidate &FirstCandidate = CandidateVec[0];
2411   // Since outlining a call and a branch instruction will be the same as only
2412   // outlinining a call instruction, we ignore it as a space saving.
2413   if (FirstCandidate.getLength() == 2) {
2414     if (isa<CallInst>(FirstCandidate.front()->Inst) &&
2415         isa<BranchInst>(FirstCandidate.back()->Inst))
2416       return;
2417   }
2418 
2419   unsigned CurrentEndIdx = 0;
2420   for (IRSimilarityCandidate &IRSC : CandidateVec) {
2421     PreviouslyOutlined = false;
2422     unsigned StartIdx = IRSC.getStartIdx();
2423     unsigned EndIdx = IRSC.getEndIdx();
2424     const Function &FnForCurrCand = *IRSC.getFunction();
2425 
2426     for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2427       if (Outlined.contains(Idx)) {
2428         PreviouslyOutlined = true;
2429         break;
2430       }
2431 
2432     if (PreviouslyOutlined)
2433       continue;
2434 
2435     // Check over the instructions, and if the basic block has its address
2436     // taken for use somewhere else, we do not outline that block.
2437     bool BBHasAddressTaken = any_of(IRSC, [](IRInstructionData &ID){
2438       return ID.Inst->getParent()->hasAddressTaken();
2439     });
2440 
2441     if (BBHasAddressTaken)
2442       continue;
2443 
2444     if (FnForCurrCand.hasOptNone())
2445       continue;
2446 
2447     if (FnForCurrCand.hasFnAttribute("nooutline")) {
2448       LLVM_DEBUG({
2449         dbgs() << "... Skipping function with nooutline attribute: "
2450                << FnForCurrCand.getName() << "\n";
2451       });
2452       continue;
2453     }
2454 
2455     if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() &&
2456         !OutlineFromLinkODRs)
2457       continue;
2458 
2459     // Greedily prune out any regions that will overlap with already chosen
2460     // regions.
2461     if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx)
2462       continue;
2463 
2464     bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) {
2465       if (!nextIRInstructionDataMatchesNextInst(ID))
2466         return true;
2467 
2468       return !this->InstructionClassifier.visit(ID.Inst);
2469     });
2470 
2471     if (BadInst)
2472       continue;
2473 
2474     OutlinableRegion *OS = new (RegionAllocator.Allocate())
2475         OutlinableRegion(IRSC, CurrentGroup);
2476     CurrentGroup.Regions.push_back(OS);
2477 
2478     CurrentEndIdx = EndIdx;
2479   }
2480 }
2481 
2482 InstructionCost
2483 IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) {
2484   InstructionCost RegionBenefit = 0;
2485   for (OutlinableRegion *Region : CurrentGroup.Regions) {
2486     TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
2487     // We add the number of instructions in the region to the benefit as an
2488     // estimate as to how much will be removed.
2489     RegionBenefit += Region->getBenefit(TTI);
2490     LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit
2491                       << " saved instructions to overfall benefit.\n");
2492   }
2493 
2494   return RegionBenefit;
2495 }
2496 
2497 /// For the \p OutputCanon number passed in find the value represented by this
2498 /// canonical number. If it is from a PHINode, we pick the first incoming
2499 /// value and return that Value instead.
2500 ///
2501 /// \param Region - The OutlinableRegion to get the Value from.
2502 /// \param OutputCanon - The canonical number to find the Value from.
2503 /// \returns The Value represented by a canonical number \p OutputCanon in \p
2504 /// Region.
2505 static Value *findOutputValueInRegion(OutlinableRegion &Region,
2506                                       unsigned OutputCanon) {
2507   OutlinableGroup &CurrentGroup = *Region.Parent;
2508   // If the value is greater than the value in the tracker, we have a
2509   // PHINode and will instead use one of the incoming values to find the
2510   // type.
2511   if (OutputCanon > CurrentGroup.PHINodeGVNTracker) {
2512     auto It = CurrentGroup.PHINodeGVNToGVNs.find(OutputCanon);
2513     assert(It != CurrentGroup.PHINodeGVNToGVNs.end() &&
2514            "Could not find GVN set for PHINode number!");
2515     assert(It->second.second.size() > 0 && "PHINode does not have any values!");
2516     OutputCanon = *It->second.second.begin();
2517   }
2518   std::optional<unsigned> OGVN =
2519       Region.Candidate->fromCanonicalNum(OutputCanon);
2520   assert(OGVN && "Could not find GVN for Canonical Number?");
2521   std::optional<Value *> OV = Region.Candidate->fromGVN(*OGVN);
2522   assert(OV && "Could not find value for GVN?");
2523   return *OV;
2524 }
2525 
2526 InstructionCost
2527 IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) {
2528   InstructionCost OverallCost = 0;
2529   for (OutlinableRegion *Region : CurrentGroup.Regions) {
2530     TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
2531 
2532     // Each output incurs a load after the call, so we add that to the cost.
2533     for (unsigned OutputCanon : Region->GVNStores) {
2534       Value *V = findOutputValueInRegion(*Region, OutputCanon);
2535       InstructionCost LoadCost =
2536           TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
2537                               TargetTransformInfo::TCK_CodeSize);
2538 
2539       LLVM_DEBUG(dbgs() << "Adding: " << LoadCost
2540                         << " instructions to cost for output of type "
2541                         << *V->getType() << "\n");
2542       OverallCost += LoadCost;
2543     }
2544   }
2545 
2546   return OverallCost;
2547 }
2548 
2549 /// Find the extra instructions needed to handle any output values for the
2550 /// region.
2551 ///
2552 /// \param [in] M - The Module to outline from.
2553 /// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze.
2554 /// \param [in] TTI - The TargetTransformInfo used to collect information for
2555 /// new instruction costs.
2556 /// \returns the additional cost to handle the outputs.
2557 static InstructionCost findCostForOutputBlocks(Module &M,
2558                                                OutlinableGroup &CurrentGroup,
2559                                                TargetTransformInfo &TTI) {
2560   InstructionCost OutputCost = 0;
2561   unsigned NumOutputBranches = 0;
2562 
2563   OutlinableRegion &FirstRegion = *CurrentGroup.Regions[0];
2564   IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate;
2565   DenseSet<BasicBlock *> CandidateBlocks;
2566   Candidate.getBasicBlocks(CandidateBlocks);
2567 
2568   // Count the number of different output branches that point to blocks outside
2569   // of the region.
2570   DenseSet<BasicBlock *> FoundBlocks;
2571   for (IRInstructionData &ID : Candidate) {
2572     if (!isa<BranchInst>(ID.Inst))
2573       continue;
2574 
2575     for (Value *V : ID.OperVals) {
2576       BasicBlock *BB = static_cast<BasicBlock *>(V);
2577       if (!CandidateBlocks.contains(BB) && FoundBlocks.insert(BB).second)
2578         NumOutputBranches++;
2579     }
2580   }
2581 
2582   CurrentGroup.BranchesToOutside = NumOutputBranches;
2583 
2584   for (const ArrayRef<unsigned> &OutputUse :
2585        CurrentGroup.OutputGVNCombinations) {
2586     for (unsigned OutputCanon : OutputUse) {
2587       Value *V = findOutputValueInRegion(FirstRegion, OutputCanon);
2588       InstructionCost StoreCost =
2589           TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
2590                               TargetTransformInfo::TCK_CodeSize);
2591 
2592       // An instruction cost is added for each store set that needs to occur for
2593       // various output combinations inside the function, plus a branch to
2594       // return to the exit block.
2595       LLVM_DEBUG(dbgs() << "Adding: " << StoreCost
2596                         << " instructions to cost for output of type "
2597                         << *V->getType() << "\n");
2598       OutputCost += StoreCost * NumOutputBranches;
2599     }
2600 
2601     InstructionCost BranchCost =
2602         TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
2603     LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for"
2604                       << " a branch instruction\n");
2605     OutputCost += BranchCost * NumOutputBranches;
2606   }
2607 
2608   // If there is more than one output scheme, we must have a comparison and
2609   // branch for each different item in the switch statement.
2610   if (CurrentGroup.OutputGVNCombinations.size() > 1) {
2611     InstructionCost ComparisonCost = TTI.getCmpSelInstrCost(
2612         Instruction::ICmp, Type::getInt32Ty(M.getContext()),
2613         Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE,
2614         TargetTransformInfo::TCK_CodeSize);
2615     InstructionCost BranchCost =
2616         TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
2617 
2618     unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size();
2619     InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks;
2620 
2621     LLVM_DEBUG(dbgs() << "Adding: " << TotalCost
2622                       << " instructions for each switch case for each different"
2623                       << " output path in a function\n");
2624     OutputCost += TotalCost * NumOutputBranches;
2625   }
2626 
2627   return OutputCost;
2628 }
2629 
2630 void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) {
2631   InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup);
2632   CurrentGroup.Benefit += RegionBenefit;
2633   LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n");
2634 
2635   InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup);
2636   CurrentGroup.Cost += OutputReloadCost;
2637   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2638 
2639   InstructionCost AverageRegionBenefit =
2640       RegionBenefit / CurrentGroup.Regions.size();
2641   unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size();
2642   unsigned NumRegions = CurrentGroup.Regions.size();
2643   TargetTransformInfo &TTI =
2644       getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction());
2645 
2646   // We add one region to the cost once, to account for the instructions added
2647   // inside of the newly created function.
2648   LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit
2649                     << " instructions to cost for body of new function.\n");
2650   CurrentGroup.Cost += AverageRegionBenefit;
2651   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2652 
2653   // For each argument, we must add an instruction for loading the argument
2654   // out of the register and into a value inside of the newly outlined function.
2655   LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
2656                     << " instructions to cost for each argument in the new"
2657                     << " function.\n");
2658   CurrentGroup.Cost +=
2659       OverallArgumentNum * TargetTransformInfo::TCC_Basic;
2660   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2661 
2662   // Each argument needs to either be loaded into a register or onto the stack.
2663   // Some arguments will only be loaded into the stack once the argument
2664   // registers are filled.
2665   LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
2666                     << " instructions to cost for each argument in the new"
2667                     << " function " << NumRegions << " times for the "
2668                     << "needed argument handling at the call site.\n");
2669   CurrentGroup.Cost +=
2670       2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions;
2671   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2672 
2673   CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI);
2674   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2675 }
2676 
2677 void IROutliner::updateOutputMapping(OutlinableRegion &Region,
2678                                      ArrayRef<Value *> Outputs,
2679                                      LoadInst *LI) {
2680   // For and load instructions following the call
2681   Value *Operand = LI->getPointerOperand();
2682   std::optional<unsigned> OutputIdx;
2683   // Find if the operand it is an output register.
2684   for (unsigned ArgIdx = Region.NumExtractedInputs;
2685        ArgIdx < Region.Call->arg_size(); ArgIdx++) {
2686     if (Operand == Region.Call->getArgOperand(ArgIdx)) {
2687       OutputIdx = ArgIdx - Region.NumExtractedInputs;
2688       break;
2689     }
2690   }
2691 
2692   // If we found an output register, place a mapping of the new value
2693   // to the original in the mapping.
2694   if (!OutputIdx)
2695     return;
2696 
2697   if (!OutputMappings.contains(Outputs[*OutputIdx])) {
2698     LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to "
2699                       << *Outputs[*OutputIdx] << "\n");
2700     OutputMappings.insert(std::make_pair(LI, Outputs[*OutputIdx]));
2701   } else {
2702     Value *Orig = OutputMappings.find(Outputs[*OutputIdx])->second;
2703     LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to "
2704                       << *Outputs[*OutputIdx] << "\n");
2705     OutputMappings.insert(std::make_pair(LI, Orig));
2706   }
2707 }
2708 
2709 bool IROutliner::extractSection(OutlinableRegion &Region) {
2710   SetVector<Value *> ArgInputs, Outputs, SinkCands;
2711   assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!");
2712   BasicBlock *InitialStart = Region.StartBB;
2713   Function *OrigF = Region.StartBB->getParent();
2714   CodeExtractorAnalysisCache CEAC(*OrigF);
2715   Region.ExtractedFunction =
2716       Region.CE->extractCodeRegion(CEAC, ArgInputs, Outputs);
2717 
2718   // If the extraction was successful, find the BasicBlock, and reassign the
2719   // OutlinableRegion blocks
2720   if (!Region.ExtractedFunction) {
2721     LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB
2722                       << "\n");
2723     Region.reattachCandidate();
2724     return false;
2725   }
2726 
2727   // Get the block containing the called branch, and reassign the blocks as
2728   // necessary.  If the original block still exists, it is because we ended on
2729   // a branch instruction, and so we move the contents into the block before
2730   // and assign the previous block correctly.
2731   User *InstAsUser = Region.ExtractedFunction->user_back();
2732   BasicBlock *RewrittenBB = cast<Instruction>(InstAsUser)->getParent();
2733   Region.PrevBB = RewrittenBB->getSinglePredecessor();
2734   assert(Region.PrevBB && "PrevBB is nullptr?");
2735   if (Region.PrevBB == InitialStart) {
2736     BasicBlock *NewPrev = InitialStart->getSinglePredecessor();
2737     Instruction *BI = NewPrev->getTerminator();
2738     BI->eraseFromParent();
2739     moveBBContents(*InitialStart, *NewPrev);
2740     Region.PrevBB = NewPrev;
2741     InitialStart->eraseFromParent();
2742   }
2743 
2744   Region.StartBB = RewrittenBB;
2745   Region.EndBB = RewrittenBB;
2746 
2747   // The sequences of outlinable regions has now changed.  We must fix the
2748   // IRInstructionDataList for consistency.  Although they may not be illegal
2749   // instructions, they should not be compared with anything else as they
2750   // should not be outlined in this round.  So marking these as illegal is
2751   // allowed.
2752   IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
2753   Instruction *BeginRewritten = &*RewrittenBB->begin();
2754   Instruction *EndRewritten = &*RewrittenBB->begin();
2755   Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData(
2756       *BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL);
2757   Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData(
2758       *EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL);
2759 
2760   // Insert the first IRInstructionData of the new region in front of the
2761   // first IRInstructionData of the IRSimilarityCandidate.
2762   IDL->insert(Region.Candidate->begin(), *Region.NewFront);
2763   // Insert the first IRInstructionData of the new region after the
2764   // last IRInstructionData of the IRSimilarityCandidate.
2765   IDL->insert(Region.Candidate->end(), *Region.NewBack);
2766   // Remove the IRInstructionData from the IRSimilarityCandidate.
2767   IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end()));
2768 
2769   assert(RewrittenBB != nullptr &&
2770          "Could not find a predecessor after extraction!");
2771 
2772   // Iterate over the new set of instructions to find the new call
2773   // instruction.
2774   for (Instruction &I : *RewrittenBB)
2775     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2776       if (Region.ExtractedFunction == CI->getCalledFunction())
2777         Region.Call = CI;
2778     } else if (LoadInst *LI = dyn_cast<LoadInst>(&I))
2779       updateOutputMapping(Region, Outputs.getArrayRef(), LI);
2780   Region.reattachCandidate();
2781   return true;
2782 }
2783 
2784 unsigned IROutliner::doOutline(Module &M) {
2785   // Find the possible similarity sections.
2786   InstructionClassifier.EnableBranches = !DisableBranches;
2787   InstructionClassifier.EnableIndirectCalls = !DisableIndirectCalls;
2788   InstructionClassifier.EnableIntrinsics = !DisableIntrinsics;
2789 
2790   IRSimilarityIdentifier &Identifier = getIRSI(M);
2791   SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity();
2792 
2793   // Sort them by size of extracted sections
2794   unsigned OutlinedFunctionNum = 0;
2795   // If we only have one SimilarityGroup in SimilarityCandidates, we do not have
2796   // to sort them by the potential number of instructions to be outlined
2797   if (SimilarityCandidates.size() > 1)
2798     llvm::stable_sort(SimilarityCandidates,
2799                       [](const std::vector<IRSimilarityCandidate> &LHS,
2800                          const std::vector<IRSimilarityCandidate> &RHS) {
2801                         return LHS[0].getLength() * LHS.size() >
2802                                RHS[0].getLength() * RHS.size();
2803                       });
2804   // Creating OutlinableGroups for each SimilarityCandidate to be used in
2805   // each of the following for loops to avoid making an allocator.
2806   std::vector<OutlinableGroup> PotentialGroups(SimilarityCandidates.size());
2807 
2808   DenseSet<unsigned> NotSame;
2809   std::vector<OutlinableGroup *> NegativeCostGroups;
2810   std::vector<OutlinableRegion *> OutlinedRegions;
2811   // Iterate over the possible sets of similarity.
2812   unsigned PotentialGroupIdx = 0;
2813   for (SimilarityGroup &CandidateVec : SimilarityCandidates) {
2814     OutlinableGroup &CurrentGroup = PotentialGroups[PotentialGroupIdx++];
2815 
2816     // Remove entries that were previously outlined
2817     pruneIncompatibleRegions(CandidateVec, CurrentGroup);
2818 
2819     // We pruned the number of regions to 0 to 1, meaning that it's not worth
2820     // trying to outlined since there is no compatible similar instance of this
2821     // code.
2822     if (CurrentGroup.Regions.size() < 2)
2823       continue;
2824 
2825     // Determine if there are any values that are the same constant throughout
2826     // each section in the set.
2827     NotSame.clear();
2828     CurrentGroup.findSameConstants(NotSame);
2829 
2830     if (CurrentGroup.IgnoreGroup)
2831       continue;
2832 
2833     // Create a CodeExtractor for each outlinable region. Identify inputs and
2834     // outputs for each section using the code extractor and create the argument
2835     // types for the Aggregate Outlining Function.
2836     OutlinedRegions.clear();
2837     for (OutlinableRegion *OS : CurrentGroup.Regions) {
2838       // Break the outlinable region out of its parent BasicBlock into its own
2839       // BasicBlocks (see function implementation).
2840       OS->splitCandidate();
2841 
2842       // There's a chance that when the region is split, extra instructions are
2843       // added to the region. This makes the region no longer viable
2844       // to be split, so we ignore it for outlining.
2845       if (!OS->CandidateSplit)
2846         continue;
2847 
2848       SmallVector<BasicBlock *> BE;
2849       DenseSet<BasicBlock *> BlocksInRegion;
2850       OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
2851       OS->CE = new (ExtractorAllocator.Allocate())
2852           CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
2853                         false, nullptr, "outlined");
2854       findAddInputsOutputs(M, *OS, NotSame);
2855       if (!OS->IgnoreRegion)
2856         OutlinedRegions.push_back(OS);
2857 
2858       // We recombine the blocks together now that we have gathered all the
2859       // needed information.
2860       OS->reattachCandidate();
2861     }
2862 
2863     CurrentGroup.Regions = std::move(OutlinedRegions);
2864 
2865     if (CurrentGroup.Regions.empty())
2866       continue;
2867 
2868     CurrentGroup.collectGVNStoreSets(M);
2869 
2870     if (CostModel)
2871       findCostBenefit(M, CurrentGroup);
2872 
2873     // If we are adhering to the cost model, skip those groups where the cost
2874     // outweighs the benefits.
2875     if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) {
2876       OptimizationRemarkEmitter &ORE =
2877           getORE(*CurrentGroup.Regions[0]->Candidate->getFunction());
2878       ORE.emit([&]() {
2879         IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
2880         OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize",
2881                                    C->frontInstruction());
2882         R << "did not outline "
2883           << ore::NV(std::to_string(CurrentGroup.Regions.size()))
2884           << " regions due to estimated increase of "
2885           << ore::NV("InstructionIncrease",
2886                      CurrentGroup.Cost - CurrentGroup.Benefit)
2887           << " instructions at locations ";
2888         interleave(
2889             CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
2890             [&R](OutlinableRegion *Region) {
2891               R << ore::NV(
2892                   "DebugLoc",
2893                   Region->Candidate->frontInstruction()->getDebugLoc());
2894             },
2895             [&R]() { R << " "; });
2896         return R;
2897       });
2898       continue;
2899     }
2900 
2901     NegativeCostGroups.push_back(&CurrentGroup);
2902   }
2903 
2904   ExtractorAllocator.DestroyAll();
2905 
2906   if (NegativeCostGroups.size() > 1)
2907     stable_sort(NegativeCostGroups,
2908                 [](const OutlinableGroup *LHS, const OutlinableGroup *RHS) {
2909                   return LHS->Benefit - LHS->Cost > RHS->Benefit - RHS->Cost;
2910                 });
2911 
2912   std::vector<Function *> FuncsToRemove;
2913   for (OutlinableGroup *CG : NegativeCostGroups) {
2914     OutlinableGroup &CurrentGroup = *CG;
2915 
2916     OutlinedRegions.clear();
2917     for (OutlinableRegion *Region : CurrentGroup.Regions) {
2918       // We check whether our region is compatible with what has already been
2919       // outlined, and whether we need to ignore this item.
2920       if (!isCompatibleWithAlreadyOutlinedCode(*Region))
2921         continue;
2922       OutlinedRegions.push_back(Region);
2923     }
2924 
2925     if (OutlinedRegions.size() < 2)
2926       continue;
2927 
2928     // Reestimate the cost and benefit of the OutlinableGroup. Continue only if
2929     // we are still outlining enough regions to make up for the added cost.
2930     CurrentGroup.Regions = std::move(OutlinedRegions);
2931     if (CostModel) {
2932       CurrentGroup.Benefit = 0;
2933       CurrentGroup.Cost = 0;
2934       findCostBenefit(M, CurrentGroup);
2935       if (CurrentGroup.Cost >= CurrentGroup.Benefit)
2936         continue;
2937     }
2938     OutlinedRegions.clear();
2939     for (OutlinableRegion *Region : CurrentGroup.Regions) {
2940       Region->splitCandidate();
2941       if (!Region->CandidateSplit)
2942         continue;
2943       OutlinedRegions.push_back(Region);
2944     }
2945 
2946     CurrentGroup.Regions = std::move(OutlinedRegions);
2947     if (CurrentGroup.Regions.size() < 2) {
2948       for (OutlinableRegion *R : CurrentGroup.Regions)
2949         R->reattachCandidate();
2950       continue;
2951     }
2952 
2953     LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost
2954                       << " and benefit " << CurrentGroup.Benefit << "\n");
2955 
2956     // Create functions out of all the sections, and mark them as outlined.
2957     OutlinedRegions.clear();
2958     for (OutlinableRegion *OS : CurrentGroup.Regions) {
2959       SmallVector<BasicBlock *> BE;
2960       DenseSet<BasicBlock *> BlocksInRegion;
2961       OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
2962       OS->CE = new (ExtractorAllocator.Allocate())
2963           CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
2964                         false, nullptr, "outlined");
2965       bool FunctionOutlined = extractSection(*OS);
2966       if (FunctionOutlined) {
2967         unsigned StartIdx = OS->Candidate->getStartIdx();
2968         unsigned EndIdx = OS->Candidate->getEndIdx();
2969         for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2970           Outlined.insert(Idx);
2971 
2972         OutlinedRegions.push_back(OS);
2973       }
2974     }
2975 
2976     LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size()
2977                       << " with benefit " << CurrentGroup.Benefit
2978                       << " and cost " << CurrentGroup.Cost << "\n");
2979 
2980     CurrentGroup.Regions = std::move(OutlinedRegions);
2981 
2982     if (CurrentGroup.Regions.empty())
2983       continue;
2984 
2985     OptimizationRemarkEmitter &ORE =
2986         getORE(*CurrentGroup.Regions[0]->Call->getFunction());
2987     ORE.emit([&]() {
2988       IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
2989       OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst);
2990       R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size()))
2991         << " regions with decrease of "
2992         << ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost)
2993         << " instructions at locations ";
2994       interleave(
2995           CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
2996           [&R](OutlinableRegion *Region) {
2997             R << ore::NV("DebugLoc",
2998                          Region->Candidate->frontInstruction()->getDebugLoc());
2999           },
3000           [&R]() { R << " "; });
3001       return R;
3002     });
3003 
3004     deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove,
3005                                  OutlinedFunctionNum);
3006   }
3007 
3008   for (Function *F : FuncsToRemove)
3009     F->eraseFromParent();
3010 
3011   return OutlinedFunctionNum;
3012 }
3013 
3014 bool IROutliner::run(Module &M) {
3015   CostModel = !NoCostModel;
3016   OutlineFromLinkODRs = EnableLinkOnceODRIROutlining;
3017 
3018   return doOutline(M) > 0;
3019 }
3020 
3021 PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) {
3022   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
3023 
3024   std::function<TargetTransformInfo &(Function &)> GTTI =
3025       [&FAM](Function &F) -> TargetTransformInfo & {
3026     return FAM.getResult<TargetIRAnalysis>(F);
3027   };
3028 
3029   std::function<IRSimilarityIdentifier &(Module &)> GIRSI =
3030       [&AM](Module &M) -> IRSimilarityIdentifier & {
3031     return AM.getResult<IRSimilarityAnalysis>(M);
3032   };
3033 
3034   std::unique_ptr<OptimizationRemarkEmitter> ORE;
3035   std::function<OptimizationRemarkEmitter &(Function &)> GORE =
3036       [&ORE](Function &F) -> OptimizationRemarkEmitter & {
3037     ORE.reset(new OptimizationRemarkEmitter(&F));
3038     return *ORE;
3039   };
3040 
3041   if (IROutliner(GTTI, GIRSI, GORE).run(M))
3042     return PreservedAnalyses::none();
3043   return PreservedAnalyses::all();
3044 }
3045