1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the mechanics required to implement inlining without
10 // missing any calls and updating the call graph.  The decisions of which calls
11 // are profitable to inline are implemented elsewhere.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/Inliner.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/PriorityWorklist.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/BasicAliasAnalysis.h"
28 #include "llvm/Analysis/BlockFrequencyInfo.h"
29 #include "llvm/Analysis/CGSCCPassManager.h"
30 #include "llvm/Analysis/CallGraph.h"
31 #include "llvm/Analysis/InlineAdvisor.h"
32 #include "llvm/Analysis/InlineCost.h"
33 #include "llvm/Analysis/LazyCallGraph.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/Analysis/ProfileSummaryInfo.h"
36 #include "llvm/Analysis/ReplayInlineAdvisor.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/Utils/ImportedFunctionsInliningStatistics.h"
39 #include "llvm/IR/Attributes.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/DiagnosticInfo.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/InstIterator.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Metadata.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/PassManager.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
60 #include "llvm/Transforms/Utils/Cloning.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include "llvm/Transforms/Utils/ModuleUtils.h"
63 #include <algorithm>
64 #include <cassert>
65 #include <functional>
66 #include <utility>
67 #include <vector>
68 
69 using namespace llvm;
70 
71 #define DEBUG_TYPE "inline"
72 
73 STATISTIC(NumInlined, "Number of functions inlined");
74 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
75 STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
76 STATISTIC(NumMergedAllocas, "Number of allocas merged together");
77 
78 /// Flag to disable manual alloca merging.
79 ///
80 /// Merging of allocas was originally done as a stack-size saving technique
81 /// prior to LLVM's code generator having support for stack coloring based on
82 /// lifetime markers. It is now in the process of being removed. To experiment
83 /// with disabling it and relying fully on lifetime marker based stack
84 /// coloring, you can pass this flag to LLVM.
85 static cl::opt<bool>
86     DisableInlinedAllocaMerging("disable-inlined-alloca-merging",
87                                 cl::init(false), cl::Hidden);
88 
89 static cl::opt<int> IntraSCCCostMultiplier(
90     "intra-scc-cost-multiplier", cl::init(2), cl::Hidden,
91     cl::desc(
92         "Cost multiplier to multiply onto inlined call sites where the "
93         "new call was previously an intra-SCC call (not relevant when the "
94         "original call was already intra-SCC). This can accumulate over "
95         "multiple inlinings (e.g. if a call site already had a cost "
96         "multiplier and one of its inlined calls was also subject to "
97         "this, the inlined call would have the original multiplier "
98         "multiplied by intra-scc-cost-multiplier). This is to prevent tons of "
99         "inlining through a child SCC which can cause terrible compile times"));
100 
101 /// A flag for test, so we can print the content of the advisor when running it
102 /// as part of the default (e.g. -O3) pipeline.
103 static cl::opt<bool> KeepAdvisorForPrinting("keep-inline-advisor-for-printing",
104                                             cl::init(false), cl::Hidden);
105 
106 /// Allows printing the contents of the advisor after each SCC inliner pass.
107 static cl::opt<bool>
108     EnablePostSCCAdvisorPrinting("enable-scc-inline-advisor-printing",
109                                  cl::init(false), cl::Hidden);
110 
111 namespace llvm {
112 extern cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats;
113 }
114 
115 static cl::opt<std::string> CGSCCInlineReplayFile(
116     "cgscc-inline-replay", cl::init(""), cl::value_desc("filename"),
117     cl::desc(
118         "Optimization remarks file containing inline remarks to be replayed "
119         "by cgscc inlining."),
120     cl::Hidden);
121 
122 static cl::opt<ReplayInlinerSettings::Scope> CGSCCInlineReplayScope(
123     "cgscc-inline-replay-scope",
124     cl::init(ReplayInlinerSettings::Scope::Function),
125     cl::values(clEnumValN(ReplayInlinerSettings::Scope::Function, "Function",
126                           "Replay on functions that have remarks associated "
127                           "with them (default)"),
128                clEnumValN(ReplayInlinerSettings::Scope::Module, "Module",
129                           "Replay on the entire module")),
130     cl::desc("Whether inline replay should be applied to the entire "
131              "Module or just the Functions (default) that are present as "
132              "callers in remarks during cgscc inlining."),
133     cl::Hidden);
134 
135 static cl::opt<ReplayInlinerSettings::Fallback> CGSCCInlineReplayFallback(
136     "cgscc-inline-replay-fallback",
137     cl::init(ReplayInlinerSettings::Fallback::Original),
138     cl::values(
139         clEnumValN(
140             ReplayInlinerSettings::Fallback::Original, "Original",
141             "All decisions not in replay send to original advisor (default)"),
142         clEnumValN(ReplayInlinerSettings::Fallback::AlwaysInline,
143                    "AlwaysInline", "All decisions not in replay are inlined"),
144         clEnumValN(ReplayInlinerSettings::Fallback::NeverInline, "NeverInline",
145                    "All decisions not in replay are not inlined")),
146     cl::desc(
147         "How cgscc inline replay treats sites that don't come from the replay. "
148         "Original: defers to original advisor, AlwaysInline: inline all sites "
149         "not in replay, NeverInline: inline no sites not in replay"),
150     cl::Hidden);
151 
152 static cl::opt<CallSiteFormat::Format> CGSCCInlineReplayFormat(
153     "cgscc-inline-replay-format",
154     cl::init(CallSiteFormat::Format::LineColumnDiscriminator),
155     cl::values(
156         clEnumValN(CallSiteFormat::Format::Line, "Line", "<Line Number>"),
157         clEnumValN(CallSiteFormat::Format::LineColumn, "LineColumn",
158                    "<Line Number>:<Column Number>"),
159         clEnumValN(CallSiteFormat::Format::LineDiscriminator,
160                    "LineDiscriminator", "<Line Number>.<Discriminator>"),
161         clEnumValN(CallSiteFormat::Format::LineColumnDiscriminator,
162                    "LineColumnDiscriminator",
163                    "<Line Number>:<Column Number>.<Discriminator> (default)")),
164     cl::desc("How cgscc inline replay file is formatted"), cl::Hidden);
165 
166 LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {}
167 
168 LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime)
169     : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {}
170 
171 /// For this class, we declare that we require and preserve the call graph.
172 /// If the derived class implements this method, it should
173 /// always explicitly call the implementation here.
174 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const {
175   AU.addRequired<AssumptionCacheTracker>();
176   AU.addRequired<ProfileSummaryInfoWrapperPass>();
177   AU.addRequired<TargetLibraryInfoWrapperPass>();
178   getAAResultsAnalysisUsage(AU);
179   CallGraphSCCPass::getAnalysisUsage(AU);
180 }
181 
182 using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>;
183 
184 /// Look at all of the allocas that we inlined through this call site.  If we
185 /// have already inlined other allocas through other calls into this function,
186 /// then we know that they have disjoint lifetimes and that we can merge them.
187 ///
188 /// There are many heuristics possible for merging these allocas, and the
189 /// different options have different tradeoffs.  One thing that we *really*
190 /// don't want to hurt is SRoA: once inlining happens, often allocas are no
191 /// longer address taken and so they can be promoted.
192 ///
193 /// Our "solution" for that is to only merge allocas whose outermost type is an
194 /// array type.  These are usually not promoted because someone is using a
195 /// variable index into them.  These are also often the most important ones to
196 /// merge.
197 ///
198 /// A better solution would be to have real memory lifetime markers in the IR
199 /// and not have the inliner do any merging of allocas at all.  This would
200 /// allow the backend to do proper stack slot coloring of all allocas that
201 /// *actually make it to the backend*, which is really what we want.
202 ///
203 /// Because we don't have this information, we do this simple and useful hack.
204 static void mergeInlinedArrayAllocas(Function *Caller, InlineFunctionInfo &IFI,
205                                      InlinedArrayAllocasTy &InlinedArrayAllocas,
206                                      int InlineHistory) {
207   SmallPtrSet<AllocaInst *, 16> UsedAllocas;
208 
209   // When processing our SCC, check to see if the call site was inlined from
210   // some other call site.  For example, if we're processing "A" in this code:
211   //   A() { B() }
212   //   B() { x = alloca ... C() }
213   //   C() { y = alloca ... }
214   // Assume that C was not inlined into B initially, and so we're processing A
215   // and decide to inline B into A.  Doing this makes an alloca available for
216   // reuse and makes a callsite (C) available for inlining.  When we process
217   // the C call site we don't want to do any alloca merging between X and Y
218   // because their scopes are not disjoint.  We could make this smarter by
219   // keeping track of the inline history for each alloca in the
220   // InlinedArrayAllocas but this isn't likely to be a significant win.
221   if (InlineHistory != -1) // Only do merging for top-level call sites in SCC.
222     return;
223 
224   // Loop over all the allocas we have so far and see if they can be merged with
225   // a previously inlined alloca.  If not, remember that we had it.
226   for (unsigned AllocaNo = 0, E = IFI.StaticAllocas.size(); AllocaNo != E;
227        ++AllocaNo) {
228     AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
229 
230     // Don't bother trying to merge array allocations (they will usually be
231     // canonicalized to be an allocation *of* an array), or allocations whose
232     // type is not itself an array (because we're afraid of pessimizing SRoA).
233     ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
234     if (!ATy || AI->isArrayAllocation())
235       continue;
236 
237     // Get the list of all available allocas for this array type.
238     std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy];
239 
240     // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
241     // that we have to be careful not to reuse the same "available" alloca for
242     // multiple different allocas that we just inlined, we use the 'UsedAllocas'
243     // set to keep track of which "available" allocas are being used by this
244     // function.  Also, AllocasForType can be empty of course!
245     bool MergedAwayAlloca = false;
246     for (AllocaInst *AvailableAlloca : AllocasForType) {
247       Align Align1 = AI->getAlign();
248       Align Align2 = AvailableAlloca->getAlign();
249 
250       // The available alloca has to be in the right function, not in some other
251       // function in this SCC.
252       if (AvailableAlloca->getParent() != AI->getParent())
253         continue;
254 
255       // If the inlined function already uses this alloca then we can't reuse
256       // it.
257       if (!UsedAllocas.insert(AvailableAlloca).second)
258         continue;
259 
260       // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
261       // success!
262       LLVM_DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI
263                         << "\n\t\tINTO: " << *AvailableAlloca << '\n');
264 
265       // Move affected dbg.declare calls immediately after the new alloca to
266       // avoid the situation when a dbg.declare precedes its alloca.
267       if (auto *L = LocalAsMetadata::getIfExists(AI))
268         if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
269           for (User *U : MDV->users())
270             if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
271               DDI->moveBefore(AvailableAlloca->getNextNode());
272 
273       AI->replaceAllUsesWith(AvailableAlloca);
274 
275       if (Align1 > Align2)
276         AvailableAlloca->setAlignment(AI->getAlign());
277 
278       AI->eraseFromParent();
279       MergedAwayAlloca = true;
280       ++NumMergedAllocas;
281       IFI.StaticAllocas[AllocaNo] = nullptr;
282       break;
283     }
284 
285     // If we already nuked the alloca, we're done with it.
286     if (MergedAwayAlloca)
287       continue;
288 
289     // If we were unable to merge away the alloca either because there are no
290     // allocas of the right type available or because we reused them all
291     // already, remember that this alloca came from an inlined function and mark
292     // it used so we don't reuse it for other allocas from this inline
293     // operation.
294     AllocasForType.push_back(AI);
295     UsedAllocas.insert(AI);
296   }
297 }
298 
299 /// If it is possible to inline the specified call site,
300 /// do so and update the CallGraph for this operation.
301 ///
302 /// This function also does some basic book-keeping to update the IR.  The
303 /// InlinedArrayAllocas map keeps track of any allocas that are already
304 /// available from other functions inlined into the caller.  If we are able to
305 /// inline this call site we attempt to reuse already available allocas or add
306 /// any new allocas to the set if not possible.
307 static InlineResult inlineCallIfPossible(
308     CallBase &CB, InlineFunctionInfo &IFI,
309     InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory,
310     bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter,
311     ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
312   Function *Callee = CB.getCalledFunction();
313   Function *Caller = CB.getCaller();
314 
315   AAResults &AAR = AARGetter(*Callee);
316 
317   // Try to inline the function.  Get the list of static allocas that were
318   // inlined.
319   InlineResult IR =
320       InlineFunction(CB, IFI,
321                      /*MergeAttributes=*/true, &AAR, InsertLifetime);
322   if (!IR.isSuccess())
323     return IR;
324 
325   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
326     ImportedFunctionsStats.recordInline(*Caller, *Callee);
327 
328   if (!DisableInlinedAllocaMerging)
329     mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory);
330 
331   return IR; // success
332 }
333 
334 /// Return true if the specified inline history ID
335 /// indicates an inline history that includes the specified function.
336 static bool inlineHistoryIncludes(
337     Function *F, int InlineHistoryID,
338     const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
339   while (InlineHistoryID != -1) {
340     assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
341            "Invalid inline history ID");
342     if (InlineHistory[InlineHistoryID].first == F)
343       return true;
344     InlineHistoryID = InlineHistory[InlineHistoryID].second;
345   }
346   return false;
347 }
348 
349 bool LegacyInlinerBase::doInitialization(CallGraph &CG) {
350   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
351     ImportedFunctionsStats.setModuleInfo(CG.getModule());
352   return false; // No changes to CallGraph.
353 }
354 
355 bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) {
356   if (skipSCC(SCC))
357     return false;
358   return inlineCalls(SCC);
359 }
360 
361 static bool
362 inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG,
363                 std::function<AssumptionCache &(Function &)> GetAssumptionCache,
364                 ProfileSummaryInfo *PSI,
365                 std::function<const TargetLibraryInfo &(Function &)> GetTLI,
366                 bool InsertLifetime,
367                 function_ref<InlineCost(CallBase &CB)> GetInlineCost,
368                 function_ref<AAResults &(Function &)> AARGetter,
369                 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
370   SmallPtrSet<Function *, 8> SCCFunctions;
371   LLVM_DEBUG(dbgs() << "Inliner visiting SCC:");
372   for (CallGraphNode *Node : SCC) {
373     Function *F = Node->getFunction();
374     if (F)
375       SCCFunctions.insert(F);
376     LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
377   }
378 
379   // Scan through and identify all call sites ahead of time so that we only
380   // inline call sites in the original functions, not call sites that result
381   // from inlining other functions.
382   SmallVector<std::pair<CallBase *, int>, 16> CallSites;
383 
384   // When inlining a callee produces new call sites, we want to keep track of
385   // the fact that they were inlined from the callee.  This allows us to avoid
386   // infinite inlining in some obscure cases.  To represent this, we use an
387   // index into the InlineHistory vector.
388   SmallVector<std::pair<Function *, int>, 8> InlineHistory;
389 
390   for (CallGraphNode *Node : SCC) {
391     Function *F = Node->getFunction();
392     if (!F || F->isDeclaration())
393       continue;
394 
395     OptimizationRemarkEmitter ORE(F);
396     for (BasicBlock &BB : *F)
397       for (Instruction &I : BB) {
398         auto *CB = dyn_cast<CallBase>(&I);
399         // If this isn't a call, or it is a call to an intrinsic, it can
400         // never be inlined.
401         if (!CB || isa<IntrinsicInst>(I))
402           continue;
403 
404         // If this is a direct call to an external function, we can never inline
405         // it.  If it is an indirect call, inlining may resolve it to be a
406         // direct call, so we keep it.
407         if (Function *Callee = CB->getCalledFunction())
408           if (Callee->isDeclaration()) {
409             using namespace ore;
410 
411             setInlineRemark(*CB, "unavailable definition");
412             ORE.emit([&]() {
413               return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
414                      << NV("Callee", Callee) << " will not be inlined into "
415                      << NV("Caller", CB->getCaller())
416                      << " because its definition is unavailable"
417                      << setIsVerbose();
418             });
419             continue;
420           }
421 
422         CallSites.push_back(std::make_pair(CB, -1));
423       }
424   }
425 
426   LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
427 
428   // If there are no calls in this function, exit early.
429   if (CallSites.empty())
430     return false;
431 
432   // Now that we have all of the call sites, move the ones to functions in the
433   // current SCC to the end of the list.
434   unsigned FirstCallInSCC = CallSites.size();
435   for (unsigned I = 0; I < FirstCallInSCC; ++I)
436     if (Function *F = CallSites[I].first->getCalledFunction())
437       if (SCCFunctions.count(F))
438         std::swap(CallSites[I--], CallSites[--FirstCallInSCC]);
439 
440   InlinedArrayAllocasTy InlinedArrayAllocas;
441   InlineFunctionInfo InlineInfo(&CG, GetAssumptionCache, PSI);
442 
443   // Now that we have all of the call sites, loop over them and inline them if
444   // it looks profitable to do so.
445   bool Changed = false;
446   bool LocalChange;
447   do {
448     LocalChange = false;
449     // Iterate over the outer loop because inlining functions can cause indirect
450     // calls to become direct calls.
451     // CallSites may be modified inside so ranged for loop can not be used.
452     for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
453       auto &P = CallSites[CSi];
454       CallBase &CB = *P.first;
455       const int InlineHistoryID = P.second;
456 
457       Function *Caller = CB.getCaller();
458       Function *Callee = CB.getCalledFunction();
459 
460       // We can only inline direct calls to non-declarations.
461       if (!Callee || Callee->isDeclaration())
462         continue;
463 
464       bool IsTriviallyDead = isInstructionTriviallyDead(&CB, &GetTLI(*Caller));
465 
466       if (!IsTriviallyDead) {
467         // If this call site was obtained by inlining another function, verify
468         // that the include path for the function did not include the callee
469         // itself.  If so, we'd be recursively inlining the same function,
470         // which would provide the same callsites, which would cause us to
471         // infinitely inline.
472         if (InlineHistoryID != -1 &&
473             inlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) {
474           setInlineRemark(CB, "recursive");
475           continue;
476         }
477       }
478 
479       // FIXME for new PM: because of the old PM we currently generate ORE and
480       // in turn BFI on demand.  With the new PM, the ORE dependency should
481       // just become a regular analysis dependency.
482       OptimizationRemarkEmitter ORE(Caller);
483 
484       auto OIC = shouldInline(CB, GetInlineCost, ORE);
485       // If the policy determines that we should inline this function,
486       // delete the call instead.
487       if (!OIC)
488         continue;
489 
490       // If this call site is dead and it is to a readonly function, we should
491       // just delete the call instead of trying to inline it, regardless of
492       // size.  This happens because IPSCCP propagates the result out of the
493       // call and then we're left with the dead call.
494       if (IsTriviallyDead) {
495         LLVM_DEBUG(dbgs() << "    -> Deleting dead call: " << CB << "\n");
496         // Update the call graph by deleting the edge from Callee to Caller.
497         setInlineRemark(CB, "trivially dead");
498         CG[Caller]->removeCallEdgeFor(CB);
499         CB.eraseFromParent();
500         ++NumCallsDeleted;
501       } else {
502         // Get DebugLoc to report. CB will be invalid after Inliner.
503         DebugLoc DLoc = CB.getDebugLoc();
504         BasicBlock *Block = CB.getParent();
505 
506         // Attempt to inline the function.
507         using namespace ore;
508 
509         InlineResult IR = inlineCallIfPossible(
510             CB, InlineInfo, InlinedArrayAllocas, InlineHistoryID,
511             InsertLifetime, AARGetter, ImportedFunctionsStats);
512         if (!IR.isSuccess()) {
513           setInlineRemark(CB, std::string(IR.getFailureReason()) + "; " +
514                                   inlineCostStr(*OIC));
515           ORE.emit([&]() {
516             return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc,
517                                             Block)
518                    << NV("Callee", Callee) << " will not be inlined into "
519                    << NV("Caller", Caller) << ": "
520                    << NV("Reason", IR.getFailureReason());
521           });
522           continue;
523         }
524         ++NumInlined;
525 
526         emitInlinedIntoBasedOnCost(ORE, DLoc, Block, *Callee, *Caller, *OIC);
527 
528         // If inlining this function gave us any new call sites, throw them
529         // onto our worklist to process.  They are useful inline candidates.
530         if (!InlineInfo.InlinedCalls.empty()) {
531           // Create a new inline history entry for this, so that we remember
532           // that these new callsites came about due to inlining Callee.
533           int NewHistoryID = InlineHistory.size();
534           InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
535 
536 #ifndef NDEBUG
537           // Make sure no dupplicates in the inline candidates. This could
538           // happen when a callsite is simpilfied to reusing the return value
539           // of another callsite during function cloning, thus the other
540           // callsite will be reconsidered here.
541           DenseSet<CallBase *> DbgCallSites;
542           for (auto &II : CallSites)
543             DbgCallSites.insert(II.first);
544 #endif
545 
546           for (Value *Ptr : InlineInfo.InlinedCalls) {
547 #ifndef NDEBUG
548             assert(DbgCallSites.count(dyn_cast<CallBase>(Ptr)) == 0);
549 #endif
550             CallSites.push_back(
551                 std::make_pair(dyn_cast<CallBase>(Ptr), NewHistoryID));
552           }
553         }
554       }
555 
556       // If we inlined or deleted the last possible call site to the function,
557       // delete the function body now.
558       if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
559           // TODO: Can remove if in SCC now.
560           !SCCFunctions.count(Callee) &&
561           // The function may be apparently dead, but if there are indirect
562           // callgraph references to the node, we cannot delete it yet, this
563           // could invalidate the CGSCC iterator.
564           CG[Callee]->getNumReferences() == 0) {
565         LLVM_DEBUG(dbgs() << "    -> Deleting dead function: "
566                           << Callee->getName() << "\n");
567         CallGraphNode *CalleeNode = CG[Callee];
568 
569         // Remove any call graph edges from the callee to its callees.
570         CalleeNode->removeAllCalledFunctions();
571 
572         // Removing the node for callee from the call graph and delete it.
573         delete CG.removeFunctionFromModule(CalleeNode);
574         ++NumDeleted;
575       }
576 
577       // Remove this call site from the list.  If possible, use
578       // swap/pop_back for efficiency, but do not use it if doing so would
579       // move a call site to a function in this SCC before the
580       // 'FirstCallInSCC' barrier.
581       if (SCC.isSingular()) {
582         CallSites[CSi] = CallSites.back();
583         CallSites.pop_back();
584       } else {
585         CallSites.erase(CallSites.begin() + CSi);
586       }
587       --CSi;
588 
589       Changed = true;
590       LocalChange = true;
591     }
592   } while (LocalChange);
593 
594   return Changed;
595 }
596 
597 bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) {
598   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
599   ACT = &getAnalysis<AssumptionCacheTracker>();
600   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
601   GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
602     return getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
603   };
604   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
605     return ACT->getAssumptionCache(F);
606   };
607   return inlineCallsImpl(
608       SCC, CG, GetAssumptionCache, PSI, GetTLI, InsertLifetime,
609       [&](CallBase &CB) { return getInlineCost(CB); }, LegacyAARGetter(*this),
610       ImportedFunctionsStats);
611 }
612 
613 /// Remove now-dead linkonce functions at the end of
614 /// processing to avoid breaking the SCC traversal.
615 bool LegacyInlinerBase::doFinalization(CallGraph &CG) {
616   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
617     ImportedFunctionsStats.dump(InlinerFunctionImportStats ==
618                                 InlinerFunctionImportStatsOpts::Verbose);
619   return removeDeadFunctions(CG);
620 }
621 
622 /// Remove dead functions that are not included in DNR (Do Not Remove) list.
623 bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG,
624                                             bool AlwaysInlineOnly) {
625   SmallVector<CallGraphNode *, 16> FunctionsToRemove;
626   SmallVector<Function *, 16> DeadFunctionsInComdats;
627 
628   auto RemoveCGN = [&](CallGraphNode *CGN) {
629     // Remove any call graph edges from the function to its callees.
630     CGN->removeAllCalledFunctions();
631 
632     // Remove any edges from the external node to the function's call graph
633     // node.  These edges might have been made irrelegant due to
634     // optimization of the program.
635     CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
636 
637     // Removing the node for callee from the call graph and delete it.
638     FunctionsToRemove.push_back(CGN);
639   };
640 
641   // Scan for all of the functions, looking for ones that should now be removed
642   // from the program.  Insert the dead ones in the FunctionsToRemove set.
643   for (const auto &I : CG) {
644     CallGraphNode *CGN = I.second.get();
645     Function *F = CGN->getFunction();
646     if (!F || F->isDeclaration())
647       continue;
648 
649     // Handle the case when this function is called and we only want to care
650     // about always-inline functions. This is a bit of a hack to share code
651     // between here and the InlineAlways pass.
652     if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline))
653       continue;
654 
655     // If the only remaining users of the function are dead constants, remove
656     // them.
657     F->removeDeadConstantUsers();
658 
659     if (!F->isDefTriviallyDead())
660       continue;
661 
662     // It is unsafe to drop a function with discardable linkage from a COMDAT
663     // without also dropping the other members of the COMDAT.
664     // The inliner doesn't visit non-function entities which are in COMDAT
665     // groups so it is unsafe to do so *unless* the linkage is local.
666     if (!F->hasLocalLinkage()) {
667       if (F->hasComdat()) {
668         DeadFunctionsInComdats.push_back(F);
669         continue;
670       }
671     }
672 
673     RemoveCGN(CGN);
674   }
675   if (!DeadFunctionsInComdats.empty()) {
676     // Filter out the functions whose comdats remain alive.
677     filterDeadComdatFunctions(DeadFunctionsInComdats);
678     // Remove the rest.
679     for (Function *F : DeadFunctionsInComdats)
680       RemoveCGN(CG[F]);
681   }
682 
683   if (FunctionsToRemove.empty())
684     return false;
685 
686   // Now that we know which functions to delete, do so.  We didn't want to do
687   // this inline, because that would invalidate our CallGraph::iterator
688   // objects. :(
689   //
690   // Note that it doesn't matter that we are iterating over a non-stable order
691   // here to do this, it doesn't matter which order the functions are deleted
692   // in.
693   array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
694   FunctionsToRemove.erase(
695       std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()),
696       FunctionsToRemove.end());
697   for (CallGraphNode *CGN : FunctionsToRemove) {
698     delete CG.removeFunctionFromModule(CGN);
699     ++NumDeleted;
700   }
701   return true;
702 }
703 
704 InlineAdvisor &
705 InlinerPass::getAdvisor(const ModuleAnalysisManagerCGSCCProxy::Result &MAM,
706                         FunctionAnalysisManager &FAM, Module &M) {
707   if (OwnedAdvisor)
708     return *OwnedAdvisor;
709 
710   auto *IAA = MAM.getCachedResult<InlineAdvisorAnalysis>(M);
711   if (!IAA) {
712     // It should still be possible to run the inliner as a stand-alone SCC pass,
713     // for test scenarios. In that case, we default to the
714     // DefaultInlineAdvisor, which doesn't need to keep state between SCC pass
715     // runs. It also uses just the default InlineParams.
716     // In this case, we need to use the provided FAM, which is valid for the
717     // duration of the inliner pass, and thus the lifetime of the owned advisor.
718     // The one we would get from the MAM can be invalidated as a result of the
719     // inliner's activity.
720     OwnedAdvisor = std::make_unique<DefaultInlineAdvisor>(
721         M, FAM, getInlineParams(),
722         InlineContext{LTOPhase, InlinePass::CGSCCInliner});
723 
724     if (!CGSCCInlineReplayFile.empty())
725       OwnedAdvisor = getReplayInlineAdvisor(
726           M, FAM, M.getContext(), std::move(OwnedAdvisor),
727           ReplayInlinerSettings{CGSCCInlineReplayFile,
728                                 CGSCCInlineReplayScope,
729                                 CGSCCInlineReplayFallback,
730                                 {CGSCCInlineReplayFormat}},
731           /*EmitRemarks=*/true,
732           InlineContext{LTOPhase,
733                               InlinePass::ReplayCGSCCInliner});
734 
735     return *OwnedAdvisor;
736   }
737   assert(IAA->getAdvisor() &&
738          "Expected a present InlineAdvisorAnalysis also have an "
739          "InlineAdvisor initialized");
740   return *IAA->getAdvisor();
741 }
742 
743 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC,
744                                    CGSCCAnalysisManager &AM, LazyCallGraph &CG,
745                                    CGSCCUpdateResult &UR) {
746   const auto &MAMProxy =
747       AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG);
748   bool Changed = false;
749 
750   assert(InitialC.size() > 0 && "Cannot handle an empty SCC!");
751   Module &M = *InitialC.begin()->getFunction().getParent();
752   ProfileSummaryInfo *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(M);
753 
754   FunctionAnalysisManager &FAM =
755       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG)
756           .getManager();
757 
758   InlineAdvisor &Advisor = getAdvisor(MAMProxy, FAM, M);
759   Advisor.onPassEntry(&InitialC);
760 
761   auto AdvisorOnExit = make_scope_exit([&] { Advisor.onPassExit(&InitialC); });
762 
763   // We use a single common worklist for calls across the entire SCC. We
764   // process these in-order and append new calls introduced during inlining to
765   // the end. The PriorityInlineOrder is optional here, in which the smaller
766   // callee would have a higher priority to inline.
767   //
768   // Note that this particular order of processing is actually critical to
769   // avoid very bad behaviors. Consider *highly connected* call graphs where
770   // each function contains a small amount of code and a couple of calls to
771   // other functions. Because the LLVM inliner is fundamentally a bottom-up
772   // inliner, it can handle gracefully the fact that these all appear to be
773   // reasonable inlining candidates as it will flatten things until they become
774   // too big to inline, and then move on and flatten another batch.
775   //
776   // However, when processing call edges *within* an SCC we cannot rely on this
777   // bottom-up behavior. As a consequence, with heavily connected *SCCs* of
778   // functions we can end up incrementally inlining N calls into each of
779   // N functions because each incremental inlining decision looks good and we
780   // don't have a topological ordering to prevent explosions.
781   //
782   // To compensate for this, we don't process transitive edges made immediate
783   // by inlining until we've done one pass of inlining across the entire SCC.
784   // Large, highly connected SCCs still lead to some amount of code bloat in
785   // this model, but it is uniformly spread across all the functions in the SCC
786   // and eventually they all become too large to inline, rather than
787   // incrementally maknig a single function grow in a super linear fashion.
788   SmallVector<std::pair<CallBase *, int>, 16> Calls;
789 
790   // Populate the initial list of calls in this SCC.
791   for (auto &N : InitialC) {
792     auto &ORE =
793         FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction());
794     // We want to generally process call sites top-down in order for
795     // simplifications stemming from replacing the call with the returned value
796     // after inlining to be visible to subsequent inlining decisions.
797     // FIXME: Using instructions sequence is a really bad way to do this.
798     // Instead we should do an actual RPO walk of the function body.
799     for (Instruction &I : instructions(N.getFunction()))
800       if (auto *CB = dyn_cast<CallBase>(&I))
801         if (Function *Callee = CB->getCalledFunction()) {
802           if (!Callee->isDeclaration())
803             Calls.push_back({CB, -1});
804           else if (!isa<IntrinsicInst>(I)) {
805             using namespace ore;
806             setInlineRemark(*CB, "unavailable definition");
807             ORE.emit([&]() {
808               return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
809                      << NV("Callee", Callee) << " will not be inlined into "
810                      << NV("Caller", CB->getCaller())
811                      << " because its definition is unavailable"
812                      << setIsVerbose();
813             });
814           }
815         }
816   }
817   if (Calls.empty())
818     return PreservedAnalyses::all();
819 
820   // Capture updatable variable for the current SCC.
821   auto *C = &InitialC;
822 
823   // When inlining a callee produces new call sites, we want to keep track of
824   // the fact that they were inlined from the callee.  This allows us to avoid
825   // infinite inlining in some obscure cases.  To represent this, we use an
826   // index into the InlineHistory vector.
827   SmallVector<std::pair<Function *, int>, 16> InlineHistory;
828 
829   // Track a set vector of inlined callees so that we can augment the caller
830   // with all of their edges in the call graph before pruning out the ones that
831   // got simplified away.
832   SmallSetVector<Function *, 4> InlinedCallees;
833 
834   // Track the dead functions to delete once finished with inlining calls. We
835   // defer deleting these to make it easier to handle the call graph updates.
836   SmallVector<Function *, 4> DeadFunctions;
837 
838   // Track potentially dead non-local functions with comdats to see if they can
839   // be deleted as a batch after inlining.
840   SmallVector<Function *, 4> DeadFunctionsInComdats;
841 
842   // Loop forward over all of the calls. Note that we cannot cache the size as
843   // inlining can introduce new calls that need to be processed.
844   for (int I = 0; I < (int)Calls.size(); ++I) {
845     // We expect the calls to typically be batched with sequences of calls that
846     // have the same caller, so we first set up some shared infrastructure for
847     // this caller. We also do any pruning we can at this layer on the caller
848     // alone.
849     Function &F = *Calls[I].first->getCaller();
850     LazyCallGraph::Node &N = *CG.lookup(F);
851     if (CG.lookupSCC(N) != C)
852       continue;
853 
854     LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n"
855                       << "    Function size: " << F.getInstructionCount()
856                       << "\n");
857 
858     auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
859       return FAM.getResult<AssumptionAnalysis>(F);
860     };
861 
862     // Now process as many calls as we have within this caller in the sequence.
863     // We bail out as soon as the caller has to change so we can update the
864     // call graph and prepare the context of that new caller.
865     bool DidInline = false;
866     for (; I < (int)Calls.size() && Calls[I].first->getCaller() == &F; ++I) {
867       auto &P = Calls[I];
868       CallBase *CB = P.first;
869       const int InlineHistoryID = P.second;
870       Function &Callee = *CB->getCalledFunction();
871 
872       if (InlineHistoryID != -1 &&
873           inlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) {
874         LLVM_DEBUG(dbgs() << "Skipping inlining due to history: "
875                           << F.getName() << " -> " << Callee.getName() << "\n");
876         setInlineRemark(*CB, "recursive");
877         continue;
878       }
879 
880       // Check if this inlining may repeat breaking an SCC apart that has
881       // already been split once before. In that case, inlining here may
882       // trigger infinite inlining, much like is prevented within the inliner
883       // itself by the InlineHistory above, but spread across CGSCC iterations
884       // and thus hidden from the full inline history.
885       LazyCallGraph::SCC *CalleeSCC = CG.lookupSCC(*CG.lookup(Callee));
886       if (CalleeSCC == C && UR.InlinedInternalEdges.count({&N, C})) {
887         LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node "
888                              "previously split out of this SCC by inlining: "
889                           << F.getName() << " -> " << Callee.getName() << "\n");
890         setInlineRemark(*CB, "recursive SCC split");
891         continue;
892       }
893 
894       std::unique_ptr<InlineAdvice> Advice =
895           Advisor.getAdvice(*CB, OnlyMandatory);
896 
897       // Check whether we want to inline this callsite.
898       if (!Advice)
899         continue;
900 
901       if (!Advice->isInliningRecommended()) {
902         Advice->recordUnattemptedInlining();
903         continue;
904       }
905 
906       int CBCostMult =
907           getStringFnAttrAsInt(
908               *CB, InlineConstants::FunctionInlineCostMultiplierAttributeName)
909               .value_or(1);
910 
911       // Setup the data structure used to plumb customization into the
912       // `InlineFunction` routine.
913       InlineFunctionInfo IFI(
914           /*cg=*/nullptr, GetAssumptionCache, PSI,
915           &FAM.getResult<BlockFrequencyAnalysis>(*(CB->getCaller())),
916           &FAM.getResult<BlockFrequencyAnalysis>(Callee));
917 
918       InlineResult IR =
919           InlineFunction(*CB, IFI, /*MergeAttributes=*/true,
920                          &FAM.getResult<AAManager>(*CB->getCaller()));
921       if (!IR.isSuccess()) {
922         Advice->recordUnsuccessfulInlining(IR);
923         continue;
924       }
925 
926       DidInline = true;
927       InlinedCallees.insert(&Callee);
928       ++NumInlined;
929 
930       LLVM_DEBUG(dbgs() << "    Size after inlining: "
931                         << F.getInstructionCount() << "\n");
932 
933       // Add any new callsites to defined functions to the worklist.
934       if (!IFI.InlinedCallSites.empty()) {
935         int NewHistoryID = InlineHistory.size();
936         InlineHistory.push_back({&Callee, InlineHistoryID});
937 
938         for (CallBase *ICB : reverse(IFI.InlinedCallSites)) {
939           Function *NewCallee = ICB->getCalledFunction();
940           assert(!(NewCallee && NewCallee->isIntrinsic()) &&
941                  "Intrinsic calls should not be tracked.");
942           if (!NewCallee) {
943             // Try to promote an indirect (virtual) call without waiting for
944             // the post-inline cleanup and the next DevirtSCCRepeatedPass
945             // iteration because the next iteration may not happen and we may
946             // miss inlining it.
947             if (tryPromoteCall(*ICB))
948               NewCallee = ICB->getCalledFunction();
949           }
950           if (NewCallee) {
951             if (!NewCallee->isDeclaration()) {
952               Calls.push_back({ICB, NewHistoryID});
953               // Continually inlining through an SCC can result in huge compile
954               // times and bloated code since we arbitrarily stop at some point
955               // when the inliner decides it's not profitable to inline anymore.
956               // We attempt to mitigate this by making these calls exponentially
957               // more expensive.
958               // This doesn't apply to calls in the same SCC since if we do
959               // inline through the SCC the function will end up being
960               // self-recursive which the inliner bails out on, and inlining
961               // within an SCC is necessary for performance.
962               if (CalleeSCC != C &&
963                   CalleeSCC == CG.lookupSCC(CG.get(*NewCallee))) {
964                 Attribute NewCBCostMult = Attribute::get(
965                     M.getContext(),
966                     InlineConstants::FunctionInlineCostMultiplierAttributeName,
967                     itostr(CBCostMult * IntraSCCCostMultiplier));
968                 ICB->addFnAttr(NewCBCostMult);
969               }
970             }
971           }
972         }
973       }
974 
975       // For local functions or discardable functions without comdats, check
976       // whether this makes the callee trivially dead. In that case, we can drop
977       // the body of the function eagerly which may reduce the number of callers
978       // of other functions to one, changing inline cost thresholds. Non-local
979       // discardable functions with comdats are checked later on.
980       bool CalleeWasDeleted = false;
981       if (Callee.isDiscardableIfUnused() && Callee.hasZeroLiveUses() &&
982           !CG.isLibFunction(Callee)) {
983         if (Callee.hasLocalLinkage() || !Callee.hasComdat()) {
984           Calls.erase(
985               std::remove_if(Calls.begin() + I + 1, Calls.end(),
986                              [&](const std::pair<CallBase *, int> &Call) {
987                                return Call.first->getCaller() == &Callee;
988                              }),
989               Calls.end());
990 
991           // Clear the body and queue the function itself for deletion when we
992           // finish inlining and call graph updates.
993           // Note that after this point, it is an error to do anything other
994           // than use the callee's address or delete it.
995           Callee.dropAllReferences();
996           assert(!is_contained(DeadFunctions, &Callee) &&
997                  "Cannot put cause a function to become dead twice!");
998           DeadFunctions.push_back(&Callee);
999           CalleeWasDeleted = true;
1000         } else {
1001           DeadFunctionsInComdats.push_back(&Callee);
1002         }
1003       }
1004       if (CalleeWasDeleted)
1005         Advice->recordInliningWithCalleeDeleted();
1006       else
1007         Advice->recordInlining();
1008     }
1009 
1010     // Back the call index up by one to put us in a good position to go around
1011     // the outer loop.
1012     --I;
1013 
1014     if (!DidInline)
1015       continue;
1016     Changed = true;
1017 
1018     // At this point, since we have made changes we have at least removed
1019     // a call instruction. However, in the process we do some incremental
1020     // simplification of the surrounding code. This simplification can
1021     // essentially do all of the same things as a function pass and we can
1022     // re-use the exact same logic for updating the call graph to reflect the
1023     // change.
1024 
1025     // Inside the update, we also update the FunctionAnalysisManager in the
1026     // proxy for this particular SCC. We do this as the SCC may have changed and
1027     // as we're going to mutate this particular function we want to make sure
1028     // the proxy is in place to forward any invalidation events.
1029     LazyCallGraph::SCC *OldC = C;
1030     C = &updateCGAndAnalysisManagerForCGSCCPass(CG, *C, N, AM, UR, FAM);
1031     LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n");
1032 
1033     // If this causes an SCC to split apart into multiple smaller SCCs, there
1034     // is a subtle risk we need to prepare for. Other transformations may
1035     // expose an "infinite inlining" opportunity later, and because of the SCC
1036     // mutation, we will revisit this function and potentially re-inline. If we
1037     // do, and that re-inlining also has the potentially to mutate the SCC
1038     // structure, the infinite inlining problem can manifest through infinite
1039     // SCC splits and merges. To avoid this, we capture the originating caller
1040     // node and the SCC containing the call edge. This is a slight over
1041     // approximation of the possible inlining decisions that must be avoided,
1042     // but is relatively efficient to store. We use C != OldC to know when
1043     // a new SCC is generated and the original SCC may be generated via merge
1044     // in later iterations.
1045     //
1046     // It is also possible that even if no new SCC is generated
1047     // (i.e., C == OldC), the original SCC could be split and then merged
1048     // into the same one as itself. and the original SCC will be added into
1049     // UR.CWorklist again, we want to catch such cases too.
1050     //
1051     // FIXME: This seems like a very heavyweight way of retaining the inline
1052     // history, we should look for a more efficient way of tracking it.
1053     if ((C != OldC || UR.CWorklist.count(OldC)) &&
1054         llvm::any_of(InlinedCallees, [&](Function *Callee) {
1055           return CG.lookupSCC(*CG.lookup(*Callee)) == OldC;
1056         })) {
1057       LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, "
1058                            "retaining this to avoid infinite inlining.\n");
1059       UR.InlinedInternalEdges.insert({&N, OldC});
1060     }
1061     InlinedCallees.clear();
1062 
1063     // Invalidate analyses for this function now so that we don't have to
1064     // invalidate analyses for all functions in this SCC later.
1065     FAM.invalidate(F, PreservedAnalyses::none());
1066   }
1067 
1068   // We must ensure that we only delete functions with comdats if every function
1069   // in the comdat is going to be deleted.
1070   if (!DeadFunctionsInComdats.empty()) {
1071     filterDeadComdatFunctions(DeadFunctionsInComdats);
1072     for (auto *Callee : DeadFunctionsInComdats)
1073       Callee->dropAllReferences();
1074     DeadFunctions.append(DeadFunctionsInComdats);
1075   }
1076 
1077   // Now that we've finished inlining all of the calls across this SCC, delete
1078   // all of the trivially dead functions, updating the call graph and the CGSCC
1079   // pass manager in the process.
1080   //
1081   // Note that this walks a pointer set which has non-deterministic order but
1082   // that is OK as all we do is delete things and add pointers to unordered
1083   // sets.
1084   for (Function *DeadF : DeadFunctions) {
1085     // Get the necessary information out of the call graph and nuke the
1086     // function there. Also, clear out any cached analyses.
1087     auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF));
1088     FAM.clear(*DeadF, DeadF->getName());
1089     AM.clear(DeadC, DeadC.getName());
1090     auto &DeadRC = DeadC.getOuterRefSCC();
1091     CG.removeDeadFunction(*DeadF);
1092 
1093     // Mark the relevant parts of the call graph as invalid so we don't visit
1094     // them.
1095     UR.InvalidatedSCCs.insert(&DeadC);
1096     UR.InvalidatedRefSCCs.insert(&DeadRC);
1097 
1098     // If the updated SCC was the one containing the deleted function, clear it.
1099     if (&DeadC == UR.UpdatedC)
1100       UR.UpdatedC = nullptr;
1101 
1102     // And delete the actual function from the module.
1103     M.getFunctionList().erase(DeadF);
1104 
1105     ++NumDeleted;
1106   }
1107 
1108   if (!Changed)
1109     return PreservedAnalyses::all();
1110 
1111   PreservedAnalyses PA;
1112   // Even if we change the IR, we update the core CGSCC data structures and so
1113   // can preserve the proxy to the function analysis manager.
1114   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1115   // We have already invalidated all analyses on modified functions.
1116   PA.preserveSet<AllAnalysesOn<Function>>();
1117   return PA;
1118 }
1119 
1120 ModuleInlinerWrapperPass::ModuleInlinerWrapperPass(InlineParams Params,
1121                                                    bool MandatoryFirst,
1122                                                    InlineContext IC,
1123                                                    InliningAdvisorMode Mode,
1124                                                    unsigned MaxDevirtIterations)
1125     : Params(Params), IC(IC), Mode(Mode),
1126       MaxDevirtIterations(MaxDevirtIterations) {
1127   // Run the inliner first. The theory is that we are walking bottom-up and so
1128   // the callees have already been fully optimized, and we want to inline them
1129   // into the callers so that our optimizations can reflect that.
1130   // For PreLinkThinLTO pass, we disable hot-caller heuristic for sample PGO
1131   // because it makes profile annotation in the backend inaccurate.
1132   if (MandatoryFirst) {
1133     PM.addPass(InlinerPass(/*OnlyMandatory*/ true));
1134     if (EnablePostSCCAdvisorPrinting)
1135       PM.addPass(InlineAdvisorAnalysisPrinterPass(dbgs()));
1136   }
1137   PM.addPass(InlinerPass());
1138   if (EnablePostSCCAdvisorPrinting)
1139     PM.addPass(InlineAdvisorAnalysisPrinterPass(dbgs()));
1140 }
1141 
1142 PreservedAnalyses ModuleInlinerWrapperPass::run(Module &M,
1143                                                 ModuleAnalysisManager &MAM) {
1144   auto &IAA = MAM.getResult<InlineAdvisorAnalysis>(M);
1145   if (!IAA.tryCreate(Params, Mode,
1146                      {CGSCCInlineReplayFile,
1147                       CGSCCInlineReplayScope,
1148                       CGSCCInlineReplayFallback,
1149                       {CGSCCInlineReplayFormat}},
1150                      IC)) {
1151     M.getContext().emitError(
1152         "Could not setup Inlining Advisor for the requested "
1153         "mode and/or options");
1154     return PreservedAnalyses::all();
1155   }
1156 
1157   // We wrap the CGSCC pipeline in a devirtualization repeater. This will try
1158   // to detect when we devirtualize indirect calls and iterate the SCC passes
1159   // in that case to try and catch knock-on inlining or function attrs
1160   // opportunities. Then we add it to the module pipeline by walking the SCCs
1161   // in postorder (or bottom-up).
1162   // If MaxDevirtIterations is 0, we just don't use the devirtualization
1163   // wrapper.
1164   if (MaxDevirtIterations == 0)
1165     MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(PM)));
1166   else
1167     MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
1168         createDevirtSCCRepeatedPass(std::move(PM), MaxDevirtIterations)));
1169 
1170   MPM.addPass(std::move(AfterCGMPM));
1171   MPM.run(M, MAM);
1172 
1173   // Discard the InlineAdvisor, a subsequent inlining session should construct
1174   // its own.
1175   auto PA = PreservedAnalyses::all();
1176   if (!KeepAdvisorForPrinting)
1177     PA.abandon<InlineAdvisorAnalysis>();
1178   return PA;
1179 }
1180 
1181 void InlinerPass::printPipeline(
1182     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
1183   static_cast<PassInfoMixin<InlinerPass> *>(this)->printPipeline(
1184       OS, MapClassName2PassName);
1185   if (OnlyMandatory)
1186     OS << "<only-mandatory>";
1187 }
1188 
1189 void ModuleInlinerWrapperPass::printPipeline(
1190     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
1191   // Print some info about passes added to the wrapper. This is however
1192   // incomplete as InlineAdvisorAnalysis part isn't included (which also depends
1193   // on Params and Mode).
1194   if (!MPM.isEmpty()) {
1195     MPM.printPipeline(OS, MapClassName2PassName);
1196     OS << ",";
1197   }
1198   OS << "cgscc(";
1199   if (MaxDevirtIterations != 0)
1200     OS << "devirt<" << MaxDevirtIterations << ">(";
1201   PM.printPipeline(OS, MapClassName2PassName);
1202   if (MaxDevirtIterations != 0)
1203     OS << ")";
1204   OS << ")";
1205 }
1206