1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // OpenMP specific optimizations:
10 //
11 // - Deduplication of runtime calls, e.g., omp_get_thread_num.
12 // - Replacing globalized device memory with stack memory.
13 // - Replacing globalized device memory with shared memory.
14 // - Parallel region merging.
15 // - Transforming generic-mode device kernels to SPMD mode.
16 // - Specializing the state machine for generic-mode device kernels.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Transforms/IPO/OpenMPOpt.h"
21 
22 #include "llvm/ADT/EnumeratedArray.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/Analysis/CallGraph.h"
31 #include "llvm/Analysis/CallGraphSCCPass.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/Frontend/OpenMP/OMPConstants.h"
36 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
37 #include "llvm/IR/Assumptions.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DiagnosticInfo.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/IntrinsicsAMDGPU.h"
49 #include "llvm/IR/IntrinsicsNVPTX.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Transforms/IPO/Attributor.h"
55 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
56 #include "llvm/Transforms/Utils/CallGraphUpdater.h"
57 
58 #include <algorithm>
59 #include <optional>
60 #include <string>
61 
62 using namespace llvm;
63 using namespace omp;
64 
65 #define DEBUG_TYPE "openmp-opt"
66 
67 static cl::opt<bool> DisableOpenMPOptimizations(
68     "openmp-opt-disable", cl::desc("Disable OpenMP specific optimizations."),
69     cl::Hidden, cl::init(false));
70 
71 static cl::opt<bool> EnableParallelRegionMerging(
72     "openmp-opt-enable-merging",
73     cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden,
74     cl::init(false));
75 
76 static cl::opt<bool>
77     DisableInternalization("openmp-opt-disable-internalization",
78                            cl::desc("Disable function internalization."),
79                            cl::Hidden, cl::init(false));
80 
81 static cl::opt<bool> DeduceICVValues("openmp-deduce-icv-values",
82                                      cl::init(false), cl::Hidden);
83 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false),
84                                     cl::Hidden);
85 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels",
86                                         cl::init(false), cl::Hidden);
87 
88 static cl::opt<bool> HideMemoryTransferLatency(
89     "openmp-hide-memory-transfer-latency",
90     cl::desc("[WIP] Tries to hide the latency of host to device memory"
91              " transfers"),
92     cl::Hidden, cl::init(false));
93 
94 static cl::opt<bool> DisableOpenMPOptDeglobalization(
95     "openmp-opt-disable-deglobalization",
96     cl::desc("Disable OpenMP optimizations involving deglobalization."),
97     cl::Hidden, cl::init(false));
98 
99 static cl::opt<bool> DisableOpenMPOptSPMDization(
100     "openmp-opt-disable-spmdization",
101     cl::desc("Disable OpenMP optimizations involving SPMD-ization."),
102     cl::Hidden, cl::init(false));
103 
104 static cl::opt<bool> DisableOpenMPOptFolding(
105     "openmp-opt-disable-folding",
106     cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden,
107     cl::init(false));
108 
109 static cl::opt<bool> DisableOpenMPOptStateMachineRewrite(
110     "openmp-opt-disable-state-machine-rewrite",
111     cl::desc("Disable OpenMP optimizations that replace the state machine."),
112     cl::Hidden, cl::init(false));
113 
114 static cl::opt<bool> DisableOpenMPOptBarrierElimination(
115     "openmp-opt-disable-barrier-elimination",
116     cl::desc("Disable OpenMP optimizations that eliminate barriers."),
117     cl::Hidden, cl::init(false));
118 
119 static cl::opt<bool> PrintModuleAfterOptimizations(
120     "openmp-opt-print-module-after",
121     cl::desc("Print the current module after OpenMP optimizations."),
122     cl::Hidden, cl::init(false));
123 
124 static cl::opt<bool> PrintModuleBeforeOptimizations(
125     "openmp-opt-print-module-before",
126     cl::desc("Print the current module before OpenMP optimizations."),
127     cl::Hidden, cl::init(false));
128 
129 static cl::opt<bool> AlwaysInlineDeviceFunctions(
130     "openmp-opt-inline-device",
131     cl::desc("Inline all applicible functions on the device."), cl::Hidden,
132     cl::init(false));
133 
134 static cl::opt<bool>
135     EnableVerboseRemarks("openmp-opt-verbose-remarks",
136                          cl::desc("Enables more verbose remarks."), cl::Hidden,
137                          cl::init(false));
138 
139 static cl::opt<unsigned>
140     SetFixpointIterations("openmp-opt-max-iterations", cl::Hidden,
141                           cl::desc("Maximal number of attributor iterations."),
142                           cl::init(256));
143 
144 static cl::opt<unsigned>
145     SharedMemoryLimit("openmp-opt-shared-limit", cl::Hidden,
146                       cl::desc("Maximum amount of shared memory to use."),
147                       cl::init(std::numeric_limits<unsigned>::max()));
148 
149 STATISTIC(NumOpenMPRuntimeCallsDeduplicated,
150           "Number of OpenMP runtime calls deduplicated");
151 STATISTIC(NumOpenMPParallelRegionsDeleted,
152           "Number of OpenMP parallel regions deleted");
153 STATISTIC(NumOpenMPRuntimeFunctionsIdentified,
154           "Number of OpenMP runtime functions identified");
155 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified,
156           "Number of OpenMP runtime function uses identified");
157 STATISTIC(NumOpenMPTargetRegionKernels,
158           "Number of OpenMP target region entry points (=kernels) identified");
159 STATISTIC(NumOpenMPTargetRegionKernelsSPMD,
160           "Number of OpenMP target region entry points (=kernels) executed in "
161           "SPMD-mode instead of generic-mode");
162 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine,
163           "Number of OpenMP target region entry points (=kernels) executed in "
164           "generic-mode without a state machines");
165 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback,
166           "Number of OpenMP target region entry points (=kernels) executed in "
167           "generic-mode with customized state machines with fallback");
168 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback,
169           "Number of OpenMP target region entry points (=kernels) executed in "
170           "generic-mode with customized state machines without fallback");
171 STATISTIC(
172     NumOpenMPParallelRegionsReplacedInGPUStateMachine,
173     "Number of OpenMP parallel regions replaced with ID in GPU state machines");
174 STATISTIC(NumOpenMPParallelRegionsMerged,
175           "Number of OpenMP parallel regions merged");
176 STATISTIC(NumBytesMovedToSharedMemory,
177           "Amount of memory pushed to shared memory");
178 STATISTIC(NumBarriersEliminated, "Number of redundant barriers eliminated");
179 
180 #if !defined(NDEBUG)
181 static constexpr auto TAG = "[" DEBUG_TYPE "]";
182 #endif
183 
184 namespace {
185 
186 struct AAHeapToShared;
187 
188 struct AAICVTracker;
189 
190 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for
191 /// Attributor runs.
192 struct OMPInformationCache : public InformationCache {
193   OMPInformationCache(Module &M, AnalysisGetter &AG,
194                       BumpPtrAllocator &Allocator, SetVector<Function *> *CGSCC,
195                       bool OpenMPPostLink)
196       : InformationCache(M, AG, Allocator, CGSCC), OMPBuilder(M),
197         OpenMPPostLink(OpenMPPostLink) {
198 
199     OMPBuilder.initialize();
200     initializeRuntimeFunctions(M);
201     initializeInternalControlVars();
202   }
203 
204   /// Generic information that describes an internal control variable.
205   struct InternalControlVarInfo {
206     /// The kind, as described by InternalControlVar enum.
207     InternalControlVar Kind;
208 
209     /// The name of the ICV.
210     StringRef Name;
211 
212     /// Environment variable associated with this ICV.
213     StringRef EnvVarName;
214 
215     /// Initial value kind.
216     ICVInitValue InitKind;
217 
218     /// Initial value.
219     ConstantInt *InitValue;
220 
221     /// Setter RTL function associated with this ICV.
222     RuntimeFunction Setter;
223 
224     /// Getter RTL function associated with this ICV.
225     RuntimeFunction Getter;
226 
227     /// RTL Function corresponding to the override clause of this ICV
228     RuntimeFunction Clause;
229   };
230 
231   /// Generic information that describes a runtime function
232   struct RuntimeFunctionInfo {
233 
234     /// The kind, as described by the RuntimeFunction enum.
235     RuntimeFunction Kind;
236 
237     /// The name of the function.
238     StringRef Name;
239 
240     /// Flag to indicate a variadic function.
241     bool IsVarArg;
242 
243     /// The return type of the function.
244     Type *ReturnType;
245 
246     /// The argument types of the function.
247     SmallVector<Type *, 8> ArgumentTypes;
248 
249     /// The declaration if available.
250     Function *Declaration = nullptr;
251 
252     /// Uses of this runtime function per function containing the use.
253     using UseVector = SmallVector<Use *, 16>;
254 
255     /// Clear UsesMap for runtime function.
256     void clearUsesMap() { UsesMap.clear(); }
257 
258     /// Boolean conversion that is true if the runtime function was found.
259     operator bool() const { return Declaration; }
260 
261     /// Return the vector of uses in function \p F.
262     UseVector &getOrCreateUseVector(Function *F) {
263       std::shared_ptr<UseVector> &UV = UsesMap[F];
264       if (!UV)
265         UV = std::make_shared<UseVector>();
266       return *UV;
267     }
268 
269     /// Return the vector of uses in function \p F or `nullptr` if there are
270     /// none.
271     const UseVector *getUseVector(Function &F) const {
272       auto I = UsesMap.find(&F);
273       if (I != UsesMap.end())
274         return I->second.get();
275       return nullptr;
276     }
277 
278     /// Return how many functions contain uses of this runtime function.
279     size_t getNumFunctionsWithUses() const { return UsesMap.size(); }
280 
281     /// Return the number of arguments (or the minimal number for variadic
282     /// functions).
283     size_t getNumArgs() const { return ArgumentTypes.size(); }
284 
285     /// Run the callback \p CB on each use and forget the use if the result is
286     /// true. The callback will be fed the function in which the use was
287     /// encountered as second argument.
288     void foreachUse(SmallVectorImpl<Function *> &SCC,
289                     function_ref<bool(Use &, Function &)> CB) {
290       for (Function *F : SCC)
291         foreachUse(CB, F);
292     }
293 
294     /// Run the callback \p CB on each use within the function \p F and forget
295     /// the use if the result is true.
296     void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) {
297       SmallVector<unsigned, 8> ToBeDeleted;
298       ToBeDeleted.clear();
299 
300       unsigned Idx = 0;
301       UseVector &UV = getOrCreateUseVector(F);
302 
303       for (Use *U : UV) {
304         if (CB(*U, *F))
305           ToBeDeleted.push_back(Idx);
306         ++Idx;
307       }
308 
309       // Remove the to-be-deleted indices in reverse order as prior
310       // modifications will not modify the smaller indices.
311       while (!ToBeDeleted.empty()) {
312         unsigned Idx = ToBeDeleted.pop_back_val();
313         UV[Idx] = UV.back();
314         UV.pop_back();
315       }
316     }
317 
318   private:
319     /// Map from functions to all uses of this runtime function contained in
320     /// them.
321     DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap;
322 
323   public:
324     /// Iterators for the uses of this runtime function.
325     decltype(UsesMap)::iterator begin() { return UsesMap.begin(); }
326     decltype(UsesMap)::iterator end() { return UsesMap.end(); }
327   };
328 
329   /// An OpenMP-IR-Builder instance
330   OpenMPIRBuilder OMPBuilder;
331 
332   /// Map from runtime function kind to the runtime function description.
333   EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction,
334                   RuntimeFunction::OMPRTL___last>
335       RFIs;
336 
337   /// Map from function declarations/definitions to their runtime enum type.
338   DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap;
339 
340   /// Map from ICV kind to the ICV description.
341   EnumeratedArray<InternalControlVarInfo, InternalControlVar,
342                   InternalControlVar::ICV___last>
343       ICVs;
344 
345   /// Helper to initialize all internal control variable information for those
346   /// defined in OMPKinds.def.
347   void initializeInternalControlVars() {
348 #define ICV_RT_SET(_Name, RTL)                                                 \
349   {                                                                            \
350     auto &ICV = ICVs[_Name];                                                   \
351     ICV.Setter = RTL;                                                          \
352   }
353 #define ICV_RT_GET(Name, RTL)                                                  \
354   {                                                                            \
355     auto &ICV = ICVs[Name];                                                    \
356     ICV.Getter = RTL;                                                          \
357   }
358 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init)                           \
359   {                                                                            \
360     auto &ICV = ICVs[Enum];                                                    \
361     ICV.Name = _Name;                                                          \
362     ICV.Kind = Enum;                                                           \
363     ICV.InitKind = Init;                                                       \
364     ICV.EnvVarName = _EnvVarName;                                              \
365     switch (ICV.InitKind) {                                                    \
366     case ICV_IMPLEMENTATION_DEFINED:                                           \
367       ICV.InitValue = nullptr;                                                 \
368       break;                                                                   \
369     case ICV_ZERO:                                                             \
370       ICV.InitValue = ConstantInt::get(                                        \
371           Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0);                \
372       break;                                                                   \
373     case ICV_FALSE:                                                            \
374       ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext());    \
375       break;                                                                   \
376     case ICV_LAST:                                                             \
377       break;                                                                   \
378     }                                                                          \
379   }
380 #include "llvm/Frontend/OpenMP/OMPKinds.def"
381   }
382 
383   /// Returns true if the function declaration \p F matches the runtime
384   /// function types, that is, return type \p RTFRetType, and argument types
385   /// \p RTFArgTypes.
386   static bool declMatchesRTFTypes(Function *F, Type *RTFRetType,
387                                   SmallVector<Type *, 8> &RTFArgTypes) {
388     // TODO: We should output information to the user (under debug output
389     //       and via remarks).
390 
391     if (!F)
392       return false;
393     if (F->getReturnType() != RTFRetType)
394       return false;
395     if (F->arg_size() != RTFArgTypes.size())
396       return false;
397 
398     auto *RTFTyIt = RTFArgTypes.begin();
399     for (Argument &Arg : F->args()) {
400       if (Arg.getType() != *RTFTyIt)
401         return false;
402 
403       ++RTFTyIt;
404     }
405 
406     return true;
407   }
408 
409   // Helper to collect all uses of the declaration in the UsesMap.
410   unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) {
411     unsigned NumUses = 0;
412     if (!RFI.Declaration)
413       return NumUses;
414     OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration);
415 
416     if (CollectStats) {
417       NumOpenMPRuntimeFunctionsIdentified += 1;
418       NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses();
419     }
420 
421     // TODO: We directly convert uses into proper calls and unknown uses.
422     for (Use &U : RFI.Declaration->uses()) {
423       if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) {
424         if (!CGSCC || CGSCC->empty() || CGSCC->contains(UserI->getFunction())) {
425           RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U);
426           ++NumUses;
427         }
428       } else {
429         RFI.getOrCreateUseVector(nullptr).push_back(&U);
430         ++NumUses;
431       }
432     }
433     return NumUses;
434   }
435 
436   // Helper function to recollect uses of a runtime function.
437   void recollectUsesForFunction(RuntimeFunction RTF) {
438     auto &RFI = RFIs[RTF];
439     RFI.clearUsesMap();
440     collectUses(RFI, /*CollectStats*/ false);
441   }
442 
443   // Helper function to recollect uses of all runtime functions.
444   void recollectUses() {
445     for (int Idx = 0; Idx < RFIs.size(); ++Idx)
446       recollectUsesForFunction(static_cast<RuntimeFunction>(Idx));
447   }
448 
449   // Helper function to inherit the calling convention of the function callee.
450   void setCallingConvention(FunctionCallee Callee, CallInst *CI) {
451     if (Function *Fn = dyn_cast<Function>(Callee.getCallee()))
452       CI->setCallingConv(Fn->getCallingConv());
453   }
454 
455   // Helper function to determine if it's legal to create a call to the runtime
456   // functions.
457   bool runtimeFnsAvailable(ArrayRef<RuntimeFunction> Fns) {
458     // We can always emit calls if we haven't yet linked in the runtime.
459     if (!OpenMPPostLink)
460       return true;
461 
462     // Once the runtime has been already been linked in we cannot emit calls to
463     // any undefined functions.
464     for (RuntimeFunction Fn : Fns) {
465       RuntimeFunctionInfo &RFI = RFIs[Fn];
466 
467       if (RFI.Declaration && RFI.Declaration->isDeclaration())
468         return false;
469     }
470     return true;
471   }
472 
473   /// Helper to initialize all runtime function information for those defined
474   /// in OpenMPKinds.def.
475   void initializeRuntimeFunctions(Module &M) {
476 
477     // Helper macros for handling __VA_ARGS__ in OMP_RTL
478 #define OMP_TYPE(VarName, ...)                                                 \
479   Type *VarName = OMPBuilder.VarName;                                          \
480   (void)VarName;
481 
482 #define OMP_ARRAY_TYPE(VarName, ...)                                           \
483   ArrayType *VarName##Ty = OMPBuilder.VarName##Ty;                             \
484   (void)VarName##Ty;                                                           \
485   PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy;                     \
486   (void)VarName##PtrTy;
487 
488 #define OMP_FUNCTION_TYPE(VarName, ...)                                        \
489   FunctionType *VarName = OMPBuilder.VarName;                                  \
490   (void)VarName;                                                               \
491   PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr;                         \
492   (void)VarName##Ptr;
493 
494 #define OMP_STRUCT_TYPE(VarName, ...)                                          \
495   StructType *VarName = OMPBuilder.VarName;                                    \
496   (void)VarName;                                                               \
497   PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr;                         \
498   (void)VarName##Ptr;
499 
500 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...)                     \
501   {                                                                            \
502     SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__});                           \
503     Function *F = M.getFunction(_Name);                                        \
504     RTLFunctions.insert(F);                                                    \
505     if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) {           \
506       RuntimeFunctionIDMap[F] = _Enum;                                         \
507       auto &RFI = RFIs[_Enum];                                                 \
508       RFI.Kind = _Enum;                                                        \
509       RFI.Name = _Name;                                                        \
510       RFI.IsVarArg = _IsVarArg;                                                \
511       RFI.ReturnType = OMPBuilder._ReturnType;                                 \
512       RFI.ArgumentTypes = std::move(ArgsTypes);                                \
513       RFI.Declaration = F;                                                     \
514       unsigned NumUses = collectUses(RFI);                                     \
515       (void)NumUses;                                                           \
516       LLVM_DEBUG({                                                             \
517         dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not")           \
518                << " found\n";                                                  \
519         if (RFI.Declaration)                                                   \
520           dbgs() << TAG << "-> got " << NumUses << " uses in "                 \
521                  << RFI.getNumFunctionsWithUses()                              \
522                  << " different functions.\n";                                 \
523       });                                                                      \
524     }                                                                          \
525   }
526 #include "llvm/Frontend/OpenMP/OMPKinds.def"
527 
528     // Remove the `noinline` attribute from `__kmpc`, `ompx::` and `omp_`
529     // functions, except if `optnone` is present.
530     if (isOpenMPDevice(M)) {
531       for (Function &F : M) {
532         for (StringRef Prefix : {"__kmpc", "_ZN4ompx", "omp_"})
533           if (F.hasFnAttribute(Attribute::NoInline) &&
534               F.getName().startswith(Prefix) &&
535               !F.hasFnAttribute(Attribute::OptimizeNone))
536             F.removeFnAttr(Attribute::NoInline);
537       }
538     }
539 
540     // TODO: We should attach the attributes defined in OMPKinds.def.
541   }
542 
543   /// Collection of known OpenMP runtime functions..
544   DenseSet<const Function *> RTLFunctions;
545 
546   /// Indicates if we have already linked in the OpenMP device library.
547   bool OpenMPPostLink = false;
548 };
549 
550 template <typename Ty, bool InsertInvalidates = true>
551 struct BooleanStateWithSetVector : public BooleanState {
552   bool contains(const Ty &Elem) const { return Set.contains(Elem); }
553   bool insert(const Ty &Elem) {
554     if (InsertInvalidates)
555       BooleanState::indicatePessimisticFixpoint();
556     return Set.insert(Elem);
557   }
558 
559   const Ty &operator[](int Idx) const { return Set[Idx]; }
560   bool operator==(const BooleanStateWithSetVector &RHS) const {
561     return BooleanState::operator==(RHS) && Set == RHS.Set;
562   }
563   bool operator!=(const BooleanStateWithSetVector &RHS) const {
564     return !(*this == RHS);
565   }
566 
567   bool empty() const { return Set.empty(); }
568   size_t size() const { return Set.size(); }
569 
570   /// "Clamp" this state with \p RHS.
571   BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) {
572     BooleanState::operator^=(RHS);
573     Set.insert(RHS.Set.begin(), RHS.Set.end());
574     return *this;
575   }
576 
577 private:
578   /// A set to keep track of elements.
579   SetVector<Ty> Set;
580 
581 public:
582   typename decltype(Set)::iterator begin() { return Set.begin(); }
583   typename decltype(Set)::iterator end() { return Set.end(); }
584   typename decltype(Set)::const_iterator begin() const { return Set.begin(); }
585   typename decltype(Set)::const_iterator end() const { return Set.end(); }
586 };
587 
588 template <typename Ty, bool InsertInvalidates = true>
589 using BooleanStateWithPtrSetVector =
590     BooleanStateWithSetVector<Ty *, InsertInvalidates>;
591 
592 struct KernelInfoState : AbstractState {
593   /// Flag to track if we reached a fixpoint.
594   bool IsAtFixpoint = false;
595 
596   /// The parallel regions (identified by the outlined parallel functions) that
597   /// can be reached from the associated function.
598   BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false>
599       ReachedKnownParallelRegions;
600 
601   /// State to track what parallel region we might reach.
602   BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions;
603 
604   /// State to track if we are in SPMD-mode, assumed or know, and why we decided
605   /// we cannot be. If it is assumed, then RequiresFullRuntime should also be
606   /// false.
607   BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker;
608 
609   /// The __kmpc_target_init call in this kernel, if any. If we find more than
610   /// one we abort as the kernel is malformed.
611   CallBase *KernelInitCB = nullptr;
612 
613   /// The __kmpc_target_deinit call in this kernel, if any. If we find more than
614   /// one we abort as the kernel is malformed.
615   CallBase *KernelDeinitCB = nullptr;
616 
617   /// Flag to indicate if the associated function is a kernel entry.
618   bool IsKernelEntry = false;
619 
620   /// State to track what kernel entries can reach the associated function.
621   BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries;
622 
623   /// State to indicate if we can track parallel level of the associated
624   /// function. We will give up tracking if we encounter unknown caller or the
625   /// caller is __kmpc_parallel_51.
626   BooleanStateWithSetVector<uint8_t> ParallelLevels;
627 
628   /// Flag that indicates if the kernel has nested Parallelism
629   bool NestedParallelism = false;
630 
631   /// Abstract State interface
632   ///{
633 
634   KernelInfoState() = default;
635   KernelInfoState(bool BestState) {
636     if (!BestState)
637       indicatePessimisticFixpoint();
638   }
639 
640   /// See AbstractState::isValidState(...)
641   bool isValidState() const override { return true; }
642 
643   /// See AbstractState::isAtFixpoint(...)
644   bool isAtFixpoint() const override { return IsAtFixpoint; }
645 
646   /// See AbstractState::indicatePessimisticFixpoint(...)
647   ChangeStatus indicatePessimisticFixpoint() override {
648     IsAtFixpoint = true;
649     ParallelLevels.indicatePessimisticFixpoint();
650     ReachingKernelEntries.indicatePessimisticFixpoint();
651     SPMDCompatibilityTracker.indicatePessimisticFixpoint();
652     ReachedKnownParallelRegions.indicatePessimisticFixpoint();
653     ReachedUnknownParallelRegions.indicatePessimisticFixpoint();
654     return ChangeStatus::CHANGED;
655   }
656 
657   /// See AbstractState::indicateOptimisticFixpoint(...)
658   ChangeStatus indicateOptimisticFixpoint() override {
659     IsAtFixpoint = true;
660     ParallelLevels.indicateOptimisticFixpoint();
661     ReachingKernelEntries.indicateOptimisticFixpoint();
662     SPMDCompatibilityTracker.indicateOptimisticFixpoint();
663     ReachedKnownParallelRegions.indicateOptimisticFixpoint();
664     ReachedUnknownParallelRegions.indicateOptimisticFixpoint();
665     return ChangeStatus::UNCHANGED;
666   }
667 
668   /// Return the assumed state
669   KernelInfoState &getAssumed() { return *this; }
670   const KernelInfoState &getAssumed() const { return *this; }
671 
672   bool operator==(const KernelInfoState &RHS) const {
673     if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker)
674       return false;
675     if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions)
676       return false;
677     if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions)
678       return false;
679     if (ReachingKernelEntries != RHS.ReachingKernelEntries)
680       return false;
681     if (ParallelLevels != RHS.ParallelLevels)
682       return false;
683     return true;
684   }
685 
686   /// Returns true if this kernel contains any OpenMP parallel regions.
687   bool mayContainParallelRegion() {
688     return !ReachedKnownParallelRegions.empty() ||
689            !ReachedUnknownParallelRegions.empty();
690   }
691 
692   /// Return empty set as the best state of potential values.
693   static KernelInfoState getBestState() { return KernelInfoState(true); }
694 
695   static KernelInfoState getBestState(KernelInfoState &KIS) {
696     return getBestState();
697   }
698 
699   /// Return full set as the worst state of potential values.
700   static KernelInfoState getWorstState() { return KernelInfoState(false); }
701 
702   /// "Clamp" this state with \p KIS.
703   KernelInfoState operator^=(const KernelInfoState &KIS) {
704     // Do not merge two different _init and _deinit call sites.
705     if (KIS.KernelInitCB) {
706       if (KernelInitCB && KernelInitCB != KIS.KernelInitCB)
707         llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt "
708                          "assumptions.");
709       KernelInitCB = KIS.KernelInitCB;
710     }
711     if (KIS.KernelDeinitCB) {
712       if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB)
713         llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt "
714                          "assumptions.");
715       KernelDeinitCB = KIS.KernelDeinitCB;
716     }
717     SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker;
718     ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions;
719     ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions;
720     NestedParallelism |= KIS.NestedParallelism;
721     return *this;
722   }
723 
724   KernelInfoState operator&=(const KernelInfoState &KIS) {
725     return (*this ^= KIS);
726   }
727 
728   ///}
729 };
730 
731 /// Used to map the values physically (in the IR) stored in an offload
732 /// array, to a vector in memory.
733 struct OffloadArray {
734   /// Physical array (in the IR).
735   AllocaInst *Array = nullptr;
736   /// Mapped values.
737   SmallVector<Value *, 8> StoredValues;
738   /// Last stores made in the offload array.
739   SmallVector<StoreInst *, 8> LastAccesses;
740 
741   OffloadArray() = default;
742 
743   /// Initializes the OffloadArray with the values stored in \p Array before
744   /// instruction \p Before is reached. Returns false if the initialization
745   /// fails.
746   /// This MUST be used immediately after the construction of the object.
747   bool initialize(AllocaInst &Array, Instruction &Before) {
748     if (!Array.getAllocatedType()->isArrayTy())
749       return false;
750 
751     if (!getValues(Array, Before))
752       return false;
753 
754     this->Array = &Array;
755     return true;
756   }
757 
758   static const unsigned DeviceIDArgNum = 1;
759   static const unsigned BasePtrsArgNum = 3;
760   static const unsigned PtrsArgNum = 4;
761   static const unsigned SizesArgNum = 5;
762 
763 private:
764   /// Traverses the BasicBlock where \p Array is, collecting the stores made to
765   /// \p Array, leaving StoredValues with the values stored before the
766   /// instruction \p Before is reached.
767   bool getValues(AllocaInst &Array, Instruction &Before) {
768     // Initialize container.
769     const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements();
770     StoredValues.assign(NumValues, nullptr);
771     LastAccesses.assign(NumValues, nullptr);
772 
773     // TODO: This assumes the instruction \p Before is in the same
774     //  BasicBlock as Array. Make it general, for any control flow graph.
775     BasicBlock *BB = Array.getParent();
776     if (BB != Before.getParent())
777       return false;
778 
779     const DataLayout &DL = Array.getModule()->getDataLayout();
780     const unsigned int PointerSize = DL.getPointerSize();
781 
782     for (Instruction &I : *BB) {
783       if (&I == &Before)
784         break;
785 
786       if (!isa<StoreInst>(&I))
787         continue;
788 
789       auto *S = cast<StoreInst>(&I);
790       int64_t Offset = -1;
791       auto *Dst =
792           GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL);
793       if (Dst == &Array) {
794         int64_t Idx = Offset / PointerSize;
795         StoredValues[Idx] = getUnderlyingObject(S->getValueOperand());
796         LastAccesses[Idx] = S;
797       }
798     }
799 
800     return isFilled();
801   }
802 
803   /// Returns true if all values in StoredValues and
804   /// LastAccesses are not nullptrs.
805   bool isFilled() {
806     const unsigned NumValues = StoredValues.size();
807     for (unsigned I = 0; I < NumValues; ++I) {
808       if (!StoredValues[I] || !LastAccesses[I])
809         return false;
810     }
811 
812     return true;
813   }
814 };
815 
816 struct OpenMPOpt {
817 
818   using OptimizationRemarkGetter =
819       function_ref<OptimizationRemarkEmitter &(Function *)>;
820 
821   OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater,
822             OptimizationRemarkGetter OREGetter,
823             OMPInformationCache &OMPInfoCache, Attributor &A)
824       : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater),
825         OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {}
826 
827   /// Check if any remarks are enabled for openmp-opt
828   bool remarksEnabled() {
829     auto &Ctx = M.getContext();
830     return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE);
831   }
832 
833   /// Run all OpenMP optimizations on the underlying SCC.
834   bool run(bool IsModulePass) {
835     if (SCC.empty())
836       return false;
837 
838     bool Changed = false;
839 
840     LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size()
841                       << " functions\n");
842 
843     if (IsModulePass) {
844       Changed |= runAttributor(IsModulePass);
845 
846       // Recollect uses, in case Attributor deleted any.
847       OMPInfoCache.recollectUses();
848 
849       // TODO: This should be folded into buildCustomStateMachine.
850       Changed |= rewriteDeviceCodeStateMachine();
851 
852       if (remarksEnabled())
853         analysisGlobalization();
854     } else {
855       if (PrintICVValues)
856         printICVs();
857       if (PrintOpenMPKernels)
858         printKernels();
859 
860       Changed |= runAttributor(IsModulePass);
861 
862       // Recollect uses, in case Attributor deleted any.
863       OMPInfoCache.recollectUses();
864 
865       Changed |= deleteParallelRegions();
866 
867       if (HideMemoryTransferLatency)
868         Changed |= hideMemTransfersLatency();
869       Changed |= deduplicateRuntimeCalls();
870       if (EnableParallelRegionMerging) {
871         if (mergeParallelRegions()) {
872           deduplicateRuntimeCalls();
873           Changed = true;
874         }
875       }
876     }
877 
878     return Changed;
879   }
880 
881   /// Print initial ICV values for testing.
882   /// FIXME: This should be done from the Attributor once it is added.
883   void printICVs() const {
884     InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel,
885                                  ICV_proc_bind};
886 
887     for (Function *F : SCC) {
888       for (auto ICV : ICVs) {
889         auto ICVInfo = OMPInfoCache.ICVs[ICV];
890         auto Remark = [&](OptimizationRemarkAnalysis ORA) {
891           return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name)
892                      << " Value: "
893                      << (ICVInfo.InitValue
894                              ? toString(ICVInfo.InitValue->getValue(), 10, true)
895                              : "IMPLEMENTATION_DEFINED");
896         };
897 
898         emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark);
899       }
900     }
901   }
902 
903   /// Print OpenMP GPU kernels for testing.
904   void printKernels() const {
905     for (Function *F : SCC) {
906       if (!omp::isKernel(*F))
907         continue;
908 
909       auto Remark = [&](OptimizationRemarkAnalysis ORA) {
910         return ORA << "OpenMP GPU kernel "
911                    << ore::NV("OpenMPGPUKernel", F->getName()) << "\n";
912       };
913 
914       emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark);
915     }
916   }
917 
918   /// Return the call if \p U is a callee use in a regular call. If \p RFI is
919   /// given it has to be the callee or a nullptr is returned.
920   static CallInst *getCallIfRegularCall(
921       Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) {
922     CallInst *CI = dyn_cast<CallInst>(U.getUser());
923     if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() &&
924         (!RFI ||
925          (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration)))
926       return CI;
927     return nullptr;
928   }
929 
930   /// Return the call if \p V is a regular call. If \p RFI is given it has to be
931   /// the callee or a nullptr is returned.
932   static CallInst *getCallIfRegularCall(
933       Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) {
934     CallInst *CI = dyn_cast<CallInst>(&V);
935     if (CI && !CI->hasOperandBundles() &&
936         (!RFI ||
937          (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration)))
938       return CI;
939     return nullptr;
940   }
941 
942 private:
943   /// Merge parallel regions when it is safe.
944   bool mergeParallelRegions() {
945     const unsigned CallbackCalleeOperand = 2;
946     const unsigned CallbackFirstArgOperand = 3;
947     using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
948 
949     // Check if there are any __kmpc_fork_call calls to merge.
950     OMPInformationCache::RuntimeFunctionInfo &RFI =
951         OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call];
952 
953     if (!RFI.Declaration)
954       return false;
955 
956     // Unmergable calls that prevent merging a parallel region.
957     OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = {
958         OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind],
959         OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads],
960     };
961 
962     bool Changed = false;
963     LoopInfo *LI = nullptr;
964     DominatorTree *DT = nullptr;
965 
966     SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap;
967 
968     BasicBlock *StartBB = nullptr, *EndBB = nullptr;
969     auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {
970       BasicBlock *CGStartBB = CodeGenIP.getBlock();
971       BasicBlock *CGEndBB =
972           SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI);
973       assert(StartBB != nullptr && "StartBB should not be null");
974       CGStartBB->getTerminator()->setSuccessor(0, StartBB);
975       assert(EndBB != nullptr && "EndBB should not be null");
976       EndBB->getTerminator()->setSuccessor(0, CGEndBB);
977     };
978 
979     auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &,
980                       Value &Inner, Value *&ReplacementValue) -> InsertPointTy {
981       ReplacementValue = &Inner;
982       return CodeGenIP;
983     };
984 
985     auto FiniCB = [&](InsertPointTy CodeGenIP) {};
986 
987     /// Create a sequential execution region within a merged parallel region,
988     /// encapsulated in a master construct with a barrier for synchronization.
989     auto CreateSequentialRegion = [&](Function *OuterFn,
990                                       BasicBlock *OuterPredBB,
991                                       Instruction *SeqStartI,
992                                       Instruction *SeqEndI) {
993       // Isolate the instructions of the sequential region to a separate
994       // block.
995       BasicBlock *ParentBB = SeqStartI->getParent();
996       BasicBlock *SeqEndBB =
997           SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI);
998       BasicBlock *SeqAfterBB =
999           SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI);
1000       BasicBlock *SeqStartBB =
1001           SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged");
1002 
1003       assert(ParentBB->getUniqueSuccessor() == SeqStartBB &&
1004              "Expected a different CFG");
1005       const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc();
1006       ParentBB->getTerminator()->eraseFromParent();
1007 
1008       auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {
1009         BasicBlock *CGStartBB = CodeGenIP.getBlock();
1010         BasicBlock *CGEndBB =
1011             SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI);
1012         assert(SeqStartBB != nullptr && "SeqStartBB should not be null");
1013         CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB);
1014         assert(SeqEndBB != nullptr && "SeqEndBB should not be null");
1015         SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB);
1016       };
1017       auto FiniCB = [&](InsertPointTy CodeGenIP) {};
1018 
1019       // Find outputs from the sequential region to outside users and
1020       // broadcast their values to them.
1021       for (Instruction &I : *SeqStartBB) {
1022         SmallPtrSet<Instruction *, 4> OutsideUsers;
1023         for (User *Usr : I.users()) {
1024           Instruction &UsrI = *cast<Instruction>(Usr);
1025           // Ignore outputs to LT intrinsics, code extraction for the merged
1026           // parallel region will fix them.
1027           if (UsrI.isLifetimeStartOrEnd())
1028             continue;
1029 
1030           if (UsrI.getParent() != SeqStartBB)
1031             OutsideUsers.insert(&UsrI);
1032         }
1033 
1034         if (OutsideUsers.empty())
1035           continue;
1036 
1037         // Emit an alloca in the outer region to store the broadcasted
1038         // value.
1039         const DataLayout &DL = M.getDataLayout();
1040         AllocaInst *AllocaI = new AllocaInst(
1041             I.getType(), DL.getAllocaAddrSpace(), nullptr,
1042             I.getName() + ".seq.output.alloc", &OuterFn->front().front());
1043 
1044         // Emit a store instruction in the sequential BB to update the
1045         // value.
1046         new StoreInst(&I, AllocaI, SeqStartBB->getTerminator());
1047 
1048         // Emit a load instruction and replace the use of the output value
1049         // with it.
1050         for (Instruction *UsrI : OutsideUsers) {
1051           LoadInst *LoadI = new LoadInst(
1052               I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI);
1053           UsrI->replaceUsesOfWith(&I, LoadI);
1054         }
1055       }
1056 
1057       OpenMPIRBuilder::LocationDescription Loc(
1058           InsertPointTy(ParentBB, ParentBB->end()), DL);
1059       InsertPointTy SeqAfterIP =
1060           OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB);
1061 
1062       OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel);
1063 
1064       BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock());
1065 
1066       LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn
1067                         << "\n");
1068     };
1069 
1070     // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all
1071     // contained in BB and only separated by instructions that can be
1072     // redundantly executed in parallel. The block BB is split before the first
1073     // call (in MergableCIs) and after the last so the entire region we merge
1074     // into a single parallel region is contained in a single basic block
1075     // without any other instructions. We use the OpenMPIRBuilder to outline
1076     // that block and call the resulting function via __kmpc_fork_call.
1077     auto Merge = [&](const SmallVectorImpl<CallInst *> &MergableCIs,
1078                      BasicBlock *BB) {
1079       // TODO: Change the interface to allow single CIs expanded, e.g, to
1080       // include an outer loop.
1081       assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs");
1082 
1083       auto Remark = [&](OptimizationRemark OR) {
1084         OR << "Parallel region merged with parallel region"
1085            << (MergableCIs.size() > 2 ? "s" : "") << " at ";
1086         for (auto *CI : llvm::drop_begin(MergableCIs)) {
1087           OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc());
1088           if (CI != MergableCIs.back())
1089             OR << ", ";
1090         }
1091         return OR << ".";
1092       };
1093 
1094       emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark);
1095 
1096       Function *OriginalFn = BB->getParent();
1097       LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size()
1098                         << " parallel regions in " << OriginalFn->getName()
1099                         << "\n");
1100 
1101       // Isolate the calls to merge in a separate block.
1102       EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI);
1103       BasicBlock *AfterBB =
1104           SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI);
1105       StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr,
1106                            "omp.par.merged");
1107 
1108       assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG");
1109       const DebugLoc DL = BB->getTerminator()->getDebugLoc();
1110       BB->getTerminator()->eraseFromParent();
1111 
1112       // Create sequential regions for sequential instructions that are
1113       // in-between mergable parallel regions.
1114       for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1;
1115            It != End; ++It) {
1116         Instruction *ForkCI = *It;
1117         Instruction *NextForkCI = *(It + 1);
1118 
1119         // Continue if there are not in-between instructions.
1120         if (ForkCI->getNextNode() == NextForkCI)
1121           continue;
1122 
1123         CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(),
1124                                NextForkCI->getPrevNode());
1125       }
1126 
1127       OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()),
1128                                                DL);
1129       IRBuilder<>::InsertPoint AllocaIP(
1130           &OriginalFn->getEntryBlock(),
1131           OriginalFn->getEntryBlock().getFirstInsertionPt());
1132       // Create the merged parallel region with default proc binding, to
1133       // avoid overriding binding settings, and without explicit cancellation.
1134       InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel(
1135           Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr,
1136           OMP_PROC_BIND_default, /* IsCancellable */ false);
1137       BranchInst::Create(AfterBB, AfterIP.getBlock());
1138 
1139       // Perform the actual outlining.
1140       OMPInfoCache.OMPBuilder.finalize(OriginalFn);
1141 
1142       Function *OutlinedFn = MergableCIs.front()->getCaller();
1143 
1144       // Replace the __kmpc_fork_call calls with direct calls to the outlined
1145       // callbacks.
1146       SmallVector<Value *, 8> Args;
1147       for (auto *CI : MergableCIs) {
1148         Value *Callee = CI->getArgOperand(CallbackCalleeOperand);
1149         FunctionType *FT = OMPInfoCache.OMPBuilder.ParallelTask;
1150         Args.clear();
1151         Args.push_back(OutlinedFn->getArg(0));
1152         Args.push_back(OutlinedFn->getArg(1));
1153         for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E;
1154              ++U)
1155           Args.push_back(CI->getArgOperand(U));
1156 
1157         CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI);
1158         if (CI->getDebugLoc())
1159           NewCI->setDebugLoc(CI->getDebugLoc());
1160 
1161         // Forward parameter attributes from the callback to the callee.
1162         for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E;
1163              ++U)
1164           for (const Attribute &A : CI->getAttributes().getParamAttrs(U))
1165             NewCI->addParamAttr(
1166                 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A);
1167 
1168         // Emit an explicit barrier to replace the implicit fork-join barrier.
1169         if (CI != MergableCIs.back()) {
1170           // TODO: Remove barrier if the merged parallel region includes the
1171           // 'nowait' clause.
1172           OMPInfoCache.OMPBuilder.createBarrier(
1173               InsertPointTy(NewCI->getParent(),
1174                             NewCI->getNextNode()->getIterator()),
1175               OMPD_parallel);
1176         }
1177 
1178         CI->eraseFromParent();
1179       }
1180 
1181       assert(OutlinedFn != OriginalFn && "Outlining failed");
1182       CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn);
1183       CGUpdater.reanalyzeFunction(*OriginalFn);
1184 
1185       NumOpenMPParallelRegionsMerged += MergableCIs.size();
1186 
1187       return true;
1188     };
1189 
1190     // Helper function that identifes sequences of
1191     // __kmpc_fork_call uses in a basic block.
1192     auto DetectPRsCB = [&](Use &U, Function &F) {
1193       CallInst *CI = getCallIfRegularCall(U, &RFI);
1194       BB2PRMap[CI->getParent()].insert(CI);
1195 
1196       return false;
1197     };
1198 
1199     BB2PRMap.clear();
1200     RFI.foreachUse(SCC, DetectPRsCB);
1201     SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector;
1202     // Find mergable parallel regions within a basic block that are
1203     // safe to merge, that is any in-between instructions can safely
1204     // execute in parallel after merging.
1205     // TODO: support merging across basic-blocks.
1206     for (auto &It : BB2PRMap) {
1207       auto &CIs = It.getSecond();
1208       if (CIs.size() < 2)
1209         continue;
1210 
1211       BasicBlock *BB = It.getFirst();
1212       SmallVector<CallInst *, 4> MergableCIs;
1213 
1214       /// Returns true if the instruction is mergable, false otherwise.
1215       /// A terminator instruction is unmergable by definition since merging
1216       /// works within a BB. Instructions before the mergable region are
1217       /// mergable if they are not calls to OpenMP runtime functions that may
1218       /// set different execution parameters for subsequent parallel regions.
1219       /// Instructions in-between parallel regions are mergable if they are not
1220       /// calls to any non-intrinsic function since that may call a non-mergable
1221       /// OpenMP runtime function.
1222       auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) {
1223         // We do not merge across BBs, hence return false (unmergable) if the
1224         // instruction is a terminator.
1225         if (I.isTerminator())
1226           return false;
1227 
1228         if (!isa<CallInst>(&I))
1229           return true;
1230 
1231         CallInst *CI = cast<CallInst>(&I);
1232         if (IsBeforeMergableRegion) {
1233           Function *CalledFunction = CI->getCalledFunction();
1234           if (!CalledFunction)
1235             return false;
1236           // Return false (unmergable) if the call before the parallel
1237           // region calls an explicit affinity (proc_bind) or number of
1238           // threads (num_threads) compiler-generated function. Those settings
1239           // may be incompatible with following parallel regions.
1240           // TODO: ICV tracking to detect compatibility.
1241           for (const auto &RFI : UnmergableCallsInfo) {
1242             if (CalledFunction == RFI.Declaration)
1243               return false;
1244           }
1245         } else {
1246           // Return false (unmergable) if there is a call instruction
1247           // in-between parallel regions when it is not an intrinsic. It
1248           // may call an unmergable OpenMP runtime function in its callpath.
1249           // TODO: Keep track of possible OpenMP calls in the callpath.
1250           if (!isa<IntrinsicInst>(CI))
1251             return false;
1252         }
1253 
1254         return true;
1255       };
1256       // Find maximal number of parallel region CIs that are safe to merge.
1257       for (auto It = BB->begin(), End = BB->end(); It != End;) {
1258         Instruction &I = *It;
1259         ++It;
1260 
1261         if (CIs.count(&I)) {
1262           MergableCIs.push_back(cast<CallInst>(&I));
1263           continue;
1264         }
1265 
1266         // Continue expanding if the instruction is mergable.
1267         if (IsMergable(I, MergableCIs.empty()))
1268           continue;
1269 
1270         // Forward the instruction iterator to skip the next parallel region
1271         // since there is an unmergable instruction which can affect it.
1272         for (; It != End; ++It) {
1273           Instruction &SkipI = *It;
1274           if (CIs.count(&SkipI)) {
1275             LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI
1276                               << " due to " << I << "\n");
1277             ++It;
1278             break;
1279           }
1280         }
1281 
1282         // Store mergable regions found.
1283         if (MergableCIs.size() > 1) {
1284           MergableCIsVector.push_back(MergableCIs);
1285           LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size()
1286                             << " parallel regions in block " << BB->getName()
1287                             << " of function " << BB->getParent()->getName()
1288                             << "\n";);
1289         }
1290 
1291         MergableCIs.clear();
1292       }
1293 
1294       if (!MergableCIsVector.empty()) {
1295         Changed = true;
1296 
1297         for (auto &MergableCIs : MergableCIsVector)
1298           Merge(MergableCIs, BB);
1299         MergableCIsVector.clear();
1300       }
1301     }
1302 
1303     if (Changed) {
1304       /// Re-collect use for fork calls, emitted barrier calls, and
1305       /// any emitted master/end_master calls.
1306       OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call);
1307       OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier);
1308       OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master);
1309       OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master);
1310     }
1311 
1312     return Changed;
1313   }
1314 
1315   /// Try to delete parallel regions if possible.
1316   bool deleteParallelRegions() {
1317     const unsigned CallbackCalleeOperand = 2;
1318 
1319     OMPInformationCache::RuntimeFunctionInfo &RFI =
1320         OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call];
1321 
1322     if (!RFI.Declaration)
1323       return false;
1324 
1325     bool Changed = false;
1326     auto DeleteCallCB = [&](Use &U, Function &) {
1327       CallInst *CI = getCallIfRegularCall(U);
1328       if (!CI)
1329         return false;
1330       auto *Fn = dyn_cast<Function>(
1331           CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts());
1332       if (!Fn)
1333         return false;
1334       if (!Fn->onlyReadsMemory())
1335         return false;
1336       if (!Fn->hasFnAttribute(Attribute::WillReturn))
1337         return false;
1338 
1339       LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in "
1340                         << CI->getCaller()->getName() << "\n");
1341 
1342       auto Remark = [&](OptimizationRemark OR) {
1343         return OR << "Removing parallel region with no side-effects.";
1344       };
1345       emitRemark<OptimizationRemark>(CI, "OMP160", Remark);
1346 
1347       CGUpdater.removeCallSite(*CI);
1348       CI->eraseFromParent();
1349       Changed = true;
1350       ++NumOpenMPParallelRegionsDeleted;
1351       return true;
1352     };
1353 
1354     RFI.foreachUse(SCC, DeleteCallCB);
1355 
1356     return Changed;
1357   }
1358 
1359   /// Try to eliminate runtime calls by reusing existing ones.
1360   bool deduplicateRuntimeCalls() {
1361     bool Changed = false;
1362 
1363     RuntimeFunction DeduplicableRuntimeCallIDs[] = {
1364         OMPRTL_omp_get_num_threads,
1365         OMPRTL_omp_in_parallel,
1366         OMPRTL_omp_get_cancellation,
1367         OMPRTL_omp_get_thread_limit,
1368         OMPRTL_omp_get_supported_active_levels,
1369         OMPRTL_omp_get_level,
1370         OMPRTL_omp_get_ancestor_thread_num,
1371         OMPRTL_omp_get_team_size,
1372         OMPRTL_omp_get_active_level,
1373         OMPRTL_omp_in_final,
1374         OMPRTL_omp_get_proc_bind,
1375         OMPRTL_omp_get_num_places,
1376         OMPRTL_omp_get_num_procs,
1377         OMPRTL_omp_get_place_num,
1378         OMPRTL_omp_get_partition_num_places,
1379         OMPRTL_omp_get_partition_place_nums};
1380 
1381     // Global-tid is handled separately.
1382     SmallSetVector<Value *, 16> GTIdArgs;
1383     collectGlobalThreadIdArguments(GTIdArgs);
1384     LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size()
1385                       << " global thread ID arguments\n");
1386 
1387     for (Function *F : SCC) {
1388       for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs)
1389         Changed |= deduplicateRuntimeCalls(
1390             *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]);
1391 
1392       // __kmpc_global_thread_num is special as we can replace it with an
1393       // argument in enough cases to make it worth trying.
1394       Value *GTIdArg = nullptr;
1395       for (Argument &Arg : F->args())
1396         if (GTIdArgs.count(&Arg)) {
1397           GTIdArg = &Arg;
1398           break;
1399         }
1400       Changed |= deduplicateRuntimeCalls(
1401           *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg);
1402     }
1403 
1404     return Changed;
1405   }
1406 
1407   /// Tries to hide the latency of runtime calls that involve host to
1408   /// device memory transfers by splitting them into their "issue" and "wait"
1409   /// versions. The "issue" is moved upwards as much as possible. The "wait" is
1410   /// moved downards as much as possible. The "issue" issues the memory transfer
1411   /// asynchronously, returning a handle. The "wait" waits in the returned
1412   /// handle for the memory transfer to finish.
1413   bool hideMemTransfersLatency() {
1414     auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper];
1415     bool Changed = false;
1416     auto SplitMemTransfers = [&](Use &U, Function &Decl) {
1417       auto *RTCall = getCallIfRegularCall(U, &RFI);
1418       if (!RTCall)
1419         return false;
1420 
1421       OffloadArray OffloadArrays[3];
1422       if (!getValuesInOffloadArrays(*RTCall, OffloadArrays))
1423         return false;
1424 
1425       LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays));
1426 
1427       // TODO: Check if can be moved upwards.
1428       bool WasSplit = false;
1429       Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall);
1430       if (WaitMovementPoint)
1431         WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint);
1432 
1433       Changed |= WasSplit;
1434       return WasSplit;
1435     };
1436     if (OMPInfoCache.runtimeFnsAvailable(
1437             {OMPRTL___tgt_target_data_begin_mapper_issue,
1438              OMPRTL___tgt_target_data_begin_mapper_wait}))
1439       RFI.foreachUse(SCC, SplitMemTransfers);
1440 
1441     return Changed;
1442   }
1443 
1444   void analysisGlobalization() {
1445     auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
1446 
1447     auto CheckGlobalization = [&](Use &U, Function &Decl) {
1448       if (CallInst *CI = getCallIfRegularCall(U, &RFI)) {
1449         auto Remark = [&](OptimizationRemarkMissed ORM) {
1450           return ORM
1451                  << "Found thread data sharing on the GPU. "
1452                  << "Expect degraded performance due to data globalization.";
1453         };
1454         emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark);
1455       }
1456 
1457       return false;
1458     };
1459 
1460     RFI.foreachUse(SCC, CheckGlobalization);
1461   }
1462 
1463   /// Maps the values stored in the offload arrays passed as arguments to
1464   /// \p RuntimeCall into the offload arrays in \p OAs.
1465   bool getValuesInOffloadArrays(CallInst &RuntimeCall,
1466                                 MutableArrayRef<OffloadArray> OAs) {
1467     assert(OAs.size() == 3 && "Need space for three offload arrays!");
1468 
1469     // A runtime call that involves memory offloading looks something like:
1470     // call void @__tgt_target_data_begin_mapper(arg0, arg1,
1471     //   i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes,
1472     // ...)
1473     // So, the idea is to access the allocas that allocate space for these
1474     // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes.
1475     // Therefore:
1476     // i8** %offload_baseptrs.
1477     Value *BasePtrsArg =
1478         RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum);
1479     // i8** %offload_ptrs.
1480     Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum);
1481     // i8** %offload_sizes.
1482     Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum);
1483 
1484     // Get values stored in **offload_baseptrs.
1485     auto *V = getUnderlyingObject(BasePtrsArg);
1486     if (!isa<AllocaInst>(V))
1487       return false;
1488     auto *BasePtrsArray = cast<AllocaInst>(V);
1489     if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall))
1490       return false;
1491 
1492     // Get values stored in **offload_baseptrs.
1493     V = getUnderlyingObject(PtrsArg);
1494     if (!isa<AllocaInst>(V))
1495       return false;
1496     auto *PtrsArray = cast<AllocaInst>(V);
1497     if (!OAs[1].initialize(*PtrsArray, RuntimeCall))
1498       return false;
1499 
1500     // Get values stored in **offload_sizes.
1501     V = getUnderlyingObject(SizesArg);
1502     // If it's a [constant] global array don't analyze it.
1503     if (isa<GlobalValue>(V))
1504       return isa<Constant>(V);
1505     if (!isa<AllocaInst>(V))
1506       return false;
1507 
1508     auto *SizesArray = cast<AllocaInst>(V);
1509     if (!OAs[2].initialize(*SizesArray, RuntimeCall))
1510       return false;
1511 
1512     return true;
1513   }
1514 
1515   /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG.
1516   /// For now this is a way to test that the function getValuesInOffloadArrays
1517   /// is working properly.
1518   /// TODO: Move this to a unittest when unittests are available for OpenMPOpt.
1519   void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) {
1520     assert(OAs.size() == 3 && "There are three offload arrays to debug!");
1521 
1522     LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n");
1523     std::string ValuesStr;
1524     raw_string_ostream Printer(ValuesStr);
1525     std::string Separator = " --- ";
1526 
1527     for (auto *BP : OAs[0].StoredValues) {
1528       BP->print(Printer);
1529       Printer << Separator;
1530     }
1531     LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n");
1532     ValuesStr.clear();
1533 
1534     for (auto *P : OAs[1].StoredValues) {
1535       P->print(Printer);
1536       Printer << Separator;
1537     }
1538     LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n");
1539     ValuesStr.clear();
1540 
1541     for (auto *S : OAs[2].StoredValues) {
1542       S->print(Printer);
1543       Printer << Separator;
1544     }
1545     LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n");
1546   }
1547 
1548   /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be
1549   /// moved. Returns nullptr if the movement is not possible, or not worth it.
1550   Instruction *canBeMovedDownwards(CallInst &RuntimeCall) {
1551     // FIXME: This traverses only the BasicBlock where RuntimeCall is.
1552     //  Make it traverse the CFG.
1553 
1554     Instruction *CurrentI = &RuntimeCall;
1555     bool IsWorthIt = false;
1556     while ((CurrentI = CurrentI->getNextNode())) {
1557 
1558       // TODO: Once we detect the regions to be offloaded we should use the
1559       //  alias analysis manager to check if CurrentI may modify one of
1560       //  the offloaded regions.
1561       if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) {
1562         if (IsWorthIt)
1563           return CurrentI;
1564 
1565         return nullptr;
1566       }
1567 
1568       // FIXME: For now if we move it over anything without side effect
1569       //  is worth it.
1570       IsWorthIt = true;
1571     }
1572 
1573     // Return end of BasicBlock.
1574     return RuntimeCall.getParent()->getTerminator();
1575   }
1576 
1577   /// Splits \p RuntimeCall into its "issue" and "wait" counterparts.
1578   bool splitTargetDataBeginRTC(CallInst &RuntimeCall,
1579                                Instruction &WaitMovementPoint) {
1580     // Create stack allocated handle (__tgt_async_info) at the beginning of the
1581     // function. Used for storing information of the async transfer, allowing to
1582     // wait on it later.
1583     auto &IRBuilder = OMPInfoCache.OMPBuilder;
1584     Function *F = RuntimeCall.getCaller();
1585     BasicBlock &Entry = F->getEntryBlock();
1586     IRBuilder.Builder.SetInsertPoint(&Entry,
1587                                      Entry.getFirstNonPHIOrDbgOrAlloca());
1588     Value *Handle = IRBuilder.Builder.CreateAlloca(
1589         IRBuilder.AsyncInfo, /*ArraySize=*/nullptr, "handle");
1590     Handle =
1591         IRBuilder.Builder.CreateAddrSpaceCast(Handle, IRBuilder.AsyncInfoPtr);
1592 
1593     // Add "issue" runtime call declaration:
1594     // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32,
1595     //   i8**, i8**, i64*, i64*)
1596     FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction(
1597         M, OMPRTL___tgt_target_data_begin_mapper_issue);
1598 
1599     // Change RuntimeCall call site for its asynchronous version.
1600     SmallVector<Value *, 16> Args;
1601     for (auto &Arg : RuntimeCall.args())
1602       Args.push_back(Arg.get());
1603     Args.push_back(Handle);
1604 
1605     CallInst *IssueCallsite =
1606         CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall);
1607     OMPInfoCache.setCallingConvention(IssueDecl, IssueCallsite);
1608     RuntimeCall.eraseFromParent();
1609 
1610     // Add "wait" runtime call declaration:
1611     // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info)
1612     FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction(
1613         M, OMPRTL___tgt_target_data_begin_mapper_wait);
1614 
1615     Value *WaitParams[2] = {
1616         IssueCallsite->getArgOperand(
1617             OffloadArray::DeviceIDArgNum), // device_id.
1618         Handle                             // handle to wait on.
1619     };
1620     CallInst *WaitCallsite = CallInst::Create(
1621         WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint);
1622     OMPInfoCache.setCallingConvention(WaitDecl, WaitCallsite);
1623 
1624     return true;
1625   }
1626 
1627   static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent,
1628                                     bool GlobalOnly, bool &SingleChoice) {
1629     if (CurrentIdent == NextIdent)
1630       return CurrentIdent;
1631 
1632     // TODO: Figure out how to actually combine multiple debug locations. For
1633     //       now we just keep an existing one if there is a single choice.
1634     if (!GlobalOnly || isa<GlobalValue>(NextIdent)) {
1635       SingleChoice = !CurrentIdent;
1636       return NextIdent;
1637     }
1638     return nullptr;
1639   }
1640 
1641   /// Return an `struct ident_t*` value that represents the ones used in the
1642   /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not
1643   /// return a local `struct ident_t*`. For now, if we cannot find a suitable
1644   /// return value we create one from scratch. We also do not yet combine
1645   /// information, e.g., the source locations, see combinedIdentStruct.
1646   Value *
1647   getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI,
1648                                  Function &F, bool GlobalOnly) {
1649     bool SingleChoice = true;
1650     Value *Ident = nullptr;
1651     auto CombineIdentStruct = [&](Use &U, Function &Caller) {
1652       CallInst *CI = getCallIfRegularCall(U, &RFI);
1653       if (!CI || &F != &Caller)
1654         return false;
1655       Ident = combinedIdentStruct(Ident, CI->getArgOperand(0),
1656                                   /* GlobalOnly */ true, SingleChoice);
1657       return false;
1658     };
1659     RFI.foreachUse(SCC, CombineIdentStruct);
1660 
1661     if (!Ident || !SingleChoice) {
1662       // The IRBuilder uses the insertion block to get to the module, this is
1663       // unfortunate but we work around it for now.
1664       if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock())
1665         OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy(
1666             &F.getEntryBlock(), F.getEntryBlock().begin()));
1667       // Create a fallback location if non was found.
1668       // TODO: Use the debug locations of the calls instead.
1669       uint32_t SrcLocStrSize;
1670       Constant *Loc =
1671           OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize);
1672       Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc, SrcLocStrSize);
1673     }
1674     return Ident;
1675   }
1676 
1677   /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or
1678   /// \p ReplVal if given.
1679   bool deduplicateRuntimeCalls(Function &F,
1680                                OMPInformationCache::RuntimeFunctionInfo &RFI,
1681                                Value *ReplVal = nullptr) {
1682     auto *UV = RFI.getUseVector(F);
1683     if (!UV || UV->size() + (ReplVal != nullptr) < 2)
1684       return false;
1685 
1686     LLVM_DEBUG(
1687         dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name
1688                << (ReplVal ? " with an existing value\n" : "\n") << "\n");
1689 
1690     assert((!ReplVal || (isa<Argument>(ReplVal) &&
1691                          cast<Argument>(ReplVal)->getParent() == &F)) &&
1692            "Unexpected replacement value!");
1693 
1694     // TODO: Use dominance to find a good position instead.
1695     auto CanBeMoved = [this](CallBase &CB) {
1696       unsigned NumArgs = CB.arg_size();
1697       if (NumArgs == 0)
1698         return true;
1699       if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr)
1700         return false;
1701       for (unsigned U = 1; U < NumArgs; ++U)
1702         if (isa<Instruction>(CB.getArgOperand(U)))
1703           return false;
1704       return true;
1705     };
1706 
1707     if (!ReplVal) {
1708       auto *DT =
1709           OMPInfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(F);
1710       if (!DT)
1711         return false;
1712       Instruction *IP = nullptr;
1713       for (Use *U : *UV) {
1714         if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) {
1715           if (IP)
1716             IP = DT->findNearestCommonDominator(IP, CI);
1717           else
1718             IP = CI;
1719           if (!CanBeMoved(*CI))
1720             continue;
1721           if (!ReplVal)
1722             ReplVal = CI;
1723         }
1724       }
1725       if (!ReplVal)
1726         return false;
1727       assert(IP && "Expected insertion point!");
1728       cast<Instruction>(ReplVal)->moveBefore(IP);
1729     }
1730 
1731     // If we use a call as a replacement value we need to make sure the ident is
1732     // valid at the new location. For now we just pick a global one, either
1733     // existing and used by one of the calls, or created from scratch.
1734     if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) {
1735       if (!CI->arg_empty() &&
1736           CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) {
1737         Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F,
1738                                                       /* GlobalOnly */ true);
1739         CI->setArgOperand(0, Ident);
1740       }
1741     }
1742 
1743     bool Changed = false;
1744     auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) {
1745       CallInst *CI = getCallIfRegularCall(U, &RFI);
1746       if (!CI || CI == ReplVal || &F != &Caller)
1747         return false;
1748       assert(CI->getCaller() == &F && "Unexpected call!");
1749 
1750       auto Remark = [&](OptimizationRemark OR) {
1751         return OR << "OpenMP runtime call "
1752                   << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated.";
1753       };
1754       if (CI->getDebugLoc())
1755         emitRemark<OptimizationRemark>(CI, "OMP170", Remark);
1756       else
1757         emitRemark<OptimizationRemark>(&F, "OMP170", Remark);
1758 
1759       CGUpdater.removeCallSite(*CI);
1760       CI->replaceAllUsesWith(ReplVal);
1761       CI->eraseFromParent();
1762       ++NumOpenMPRuntimeCallsDeduplicated;
1763       Changed = true;
1764       return true;
1765     };
1766     RFI.foreachUse(SCC, ReplaceAndDeleteCB);
1767 
1768     return Changed;
1769   }
1770 
1771   /// Collect arguments that represent the global thread id in \p GTIdArgs.
1772   void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> &GTIdArgs) {
1773     // TODO: Below we basically perform a fixpoint iteration with a pessimistic
1774     //       initialization. We could define an AbstractAttribute instead and
1775     //       run the Attributor here once it can be run as an SCC pass.
1776 
1777     // Helper to check the argument \p ArgNo at all call sites of \p F for
1778     // a GTId.
1779     auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) {
1780       if (!F.hasLocalLinkage())
1781         return false;
1782       for (Use &U : F.uses()) {
1783         if (CallInst *CI = getCallIfRegularCall(U)) {
1784           Value *ArgOp = CI->getArgOperand(ArgNo);
1785           if (CI == &RefCI || GTIdArgs.count(ArgOp) ||
1786               getCallIfRegularCall(
1787                   *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]))
1788             continue;
1789         }
1790         return false;
1791       }
1792       return true;
1793     };
1794 
1795     // Helper to identify uses of a GTId as GTId arguments.
1796     auto AddUserArgs = [&](Value &GTId) {
1797       for (Use &U : GTId.uses())
1798         if (CallInst *CI = dyn_cast<CallInst>(U.getUser()))
1799           if (CI->isArgOperand(&U))
1800             if (Function *Callee = CI->getCalledFunction())
1801               if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI))
1802                 GTIdArgs.insert(Callee->getArg(U.getOperandNo()));
1803     };
1804 
1805     // The argument users of __kmpc_global_thread_num calls are GTIds.
1806     OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI =
1807         OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num];
1808 
1809     GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) {
1810       if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI))
1811         AddUserArgs(*CI);
1812       return false;
1813     });
1814 
1815     // Transitively search for more arguments by looking at the users of the
1816     // ones we know already. During the search the GTIdArgs vector is extended
1817     // so we cannot cache the size nor can we use a range based for.
1818     for (unsigned U = 0; U < GTIdArgs.size(); ++U)
1819       AddUserArgs(*GTIdArgs[U]);
1820   }
1821 
1822   /// Kernel (=GPU) optimizations and utility functions
1823   ///
1824   ///{{
1825 
1826   /// Cache to remember the unique kernel for a function.
1827   DenseMap<Function *, std::optional<Kernel>> UniqueKernelMap;
1828 
1829   /// Find the unique kernel that will execute \p F, if any.
1830   Kernel getUniqueKernelFor(Function &F);
1831 
1832   /// Find the unique kernel that will execute \p I, if any.
1833   Kernel getUniqueKernelFor(Instruction &I) {
1834     return getUniqueKernelFor(*I.getFunction());
1835   }
1836 
1837   /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in
1838   /// the cases we can avoid taking the address of a function.
1839   bool rewriteDeviceCodeStateMachine();
1840 
1841   ///
1842   ///}}
1843 
1844   /// Emit a remark generically
1845   ///
1846   /// This template function can be used to generically emit a remark. The
1847   /// RemarkKind should be one of the following:
1848   ///   - OptimizationRemark to indicate a successful optimization attempt
1849   ///   - OptimizationRemarkMissed to report a failed optimization attempt
1850   ///   - OptimizationRemarkAnalysis to provide additional information about an
1851   ///     optimization attempt
1852   ///
1853   /// The remark is built using a callback function provided by the caller that
1854   /// takes a RemarkKind as input and returns a RemarkKind.
1855   template <typename RemarkKind, typename RemarkCallBack>
1856   void emitRemark(Instruction *I, StringRef RemarkName,
1857                   RemarkCallBack &&RemarkCB) const {
1858     Function *F = I->getParent()->getParent();
1859     auto &ORE = OREGetter(F);
1860 
1861     if (RemarkName.startswith("OMP"))
1862       ORE.emit([&]() {
1863         return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I))
1864                << " [" << RemarkName << "]";
1865       });
1866     else
1867       ORE.emit(
1868           [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); });
1869   }
1870 
1871   /// Emit a remark on a function.
1872   template <typename RemarkKind, typename RemarkCallBack>
1873   void emitRemark(Function *F, StringRef RemarkName,
1874                   RemarkCallBack &&RemarkCB) const {
1875     auto &ORE = OREGetter(F);
1876 
1877     if (RemarkName.startswith("OMP"))
1878       ORE.emit([&]() {
1879         return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F))
1880                << " [" << RemarkName << "]";
1881       });
1882     else
1883       ORE.emit(
1884           [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); });
1885   }
1886 
1887   /// The underlying module.
1888   Module &M;
1889 
1890   /// The SCC we are operating on.
1891   SmallVectorImpl<Function *> &SCC;
1892 
1893   /// Callback to update the call graph, the first argument is a removed call,
1894   /// the second an optional replacement call.
1895   CallGraphUpdater &CGUpdater;
1896 
1897   /// Callback to get an OptimizationRemarkEmitter from a Function *
1898   OptimizationRemarkGetter OREGetter;
1899 
1900   /// OpenMP-specific information cache. Also Used for Attributor runs.
1901   OMPInformationCache &OMPInfoCache;
1902 
1903   /// Attributor instance.
1904   Attributor &A;
1905 
1906   /// Helper function to run Attributor on SCC.
1907   bool runAttributor(bool IsModulePass) {
1908     if (SCC.empty())
1909       return false;
1910 
1911     registerAAs(IsModulePass);
1912 
1913     ChangeStatus Changed = A.run();
1914 
1915     LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size()
1916                       << " functions, result: " << Changed << ".\n");
1917 
1918     return Changed == ChangeStatus::CHANGED;
1919   }
1920 
1921   void registerFoldRuntimeCall(RuntimeFunction RF);
1922 
1923   /// Populate the Attributor with abstract attribute opportunities in the
1924   /// functions.
1925   void registerAAs(bool IsModulePass);
1926 
1927 public:
1928   /// Callback to register AAs for live functions, including internal functions
1929   /// marked live during the traversal.
1930   static void registerAAsForFunction(Attributor &A, const Function &F);
1931 };
1932 
1933 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) {
1934   if (OMPInfoCache.CGSCC && !OMPInfoCache.CGSCC->empty() &&
1935       !OMPInfoCache.CGSCC->contains(&F))
1936     return nullptr;
1937 
1938   // Use a scope to keep the lifetime of the CachedKernel short.
1939   {
1940     std::optional<Kernel> &CachedKernel = UniqueKernelMap[&F];
1941     if (CachedKernel)
1942       return *CachedKernel;
1943 
1944     // TODO: We should use an AA to create an (optimistic and callback
1945     //       call-aware) call graph. For now we stick to simple patterns that
1946     //       are less powerful, basically the worst fixpoint.
1947     if (isKernel(F)) {
1948       CachedKernel = Kernel(&F);
1949       return *CachedKernel;
1950     }
1951 
1952     CachedKernel = nullptr;
1953     if (!F.hasLocalLinkage()) {
1954 
1955       // See https://openmp.llvm.org/remarks/OptimizationRemarks.html
1956       auto Remark = [&](OptimizationRemarkAnalysis ORA) {
1957         return ORA << "Potentially unknown OpenMP target region caller.";
1958       };
1959       emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark);
1960 
1961       return nullptr;
1962     }
1963   }
1964 
1965   auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel {
1966     if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
1967       // Allow use in equality comparisons.
1968       if (Cmp->isEquality())
1969         return getUniqueKernelFor(*Cmp);
1970       return nullptr;
1971     }
1972     if (auto *CB = dyn_cast<CallBase>(U.getUser())) {
1973       // Allow direct calls.
1974       if (CB->isCallee(&U))
1975         return getUniqueKernelFor(*CB);
1976 
1977       OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI =
1978           OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
1979       // Allow the use in __kmpc_parallel_51 calls.
1980       if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI))
1981         return getUniqueKernelFor(*CB);
1982       return nullptr;
1983     }
1984     // Disallow every other use.
1985     return nullptr;
1986   };
1987 
1988   // TODO: In the future we want to track more than just a unique kernel.
1989   SmallPtrSet<Kernel, 2> PotentialKernels;
1990   OMPInformationCache::foreachUse(F, [&](const Use &U) {
1991     PotentialKernels.insert(GetUniqueKernelForUse(U));
1992   });
1993 
1994   Kernel K = nullptr;
1995   if (PotentialKernels.size() == 1)
1996     K = *PotentialKernels.begin();
1997 
1998   // Cache the result.
1999   UniqueKernelMap[&F] = K;
2000 
2001   return K;
2002 }
2003 
2004 bool OpenMPOpt::rewriteDeviceCodeStateMachine() {
2005   OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI =
2006       OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
2007 
2008   bool Changed = false;
2009   if (!KernelParallelRFI)
2010     return Changed;
2011 
2012   // If we have disabled state machine changes, exit
2013   if (DisableOpenMPOptStateMachineRewrite)
2014     return Changed;
2015 
2016   for (Function *F : SCC) {
2017 
2018     // Check if the function is a use in a __kmpc_parallel_51 call at
2019     // all.
2020     bool UnknownUse = false;
2021     bool KernelParallelUse = false;
2022     unsigned NumDirectCalls = 0;
2023 
2024     SmallVector<Use *, 2> ToBeReplacedStateMachineUses;
2025     OMPInformationCache::foreachUse(*F, [&](Use &U) {
2026       if (auto *CB = dyn_cast<CallBase>(U.getUser()))
2027         if (CB->isCallee(&U)) {
2028           ++NumDirectCalls;
2029           return;
2030         }
2031 
2032       if (isa<ICmpInst>(U.getUser())) {
2033         ToBeReplacedStateMachineUses.push_back(&U);
2034         return;
2035       }
2036 
2037       // Find wrapper functions that represent parallel kernels.
2038       CallInst *CI =
2039           OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI);
2040       const unsigned int WrapperFunctionArgNo = 6;
2041       if (!KernelParallelUse && CI &&
2042           CI->getArgOperandNo(&U) == WrapperFunctionArgNo) {
2043         KernelParallelUse = true;
2044         ToBeReplacedStateMachineUses.push_back(&U);
2045         return;
2046       }
2047       UnknownUse = true;
2048     });
2049 
2050     // Do not emit a remark if we haven't seen a __kmpc_parallel_51
2051     // use.
2052     if (!KernelParallelUse)
2053       continue;
2054 
2055     // If this ever hits, we should investigate.
2056     // TODO: Checking the number of uses is not a necessary restriction and
2057     // should be lifted.
2058     if (UnknownUse || NumDirectCalls != 1 ||
2059         ToBeReplacedStateMachineUses.size() > 2) {
2060       auto Remark = [&](OptimizationRemarkAnalysis ORA) {
2061         return ORA << "Parallel region is used in "
2062                    << (UnknownUse ? "unknown" : "unexpected")
2063                    << " ways. Will not attempt to rewrite the state machine.";
2064       };
2065       emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark);
2066       continue;
2067     }
2068 
2069     // Even if we have __kmpc_parallel_51 calls, we (for now) give
2070     // up if the function is not called from a unique kernel.
2071     Kernel K = getUniqueKernelFor(*F);
2072     if (!K) {
2073       auto Remark = [&](OptimizationRemarkAnalysis ORA) {
2074         return ORA << "Parallel region is not called from a unique kernel. "
2075                       "Will not attempt to rewrite the state machine.";
2076       };
2077       emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark);
2078       continue;
2079     }
2080 
2081     // We now know F is a parallel body function called only from the kernel K.
2082     // We also identified the state machine uses in which we replace the
2083     // function pointer by a new global symbol for identification purposes. This
2084     // ensures only direct calls to the function are left.
2085 
2086     Module &M = *F->getParent();
2087     Type *Int8Ty = Type::getInt8Ty(M.getContext());
2088 
2089     auto *ID = new GlobalVariable(
2090         M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage,
2091         UndefValue::get(Int8Ty), F->getName() + ".ID");
2092 
2093     for (Use *U : ToBeReplacedStateMachineUses)
2094       U->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2095           ID, U->get()->getType()));
2096 
2097     ++NumOpenMPParallelRegionsReplacedInGPUStateMachine;
2098 
2099     Changed = true;
2100   }
2101 
2102   return Changed;
2103 }
2104 
2105 /// Abstract Attribute for tracking ICV values.
2106 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> {
2107   using Base = StateWrapper<BooleanState, AbstractAttribute>;
2108   AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
2109 
2110   /// Returns true if value is assumed to be tracked.
2111   bool isAssumedTracked() const { return getAssumed(); }
2112 
2113   /// Returns true if value is known to be tracked.
2114   bool isKnownTracked() const { return getAssumed(); }
2115 
2116   /// Create an abstract attribute biew for the position \p IRP.
2117   static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A);
2118 
2119   /// Return the value with which \p I can be replaced for specific \p ICV.
2120   virtual std::optional<Value *> getReplacementValue(InternalControlVar ICV,
2121                                                      const Instruction *I,
2122                                                      Attributor &A) const {
2123     return std::nullopt;
2124   }
2125 
2126   /// Return an assumed unique ICV value if a single candidate is found. If
2127   /// there cannot be one, return a nullptr. If it is not clear yet, return
2128   /// std::nullopt.
2129   virtual std::optional<Value *>
2130   getUniqueReplacementValue(InternalControlVar ICV) const = 0;
2131 
2132   // Currently only nthreads is being tracked.
2133   // this array will only grow with time.
2134   InternalControlVar TrackableICVs[1] = {ICV_nthreads};
2135 
2136   /// See AbstractAttribute::getName()
2137   const std::string getName() const override { return "AAICVTracker"; }
2138 
2139   /// See AbstractAttribute::getIdAddr()
2140   const char *getIdAddr() const override { return &ID; }
2141 
2142   /// This function should return true if the type of the \p AA is AAICVTracker
2143   static bool classof(const AbstractAttribute *AA) {
2144     return (AA->getIdAddr() == &ID);
2145   }
2146 
2147   static const char ID;
2148 };
2149 
2150 struct AAICVTrackerFunction : public AAICVTracker {
2151   AAICVTrackerFunction(const IRPosition &IRP, Attributor &A)
2152       : AAICVTracker(IRP, A) {}
2153 
2154   // FIXME: come up with better string.
2155   const std::string getAsStr(Attributor *) const override {
2156     return "ICVTrackerFunction";
2157   }
2158 
2159   // FIXME: come up with some stats.
2160   void trackStatistics() const override {}
2161 
2162   /// We don't manifest anything for this AA.
2163   ChangeStatus manifest(Attributor &A) override {
2164     return ChangeStatus::UNCHANGED;
2165   }
2166 
2167   // Map of ICV to their values at specific program point.
2168   EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar,
2169                   InternalControlVar::ICV___last>
2170       ICVReplacementValuesMap;
2171 
2172   ChangeStatus updateImpl(Attributor &A) override {
2173     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
2174 
2175     Function *F = getAnchorScope();
2176 
2177     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2178 
2179     for (InternalControlVar ICV : TrackableICVs) {
2180       auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter];
2181 
2182       auto &ValuesMap = ICVReplacementValuesMap[ICV];
2183       auto TrackValues = [&](Use &U, Function &) {
2184         CallInst *CI = OpenMPOpt::getCallIfRegularCall(U);
2185         if (!CI)
2186           return false;
2187 
2188         // FIXME: handle setters with more that 1 arguments.
2189         /// Track new value.
2190         if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second)
2191           HasChanged = ChangeStatus::CHANGED;
2192 
2193         return false;
2194       };
2195 
2196       auto CallCheck = [&](Instruction &I) {
2197         std::optional<Value *> ReplVal = getValueForCall(A, I, ICV);
2198         if (ReplVal && ValuesMap.insert(std::make_pair(&I, *ReplVal)).second)
2199           HasChanged = ChangeStatus::CHANGED;
2200 
2201         return true;
2202       };
2203 
2204       // Track all changes of an ICV.
2205       SetterRFI.foreachUse(TrackValues, F);
2206 
2207       bool UsedAssumedInformation = false;
2208       A.checkForAllInstructions(CallCheck, *this, {Instruction::Call},
2209                                 UsedAssumedInformation,
2210                                 /* CheckBBLivenessOnly */ true);
2211 
2212       /// TODO: Figure out a way to avoid adding entry in
2213       /// ICVReplacementValuesMap
2214       Instruction *Entry = &F->getEntryBlock().front();
2215       if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry))
2216         ValuesMap.insert(std::make_pair(Entry, nullptr));
2217     }
2218 
2219     return HasChanged;
2220   }
2221 
2222   /// Helper to check if \p I is a call and get the value for it if it is
2223   /// unique.
2224   std::optional<Value *> getValueForCall(Attributor &A, const Instruction &I,
2225                                          InternalControlVar &ICV) const {
2226 
2227     const auto *CB = dyn_cast<CallBase>(&I);
2228     if (!CB || CB->hasFnAttr("no_openmp") ||
2229         CB->hasFnAttr("no_openmp_routines"))
2230       return std::nullopt;
2231 
2232     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2233     auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter];
2234     auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter];
2235     Function *CalledFunction = CB->getCalledFunction();
2236 
2237     // Indirect call, assume ICV changes.
2238     if (CalledFunction == nullptr)
2239       return nullptr;
2240     if (CalledFunction == GetterRFI.Declaration)
2241       return std::nullopt;
2242     if (CalledFunction == SetterRFI.Declaration) {
2243       if (ICVReplacementValuesMap[ICV].count(&I))
2244         return ICVReplacementValuesMap[ICV].lookup(&I);
2245 
2246       return nullptr;
2247     }
2248 
2249     // Since we don't know, assume it changes the ICV.
2250     if (CalledFunction->isDeclaration())
2251       return nullptr;
2252 
2253     const auto *ICVTrackingAA = A.getAAFor<AAICVTracker>(
2254         *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED);
2255 
2256     if (ICVTrackingAA->isAssumedTracked()) {
2257       std::optional<Value *> URV =
2258           ICVTrackingAA->getUniqueReplacementValue(ICV);
2259       if (!URV || (*URV && AA::isValidAtPosition(AA::ValueAndContext(**URV, I),
2260                                                  OMPInfoCache)))
2261         return URV;
2262     }
2263 
2264     // If we don't know, assume it changes.
2265     return nullptr;
2266   }
2267 
2268   // We don't check unique value for a function, so return std::nullopt.
2269   std::optional<Value *>
2270   getUniqueReplacementValue(InternalControlVar ICV) const override {
2271     return std::nullopt;
2272   }
2273 
2274   /// Return the value with which \p I can be replaced for specific \p ICV.
2275   std::optional<Value *> getReplacementValue(InternalControlVar ICV,
2276                                              const Instruction *I,
2277                                              Attributor &A) const override {
2278     const auto &ValuesMap = ICVReplacementValuesMap[ICV];
2279     if (ValuesMap.count(I))
2280       return ValuesMap.lookup(I);
2281 
2282     SmallVector<const Instruction *, 16> Worklist;
2283     SmallPtrSet<const Instruction *, 16> Visited;
2284     Worklist.push_back(I);
2285 
2286     std::optional<Value *> ReplVal;
2287 
2288     while (!Worklist.empty()) {
2289       const Instruction *CurrInst = Worklist.pop_back_val();
2290       if (!Visited.insert(CurrInst).second)
2291         continue;
2292 
2293       const BasicBlock *CurrBB = CurrInst->getParent();
2294 
2295       // Go up and look for all potential setters/calls that might change the
2296       // ICV.
2297       while ((CurrInst = CurrInst->getPrevNode())) {
2298         if (ValuesMap.count(CurrInst)) {
2299           std::optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst);
2300           // Unknown value, track new.
2301           if (!ReplVal) {
2302             ReplVal = NewReplVal;
2303             break;
2304           }
2305 
2306           // If we found a new value, we can't know the icv value anymore.
2307           if (NewReplVal)
2308             if (ReplVal != NewReplVal)
2309               return nullptr;
2310 
2311           break;
2312         }
2313 
2314         std::optional<Value *> NewReplVal = getValueForCall(A, *CurrInst, ICV);
2315         if (!NewReplVal)
2316           continue;
2317 
2318         // Unknown value, track new.
2319         if (!ReplVal) {
2320           ReplVal = NewReplVal;
2321           break;
2322         }
2323 
2324         // if (NewReplVal.hasValue())
2325         // We found a new value, we can't know the icv value anymore.
2326         if (ReplVal != NewReplVal)
2327           return nullptr;
2328       }
2329 
2330       // If we are in the same BB and we have a value, we are done.
2331       if (CurrBB == I->getParent() && ReplVal)
2332         return ReplVal;
2333 
2334       // Go through all predecessors and add terminators for analysis.
2335       for (const BasicBlock *Pred : predecessors(CurrBB))
2336         if (const Instruction *Terminator = Pred->getTerminator())
2337           Worklist.push_back(Terminator);
2338     }
2339 
2340     return ReplVal;
2341   }
2342 };
2343 
2344 struct AAICVTrackerFunctionReturned : AAICVTracker {
2345   AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A)
2346       : AAICVTracker(IRP, A) {}
2347 
2348   // FIXME: come up with better string.
2349   const std::string getAsStr(Attributor *) const override {
2350     return "ICVTrackerFunctionReturned";
2351   }
2352 
2353   // FIXME: come up with some stats.
2354   void trackStatistics() const override {}
2355 
2356   /// We don't manifest anything for this AA.
2357   ChangeStatus manifest(Attributor &A) override {
2358     return ChangeStatus::UNCHANGED;
2359   }
2360 
2361   // Map of ICV to their values at specific program point.
2362   EnumeratedArray<std::optional<Value *>, InternalControlVar,
2363                   InternalControlVar::ICV___last>
2364       ICVReplacementValuesMap;
2365 
2366   /// Return the value with which \p I can be replaced for specific \p ICV.
2367   std::optional<Value *>
2368   getUniqueReplacementValue(InternalControlVar ICV) const override {
2369     return ICVReplacementValuesMap[ICV];
2370   }
2371 
2372   ChangeStatus updateImpl(Attributor &A) override {
2373     ChangeStatus Changed = ChangeStatus::UNCHANGED;
2374     const auto *ICVTrackingAA = A.getAAFor<AAICVTracker>(
2375         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
2376 
2377     if (!ICVTrackingAA->isAssumedTracked())
2378       return indicatePessimisticFixpoint();
2379 
2380     for (InternalControlVar ICV : TrackableICVs) {
2381       std::optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV];
2382       std::optional<Value *> UniqueICVValue;
2383 
2384       auto CheckReturnInst = [&](Instruction &I) {
2385         std::optional<Value *> NewReplVal =
2386             ICVTrackingAA->getReplacementValue(ICV, &I, A);
2387 
2388         // If we found a second ICV value there is no unique returned value.
2389         if (UniqueICVValue && UniqueICVValue != NewReplVal)
2390           return false;
2391 
2392         UniqueICVValue = NewReplVal;
2393 
2394         return true;
2395       };
2396 
2397       bool UsedAssumedInformation = false;
2398       if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret},
2399                                      UsedAssumedInformation,
2400                                      /* CheckBBLivenessOnly */ true))
2401         UniqueICVValue = nullptr;
2402 
2403       if (UniqueICVValue == ReplVal)
2404         continue;
2405 
2406       ReplVal = UniqueICVValue;
2407       Changed = ChangeStatus::CHANGED;
2408     }
2409 
2410     return Changed;
2411   }
2412 };
2413 
2414 struct AAICVTrackerCallSite : AAICVTracker {
2415   AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A)
2416       : AAICVTracker(IRP, A) {}
2417 
2418   void initialize(Attributor &A) override {
2419     assert(getAnchorScope() && "Expected anchor function");
2420 
2421     // We only initialize this AA for getters, so we need to know which ICV it
2422     // gets.
2423     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2424     for (InternalControlVar ICV : TrackableICVs) {
2425       auto ICVInfo = OMPInfoCache.ICVs[ICV];
2426       auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter];
2427       if (Getter.Declaration == getAssociatedFunction()) {
2428         AssociatedICV = ICVInfo.Kind;
2429         return;
2430       }
2431     }
2432 
2433     /// Unknown ICV.
2434     indicatePessimisticFixpoint();
2435   }
2436 
2437   ChangeStatus manifest(Attributor &A) override {
2438     if (!ReplVal || !*ReplVal)
2439       return ChangeStatus::UNCHANGED;
2440 
2441     A.changeAfterManifest(IRPosition::inst(*getCtxI()), **ReplVal);
2442     A.deleteAfterManifest(*getCtxI());
2443 
2444     return ChangeStatus::CHANGED;
2445   }
2446 
2447   // FIXME: come up with better string.
2448   const std::string getAsStr(Attributor *) const override {
2449     return "ICVTrackerCallSite";
2450   }
2451 
2452   // FIXME: come up with some stats.
2453   void trackStatistics() const override {}
2454 
2455   InternalControlVar AssociatedICV;
2456   std::optional<Value *> ReplVal;
2457 
2458   ChangeStatus updateImpl(Attributor &A) override {
2459     const auto *ICVTrackingAA = A.getAAFor<AAICVTracker>(
2460         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
2461 
2462     // We don't have any information, so we assume it changes the ICV.
2463     if (!ICVTrackingAA->isAssumedTracked())
2464       return indicatePessimisticFixpoint();
2465 
2466     std::optional<Value *> NewReplVal =
2467         ICVTrackingAA->getReplacementValue(AssociatedICV, getCtxI(), A);
2468 
2469     if (ReplVal == NewReplVal)
2470       return ChangeStatus::UNCHANGED;
2471 
2472     ReplVal = NewReplVal;
2473     return ChangeStatus::CHANGED;
2474   }
2475 
2476   // Return the value with which associated value can be replaced for specific
2477   // \p ICV.
2478   std::optional<Value *>
2479   getUniqueReplacementValue(InternalControlVar ICV) const override {
2480     return ReplVal;
2481   }
2482 };
2483 
2484 struct AAICVTrackerCallSiteReturned : AAICVTracker {
2485   AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A)
2486       : AAICVTracker(IRP, A) {}
2487 
2488   // FIXME: come up with better string.
2489   const std::string getAsStr(Attributor *) const override {
2490     return "ICVTrackerCallSiteReturned";
2491   }
2492 
2493   // FIXME: come up with some stats.
2494   void trackStatistics() const override {}
2495 
2496   /// We don't manifest anything for this AA.
2497   ChangeStatus manifest(Attributor &A) override {
2498     return ChangeStatus::UNCHANGED;
2499   }
2500 
2501   // Map of ICV to their values at specific program point.
2502   EnumeratedArray<std::optional<Value *>, InternalControlVar,
2503                   InternalControlVar::ICV___last>
2504       ICVReplacementValuesMap;
2505 
2506   /// Return the value with which associated value can be replaced for specific
2507   /// \p ICV.
2508   std::optional<Value *>
2509   getUniqueReplacementValue(InternalControlVar ICV) const override {
2510     return ICVReplacementValuesMap[ICV];
2511   }
2512 
2513   ChangeStatus updateImpl(Attributor &A) override {
2514     ChangeStatus Changed = ChangeStatus::UNCHANGED;
2515     const auto *ICVTrackingAA = A.getAAFor<AAICVTracker>(
2516         *this, IRPosition::returned(*getAssociatedFunction()),
2517         DepClassTy::REQUIRED);
2518 
2519     // We don't have any information, so we assume it changes the ICV.
2520     if (!ICVTrackingAA->isAssumedTracked())
2521       return indicatePessimisticFixpoint();
2522 
2523     for (InternalControlVar ICV : TrackableICVs) {
2524       std::optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV];
2525       std::optional<Value *> NewReplVal =
2526           ICVTrackingAA->getUniqueReplacementValue(ICV);
2527 
2528       if (ReplVal == NewReplVal)
2529         continue;
2530 
2531       ReplVal = NewReplVal;
2532       Changed = ChangeStatus::CHANGED;
2533     }
2534     return Changed;
2535   }
2536 };
2537 
2538 struct AAExecutionDomainFunction : public AAExecutionDomain {
2539   AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A)
2540       : AAExecutionDomain(IRP, A) {}
2541 
2542   ~AAExecutionDomainFunction() { delete RPOT; }
2543 
2544   void initialize(Attributor &A) override {
2545     Function *F = getAnchorScope();
2546     assert(F && "Expected anchor function");
2547     RPOT = new ReversePostOrderTraversal<Function *>(F);
2548   }
2549 
2550   const std::string getAsStr(Attributor *) const override {
2551     unsigned TotalBlocks = 0, InitialThreadBlocks = 0, AlignedBlocks = 0;
2552     for (auto &It : BEDMap) {
2553       if (!It.getFirst())
2554         continue;
2555       TotalBlocks++;
2556       InitialThreadBlocks += It.getSecond().IsExecutedByInitialThreadOnly;
2557       AlignedBlocks += It.getSecond().IsReachedFromAlignedBarrierOnly &&
2558                        It.getSecond().IsReachingAlignedBarrierOnly;
2559     }
2560     return "[AAExecutionDomain] " + std::to_string(InitialThreadBlocks) + "/" +
2561            std::to_string(AlignedBlocks) + " of " +
2562            std::to_string(TotalBlocks) +
2563            " executed by initial thread / aligned";
2564   }
2565 
2566   /// See AbstractAttribute::trackStatistics().
2567   void trackStatistics() const override {}
2568 
2569   ChangeStatus manifest(Attributor &A) override {
2570     LLVM_DEBUG({
2571       for (const BasicBlock &BB : *getAnchorScope()) {
2572         if (!isExecutedByInitialThreadOnly(BB))
2573           continue;
2574         dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " "
2575                << BB.getName() << " is executed by a single thread.\n";
2576       }
2577     });
2578 
2579     ChangeStatus Changed = ChangeStatus::UNCHANGED;
2580 
2581     if (DisableOpenMPOptBarrierElimination)
2582       return Changed;
2583 
2584     SmallPtrSet<CallBase *, 16> DeletedBarriers;
2585     auto HandleAlignedBarrier = [&](CallBase *CB) {
2586       const ExecutionDomainTy &ED = CB ? CEDMap[{CB, PRE}] : BEDMap[nullptr];
2587       if (!ED.IsReachedFromAlignedBarrierOnly ||
2588           ED.EncounteredNonLocalSideEffect)
2589         return;
2590 
2591       // We can remove this barrier, if it is one, or all aligned barriers
2592       // reaching the kernel end. In the latter case we can transitively work
2593       // our way back until we find a barrier that guards a side-effect if we
2594       // are dealing with the kernel end here.
2595       if (CB) {
2596         DeletedBarriers.insert(CB);
2597         A.deleteAfterManifest(*CB);
2598         ++NumBarriersEliminated;
2599         Changed = ChangeStatus::CHANGED;
2600       } else if (!ED.AlignedBarriers.empty()) {
2601         NumBarriersEliminated += ED.AlignedBarriers.size();
2602         Changed = ChangeStatus::CHANGED;
2603         SmallVector<CallBase *> Worklist(ED.AlignedBarriers.begin(),
2604                                          ED.AlignedBarriers.end());
2605         SmallSetVector<CallBase *, 16> Visited;
2606         while (!Worklist.empty()) {
2607           CallBase *LastCB = Worklist.pop_back_val();
2608           if (!Visited.insert(LastCB))
2609             continue;
2610           if (LastCB->getFunction() != getAnchorScope())
2611             continue;
2612           if (!DeletedBarriers.count(LastCB)) {
2613             A.deleteAfterManifest(*LastCB);
2614             continue;
2615           }
2616           // The final aligned barrier (LastCB) reaching the kernel end was
2617           // removed already. This means we can go one step further and remove
2618           // the barriers encoutered last before (LastCB).
2619           const ExecutionDomainTy &LastED = CEDMap[{LastCB, PRE}];
2620           Worklist.append(LastED.AlignedBarriers.begin(),
2621                           LastED.AlignedBarriers.end());
2622         }
2623       }
2624 
2625       // If we actually eliminated a barrier we need to eliminate the associated
2626       // llvm.assumes as well to avoid creating UB.
2627       if (!ED.EncounteredAssumes.empty() && (CB || !ED.AlignedBarriers.empty()))
2628         for (auto *AssumeCB : ED.EncounteredAssumes)
2629           A.deleteAfterManifest(*AssumeCB);
2630     };
2631 
2632     for (auto *CB : AlignedBarriers)
2633       HandleAlignedBarrier(CB);
2634 
2635     // Handle the "kernel end barrier" for kernels too.
2636     if (omp::isKernel(*getAnchorScope()))
2637       HandleAlignedBarrier(nullptr);
2638 
2639     return Changed;
2640   }
2641 
2642   bool isNoOpFence(const FenceInst &FI) const override {
2643     return getState().isValidState() && !NonNoOpFences.count(&FI);
2644   }
2645 
2646   /// Merge barrier and assumption information from \p PredED into the successor
2647   /// \p ED.
2648   void
2649   mergeInPredecessorBarriersAndAssumptions(Attributor &A, ExecutionDomainTy &ED,
2650                                            const ExecutionDomainTy &PredED);
2651 
2652   /// Merge all information from \p PredED into the successor \p ED. If
2653   /// \p InitialEdgeOnly is set, only the initial edge will enter the block
2654   /// represented by \p ED from this predecessor.
2655   bool mergeInPredecessor(Attributor &A, ExecutionDomainTy &ED,
2656                           const ExecutionDomainTy &PredED,
2657                           bool InitialEdgeOnly = false);
2658 
2659   /// Accumulate information for the entry block in \p EntryBBED.
2660   bool handleCallees(Attributor &A, ExecutionDomainTy &EntryBBED);
2661 
2662   /// See AbstractAttribute::updateImpl.
2663   ChangeStatus updateImpl(Attributor &A) override;
2664 
2665   /// Query interface, see AAExecutionDomain
2666   ///{
2667   bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override {
2668     if (!isValidState())
2669       return false;
2670     assert(BB.getParent() == getAnchorScope() && "Block is out of scope!");
2671     return BEDMap.lookup(&BB).IsExecutedByInitialThreadOnly;
2672   }
2673 
2674   bool isExecutedInAlignedRegion(Attributor &A,
2675                                  const Instruction &I) const override {
2676     assert(I.getFunction() == getAnchorScope() &&
2677            "Instruction is out of scope!");
2678     if (!isValidState())
2679       return false;
2680 
2681     bool ForwardIsOk = true;
2682     const Instruction *CurI;
2683 
2684     // Check forward until a call or the block end is reached.
2685     CurI = &I;
2686     do {
2687       auto *CB = dyn_cast<CallBase>(CurI);
2688       if (!CB)
2689         continue;
2690       if (CB != &I && AlignedBarriers.contains(const_cast<CallBase *>(CB)))
2691         return true;
2692       const auto &It = CEDMap.find({CB, PRE});
2693       if (It == CEDMap.end())
2694         continue;
2695       if (!It->getSecond().IsReachingAlignedBarrierOnly)
2696         ForwardIsOk = false;
2697       break;
2698     } while ((CurI = CurI->getNextNonDebugInstruction()));
2699 
2700     if (!CurI && !BEDMap.lookup(I.getParent()).IsReachingAlignedBarrierOnly)
2701       ForwardIsOk = false;
2702 
2703     // Check backward until a call or the block beginning is reached.
2704     CurI = &I;
2705     do {
2706       auto *CB = dyn_cast<CallBase>(CurI);
2707       if (!CB)
2708         continue;
2709       if (CB != &I && AlignedBarriers.contains(const_cast<CallBase *>(CB)))
2710         return true;
2711       const auto &It = CEDMap.find({CB, POST});
2712       if (It == CEDMap.end())
2713         continue;
2714       if (It->getSecond().IsReachedFromAlignedBarrierOnly)
2715         break;
2716       return false;
2717     } while ((CurI = CurI->getPrevNonDebugInstruction()));
2718 
2719     // Delayed decision on the forward pass to allow aligned barrier detection
2720     // in the backwards traversal.
2721     if (!ForwardIsOk)
2722       return false;
2723 
2724     if (!CurI) {
2725       const BasicBlock *BB = I.getParent();
2726       if (BB == &BB->getParent()->getEntryBlock())
2727         return BEDMap.lookup(nullptr).IsReachedFromAlignedBarrierOnly;
2728       if (!llvm::all_of(predecessors(BB), [&](const BasicBlock *PredBB) {
2729             return BEDMap.lookup(PredBB).IsReachedFromAlignedBarrierOnly;
2730           })) {
2731         return false;
2732       }
2733     }
2734 
2735     // On neither traversal we found a anything but aligned barriers.
2736     return true;
2737   }
2738 
2739   ExecutionDomainTy getExecutionDomain(const BasicBlock &BB) const override {
2740     assert(isValidState() &&
2741            "No request should be made against an invalid state!");
2742     return BEDMap.lookup(&BB);
2743   }
2744   std::pair<ExecutionDomainTy, ExecutionDomainTy>
2745   getExecutionDomain(const CallBase &CB) const override {
2746     assert(isValidState() &&
2747            "No request should be made against an invalid state!");
2748     return {CEDMap.lookup({&CB, PRE}), CEDMap.lookup({&CB, POST})};
2749   }
2750   ExecutionDomainTy getFunctionExecutionDomain() const override {
2751     assert(isValidState() &&
2752            "No request should be made against an invalid state!");
2753     return InterProceduralED;
2754   }
2755   ///}
2756 
2757   // Check if the edge into the successor block contains a condition that only
2758   // lets the main thread execute it.
2759   static bool isInitialThreadOnlyEdge(Attributor &A, BranchInst *Edge,
2760                                       BasicBlock &SuccessorBB) {
2761     if (!Edge || !Edge->isConditional())
2762       return false;
2763     if (Edge->getSuccessor(0) != &SuccessorBB)
2764       return false;
2765 
2766     auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition());
2767     if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality())
2768       return false;
2769 
2770     ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1));
2771     if (!C)
2772       return false;
2773 
2774     // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!)
2775     if (C->isAllOnesValue()) {
2776       auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0));
2777       auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2778       auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
2779       CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr;
2780       if (!CB)
2781         return false;
2782       const int InitModeArgNo = 1;
2783       auto *ModeCI = dyn_cast<ConstantInt>(CB->getOperand(InitModeArgNo));
2784       return ModeCI && (ModeCI->getSExtValue() & OMP_TGT_EXEC_MODE_GENERIC);
2785     }
2786 
2787     if (C->isZero()) {
2788       // Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x()
2789       if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0)))
2790         if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x)
2791           return true;
2792 
2793       // Match: 0 == llvm.amdgcn.workitem.id.x()
2794       if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0)))
2795         if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x)
2796           return true;
2797     }
2798 
2799     return false;
2800   };
2801 
2802   /// Mapping containing information about the function for other AAs.
2803   ExecutionDomainTy InterProceduralED;
2804 
2805   enum Direction { PRE = 0, POST = 1 };
2806   /// Mapping containing information per block.
2807   DenseMap<const BasicBlock *, ExecutionDomainTy> BEDMap;
2808   DenseMap<PointerIntPair<const CallBase *, 1, Direction>, ExecutionDomainTy>
2809       CEDMap;
2810   SmallSetVector<CallBase *, 16> AlignedBarriers;
2811 
2812   ReversePostOrderTraversal<Function *> *RPOT = nullptr;
2813 
2814   /// Set \p R to \V and report true if that changed \p R.
2815   static bool setAndRecord(bool &R, bool V) {
2816     bool Eq = (R == V);
2817     R = V;
2818     return !Eq;
2819   }
2820 
2821   /// Collection of fences known to be non-no-opt. All fences not in this set
2822   /// can be assumed no-opt.
2823   SmallPtrSet<const FenceInst *, 8> NonNoOpFences;
2824 };
2825 
2826 void AAExecutionDomainFunction::mergeInPredecessorBarriersAndAssumptions(
2827     Attributor &A, ExecutionDomainTy &ED, const ExecutionDomainTy &PredED) {
2828   for (auto *EA : PredED.EncounteredAssumes)
2829     ED.addAssumeInst(A, *EA);
2830 
2831   for (auto *AB : PredED.AlignedBarriers)
2832     ED.addAlignedBarrier(A, *AB);
2833 }
2834 
2835 bool AAExecutionDomainFunction::mergeInPredecessor(
2836     Attributor &A, ExecutionDomainTy &ED, const ExecutionDomainTy &PredED,
2837     bool InitialEdgeOnly) {
2838 
2839   bool Changed = false;
2840   Changed |=
2841       setAndRecord(ED.IsExecutedByInitialThreadOnly,
2842                    InitialEdgeOnly || (PredED.IsExecutedByInitialThreadOnly &&
2843                                        ED.IsExecutedByInitialThreadOnly));
2844 
2845   Changed |= setAndRecord(ED.IsReachedFromAlignedBarrierOnly,
2846                           ED.IsReachedFromAlignedBarrierOnly &&
2847                               PredED.IsReachedFromAlignedBarrierOnly);
2848   Changed |= setAndRecord(ED.EncounteredNonLocalSideEffect,
2849                           ED.EncounteredNonLocalSideEffect |
2850                               PredED.EncounteredNonLocalSideEffect);
2851   // Do not track assumptions and barriers as part of Changed.
2852   if (ED.IsReachedFromAlignedBarrierOnly)
2853     mergeInPredecessorBarriersAndAssumptions(A, ED, PredED);
2854   else
2855     ED.clearAssumeInstAndAlignedBarriers();
2856   return Changed;
2857 }
2858 
2859 bool AAExecutionDomainFunction::handleCallees(Attributor &A,
2860                                               ExecutionDomainTy &EntryBBED) {
2861   SmallVector<std::pair<ExecutionDomainTy, ExecutionDomainTy>, 4> CallSiteEDs;
2862   auto PredForCallSite = [&](AbstractCallSite ACS) {
2863     const auto *EDAA = A.getAAFor<AAExecutionDomain>(
2864         *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
2865         DepClassTy::OPTIONAL);
2866     if (!EDAA || !EDAA->getState().isValidState())
2867       return false;
2868     CallSiteEDs.emplace_back(
2869         EDAA->getExecutionDomain(*cast<CallBase>(ACS.getInstruction())));
2870     return true;
2871   };
2872 
2873   ExecutionDomainTy ExitED;
2874   bool AllCallSitesKnown;
2875   if (A.checkForAllCallSites(PredForCallSite, *this,
2876                              /* RequiresAllCallSites */ true,
2877                              AllCallSitesKnown)) {
2878     for (const auto &[CSInED, CSOutED] : CallSiteEDs) {
2879       mergeInPredecessor(A, EntryBBED, CSInED);
2880       ExitED.IsReachingAlignedBarrierOnly &=
2881           CSOutED.IsReachingAlignedBarrierOnly;
2882     }
2883 
2884   } else {
2885     // We could not find all predecessors, so this is either a kernel or a
2886     // function with external linkage (or with some other weird uses).
2887     if (omp::isKernel(*getAnchorScope())) {
2888       EntryBBED.IsExecutedByInitialThreadOnly = false;
2889       EntryBBED.IsReachedFromAlignedBarrierOnly = true;
2890       EntryBBED.EncounteredNonLocalSideEffect = false;
2891       ExitED.IsReachingAlignedBarrierOnly = true;
2892     } else {
2893       EntryBBED.IsExecutedByInitialThreadOnly = false;
2894       EntryBBED.IsReachedFromAlignedBarrierOnly = false;
2895       EntryBBED.EncounteredNonLocalSideEffect = true;
2896       ExitED.IsReachingAlignedBarrierOnly = false;
2897     }
2898   }
2899 
2900   bool Changed = false;
2901   auto &FnED = BEDMap[nullptr];
2902   Changed |= setAndRecord(FnED.IsReachedFromAlignedBarrierOnly,
2903                           FnED.IsReachedFromAlignedBarrierOnly &
2904                               EntryBBED.IsReachedFromAlignedBarrierOnly);
2905   Changed |= setAndRecord(FnED.IsReachingAlignedBarrierOnly,
2906                           FnED.IsReachingAlignedBarrierOnly &
2907                               ExitED.IsReachingAlignedBarrierOnly);
2908   Changed |= setAndRecord(FnED.IsExecutedByInitialThreadOnly,
2909                           EntryBBED.IsExecutedByInitialThreadOnly);
2910   return Changed;
2911 }
2912 
2913 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) {
2914 
2915   bool Changed = false;
2916 
2917   // Helper to deal with an aligned barrier encountered during the forward
2918   // traversal. \p CB is the aligned barrier, \p ED is the execution domain when
2919   // it was encountered.
2920   auto HandleAlignedBarrier = [&](CallBase &CB, ExecutionDomainTy &ED) {
2921     Changed |= AlignedBarriers.insert(&CB);
2922     // First, update the barrier ED kept in the separate CEDMap.
2923     auto &CallInED = CEDMap[{&CB, PRE}];
2924     Changed |= mergeInPredecessor(A, CallInED, ED);
2925     CallInED.IsReachingAlignedBarrierOnly = true;
2926     // Next adjust the ED we use for the traversal.
2927     ED.EncounteredNonLocalSideEffect = false;
2928     ED.IsReachedFromAlignedBarrierOnly = true;
2929     // Aligned barrier collection has to come last.
2930     ED.clearAssumeInstAndAlignedBarriers();
2931     ED.addAlignedBarrier(A, CB);
2932     auto &CallOutED = CEDMap[{&CB, POST}];
2933     Changed |= mergeInPredecessor(A, CallOutED, ED);
2934   };
2935 
2936   auto *LivenessAA =
2937       A.getAAFor<AAIsDead>(*this, getIRPosition(), DepClassTy::OPTIONAL);
2938 
2939   Function *F = getAnchorScope();
2940   BasicBlock &EntryBB = F->getEntryBlock();
2941   bool IsKernel = omp::isKernel(*F);
2942 
2943   SmallVector<Instruction *> SyncInstWorklist;
2944   for (auto &RIt : *RPOT) {
2945     BasicBlock &BB = *RIt;
2946 
2947     bool IsEntryBB = &BB == &EntryBB;
2948     // TODO: We use local reasoning since we don't have a divergence analysis
2949     // 	     running as well. We could basically allow uniform branches here.
2950     bool AlignedBarrierLastInBlock = IsEntryBB && IsKernel;
2951     bool IsExplicitlyAligned = IsEntryBB && IsKernel;
2952     ExecutionDomainTy ED;
2953     // Propagate "incoming edges" into information about this block.
2954     if (IsEntryBB) {
2955       Changed |= handleCallees(A, ED);
2956     } else {
2957       // For live non-entry blocks we only propagate
2958       // information via live edges.
2959       if (LivenessAA && LivenessAA->isAssumedDead(&BB))
2960         continue;
2961 
2962       for (auto *PredBB : predecessors(&BB)) {
2963         if (LivenessAA && LivenessAA->isEdgeDead(PredBB, &BB))
2964           continue;
2965         bool InitialEdgeOnly = isInitialThreadOnlyEdge(
2966             A, dyn_cast<BranchInst>(PredBB->getTerminator()), BB);
2967         mergeInPredecessor(A, ED, BEDMap[PredBB], InitialEdgeOnly);
2968       }
2969     }
2970 
2971     // Now we traverse the block, accumulate effects in ED and attach
2972     // information to calls.
2973     for (Instruction &I : BB) {
2974       bool UsedAssumedInformation;
2975       if (A.isAssumedDead(I, *this, LivenessAA, UsedAssumedInformation,
2976                           /* CheckBBLivenessOnly */ false, DepClassTy::OPTIONAL,
2977                           /* CheckForDeadStore */ true))
2978         continue;
2979 
2980       // Asummes and "assume-like" (dbg, lifetime, ...) are handled first, the
2981       // former is collected the latter is ignored.
2982       if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
2983         if (auto *AI = dyn_cast_or_null<AssumeInst>(II)) {
2984           ED.addAssumeInst(A, *AI);
2985           continue;
2986         }
2987         // TODO: Should we also collect and delete lifetime markers?
2988         if (II->isAssumeLikeIntrinsic())
2989           continue;
2990       }
2991 
2992       if (auto *FI = dyn_cast<FenceInst>(&I)) {
2993         if (!ED.EncounteredNonLocalSideEffect) {
2994           // An aligned fence without non-local side-effects is a no-op.
2995           if (ED.IsReachedFromAlignedBarrierOnly)
2996             continue;
2997           // A non-aligned fence without non-local side-effects is a no-op
2998           // if the ordering only publishes non-local side-effects (or less).
2999           switch (FI->getOrdering()) {
3000           case AtomicOrdering::NotAtomic:
3001             continue;
3002           case AtomicOrdering::Unordered:
3003             continue;
3004           case AtomicOrdering::Monotonic:
3005             continue;
3006           case AtomicOrdering::Acquire:
3007             break;
3008           case AtomicOrdering::Release:
3009             continue;
3010           case AtomicOrdering::AcquireRelease:
3011             break;
3012           case AtomicOrdering::SequentiallyConsistent:
3013             break;
3014           };
3015         }
3016         NonNoOpFences.insert(FI);
3017       }
3018 
3019       auto *CB = dyn_cast<CallBase>(&I);
3020       bool IsNoSync = AA::isNoSyncInst(A, I, *this);
3021       bool IsAlignedBarrier =
3022           !IsNoSync && CB &&
3023           AANoSync::isAlignedBarrier(*CB, AlignedBarrierLastInBlock);
3024 
3025       AlignedBarrierLastInBlock &= IsNoSync;
3026       IsExplicitlyAligned &= IsNoSync;
3027 
3028       // Next we check for calls. Aligned barriers are handled
3029       // explicitly, everything else is kept for the backward traversal and will
3030       // also affect our state.
3031       if (CB) {
3032         if (IsAlignedBarrier) {
3033           HandleAlignedBarrier(*CB, ED);
3034           AlignedBarrierLastInBlock = true;
3035           IsExplicitlyAligned = true;
3036           continue;
3037         }
3038 
3039         // Check the pointer(s) of a memory intrinsic explicitly.
3040         if (isa<MemIntrinsic>(&I)) {
3041           if (!ED.EncounteredNonLocalSideEffect &&
3042               AA::isPotentiallyAffectedByBarrier(A, I, *this))
3043             ED.EncounteredNonLocalSideEffect = true;
3044           if (!IsNoSync) {
3045             ED.IsReachedFromAlignedBarrierOnly = false;
3046             SyncInstWorklist.push_back(&I);
3047           }
3048           continue;
3049         }
3050 
3051         // Record how we entered the call, then accumulate the effect of the
3052         // call in ED for potential use by the callee.
3053         auto &CallInED = CEDMap[{CB, PRE}];
3054         Changed |= mergeInPredecessor(A, CallInED, ED);
3055 
3056         // If we have a sync-definition we can check if it starts/ends in an
3057         // aligned barrier. If we are unsure we assume any sync breaks
3058         // alignment.
3059         Function *Callee = CB->getCalledFunction();
3060         if (!IsNoSync && Callee && !Callee->isDeclaration()) {
3061           const auto *EDAA = A.getAAFor<AAExecutionDomain>(
3062               *this, IRPosition::function(*Callee), DepClassTy::OPTIONAL);
3063           if (EDAA && EDAA->getState().isValidState()) {
3064             const auto &CalleeED = EDAA->getFunctionExecutionDomain();
3065             ED.IsReachedFromAlignedBarrierOnly =
3066                     CalleeED.IsReachedFromAlignedBarrierOnly;
3067             AlignedBarrierLastInBlock = ED.IsReachedFromAlignedBarrierOnly;
3068             if (IsNoSync || !CalleeED.IsReachedFromAlignedBarrierOnly)
3069               ED.EncounteredNonLocalSideEffect |=
3070                   CalleeED.EncounteredNonLocalSideEffect;
3071             else
3072               ED.EncounteredNonLocalSideEffect =
3073                   CalleeED.EncounteredNonLocalSideEffect;
3074             if (!CalleeED.IsReachingAlignedBarrierOnly) {
3075               Changed |=
3076                   setAndRecord(CallInED.IsReachingAlignedBarrierOnly, false);
3077               SyncInstWorklist.push_back(&I);
3078             }
3079             if (CalleeED.IsReachedFromAlignedBarrierOnly)
3080               mergeInPredecessorBarriersAndAssumptions(A, ED, CalleeED);
3081             auto &CallOutED = CEDMap[{CB, POST}];
3082             Changed |= mergeInPredecessor(A, CallOutED, ED);
3083             continue;
3084           }
3085         }
3086         if (!IsNoSync) {
3087           ED.IsReachedFromAlignedBarrierOnly = false;
3088           Changed |= setAndRecord(CallInED.IsReachingAlignedBarrierOnly, false);
3089           SyncInstWorklist.push_back(&I);
3090         }
3091         AlignedBarrierLastInBlock &= ED.IsReachedFromAlignedBarrierOnly;
3092         ED.EncounteredNonLocalSideEffect |= !CB->doesNotAccessMemory();
3093         auto &CallOutED = CEDMap[{CB, POST}];
3094         Changed |= mergeInPredecessor(A, CallOutED, ED);
3095       }
3096 
3097       if (!I.mayHaveSideEffects() && !I.mayReadFromMemory())
3098         continue;
3099 
3100       // If we have a callee we try to use fine-grained information to
3101       // determine local side-effects.
3102       if (CB) {
3103         const auto *MemAA = A.getAAFor<AAMemoryLocation>(
3104             *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
3105 
3106         auto AccessPred = [&](const Instruction *I, const Value *Ptr,
3107                               AAMemoryLocation::AccessKind,
3108                               AAMemoryLocation::MemoryLocationsKind) {
3109           return !AA::isPotentiallyAffectedByBarrier(A, {Ptr}, *this, I);
3110         };
3111         if (MemAA && MemAA->getState().isValidState() &&
3112             MemAA->checkForAllAccessesToMemoryKind(
3113                 AccessPred, AAMemoryLocation::ALL_LOCATIONS))
3114           continue;
3115       }
3116 
3117       auto &InfoCache = A.getInfoCache();
3118       if (!I.mayHaveSideEffects() && InfoCache.isOnlyUsedByAssume(I))
3119         continue;
3120 
3121       if (auto *LI = dyn_cast<LoadInst>(&I))
3122         if (LI->hasMetadata(LLVMContext::MD_invariant_load))
3123           continue;
3124 
3125       if (!ED.EncounteredNonLocalSideEffect &&
3126           AA::isPotentiallyAffectedByBarrier(A, I, *this))
3127         ED.EncounteredNonLocalSideEffect = true;
3128     }
3129 
3130     bool IsEndAndNotReachingAlignedBarriersOnly = false;
3131     if (!isa<UnreachableInst>(BB.getTerminator()) &&
3132         !BB.getTerminator()->getNumSuccessors()) {
3133 
3134       Changed |= mergeInPredecessor(A, InterProceduralED, ED);
3135 
3136       auto &FnED = BEDMap[nullptr];
3137       if (IsKernel && !IsExplicitlyAligned)
3138         FnED.IsReachingAlignedBarrierOnly = false;
3139       Changed |= mergeInPredecessor(A, FnED, ED);
3140 
3141       if (!FnED.IsReachingAlignedBarrierOnly) {
3142         IsEndAndNotReachingAlignedBarriersOnly = true;
3143         SyncInstWorklist.push_back(BB.getTerminator());
3144         auto &BBED = BEDMap[&BB];
3145         Changed |= setAndRecord(BBED.IsReachingAlignedBarrierOnly, false);
3146       }
3147     }
3148 
3149     ExecutionDomainTy &StoredED = BEDMap[&BB];
3150     ED.IsReachingAlignedBarrierOnly = StoredED.IsReachingAlignedBarrierOnly &
3151                                       !IsEndAndNotReachingAlignedBarriersOnly;
3152 
3153     // Check if we computed anything different as part of the forward
3154     // traversal. We do not take assumptions and aligned barriers into account
3155     // as they do not influence the state we iterate. Backward traversal values
3156     // are handled later on.
3157     if (ED.IsExecutedByInitialThreadOnly !=
3158             StoredED.IsExecutedByInitialThreadOnly ||
3159         ED.IsReachedFromAlignedBarrierOnly !=
3160             StoredED.IsReachedFromAlignedBarrierOnly ||
3161         ED.EncounteredNonLocalSideEffect !=
3162             StoredED.EncounteredNonLocalSideEffect)
3163       Changed = true;
3164 
3165     // Update the state with the new value.
3166     StoredED = std::move(ED);
3167   }
3168 
3169   // Propagate (non-aligned) sync instruction effects backwards until the
3170   // entry is hit or an aligned barrier.
3171   SmallSetVector<BasicBlock *, 16> Visited;
3172   while (!SyncInstWorklist.empty()) {
3173     Instruction *SyncInst = SyncInstWorklist.pop_back_val();
3174     Instruction *CurInst = SyncInst;
3175     bool HitAlignedBarrierOrKnownEnd = false;
3176     while ((CurInst = CurInst->getPrevNode())) {
3177       auto *CB = dyn_cast<CallBase>(CurInst);
3178       if (!CB)
3179         continue;
3180       auto &CallOutED = CEDMap[{CB, POST}];
3181       Changed |= setAndRecord(CallOutED.IsReachingAlignedBarrierOnly, false);
3182       auto &CallInED = CEDMap[{CB, PRE}];
3183       HitAlignedBarrierOrKnownEnd =
3184           AlignedBarriers.count(CB) || !CallInED.IsReachingAlignedBarrierOnly;
3185       if (HitAlignedBarrierOrKnownEnd)
3186         break;
3187       Changed |= setAndRecord(CallInED.IsReachingAlignedBarrierOnly, false);
3188     }
3189     if (HitAlignedBarrierOrKnownEnd)
3190       continue;
3191     BasicBlock *SyncBB = SyncInst->getParent();
3192     for (auto *PredBB : predecessors(SyncBB)) {
3193       if (LivenessAA && LivenessAA->isEdgeDead(PredBB, SyncBB))
3194         continue;
3195       if (!Visited.insert(PredBB))
3196         continue;
3197       auto &PredED = BEDMap[PredBB];
3198       if (setAndRecord(PredED.IsReachingAlignedBarrierOnly, false)) {
3199         Changed = true;
3200         SyncInstWorklist.push_back(PredBB->getTerminator());
3201       }
3202     }
3203     if (SyncBB != &EntryBB)
3204       continue;
3205     Changed |=
3206         setAndRecord(InterProceduralED.IsReachingAlignedBarrierOnly, false);
3207   }
3208 
3209   return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3210 }
3211 
3212 /// Try to replace memory allocation calls called by a single thread with a
3213 /// static buffer of shared memory.
3214 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> {
3215   using Base = StateWrapper<BooleanState, AbstractAttribute>;
3216   AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
3217 
3218   /// Create an abstract attribute view for the position \p IRP.
3219   static AAHeapToShared &createForPosition(const IRPosition &IRP,
3220                                            Attributor &A);
3221 
3222   /// Returns true if HeapToShared conversion is assumed to be possible.
3223   virtual bool isAssumedHeapToShared(CallBase &CB) const = 0;
3224 
3225   /// Returns true if HeapToShared conversion is assumed and the CB is a
3226   /// callsite to a free operation to be removed.
3227   virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0;
3228 
3229   /// See AbstractAttribute::getName().
3230   const std::string getName() const override { return "AAHeapToShared"; }
3231 
3232   /// See AbstractAttribute::getIdAddr().
3233   const char *getIdAddr() const override { return &ID; }
3234 
3235   /// This function should return true if the type of the \p AA is
3236   /// AAHeapToShared.
3237   static bool classof(const AbstractAttribute *AA) {
3238     return (AA->getIdAddr() == &ID);
3239   }
3240 
3241   /// Unique ID (due to the unique address)
3242   static const char ID;
3243 };
3244 
3245 struct AAHeapToSharedFunction : public AAHeapToShared {
3246   AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A)
3247       : AAHeapToShared(IRP, A) {}
3248 
3249   const std::string getAsStr(Attributor *) const override {
3250     return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) +
3251            " malloc calls eligible.";
3252   }
3253 
3254   /// See AbstractAttribute::trackStatistics().
3255   void trackStatistics() const override {}
3256 
3257   /// This functions finds free calls that will be removed by the
3258   /// HeapToShared transformation.
3259   void findPotentialRemovedFreeCalls(Attributor &A) {
3260     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3261     auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared];
3262 
3263     PotentialRemovedFreeCalls.clear();
3264     // Update free call users of found malloc calls.
3265     for (CallBase *CB : MallocCalls) {
3266       SmallVector<CallBase *, 4> FreeCalls;
3267       for (auto *U : CB->users()) {
3268         CallBase *C = dyn_cast<CallBase>(U);
3269         if (C && C->getCalledFunction() == FreeRFI.Declaration)
3270           FreeCalls.push_back(C);
3271       }
3272 
3273       if (FreeCalls.size() != 1)
3274         continue;
3275 
3276       PotentialRemovedFreeCalls.insert(FreeCalls.front());
3277     }
3278   }
3279 
3280   void initialize(Attributor &A) override {
3281     if (DisableOpenMPOptDeglobalization) {
3282       indicatePessimisticFixpoint();
3283       return;
3284     }
3285 
3286     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3287     auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
3288     if (!RFI.Declaration)
3289       return;
3290 
3291     Attributor::SimplifictionCallbackTy SCB =
3292         [](const IRPosition &, const AbstractAttribute *,
3293            bool &) -> std::optional<Value *> { return nullptr; };
3294 
3295     Function *F = getAnchorScope();
3296     for (User *U : RFI.Declaration->users())
3297       if (CallBase *CB = dyn_cast<CallBase>(U)) {
3298         if (CB->getFunction() != F)
3299           continue;
3300         MallocCalls.insert(CB);
3301         A.registerSimplificationCallback(IRPosition::callsite_returned(*CB),
3302                                          SCB);
3303       }
3304 
3305     findPotentialRemovedFreeCalls(A);
3306   }
3307 
3308   bool isAssumedHeapToShared(CallBase &CB) const override {
3309     return isValidState() && MallocCalls.count(&CB);
3310   }
3311 
3312   bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override {
3313     return isValidState() && PotentialRemovedFreeCalls.count(&CB);
3314   }
3315 
3316   ChangeStatus manifest(Attributor &A) override {
3317     if (MallocCalls.empty())
3318       return ChangeStatus::UNCHANGED;
3319 
3320     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3321     auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared];
3322 
3323     Function *F = getAnchorScope();
3324     auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this,
3325                                             DepClassTy::OPTIONAL);
3326 
3327     ChangeStatus Changed = ChangeStatus::UNCHANGED;
3328     for (CallBase *CB : MallocCalls) {
3329       // Skip replacing this if HeapToStack has already claimed it.
3330       if (HS && HS->isAssumedHeapToStack(*CB))
3331         continue;
3332 
3333       // Find the unique free call to remove it.
3334       SmallVector<CallBase *, 4> FreeCalls;
3335       for (auto *U : CB->users()) {
3336         CallBase *C = dyn_cast<CallBase>(U);
3337         if (C && C->getCalledFunction() == FreeCall.Declaration)
3338           FreeCalls.push_back(C);
3339       }
3340       if (FreeCalls.size() != 1)
3341         continue;
3342 
3343       auto *AllocSize = cast<ConstantInt>(CB->getArgOperand(0));
3344 
3345       if (AllocSize->getZExtValue() + SharedMemoryUsed > SharedMemoryLimit) {
3346         LLVM_DEBUG(dbgs() << TAG << "Cannot replace call " << *CB
3347                           << " with shared memory."
3348                           << " Shared memory usage is limited to "
3349                           << SharedMemoryLimit << " bytes\n");
3350         continue;
3351       }
3352 
3353       LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB
3354                         << " with " << AllocSize->getZExtValue()
3355                         << " bytes of shared memory\n");
3356 
3357       // Create a new shared memory buffer of the same size as the allocation
3358       // and replace all the uses of the original allocation with it.
3359       Module *M = CB->getModule();
3360       Type *Int8Ty = Type::getInt8Ty(M->getContext());
3361       Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue());
3362       auto *SharedMem = new GlobalVariable(
3363           *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage,
3364           PoisonValue::get(Int8ArrTy), CB->getName() + "_shared", nullptr,
3365           GlobalValue::NotThreadLocal,
3366           static_cast<unsigned>(AddressSpace::Shared));
3367       auto *NewBuffer =
3368           ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo());
3369 
3370       auto Remark = [&](OptimizationRemark OR) {
3371         return OR << "Replaced globalized variable with "
3372                   << ore::NV("SharedMemory", AllocSize->getZExtValue())
3373                   << (AllocSize->isOne() ? " byte " : " bytes ")
3374                   << "of shared memory.";
3375       };
3376       A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark);
3377 
3378       MaybeAlign Alignment = CB->getRetAlign();
3379       assert(Alignment &&
3380              "HeapToShared on allocation without alignment attribute");
3381       SharedMem->setAlignment(*Alignment);
3382 
3383       A.changeAfterManifest(IRPosition::callsite_returned(*CB), *NewBuffer);
3384       A.deleteAfterManifest(*CB);
3385       A.deleteAfterManifest(*FreeCalls.front());
3386 
3387       SharedMemoryUsed += AllocSize->getZExtValue();
3388       NumBytesMovedToSharedMemory = SharedMemoryUsed;
3389       Changed = ChangeStatus::CHANGED;
3390     }
3391 
3392     return Changed;
3393   }
3394 
3395   ChangeStatus updateImpl(Attributor &A) override {
3396     if (MallocCalls.empty())
3397       return indicatePessimisticFixpoint();
3398     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3399     auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
3400     if (!RFI.Declaration)
3401       return ChangeStatus::UNCHANGED;
3402 
3403     Function *F = getAnchorScope();
3404 
3405     auto NumMallocCalls = MallocCalls.size();
3406 
3407     // Only consider malloc calls executed by a single thread with a constant.
3408     for (User *U : RFI.Declaration->users()) {
3409       if (CallBase *CB = dyn_cast<CallBase>(U)) {
3410         if (CB->getCaller() != F)
3411           continue;
3412         if (!MallocCalls.count(CB))
3413           continue;
3414         if (!isa<ConstantInt>(CB->getArgOperand(0))) {
3415           MallocCalls.remove(CB);
3416           continue;
3417         }
3418         const auto *ED = A.getAAFor<AAExecutionDomain>(
3419             *this, IRPosition::function(*F), DepClassTy::REQUIRED);
3420         if (!ED || !ED->isExecutedByInitialThreadOnly(*CB))
3421           MallocCalls.remove(CB);
3422       }
3423     }
3424 
3425     findPotentialRemovedFreeCalls(A);
3426 
3427     if (NumMallocCalls != MallocCalls.size())
3428       return ChangeStatus::CHANGED;
3429 
3430     return ChangeStatus::UNCHANGED;
3431   }
3432 
3433   /// Collection of all malloc calls in a function.
3434   SmallSetVector<CallBase *, 4> MallocCalls;
3435   /// Collection of potentially removed free calls in a function.
3436   SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls;
3437   /// The total amount of shared memory that has been used for HeapToShared.
3438   unsigned SharedMemoryUsed = 0;
3439 };
3440 
3441 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> {
3442   using Base = StateWrapper<KernelInfoState, AbstractAttribute>;
3443   AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
3444 
3445   /// Statistics are tracked as part of manifest for now.
3446   void trackStatistics() const override {}
3447 
3448   /// See AbstractAttribute::getAsStr()
3449   const std::string getAsStr(Attributor *) const override {
3450     if (!isValidState())
3451       return "<invalid>";
3452     return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD"
3453                                                             : "generic") +
3454            std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]"
3455                                                                : "") +
3456            std::string(" #PRs: ") +
3457            (ReachedKnownParallelRegions.isValidState()
3458                 ? std::to_string(ReachedKnownParallelRegions.size())
3459                 : "<invalid>") +
3460            ", #Unknown PRs: " +
3461            (ReachedUnknownParallelRegions.isValidState()
3462                 ? std::to_string(ReachedUnknownParallelRegions.size())
3463                 : "<invalid>") +
3464            ", #Reaching Kernels: " +
3465            (ReachingKernelEntries.isValidState()
3466                 ? std::to_string(ReachingKernelEntries.size())
3467                 : "<invalid>") +
3468            ", #ParLevels: " +
3469            (ParallelLevels.isValidState()
3470                 ? std::to_string(ParallelLevels.size())
3471                 : "<invalid>");
3472   }
3473 
3474   /// Create an abstract attribute biew for the position \p IRP.
3475   static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A);
3476 
3477   /// See AbstractAttribute::getName()
3478   const std::string getName() const override { return "AAKernelInfo"; }
3479 
3480   /// See AbstractAttribute::getIdAddr()
3481   const char *getIdAddr() const override { return &ID; }
3482 
3483   /// This function should return true if the type of the \p AA is AAKernelInfo
3484   static bool classof(const AbstractAttribute *AA) {
3485     return (AA->getIdAddr() == &ID);
3486   }
3487 
3488   static const char ID;
3489 };
3490 
3491 /// The function kernel info abstract attribute, basically, what can we say
3492 /// about a function with regards to the KernelInfoState.
3493 struct AAKernelInfoFunction : AAKernelInfo {
3494   AAKernelInfoFunction(const IRPosition &IRP, Attributor &A)
3495       : AAKernelInfo(IRP, A) {}
3496 
3497   SmallPtrSet<Instruction *, 4> GuardedInstructions;
3498 
3499   SmallPtrSetImpl<Instruction *> &getGuardedInstructions() {
3500     return GuardedInstructions;
3501   }
3502 
3503   /// See AbstractAttribute::initialize(...).
3504   void initialize(Attributor &A) override {
3505     // This is a high-level transform that might change the constant arguments
3506     // of the init and dinit calls. We need to tell the Attributor about this
3507     // to avoid other parts using the current constant value for simpliication.
3508     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3509 
3510     Function *Fn = getAnchorScope();
3511 
3512     OMPInformationCache::RuntimeFunctionInfo &InitRFI =
3513         OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
3514     OMPInformationCache::RuntimeFunctionInfo &DeinitRFI =
3515         OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit];
3516 
3517     // For kernels we perform more initialization work, first we find the init
3518     // and deinit calls.
3519     auto StoreCallBase = [](Use &U,
3520                             OMPInformationCache::RuntimeFunctionInfo &RFI,
3521                             CallBase *&Storage) {
3522       CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI);
3523       assert(CB &&
3524              "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!");
3525       assert(!Storage &&
3526              "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!");
3527       Storage = CB;
3528       return false;
3529     };
3530     InitRFI.foreachUse(
3531         [&](Use &U, Function &) {
3532           StoreCallBase(U, InitRFI, KernelInitCB);
3533           return false;
3534         },
3535         Fn);
3536     DeinitRFI.foreachUse(
3537         [&](Use &U, Function &) {
3538           StoreCallBase(U, DeinitRFI, KernelDeinitCB);
3539           return false;
3540         },
3541         Fn);
3542 
3543     // Ignore kernels without initializers such as global constructors.
3544     if (!KernelInitCB || !KernelDeinitCB)
3545       return;
3546 
3547     // Add itself to the reaching kernel and set IsKernelEntry.
3548     ReachingKernelEntries.insert(Fn);
3549     IsKernelEntry = true;
3550 
3551     // For kernels we might need to initialize/finalize the IsSPMD state and
3552     // we need to register a simplification callback so that the Attributor
3553     // knows the constant arguments to __kmpc_target_init and
3554     // __kmpc_target_deinit might actually change.
3555 
3556     Attributor::SimplifictionCallbackTy StateMachineSimplifyCB =
3557         [&](const IRPosition &IRP, const AbstractAttribute *AA,
3558             bool &UsedAssumedInformation) -> std::optional<Value *> {
3559         return nullptr;
3560     };
3561 
3562     Attributor::SimplifictionCallbackTy ModeSimplifyCB =
3563         [&](const IRPosition &IRP, const AbstractAttribute *AA,
3564             bool &UsedAssumedInformation) -> std::optional<Value *> {
3565       // IRP represents the "SPMDCompatibilityTracker" argument of an
3566       // __kmpc_target_init or
3567       // __kmpc_target_deinit call. We will answer this one with the internal
3568       // state.
3569       if (!SPMDCompatibilityTracker.isValidState())
3570         return nullptr;
3571       if (!SPMDCompatibilityTracker.isAtFixpoint()) {
3572         if (AA)
3573           A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
3574         UsedAssumedInformation = true;
3575       } else {
3576         UsedAssumedInformation = false;
3577       }
3578       auto *Val = ConstantInt::getSigned(
3579           IntegerType::getInt8Ty(IRP.getAnchorValue().getContext()),
3580           SPMDCompatibilityTracker.isAssumed() ? OMP_TGT_EXEC_MODE_SPMD
3581                                                : OMP_TGT_EXEC_MODE_GENERIC);
3582       return Val;
3583     };
3584 
3585     constexpr const int InitModeArgNo = 1;
3586     constexpr const int DeinitModeArgNo = 1;
3587     constexpr const int InitUseStateMachineArgNo = 2;
3588     A.registerSimplificationCallback(
3589         IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo),
3590         StateMachineSimplifyCB);
3591     A.registerSimplificationCallback(
3592         IRPosition::callsite_argument(*KernelInitCB, InitModeArgNo),
3593         ModeSimplifyCB);
3594     A.registerSimplificationCallback(
3595         IRPosition::callsite_argument(*KernelDeinitCB, DeinitModeArgNo),
3596         ModeSimplifyCB);
3597 
3598     // Check if we know we are in SPMD-mode already.
3599     ConstantInt *ModeArg =
3600         dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo));
3601     if (ModeArg && (ModeArg->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD))
3602       SPMDCompatibilityTracker.indicateOptimisticFixpoint();
3603     // This is a generic region but SPMDization is disabled so stop tracking.
3604     else if (DisableOpenMPOptSPMDization)
3605       SPMDCompatibilityTracker.indicatePessimisticFixpoint();
3606 
3607     // Register virtual uses of functions we might need to preserve.
3608     auto RegisterVirtualUse = [&](RuntimeFunction RFKind,
3609                                   Attributor::VirtualUseCallbackTy &CB) {
3610       if (!OMPInfoCache.RFIs[RFKind].Declaration)
3611         return;
3612       A.registerVirtualUseCallback(*OMPInfoCache.RFIs[RFKind].Declaration, CB);
3613     };
3614 
3615     // Add a dependence to ensure updates if the state changes.
3616     auto AddDependence = [](Attributor &A, const AAKernelInfo *KI,
3617                             const AbstractAttribute *QueryingAA) {
3618       if (QueryingAA) {
3619         A.recordDependence(*KI, *QueryingAA, DepClassTy::OPTIONAL);
3620       }
3621       return true;
3622     };
3623 
3624     Attributor::VirtualUseCallbackTy CustomStateMachineUseCB =
3625         [&](Attributor &A, const AbstractAttribute *QueryingAA) {
3626           // Whenever we create a custom state machine we will insert calls to
3627           // __kmpc_get_hardware_num_threads_in_block,
3628           // __kmpc_get_warp_size,
3629           // __kmpc_barrier_simple_generic,
3630           // __kmpc_kernel_parallel, and
3631           // __kmpc_kernel_end_parallel.
3632           // Not needed if we are on track for SPMDzation.
3633           if (SPMDCompatibilityTracker.isValidState())
3634             return AddDependence(A, this, QueryingAA);
3635           // Not needed if we can't rewrite due to an invalid state.
3636           if (!ReachedKnownParallelRegions.isValidState())
3637             return AddDependence(A, this, QueryingAA);
3638           return false;
3639         };
3640 
3641     // Not needed if we are pre-runtime merge.
3642     if (!KernelInitCB->getCalledFunction()->isDeclaration()) {
3643       RegisterVirtualUse(OMPRTL___kmpc_get_hardware_num_threads_in_block,
3644                          CustomStateMachineUseCB);
3645       RegisterVirtualUse(OMPRTL___kmpc_get_warp_size, CustomStateMachineUseCB);
3646       RegisterVirtualUse(OMPRTL___kmpc_barrier_simple_generic,
3647                          CustomStateMachineUseCB);
3648       RegisterVirtualUse(OMPRTL___kmpc_kernel_parallel,
3649                          CustomStateMachineUseCB);
3650       RegisterVirtualUse(OMPRTL___kmpc_kernel_end_parallel,
3651                          CustomStateMachineUseCB);
3652     }
3653 
3654     // If we do not perform SPMDzation we do not need the virtual uses below.
3655     if (SPMDCompatibilityTracker.isAtFixpoint())
3656       return;
3657 
3658     Attributor::VirtualUseCallbackTy HWThreadIdUseCB =
3659         [&](Attributor &A, const AbstractAttribute *QueryingAA) {
3660           // Whenever we perform SPMDzation we will insert
3661           // __kmpc_get_hardware_thread_id_in_block calls.
3662           if (!SPMDCompatibilityTracker.isValidState())
3663             return AddDependence(A, this, QueryingAA);
3664           return false;
3665         };
3666     RegisterVirtualUse(OMPRTL___kmpc_get_hardware_thread_id_in_block,
3667                        HWThreadIdUseCB);
3668 
3669     Attributor::VirtualUseCallbackTy SPMDBarrierUseCB =
3670         [&](Attributor &A, const AbstractAttribute *QueryingAA) {
3671           // Whenever we perform SPMDzation with guarding we will insert
3672           // __kmpc_simple_barrier_spmd calls. If SPMDzation failed, there is
3673           // nothing to guard, or there are no parallel regions, we don't need
3674           // the calls.
3675           if (!SPMDCompatibilityTracker.isValidState())
3676             return AddDependence(A, this, QueryingAA);
3677           if (SPMDCompatibilityTracker.empty())
3678             return AddDependence(A, this, QueryingAA);
3679           if (!mayContainParallelRegion())
3680             return AddDependence(A, this, QueryingAA);
3681           return false;
3682         };
3683     RegisterVirtualUse(OMPRTL___kmpc_barrier_simple_spmd, SPMDBarrierUseCB);
3684   }
3685 
3686   /// Sanitize the string \p S such that it is a suitable global symbol name.
3687   static std::string sanitizeForGlobalName(std::string S) {
3688     std::replace_if(
3689         S.begin(), S.end(),
3690         [](const char C) {
3691           return !((C >= 'a' && C <= 'z') || (C >= 'A' && C <= 'Z') ||
3692                    (C >= '0' && C <= '9') || C == '_');
3693         },
3694         '.');
3695     return S;
3696   }
3697 
3698   /// Modify the IR based on the KernelInfoState as the fixpoint iteration is
3699   /// finished now.
3700   ChangeStatus manifest(Attributor &A) override {
3701     // If we are not looking at a kernel with __kmpc_target_init and
3702     // __kmpc_target_deinit call we cannot actually manifest the information.
3703     if (!KernelInitCB || !KernelDeinitCB)
3704       return ChangeStatus::UNCHANGED;
3705 
3706     /// Insert nested Parallelism global variable
3707     Function *Kernel = getAnchorScope();
3708     Module &M = *Kernel->getParent();
3709     Type *Int8Ty = Type::getInt8Ty(M.getContext());
3710     auto *GV = new GlobalVariable(
3711         M, Int8Ty, /* isConstant */ true, GlobalValue::WeakAnyLinkage,
3712         ConstantInt::get(Int8Ty, NestedParallelism ? 1 : 0),
3713         Kernel->getName() + "_nested_parallelism");
3714     GV->setVisibility(GlobalValue::HiddenVisibility);
3715 
3716     // If we can we change the execution mode to SPMD-mode otherwise we build a
3717     // custom state machine.
3718     ChangeStatus Changed = ChangeStatus::UNCHANGED;
3719     if (!changeToSPMDMode(A, Changed)) {
3720       if (!KernelInitCB->getCalledFunction()->isDeclaration())
3721         return buildCustomStateMachine(A);
3722     }
3723 
3724     return Changed;
3725   }
3726 
3727   void insertInstructionGuardsHelper(Attributor &A) {
3728     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3729 
3730     auto CreateGuardedRegion = [&](Instruction *RegionStartI,
3731                                    Instruction *RegionEndI) {
3732       LoopInfo *LI = nullptr;
3733       DominatorTree *DT = nullptr;
3734       MemorySSAUpdater *MSU = nullptr;
3735       using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
3736 
3737       BasicBlock *ParentBB = RegionStartI->getParent();
3738       Function *Fn = ParentBB->getParent();
3739       Module &M = *Fn->getParent();
3740 
3741       // Create all the blocks and logic.
3742       // ParentBB:
3743       //    goto RegionCheckTidBB
3744       // RegionCheckTidBB:
3745       //    Tid = __kmpc_hardware_thread_id()
3746       //    if (Tid != 0)
3747       //        goto RegionBarrierBB
3748       // RegionStartBB:
3749       //    <execute instructions guarded>
3750       //    goto RegionEndBB
3751       // RegionEndBB:
3752       //    <store escaping values to shared mem>
3753       //    goto RegionBarrierBB
3754       //  RegionBarrierBB:
3755       //    __kmpc_simple_barrier_spmd()
3756       //    // second barrier is omitted if lacking escaping values.
3757       //    <load escaping values from shared mem>
3758       //    __kmpc_simple_barrier_spmd()
3759       //    goto RegionExitBB
3760       // RegionExitBB:
3761       //    <execute rest of instructions>
3762 
3763       BasicBlock *RegionEndBB = SplitBlock(ParentBB, RegionEndI->getNextNode(),
3764                                            DT, LI, MSU, "region.guarded.end");
3765       BasicBlock *RegionBarrierBB =
3766           SplitBlock(RegionEndBB, &*RegionEndBB->getFirstInsertionPt(), DT, LI,
3767                      MSU, "region.barrier");
3768       BasicBlock *RegionExitBB =
3769           SplitBlock(RegionBarrierBB, &*RegionBarrierBB->getFirstInsertionPt(),
3770                      DT, LI, MSU, "region.exit");
3771       BasicBlock *RegionStartBB =
3772           SplitBlock(ParentBB, RegionStartI, DT, LI, MSU, "region.guarded");
3773 
3774       assert(ParentBB->getUniqueSuccessor() == RegionStartBB &&
3775              "Expected a different CFG");
3776 
3777       BasicBlock *RegionCheckTidBB = SplitBlock(
3778           ParentBB, ParentBB->getTerminator(), DT, LI, MSU, "region.check.tid");
3779 
3780       // Register basic blocks with the Attributor.
3781       A.registerManifestAddedBasicBlock(*RegionEndBB);
3782       A.registerManifestAddedBasicBlock(*RegionBarrierBB);
3783       A.registerManifestAddedBasicBlock(*RegionExitBB);
3784       A.registerManifestAddedBasicBlock(*RegionStartBB);
3785       A.registerManifestAddedBasicBlock(*RegionCheckTidBB);
3786 
3787       bool HasBroadcastValues = false;
3788       // Find escaping outputs from the guarded region to outside users and
3789       // broadcast their values to them.
3790       for (Instruction &I : *RegionStartBB) {
3791         SmallPtrSet<Instruction *, 4> OutsideUsers;
3792         for (User *Usr : I.users()) {
3793           Instruction &UsrI = *cast<Instruction>(Usr);
3794           if (UsrI.getParent() != RegionStartBB)
3795             OutsideUsers.insert(&UsrI);
3796         }
3797 
3798         if (OutsideUsers.empty())
3799           continue;
3800 
3801         HasBroadcastValues = true;
3802 
3803         // Emit a global variable in shared memory to store the broadcasted
3804         // value.
3805         auto *SharedMem = new GlobalVariable(
3806             M, I.getType(), /* IsConstant */ false,
3807             GlobalValue::InternalLinkage, UndefValue::get(I.getType()),
3808             sanitizeForGlobalName(
3809                 (I.getName() + ".guarded.output.alloc").str()),
3810             nullptr, GlobalValue::NotThreadLocal,
3811             static_cast<unsigned>(AddressSpace::Shared));
3812 
3813         // Emit a store instruction to update the value.
3814         new StoreInst(&I, SharedMem, RegionEndBB->getTerminator());
3815 
3816         LoadInst *LoadI = new LoadInst(I.getType(), SharedMem,
3817                                        I.getName() + ".guarded.output.load",
3818                                        RegionBarrierBB->getTerminator());
3819 
3820         // Emit a load instruction and replace uses of the output value.
3821         for (Instruction *UsrI : OutsideUsers)
3822           UsrI->replaceUsesOfWith(&I, LoadI);
3823       }
3824 
3825       auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3826 
3827       // Go to tid check BB in ParentBB.
3828       const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc();
3829       ParentBB->getTerminator()->eraseFromParent();
3830       OpenMPIRBuilder::LocationDescription Loc(
3831           InsertPointTy(ParentBB, ParentBB->end()), DL);
3832       OMPInfoCache.OMPBuilder.updateToLocation(Loc);
3833       uint32_t SrcLocStrSize;
3834       auto *SrcLocStr =
3835           OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3836       Value *Ident =
3837           OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3838       BranchInst::Create(RegionCheckTidBB, ParentBB)->setDebugLoc(DL);
3839 
3840       // Add check for Tid in RegionCheckTidBB
3841       RegionCheckTidBB->getTerminator()->eraseFromParent();
3842       OpenMPIRBuilder::LocationDescription LocRegionCheckTid(
3843           InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL);
3844       OMPInfoCache.OMPBuilder.updateToLocation(LocRegionCheckTid);
3845       FunctionCallee HardwareTidFn =
3846           OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3847               M, OMPRTL___kmpc_get_hardware_thread_id_in_block);
3848       CallInst *Tid =
3849           OMPInfoCache.OMPBuilder.Builder.CreateCall(HardwareTidFn, {});
3850       Tid->setDebugLoc(DL);
3851       OMPInfoCache.setCallingConvention(HardwareTidFn, Tid);
3852       Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Tid);
3853       OMPInfoCache.OMPBuilder.Builder
3854           .CreateCondBr(TidCheck, RegionStartBB, RegionBarrierBB)
3855           ->setDebugLoc(DL);
3856 
3857       // First barrier for synchronization, ensures main thread has updated
3858       // values.
3859       FunctionCallee BarrierFn =
3860           OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3861               M, OMPRTL___kmpc_barrier_simple_spmd);
3862       OMPInfoCache.OMPBuilder.updateToLocation(InsertPointTy(
3863           RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt()));
3864       CallInst *Barrier =
3865           OMPInfoCache.OMPBuilder.Builder.CreateCall(BarrierFn, {Ident, Tid});
3866       Barrier->setDebugLoc(DL);
3867       OMPInfoCache.setCallingConvention(BarrierFn, Barrier);
3868 
3869       // Second barrier ensures workers have read broadcast values.
3870       if (HasBroadcastValues) {
3871         CallInst *Barrier = CallInst::Create(BarrierFn, {Ident, Tid}, "",
3872                                              RegionBarrierBB->getTerminator());
3873         Barrier->setDebugLoc(DL);
3874         OMPInfoCache.setCallingConvention(BarrierFn, Barrier);
3875       }
3876     };
3877 
3878     auto &AllocSharedRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
3879     SmallPtrSet<BasicBlock *, 8> Visited;
3880     for (Instruction *GuardedI : SPMDCompatibilityTracker) {
3881       BasicBlock *BB = GuardedI->getParent();
3882       if (!Visited.insert(BB).second)
3883         continue;
3884 
3885       SmallVector<std::pair<Instruction *, Instruction *>> Reorders;
3886       Instruction *LastEffect = nullptr;
3887       BasicBlock::reverse_iterator IP = BB->rbegin(), IPEnd = BB->rend();
3888       while (++IP != IPEnd) {
3889         if (!IP->mayHaveSideEffects() && !IP->mayReadFromMemory())
3890           continue;
3891         Instruction *I = &*IP;
3892         if (OpenMPOpt::getCallIfRegularCall(*I, &AllocSharedRFI))
3893           continue;
3894         if (!I->user_empty() || !SPMDCompatibilityTracker.contains(I)) {
3895           LastEffect = nullptr;
3896           continue;
3897         }
3898         if (LastEffect)
3899           Reorders.push_back({I, LastEffect});
3900         LastEffect = &*IP;
3901       }
3902       for (auto &Reorder : Reorders)
3903         Reorder.first->moveBefore(Reorder.second);
3904     }
3905 
3906     SmallVector<std::pair<Instruction *, Instruction *>, 4> GuardedRegions;
3907 
3908     for (Instruction *GuardedI : SPMDCompatibilityTracker) {
3909       BasicBlock *BB = GuardedI->getParent();
3910       auto *CalleeAA = A.lookupAAFor<AAKernelInfo>(
3911           IRPosition::function(*GuardedI->getFunction()), nullptr,
3912           DepClassTy::NONE);
3913       assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo");
3914       auto &CalleeAAFunction = *cast<AAKernelInfoFunction>(CalleeAA);
3915       // Continue if instruction is already guarded.
3916       if (CalleeAAFunction.getGuardedInstructions().contains(GuardedI))
3917         continue;
3918 
3919       Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr;
3920       for (Instruction &I : *BB) {
3921         // If instruction I needs to be guarded update the guarded region
3922         // bounds.
3923         if (SPMDCompatibilityTracker.contains(&I)) {
3924           CalleeAAFunction.getGuardedInstructions().insert(&I);
3925           if (GuardedRegionStart)
3926             GuardedRegionEnd = &I;
3927           else
3928             GuardedRegionStart = GuardedRegionEnd = &I;
3929 
3930           continue;
3931         }
3932 
3933         // Instruction I does not need guarding, store
3934         // any region found and reset bounds.
3935         if (GuardedRegionStart) {
3936           GuardedRegions.push_back(
3937               std::make_pair(GuardedRegionStart, GuardedRegionEnd));
3938           GuardedRegionStart = nullptr;
3939           GuardedRegionEnd = nullptr;
3940         }
3941       }
3942     }
3943 
3944     for (auto &GR : GuardedRegions)
3945       CreateGuardedRegion(GR.first, GR.second);
3946   }
3947 
3948   void forceSingleThreadPerWorkgroupHelper(Attributor &A) {
3949     // Only allow 1 thread per workgroup to continue executing the user code.
3950     //
3951     //     InitCB = __kmpc_target_init(...)
3952     //     ThreadIdInBlock = __kmpc_get_hardware_thread_id_in_block();
3953     //     if (ThreadIdInBlock != 0) return;
3954     // UserCode:
3955     //     // user code
3956     //
3957     auto &Ctx = getAnchorValue().getContext();
3958     Function *Kernel = getAssociatedFunction();
3959     assert(Kernel && "Expected an associated function!");
3960 
3961     // Create block for user code to branch to from initial block.
3962     BasicBlock *InitBB = KernelInitCB->getParent();
3963     BasicBlock *UserCodeBB = InitBB->splitBasicBlock(
3964         KernelInitCB->getNextNode(), "main.thread.user_code");
3965     BasicBlock *ReturnBB =
3966         BasicBlock::Create(Ctx, "exit.threads", Kernel, UserCodeBB);
3967 
3968     // Register blocks with attributor:
3969     A.registerManifestAddedBasicBlock(*InitBB);
3970     A.registerManifestAddedBasicBlock(*UserCodeBB);
3971     A.registerManifestAddedBasicBlock(*ReturnBB);
3972 
3973     // Debug location:
3974     const DebugLoc &DLoc = KernelInitCB->getDebugLoc();
3975     ReturnInst::Create(Ctx, ReturnBB)->setDebugLoc(DLoc);
3976     InitBB->getTerminator()->eraseFromParent();
3977 
3978     // Prepare call to OMPRTL___kmpc_get_hardware_thread_id_in_block.
3979     Module &M = *Kernel->getParent();
3980     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3981     FunctionCallee ThreadIdInBlockFn =
3982         OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3983             M, OMPRTL___kmpc_get_hardware_thread_id_in_block);
3984 
3985     // Get thread ID in block.
3986     CallInst *ThreadIdInBlock =
3987         CallInst::Create(ThreadIdInBlockFn, "thread_id.in.block", InitBB);
3988     OMPInfoCache.setCallingConvention(ThreadIdInBlockFn, ThreadIdInBlock);
3989     ThreadIdInBlock->setDebugLoc(DLoc);
3990 
3991     // Eliminate all threads in the block with ID not equal to 0:
3992     Instruction *IsMainThread =
3993         ICmpInst::Create(ICmpInst::ICmp, CmpInst::ICMP_NE, ThreadIdInBlock,
3994                          ConstantInt::get(ThreadIdInBlock->getType(), 0),
3995                          "thread.is_main", InitBB);
3996     IsMainThread->setDebugLoc(DLoc);
3997     BranchInst::Create(ReturnBB, UserCodeBB, IsMainThread, InitBB);
3998   }
3999 
4000   bool changeToSPMDMode(Attributor &A, ChangeStatus &Changed) {
4001     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4002 
4003     // We cannot change to SPMD mode if the runtime functions aren't availible.
4004     if (!OMPInfoCache.runtimeFnsAvailable(
4005             {OMPRTL___kmpc_get_hardware_thread_id_in_block,
4006              OMPRTL___kmpc_barrier_simple_spmd}))
4007       return false;
4008 
4009     if (!SPMDCompatibilityTracker.isAssumed()) {
4010       for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) {
4011         if (!NonCompatibleI)
4012           continue;
4013 
4014         // Skip diagnostics on calls to known OpenMP runtime functions for now.
4015         if (auto *CB = dyn_cast<CallBase>(NonCompatibleI))
4016           if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction()))
4017             continue;
4018 
4019         auto Remark = [&](OptimizationRemarkAnalysis ORA) {
4020           ORA << "Value has potential side effects preventing SPMD-mode "
4021                  "execution";
4022           if (isa<CallBase>(NonCompatibleI)) {
4023             ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to "
4024                    "the called function to override";
4025           }
4026           return ORA << ".";
4027         };
4028         A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121",
4029                                                  Remark);
4030 
4031         LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: "
4032                           << *NonCompatibleI << "\n");
4033       }
4034 
4035       return false;
4036     }
4037 
4038     // Get the actual kernel, could be the caller of the anchor scope if we have
4039     // a debug wrapper.
4040     Function *Kernel = getAnchorScope();
4041     if (Kernel->hasLocalLinkage()) {
4042       assert(Kernel->hasOneUse() && "Unexpected use of debug kernel wrapper.");
4043       auto *CB = cast<CallBase>(Kernel->user_back());
4044       Kernel = CB->getCaller();
4045     }
4046     assert(omp::isKernel(*Kernel) && "Expected kernel function!");
4047 
4048     // Check if the kernel is already in SPMD mode, if so, return success.
4049     GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable(
4050         (Kernel->getName() + "_exec_mode").str());
4051     assert(ExecMode && "Kernel without exec mode?");
4052     assert(ExecMode->getInitializer() && "ExecMode doesn't have initializer!");
4053 
4054     // Set the global exec mode flag to indicate SPMD-Generic mode.
4055     assert(isa<ConstantInt>(ExecMode->getInitializer()) &&
4056            "ExecMode is not an integer!");
4057     const int8_t ExecModeVal =
4058         cast<ConstantInt>(ExecMode->getInitializer())->getSExtValue();
4059     if (ExecModeVal != OMP_TGT_EXEC_MODE_GENERIC)
4060       return true;
4061 
4062     // We will now unconditionally modify the IR, indicate a change.
4063     Changed = ChangeStatus::CHANGED;
4064 
4065     // Do not use instruction guards when no parallel is present inside
4066     // the target region.
4067     if (mayContainParallelRegion())
4068       insertInstructionGuardsHelper(A);
4069     else
4070       forceSingleThreadPerWorkgroupHelper(A);
4071 
4072     // Adjust the global exec mode flag that tells the runtime what mode this
4073     // kernel is executed in.
4074     assert(ExecModeVal == OMP_TGT_EXEC_MODE_GENERIC &&
4075            "Initially non-SPMD kernel has SPMD exec mode!");
4076     ExecMode->setInitializer(
4077         ConstantInt::get(ExecMode->getInitializer()->getType(),
4078                          ExecModeVal | OMP_TGT_EXEC_MODE_GENERIC_SPMD));
4079 
4080     // Next rewrite the init and deinit calls to indicate we use SPMD-mode now.
4081     const int InitModeArgNo = 1;
4082     const int DeinitModeArgNo = 1;
4083     const int InitUseStateMachineArgNo = 2;
4084 
4085     auto &Ctx = getAnchorValue().getContext();
4086     A.changeUseAfterManifest(
4087         KernelInitCB->getArgOperandUse(InitModeArgNo),
4088         *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx),
4089                                 OMP_TGT_EXEC_MODE_SPMD));
4090     A.changeUseAfterManifest(
4091         KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo),
4092         *ConstantInt::getBool(Ctx, false));
4093     A.changeUseAfterManifest(
4094         KernelDeinitCB->getArgOperandUse(DeinitModeArgNo),
4095         *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx),
4096                                 OMP_TGT_EXEC_MODE_SPMD));
4097 
4098     ++NumOpenMPTargetRegionKernelsSPMD;
4099 
4100     auto Remark = [&](OptimizationRemark OR) {
4101       return OR << "Transformed generic-mode kernel to SPMD-mode.";
4102     };
4103     A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark);
4104     return true;
4105   };
4106 
4107   ChangeStatus buildCustomStateMachine(Attributor &A) {
4108     // If we have disabled state machine rewrites, don't make a custom one
4109     if (DisableOpenMPOptStateMachineRewrite)
4110       return ChangeStatus::UNCHANGED;
4111 
4112     // Don't rewrite the state machine if we are not in a valid state.
4113     if (!ReachedKnownParallelRegions.isValidState())
4114       return ChangeStatus::UNCHANGED;
4115 
4116     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4117     if (!OMPInfoCache.runtimeFnsAvailable(
4118             {OMPRTL___kmpc_get_hardware_num_threads_in_block,
4119              OMPRTL___kmpc_get_warp_size, OMPRTL___kmpc_barrier_simple_generic,
4120              OMPRTL___kmpc_kernel_parallel, OMPRTL___kmpc_kernel_end_parallel}))
4121       return ChangeStatus::UNCHANGED;
4122 
4123     const int InitModeArgNo = 1;
4124     const int InitUseStateMachineArgNo = 2;
4125 
4126     // Check if the current configuration is non-SPMD and generic state machine.
4127     // If we already have SPMD mode or a custom state machine we do not need to
4128     // go any further. If it is anything but a constant something is weird and
4129     // we give up.
4130     ConstantInt *UseStateMachine = dyn_cast<ConstantInt>(
4131         KernelInitCB->getArgOperand(InitUseStateMachineArgNo));
4132     ConstantInt *Mode =
4133         dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo));
4134 
4135     // If we are stuck with generic mode, try to create a custom device (=GPU)
4136     // state machine which is specialized for the parallel regions that are
4137     // reachable by the kernel.
4138     if (!UseStateMachine || UseStateMachine->isZero() || !Mode ||
4139         (Mode->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD))
4140       return ChangeStatus::UNCHANGED;
4141 
4142     // If not SPMD mode, indicate we use a custom state machine now.
4143     auto &Ctx = getAnchorValue().getContext();
4144     auto *FalseVal = ConstantInt::getBool(Ctx, false);
4145     A.changeUseAfterManifest(
4146         KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal);
4147 
4148     // If we don't actually need a state machine we are done here. This can
4149     // happen if there simply are no parallel regions. In the resulting kernel
4150     // all worker threads will simply exit right away, leaving the main thread
4151     // to do the work alone.
4152     if (!mayContainParallelRegion()) {
4153       ++NumOpenMPTargetRegionKernelsWithoutStateMachine;
4154 
4155       auto Remark = [&](OptimizationRemark OR) {
4156         return OR << "Removing unused state machine from generic-mode kernel.";
4157       };
4158       A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark);
4159 
4160       return ChangeStatus::CHANGED;
4161     }
4162 
4163     // Keep track in the statistics of our new shiny custom state machine.
4164     if (ReachedUnknownParallelRegions.empty()) {
4165       ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback;
4166 
4167       auto Remark = [&](OptimizationRemark OR) {
4168         return OR << "Rewriting generic-mode kernel with a customized state "
4169                      "machine.";
4170       };
4171       A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark);
4172     } else {
4173       ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback;
4174 
4175       auto Remark = [&](OptimizationRemarkAnalysis OR) {
4176         return OR << "Generic-mode kernel is executed with a customized state "
4177                      "machine that requires a fallback.";
4178       };
4179       A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark);
4180 
4181       // Tell the user why we ended up with a fallback.
4182       for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) {
4183         if (!UnknownParallelRegionCB)
4184           continue;
4185         auto Remark = [&](OptimizationRemarkAnalysis ORA) {
4186           return ORA << "Call may contain unknown parallel regions. Use "
4187                      << "`__attribute__((assume(\"omp_no_parallelism\")))` to "
4188                         "override.";
4189         };
4190         A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB,
4191                                                  "OMP133", Remark);
4192       }
4193     }
4194 
4195     // Create all the blocks:
4196     //
4197     //                       InitCB = __kmpc_target_init(...)
4198     //                       BlockHwSize =
4199     //                         __kmpc_get_hardware_num_threads_in_block();
4200     //                       WarpSize = __kmpc_get_warp_size();
4201     //                       BlockSize = BlockHwSize - WarpSize;
4202     // IsWorkerCheckBB:      bool IsWorker = InitCB != -1;
4203     //                       if (IsWorker) {
4204     //                         if (InitCB >= BlockSize) return;
4205     // SMBeginBB:               __kmpc_barrier_simple_generic(...);
4206     //                         void *WorkFn;
4207     //                         bool Active = __kmpc_kernel_parallel(&WorkFn);
4208     //                         if (!WorkFn) return;
4209     // SMIsActiveCheckBB:       if (Active) {
4210     // SMIfCascadeCurrentBB:      if      (WorkFn == <ParFn0>)
4211     //                              ParFn0(...);
4212     // SMIfCascadeCurrentBB:      else if (WorkFn == <ParFn1>)
4213     //                              ParFn1(...);
4214     //                            ...
4215     // SMIfCascadeCurrentBB:      else
4216     //                              ((WorkFnTy*)WorkFn)(...);
4217     // SMEndParallelBB:           __kmpc_kernel_end_parallel(...);
4218     //                          }
4219     // SMDoneBB:                __kmpc_barrier_simple_generic(...);
4220     //                          goto SMBeginBB;
4221     //                       }
4222     // UserCodeEntryBB:      // user code
4223     //                       __kmpc_target_deinit(...)
4224     //
4225     Function *Kernel = getAssociatedFunction();
4226     assert(Kernel && "Expected an associated function!");
4227 
4228     BasicBlock *InitBB = KernelInitCB->getParent();
4229     BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock(
4230         KernelInitCB->getNextNode(), "thread.user_code.check");
4231     BasicBlock *IsWorkerCheckBB =
4232         BasicBlock::Create(Ctx, "is_worker_check", Kernel, UserCodeEntryBB);
4233     BasicBlock *StateMachineBeginBB = BasicBlock::Create(
4234         Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB);
4235     BasicBlock *StateMachineFinishedBB = BasicBlock::Create(
4236         Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB);
4237     BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create(
4238         Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB);
4239     BasicBlock *StateMachineIfCascadeCurrentBB =
4240         BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check",
4241                            Kernel, UserCodeEntryBB);
4242     BasicBlock *StateMachineEndParallelBB =
4243         BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end",
4244                            Kernel, UserCodeEntryBB);
4245     BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create(
4246         Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB);
4247     A.registerManifestAddedBasicBlock(*InitBB);
4248     A.registerManifestAddedBasicBlock(*UserCodeEntryBB);
4249     A.registerManifestAddedBasicBlock(*IsWorkerCheckBB);
4250     A.registerManifestAddedBasicBlock(*StateMachineBeginBB);
4251     A.registerManifestAddedBasicBlock(*StateMachineFinishedBB);
4252     A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB);
4253     A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB);
4254     A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB);
4255     A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB);
4256 
4257     const DebugLoc &DLoc = KernelInitCB->getDebugLoc();
4258     ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc);
4259     InitBB->getTerminator()->eraseFromParent();
4260 
4261     Instruction *IsWorker =
4262         ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB,
4263                          ConstantInt::get(KernelInitCB->getType(), -1),
4264                          "thread.is_worker", InitBB);
4265     IsWorker->setDebugLoc(DLoc);
4266     BranchInst::Create(IsWorkerCheckBB, UserCodeEntryBB, IsWorker, InitBB);
4267 
4268     Module &M = *Kernel->getParent();
4269     FunctionCallee BlockHwSizeFn =
4270         OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
4271             M, OMPRTL___kmpc_get_hardware_num_threads_in_block);
4272     FunctionCallee WarpSizeFn =
4273         OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
4274             M, OMPRTL___kmpc_get_warp_size);
4275     CallInst *BlockHwSize =
4276         CallInst::Create(BlockHwSizeFn, "block.hw_size", IsWorkerCheckBB);
4277     OMPInfoCache.setCallingConvention(BlockHwSizeFn, BlockHwSize);
4278     BlockHwSize->setDebugLoc(DLoc);
4279     CallInst *WarpSize =
4280         CallInst::Create(WarpSizeFn, "warp.size", IsWorkerCheckBB);
4281     OMPInfoCache.setCallingConvention(WarpSizeFn, WarpSize);
4282     WarpSize->setDebugLoc(DLoc);
4283     Instruction *BlockSize = BinaryOperator::CreateSub(
4284         BlockHwSize, WarpSize, "block.size", IsWorkerCheckBB);
4285     BlockSize->setDebugLoc(DLoc);
4286     Instruction *IsMainOrWorker = ICmpInst::Create(
4287         ICmpInst::ICmp, llvm::CmpInst::ICMP_SLT, KernelInitCB, BlockSize,
4288         "thread.is_main_or_worker", IsWorkerCheckBB);
4289     IsMainOrWorker->setDebugLoc(DLoc);
4290     BranchInst::Create(StateMachineBeginBB, StateMachineFinishedBB,
4291                        IsMainOrWorker, IsWorkerCheckBB);
4292 
4293     // Create local storage for the work function pointer.
4294     const DataLayout &DL = M.getDataLayout();
4295     Type *VoidPtrTy = Type::getInt8PtrTy(Ctx);
4296     Instruction *WorkFnAI =
4297         new AllocaInst(VoidPtrTy, DL.getAllocaAddrSpace(), nullptr,
4298                        "worker.work_fn.addr", &Kernel->getEntryBlock().front());
4299     WorkFnAI->setDebugLoc(DLoc);
4300 
4301     OMPInfoCache.OMPBuilder.updateToLocation(
4302         OpenMPIRBuilder::LocationDescription(
4303             IRBuilder<>::InsertPoint(StateMachineBeginBB,
4304                                      StateMachineBeginBB->end()),
4305             DLoc));
4306 
4307     Value *Ident = KernelInitCB->getArgOperand(0);
4308     Value *GTid = KernelInitCB;
4309 
4310     FunctionCallee BarrierFn =
4311         OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
4312             M, OMPRTL___kmpc_barrier_simple_generic);
4313     CallInst *Barrier =
4314         CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB);
4315     OMPInfoCache.setCallingConvention(BarrierFn, Barrier);
4316     Barrier->setDebugLoc(DLoc);
4317 
4318     if (WorkFnAI->getType()->getPointerAddressSpace() !=
4319         (unsigned int)AddressSpace::Generic) {
4320       WorkFnAI = new AddrSpaceCastInst(
4321           WorkFnAI, PointerType::get(Ctx, (unsigned int)AddressSpace::Generic),
4322           WorkFnAI->getName() + ".generic", StateMachineBeginBB);
4323       WorkFnAI->setDebugLoc(DLoc);
4324     }
4325 
4326     FunctionCallee KernelParallelFn =
4327         OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
4328             M, OMPRTL___kmpc_kernel_parallel);
4329     CallInst *IsActiveWorker = CallInst::Create(
4330         KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB);
4331     OMPInfoCache.setCallingConvention(KernelParallelFn, IsActiveWorker);
4332     IsActiveWorker->setDebugLoc(DLoc);
4333     Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn",
4334                                        StateMachineBeginBB);
4335     WorkFn->setDebugLoc(DLoc);
4336 
4337     FunctionType *ParallelRegionFnTy = FunctionType::get(
4338         Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)},
4339         false);
4340     Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
4341         WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast",
4342         StateMachineBeginBB);
4343 
4344     Instruction *IsDone =
4345         ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn,
4346                          Constant::getNullValue(VoidPtrTy), "worker.is_done",
4347                          StateMachineBeginBB);
4348     IsDone->setDebugLoc(DLoc);
4349     BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB,
4350                        IsDone, StateMachineBeginBB)
4351         ->setDebugLoc(DLoc);
4352 
4353     BranchInst::Create(StateMachineIfCascadeCurrentBB,
4354                        StateMachineDoneBarrierBB, IsActiveWorker,
4355                        StateMachineIsActiveCheckBB)
4356         ->setDebugLoc(DLoc);
4357 
4358     Value *ZeroArg =
4359         Constant::getNullValue(ParallelRegionFnTy->getParamType(0));
4360 
4361     // Now that we have most of the CFG skeleton it is time for the if-cascade
4362     // that checks the function pointer we got from the runtime against the
4363     // parallel regions we expect, if there are any.
4364     for (int I = 0, E = ReachedKnownParallelRegions.size(); I < E; ++I) {
4365       auto *ParallelRegion = ReachedKnownParallelRegions[I];
4366       BasicBlock *PRExecuteBB = BasicBlock::Create(
4367           Ctx, "worker_state_machine.parallel_region.execute", Kernel,
4368           StateMachineEndParallelBB);
4369       CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB)
4370           ->setDebugLoc(DLoc);
4371       BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB)
4372           ->setDebugLoc(DLoc);
4373 
4374       BasicBlock *PRNextBB =
4375           BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check",
4376                              Kernel, StateMachineEndParallelBB);
4377 
4378       // Check if we need to compare the pointer at all or if we can just
4379       // call the parallel region function.
4380       Value *IsPR;
4381       if (I + 1 < E || !ReachedUnknownParallelRegions.empty()) {
4382         Instruction *CmpI = ICmpInst::Create(
4383             ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion,
4384             "worker.check_parallel_region", StateMachineIfCascadeCurrentBB);
4385         CmpI->setDebugLoc(DLoc);
4386         IsPR = CmpI;
4387       } else {
4388         IsPR = ConstantInt::getTrue(Ctx);
4389       }
4390 
4391       BranchInst::Create(PRExecuteBB, PRNextBB, IsPR,
4392                          StateMachineIfCascadeCurrentBB)
4393           ->setDebugLoc(DLoc);
4394       StateMachineIfCascadeCurrentBB = PRNextBB;
4395     }
4396 
4397     // At the end of the if-cascade we place the indirect function pointer call
4398     // in case we might need it, that is if there can be parallel regions we
4399     // have not handled in the if-cascade above.
4400     if (!ReachedUnknownParallelRegions.empty()) {
4401       StateMachineIfCascadeCurrentBB->setName(
4402           "worker_state_machine.parallel_region.fallback.execute");
4403       CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "",
4404                        StateMachineIfCascadeCurrentBB)
4405           ->setDebugLoc(DLoc);
4406     }
4407     BranchInst::Create(StateMachineEndParallelBB,
4408                        StateMachineIfCascadeCurrentBB)
4409         ->setDebugLoc(DLoc);
4410 
4411     FunctionCallee EndParallelFn =
4412         OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
4413             M, OMPRTL___kmpc_kernel_end_parallel);
4414     CallInst *EndParallel =
4415         CallInst::Create(EndParallelFn, {}, "", StateMachineEndParallelBB);
4416     OMPInfoCache.setCallingConvention(EndParallelFn, EndParallel);
4417     EndParallel->setDebugLoc(DLoc);
4418     BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB)
4419         ->setDebugLoc(DLoc);
4420 
4421     CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB)
4422         ->setDebugLoc(DLoc);
4423     BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB)
4424         ->setDebugLoc(DLoc);
4425 
4426     return ChangeStatus::CHANGED;
4427   }
4428 
4429   /// Fixpoint iteration update function. Will be called every time a dependence
4430   /// changed its state (and in the beginning).
4431   ChangeStatus updateImpl(Attributor &A) override {
4432     KernelInfoState StateBefore = getState();
4433 
4434     // Callback to check a read/write instruction.
4435     auto CheckRWInst = [&](Instruction &I) {
4436       // We handle calls later.
4437       if (isa<CallBase>(I))
4438         return true;
4439       // We only care about write effects.
4440       if (!I.mayWriteToMemory())
4441         return true;
4442       if (auto *SI = dyn_cast<StoreInst>(&I)) {
4443         const auto *UnderlyingObjsAA = A.getAAFor<AAUnderlyingObjects>(
4444             *this, IRPosition::value(*SI->getPointerOperand()),
4445             DepClassTy::OPTIONAL);
4446         auto *HS = A.getAAFor<AAHeapToStack>(
4447             *this, IRPosition::function(*I.getFunction()),
4448             DepClassTy::OPTIONAL);
4449         if (UnderlyingObjsAA &&
4450             UnderlyingObjsAA->forallUnderlyingObjects([&](Value &Obj) {
4451               if (AA::isAssumedThreadLocalObject(A, Obj, *this))
4452                 return true;
4453               // Check for AAHeapToStack moved objects which must not be
4454               // guarded.
4455               auto *CB = dyn_cast<CallBase>(&Obj);
4456               return CB && HS && HS->isAssumedHeapToStack(*CB);
4457             }))
4458           return true;
4459       }
4460 
4461       // Insert instruction that needs guarding.
4462       SPMDCompatibilityTracker.insert(&I);
4463       return true;
4464     };
4465 
4466     bool UsedAssumedInformationInCheckRWInst = false;
4467     if (!SPMDCompatibilityTracker.isAtFixpoint())
4468       if (!A.checkForAllReadWriteInstructions(
4469               CheckRWInst, *this, UsedAssumedInformationInCheckRWInst))
4470         SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4471 
4472     bool UsedAssumedInformationFromReachingKernels = false;
4473     if (!IsKernelEntry) {
4474       updateParallelLevels(A);
4475 
4476       bool AllReachingKernelsKnown = true;
4477       updateReachingKernelEntries(A, AllReachingKernelsKnown);
4478       UsedAssumedInformationFromReachingKernels = !AllReachingKernelsKnown;
4479 
4480       if (!SPMDCompatibilityTracker.empty()) {
4481         if (!ParallelLevels.isValidState())
4482           SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4483         else if (!ReachingKernelEntries.isValidState())
4484           SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4485         else {
4486           // Check if all reaching kernels agree on the mode as we can otherwise
4487           // not guard instructions. We might not be sure about the mode so we
4488           // we cannot fix the internal spmd-zation state either.
4489           int SPMD = 0, Generic = 0;
4490           for (auto *Kernel : ReachingKernelEntries) {
4491             auto *CBAA = A.getAAFor<AAKernelInfo>(
4492                 *this, IRPosition::function(*Kernel), DepClassTy::OPTIONAL);
4493             if (CBAA && CBAA->SPMDCompatibilityTracker.isValidState() &&
4494                 CBAA->SPMDCompatibilityTracker.isAssumed())
4495               ++SPMD;
4496             else
4497               ++Generic;
4498             if (!CBAA || !CBAA->SPMDCompatibilityTracker.isAtFixpoint())
4499               UsedAssumedInformationFromReachingKernels = true;
4500           }
4501           if (SPMD != 0 && Generic != 0)
4502             SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4503         }
4504       }
4505     }
4506 
4507     // Callback to check a call instruction.
4508     bool AllParallelRegionStatesWereFixed = true;
4509     bool AllSPMDStatesWereFixed = true;
4510     auto CheckCallInst = [&](Instruction &I) {
4511       auto &CB = cast<CallBase>(I);
4512       auto *CBAA = A.getAAFor<AAKernelInfo>(
4513           *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL);
4514       if (!CBAA)
4515         return false;
4516       getState() ^= CBAA->getState();
4517       AllSPMDStatesWereFixed &= CBAA->SPMDCompatibilityTracker.isAtFixpoint();
4518       AllParallelRegionStatesWereFixed &=
4519           CBAA->ReachedKnownParallelRegions.isAtFixpoint();
4520       AllParallelRegionStatesWereFixed &=
4521           CBAA->ReachedUnknownParallelRegions.isAtFixpoint();
4522       return true;
4523     };
4524 
4525     bool UsedAssumedInformationInCheckCallInst = false;
4526     if (!A.checkForAllCallLikeInstructions(
4527             CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) {
4528       LLVM_DEBUG(dbgs() << TAG
4529                         << "Failed to visit all call-like instructions!\n";);
4530       return indicatePessimisticFixpoint();
4531     }
4532 
4533     // If we haven't used any assumed information for the reached parallel
4534     // region states we can fix it.
4535     if (!UsedAssumedInformationInCheckCallInst &&
4536         AllParallelRegionStatesWereFixed) {
4537       ReachedKnownParallelRegions.indicateOptimisticFixpoint();
4538       ReachedUnknownParallelRegions.indicateOptimisticFixpoint();
4539     }
4540 
4541     // If we haven't used any assumed information for the SPMD state we can fix
4542     // it.
4543     if (!UsedAssumedInformationInCheckRWInst &&
4544         !UsedAssumedInformationInCheckCallInst &&
4545         !UsedAssumedInformationFromReachingKernels && AllSPMDStatesWereFixed)
4546       SPMDCompatibilityTracker.indicateOptimisticFixpoint();
4547 
4548     return StateBefore == getState() ? ChangeStatus::UNCHANGED
4549                                      : ChangeStatus::CHANGED;
4550   }
4551 
4552 private:
4553   /// Update info regarding reaching kernels.
4554   void updateReachingKernelEntries(Attributor &A,
4555                                    bool &AllReachingKernelsKnown) {
4556     auto PredCallSite = [&](AbstractCallSite ACS) {
4557       Function *Caller = ACS.getInstruction()->getFunction();
4558 
4559       assert(Caller && "Caller is nullptr");
4560 
4561       auto *CAA = A.getOrCreateAAFor<AAKernelInfo>(
4562           IRPosition::function(*Caller), this, DepClassTy::REQUIRED);
4563       if (CAA && CAA->ReachingKernelEntries.isValidState()) {
4564         ReachingKernelEntries ^= CAA->ReachingKernelEntries;
4565         return true;
4566       }
4567 
4568       // We lost track of the caller of the associated function, any kernel
4569       // could reach now.
4570       ReachingKernelEntries.indicatePessimisticFixpoint();
4571 
4572       return true;
4573     };
4574 
4575     if (!A.checkForAllCallSites(PredCallSite, *this,
4576                                 true /* RequireAllCallSites */,
4577                                 AllReachingKernelsKnown))
4578       ReachingKernelEntries.indicatePessimisticFixpoint();
4579   }
4580 
4581   /// Update info regarding parallel levels.
4582   void updateParallelLevels(Attributor &A) {
4583     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4584     OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI =
4585         OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
4586 
4587     auto PredCallSite = [&](AbstractCallSite ACS) {
4588       Function *Caller = ACS.getInstruction()->getFunction();
4589 
4590       assert(Caller && "Caller is nullptr");
4591 
4592       auto *CAA =
4593           A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller));
4594       if (CAA && CAA->ParallelLevels.isValidState()) {
4595         // Any function that is called by `__kmpc_parallel_51` will not be
4596         // folded as the parallel level in the function is updated. In order to
4597         // get it right, all the analysis would depend on the implentation. That
4598         // said, if in the future any change to the implementation, the analysis
4599         // could be wrong. As a consequence, we are just conservative here.
4600         if (Caller == Parallel51RFI.Declaration) {
4601           ParallelLevels.indicatePessimisticFixpoint();
4602           return true;
4603         }
4604 
4605         ParallelLevels ^= CAA->ParallelLevels;
4606 
4607         return true;
4608       }
4609 
4610       // We lost track of the caller of the associated function, any kernel
4611       // could reach now.
4612       ParallelLevels.indicatePessimisticFixpoint();
4613 
4614       return true;
4615     };
4616 
4617     bool AllCallSitesKnown = true;
4618     if (!A.checkForAllCallSites(PredCallSite, *this,
4619                                 true /* RequireAllCallSites */,
4620                                 AllCallSitesKnown))
4621       ParallelLevels.indicatePessimisticFixpoint();
4622   }
4623 };
4624 
4625 /// The call site kernel info abstract attribute, basically, what can we say
4626 /// about a call site with regards to the KernelInfoState. For now this simply
4627 /// forwards the information from the callee.
4628 struct AAKernelInfoCallSite : AAKernelInfo {
4629   AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A)
4630       : AAKernelInfo(IRP, A) {}
4631 
4632   /// See AbstractAttribute::initialize(...).
4633   void initialize(Attributor &A) override {
4634     AAKernelInfo::initialize(A);
4635 
4636     CallBase &CB = cast<CallBase>(getAssociatedValue());
4637     Function *Callee = getAssociatedFunction();
4638 
4639     auto *AssumptionAA = A.getAAFor<AAAssumptionInfo>(
4640         *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL);
4641 
4642     // Check for SPMD-mode assumptions.
4643     if (AssumptionAA && AssumptionAA->hasAssumption("ompx_spmd_amenable")) {
4644       SPMDCompatibilityTracker.indicateOptimisticFixpoint();
4645       indicateOptimisticFixpoint();
4646     }
4647 
4648     // First weed out calls we do not care about, that is readonly/readnone
4649     // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a
4650     // parallel region or anything else we are looking for.
4651     if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) {
4652       indicateOptimisticFixpoint();
4653       return;
4654     }
4655 
4656     // Next we check if we know the callee. If it is a known OpenMP function
4657     // we will handle them explicitly in the switch below. If it is not, we
4658     // will use an AAKernelInfo object on the callee to gather information and
4659     // merge that into the current state. The latter happens in the updateImpl.
4660     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4661     const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee);
4662     if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) {
4663       // Unknown caller or declarations are not analyzable, we give up.
4664       if (!Callee || !A.isFunctionIPOAmendable(*Callee)) {
4665 
4666         // Unknown callees might contain parallel regions, except if they have
4667         // an appropriate assumption attached.
4668         if (!AssumptionAA ||
4669             !(AssumptionAA->hasAssumption("omp_no_openmp") ||
4670               AssumptionAA->hasAssumption("omp_no_parallelism")))
4671           ReachedUnknownParallelRegions.insert(&CB);
4672 
4673         // If SPMDCompatibilityTracker is not fixed, we need to give up on the
4674         // idea we can run something unknown in SPMD-mode.
4675         if (!SPMDCompatibilityTracker.isAtFixpoint()) {
4676           SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4677           SPMDCompatibilityTracker.insert(&CB);
4678         }
4679 
4680         // We have updated the state for this unknown call properly, there won't
4681         // be any change so we indicate a fixpoint.
4682         indicateOptimisticFixpoint();
4683       }
4684       // If the callee is known and can be used in IPO, we will update the state
4685       // based on the callee state in updateImpl.
4686       return;
4687     }
4688 
4689     const unsigned int WrapperFunctionArgNo = 6;
4690     RuntimeFunction RF = It->getSecond();
4691     switch (RF) {
4692     // All the functions we know are compatible with SPMD mode.
4693     case OMPRTL___kmpc_is_spmd_exec_mode:
4694     case OMPRTL___kmpc_distribute_static_fini:
4695     case OMPRTL___kmpc_for_static_fini:
4696     case OMPRTL___kmpc_global_thread_num:
4697     case OMPRTL___kmpc_get_hardware_num_threads_in_block:
4698     case OMPRTL___kmpc_get_hardware_num_blocks:
4699     case OMPRTL___kmpc_single:
4700     case OMPRTL___kmpc_end_single:
4701     case OMPRTL___kmpc_master:
4702     case OMPRTL___kmpc_end_master:
4703     case OMPRTL___kmpc_barrier:
4704     case OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2:
4705     case OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2:
4706     case OMPRTL___kmpc_nvptx_end_reduce_nowait:
4707       break;
4708     case OMPRTL___kmpc_distribute_static_init_4:
4709     case OMPRTL___kmpc_distribute_static_init_4u:
4710     case OMPRTL___kmpc_distribute_static_init_8:
4711     case OMPRTL___kmpc_distribute_static_init_8u:
4712     case OMPRTL___kmpc_for_static_init_4:
4713     case OMPRTL___kmpc_for_static_init_4u:
4714     case OMPRTL___kmpc_for_static_init_8:
4715     case OMPRTL___kmpc_for_static_init_8u: {
4716       // Check the schedule and allow static schedule in SPMD mode.
4717       unsigned ScheduleArgOpNo = 2;
4718       auto *ScheduleTypeCI =
4719           dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo));
4720       unsigned ScheduleTypeVal =
4721           ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0;
4722       switch (OMPScheduleType(ScheduleTypeVal)) {
4723       case OMPScheduleType::UnorderedStatic:
4724       case OMPScheduleType::UnorderedStaticChunked:
4725       case OMPScheduleType::OrderedDistribute:
4726       case OMPScheduleType::OrderedDistributeChunked:
4727         break;
4728       default:
4729         SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4730         SPMDCompatibilityTracker.insert(&CB);
4731         break;
4732       };
4733     } break;
4734     case OMPRTL___kmpc_target_init:
4735       KernelInitCB = &CB;
4736       break;
4737     case OMPRTL___kmpc_target_deinit:
4738       KernelDeinitCB = &CB;
4739       break;
4740     case OMPRTL___kmpc_parallel_51:
4741       if (auto *ParallelRegion = dyn_cast<Function>(
4742               CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) {
4743         ReachedKnownParallelRegions.insert(ParallelRegion);
4744         /// Check nested parallelism
4745         auto *FnAA = A.getAAFor<AAKernelInfo>(
4746             *this, IRPosition::function(*ParallelRegion), DepClassTy::OPTIONAL);
4747         NestedParallelism |= !FnAA || !FnAA->getState().isValidState() ||
4748                              !FnAA->ReachedKnownParallelRegions.empty() ||
4749                              !FnAA->ReachedUnknownParallelRegions.empty();
4750         break;
4751       }
4752       // The condition above should usually get the parallel region function
4753       // pointer and record it. In the off chance it doesn't we assume the
4754       // worst.
4755       ReachedUnknownParallelRegions.insert(&CB);
4756       break;
4757     case OMPRTL___kmpc_omp_task:
4758       // We do not look into tasks right now, just give up.
4759       SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4760       SPMDCompatibilityTracker.insert(&CB);
4761       ReachedUnknownParallelRegions.insert(&CB);
4762       break;
4763     case OMPRTL___kmpc_alloc_shared:
4764     case OMPRTL___kmpc_free_shared:
4765       // Return without setting a fixpoint, to be resolved in updateImpl.
4766       return;
4767     default:
4768       // Unknown OpenMP runtime calls cannot be executed in SPMD-mode,
4769       // generally. However, they do not hide parallel regions.
4770       SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4771       SPMDCompatibilityTracker.insert(&CB);
4772       break;
4773     }
4774     // All other OpenMP runtime calls will not reach parallel regions so they
4775     // can be safely ignored for now. Since it is a known OpenMP runtime call we
4776     // have now modeled all effects and there is no need for any update.
4777     indicateOptimisticFixpoint();
4778   }
4779 
4780   ChangeStatus updateImpl(Attributor &A) override {
4781     // TODO: Once we have call site specific value information we can provide
4782     //       call site specific liveness information and then it makes
4783     //       sense to specialize attributes for call sites arguments instead of
4784     //       redirecting requests to the callee argument.
4785     Function *F = getAssociatedFunction();
4786 
4787     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4788     const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F);
4789 
4790     // If F is not a runtime function, propagate the AAKernelInfo of the callee.
4791     if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) {
4792       const IRPosition &FnPos = IRPosition::function(*F);
4793       auto *FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED);
4794       if (!FnAA)
4795         return indicatePessimisticFixpoint();
4796       if (getState() == FnAA->getState())
4797         return ChangeStatus::UNCHANGED;
4798       getState() = FnAA->getState();
4799       return ChangeStatus::CHANGED;
4800     }
4801 
4802     // F is a runtime function that allocates or frees memory, check
4803     // AAHeapToStack and AAHeapToShared.
4804     KernelInfoState StateBefore = getState();
4805     assert((It->getSecond() == OMPRTL___kmpc_alloc_shared ||
4806             It->getSecond() == OMPRTL___kmpc_free_shared) &&
4807            "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call");
4808 
4809     CallBase &CB = cast<CallBase>(getAssociatedValue());
4810 
4811     auto *HeapToStackAA = A.getAAFor<AAHeapToStack>(
4812         *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL);
4813     auto *HeapToSharedAA = A.getAAFor<AAHeapToShared>(
4814         *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL);
4815 
4816     RuntimeFunction RF = It->getSecond();
4817 
4818     switch (RF) {
4819     // If neither HeapToStack nor HeapToShared assume the call is removed,
4820     // assume SPMD incompatibility.
4821     case OMPRTL___kmpc_alloc_shared:
4822       if ((!HeapToStackAA || !HeapToStackAA->isAssumedHeapToStack(CB)) &&
4823           (!HeapToSharedAA || !HeapToSharedAA->isAssumedHeapToShared(CB)))
4824         SPMDCompatibilityTracker.insert(&CB);
4825       break;
4826     case OMPRTL___kmpc_free_shared:
4827       if ((!HeapToStackAA ||
4828            !HeapToStackAA->isAssumedHeapToStackRemovedFree(CB)) &&
4829           (!HeapToSharedAA ||
4830            !HeapToSharedAA->isAssumedHeapToSharedRemovedFree(CB)))
4831         SPMDCompatibilityTracker.insert(&CB);
4832       break;
4833     default:
4834       SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4835       SPMDCompatibilityTracker.insert(&CB);
4836     }
4837 
4838     return StateBefore == getState() ? ChangeStatus::UNCHANGED
4839                                      : ChangeStatus::CHANGED;
4840   }
4841 };
4842 
4843 struct AAFoldRuntimeCall
4844     : public StateWrapper<BooleanState, AbstractAttribute> {
4845   using Base = StateWrapper<BooleanState, AbstractAttribute>;
4846 
4847   AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
4848 
4849   /// Statistics are tracked as part of manifest for now.
4850   void trackStatistics() const override {}
4851 
4852   /// Create an abstract attribute biew for the position \p IRP.
4853   static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP,
4854                                               Attributor &A);
4855 
4856   /// See AbstractAttribute::getName()
4857   const std::string getName() const override { return "AAFoldRuntimeCall"; }
4858 
4859   /// See AbstractAttribute::getIdAddr()
4860   const char *getIdAddr() const override { return &ID; }
4861 
4862   /// This function should return true if the type of the \p AA is
4863   /// AAFoldRuntimeCall
4864   static bool classof(const AbstractAttribute *AA) {
4865     return (AA->getIdAddr() == &ID);
4866   }
4867 
4868   static const char ID;
4869 };
4870 
4871 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall {
4872   AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A)
4873       : AAFoldRuntimeCall(IRP, A) {}
4874 
4875   /// See AbstractAttribute::getAsStr()
4876   const std::string getAsStr(Attributor *) const override {
4877     if (!isValidState())
4878       return "<invalid>";
4879 
4880     std::string Str("simplified value: ");
4881 
4882     if (!SimplifiedValue)
4883       return Str + std::string("none");
4884 
4885     if (!*SimplifiedValue)
4886       return Str + std::string("nullptr");
4887 
4888     if (ConstantInt *CI = dyn_cast<ConstantInt>(*SimplifiedValue))
4889       return Str + std::to_string(CI->getSExtValue());
4890 
4891     return Str + std::string("unknown");
4892   }
4893 
4894   void initialize(Attributor &A) override {
4895     if (DisableOpenMPOptFolding)
4896       indicatePessimisticFixpoint();
4897 
4898     Function *Callee = getAssociatedFunction();
4899 
4900     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4901     const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee);
4902     assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() &&
4903            "Expected a known OpenMP runtime function");
4904 
4905     RFKind = It->getSecond();
4906 
4907     CallBase &CB = cast<CallBase>(getAssociatedValue());
4908     A.registerSimplificationCallback(
4909         IRPosition::callsite_returned(CB),
4910         [&](const IRPosition &IRP, const AbstractAttribute *AA,
4911             bool &UsedAssumedInformation) -> std::optional<Value *> {
4912           assert((isValidState() ||
4913                   (SimplifiedValue && *SimplifiedValue == nullptr)) &&
4914                  "Unexpected invalid state!");
4915 
4916           if (!isAtFixpoint()) {
4917             UsedAssumedInformation = true;
4918             if (AA)
4919               A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
4920           }
4921           return SimplifiedValue;
4922         });
4923   }
4924 
4925   ChangeStatus updateImpl(Attributor &A) override {
4926     ChangeStatus Changed = ChangeStatus::UNCHANGED;
4927     switch (RFKind) {
4928     case OMPRTL___kmpc_is_spmd_exec_mode:
4929       Changed |= foldIsSPMDExecMode(A);
4930       break;
4931     case OMPRTL___kmpc_parallel_level:
4932       Changed |= foldParallelLevel(A);
4933       break;
4934     case OMPRTL___kmpc_get_hardware_num_threads_in_block:
4935       Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit");
4936       break;
4937     case OMPRTL___kmpc_get_hardware_num_blocks:
4938       Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams");
4939       break;
4940     default:
4941       llvm_unreachable("Unhandled OpenMP runtime function!");
4942     }
4943 
4944     return Changed;
4945   }
4946 
4947   ChangeStatus manifest(Attributor &A) override {
4948     ChangeStatus Changed = ChangeStatus::UNCHANGED;
4949 
4950     if (SimplifiedValue && *SimplifiedValue) {
4951       Instruction &I = *getCtxI();
4952       A.changeAfterManifest(IRPosition::inst(I), **SimplifiedValue);
4953       A.deleteAfterManifest(I);
4954 
4955       CallBase *CB = dyn_cast<CallBase>(&I);
4956       auto Remark = [&](OptimizationRemark OR) {
4957         if (auto *C = dyn_cast<ConstantInt>(*SimplifiedValue))
4958           return OR << "Replacing OpenMP runtime call "
4959                     << CB->getCalledFunction()->getName() << " with "
4960                     << ore::NV("FoldedValue", C->getZExtValue()) << ".";
4961         return OR << "Replacing OpenMP runtime call "
4962                   << CB->getCalledFunction()->getName() << ".";
4963       };
4964 
4965       if (CB && EnableVerboseRemarks)
4966         A.emitRemark<OptimizationRemark>(CB, "OMP180", Remark);
4967 
4968       LLVM_DEBUG(dbgs() << TAG << "Replacing runtime call: " << I << " with "
4969                         << **SimplifiedValue << "\n");
4970 
4971       Changed = ChangeStatus::CHANGED;
4972     }
4973 
4974     return Changed;
4975   }
4976 
4977   ChangeStatus indicatePessimisticFixpoint() override {
4978     SimplifiedValue = nullptr;
4979     return AAFoldRuntimeCall::indicatePessimisticFixpoint();
4980   }
4981 
4982 private:
4983   /// Fold __kmpc_is_spmd_exec_mode into a constant if possible.
4984   ChangeStatus foldIsSPMDExecMode(Attributor &A) {
4985     std::optional<Value *> SimplifiedValueBefore = SimplifiedValue;
4986 
4987     unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0;
4988     unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0;
4989     auto *CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
4990         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
4991 
4992     if (!CallerKernelInfoAA ||
4993         !CallerKernelInfoAA->ReachingKernelEntries.isValidState())
4994       return indicatePessimisticFixpoint();
4995 
4996     for (Kernel K : CallerKernelInfoAA->ReachingKernelEntries) {
4997       auto *AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K),
4998                                           DepClassTy::REQUIRED);
4999 
5000       if (!AA || !AA->isValidState()) {
5001         SimplifiedValue = nullptr;
5002         return indicatePessimisticFixpoint();
5003       }
5004 
5005       if (AA->SPMDCompatibilityTracker.isAssumed()) {
5006         if (AA->SPMDCompatibilityTracker.isAtFixpoint())
5007           ++KnownSPMDCount;
5008         else
5009           ++AssumedSPMDCount;
5010       } else {
5011         if (AA->SPMDCompatibilityTracker.isAtFixpoint())
5012           ++KnownNonSPMDCount;
5013         else
5014           ++AssumedNonSPMDCount;
5015       }
5016     }
5017 
5018     if ((AssumedSPMDCount + KnownSPMDCount) &&
5019         (AssumedNonSPMDCount + KnownNonSPMDCount))
5020       return indicatePessimisticFixpoint();
5021 
5022     auto &Ctx = getAnchorValue().getContext();
5023     if (KnownSPMDCount || AssumedSPMDCount) {
5024       assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 &&
5025              "Expected only SPMD kernels!");
5026       // All reaching kernels are in SPMD mode. Update all function calls to
5027       // __kmpc_is_spmd_exec_mode to 1.
5028       SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true);
5029     } else if (KnownNonSPMDCount || AssumedNonSPMDCount) {
5030       assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 &&
5031              "Expected only non-SPMD kernels!");
5032       // All reaching kernels are in non-SPMD mode. Update all function
5033       // calls to __kmpc_is_spmd_exec_mode to 0.
5034       SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false);
5035     } else {
5036       // We have empty reaching kernels, therefore we cannot tell if the
5037       // associated call site can be folded. At this moment, SimplifiedValue
5038       // must be none.
5039       assert(!SimplifiedValue && "SimplifiedValue should be none");
5040     }
5041 
5042     return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
5043                                                     : ChangeStatus::CHANGED;
5044   }
5045 
5046   /// Fold __kmpc_parallel_level into a constant if possible.
5047   ChangeStatus foldParallelLevel(Attributor &A) {
5048     std::optional<Value *> SimplifiedValueBefore = SimplifiedValue;
5049 
5050     auto *CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
5051         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
5052 
5053     if (!CallerKernelInfoAA ||
5054         !CallerKernelInfoAA->ParallelLevels.isValidState())
5055       return indicatePessimisticFixpoint();
5056 
5057     if (!CallerKernelInfoAA->ReachingKernelEntries.isValidState())
5058       return indicatePessimisticFixpoint();
5059 
5060     if (CallerKernelInfoAA->ReachingKernelEntries.empty()) {
5061       assert(!SimplifiedValue &&
5062              "SimplifiedValue should keep none at this point");
5063       return ChangeStatus::UNCHANGED;
5064     }
5065 
5066     unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0;
5067     unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0;
5068     for (Kernel K : CallerKernelInfoAA->ReachingKernelEntries) {
5069       auto *AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K),
5070                                           DepClassTy::REQUIRED);
5071       if (!AA || !AA->SPMDCompatibilityTracker.isValidState())
5072         return indicatePessimisticFixpoint();
5073 
5074       if (AA->SPMDCompatibilityTracker.isAssumed()) {
5075         if (AA->SPMDCompatibilityTracker.isAtFixpoint())
5076           ++KnownSPMDCount;
5077         else
5078           ++AssumedSPMDCount;
5079       } else {
5080         if (AA->SPMDCompatibilityTracker.isAtFixpoint())
5081           ++KnownNonSPMDCount;
5082         else
5083           ++AssumedNonSPMDCount;
5084       }
5085     }
5086 
5087     if ((AssumedSPMDCount + KnownSPMDCount) &&
5088         (AssumedNonSPMDCount + KnownNonSPMDCount))
5089       return indicatePessimisticFixpoint();
5090 
5091     auto &Ctx = getAnchorValue().getContext();
5092     // If the caller can only be reached by SPMD kernel entries, the parallel
5093     // level is 1. Similarly, if the caller can only be reached by non-SPMD
5094     // kernel entries, it is 0.
5095     if (AssumedSPMDCount || KnownSPMDCount) {
5096       assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 &&
5097              "Expected only SPMD kernels!");
5098       SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1);
5099     } else {
5100       assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 &&
5101              "Expected only non-SPMD kernels!");
5102       SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 0);
5103     }
5104     return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
5105                                                     : ChangeStatus::CHANGED;
5106   }
5107 
5108   ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) {
5109     // Specialize only if all the calls agree with the attribute constant value
5110     int32_t CurrentAttrValue = -1;
5111     std::optional<Value *> SimplifiedValueBefore = SimplifiedValue;
5112 
5113     auto *CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
5114         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
5115 
5116     if (!CallerKernelInfoAA ||
5117         !CallerKernelInfoAA->ReachingKernelEntries.isValidState())
5118       return indicatePessimisticFixpoint();
5119 
5120     // Iterate over the kernels that reach this function
5121     for (Kernel K : CallerKernelInfoAA->ReachingKernelEntries) {
5122       int32_t NextAttrVal = K->getFnAttributeAsParsedInteger(Attr, -1);
5123 
5124       if (NextAttrVal == -1 ||
5125           (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal))
5126         return indicatePessimisticFixpoint();
5127       CurrentAttrValue = NextAttrVal;
5128     }
5129 
5130     if (CurrentAttrValue != -1) {
5131       auto &Ctx = getAnchorValue().getContext();
5132       SimplifiedValue =
5133           ConstantInt::get(Type::getInt32Ty(Ctx), CurrentAttrValue);
5134     }
5135     return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
5136                                                     : ChangeStatus::CHANGED;
5137   }
5138 
5139   /// An optional value the associated value is assumed to fold to. That is, we
5140   /// assume the associated value (which is a call) can be replaced by this
5141   /// simplified value.
5142   std::optional<Value *> SimplifiedValue;
5143 
5144   /// The runtime function kind of the callee of the associated call site.
5145   RuntimeFunction RFKind;
5146 };
5147 
5148 } // namespace
5149 
5150 /// Register folding callsite
5151 void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) {
5152   auto &RFI = OMPInfoCache.RFIs[RF];
5153   RFI.foreachUse(SCC, [&](Use &U, Function &F) {
5154     CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &RFI);
5155     if (!CI)
5156       return false;
5157     A.getOrCreateAAFor<AAFoldRuntimeCall>(
5158         IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr,
5159         DepClassTy::NONE, /* ForceUpdate */ false,
5160         /* UpdateAfterInit */ false);
5161     return false;
5162   });
5163 }
5164 
5165 void OpenMPOpt::registerAAs(bool IsModulePass) {
5166   if (SCC.empty())
5167     return;
5168 
5169   if (IsModulePass) {
5170     // Ensure we create the AAKernelInfo AAs first and without triggering an
5171     // update. This will make sure we register all value simplification
5172     // callbacks before any other AA has the chance to create an AAValueSimplify
5173     // or similar.
5174     auto CreateKernelInfoCB = [&](Use &, Function &Kernel) {
5175       A.getOrCreateAAFor<AAKernelInfo>(
5176           IRPosition::function(Kernel), /* QueryingAA */ nullptr,
5177           DepClassTy::NONE, /* ForceUpdate */ false,
5178           /* UpdateAfterInit */ false);
5179       return false;
5180     };
5181     OMPInformationCache::RuntimeFunctionInfo &InitRFI =
5182         OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
5183     InitRFI.foreachUse(SCC, CreateKernelInfoCB);
5184 
5185     registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode);
5186     registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level);
5187     registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block);
5188     registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks);
5189   }
5190 
5191   // Create CallSite AA for all Getters.
5192   if (DeduceICVValues) {
5193     for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) {
5194       auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)];
5195 
5196       auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter];
5197 
5198       auto CreateAA = [&](Use &U, Function &Caller) {
5199         CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI);
5200         if (!CI)
5201           return false;
5202 
5203         auto &CB = cast<CallBase>(*CI);
5204 
5205         IRPosition CBPos = IRPosition::callsite_function(CB);
5206         A.getOrCreateAAFor<AAICVTracker>(CBPos);
5207         return false;
5208       };
5209 
5210       GetterRFI.foreachUse(SCC, CreateAA);
5211     }
5212   }
5213 
5214   // Create an ExecutionDomain AA for every function and a HeapToStack AA for
5215   // every function if there is a device kernel.
5216   if (!isOpenMPDevice(M))
5217     return;
5218 
5219   for (auto *F : SCC) {
5220     if (F->isDeclaration())
5221       continue;
5222 
5223     // We look at internal functions only on-demand but if any use is not a
5224     // direct call or outside the current set of analyzed functions, we have
5225     // to do it eagerly.
5226     if (F->hasLocalLinkage()) {
5227       if (llvm::all_of(F->uses(), [this](const Use &U) {
5228             const auto *CB = dyn_cast<CallBase>(U.getUser());
5229             return CB && CB->isCallee(&U) &&
5230                    A.isRunOn(const_cast<Function *>(CB->getCaller()));
5231           }))
5232         continue;
5233     }
5234     registerAAsForFunction(A, *F);
5235   }
5236 }
5237 
5238 void OpenMPOpt::registerAAsForFunction(Attributor &A, const Function &F) {
5239   if (!DisableOpenMPOptDeglobalization)
5240     A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F));
5241   A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(F));
5242   if (!DisableOpenMPOptDeglobalization)
5243     A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(F));
5244   if (F.hasFnAttribute(Attribute::Convergent))
5245     A.getOrCreateAAFor<AANonConvergent>(IRPosition::function(F));
5246 
5247   for (auto &I : instructions(F)) {
5248     if (auto *LI = dyn_cast<LoadInst>(&I)) {
5249       bool UsedAssumedInformation = false;
5250       A.getAssumedSimplified(IRPosition::value(*LI), /* AA */ nullptr,
5251                              UsedAssumedInformation, AA::Interprocedural);
5252       continue;
5253     }
5254     if (auto *SI = dyn_cast<StoreInst>(&I)) {
5255       A.getOrCreateAAFor<AAIsDead>(IRPosition::value(*SI));
5256       continue;
5257     }
5258     if (auto *FI = dyn_cast<FenceInst>(&I)) {
5259       A.getOrCreateAAFor<AAIsDead>(IRPosition::value(*FI));
5260       continue;
5261     }
5262     if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
5263       if (II->getIntrinsicID() == Intrinsic::assume) {
5264         A.getOrCreateAAFor<AAPotentialValues>(
5265             IRPosition::value(*II->getArgOperand(0)));
5266         continue;
5267       }
5268     }
5269   }
5270 }
5271 
5272 const char AAICVTracker::ID = 0;
5273 const char AAKernelInfo::ID = 0;
5274 const char AAExecutionDomain::ID = 0;
5275 const char AAHeapToShared::ID = 0;
5276 const char AAFoldRuntimeCall::ID = 0;
5277 
5278 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP,
5279                                               Attributor &A) {
5280   AAICVTracker *AA = nullptr;
5281   switch (IRP.getPositionKind()) {
5282   case IRPosition::IRP_INVALID:
5283   case IRPosition::IRP_FLOAT:
5284   case IRPosition::IRP_ARGUMENT:
5285   case IRPosition::IRP_CALL_SITE_ARGUMENT:
5286     llvm_unreachable("ICVTracker can only be created for function position!");
5287   case IRPosition::IRP_RETURNED:
5288     AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A);
5289     break;
5290   case IRPosition::IRP_CALL_SITE_RETURNED:
5291     AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A);
5292     break;
5293   case IRPosition::IRP_CALL_SITE:
5294     AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A);
5295     break;
5296   case IRPosition::IRP_FUNCTION:
5297     AA = new (A.Allocator) AAICVTrackerFunction(IRP, A);
5298     break;
5299   }
5300 
5301   return *AA;
5302 }
5303 
5304 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP,
5305                                                         Attributor &A) {
5306   AAExecutionDomainFunction *AA = nullptr;
5307   switch (IRP.getPositionKind()) {
5308   case IRPosition::IRP_INVALID:
5309   case IRPosition::IRP_FLOAT:
5310   case IRPosition::IRP_ARGUMENT:
5311   case IRPosition::IRP_CALL_SITE_ARGUMENT:
5312   case IRPosition::IRP_RETURNED:
5313   case IRPosition::IRP_CALL_SITE_RETURNED:
5314   case IRPosition::IRP_CALL_SITE:
5315     llvm_unreachable(
5316         "AAExecutionDomain can only be created for function position!");
5317   case IRPosition::IRP_FUNCTION:
5318     AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A);
5319     break;
5320   }
5321 
5322   return *AA;
5323 }
5324 
5325 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP,
5326                                                   Attributor &A) {
5327   AAHeapToSharedFunction *AA = nullptr;
5328   switch (IRP.getPositionKind()) {
5329   case IRPosition::IRP_INVALID:
5330   case IRPosition::IRP_FLOAT:
5331   case IRPosition::IRP_ARGUMENT:
5332   case IRPosition::IRP_CALL_SITE_ARGUMENT:
5333   case IRPosition::IRP_RETURNED:
5334   case IRPosition::IRP_CALL_SITE_RETURNED:
5335   case IRPosition::IRP_CALL_SITE:
5336     llvm_unreachable(
5337         "AAHeapToShared can only be created for function position!");
5338   case IRPosition::IRP_FUNCTION:
5339     AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A);
5340     break;
5341   }
5342 
5343   return *AA;
5344 }
5345 
5346 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP,
5347                                               Attributor &A) {
5348   AAKernelInfo *AA = nullptr;
5349   switch (IRP.getPositionKind()) {
5350   case IRPosition::IRP_INVALID:
5351   case IRPosition::IRP_FLOAT:
5352   case IRPosition::IRP_ARGUMENT:
5353   case IRPosition::IRP_RETURNED:
5354   case IRPosition::IRP_CALL_SITE_RETURNED:
5355   case IRPosition::IRP_CALL_SITE_ARGUMENT:
5356     llvm_unreachable("KernelInfo can only be created for function position!");
5357   case IRPosition::IRP_CALL_SITE:
5358     AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A);
5359     break;
5360   case IRPosition::IRP_FUNCTION:
5361     AA = new (A.Allocator) AAKernelInfoFunction(IRP, A);
5362     break;
5363   }
5364 
5365   return *AA;
5366 }
5367 
5368 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP,
5369                                                         Attributor &A) {
5370   AAFoldRuntimeCall *AA = nullptr;
5371   switch (IRP.getPositionKind()) {
5372   case IRPosition::IRP_INVALID:
5373   case IRPosition::IRP_FLOAT:
5374   case IRPosition::IRP_ARGUMENT:
5375   case IRPosition::IRP_RETURNED:
5376   case IRPosition::IRP_FUNCTION:
5377   case IRPosition::IRP_CALL_SITE:
5378   case IRPosition::IRP_CALL_SITE_ARGUMENT:
5379     llvm_unreachable("KernelInfo can only be created for call site position!");
5380   case IRPosition::IRP_CALL_SITE_RETURNED:
5381     AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A);
5382     break;
5383   }
5384 
5385   return *AA;
5386 }
5387 
5388 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) {
5389   if (!containsOpenMP(M))
5390     return PreservedAnalyses::all();
5391   if (DisableOpenMPOptimizations)
5392     return PreservedAnalyses::all();
5393 
5394   FunctionAnalysisManager &FAM =
5395       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
5396   KernelSet Kernels = getDeviceKernels(M);
5397 
5398   if (PrintModuleBeforeOptimizations)
5399     LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt Module Pass:\n" << M);
5400 
5401   auto IsCalled = [&](Function &F) {
5402     if (Kernels.contains(&F))
5403       return true;
5404     for (const User *U : F.users())
5405       if (!isa<BlockAddress>(U))
5406         return true;
5407     return false;
5408   };
5409 
5410   auto EmitRemark = [&](Function &F) {
5411     auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
5412     ORE.emit([&]() {
5413       OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F);
5414       return ORA << "Could not internalize function. "
5415                  << "Some optimizations may not be possible. [OMP140]";
5416     });
5417   };
5418 
5419   bool Changed = false;
5420 
5421   // Create internal copies of each function if this is a kernel Module. This
5422   // allows iterprocedural passes to see every call edge.
5423   DenseMap<Function *, Function *> InternalizedMap;
5424   if (isOpenMPDevice(M)) {
5425     SmallPtrSet<Function *, 16> InternalizeFns;
5426     for (Function &F : M)
5427       if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) &&
5428           !DisableInternalization) {
5429         if (Attributor::isInternalizable(F)) {
5430           InternalizeFns.insert(&F);
5431         } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) {
5432           EmitRemark(F);
5433         }
5434       }
5435 
5436     Changed |=
5437         Attributor::internalizeFunctions(InternalizeFns, InternalizedMap);
5438   }
5439 
5440   // Look at every function in the Module unless it was internalized.
5441   SetVector<Function *> Functions;
5442   SmallVector<Function *, 16> SCC;
5443   for (Function &F : M)
5444     if (!F.isDeclaration() && !InternalizedMap.lookup(&F)) {
5445       SCC.push_back(&F);
5446       Functions.insert(&F);
5447     }
5448 
5449   if (SCC.empty())
5450     return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
5451 
5452   AnalysisGetter AG(FAM);
5453 
5454   auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & {
5455     return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
5456   };
5457 
5458   BumpPtrAllocator Allocator;
5459   CallGraphUpdater CGUpdater;
5460 
5461   bool PostLink = LTOPhase == ThinOrFullLTOPhase::FullLTOPostLink ||
5462                   LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink;
5463   OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ nullptr, PostLink);
5464 
5465   unsigned MaxFixpointIterations =
5466       (isOpenMPDevice(M)) ? SetFixpointIterations : 32;
5467 
5468   AttributorConfig AC(CGUpdater);
5469   AC.DefaultInitializeLiveInternals = false;
5470   AC.IsModulePass = true;
5471   AC.RewriteSignatures = false;
5472   AC.MaxFixpointIterations = MaxFixpointIterations;
5473   AC.OREGetter = OREGetter;
5474   AC.PassName = DEBUG_TYPE;
5475   AC.InitializationCallback = OpenMPOpt::registerAAsForFunction;
5476   AC.IPOAmendableCB = [](const Function &F) {
5477     return F.hasFnAttribute("kernel");
5478   };
5479 
5480   Attributor A(Functions, InfoCache, AC);
5481 
5482   OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
5483   Changed |= OMPOpt.run(true);
5484 
5485   // Optionally inline device functions for potentially better performance.
5486   if (AlwaysInlineDeviceFunctions && isOpenMPDevice(M))
5487     for (Function &F : M)
5488       if (!F.isDeclaration() && !Kernels.contains(&F) &&
5489           !F.hasFnAttribute(Attribute::NoInline))
5490         F.addFnAttr(Attribute::AlwaysInline);
5491 
5492   if (PrintModuleAfterOptimizations)
5493     LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt Module Pass:\n" << M);
5494 
5495   if (Changed)
5496     return PreservedAnalyses::none();
5497 
5498   return PreservedAnalyses::all();
5499 }
5500 
5501 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C,
5502                                           CGSCCAnalysisManager &AM,
5503                                           LazyCallGraph &CG,
5504                                           CGSCCUpdateResult &UR) {
5505   if (!containsOpenMP(*C.begin()->getFunction().getParent()))
5506     return PreservedAnalyses::all();
5507   if (DisableOpenMPOptimizations)
5508     return PreservedAnalyses::all();
5509 
5510   SmallVector<Function *, 16> SCC;
5511   // If there are kernels in the module, we have to run on all SCC's.
5512   for (LazyCallGraph::Node &N : C) {
5513     Function *Fn = &N.getFunction();
5514     SCC.push_back(Fn);
5515   }
5516 
5517   if (SCC.empty())
5518     return PreservedAnalyses::all();
5519 
5520   Module &M = *C.begin()->getFunction().getParent();
5521 
5522   if (PrintModuleBeforeOptimizations)
5523     LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt CGSCC Pass:\n" << M);
5524 
5525   KernelSet Kernels = getDeviceKernels(M);
5526 
5527   FunctionAnalysisManager &FAM =
5528       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
5529 
5530   AnalysisGetter AG(FAM);
5531 
5532   auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & {
5533     return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
5534   };
5535 
5536   BumpPtrAllocator Allocator;
5537   CallGraphUpdater CGUpdater;
5538   CGUpdater.initialize(CG, C, AM, UR);
5539 
5540   bool PostLink = LTOPhase == ThinOrFullLTOPhase::FullLTOPostLink ||
5541                   LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink;
5542   SetVector<Function *> Functions(SCC.begin(), SCC.end());
5543   OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator,
5544                                 /*CGSCC*/ &Functions, PostLink);
5545 
5546   unsigned MaxFixpointIterations =
5547       (isOpenMPDevice(M)) ? SetFixpointIterations : 32;
5548 
5549   AttributorConfig AC(CGUpdater);
5550   AC.DefaultInitializeLiveInternals = false;
5551   AC.IsModulePass = false;
5552   AC.RewriteSignatures = false;
5553   AC.MaxFixpointIterations = MaxFixpointIterations;
5554   AC.OREGetter = OREGetter;
5555   AC.PassName = DEBUG_TYPE;
5556   AC.InitializationCallback = OpenMPOpt::registerAAsForFunction;
5557 
5558   Attributor A(Functions, InfoCache, AC);
5559 
5560   OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
5561   bool Changed = OMPOpt.run(false);
5562 
5563   if (PrintModuleAfterOptimizations)
5564     LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M);
5565 
5566   if (Changed)
5567     return PreservedAnalyses::none();
5568 
5569   return PreservedAnalyses::all();
5570 }
5571 
5572 bool llvm::omp::isKernel(Function &Fn) { return Fn.hasFnAttribute("kernel"); }
5573 
5574 KernelSet llvm::omp::getDeviceKernels(Module &M) {
5575   // TODO: Create a more cross-platform way of determining device kernels.
5576   NamedMDNode *MD = M.getNamedMetadata("nvvm.annotations");
5577   KernelSet Kernels;
5578 
5579   if (!MD)
5580     return Kernels;
5581 
5582   for (auto *Op : MD->operands()) {
5583     if (Op->getNumOperands() < 2)
5584       continue;
5585     MDString *KindID = dyn_cast<MDString>(Op->getOperand(1));
5586     if (!KindID || KindID->getString() != "kernel")
5587       continue;
5588 
5589     Function *KernelFn =
5590         mdconst::dyn_extract_or_null<Function>(Op->getOperand(0));
5591     if (!KernelFn)
5592       continue;
5593 
5594     assert(isKernel(*KernelFn) && "Inconsistent kernel function annotation");
5595     ++NumOpenMPTargetRegionKernels;
5596 
5597     Kernels.insert(KernelFn);
5598   }
5599 
5600   return Kernels;
5601 }
5602 
5603 bool llvm::omp::containsOpenMP(Module &M) {
5604   Metadata *MD = M.getModuleFlag("openmp");
5605   if (!MD)
5606     return false;
5607 
5608   return true;
5609 }
5610 
5611 bool llvm::omp::isOpenMPDevice(Module &M) {
5612   Metadata *MD = M.getModuleFlag("openmp-device");
5613   if (!MD)
5614     return false;
5615 
5616   return true;
5617 }
5618