1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // OpenMP specific optimizations:
10 //
11 // - Deduplication of runtime calls, e.g., omp_get_thread_num.
12 // - Replacing globalized device memory with stack memory.
13 // - Replacing globalized device memory with shared memory.
14 // - Parallel region merging.
15 // - Transforming generic-mode device kernels to SPMD mode.
16 // - Specializing the state machine for generic-mode device kernels.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Transforms/IPO/OpenMPOpt.h"
21 
22 #include "llvm/ADT/EnumeratedArray.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/CallGraph.h"
28 #include "llvm/Analysis/CallGraphSCCPass.h"
29 #include "llvm/Analysis/MemoryLocation.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/Frontend/OpenMP/OMPConstants.h"
33 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
34 #include "llvm/IR/Assumptions.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DiagnosticInfo.h"
37 #include "llvm/IR/GlobalValue.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/IntrinsicsAMDGPU.h"
43 #include "llvm/IR/IntrinsicsNVPTX.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/InitializePasses.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Transforms/IPO.h"
49 #include "llvm/Transforms/IPO/Attributor.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/CallGraphUpdater.h"
52 
53 #include <algorithm>
54 
55 using namespace llvm;
56 using namespace omp;
57 
58 #define DEBUG_TYPE "openmp-opt"
59 
60 static cl::opt<bool> DisableOpenMPOptimizations(
61     "openmp-opt-disable", cl::desc("Disable OpenMP specific optimizations."),
62     cl::Hidden, cl::init(false));
63 
64 static cl::opt<bool> EnableParallelRegionMerging(
65     "openmp-opt-enable-merging",
66     cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden,
67     cl::init(false));
68 
69 static cl::opt<bool>
70     DisableInternalization("openmp-opt-disable-internalization",
71                            cl::desc("Disable function internalization."),
72                            cl::Hidden, cl::init(false));
73 
74 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false),
75                                     cl::Hidden);
76 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels",
77                                         cl::init(false), cl::Hidden);
78 
79 static cl::opt<bool> HideMemoryTransferLatency(
80     "openmp-hide-memory-transfer-latency",
81     cl::desc("[WIP] Tries to hide the latency of host to device memory"
82              " transfers"),
83     cl::Hidden, cl::init(false));
84 
85 static cl::opt<bool> DisableOpenMPOptDeglobalization(
86     "openmp-opt-disable-deglobalization",
87     cl::desc("Disable OpenMP optimizations involving deglobalization."),
88     cl::Hidden, cl::init(false));
89 
90 static cl::opt<bool> DisableOpenMPOptSPMDization(
91     "openmp-opt-disable-spmdization",
92     cl::desc("Disable OpenMP optimizations involving SPMD-ization."),
93     cl::Hidden, cl::init(false));
94 
95 static cl::opt<bool> DisableOpenMPOptFolding(
96     "openmp-opt-disable-folding",
97     cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden,
98     cl::init(false));
99 
100 static cl::opt<bool> DisableOpenMPOptStateMachineRewrite(
101     "openmp-opt-disable-state-machine-rewrite",
102     cl::desc("Disable OpenMP optimizations that replace the state machine."),
103     cl::Hidden, cl::init(false));
104 
105 static cl::opt<bool> DisableOpenMPOptBarrierElimination(
106     "openmp-opt-disable-barrier-elimination",
107     cl::desc("Disable OpenMP optimizations that eliminate barriers."),
108     cl::Hidden, cl::init(false));
109 
110 static cl::opt<bool> PrintModuleAfterOptimizations(
111     "openmp-opt-print-module-after",
112     cl::desc("Print the current module after OpenMP optimizations."),
113     cl::Hidden, cl::init(false));
114 
115 static cl::opt<bool> PrintModuleBeforeOptimizations(
116     "openmp-opt-print-module-before",
117     cl::desc("Print the current module before OpenMP optimizations."),
118     cl::Hidden, cl::init(false));
119 
120 static cl::opt<bool> AlwaysInlineDeviceFunctions(
121     "openmp-opt-inline-device",
122     cl::desc("Inline all applicible functions on the device."), cl::Hidden,
123     cl::init(false));
124 
125 static cl::opt<bool>
126     EnableVerboseRemarks("openmp-opt-verbose-remarks",
127                          cl::desc("Enables more verbose remarks."), cl::Hidden,
128                          cl::init(false));
129 
130 static cl::opt<unsigned>
131     SetFixpointIterations("openmp-opt-max-iterations", cl::Hidden,
132                           cl::desc("Maximal number of attributor iterations."),
133                           cl::init(256));
134 
135 static cl::opt<unsigned>
136     SharedMemoryLimit("openmp-opt-shared-limit", cl::Hidden,
137                       cl::desc("Maximum amount of shared memory to use."),
138                       cl::init(std::numeric_limits<unsigned>::max()));
139 
140 STATISTIC(NumOpenMPRuntimeCallsDeduplicated,
141           "Number of OpenMP runtime calls deduplicated");
142 STATISTIC(NumOpenMPParallelRegionsDeleted,
143           "Number of OpenMP parallel regions deleted");
144 STATISTIC(NumOpenMPRuntimeFunctionsIdentified,
145           "Number of OpenMP runtime functions identified");
146 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified,
147           "Number of OpenMP runtime function uses identified");
148 STATISTIC(NumOpenMPTargetRegionKernels,
149           "Number of OpenMP target region entry points (=kernels) identified");
150 STATISTIC(NumOpenMPTargetRegionKernelsSPMD,
151           "Number of OpenMP target region entry points (=kernels) executed in "
152           "SPMD-mode instead of generic-mode");
153 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine,
154           "Number of OpenMP target region entry points (=kernels) executed in "
155           "generic-mode without a state machines");
156 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback,
157           "Number of OpenMP target region entry points (=kernels) executed in "
158           "generic-mode with customized state machines with fallback");
159 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback,
160           "Number of OpenMP target region entry points (=kernels) executed in "
161           "generic-mode with customized state machines without fallback");
162 STATISTIC(
163     NumOpenMPParallelRegionsReplacedInGPUStateMachine,
164     "Number of OpenMP parallel regions replaced with ID in GPU state machines");
165 STATISTIC(NumOpenMPParallelRegionsMerged,
166           "Number of OpenMP parallel regions merged");
167 STATISTIC(NumBytesMovedToSharedMemory,
168           "Amount of memory pushed to shared memory");
169 STATISTIC(NumBarriersEliminated, "Number of redundant barriers eliminated");
170 
171 #if !defined(NDEBUG)
172 static constexpr auto TAG = "[" DEBUG_TYPE "]";
173 #endif
174 
175 namespace {
176 
177 struct AAHeapToShared;
178 
179 struct AAICVTracker;
180 
181 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for
182 /// Attributor runs.
183 struct OMPInformationCache : public InformationCache {
184   OMPInformationCache(Module &M, AnalysisGetter &AG,
185                       BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC,
186                       KernelSet &Kernels)
187       : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M),
188         Kernels(Kernels) {
189 
190     OMPBuilder.initialize();
191     initializeRuntimeFunctions();
192     initializeInternalControlVars();
193   }
194 
195   /// Generic information that describes an internal control variable.
196   struct InternalControlVarInfo {
197     /// The kind, as described by InternalControlVar enum.
198     InternalControlVar Kind;
199 
200     /// The name of the ICV.
201     StringRef Name;
202 
203     /// Environment variable associated with this ICV.
204     StringRef EnvVarName;
205 
206     /// Initial value kind.
207     ICVInitValue InitKind;
208 
209     /// Initial value.
210     ConstantInt *InitValue;
211 
212     /// Setter RTL function associated with this ICV.
213     RuntimeFunction Setter;
214 
215     /// Getter RTL function associated with this ICV.
216     RuntimeFunction Getter;
217 
218     /// RTL Function corresponding to the override clause of this ICV
219     RuntimeFunction Clause;
220   };
221 
222   /// Generic information that describes a runtime function
223   struct RuntimeFunctionInfo {
224 
225     /// The kind, as described by the RuntimeFunction enum.
226     RuntimeFunction Kind;
227 
228     /// The name of the function.
229     StringRef Name;
230 
231     /// Flag to indicate a variadic function.
232     bool IsVarArg;
233 
234     /// The return type of the function.
235     Type *ReturnType;
236 
237     /// The argument types of the function.
238     SmallVector<Type *, 8> ArgumentTypes;
239 
240     /// The declaration if available.
241     Function *Declaration = nullptr;
242 
243     /// Uses of this runtime function per function containing the use.
244     using UseVector = SmallVector<Use *, 16>;
245 
246     /// Clear UsesMap for runtime function.
247     void clearUsesMap() { UsesMap.clear(); }
248 
249     /// Boolean conversion that is true if the runtime function was found.
250     operator bool() const { return Declaration; }
251 
252     /// Return the vector of uses in function \p F.
253     UseVector &getOrCreateUseVector(Function *F) {
254       std::shared_ptr<UseVector> &UV = UsesMap[F];
255       if (!UV)
256         UV = std::make_shared<UseVector>();
257       return *UV;
258     }
259 
260     /// Return the vector of uses in function \p F or `nullptr` if there are
261     /// none.
262     const UseVector *getUseVector(Function &F) const {
263       auto I = UsesMap.find(&F);
264       if (I != UsesMap.end())
265         return I->second.get();
266       return nullptr;
267     }
268 
269     /// Return how many functions contain uses of this runtime function.
270     size_t getNumFunctionsWithUses() const { return UsesMap.size(); }
271 
272     /// Return the number of arguments (or the minimal number for variadic
273     /// functions).
274     size_t getNumArgs() const { return ArgumentTypes.size(); }
275 
276     /// Run the callback \p CB on each use and forget the use if the result is
277     /// true. The callback will be fed the function in which the use was
278     /// encountered as second argument.
279     void foreachUse(SmallVectorImpl<Function *> &SCC,
280                     function_ref<bool(Use &, Function &)> CB) {
281       for (Function *F : SCC)
282         foreachUse(CB, F);
283     }
284 
285     /// Run the callback \p CB on each use within the function \p F and forget
286     /// the use if the result is true.
287     void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) {
288       SmallVector<unsigned, 8> ToBeDeleted;
289       ToBeDeleted.clear();
290 
291       unsigned Idx = 0;
292       UseVector &UV = getOrCreateUseVector(F);
293 
294       for (Use *U : UV) {
295         if (CB(*U, *F))
296           ToBeDeleted.push_back(Idx);
297         ++Idx;
298       }
299 
300       // Remove the to-be-deleted indices in reverse order as prior
301       // modifications will not modify the smaller indices.
302       while (!ToBeDeleted.empty()) {
303         unsigned Idx = ToBeDeleted.pop_back_val();
304         UV[Idx] = UV.back();
305         UV.pop_back();
306       }
307     }
308 
309   private:
310     /// Map from functions to all uses of this runtime function contained in
311     /// them.
312     DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap;
313 
314   public:
315     /// Iterators for the uses of this runtime function.
316     decltype(UsesMap)::iterator begin() { return UsesMap.begin(); }
317     decltype(UsesMap)::iterator end() { return UsesMap.end(); }
318   };
319 
320   /// An OpenMP-IR-Builder instance
321   OpenMPIRBuilder OMPBuilder;
322 
323   /// Map from runtime function kind to the runtime function description.
324   EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction,
325                   RuntimeFunction::OMPRTL___last>
326       RFIs;
327 
328   /// Map from function declarations/definitions to their runtime enum type.
329   DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap;
330 
331   /// Map from ICV kind to the ICV description.
332   EnumeratedArray<InternalControlVarInfo, InternalControlVar,
333                   InternalControlVar::ICV___last>
334       ICVs;
335 
336   /// Helper to initialize all internal control variable information for those
337   /// defined in OMPKinds.def.
338   void initializeInternalControlVars() {
339 #define ICV_RT_SET(_Name, RTL)                                                 \
340   {                                                                            \
341     auto &ICV = ICVs[_Name];                                                   \
342     ICV.Setter = RTL;                                                          \
343   }
344 #define ICV_RT_GET(Name, RTL)                                                  \
345   {                                                                            \
346     auto &ICV = ICVs[Name];                                                    \
347     ICV.Getter = RTL;                                                          \
348   }
349 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init)                           \
350   {                                                                            \
351     auto &ICV = ICVs[Enum];                                                    \
352     ICV.Name = _Name;                                                          \
353     ICV.Kind = Enum;                                                           \
354     ICV.InitKind = Init;                                                       \
355     ICV.EnvVarName = _EnvVarName;                                              \
356     switch (ICV.InitKind) {                                                    \
357     case ICV_IMPLEMENTATION_DEFINED:                                           \
358       ICV.InitValue = nullptr;                                                 \
359       break;                                                                   \
360     case ICV_ZERO:                                                             \
361       ICV.InitValue = ConstantInt::get(                                        \
362           Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0);                \
363       break;                                                                   \
364     case ICV_FALSE:                                                            \
365       ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext());    \
366       break;                                                                   \
367     case ICV_LAST:                                                             \
368       break;                                                                   \
369     }                                                                          \
370   }
371 #include "llvm/Frontend/OpenMP/OMPKinds.def"
372   }
373 
374   /// Returns true if the function declaration \p F matches the runtime
375   /// function types, that is, return type \p RTFRetType, and argument types
376   /// \p RTFArgTypes.
377   static bool declMatchesRTFTypes(Function *F, Type *RTFRetType,
378                                   SmallVector<Type *, 8> &RTFArgTypes) {
379     // TODO: We should output information to the user (under debug output
380     //       and via remarks).
381 
382     if (!F)
383       return false;
384     if (F->getReturnType() != RTFRetType)
385       return false;
386     if (F->arg_size() != RTFArgTypes.size())
387       return false;
388 
389     auto *RTFTyIt = RTFArgTypes.begin();
390     for (Argument &Arg : F->args()) {
391       if (Arg.getType() != *RTFTyIt)
392         return false;
393 
394       ++RTFTyIt;
395     }
396 
397     return true;
398   }
399 
400   // Helper to collect all uses of the declaration in the UsesMap.
401   unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) {
402     unsigned NumUses = 0;
403     if (!RFI.Declaration)
404       return NumUses;
405     OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration);
406 
407     if (CollectStats) {
408       NumOpenMPRuntimeFunctionsIdentified += 1;
409       NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses();
410     }
411 
412     // TODO: We directly convert uses into proper calls and unknown uses.
413     for (Use &U : RFI.Declaration->uses()) {
414       if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) {
415         if (ModuleSlice.count(UserI->getFunction())) {
416           RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U);
417           ++NumUses;
418         }
419       } else {
420         RFI.getOrCreateUseVector(nullptr).push_back(&U);
421         ++NumUses;
422       }
423     }
424     return NumUses;
425   }
426 
427   // Helper function to recollect uses of a runtime function.
428   void recollectUsesForFunction(RuntimeFunction RTF) {
429     auto &RFI = RFIs[RTF];
430     RFI.clearUsesMap();
431     collectUses(RFI, /*CollectStats*/ false);
432   }
433 
434   // Helper function to recollect uses of all runtime functions.
435   void recollectUses() {
436     for (int Idx = 0; Idx < RFIs.size(); ++Idx)
437       recollectUsesForFunction(static_cast<RuntimeFunction>(Idx));
438   }
439 
440   // Helper function to inherit the calling convention of the function callee.
441   void setCallingConvention(FunctionCallee Callee, CallInst *CI) {
442     if (Function *Fn = dyn_cast<Function>(Callee.getCallee()))
443       CI->setCallingConv(Fn->getCallingConv());
444   }
445 
446   /// Helper to initialize all runtime function information for those defined
447   /// in OpenMPKinds.def.
448   void initializeRuntimeFunctions() {
449     Module &M = *((*ModuleSlice.begin())->getParent());
450 
451     // Helper macros for handling __VA_ARGS__ in OMP_RTL
452 #define OMP_TYPE(VarName, ...)                                                 \
453   Type *VarName = OMPBuilder.VarName;                                          \
454   (void)VarName;
455 
456 #define OMP_ARRAY_TYPE(VarName, ...)                                           \
457   ArrayType *VarName##Ty = OMPBuilder.VarName##Ty;                             \
458   (void)VarName##Ty;                                                           \
459   PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy;                     \
460   (void)VarName##PtrTy;
461 
462 #define OMP_FUNCTION_TYPE(VarName, ...)                                        \
463   FunctionType *VarName = OMPBuilder.VarName;                                  \
464   (void)VarName;                                                               \
465   PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr;                         \
466   (void)VarName##Ptr;
467 
468 #define OMP_STRUCT_TYPE(VarName, ...)                                          \
469   StructType *VarName = OMPBuilder.VarName;                                    \
470   (void)VarName;                                                               \
471   PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr;                         \
472   (void)VarName##Ptr;
473 
474 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...)                     \
475   {                                                                            \
476     SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__});                           \
477     Function *F = M.getFunction(_Name);                                        \
478     RTLFunctions.insert(F);                                                    \
479     if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) {           \
480       RuntimeFunctionIDMap[F] = _Enum;                                         \
481       auto &RFI = RFIs[_Enum];                                                 \
482       RFI.Kind = _Enum;                                                        \
483       RFI.Name = _Name;                                                        \
484       RFI.IsVarArg = _IsVarArg;                                                \
485       RFI.ReturnType = OMPBuilder._ReturnType;                                 \
486       RFI.ArgumentTypes = std::move(ArgsTypes);                                \
487       RFI.Declaration = F;                                                     \
488       unsigned NumUses = collectUses(RFI);                                     \
489       (void)NumUses;                                                           \
490       LLVM_DEBUG({                                                             \
491         dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not")           \
492                << " found\n";                                                  \
493         if (RFI.Declaration)                                                   \
494           dbgs() << TAG << "-> got " << NumUses << " uses in "                 \
495                  << RFI.getNumFunctionsWithUses()                              \
496                  << " different functions.\n";                                 \
497       });                                                                      \
498     }                                                                          \
499   }
500 #include "llvm/Frontend/OpenMP/OMPKinds.def"
501 
502     // Remove the `noinline` attribute from `__kmpc`, `_OMP::` and `omp_`
503     // functions, except if `optnone` is present.
504     if (isOpenMPDevice(M)) {
505       for (Function &F : M) {
506         for (StringRef Prefix : {"__kmpc", "_ZN4_OMP", "omp_"})
507           if (F.hasFnAttribute(Attribute::NoInline) &&
508               F.getName().startswith(Prefix) &&
509               !F.hasFnAttribute(Attribute::OptimizeNone))
510             F.removeFnAttr(Attribute::NoInline);
511       }
512     }
513 
514     // TODO: We should attach the attributes defined in OMPKinds.def.
515   }
516 
517   /// Collection of known kernels (\see Kernel) in the module.
518   KernelSet &Kernels;
519 
520   /// Collection of known OpenMP runtime functions..
521   DenseSet<const Function *> RTLFunctions;
522 };
523 
524 template <typename Ty, bool InsertInvalidates = true>
525 struct BooleanStateWithSetVector : public BooleanState {
526   bool contains(const Ty &Elem) const { return Set.contains(Elem); }
527   bool insert(const Ty &Elem) {
528     if (InsertInvalidates)
529       BooleanState::indicatePessimisticFixpoint();
530     return Set.insert(Elem);
531   }
532 
533   const Ty &operator[](int Idx) const { return Set[Idx]; }
534   bool operator==(const BooleanStateWithSetVector &RHS) const {
535     return BooleanState::operator==(RHS) && Set == RHS.Set;
536   }
537   bool operator!=(const BooleanStateWithSetVector &RHS) const {
538     return !(*this == RHS);
539   }
540 
541   bool empty() const { return Set.empty(); }
542   size_t size() const { return Set.size(); }
543 
544   /// "Clamp" this state with \p RHS.
545   BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) {
546     BooleanState::operator^=(RHS);
547     Set.insert(RHS.Set.begin(), RHS.Set.end());
548     return *this;
549   }
550 
551 private:
552   /// A set to keep track of elements.
553   SetVector<Ty> Set;
554 
555 public:
556   typename decltype(Set)::iterator begin() { return Set.begin(); }
557   typename decltype(Set)::iterator end() { return Set.end(); }
558   typename decltype(Set)::const_iterator begin() const { return Set.begin(); }
559   typename decltype(Set)::const_iterator end() const { return Set.end(); }
560 };
561 
562 template <typename Ty, bool InsertInvalidates = true>
563 using BooleanStateWithPtrSetVector =
564     BooleanStateWithSetVector<Ty *, InsertInvalidates>;
565 
566 struct KernelInfoState : AbstractState {
567   /// Flag to track if we reached a fixpoint.
568   bool IsAtFixpoint = false;
569 
570   /// The parallel regions (identified by the outlined parallel functions) that
571   /// can be reached from the associated function.
572   BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false>
573       ReachedKnownParallelRegions;
574 
575   /// State to track what parallel region we might reach.
576   BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions;
577 
578   /// State to track if we are in SPMD-mode, assumed or know, and why we decided
579   /// we cannot be. If it is assumed, then RequiresFullRuntime should also be
580   /// false.
581   BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker;
582 
583   /// The __kmpc_target_init call in this kernel, if any. If we find more than
584   /// one we abort as the kernel is malformed.
585   CallBase *KernelInitCB = nullptr;
586 
587   /// The __kmpc_target_deinit call in this kernel, if any. If we find more than
588   /// one we abort as the kernel is malformed.
589   CallBase *KernelDeinitCB = nullptr;
590 
591   /// Flag to indicate if the associated function is a kernel entry.
592   bool IsKernelEntry = false;
593 
594   /// State to track what kernel entries can reach the associated function.
595   BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries;
596 
597   /// State to indicate if we can track parallel level of the associated
598   /// function. We will give up tracking if we encounter unknown caller or the
599   /// caller is __kmpc_parallel_51.
600   BooleanStateWithSetVector<uint8_t> ParallelLevels;
601 
602   /// Abstract State interface
603   ///{
604 
605   KernelInfoState() = default;
606   KernelInfoState(bool BestState) {
607     if (!BestState)
608       indicatePessimisticFixpoint();
609   }
610 
611   /// See AbstractState::isValidState(...)
612   bool isValidState() const override { return true; }
613 
614   /// See AbstractState::isAtFixpoint(...)
615   bool isAtFixpoint() const override { return IsAtFixpoint; }
616 
617   /// See AbstractState::indicatePessimisticFixpoint(...)
618   ChangeStatus indicatePessimisticFixpoint() override {
619     IsAtFixpoint = true;
620     ReachingKernelEntries.indicatePessimisticFixpoint();
621     SPMDCompatibilityTracker.indicatePessimisticFixpoint();
622     ReachedKnownParallelRegions.indicatePessimisticFixpoint();
623     ReachedUnknownParallelRegions.indicatePessimisticFixpoint();
624     return ChangeStatus::CHANGED;
625   }
626 
627   /// See AbstractState::indicateOptimisticFixpoint(...)
628   ChangeStatus indicateOptimisticFixpoint() override {
629     IsAtFixpoint = true;
630     ReachingKernelEntries.indicateOptimisticFixpoint();
631     SPMDCompatibilityTracker.indicateOptimisticFixpoint();
632     ReachedKnownParallelRegions.indicateOptimisticFixpoint();
633     ReachedUnknownParallelRegions.indicateOptimisticFixpoint();
634     return ChangeStatus::UNCHANGED;
635   }
636 
637   /// Return the assumed state
638   KernelInfoState &getAssumed() { return *this; }
639   const KernelInfoState &getAssumed() const { return *this; }
640 
641   bool operator==(const KernelInfoState &RHS) const {
642     if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker)
643       return false;
644     if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions)
645       return false;
646     if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions)
647       return false;
648     if (ReachingKernelEntries != RHS.ReachingKernelEntries)
649       return false;
650     return true;
651   }
652 
653   /// Returns true if this kernel contains any OpenMP parallel regions.
654   bool mayContainParallelRegion() {
655     return !ReachedKnownParallelRegions.empty() ||
656            !ReachedUnknownParallelRegions.empty();
657   }
658 
659   /// Return empty set as the best state of potential values.
660   static KernelInfoState getBestState() { return KernelInfoState(true); }
661 
662   static KernelInfoState getBestState(KernelInfoState &KIS) {
663     return getBestState();
664   }
665 
666   /// Return full set as the worst state of potential values.
667   static KernelInfoState getWorstState() { return KernelInfoState(false); }
668 
669   /// "Clamp" this state with \p KIS.
670   KernelInfoState operator^=(const KernelInfoState &KIS) {
671     // Do not merge two different _init and _deinit call sites.
672     if (KIS.KernelInitCB) {
673       if (KernelInitCB && KernelInitCB != KIS.KernelInitCB)
674         llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt "
675                          "assumptions.");
676       KernelInitCB = KIS.KernelInitCB;
677     }
678     if (KIS.KernelDeinitCB) {
679       if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB)
680         llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt "
681                          "assumptions.");
682       KernelDeinitCB = KIS.KernelDeinitCB;
683     }
684     SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker;
685     ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions;
686     ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions;
687     return *this;
688   }
689 
690   KernelInfoState operator&=(const KernelInfoState &KIS) {
691     return (*this ^= KIS);
692   }
693 
694   ///}
695 };
696 
697 /// Used to map the values physically (in the IR) stored in an offload
698 /// array, to a vector in memory.
699 struct OffloadArray {
700   /// Physical array (in the IR).
701   AllocaInst *Array = nullptr;
702   /// Mapped values.
703   SmallVector<Value *, 8> StoredValues;
704   /// Last stores made in the offload array.
705   SmallVector<StoreInst *, 8> LastAccesses;
706 
707   OffloadArray() = default;
708 
709   /// Initializes the OffloadArray with the values stored in \p Array before
710   /// instruction \p Before is reached. Returns false if the initialization
711   /// fails.
712   /// This MUST be used immediately after the construction of the object.
713   bool initialize(AllocaInst &Array, Instruction &Before) {
714     if (!Array.getAllocatedType()->isArrayTy())
715       return false;
716 
717     if (!getValues(Array, Before))
718       return false;
719 
720     this->Array = &Array;
721     return true;
722   }
723 
724   static const unsigned DeviceIDArgNum = 1;
725   static const unsigned BasePtrsArgNum = 3;
726   static const unsigned PtrsArgNum = 4;
727   static const unsigned SizesArgNum = 5;
728 
729 private:
730   /// Traverses the BasicBlock where \p Array is, collecting the stores made to
731   /// \p Array, leaving StoredValues with the values stored before the
732   /// instruction \p Before is reached.
733   bool getValues(AllocaInst &Array, Instruction &Before) {
734     // Initialize container.
735     const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements();
736     StoredValues.assign(NumValues, nullptr);
737     LastAccesses.assign(NumValues, nullptr);
738 
739     // TODO: This assumes the instruction \p Before is in the same
740     //  BasicBlock as Array. Make it general, for any control flow graph.
741     BasicBlock *BB = Array.getParent();
742     if (BB != Before.getParent())
743       return false;
744 
745     const DataLayout &DL = Array.getModule()->getDataLayout();
746     const unsigned int PointerSize = DL.getPointerSize();
747 
748     for (Instruction &I : *BB) {
749       if (&I == &Before)
750         break;
751 
752       if (!isa<StoreInst>(&I))
753         continue;
754 
755       auto *S = cast<StoreInst>(&I);
756       int64_t Offset = -1;
757       auto *Dst =
758           GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL);
759       if (Dst == &Array) {
760         int64_t Idx = Offset / PointerSize;
761         StoredValues[Idx] = getUnderlyingObject(S->getValueOperand());
762         LastAccesses[Idx] = S;
763       }
764     }
765 
766     return isFilled();
767   }
768 
769   /// Returns true if all values in StoredValues and
770   /// LastAccesses are not nullptrs.
771   bool isFilled() {
772     const unsigned NumValues = StoredValues.size();
773     for (unsigned I = 0; I < NumValues; ++I) {
774       if (!StoredValues[I] || !LastAccesses[I])
775         return false;
776     }
777 
778     return true;
779   }
780 };
781 
782 struct OpenMPOpt {
783 
784   using OptimizationRemarkGetter =
785       function_ref<OptimizationRemarkEmitter &(Function *)>;
786 
787   OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater,
788             OptimizationRemarkGetter OREGetter,
789             OMPInformationCache &OMPInfoCache, Attributor &A)
790       : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater),
791         OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {}
792 
793   /// Check if any remarks are enabled for openmp-opt
794   bool remarksEnabled() {
795     auto &Ctx = M.getContext();
796     return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE);
797   }
798 
799   /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice.
800   bool run(bool IsModulePass) {
801     if (SCC.empty())
802       return false;
803 
804     bool Changed = false;
805 
806     LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size()
807                       << " functions in a slice with "
808                       << OMPInfoCache.ModuleSlice.size() << " functions\n");
809 
810     if (IsModulePass) {
811       Changed |= runAttributor(IsModulePass);
812 
813       // Recollect uses, in case Attributor deleted any.
814       OMPInfoCache.recollectUses();
815 
816       // TODO: This should be folded into buildCustomStateMachine.
817       Changed |= rewriteDeviceCodeStateMachine();
818 
819       if (remarksEnabled())
820         analysisGlobalization();
821 
822       Changed |= eliminateBarriers();
823     } else {
824       if (PrintICVValues)
825         printICVs();
826       if (PrintOpenMPKernels)
827         printKernels();
828 
829       Changed |= runAttributor(IsModulePass);
830 
831       // Recollect uses, in case Attributor deleted any.
832       OMPInfoCache.recollectUses();
833 
834       Changed |= deleteParallelRegions();
835 
836       if (HideMemoryTransferLatency)
837         Changed |= hideMemTransfersLatency();
838       Changed |= deduplicateRuntimeCalls();
839       if (EnableParallelRegionMerging) {
840         if (mergeParallelRegions()) {
841           deduplicateRuntimeCalls();
842           Changed = true;
843         }
844       }
845 
846       Changed |= eliminateBarriers();
847     }
848 
849     return Changed;
850   }
851 
852   /// Print initial ICV values for testing.
853   /// FIXME: This should be done from the Attributor once it is added.
854   void printICVs() const {
855     InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel,
856                                  ICV_proc_bind};
857 
858     for (Function *F : OMPInfoCache.ModuleSlice) {
859       for (auto ICV : ICVs) {
860         auto ICVInfo = OMPInfoCache.ICVs[ICV];
861         auto Remark = [&](OptimizationRemarkAnalysis ORA) {
862           return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name)
863                      << " Value: "
864                      << (ICVInfo.InitValue
865                              ? toString(ICVInfo.InitValue->getValue(), 10, true)
866                              : "IMPLEMENTATION_DEFINED");
867         };
868 
869         emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark);
870       }
871     }
872   }
873 
874   /// Print OpenMP GPU kernels for testing.
875   void printKernels() const {
876     for (Function *F : SCC) {
877       if (!OMPInfoCache.Kernels.count(F))
878         continue;
879 
880       auto Remark = [&](OptimizationRemarkAnalysis ORA) {
881         return ORA << "OpenMP GPU kernel "
882                    << ore::NV("OpenMPGPUKernel", F->getName()) << "\n";
883       };
884 
885       emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark);
886     }
887   }
888 
889   /// Return the call if \p U is a callee use in a regular call. If \p RFI is
890   /// given it has to be the callee or a nullptr is returned.
891   static CallInst *getCallIfRegularCall(
892       Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) {
893     CallInst *CI = dyn_cast<CallInst>(U.getUser());
894     if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() &&
895         (!RFI ||
896          (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration)))
897       return CI;
898     return nullptr;
899   }
900 
901   /// Return the call if \p V is a regular call. If \p RFI is given it has to be
902   /// the callee or a nullptr is returned.
903   static CallInst *getCallIfRegularCall(
904       Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) {
905     CallInst *CI = dyn_cast<CallInst>(&V);
906     if (CI && !CI->hasOperandBundles() &&
907         (!RFI ||
908          (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration)))
909       return CI;
910     return nullptr;
911   }
912 
913 private:
914   /// Merge parallel regions when it is safe.
915   bool mergeParallelRegions() {
916     const unsigned CallbackCalleeOperand = 2;
917     const unsigned CallbackFirstArgOperand = 3;
918     using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
919 
920     // Check if there are any __kmpc_fork_call calls to merge.
921     OMPInformationCache::RuntimeFunctionInfo &RFI =
922         OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call];
923 
924     if (!RFI.Declaration)
925       return false;
926 
927     // Unmergable calls that prevent merging a parallel region.
928     OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = {
929         OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind],
930         OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads],
931     };
932 
933     bool Changed = false;
934     LoopInfo *LI = nullptr;
935     DominatorTree *DT = nullptr;
936 
937     SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap;
938 
939     BasicBlock *StartBB = nullptr, *EndBB = nullptr;
940     auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {
941       BasicBlock *CGStartBB = CodeGenIP.getBlock();
942       BasicBlock *CGEndBB =
943           SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI);
944       assert(StartBB != nullptr && "StartBB should not be null");
945       CGStartBB->getTerminator()->setSuccessor(0, StartBB);
946       assert(EndBB != nullptr && "EndBB should not be null");
947       EndBB->getTerminator()->setSuccessor(0, CGEndBB);
948     };
949 
950     auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &,
951                       Value &Inner, Value *&ReplacementValue) -> InsertPointTy {
952       ReplacementValue = &Inner;
953       return CodeGenIP;
954     };
955 
956     auto FiniCB = [&](InsertPointTy CodeGenIP) {};
957 
958     /// Create a sequential execution region within a merged parallel region,
959     /// encapsulated in a master construct with a barrier for synchronization.
960     auto CreateSequentialRegion = [&](Function *OuterFn,
961                                       BasicBlock *OuterPredBB,
962                                       Instruction *SeqStartI,
963                                       Instruction *SeqEndI) {
964       // Isolate the instructions of the sequential region to a separate
965       // block.
966       BasicBlock *ParentBB = SeqStartI->getParent();
967       BasicBlock *SeqEndBB =
968           SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI);
969       BasicBlock *SeqAfterBB =
970           SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI);
971       BasicBlock *SeqStartBB =
972           SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged");
973 
974       assert(ParentBB->getUniqueSuccessor() == SeqStartBB &&
975              "Expected a different CFG");
976       const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc();
977       ParentBB->getTerminator()->eraseFromParent();
978 
979       auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {
980         BasicBlock *CGStartBB = CodeGenIP.getBlock();
981         BasicBlock *CGEndBB =
982             SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI);
983         assert(SeqStartBB != nullptr && "SeqStartBB should not be null");
984         CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB);
985         assert(SeqEndBB != nullptr && "SeqEndBB should not be null");
986         SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB);
987       };
988       auto FiniCB = [&](InsertPointTy CodeGenIP) {};
989 
990       // Find outputs from the sequential region to outside users and
991       // broadcast their values to them.
992       for (Instruction &I : *SeqStartBB) {
993         SmallPtrSet<Instruction *, 4> OutsideUsers;
994         for (User *Usr : I.users()) {
995           Instruction &UsrI = *cast<Instruction>(Usr);
996           // Ignore outputs to LT intrinsics, code extraction for the merged
997           // parallel region will fix them.
998           if (UsrI.isLifetimeStartOrEnd())
999             continue;
1000 
1001           if (UsrI.getParent() != SeqStartBB)
1002             OutsideUsers.insert(&UsrI);
1003         }
1004 
1005         if (OutsideUsers.empty())
1006           continue;
1007 
1008         // Emit an alloca in the outer region to store the broadcasted
1009         // value.
1010         const DataLayout &DL = M.getDataLayout();
1011         AllocaInst *AllocaI = new AllocaInst(
1012             I.getType(), DL.getAllocaAddrSpace(), nullptr,
1013             I.getName() + ".seq.output.alloc", &OuterFn->front().front());
1014 
1015         // Emit a store instruction in the sequential BB to update the
1016         // value.
1017         new StoreInst(&I, AllocaI, SeqStartBB->getTerminator());
1018 
1019         // Emit a load instruction and replace the use of the output value
1020         // with it.
1021         for (Instruction *UsrI : OutsideUsers) {
1022           LoadInst *LoadI = new LoadInst(
1023               I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI);
1024           UsrI->replaceUsesOfWith(&I, LoadI);
1025         }
1026       }
1027 
1028       OpenMPIRBuilder::LocationDescription Loc(
1029           InsertPointTy(ParentBB, ParentBB->end()), DL);
1030       InsertPointTy SeqAfterIP =
1031           OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB);
1032 
1033       OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel);
1034 
1035       BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock());
1036 
1037       LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn
1038                         << "\n");
1039     };
1040 
1041     // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all
1042     // contained in BB and only separated by instructions that can be
1043     // redundantly executed in parallel. The block BB is split before the first
1044     // call (in MergableCIs) and after the last so the entire region we merge
1045     // into a single parallel region is contained in a single basic block
1046     // without any other instructions. We use the OpenMPIRBuilder to outline
1047     // that block and call the resulting function via __kmpc_fork_call.
1048     auto Merge = [&](const SmallVectorImpl<CallInst *> &MergableCIs,
1049                      BasicBlock *BB) {
1050       // TODO: Change the interface to allow single CIs expanded, e.g, to
1051       // include an outer loop.
1052       assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs");
1053 
1054       auto Remark = [&](OptimizationRemark OR) {
1055         OR << "Parallel region merged with parallel region"
1056            << (MergableCIs.size() > 2 ? "s" : "") << " at ";
1057         for (auto *CI : llvm::drop_begin(MergableCIs)) {
1058           OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc());
1059           if (CI != MergableCIs.back())
1060             OR << ", ";
1061         }
1062         return OR << ".";
1063       };
1064 
1065       emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark);
1066 
1067       Function *OriginalFn = BB->getParent();
1068       LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size()
1069                         << " parallel regions in " << OriginalFn->getName()
1070                         << "\n");
1071 
1072       // Isolate the calls to merge in a separate block.
1073       EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI);
1074       BasicBlock *AfterBB =
1075           SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI);
1076       StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr,
1077                            "omp.par.merged");
1078 
1079       assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG");
1080       const DebugLoc DL = BB->getTerminator()->getDebugLoc();
1081       BB->getTerminator()->eraseFromParent();
1082 
1083       // Create sequential regions for sequential instructions that are
1084       // in-between mergable parallel regions.
1085       for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1;
1086            It != End; ++It) {
1087         Instruction *ForkCI = *It;
1088         Instruction *NextForkCI = *(It + 1);
1089 
1090         // Continue if there are not in-between instructions.
1091         if (ForkCI->getNextNode() == NextForkCI)
1092           continue;
1093 
1094         CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(),
1095                                NextForkCI->getPrevNode());
1096       }
1097 
1098       OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()),
1099                                                DL);
1100       IRBuilder<>::InsertPoint AllocaIP(
1101           &OriginalFn->getEntryBlock(),
1102           OriginalFn->getEntryBlock().getFirstInsertionPt());
1103       // Create the merged parallel region with default proc binding, to
1104       // avoid overriding binding settings, and without explicit cancellation.
1105       InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel(
1106           Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr,
1107           OMP_PROC_BIND_default, /* IsCancellable */ false);
1108       BranchInst::Create(AfterBB, AfterIP.getBlock());
1109 
1110       // Perform the actual outlining.
1111       OMPInfoCache.OMPBuilder.finalize(OriginalFn);
1112 
1113       Function *OutlinedFn = MergableCIs.front()->getCaller();
1114 
1115       // Replace the __kmpc_fork_call calls with direct calls to the outlined
1116       // callbacks.
1117       SmallVector<Value *, 8> Args;
1118       for (auto *CI : MergableCIs) {
1119         Value *Callee = CI->getArgOperand(CallbackCalleeOperand);
1120         FunctionType *FT = OMPInfoCache.OMPBuilder.ParallelTask;
1121         Args.clear();
1122         Args.push_back(OutlinedFn->getArg(0));
1123         Args.push_back(OutlinedFn->getArg(1));
1124         for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E;
1125              ++U)
1126           Args.push_back(CI->getArgOperand(U));
1127 
1128         CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI);
1129         if (CI->getDebugLoc())
1130           NewCI->setDebugLoc(CI->getDebugLoc());
1131 
1132         // Forward parameter attributes from the callback to the callee.
1133         for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E;
1134              ++U)
1135           for (const Attribute &A : CI->getAttributes().getParamAttrs(U))
1136             NewCI->addParamAttr(
1137                 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A);
1138 
1139         // Emit an explicit barrier to replace the implicit fork-join barrier.
1140         if (CI != MergableCIs.back()) {
1141           // TODO: Remove barrier if the merged parallel region includes the
1142           // 'nowait' clause.
1143           OMPInfoCache.OMPBuilder.createBarrier(
1144               InsertPointTy(NewCI->getParent(),
1145                             NewCI->getNextNode()->getIterator()),
1146               OMPD_parallel);
1147         }
1148 
1149         CI->eraseFromParent();
1150       }
1151 
1152       assert(OutlinedFn != OriginalFn && "Outlining failed");
1153       CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn);
1154       CGUpdater.reanalyzeFunction(*OriginalFn);
1155 
1156       NumOpenMPParallelRegionsMerged += MergableCIs.size();
1157 
1158       return true;
1159     };
1160 
1161     // Helper function that identifes sequences of
1162     // __kmpc_fork_call uses in a basic block.
1163     auto DetectPRsCB = [&](Use &U, Function &F) {
1164       CallInst *CI = getCallIfRegularCall(U, &RFI);
1165       BB2PRMap[CI->getParent()].insert(CI);
1166 
1167       return false;
1168     };
1169 
1170     BB2PRMap.clear();
1171     RFI.foreachUse(SCC, DetectPRsCB);
1172     SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector;
1173     // Find mergable parallel regions within a basic block that are
1174     // safe to merge, that is any in-between instructions can safely
1175     // execute in parallel after merging.
1176     // TODO: support merging across basic-blocks.
1177     for (auto &It : BB2PRMap) {
1178       auto &CIs = It.getSecond();
1179       if (CIs.size() < 2)
1180         continue;
1181 
1182       BasicBlock *BB = It.getFirst();
1183       SmallVector<CallInst *, 4> MergableCIs;
1184 
1185       /// Returns true if the instruction is mergable, false otherwise.
1186       /// A terminator instruction is unmergable by definition since merging
1187       /// works within a BB. Instructions before the mergable region are
1188       /// mergable if they are not calls to OpenMP runtime functions that may
1189       /// set different execution parameters for subsequent parallel regions.
1190       /// Instructions in-between parallel regions are mergable if they are not
1191       /// calls to any non-intrinsic function since that may call a non-mergable
1192       /// OpenMP runtime function.
1193       auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) {
1194         // We do not merge across BBs, hence return false (unmergable) if the
1195         // instruction is a terminator.
1196         if (I.isTerminator())
1197           return false;
1198 
1199         if (!isa<CallInst>(&I))
1200           return true;
1201 
1202         CallInst *CI = cast<CallInst>(&I);
1203         if (IsBeforeMergableRegion) {
1204           Function *CalledFunction = CI->getCalledFunction();
1205           if (!CalledFunction)
1206             return false;
1207           // Return false (unmergable) if the call before the parallel
1208           // region calls an explicit affinity (proc_bind) or number of
1209           // threads (num_threads) compiler-generated function. Those settings
1210           // may be incompatible with following parallel regions.
1211           // TODO: ICV tracking to detect compatibility.
1212           for (const auto &RFI : UnmergableCallsInfo) {
1213             if (CalledFunction == RFI.Declaration)
1214               return false;
1215           }
1216         } else {
1217           // Return false (unmergable) if there is a call instruction
1218           // in-between parallel regions when it is not an intrinsic. It
1219           // may call an unmergable OpenMP runtime function in its callpath.
1220           // TODO: Keep track of possible OpenMP calls in the callpath.
1221           if (!isa<IntrinsicInst>(CI))
1222             return false;
1223         }
1224 
1225         return true;
1226       };
1227       // Find maximal number of parallel region CIs that are safe to merge.
1228       for (auto It = BB->begin(), End = BB->end(); It != End;) {
1229         Instruction &I = *It;
1230         ++It;
1231 
1232         if (CIs.count(&I)) {
1233           MergableCIs.push_back(cast<CallInst>(&I));
1234           continue;
1235         }
1236 
1237         // Continue expanding if the instruction is mergable.
1238         if (IsMergable(I, MergableCIs.empty()))
1239           continue;
1240 
1241         // Forward the instruction iterator to skip the next parallel region
1242         // since there is an unmergable instruction which can affect it.
1243         for (; It != End; ++It) {
1244           Instruction &SkipI = *It;
1245           if (CIs.count(&SkipI)) {
1246             LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI
1247                               << " due to " << I << "\n");
1248             ++It;
1249             break;
1250           }
1251         }
1252 
1253         // Store mergable regions found.
1254         if (MergableCIs.size() > 1) {
1255           MergableCIsVector.push_back(MergableCIs);
1256           LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size()
1257                             << " parallel regions in block " << BB->getName()
1258                             << " of function " << BB->getParent()->getName()
1259                             << "\n";);
1260         }
1261 
1262         MergableCIs.clear();
1263       }
1264 
1265       if (!MergableCIsVector.empty()) {
1266         Changed = true;
1267 
1268         for (auto &MergableCIs : MergableCIsVector)
1269           Merge(MergableCIs, BB);
1270         MergableCIsVector.clear();
1271       }
1272     }
1273 
1274     if (Changed) {
1275       /// Re-collect use for fork calls, emitted barrier calls, and
1276       /// any emitted master/end_master calls.
1277       OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call);
1278       OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier);
1279       OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master);
1280       OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master);
1281     }
1282 
1283     return Changed;
1284   }
1285 
1286   /// Try to delete parallel regions if possible.
1287   bool deleteParallelRegions() {
1288     const unsigned CallbackCalleeOperand = 2;
1289 
1290     OMPInformationCache::RuntimeFunctionInfo &RFI =
1291         OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call];
1292 
1293     if (!RFI.Declaration)
1294       return false;
1295 
1296     bool Changed = false;
1297     auto DeleteCallCB = [&](Use &U, Function &) {
1298       CallInst *CI = getCallIfRegularCall(U);
1299       if (!CI)
1300         return false;
1301       auto *Fn = dyn_cast<Function>(
1302           CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts());
1303       if (!Fn)
1304         return false;
1305       if (!Fn->onlyReadsMemory())
1306         return false;
1307       if (!Fn->hasFnAttribute(Attribute::WillReturn))
1308         return false;
1309 
1310       LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in "
1311                         << CI->getCaller()->getName() << "\n");
1312 
1313       auto Remark = [&](OptimizationRemark OR) {
1314         return OR << "Removing parallel region with no side-effects.";
1315       };
1316       emitRemark<OptimizationRemark>(CI, "OMP160", Remark);
1317 
1318       CGUpdater.removeCallSite(*CI);
1319       CI->eraseFromParent();
1320       Changed = true;
1321       ++NumOpenMPParallelRegionsDeleted;
1322       return true;
1323     };
1324 
1325     RFI.foreachUse(SCC, DeleteCallCB);
1326 
1327     return Changed;
1328   }
1329 
1330   /// Try to eliminate runtime calls by reusing existing ones.
1331   bool deduplicateRuntimeCalls() {
1332     bool Changed = false;
1333 
1334     RuntimeFunction DeduplicableRuntimeCallIDs[] = {
1335         OMPRTL_omp_get_num_threads,
1336         OMPRTL_omp_in_parallel,
1337         OMPRTL_omp_get_cancellation,
1338         OMPRTL_omp_get_thread_limit,
1339         OMPRTL_omp_get_supported_active_levels,
1340         OMPRTL_omp_get_level,
1341         OMPRTL_omp_get_ancestor_thread_num,
1342         OMPRTL_omp_get_team_size,
1343         OMPRTL_omp_get_active_level,
1344         OMPRTL_omp_in_final,
1345         OMPRTL_omp_get_proc_bind,
1346         OMPRTL_omp_get_num_places,
1347         OMPRTL_omp_get_num_procs,
1348         OMPRTL_omp_get_place_num,
1349         OMPRTL_omp_get_partition_num_places,
1350         OMPRTL_omp_get_partition_place_nums};
1351 
1352     // Global-tid is handled separately.
1353     SmallSetVector<Value *, 16> GTIdArgs;
1354     collectGlobalThreadIdArguments(GTIdArgs);
1355     LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size()
1356                       << " global thread ID arguments\n");
1357 
1358     for (Function *F : SCC) {
1359       for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs)
1360         Changed |= deduplicateRuntimeCalls(
1361             *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]);
1362 
1363       // __kmpc_global_thread_num is special as we can replace it with an
1364       // argument in enough cases to make it worth trying.
1365       Value *GTIdArg = nullptr;
1366       for (Argument &Arg : F->args())
1367         if (GTIdArgs.count(&Arg)) {
1368           GTIdArg = &Arg;
1369           break;
1370         }
1371       Changed |= deduplicateRuntimeCalls(
1372           *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg);
1373     }
1374 
1375     return Changed;
1376   }
1377 
1378   /// Tries to hide the latency of runtime calls that involve host to
1379   /// device memory transfers by splitting them into their "issue" and "wait"
1380   /// versions. The "issue" is moved upwards as much as possible. The "wait" is
1381   /// moved downards as much as possible. The "issue" issues the memory transfer
1382   /// asynchronously, returning a handle. The "wait" waits in the returned
1383   /// handle for the memory transfer to finish.
1384   bool hideMemTransfersLatency() {
1385     auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper];
1386     bool Changed = false;
1387     auto SplitMemTransfers = [&](Use &U, Function &Decl) {
1388       auto *RTCall = getCallIfRegularCall(U, &RFI);
1389       if (!RTCall)
1390         return false;
1391 
1392       OffloadArray OffloadArrays[3];
1393       if (!getValuesInOffloadArrays(*RTCall, OffloadArrays))
1394         return false;
1395 
1396       LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays));
1397 
1398       // TODO: Check if can be moved upwards.
1399       bool WasSplit = false;
1400       Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall);
1401       if (WaitMovementPoint)
1402         WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint);
1403 
1404       Changed |= WasSplit;
1405       return WasSplit;
1406     };
1407     RFI.foreachUse(SCC, SplitMemTransfers);
1408 
1409     return Changed;
1410   }
1411 
1412   /// Eliminates redundant, aligned barriers in OpenMP offloaded kernels.
1413   /// TODO: Make this an AA and expand it to work across blocks and functions.
1414   bool eliminateBarriers() {
1415     bool Changed = false;
1416 
1417     if (DisableOpenMPOptBarrierElimination)
1418       return /*Changed=*/false;
1419 
1420     if (OMPInfoCache.Kernels.empty())
1421       return /*Changed=*/false;
1422 
1423     enum ImplicitBarrierType { IBT_ENTRY, IBT_EXIT };
1424 
1425     class BarrierInfo {
1426       Instruction *I;
1427       enum ImplicitBarrierType Type;
1428 
1429     public:
1430       BarrierInfo(enum ImplicitBarrierType Type) : I(nullptr), Type(Type) {}
1431       BarrierInfo(Instruction &I) : I(&I) {}
1432 
1433       bool isImplicit() { return !I; }
1434 
1435       bool isImplicitEntry() { return isImplicit() && Type == IBT_ENTRY; }
1436 
1437       bool isImplicitExit() { return isImplicit() && Type == IBT_EXIT; }
1438 
1439       Instruction *getInstruction() { return I; }
1440     };
1441 
1442     for (Function *Kernel : OMPInfoCache.Kernels) {
1443       for (BasicBlock &BB : *Kernel) {
1444         SmallVector<BarrierInfo, 8> BarriersInBlock;
1445         SmallPtrSet<Instruction *, 8> BarriersToBeDeleted;
1446 
1447         // Add the kernel entry implicit barrier.
1448         if (&Kernel->getEntryBlock() == &BB)
1449           BarriersInBlock.push_back(IBT_ENTRY);
1450 
1451         // Find implicit and explicit aligned barriers in the same basic block.
1452         for (Instruction &I : BB) {
1453           if (isa<ReturnInst>(I)) {
1454             // Add the implicit barrier when exiting the kernel.
1455             BarriersInBlock.push_back(IBT_EXIT);
1456             continue;
1457           }
1458           CallBase *CB = dyn_cast<CallBase>(&I);
1459           if (!CB)
1460             continue;
1461 
1462           auto IsAlignBarrierCB = [&](CallBase &CB) {
1463             switch (CB.getIntrinsicID()) {
1464             case Intrinsic::nvvm_barrier0:
1465             case Intrinsic::nvvm_barrier0_and:
1466             case Intrinsic::nvvm_barrier0_or:
1467             case Intrinsic::nvvm_barrier0_popc:
1468               return true;
1469             default:
1470               break;
1471             }
1472             return hasAssumption(CB,
1473                                  KnownAssumptionString("ompx_aligned_barrier"));
1474           };
1475 
1476           if (IsAlignBarrierCB(*CB)) {
1477             // Add an explicit aligned barrier.
1478             BarriersInBlock.push_back(I);
1479           }
1480         }
1481 
1482         if (BarriersInBlock.size() <= 1)
1483           continue;
1484 
1485         // A barrier in a barrier pair is removeable if all instructions
1486         // between the barriers in the pair are side-effect free modulo the
1487         // barrier operation.
1488         auto IsBarrierRemoveable = [&Kernel](BarrierInfo *StartBI,
1489                                              BarrierInfo *EndBI) {
1490           assert(
1491               !StartBI->isImplicitExit() &&
1492               "Expected start barrier to be other than a kernel exit barrier");
1493           assert(
1494               !EndBI->isImplicitEntry() &&
1495               "Expected end barrier to be other than a kernel entry barrier");
1496           // If StarBI instructions is null then this the implicit
1497           // kernel entry barrier, so iterate from the first instruction in the
1498           // entry block.
1499           Instruction *I = (StartBI->isImplicitEntry())
1500                                ? &Kernel->getEntryBlock().front()
1501                                : StartBI->getInstruction()->getNextNode();
1502           assert(I && "Expected non-null start instruction");
1503           Instruction *E = (EndBI->isImplicitExit())
1504                                ? I->getParent()->getTerminator()
1505                                : EndBI->getInstruction();
1506           assert(E && "Expected non-null end instruction");
1507 
1508           for (; I != E; I = I->getNextNode()) {
1509             if (!I->mayHaveSideEffects() && !I->mayReadFromMemory())
1510               continue;
1511 
1512             auto IsPotentiallyAffectedByBarrier =
1513                 [](Optional<MemoryLocation> Loc) {
1514                   const Value *Obj = (Loc && Loc->Ptr)
1515                                          ? getUnderlyingObject(Loc->Ptr)
1516                                          : nullptr;
1517                   if (!Obj) {
1518                     LLVM_DEBUG(
1519                         dbgs()
1520                         << "Access to unknown location requires barriers\n");
1521                     return true;
1522                   }
1523                   if (isa<UndefValue>(Obj))
1524                     return false;
1525                   if (isa<AllocaInst>(Obj))
1526                     return false;
1527                   if (auto *GV = dyn_cast<GlobalVariable>(Obj)) {
1528                     if (GV->isConstant())
1529                       return false;
1530                     if (GV->isThreadLocal())
1531                       return false;
1532                     if (GV->getAddressSpace() == (int)AddressSpace::Local)
1533                       return false;
1534                     if (GV->getAddressSpace() == (int)AddressSpace::Constant)
1535                       return false;
1536                   }
1537                   LLVM_DEBUG(dbgs() << "Access to '" << *Obj
1538                                     << "' requires barriers\n");
1539                   return true;
1540                 };
1541 
1542             if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
1543               Optional<MemoryLocation> Loc = MemoryLocation::getForDest(MI);
1544               if (IsPotentiallyAffectedByBarrier(Loc))
1545                 return false;
1546               if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) {
1547                 Optional<MemoryLocation> Loc =
1548                     MemoryLocation::getForSource(MTI);
1549                 if (IsPotentiallyAffectedByBarrier(Loc))
1550                   return false;
1551               }
1552               continue;
1553             }
1554 
1555             if (auto *LI = dyn_cast<LoadInst>(I))
1556               if (LI->hasMetadata(LLVMContext::MD_invariant_load))
1557                 continue;
1558 
1559             Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
1560             if (IsPotentiallyAffectedByBarrier(Loc))
1561               return false;
1562           }
1563 
1564           return true;
1565         };
1566 
1567         // Iterate barrier pairs and remove an explicit barrier if analysis
1568         // deems it removeable.
1569         for (auto *It = BarriersInBlock.begin(),
1570                   *End = BarriersInBlock.end() - 1;
1571              It != End; ++It) {
1572 
1573           BarrierInfo *StartBI = It;
1574           BarrierInfo *EndBI = (It + 1);
1575 
1576           // Cannot remove when both are implicit barriers, continue.
1577           if (StartBI->isImplicit() && EndBI->isImplicit())
1578             continue;
1579 
1580           if (!IsBarrierRemoveable(StartBI, EndBI))
1581             continue;
1582 
1583           assert(!(StartBI->isImplicit() && EndBI->isImplicit()) &&
1584                  "Expected at least one explicit barrier to remove.");
1585 
1586           // Remove an explicit barrier, check first, then second.
1587           if (!StartBI->isImplicit()) {
1588             LLVM_DEBUG(dbgs() << "Remove start barrier "
1589                               << *StartBI->getInstruction() << "\n");
1590             BarriersToBeDeleted.insert(StartBI->getInstruction());
1591           } else {
1592             LLVM_DEBUG(dbgs() << "Remove end barrier "
1593                               << *EndBI->getInstruction() << "\n");
1594             BarriersToBeDeleted.insert(EndBI->getInstruction());
1595           }
1596         }
1597 
1598         if (BarriersToBeDeleted.empty())
1599           continue;
1600 
1601         Changed = true;
1602         for (Instruction *I : BarriersToBeDeleted) {
1603           ++NumBarriersEliminated;
1604           auto Remark = [&](OptimizationRemark OR) {
1605             return OR << "Redundant barrier eliminated.";
1606           };
1607 
1608           if (EnableVerboseRemarks)
1609             emitRemark<OptimizationRemark>(I, "OMP190", Remark);
1610           I->eraseFromParent();
1611         }
1612       }
1613     }
1614 
1615     return Changed;
1616   }
1617 
1618   void analysisGlobalization() {
1619     auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
1620 
1621     auto CheckGlobalization = [&](Use &U, Function &Decl) {
1622       if (CallInst *CI = getCallIfRegularCall(U, &RFI)) {
1623         auto Remark = [&](OptimizationRemarkMissed ORM) {
1624           return ORM
1625                  << "Found thread data sharing on the GPU. "
1626                  << "Expect degraded performance due to data globalization.";
1627         };
1628         emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark);
1629       }
1630 
1631       return false;
1632     };
1633 
1634     RFI.foreachUse(SCC, CheckGlobalization);
1635   }
1636 
1637   /// Maps the values stored in the offload arrays passed as arguments to
1638   /// \p RuntimeCall into the offload arrays in \p OAs.
1639   bool getValuesInOffloadArrays(CallInst &RuntimeCall,
1640                                 MutableArrayRef<OffloadArray> OAs) {
1641     assert(OAs.size() == 3 && "Need space for three offload arrays!");
1642 
1643     // A runtime call that involves memory offloading looks something like:
1644     // call void @__tgt_target_data_begin_mapper(arg0, arg1,
1645     //   i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes,
1646     // ...)
1647     // So, the idea is to access the allocas that allocate space for these
1648     // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes.
1649     // Therefore:
1650     // i8** %offload_baseptrs.
1651     Value *BasePtrsArg =
1652         RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum);
1653     // i8** %offload_ptrs.
1654     Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum);
1655     // i8** %offload_sizes.
1656     Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum);
1657 
1658     // Get values stored in **offload_baseptrs.
1659     auto *V = getUnderlyingObject(BasePtrsArg);
1660     if (!isa<AllocaInst>(V))
1661       return false;
1662     auto *BasePtrsArray = cast<AllocaInst>(V);
1663     if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall))
1664       return false;
1665 
1666     // Get values stored in **offload_baseptrs.
1667     V = getUnderlyingObject(PtrsArg);
1668     if (!isa<AllocaInst>(V))
1669       return false;
1670     auto *PtrsArray = cast<AllocaInst>(V);
1671     if (!OAs[1].initialize(*PtrsArray, RuntimeCall))
1672       return false;
1673 
1674     // Get values stored in **offload_sizes.
1675     V = getUnderlyingObject(SizesArg);
1676     // If it's a [constant] global array don't analyze it.
1677     if (isa<GlobalValue>(V))
1678       return isa<Constant>(V);
1679     if (!isa<AllocaInst>(V))
1680       return false;
1681 
1682     auto *SizesArray = cast<AllocaInst>(V);
1683     if (!OAs[2].initialize(*SizesArray, RuntimeCall))
1684       return false;
1685 
1686     return true;
1687   }
1688 
1689   /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG.
1690   /// For now this is a way to test that the function getValuesInOffloadArrays
1691   /// is working properly.
1692   /// TODO: Move this to a unittest when unittests are available for OpenMPOpt.
1693   void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) {
1694     assert(OAs.size() == 3 && "There are three offload arrays to debug!");
1695 
1696     LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n");
1697     std::string ValuesStr;
1698     raw_string_ostream Printer(ValuesStr);
1699     std::string Separator = " --- ";
1700 
1701     for (auto *BP : OAs[0].StoredValues) {
1702       BP->print(Printer);
1703       Printer << Separator;
1704     }
1705     LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n");
1706     ValuesStr.clear();
1707 
1708     for (auto *P : OAs[1].StoredValues) {
1709       P->print(Printer);
1710       Printer << Separator;
1711     }
1712     LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n");
1713     ValuesStr.clear();
1714 
1715     for (auto *S : OAs[2].StoredValues) {
1716       S->print(Printer);
1717       Printer << Separator;
1718     }
1719     LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n");
1720   }
1721 
1722   /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be
1723   /// moved. Returns nullptr if the movement is not possible, or not worth it.
1724   Instruction *canBeMovedDownwards(CallInst &RuntimeCall) {
1725     // FIXME: This traverses only the BasicBlock where RuntimeCall is.
1726     //  Make it traverse the CFG.
1727 
1728     Instruction *CurrentI = &RuntimeCall;
1729     bool IsWorthIt = false;
1730     while ((CurrentI = CurrentI->getNextNode())) {
1731 
1732       // TODO: Once we detect the regions to be offloaded we should use the
1733       //  alias analysis manager to check if CurrentI may modify one of
1734       //  the offloaded regions.
1735       if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) {
1736         if (IsWorthIt)
1737           return CurrentI;
1738 
1739         return nullptr;
1740       }
1741 
1742       // FIXME: For now if we move it over anything without side effect
1743       //  is worth it.
1744       IsWorthIt = true;
1745     }
1746 
1747     // Return end of BasicBlock.
1748     return RuntimeCall.getParent()->getTerminator();
1749   }
1750 
1751   /// Splits \p RuntimeCall into its "issue" and "wait" counterparts.
1752   bool splitTargetDataBeginRTC(CallInst &RuntimeCall,
1753                                Instruction &WaitMovementPoint) {
1754     // Create stack allocated handle (__tgt_async_info) at the beginning of the
1755     // function. Used for storing information of the async transfer, allowing to
1756     // wait on it later.
1757     auto &IRBuilder = OMPInfoCache.OMPBuilder;
1758     auto *F = RuntimeCall.getCaller();
1759     Instruction *FirstInst = &(F->getEntryBlock().front());
1760     AllocaInst *Handle = new AllocaInst(
1761         IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst);
1762 
1763     // Add "issue" runtime call declaration:
1764     // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32,
1765     //   i8**, i8**, i64*, i64*)
1766     FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction(
1767         M, OMPRTL___tgt_target_data_begin_mapper_issue);
1768 
1769     // Change RuntimeCall call site for its asynchronous version.
1770     SmallVector<Value *, 16> Args;
1771     for (auto &Arg : RuntimeCall.args())
1772       Args.push_back(Arg.get());
1773     Args.push_back(Handle);
1774 
1775     CallInst *IssueCallsite =
1776         CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall);
1777     OMPInfoCache.setCallingConvention(IssueDecl, IssueCallsite);
1778     RuntimeCall.eraseFromParent();
1779 
1780     // Add "wait" runtime call declaration:
1781     // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info)
1782     FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction(
1783         M, OMPRTL___tgt_target_data_begin_mapper_wait);
1784 
1785     Value *WaitParams[2] = {
1786         IssueCallsite->getArgOperand(
1787             OffloadArray::DeviceIDArgNum), // device_id.
1788         Handle                             // handle to wait on.
1789     };
1790     CallInst *WaitCallsite = CallInst::Create(
1791         WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint);
1792     OMPInfoCache.setCallingConvention(WaitDecl, WaitCallsite);
1793 
1794     return true;
1795   }
1796 
1797   static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent,
1798                                     bool GlobalOnly, bool &SingleChoice) {
1799     if (CurrentIdent == NextIdent)
1800       return CurrentIdent;
1801 
1802     // TODO: Figure out how to actually combine multiple debug locations. For
1803     //       now we just keep an existing one if there is a single choice.
1804     if (!GlobalOnly || isa<GlobalValue>(NextIdent)) {
1805       SingleChoice = !CurrentIdent;
1806       return NextIdent;
1807     }
1808     return nullptr;
1809   }
1810 
1811   /// Return an `struct ident_t*` value that represents the ones used in the
1812   /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not
1813   /// return a local `struct ident_t*`. For now, if we cannot find a suitable
1814   /// return value we create one from scratch. We also do not yet combine
1815   /// information, e.g., the source locations, see combinedIdentStruct.
1816   Value *
1817   getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI,
1818                                  Function &F, bool GlobalOnly) {
1819     bool SingleChoice = true;
1820     Value *Ident = nullptr;
1821     auto CombineIdentStruct = [&](Use &U, Function &Caller) {
1822       CallInst *CI = getCallIfRegularCall(U, &RFI);
1823       if (!CI || &F != &Caller)
1824         return false;
1825       Ident = combinedIdentStruct(Ident, CI->getArgOperand(0),
1826                                   /* GlobalOnly */ true, SingleChoice);
1827       return false;
1828     };
1829     RFI.foreachUse(SCC, CombineIdentStruct);
1830 
1831     if (!Ident || !SingleChoice) {
1832       // The IRBuilder uses the insertion block to get to the module, this is
1833       // unfortunate but we work around it for now.
1834       if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock())
1835         OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy(
1836             &F.getEntryBlock(), F.getEntryBlock().begin()));
1837       // Create a fallback location if non was found.
1838       // TODO: Use the debug locations of the calls instead.
1839       uint32_t SrcLocStrSize;
1840       Constant *Loc =
1841           OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize);
1842       Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc, SrcLocStrSize);
1843     }
1844     return Ident;
1845   }
1846 
1847   /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or
1848   /// \p ReplVal if given.
1849   bool deduplicateRuntimeCalls(Function &F,
1850                                OMPInformationCache::RuntimeFunctionInfo &RFI,
1851                                Value *ReplVal = nullptr) {
1852     auto *UV = RFI.getUseVector(F);
1853     if (!UV || UV->size() + (ReplVal != nullptr) < 2)
1854       return false;
1855 
1856     LLVM_DEBUG(
1857         dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name
1858                << (ReplVal ? " with an existing value\n" : "\n") << "\n");
1859 
1860     assert((!ReplVal || (isa<Argument>(ReplVal) &&
1861                          cast<Argument>(ReplVal)->getParent() == &F)) &&
1862            "Unexpected replacement value!");
1863 
1864     // TODO: Use dominance to find a good position instead.
1865     auto CanBeMoved = [this](CallBase &CB) {
1866       unsigned NumArgs = CB.arg_size();
1867       if (NumArgs == 0)
1868         return true;
1869       if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr)
1870         return false;
1871       for (unsigned U = 1; U < NumArgs; ++U)
1872         if (isa<Instruction>(CB.getArgOperand(U)))
1873           return false;
1874       return true;
1875     };
1876 
1877     if (!ReplVal) {
1878       for (Use *U : *UV)
1879         if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) {
1880           if (!CanBeMoved(*CI))
1881             continue;
1882 
1883           // If the function is a kernel, dedup will move
1884           // the runtime call right after the kernel init callsite. Otherwise,
1885           // it will move it to the beginning of the caller function.
1886           if (isKernel(F)) {
1887             auto &KernelInitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
1888             auto *KernelInitUV = KernelInitRFI.getUseVector(F);
1889 
1890             if (KernelInitUV->empty())
1891               continue;
1892 
1893             assert(KernelInitUV->size() == 1 &&
1894                    "Expected a single __kmpc_target_init in kernel\n");
1895 
1896             CallInst *KernelInitCI =
1897                 getCallIfRegularCall(*KernelInitUV->front(), &KernelInitRFI);
1898             assert(KernelInitCI &&
1899                    "Expected a call to __kmpc_target_init in kernel\n");
1900 
1901             CI->moveAfter(KernelInitCI);
1902           } else
1903             CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt());
1904           ReplVal = CI;
1905           break;
1906         }
1907       if (!ReplVal)
1908         return false;
1909     }
1910 
1911     // If we use a call as a replacement value we need to make sure the ident is
1912     // valid at the new location. For now we just pick a global one, either
1913     // existing and used by one of the calls, or created from scratch.
1914     if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) {
1915       if (!CI->arg_empty() &&
1916           CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) {
1917         Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F,
1918                                                       /* GlobalOnly */ true);
1919         CI->setArgOperand(0, Ident);
1920       }
1921     }
1922 
1923     bool Changed = false;
1924     auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) {
1925       CallInst *CI = getCallIfRegularCall(U, &RFI);
1926       if (!CI || CI == ReplVal || &F != &Caller)
1927         return false;
1928       assert(CI->getCaller() == &F && "Unexpected call!");
1929 
1930       auto Remark = [&](OptimizationRemark OR) {
1931         return OR << "OpenMP runtime call "
1932                   << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated.";
1933       };
1934       if (CI->getDebugLoc())
1935         emitRemark<OptimizationRemark>(CI, "OMP170", Remark);
1936       else
1937         emitRemark<OptimizationRemark>(&F, "OMP170", Remark);
1938 
1939       CGUpdater.removeCallSite(*CI);
1940       CI->replaceAllUsesWith(ReplVal);
1941       CI->eraseFromParent();
1942       ++NumOpenMPRuntimeCallsDeduplicated;
1943       Changed = true;
1944       return true;
1945     };
1946     RFI.foreachUse(SCC, ReplaceAndDeleteCB);
1947 
1948     return Changed;
1949   }
1950 
1951   /// Collect arguments that represent the global thread id in \p GTIdArgs.
1952   void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> &GTIdArgs) {
1953     // TODO: Below we basically perform a fixpoint iteration with a pessimistic
1954     //       initialization. We could define an AbstractAttribute instead and
1955     //       run the Attributor here once it can be run as an SCC pass.
1956 
1957     // Helper to check the argument \p ArgNo at all call sites of \p F for
1958     // a GTId.
1959     auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) {
1960       if (!F.hasLocalLinkage())
1961         return false;
1962       for (Use &U : F.uses()) {
1963         if (CallInst *CI = getCallIfRegularCall(U)) {
1964           Value *ArgOp = CI->getArgOperand(ArgNo);
1965           if (CI == &RefCI || GTIdArgs.count(ArgOp) ||
1966               getCallIfRegularCall(
1967                   *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]))
1968             continue;
1969         }
1970         return false;
1971       }
1972       return true;
1973     };
1974 
1975     // Helper to identify uses of a GTId as GTId arguments.
1976     auto AddUserArgs = [&](Value &GTId) {
1977       for (Use &U : GTId.uses())
1978         if (CallInst *CI = dyn_cast<CallInst>(U.getUser()))
1979           if (CI->isArgOperand(&U))
1980             if (Function *Callee = CI->getCalledFunction())
1981               if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI))
1982                 GTIdArgs.insert(Callee->getArg(U.getOperandNo()));
1983     };
1984 
1985     // The argument users of __kmpc_global_thread_num calls are GTIds.
1986     OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI =
1987         OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num];
1988 
1989     GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) {
1990       if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI))
1991         AddUserArgs(*CI);
1992       return false;
1993     });
1994 
1995     // Transitively search for more arguments by looking at the users of the
1996     // ones we know already. During the search the GTIdArgs vector is extended
1997     // so we cannot cache the size nor can we use a range based for.
1998     for (unsigned U = 0; U < GTIdArgs.size(); ++U)
1999       AddUserArgs(*GTIdArgs[U]);
2000   }
2001 
2002   /// Kernel (=GPU) optimizations and utility functions
2003   ///
2004   ///{{
2005 
2006   /// Check if \p F is a kernel, hence entry point for target offloading.
2007   bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); }
2008 
2009   /// Cache to remember the unique kernel for a function.
2010   DenseMap<Function *, Optional<Kernel>> UniqueKernelMap;
2011 
2012   /// Find the unique kernel that will execute \p F, if any.
2013   Kernel getUniqueKernelFor(Function &F);
2014 
2015   /// Find the unique kernel that will execute \p I, if any.
2016   Kernel getUniqueKernelFor(Instruction &I) {
2017     return getUniqueKernelFor(*I.getFunction());
2018   }
2019 
2020   /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in
2021   /// the cases we can avoid taking the address of a function.
2022   bool rewriteDeviceCodeStateMachine();
2023 
2024   ///
2025   ///}}
2026 
2027   /// Emit a remark generically
2028   ///
2029   /// This template function can be used to generically emit a remark. The
2030   /// RemarkKind should be one of the following:
2031   ///   - OptimizationRemark to indicate a successful optimization attempt
2032   ///   - OptimizationRemarkMissed to report a failed optimization attempt
2033   ///   - OptimizationRemarkAnalysis to provide additional information about an
2034   ///     optimization attempt
2035   ///
2036   /// The remark is built using a callback function provided by the caller that
2037   /// takes a RemarkKind as input and returns a RemarkKind.
2038   template <typename RemarkKind, typename RemarkCallBack>
2039   void emitRemark(Instruction *I, StringRef RemarkName,
2040                   RemarkCallBack &&RemarkCB) const {
2041     Function *F = I->getParent()->getParent();
2042     auto &ORE = OREGetter(F);
2043 
2044     if (RemarkName.startswith("OMP"))
2045       ORE.emit([&]() {
2046         return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I))
2047                << " [" << RemarkName << "]";
2048       });
2049     else
2050       ORE.emit(
2051           [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); });
2052   }
2053 
2054   /// Emit a remark on a function.
2055   template <typename RemarkKind, typename RemarkCallBack>
2056   void emitRemark(Function *F, StringRef RemarkName,
2057                   RemarkCallBack &&RemarkCB) const {
2058     auto &ORE = OREGetter(F);
2059 
2060     if (RemarkName.startswith("OMP"))
2061       ORE.emit([&]() {
2062         return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F))
2063                << " [" << RemarkName << "]";
2064       });
2065     else
2066       ORE.emit(
2067           [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); });
2068   }
2069 
2070   /// RAII struct to temporarily change an RTL function's linkage to external.
2071   /// This prevents it from being mistakenly removed by other optimizations.
2072   struct ExternalizationRAII {
2073     ExternalizationRAII(OMPInformationCache &OMPInfoCache,
2074                         RuntimeFunction RFKind)
2075         : Declaration(OMPInfoCache.RFIs[RFKind].Declaration) {
2076       if (!Declaration)
2077         return;
2078 
2079       LinkageType = Declaration->getLinkage();
2080       Declaration->setLinkage(GlobalValue::ExternalLinkage);
2081     }
2082 
2083     ~ExternalizationRAII() {
2084       if (!Declaration)
2085         return;
2086 
2087       Declaration->setLinkage(LinkageType);
2088     }
2089 
2090     Function *Declaration;
2091     GlobalValue::LinkageTypes LinkageType;
2092   };
2093 
2094   /// The underlying module.
2095   Module &M;
2096 
2097   /// The SCC we are operating on.
2098   SmallVectorImpl<Function *> &SCC;
2099 
2100   /// Callback to update the call graph, the first argument is a removed call,
2101   /// the second an optional replacement call.
2102   CallGraphUpdater &CGUpdater;
2103 
2104   /// Callback to get an OptimizationRemarkEmitter from a Function *
2105   OptimizationRemarkGetter OREGetter;
2106 
2107   /// OpenMP-specific information cache. Also Used for Attributor runs.
2108   OMPInformationCache &OMPInfoCache;
2109 
2110   /// Attributor instance.
2111   Attributor &A;
2112 
2113   /// Helper function to run Attributor on SCC.
2114   bool runAttributor(bool IsModulePass) {
2115     if (SCC.empty())
2116       return false;
2117 
2118     // Temporarily make these function have external linkage so the Attributor
2119     // doesn't remove them when we try to look them up later.
2120     ExternalizationRAII Parallel(OMPInfoCache, OMPRTL___kmpc_kernel_parallel);
2121     ExternalizationRAII EndParallel(OMPInfoCache,
2122                                     OMPRTL___kmpc_kernel_end_parallel);
2123     ExternalizationRAII BarrierSPMD(OMPInfoCache,
2124                                     OMPRTL___kmpc_barrier_simple_spmd);
2125     ExternalizationRAII BarrierGeneric(OMPInfoCache,
2126                                        OMPRTL___kmpc_barrier_simple_generic);
2127     ExternalizationRAII ThreadId(OMPInfoCache,
2128                                  OMPRTL___kmpc_get_hardware_thread_id_in_block);
2129     ExternalizationRAII NumThreads(
2130         OMPInfoCache, OMPRTL___kmpc_get_hardware_num_threads_in_block);
2131     ExternalizationRAII WarpSize(OMPInfoCache, OMPRTL___kmpc_get_warp_size);
2132 
2133     registerAAs(IsModulePass);
2134 
2135     ChangeStatus Changed = A.run();
2136 
2137     LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size()
2138                       << " functions, result: " << Changed << ".\n");
2139 
2140     return Changed == ChangeStatus::CHANGED;
2141   }
2142 
2143   void registerFoldRuntimeCall(RuntimeFunction RF);
2144 
2145   /// Populate the Attributor with abstract attribute opportunities in the
2146   /// function.
2147   void registerAAs(bool IsModulePass);
2148 };
2149 
2150 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) {
2151   if (!OMPInfoCache.ModuleSlice.count(&F))
2152     return nullptr;
2153 
2154   // Use a scope to keep the lifetime of the CachedKernel short.
2155   {
2156     Optional<Kernel> &CachedKernel = UniqueKernelMap[&F];
2157     if (CachedKernel)
2158       return *CachedKernel;
2159 
2160     // TODO: We should use an AA to create an (optimistic and callback
2161     //       call-aware) call graph. For now we stick to simple patterns that
2162     //       are less powerful, basically the worst fixpoint.
2163     if (isKernel(F)) {
2164       CachedKernel = Kernel(&F);
2165       return *CachedKernel;
2166     }
2167 
2168     CachedKernel = nullptr;
2169     if (!F.hasLocalLinkage()) {
2170 
2171       // See https://openmp.llvm.org/remarks/OptimizationRemarks.html
2172       auto Remark = [&](OptimizationRemarkAnalysis ORA) {
2173         return ORA << "Potentially unknown OpenMP target region caller.";
2174       };
2175       emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark);
2176 
2177       return nullptr;
2178     }
2179   }
2180 
2181   auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel {
2182     if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2183       // Allow use in equality comparisons.
2184       if (Cmp->isEquality())
2185         return getUniqueKernelFor(*Cmp);
2186       return nullptr;
2187     }
2188     if (auto *CB = dyn_cast<CallBase>(U.getUser())) {
2189       // Allow direct calls.
2190       if (CB->isCallee(&U))
2191         return getUniqueKernelFor(*CB);
2192 
2193       OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI =
2194           OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
2195       // Allow the use in __kmpc_parallel_51 calls.
2196       if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI))
2197         return getUniqueKernelFor(*CB);
2198       return nullptr;
2199     }
2200     // Disallow every other use.
2201     return nullptr;
2202   };
2203 
2204   // TODO: In the future we want to track more than just a unique kernel.
2205   SmallPtrSet<Kernel, 2> PotentialKernels;
2206   OMPInformationCache::foreachUse(F, [&](const Use &U) {
2207     PotentialKernels.insert(GetUniqueKernelForUse(U));
2208   });
2209 
2210   Kernel K = nullptr;
2211   if (PotentialKernels.size() == 1)
2212     K = *PotentialKernels.begin();
2213 
2214   // Cache the result.
2215   UniqueKernelMap[&F] = K;
2216 
2217   return K;
2218 }
2219 
2220 bool OpenMPOpt::rewriteDeviceCodeStateMachine() {
2221   OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI =
2222       OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
2223 
2224   bool Changed = false;
2225   if (!KernelParallelRFI)
2226     return Changed;
2227 
2228   // If we have disabled state machine changes, exit
2229   if (DisableOpenMPOptStateMachineRewrite)
2230     return Changed;
2231 
2232   for (Function *F : SCC) {
2233 
2234     // Check if the function is a use in a __kmpc_parallel_51 call at
2235     // all.
2236     bool UnknownUse = false;
2237     bool KernelParallelUse = false;
2238     unsigned NumDirectCalls = 0;
2239 
2240     SmallVector<Use *, 2> ToBeReplacedStateMachineUses;
2241     OMPInformationCache::foreachUse(*F, [&](Use &U) {
2242       if (auto *CB = dyn_cast<CallBase>(U.getUser()))
2243         if (CB->isCallee(&U)) {
2244           ++NumDirectCalls;
2245           return;
2246         }
2247 
2248       if (isa<ICmpInst>(U.getUser())) {
2249         ToBeReplacedStateMachineUses.push_back(&U);
2250         return;
2251       }
2252 
2253       // Find wrapper functions that represent parallel kernels.
2254       CallInst *CI =
2255           OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI);
2256       const unsigned int WrapperFunctionArgNo = 6;
2257       if (!KernelParallelUse && CI &&
2258           CI->getArgOperandNo(&U) == WrapperFunctionArgNo) {
2259         KernelParallelUse = true;
2260         ToBeReplacedStateMachineUses.push_back(&U);
2261         return;
2262       }
2263       UnknownUse = true;
2264     });
2265 
2266     // Do not emit a remark if we haven't seen a __kmpc_parallel_51
2267     // use.
2268     if (!KernelParallelUse)
2269       continue;
2270 
2271     // If this ever hits, we should investigate.
2272     // TODO: Checking the number of uses is not a necessary restriction and
2273     // should be lifted.
2274     if (UnknownUse || NumDirectCalls != 1 ||
2275         ToBeReplacedStateMachineUses.size() > 2) {
2276       auto Remark = [&](OptimizationRemarkAnalysis ORA) {
2277         return ORA << "Parallel region is used in "
2278                    << (UnknownUse ? "unknown" : "unexpected")
2279                    << " ways. Will not attempt to rewrite the state machine.";
2280       };
2281       emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark);
2282       continue;
2283     }
2284 
2285     // Even if we have __kmpc_parallel_51 calls, we (for now) give
2286     // up if the function is not called from a unique kernel.
2287     Kernel K = getUniqueKernelFor(*F);
2288     if (!K) {
2289       auto Remark = [&](OptimizationRemarkAnalysis ORA) {
2290         return ORA << "Parallel region is not called from a unique kernel. "
2291                       "Will not attempt to rewrite the state machine.";
2292       };
2293       emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark);
2294       continue;
2295     }
2296 
2297     // We now know F is a parallel body function called only from the kernel K.
2298     // We also identified the state machine uses in which we replace the
2299     // function pointer by a new global symbol for identification purposes. This
2300     // ensures only direct calls to the function are left.
2301 
2302     Module &M = *F->getParent();
2303     Type *Int8Ty = Type::getInt8Ty(M.getContext());
2304 
2305     auto *ID = new GlobalVariable(
2306         M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage,
2307         UndefValue::get(Int8Ty), F->getName() + ".ID");
2308 
2309     for (Use *U : ToBeReplacedStateMachineUses)
2310       U->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2311           ID, U->get()->getType()));
2312 
2313     ++NumOpenMPParallelRegionsReplacedInGPUStateMachine;
2314 
2315     Changed = true;
2316   }
2317 
2318   return Changed;
2319 }
2320 
2321 /// Abstract Attribute for tracking ICV values.
2322 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> {
2323   using Base = StateWrapper<BooleanState, AbstractAttribute>;
2324   AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
2325 
2326   void initialize(Attributor &A) override {
2327     Function *F = getAnchorScope();
2328     if (!F || !A.isFunctionIPOAmendable(*F))
2329       indicatePessimisticFixpoint();
2330   }
2331 
2332   /// Returns true if value is assumed to be tracked.
2333   bool isAssumedTracked() const { return getAssumed(); }
2334 
2335   /// Returns true if value is known to be tracked.
2336   bool isKnownTracked() const { return getAssumed(); }
2337 
2338   /// Create an abstract attribute biew for the position \p IRP.
2339   static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A);
2340 
2341   /// Return the value with which \p I can be replaced for specific \p ICV.
2342   virtual Optional<Value *> getReplacementValue(InternalControlVar ICV,
2343                                                 const Instruction *I,
2344                                                 Attributor &A) const {
2345     return None;
2346   }
2347 
2348   /// Return an assumed unique ICV value if a single candidate is found. If
2349   /// there cannot be one, return a nullptr. If it is not clear yet, return the
2350   /// Optional::NoneType.
2351   virtual Optional<Value *>
2352   getUniqueReplacementValue(InternalControlVar ICV) const = 0;
2353 
2354   // Currently only nthreads is being tracked.
2355   // this array will only grow with time.
2356   InternalControlVar TrackableICVs[1] = {ICV_nthreads};
2357 
2358   /// See AbstractAttribute::getName()
2359   const std::string getName() const override { return "AAICVTracker"; }
2360 
2361   /// See AbstractAttribute::getIdAddr()
2362   const char *getIdAddr() const override { return &ID; }
2363 
2364   /// This function should return true if the type of the \p AA is AAICVTracker
2365   static bool classof(const AbstractAttribute *AA) {
2366     return (AA->getIdAddr() == &ID);
2367   }
2368 
2369   static const char ID;
2370 };
2371 
2372 struct AAICVTrackerFunction : public AAICVTracker {
2373   AAICVTrackerFunction(const IRPosition &IRP, Attributor &A)
2374       : AAICVTracker(IRP, A) {}
2375 
2376   // FIXME: come up with better string.
2377   const std::string getAsStr() const override { return "ICVTrackerFunction"; }
2378 
2379   // FIXME: come up with some stats.
2380   void trackStatistics() const override {}
2381 
2382   /// We don't manifest anything for this AA.
2383   ChangeStatus manifest(Attributor &A) override {
2384     return ChangeStatus::UNCHANGED;
2385   }
2386 
2387   // Map of ICV to their values at specific program point.
2388   EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar,
2389                   InternalControlVar::ICV___last>
2390       ICVReplacementValuesMap;
2391 
2392   ChangeStatus updateImpl(Attributor &A) override {
2393     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
2394 
2395     Function *F = getAnchorScope();
2396 
2397     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2398 
2399     for (InternalControlVar ICV : TrackableICVs) {
2400       auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter];
2401 
2402       auto &ValuesMap = ICVReplacementValuesMap[ICV];
2403       auto TrackValues = [&](Use &U, Function &) {
2404         CallInst *CI = OpenMPOpt::getCallIfRegularCall(U);
2405         if (!CI)
2406           return false;
2407 
2408         // FIXME: handle setters with more that 1 arguments.
2409         /// Track new value.
2410         if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second)
2411           HasChanged = ChangeStatus::CHANGED;
2412 
2413         return false;
2414       };
2415 
2416       auto CallCheck = [&](Instruction &I) {
2417         Optional<Value *> ReplVal = getValueForCall(A, I, ICV);
2418         if (ReplVal && ValuesMap.insert(std::make_pair(&I, *ReplVal)).second)
2419           HasChanged = ChangeStatus::CHANGED;
2420 
2421         return true;
2422       };
2423 
2424       // Track all changes of an ICV.
2425       SetterRFI.foreachUse(TrackValues, F);
2426 
2427       bool UsedAssumedInformation = false;
2428       A.checkForAllInstructions(CallCheck, *this, {Instruction::Call},
2429                                 UsedAssumedInformation,
2430                                 /* CheckBBLivenessOnly */ true);
2431 
2432       /// TODO: Figure out a way to avoid adding entry in
2433       /// ICVReplacementValuesMap
2434       Instruction *Entry = &F->getEntryBlock().front();
2435       if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry))
2436         ValuesMap.insert(std::make_pair(Entry, nullptr));
2437     }
2438 
2439     return HasChanged;
2440   }
2441 
2442   /// Helper to check if \p I is a call and get the value for it if it is
2443   /// unique.
2444   Optional<Value *> getValueForCall(Attributor &A, const Instruction &I,
2445                                     InternalControlVar &ICV) const {
2446 
2447     const auto *CB = dyn_cast<CallBase>(&I);
2448     if (!CB || CB->hasFnAttr("no_openmp") ||
2449         CB->hasFnAttr("no_openmp_routines"))
2450       return None;
2451 
2452     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2453     auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter];
2454     auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter];
2455     Function *CalledFunction = CB->getCalledFunction();
2456 
2457     // Indirect call, assume ICV changes.
2458     if (CalledFunction == nullptr)
2459       return nullptr;
2460     if (CalledFunction == GetterRFI.Declaration)
2461       return None;
2462     if (CalledFunction == SetterRFI.Declaration) {
2463       if (ICVReplacementValuesMap[ICV].count(&I))
2464         return ICVReplacementValuesMap[ICV].lookup(&I);
2465 
2466       return nullptr;
2467     }
2468 
2469     // Since we don't know, assume it changes the ICV.
2470     if (CalledFunction->isDeclaration())
2471       return nullptr;
2472 
2473     const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
2474         *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED);
2475 
2476     if (ICVTrackingAA.isAssumedTracked()) {
2477       Optional<Value *> URV = ICVTrackingAA.getUniqueReplacementValue(ICV);
2478       if (!URV || (*URV && AA::isValidAtPosition(AA::ValueAndContext(**URV, I),
2479                                                  OMPInfoCache)))
2480         return URV;
2481     }
2482 
2483     // If we don't know, assume it changes.
2484     return nullptr;
2485   }
2486 
2487   // We don't check unique value for a function, so return None.
2488   Optional<Value *>
2489   getUniqueReplacementValue(InternalControlVar ICV) const override {
2490     return None;
2491   }
2492 
2493   /// Return the value with which \p I can be replaced for specific \p ICV.
2494   Optional<Value *> getReplacementValue(InternalControlVar ICV,
2495                                         const Instruction *I,
2496                                         Attributor &A) const override {
2497     const auto &ValuesMap = ICVReplacementValuesMap[ICV];
2498     if (ValuesMap.count(I))
2499       return ValuesMap.lookup(I);
2500 
2501     SmallVector<const Instruction *, 16> Worklist;
2502     SmallPtrSet<const Instruction *, 16> Visited;
2503     Worklist.push_back(I);
2504 
2505     Optional<Value *> ReplVal;
2506 
2507     while (!Worklist.empty()) {
2508       const Instruction *CurrInst = Worklist.pop_back_val();
2509       if (!Visited.insert(CurrInst).second)
2510         continue;
2511 
2512       const BasicBlock *CurrBB = CurrInst->getParent();
2513 
2514       // Go up and look for all potential setters/calls that might change the
2515       // ICV.
2516       while ((CurrInst = CurrInst->getPrevNode())) {
2517         if (ValuesMap.count(CurrInst)) {
2518           Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst);
2519           // Unknown value, track new.
2520           if (!ReplVal) {
2521             ReplVal = NewReplVal;
2522             break;
2523           }
2524 
2525           // If we found a new value, we can't know the icv value anymore.
2526           if (NewReplVal)
2527             if (ReplVal != NewReplVal)
2528               return nullptr;
2529 
2530           break;
2531         }
2532 
2533         Optional<Value *> NewReplVal = getValueForCall(A, *CurrInst, ICV);
2534         if (!NewReplVal)
2535           continue;
2536 
2537         // Unknown value, track new.
2538         if (!ReplVal) {
2539           ReplVal = NewReplVal;
2540           break;
2541         }
2542 
2543         // if (NewReplVal.hasValue())
2544         // We found a new value, we can't know the icv value anymore.
2545         if (ReplVal != NewReplVal)
2546           return nullptr;
2547       }
2548 
2549       // If we are in the same BB and we have a value, we are done.
2550       if (CurrBB == I->getParent() && ReplVal)
2551         return ReplVal;
2552 
2553       // Go through all predecessors and add terminators for analysis.
2554       for (const BasicBlock *Pred : predecessors(CurrBB))
2555         if (const Instruction *Terminator = Pred->getTerminator())
2556           Worklist.push_back(Terminator);
2557     }
2558 
2559     return ReplVal;
2560   }
2561 };
2562 
2563 struct AAICVTrackerFunctionReturned : AAICVTracker {
2564   AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A)
2565       : AAICVTracker(IRP, A) {}
2566 
2567   // FIXME: come up with better string.
2568   const std::string getAsStr() const override {
2569     return "ICVTrackerFunctionReturned";
2570   }
2571 
2572   // FIXME: come up with some stats.
2573   void trackStatistics() const override {}
2574 
2575   /// We don't manifest anything for this AA.
2576   ChangeStatus manifest(Attributor &A) override {
2577     return ChangeStatus::UNCHANGED;
2578   }
2579 
2580   // Map of ICV to their values at specific program point.
2581   EnumeratedArray<Optional<Value *>, InternalControlVar,
2582                   InternalControlVar::ICV___last>
2583       ICVReplacementValuesMap;
2584 
2585   /// Return the value with which \p I can be replaced for specific \p ICV.
2586   Optional<Value *>
2587   getUniqueReplacementValue(InternalControlVar ICV) const override {
2588     return ICVReplacementValuesMap[ICV];
2589   }
2590 
2591   ChangeStatus updateImpl(Attributor &A) override {
2592     ChangeStatus Changed = ChangeStatus::UNCHANGED;
2593     const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
2594         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
2595 
2596     if (!ICVTrackingAA.isAssumedTracked())
2597       return indicatePessimisticFixpoint();
2598 
2599     for (InternalControlVar ICV : TrackableICVs) {
2600       Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV];
2601       Optional<Value *> UniqueICVValue;
2602 
2603       auto CheckReturnInst = [&](Instruction &I) {
2604         Optional<Value *> NewReplVal =
2605             ICVTrackingAA.getReplacementValue(ICV, &I, A);
2606 
2607         // If we found a second ICV value there is no unique returned value.
2608         if (UniqueICVValue && UniqueICVValue != NewReplVal)
2609           return false;
2610 
2611         UniqueICVValue = NewReplVal;
2612 
2613         return true;
2614       };
2615 
2616       bool UsedAssumedInformation = false;
2617       if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret},
2618                                      UsedAssumedInformation,
2619                                      /* CheckBBLivenessOnly */ true))
2620         UniqueICVValue = nullptr;
2621 
2622       if (UniqueICVValue == ReplVal)
2623         continue;
2624 
2625       ReplVal = UniqueICVValue;
2626       Changed = ChangeStatus::CHANGED;
2627     }
2628 
2629     return Changed;
2630   }
2631 };
2632 
2633 struct AAICVTrackerCallSite : AAICVTracker {
2634   AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A)
2635       : AAICVTracker(IRP, A) {}
2636 
2637   void initialize(Attributor &A) override {
2638     Function *F = getAnchorScope();
2639     if (!F || !A.isFunctionIPOAmendable(*F))
2640       indicatePessimisticFixpoint();
2641 
2642     // We only initialize this AA for getters, so we need to know which ICV it
2643     // gets.
2644     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2645     for (InternalControlVar ICV : TrackableICVs) {
2646       auto ICVInfo = OMPInfoCache.ICVs[ICV];
2647       auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter];
2648       if (Getter.Declaration == getAssociatedFunction()) {
2649         AssociatedICV = ICVInfo.Kind;
2650         return;
2651       }
2652     }
2653 
2654     /// Unknown ICV.
2655     indicatePessimisticFixpoint();
2656   }
2657 
2658   ChangeStatus manifest(Attributor &A) override {
2659     if (!ReplVal || !*ReplVal)
2660       return ChangeStatus::UNCHANGED;
2661 
2662     A.changeAfterManifest(IRPosition::inst(*getCtxI()), **ReplVal);
2663     A.deleteAfterManifest(*getCtxI());
2664 
2665     return ChangeStatus::CHANGED;
2666   }
2667 
2668   // FIXME: come up with better string.
2669   const std::string getAsStr() const override { return "ICVTrackerCallSite"; }
2670 
2671   // FIXME: come up with some stats.
2672   void trackStatistics() const override {}
2673 
2674   InternalControlVar AssociatedICV;
2675   Optional<Value *> ReplVal;
2676 
2677   ChangeStatus updateImpl(Attributor &A) override {
2678     const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
2679         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
2680 
2681     // We don't have any information, so we assume it changes the ICV.
2682     if (!ICVTrackingAA.isAssumedTracked())
2683       return indicatePessimisticFixpoint();
2684 
2685     Optional<Value *> NewReplVal =
2686         ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A);
2687 
2688     if (ReplVal == NewReplVal)
2689       return ChangeStatus::UNCHANGED;
2690 
2691     ReplVal = NewReplVal;
2692     return ChangeStatus::CHANGED;
2693   }
2694 
2695   // Return the value with which associated value can be replaced for specific
2696   // \p ICV.
2697   Optional<Value *>
2698   getUniqueReplacementValue(InternalControlVar ICV) const override {
2699     return ReplVal;
2700   }
2701 };
2702 
2703 struct AAICVTrackerCallSiteReturned : AAICVTracker {
2704   AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A)
2705       : AAICVTracker(IRP, A) {}
2706 
2707   // FIXME: come up with better string.
2708   const std::string getAsStr() const override {
2709     return "ICVTrackerCallSiteReturned";
2710   }
2711 
2712   // FIXME: come up with some stats.
2713   void trackStatistics() const override {}
2714 
2715   /// We don't manifest anything for this AA.
2716   ChangeStatus manifest(Attributor &A) override {
2717     return ChangeStatus::UNCHANGED;
2718   }
2719 
2720   // Map of ICV to their values at specific program point.
2721   EnumeratedArray<Optional<Value *>, InternalControlVar,
2722                   InternalControlVar::ICV___last>
2723       ICVReplacementValuesMap;
2724 
2725   /// Return the value with which associated value can be replaced for specific
2726   /// \p ICV.
2727   Optional<Value *>
2728   getUniqueReplacementValue(InternalControlVar ICV) const override {
2729     return ICVReplacementValuesMap[ICV];
2730   }
2731 
2732   ChangeStatus updateImpl(Attributor &A) override {
2733     ChangeStatus Changed = ChangeStatus::UNCHANGED;
2734     const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
2735         *this, IRPosition::returned(*getAssociatedFunction()),
2736         DepClassTy::REQUIRED);
2737 
2738     // We don't have any information, so we assume it changes the ICV.
2739     if (!ICVTrackingAA.isAssumedTracked())
2740       return indicatePessimisticFixpoint();
2741 
2742     for (InternalControlVar ICV : TrackableICVs) {
2743       Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV];
2744       Optional<Value *> NewReplVal =
2745           ICVTrackingAA.getUniqueReplacementValue(ICV);
2746 
2747       if (ReplVal == NewReplVal)
2748         continue;
2749 
2750       ReplVal = NewReplVal;
2751       Changed = ChangeStatus::CHANGED;
2752     }
2753     return Changed;
2754   }
2755 };
2756 
2757 struct AAExecutionDomainFunction : public AAExecutionDomain {
2758   AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A)
2759       : AAExecutionDomain(IRP, A) {}
2760 
2761   const std::string getAsStr() const override {
2762     return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) +
2763            "/" + std::to_string(NumBBs) + " BBs thread 0 only.";
2764   }
2765 
2766   /// See AbstractAttribute::trackStatistics().
2767   void trackStatistics() const override {}
2768 
2769   void initialize(Attributor &A) override {
2770     Function *F = getAnchorScope();
2771     for (const auto &BB : *F)
2772       SingleThreadedBBs.insert(&BB);
2773     NumBBs = SingleThreadedBBs.size();
2774   }
2775 
2776   ChangeStatus manifest(Attributor &A) override {
2777     LLVM_DEBUG({
2778       for (const BasicBlock *BB : SingleThreadedBBs)
2779         dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " "
2780                << BB->getName() << " is executed by a single thread.\n";
2781     });
2782     return ChangeStatus::UNCHANGED;
2783   }
2784 
2785   ChangeStatus updateImpl(Attributor &A) override;
2786 
2787   /// Check if an instruction is executed by a single thread.
2788   bool isExecutedByInitialThreadOnly(const Instruction &I) const override {
2789     return isExecutedByInitialThreadOnly(*I.getParent());
2790   }
2791 
2792   bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override {
2793     return isValidState() && SingleThreadedBBs.contains(&BB);
2794   }
2795 
2796   /// Set of basic blocks that are executed by a single thread.
2797   SmallSetVector<const BasicBlock *, 16> SingleThreadedBBs;
2798 
2799   /// Total number of basic blocks in this function.
2800   long unsigned NumBBs = 0;
2801 };
2802 
2803 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) {
2804   Function *F = getAnchorScope();
2805   ReversePostOrderTraversal<Function *> RPOT(F);
2806   auto NumSingleThreadedBBs = SingleThreadedBBs.size();
2807 
2808   bool AllCallSitesKnown;
2809   auto PredForCallSite = [&](AbstractCallSite ACS) {
2810     const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>(
2811         *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
2812         DepClassTy::REQUIRED);
2813     return ACS.isDirectCall() &&
2814            ExecutionDomainAA.isExecutedByInitialThreadOnly(
2815                *ACS.getInstruction());
2816   };
2817 
2818   if (!A.checkForAllCallSites(PredForCallSite, *this,
2819                               /* RequiresAllCallSites */ true,
2820                               AllCallSitesKnown))
2821     SingleThreadedBBs.remove(&F->getEntryBlock());
2822 
2823   auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2824   auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
2825 
2826   // Check if the edge into the successor block contains a condition that only
2827   // lets the main thread execute it.
2828   auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) {
2829     if (!Edge || !Edge->isConditional())
2830       return false;
2831     if (Edge->getSuccessor(0) != SuccessorBB)
2832       return false;
2833 
2834     auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition());
2835     if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality())
2836       return false;
2837 
2838     ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1));
2839     if (!C)
2840       return false;
2841 
2842     // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!)
2843     if (C->isAllOnesValue()) {
2844       auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0));
2845       CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr;
2846       if (!CB)
2847         return false;
2848       const int InitModeArgNo = 1;
2849       auto *ModeCI = dyn_cast<ConstantInt>(CB->getOperand(InitModeArgNo));
2850       return ModeCI && (ModeCI->getSExtValue() & OMP_TGT_EXEC_MODE_GENERIC);
2851     }
2852 
2853     if (C->isZero()) {
2854       // Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x()
2855       if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0)))
2856         if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x)
2857           return true;
2858 
2859       // Match: 0 == llvm.amdgcn.workitem.id.x()
2860       if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0)))
2861         if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x)
2862           return true;
2863     }
2864 
2865     return false;
2866   };
2867 
2868   // Merge all the predecessor states into the current basic block. A basic
2869   // block is executed by a single thread if all of its predecessors are.
2870   auto MergePredecessorStates = [&](BasicBlock *BB) {
2871     if (pred_empty(BB))
2872       return SingleThreadedBBs.contains(BB);
2873 
2874     bool IsInitialThread = true;
2875     for (BasicBlock *PredBB : predecessors(BB)) {
2876       if (!IsInitialThreadOnly(dyn_cast<BranchInst>(PredBB->getTerminator()),
2877                                BB))
2878         IsInitialThread &= SingleThreadedBBs.contains(PredBB);
2879     }
2880 
2881     return IsInitialThread;
2882   };
2883 
2884   for (auto *BB : RPOT) {
2885     if (!MergePredecessorStates(BB))
2886       SingleThreadedBBs.remove(BB);
2887   }
2888 
2889   return (NumSingleThreadedBBs == SingleThreadedBBs.size())
2890              ? ChangeStatus::UNCHANGED
2891              : ChangeStatus::CHANGED;
2892 }
2893 
2894 /// Try to replace memory allocation calls called by a single thread with a
2895 /// static buffer of shared memory.
2896 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> {
2897   using Base = StateWrapper<BooleanState, AbstractAttribute>;
2898   AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
2899 
2900   /// Create an abstract attribute view for the position \p IRP.
2901   static AAHeapToShared &createForPosition(const IRPosition &IRP,
2902                                            Attributor &A);
2903 
2904   /// Returns true if HeapToShared conversion is assumed to be possible.
2905   virtual bool isAssumedHeapToShared(CallBase &CB) const = 0;
2906 
2907   /// Returns true if HeapToShared conversion is assumed and the CB is a
2908   /// callsite to a free operation to be removed.
2909   virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0;
2910 
2911   /// See AbstractAttribute::getName().
2912   const std::string getName() const override { return "AAHeapToShared"; }
2913 
2914   /// See AbstractAttribute::getIdAddr().
2915   const char *getIdAddr() const override { return &ID; }
2916 
2917   /// This function should return true if the type of the \p AA is
2918   /// AAHeapToShared.
2919   static bool classof(const AbstractAttribute *AA) {
2920     return (AA->getIdAddr() == &ID);
2921   }
2922 
2923   /// Unique ID (due to the unique address)
2924   static const char ID;
2925 };
2926 
2927 struct AAHeapToSharedFunction : public AAHeapToShared {
2928   AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A)
2929       : AAHeapToShared(IRP, A) {}
2930 
2931   const std::string getAsStr() const override {
2932     return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) +
2933            " malloc calls eligible.";
2934   }
2935 
2936   /// See AbstractAttribute::trackStatistics().
2937   void trackStatistics() const override {}
2938 
2939   /// This functions finds free calls that will be removed by the
2940   /// HeapToShared transformation.
2941   void findPotentialRemovedFreeCalls(Attributor &A) {
2942     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2943     auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared];
2944 
2945     PotentialRemovedFreeCalls.clear();
2946     // Update free call users of found malloc calls.
2947     for (CallBase *CB : MallocCalls) {
2948       SmallVector<CallBase *, 4> FreeCalls;
2949       for (auto *U : CB->users()) {
2950         CallBase *C = dyn_cast<CallBase>(U);
2951         if (C && C->getCalledFunction() == FreeRFI.Declaration)
2952           FreeCalls.push_back(C);
2953       }
2954 
2955       if (FreeCalls.size() != 1)
2956         continue;
2957 
2958       PotentialRemovedFreeCalls.insert(FreeCalls.front());
2959     }
2960   }
2961 
2962   void initialize(Attributor &A) override {
2963     if (DisableOpenMPOptDeglobalization) {
2964       indicatePessimisticFixpoint();
2965       return;
2966     }
2967 
2968     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2969     auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
2970 
2971     Attributor::SimplifictionCallbackTy SCB =
2972         [](const IRPosition &, const AbstractAttribute *,
2973            bool &) -> Optional<Value *> { return nullptr; };
2974     for (User *U : RFI.Declaration->users())
2975       if (CallBase *CB = dyn_cast<CallBase>(U)) {
2976         MallocCalls.insert(CB);
2977         A.registerSimplificationCallback(IRPosition::callsite_returned(*CB),
2978                                          SCB);
2979       }
2980 
2981     findPotentialRemovedFreeCalls(A);
2982   }
2983 
2984   bool isAssumedHeapToShared(CallBase &CB) const override {
2985     return isValidState() && MallocCalls.count(&CB);
2986   }
2987 
2988   bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override {
2989     return isValidState() && PotentialRemovedFreeCalls.count(&CB);
2990   }
2991 
2992   ChangeStatus manifest(Attributor &A) override {
2993     if (MallocCalls.empty())
2994       return ChangeStatus::UNCHANGED;
2995 
2996     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2997     auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared];
2998 
2999     Function *F = getAnchorScope();
3000     auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this,
3001                                             DepClassTy::OPTIONAL);
3002 
3003     ChangeStatus Changed = ChangeStatus::UNCHANGED;
3004     for (CallBase *CB : MallocCalls) {
3005       // Skip replacing this if HeapToStack has already claimed it.
3006       if (HS && HS->isAssumedHeapToStack(*CB))
3007         continue;
3008 
3009       // Find the unique free call to remove it.
3010       SmallVector<CallBase *, 4> FreeCalls;
3011       for (auto *U : CB->users()) {
3012         CallBase *C = dyn_cast<CallBase>(U);
3013         if (C && C->getCalledFunction() == FreeCall.Declaration)
3014           FreeCalls.push_back(C);
3015       }
3016       if (FreeCalls.size() != 1)
3017         continue;
3018 
3019       auto *AllocSize = cast<ConstantInt>(CB->getArgOperand(0));
3020 
3021       if (AllocSize->getZExtValue() + SharedMemoryUsed > SharedMemoryLimit) {
3022         LLVM_DEBUG(dbgs() << TAG << "Cannot replace call " << *CB
3023                           << " with shared memory."
3024                           << " Shared memory usage is limited to "
3025                           << SharedMemoryLimit << " bytes\n");
3026         continue;
3027       }
3028 
3029       LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB
3030                         << " with " << AllocSize->getZExtValue()
3031                         << " bytes of shared memory\n");
3032 
3033       // Create a new shared memory buffer of the same size as the allocation
3034       // and replace all the uses of the original allocation with it.
3035       Module *M = CB->getModule();
3036       Type *Int8Ty = Type::getInt8Ty(M->getContext());
3037       Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue());
3038       auto *SharedMem = new GlobalVariable(
3039           *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage,
3040           UndefValue::get(Int8ArrTy), CB->getName() + "_shared", nullptr,
3041           GlobalValue::NotThreadLocal,
3042           static_cast<unsigned>(AddressSpace::Shared));
3043       auto *NewBuffer =
3044           ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo());
3045 
3046       auto Remark = [&](OptimizationRemark OR) {
3047         return OR << "Replaced globalized variable with "
3048                   << ore::NV("SharedMemory", AllocSize->getZExtValue())
3049                   << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ")
3050                   << "of shared memory.";
3051       };
3052       A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark);
3053 
3054       MaybeAlign Alignment = CB->getRetAlign();
3055       assert(Alignment &&
3056              "HeapToShared on allocation without alignment attribute");
3057       SharedMem->setAlignment(MaybeAlign(Alignment));
3058 
3059       A.changeAfterManifest(IRPosition::callsite_returned(*CB), *NewBuffer);
3060       A.deleteAfterManifest(*CB);
3061       A.deleteAfterManifest(*FreeCalls.front());
3062 
3063       SharedMemoryUsed += AllocSize->getZExtValue();
3064       NumBytesMovedToSharedMemory = SharedMemoryUsed;
3065       Changed = ChangeStatus::CHANGED;
3066     }
3067 
3068     return Changed;
3069   }
3070 
3071   ChangeStatus updateImpl(Attributor &A) override {
3072     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3073     auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
3074     Function *F = getAnchorScope();
3075 
3076     auto NumMallocCalls = MallocCalls.size();
3077 
3078     // Only consider malloc calls executed by a single thread with a constant.
3079     for (User *U : RFI.Declaration->users()) {
3080       const auto &ED = A.getAAFor<AAExecutionDomain>(
3081           *this, IRPosition::function(*F), DepClassTy::REQUIRED);
3082       if (CallBase *CB = dyn_cast<CallBase>(U))
3083         if (!isa<ConstantInt>(CB->getArgOperand(0)) ||
3084             !ED.isExecutedByInitialThreadOnly(*CB))
3085           MallocCalls.remove(CB);
3086     }
3087 
3088     findPotentialRemovedFreeCalls(A);
3089 
3090     if (NumMallocCalls != MallocCalls.size())
3091       return ChangeStatus::CHANGED;
3092 
3093     return ChangeStatus::UNCHANGED;
3094   }
3095 
3096   /// Collection of all malloc calls in a function.
3097   SmallSetVector<CallBase *, 4> MallocCalls;
3098   /// Collection of potentially removed free calls in a function.
3099   SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls;
3100   /// The total amount of shared memory that has been used for HeapToShared.
3101   unsigned SharedMemoryUsed = 0;
3102 };
3103 
3104 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> {
3105   using Base = StateWrapper<KernelInfoState, AbstractAttribute>;
3106   AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
3107 
3108   /// Statistics are tracked as part of manifest for now.
3109   void trackStatistics() const override {}
3110 
3111   /// See AbstractAttribute::getAsStr()
3112   const std::string getAsStr() const override {
3113     if (!isValidState())
3114       return "<invalid>";
3115     return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD"
3116                                                             : "generic") +
3117            std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]"
3118                                                                : "") +
3119            std::string(" #PRs: ") +
3120            (ReachedKnownParallelRegions.isValidState()
3121                 ? std::to_string(ReachedKnownParallelRegions.size())
3122                 : "<invalid>") +
3123            ", #Unknown PRs: " +
3124            (ReachedUnknownParallelRegions.isValidState()
3125                 ? std::to_string(ReachedUnknownParallelRegions.size())
3126                 : "<invalid>") +
3127            ", #Reaching Kernels: " +
3128            (ReachingKernelEntries.isValidState()
3129                 ? std::to_string(ReachingKernelEntries.size())
3130                 : "<invalid>");
3131   }
3132 
3133   /// Create an abstract attribute biew for the position \p IRP.
3134   static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A);
3135 
3136   /// See AbstractAttribute::getName()
3137   const std::string getName() const override { return "AAKernelInfo"; }
3138 
3139   /// See AbstractAttribute::getIdAddr()
3140   const char *getIdAddr() const override { return &ID; }
3141 
3142   /// This function should return true if the type of the \p AA is AAKernelInfo
3143   static bool classof(const AbstractAttribute *AA) {
3144     return (AA->getIdAddr() == &ID);
3145   }
3146 
3147   static const char ID;
3148 };
3149 
3150 /// The function kernel info abstract attribute, basically, what can we say
3151 /// about a function with regards to the KernelInfoState.
3152 struct AAKernelInfoFunction : AAKernelInfo {
3153   AAKernelInfoFunction(const IRPosition &IRP, Attributor &A)
3154       : AAKernelInfo(IRP, A) {}
3155 
3156   SmallPtrSet<Instruction *, 4> GuardedInstructions;
3157 
3158   SmallPtrSetImpl<Instruction *> &getGuardedInstructions() {
3159     return GuardedInstructions;
3160   }
3161 
3162   /// See AbstractAttribute::initialize(...).
3163   void initialize(Attributor &A) override {
3164     // This is a high-level transform that might change the constant arguments
3165     // of the init and dinit calls. We need to tell the Attributor about this
3166     // to avoid other parts using the current constant value for simpliication.
3167     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3168 
3169     Function *Fn = getAnchorScope();
3170 
3171     OMPInformationCache::RuntimeFunctionInfo &InitRFI =
3172         OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
3173     OMPInformationCache::RuntimeFunctionInfo &DeinitRFI =
3174         OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit];
3175 
3176     // For kernels we perform more initialization work, first we find the init
3177     // and deinit calls.
3178     auto StoreCallBase = [](Use &U,
3179                             OMPInformationCache::RuntimeFunctionInfo &RFI,
3180                             CallBase *&Storage) {
3181       CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI);
3182       assert(CB &&
3183              "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!");
3184       assert(!Storage &&
3185              "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!");
3186       Storage = CB;
3187       return false;
3188     };
3189     InitRFI.foreachUse(
3190         [&](Use &U, Function &) {
3191           StoreCallBase(U, InitRFI, KernelInitCB);
3192           return false;
3193         },
3194         Fn);
3195     DeinitRFI.foreachUse(
3196         [&](Use &U, Function &) {
3197           StoreCallBase(U, DeinitRFI, KernelDeinitCB);
3198           return false;
3199         },
3200         Fn);
3201 
3202     // Ignore kernels without initializers such as global constructors.
3203     if (!KernelInitCB || !KernelDeinitCB)
3204       return;
3205 
3206     // Add itself to the reaching kernel and set IsKernelEntry.
3207     ReachingKernelEntries.insert(Fn);
3208     IsKernelEntry = true;
3209 
3210     // For kernels we might need to initialize/finalize the IsSPMD state and
3211     // we need to register a simplification callback so that the Attributor
3212     // knows the constant arguments to __kmpc_target_init and
3213     // __kmpc_target_deinit might actually change.
3214 
3215     Attributor::SimplifictionCallbackTy StateMachineSimplifyCB =
3216         [&](const IRPosition &IRP, const AbstractAttribute *AA,
3217             bool &UsedAssumedInformation) -> Optional<Value *> {
3218       // IRP represents the "use generic state machine" argument of an
3219       // __kmpc_target_init call. We will answer this one with the internal
3220       // state. As long as we are not in an invalid state, we will create a
3221       // custom state machine so the value should be a `i1 false`. If we are
3222       // in an invalid state, we won't change the value that is in the IR.
3223       if (!ReachedKnownParallelRegions.isValidState())
3224         return nullptr;
3225       // If we have disabled state machine rewrites, don't make a custom one.
3226       if (DisableOpenMPOptStateMachineRewrite)
3227         return nullptr;
3228       if (AA)
3229         A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
3230       UsedAssumedInformation = !isAtFixpoint();
3231       auto *FalseVal =
3232           ConstantInt::getBool(IRP.getAnchorValue().getContext(), false);
3233       return FalseVal;
3234     };
3235 
3236     Attributor::SimplifictionCallbackTy ModeSimplifyCB =
3237         [&](const IRPosition &IRP, const AbstractAttribute *AA,
3238             bool &UsedAssumedInformation) -> Optional<Value *> {
3239       // IRP represents the "SPMDCompatibilityTracker" argument of an
3240       // __kmpc_target_init or
3241       // __kmpc_target_deinit call. We will answer this one with the internal
3242       // state.
3243       if (!SPMDCompatibilityTracker.isValidState())
3244         return nullptr;
3245       if (!SPMDCompatibilityTracker.isAtFixpoint()) {
3246         if (AA)
3247           A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
3248         UsedAssumedInformation = true;
3249       } else {
3250         UsedAssumedInformation = false;
3251       }
3252       auto *Val = ConstantInt::getSigned(
3253           IntegerType::getInt8Ty(IRP.getAnchorValue().getContext()),
3254           SPMDCompatibilityTracker.isAssumed() ? OMP_TGT_EXEC_MODE_SPMD
3255                                                : OMP_TGT_EXEC_MODE_GENERIC);
3256       return Val;
3257     };
3258 
3259     Attributor::SimplifictionCallbackTy IsGenericModeSimplifyCB =
3260         [&](const IRPosition &IRP, const AbstractAttribute *AA,
3261             bool &UsedAssumedInformation) -> Optional<Value *> {
3262       // IRP represents the "RequiresFullRuntime" argument of an
3263       // __kmpc_target_init or __kmpc_target_deinit call. We will answer this
3264       // one with the internal state of the SPMDCompatibilityTracker, so if
3265       // generic then true, if SPMD then false.
3266       if (!SPMDCompatibilityTracker.isValidState())
3267         return nullptr;
3268       if (!SPMDCompatibilityTracker.isAtFixpoint()) {
3269         if (AA)
3270           A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
3271         UsedAssumedInformation = true;
3272       } else {
3273         UsedAssumedInformation = false;
3274       }
3275       auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(),
3276                                        !SPMDCompatibilityTracker.isAssumed());
3277       return Val;
3278     };
3279 
3280     constexpr const int InitModeArgNo = 1;
3281     constexpr const int DeinitModeArgNo = 1;
3282     constexpr const int InitUseStateMachineArgNo = 2;
3283     constexpr const int InitRequiresFullRuntimeArgNo = 3;
3284     constexpr const int DeinitRequiresFullRuntimeArgNo = 2;
3285     A.registerSimplificationCallback(
3286         IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo),
3287         StateMachineSimplifyCB);
3288     A.registerSimplificationCallback(
3289         IRPosition::callsite_argument(*KernelInitCB, InitModeArgNo),
3290         ModeSimplifyCB);
3291     A.registerSimplificationCallback(
3292         IRPosition::callsite_argument(*KernelDeinitCB, DeinitModeArgNo),
3293         ModeSimplifyCB);
3294     A.registerSimplificationCallback(
3295         IRPosition::callsite_argument(*KernelInitCB,
3296                                       InitRequiresFullRuntimeArgNo),
3297         IsGenericModeSimplifyCB);
3298     A.registerSimplificationCallback(
3299         IRPosition::callsite_argument(*KernelDeinitCB,
3300                                       DeinitRequiresFullRuntimeArgNo),
3301         IsGenericModeSimplifyCB);
3302 
3303     // Check if we know we are in SPMD-mode already.
3304     ConstantInt *ModeArg =
3305         dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo));
3306     if (ModeArg && (ModeArg->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD))
3307       SPMDCompatibilityTracker.indicateOptimisticFixpoint();
3308     // This is a generic region but SPMDization is disabled so stop tracking.
3309     else if (DisableOpenMPOptSPMDization)
3310       SPMDCompatibilityTracker.indicatePessimisticFixpoint();
3311   }
3312 
3313   /// Sanitize the string \p S such that it is a suitable global symbol name.
3314   static std::string sanitizeForGlobalName(std::string S) {
3315     std::replace_if(
3316         S.begin(), S.end(),
3317         [](const char C) {
3318           return !((C >= 'a' && C <= 'z') || (C >= 'A' && C <= 'Z') ||
3319                    (C >= '0' && C <= '9') || C == '_');
3320         },
3321         '.');
3322     return S;
3323   }
3324 
3325   /// Modify the IR based on the KernelInfoState as the fixpoint iteration is
3326   /// finished now.
3327   ChangeStatus manifest(Attributor &A) override {
3328     // If we are not looking at a kernel with __kmpc_target_init and
3329     // __kmpc_target_deinit call we cannot actually manifest the information.
3330     if (!KernelInitCB || !KernelDeinitCB)
3331       return ChangeStatus::UNCHANGED;
3332 
3333     // If we can we change the execution mode to SPMD-mode otherwise we build a
3334     // custom state machine.
3335     ChangeStatus Changed = ChangeStatus::UNCHANGED;
3336     if (!changeToSPMDMode(A, Changed))
3337       return buildCustomStateMachine(A);
3338 
3339     return Changed;
3340   }
3341 
3342   bool changeToSPMDMode(Attributor &A, ChangeStatus &Changed) {
3343     if (!mayContainParallelRegion())
3344       return false;
3345 
3346     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3347 
3348     if (!SPMDCompatibilityTracker.isAssumed()) {
3349       for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) {
3350         if (!NonCompatibleI)
3351           continue;
3352 
3353         // Skip diagnostics on calls to known OpenMP runtime functions for now.
3354         if (auto *CB = dyn_cast<CallBase>(NonCompatibleI))
3355           if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction()))
3356             continue;
3357 
3358         auto Remark = [&](OptimizationRemarkAnalysis ORA) {
3359           ORA << "Value has potential side effects preventing SPMD-mode "
3360                  "execution";
3361           if (isa<CallBase>(NonCompatibleI)) {
3362             ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to "
3363                    "the called function to override";
3364           }
3365           return ORA << ".";
3366         };
3367         A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121",
3368                                                  Remark);
3369 
3370         LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: "
3371                           << *NonCompatibleI << "\n");
3372       }
3373 
3374       return false;
3375     }
3376 
3377     // Get the actual kernel, could be the caller of the anchor scope if we have
3378     // a debug wrapper.
3379     Function *Kernel = getAnchorScope();
3380     if (Kernel->hasLocalLinkage()) {
3381       assert(Kernel->hasOneUse() && "Unexpected use of debug kernel wrapper.");
3382       auto *CB = cast<CallBase>(Kernel->user_back());
3383       Kernel = CB->getCaller();
3384     }
3385     assert(OMPInfoCache.Kernels.count(Kernel) && "Expected kernel function!");
3386 
3387     // Check if the kernel is already in SPMD mode, if so, return success.
3388     GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable(
3389         (Kernel->getName() + "_exec_mode").str());
3390     assert(ExecMode && "Kernel without exec mode?");
3391     assert(ExecMode->getInitializer() && "ExecMode doesn't have initializer!");
3392 
3393     // Set the global exec mode flag to indicate SPMD-Generic mode.
3394     assert(isa<ConstantInt>(ExecMode->getInitializer()) &&
3395            "ExecMode is not an integer!");
3396     const int8_t ExecModeVal =
3397         cast<ConstantInt>(ExecMode->getInitializer())->getSExtValue();
3398     if (ExecModeVal != OMP_TGT_EXEC_MODE_GENERIC)
3399       return true;
3400 
3401     // We will now unconditionally modify the IR, indicate a change.
3402     Changed = ChangeStatus::CHANGED;
3403 
3404     auto CreateGuardedRegion = [&](Instruction *RegionStartI,
3405                                    Instruction *RegionEndI) {
3406       LoopInfo *LI = nullptr;
3407       DominatorTree *DT = nullptr;
3408       MemorySSAUpdater *MSU = nullptr;
3409       using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
3410 
3411       BasicBlock *ParentBB = RegionStartI->getParent();
3412       Function *Fn = ParentBB->getParent();
3413       Module &M = *Fn->getParent();
3414 
3415       // Create all the blocks and logic.
3416       // ParentBB:
3417       //    goto RegionCheckTidBB
3418       // RegionCheckTidBB:
3419       //    Tid = __kmpc_hardware_thread_id()
3420       //    if (Tid != 0)
3421       //        goto RegionBarrierBB
3422       // RegionStartBB:
3423       //    <execute instructions guarded>
3424       //    goto RegionEndBB
3425       // RegionEndBB:
3426       //    <store escaping values to shared mem>
3427       //    goto RegionBarrierBB
3428       //  RegionBarrierBB:
3429       //    __kmpc_simple_barrier_spmd()
3430       //    // second barrier is omitted if lacking escaping values.
3431       //    <load escaping values from shared mem>
3432       //    __kmpc_simple_barrier_spmd()
3433       //    goto RegionExitBB
3434       // RegionExitBB:
3435       //    <execute rest of instructions>
3436 
3437       BasicBlock *RegionEndBB = SplitBlock(ParentBB, RegionEndI->getNextNode(),
3438                                            DT, LI, MSU, "region.guarded.end");
3439       BasicBlock *RegionBarrierBB =
3440           SplitBlock(RegionEndBB, &*RegionEndBB->getFirstInsertionPt(), DT, LI,
3441                      MSU, "region.barrier");
3442       BasicBlock *RegionExitBB =
3443           SplitBlock(RegionBarrierBB, &*RegionBarrierBB->getFirstInsertionPt(),
3444                      DT, LI, MSU, "region.exit");
3445       BasicBlock *RegionStartBB =
3446           SplitBlock(ParentBB, RegionStartI, DT, LI, MSU, "region.guarded");
3447 
3448       assert(ParentBB->getUniqueSuccessor() == RegionStartBB &&
3449              "Expected a different CFG");
3450 
3451       BasicBlock *RegionCheckTidBB = SplitBlock(
3452           ParentBB, ParentBB->getTerminator(), DT, LI, MSU, "region.check.tid");
3453 
3454       // Register basic blocks with the Attributor.
3455       A.registerManifestAddedBasicBlock(*RegionEndBB);
3456       A.registerManifestAddedBasicBlock(*RegionBarrierBB);
3457       A.registerManifestAddedBasicBlock(*RegionExitBB);
3458       A.registerManifestAddedBasicBlock(*RegionStartBB);
3459       A.registerManifestAddedBasicBlock(*RegionCheckTidBB);
3460 
3461       bool HasBroadcastValues = false;
3462       // Find escaping outputs from the guarded region to outside users and
3463       // broadcast their values to them.
3464       for (Instruction &I : *RegionStartBB) {
3465         SmallPtrSet<Instruction *, 4> OutsideUsers;
3466         for (User *Usr : I.users()) {
3467           Instruction &UsrI = *cast<Instruction>(Usr);
3468           if (UsrI.getParent() != RegionStartBB)
3469             OutsideUsers.insert(&UsrI);
3470         }
3471 
3472         if (OutsideUsers.empty())
3473           continue;
3474 
3475         HasBroadcastValues = true;
3476 
3477         // Emit a global variable in shared memory to store the broadcasted
3478         // value.
3479         auto *SharedMem = new GlobalVariable(
3480             M, I.getType(), /* IsConstant */ false,
3481             GlobalValue::InternalLinkage, UndefValue::get(I.getType()),
3482             sanitizeForGlobalName(
3483                 (I.getName() + ".guarded.output.alloc").str()),
3484             nullptr, GlobalValue::NotThreadLocal,
3485             static_cast<unsigned>(AddressSpace::Shared));
3486 
3487         // Emit a store instruction to update the value.
3488         new StoreInst(&I, SharedMem, RegionEndBB->getTerminator());
3489 
3490         LoadInst *LoadI = new LoadInst(I.getType(), SharedMem,
3491                                        I.getName() + ".guarded.output.load",
3492                                        RegionBarrierBB->getTerminator());
3493 
3494         // Emit a load instruction and replace uses of the output value.
3495         for (Instruction *UsrI : OutsideUsers)
3496           UsrI->replaceUsesOfWith(&I, LoadI);
3497       }
3498 
3499       auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3500 
3501       // Go to tid check BB in ParentBB.
3502       const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc();
3503       ParentBB->getTerminator()->eraseFromParent();
3504       OpenMPIRBuilder::LocationDescription Loc(
3505           InsertPointTy(ParentBB, ParentBB->end()), DL);
3506       OMPInfoCache.OMPBuilder.updateToLocation(Loc);
3507       uint32_t SrcLocStrSize;
3508       auto *SrcLocStr =
3509           OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3510       Value *Ident =
3511           OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3512       BranchInst::Create(RegionCheckTidBB, ParentBB)->setDebugLoc(DL);
3513 
3514       // Add check for Tid in RegionCheckTidBB
3515       RegionCheckTidBB->getTerminator()->eraseFromParent();
3516       OpenMPIRBuilder::LocationDescription LocRegionCheckTid(
3517           InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL);
3518       OMPInfoCache.OMPBuilder.updateToLocation(LocRegionCheckTid);
3519       FunctionCallee HardwareTidFn =
3520           OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3521               M, OMPRTL___kmpc_get_hardware_thread_id_in_block);
3522       CallInst *Tid =
3523           OMPInfoCache.OMPBuilder.Builder.CreateCall(HardwareTidFn, {});
3524       Tid->setDebugLoc(DL);
3525       OMPInfoCache.setCallingConvention(HardwareTidFn, Tid);
3526       Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Tid);
3527       OMPInfoCache.OMPBuilder.Builder
3528           .CreateCondBr(TidCheck, RegionStartBB, RegionBarrierBB)
3529           ->setDebugLoc(DL);
3530 
3531       // First barrier for synchronization, ensures main thread has updated
3532       // values.
3533       FunctionCallee BarrierFn =
3534           OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3535               M, OMPRTL___kmpc_barrier_simple_spmd);
3536       OMPInfoCache.OMPBuilder.updateToLocation(InsertPointTy(
3537           RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt()));
3538       CallInst *Barrier =
3539           OMPInfoCache.OMPBuilder.Builder.CreateCall(BarrierFn, {Ident, Tid});
3540       Barrier->setDebugLoc(DL);
3541       OMPInfoCache.setCallingConvention(BarrierFn, Barrier);
3542 
3543       // Second barrier ensures workers have read broadcast values.
3544       if (HasBroadcastValues) {
3545         CallInst *Barrier = CallInst::Create(BarrierFn, {Ident, Tid}, "",
3546                                              RegionBarrierBB->getTerminator());
3547         Barrier->setDebugLoc(DL);
3548         OMPInfoCache.setCallingConvention(BarrierFn, Barrier);
3549       }
3550     };
3551 
3552     auto &AllocSharedRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
3553     SmallPtrSet<BasicBlock *, 8> Visited;
3554     for (Instruction *GuardedI : SPMDCompatibilityTracker) {
3555       BasicBlock *BB = GuardedI->getParent();
3556       if (!Visited.insert(BB).second)
3557         continue;
3558 
3559       SmallVector<std::pair<Instruction *, Instruction *>> Reorders;
3560       Instruction *LastEffect = nullptr;
3561       BasicBlock::reverse_iterator IP = BB->rbegin(), IPEnd = BB->rend();
3562       while (++IP != IPEnd) {
3563         if (!IP->mayHaveSideEffects() && !IP->mayReadFromMemory())
3564           continue;
3565         Instruction *I = &*IP;
3566         if (OpenMPOpt::getCallIfRegularCall(*I, &AllocSharedRFI))
3567           continue;
3568         if (!I->user_empty() || !SPMDCompatibilityTracker.contains(I)) {
3569           LastEffect = nullptr;
3570           continue;
3571         }
3572         if (LastEffect)
3573           Reorders.push_back({I, LastEffect});
3574         LastEffect = &*IP;
3575       }
3576       for (auto &Reorder : Reorders)
3577         Reorder.first->moveBefore(Reorder.second);
3578     }
3579 
3580     SmallVector<std::pair<Instruction *, Instruction *>, 4> GuardedRegions;
3581 
3582     for (Instruction *GuardedI : SPMDCompatibilityTracker) {
3583       BasicBlock *BB = GuardedI->getParent();
3584       auto *CalleeAA = A.lookupAAFor<AAKernelInfo>(
3585           IRPosition::function(*GuardedI->getFunction()), nullptr,
3586           DepClassTy::NONE);
3587       assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo");
3588       auto &CalleeAAFunction = *cast<AAKernelInfoFunction>(CalleeAA);
3589       // Continue if instruction is already guarded.
3590       if (CalleeAAFunction.getGuardedInstructions().contains(GuardedI))
3591         continue;
3592 
3593       Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr;
3594       for (Instruction &I : *BB) {
3595         // If instruction I needs to be guarded update the guarded region
3596         // bounds.
3597         if (SPMDCompatibilityTracker.contains(&I)) {
3598           CalleeAAFunction.getGuardedInstructions().insert(&I);
3599           if (GuardedRegionStart)
3600             GuardedRegionEnd = &I;
3601           else
3602             GuardedRegionStart = GuardedRegionEnd = &I;
3603 
3604           continue;
3605         }
3606 
3607         // Instruction I does not need guarding, store
3608         // any region found and reset bounds.
3609         if (GuardedRegionStart) {
3610           GuardedRegions.push_back(
3611               std::make_pair(GuardedRegionStart, GuardedRegionEnd));
3612           GuardedRegionStart = nullptr;
3613           GuardedRegionEnd = nullptr;
3614         }
3615       }
3616     }
3617 
3618     for (auto &GR : GuardedRegions)
3619       CreateGuardedRegion(GR.first, GR.second);
3620 
3621     // Adjust the global exec mode flag that tells the runtime what mode this
3622     // kernel is executed in.
3623     assert(ExecModeVal == OMP_TGT_EXEC_MODE_GENERIC &&
3624            "Initially non-SPMD kernel has SPMD exec mode!");
3625     ExecMode->setInitializer(
3626         ConstantInt::get(ExecMode->getInitializer()->getType(),
3627                          ExecModeVal | OMP_TGT_EXEC_MODE_GENERIC_SPMD));
3628 
3629     // Next rewrite the init and deinit calls to indicate we use SPMD-mode now.
3630     const int InitModeArgNo = 1;
3631     const int DeinitModeArgNo = 1;
3632     const int InitUseStateMachineArgNo = 2;
3633     const int InitRequiresFullRuntimeArgNo = 3;
3634     const int DeinitRequiresFullRuntimeArgNo = 2;
3635 
3636     auto &Ctx = getAnchorValue().getContext();
3637     A.changeUseAfterManifest(
3638         KernelInitCB->getArgOperandUse(InitModeArgNo),
3639         *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx),
3640                                 OMP_TGT_EXEC_MODE_SPMD));
3641     A.changeUseAfterManifest(
3642         KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo),
3643         *ConstantInt::getBool(Ctx, false));
3644     A.changeUseAfterManifest(
3645         KernelDeinitCB->getArgOperandUse(DeinitModeArgNo),
3646         *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx),
3647                                 OMP_TGT_EXEC_MODE_SPMD));
3648     A.changeUseAfterManifest(
3649         KernelInitCB->getArgOperandUse(InitRequiresFullRuntimeArgNo),
3650         *ConstantInt::getBool(Ctx, false));
3651     A.changeUseAfterManifest(
3652         KernelDeinitCB->getArgOperandUse(DeinitRequiresFullRuntimeArgNo),
3653         *ConstantInt::getBool(Ctx, false));
3654 
3655     ++NumOpenMPTargetRegionKernelsSPMD;
3656 
3657     auto Remark = [&](OptimizationRemark OR) {
3658       return OR << "Transformed generic-mode kernel to SPMD-mode.";
3659     };
3660     A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark);
3661     return true;
3662   };
3663 
3664   ChangeStatus buildCustomStateMachine(Attributor &A) {
3665     // If we have disabled state machine rewrites, don't make a custom one
3666     if (DisableOpenMPOptStateMachineRewrite)
3667       return ChangeStatus::UNCHANGED;
3668 
3669     // Don't rewrite the state machine if we are not in a valid state.
3670     if (!ReachedKnownParallelRegions.isValidState())
3671       return ChangeStatus::UNCHANGED;
3672 
3673     const int InitModeArgNo = 1;
3674     const int InitUseStateMachineArgNo = 2;
3675 
3676     // Check if the current configuration is non-SPMD and generic state machine.
3677     // If we already have SPMD mode or a custom state machine we do not need to
3678     // go any further. If it is anything but a constant something is weird and
3679     // we give up.
3680     ConstantInt *UseStateMachine = dyn_cast<ConstantInt>(
3681         KernelInitCB->getArgOperand(InitUseStateMachineArgNo));
3682     ConstantInt *Mode =
3683         dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo));
3684 
3685     // If we are stuck with generic mode, try to create a custom device (=GPU)
3686     // state machine which is specialized for the parallel regions that are
3687     // reachable by the kernel.
3688     if (!UseStateMachine || UseStateMachine->isZero() || !Mode ||
3689         (Mode->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD))
3690       return ChangeStatus::UNCHANGED;
3691 
3692     // If not SPMD mode, indicate we use a custom state machine now.
3693     auto &Ctx = getAnchorValue().getContext();
3694     auto *FalseVal = ConstantInt::getBool(Ctx, false);
3695     A.changeUseAfterManifest(
3696         KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal);
3697 
3698     // If we don't actually need a state machine we are done here. This can
3699     // happen if there simply are no parallel regions. In the resulting kernel
3700     // all worker threads will simply exit right away, leaving the main thread
3701     // to do the work alone.
3702     if (!mayContainParallelRegion()) {
3703       ++NumOpenMPTargetRegionKernelsWithoutStateMachine;
3704 
3705       auto Remark = [&](OptimizationRemark OR) {
3706         return OR << "Removing unused state machine from generic-mode kernel.";
3707       };
3708       A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark);
3709 
3710       return ChangeStatus::CHANGED;
3711     }
3712 
3713     // Keep track in the statistics of our new shiny custom state machine.
3714     if (ReachedUnknownParallelRegions.empty()) {
3715       ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback;
3716 
3717       auto Remark = [&](OptimizationRemark OR) {
3718         return OR << "Rewriting generic-mode kernel with a customized state "
3719                      "machine.";
3720       };
3721       A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark);
3722     } else {
3723       ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback;
3724 
3725       auto Remark = [&](OptimizationRemarkAnalysis OR) {
3726         return OR << "Generic-mode kernel is executed with a customized state "
3727                      "machine that requires a fallback.";
3728       };
3729       A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark);
3730 
3731       // Tell the user why we ended up with a fallback.
3732       for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) {
3733         if (!UnknownParallelRegionCB)
3734           continue;
3735         auto Remark = [&](OptimizationRemarkAnalysis ORA) {
3736           return ORA << "Call may contain unknown parallel regions. Use "
3737                      << "`__attribute__((assume(\"omp_no_parallelism\")))` to "
3738                         "override.";
3739         };
3740         A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB,
3741                                                  "OMP133", Remark);
3742       }
3743     }
3744 
3745     // Create all the blocks:
3746     //
3747     //                       InitCB = __kmpc_target_init(...)
3748     //                       BlockHwSize =
3749     //                         __kmpc_get_hardware_num_threads_in_block();
3750     //                       WarpSize = __kmpc_get_warp_size();
3751     //                       BlockSize = BlockHwSize - WarpSize;
3752     // IsWorkerCheckBB:      bool IsWorker = InitCB != -1;
3753     //                       if (IsWorker) {
3754     //                         if (InitCB >= BlockSize) return;
3755     // SMBeginBB:               __kmpc_barrier_simple_generic(...);
3756     //                         void *WorkFn;
3757     //                         bool Active = __kmpc_kernel_parallel(&WorkFn);
3758     //                         if (!WorkFn) return;
3759     // SMIsActiveCheckBB:       if (Active) {
3760     // SMIfCascadeCurrentBB:      if      (WorkFn == <ParFn0>)
3761     //                              ParFn0(...);
3762     // SMIfCascadeCurrentBB:      else if (WorkFn == <ParFn1>)
3763     //                              ParFn1(...);
3764     //                            ...
3765     // SMIfCascadeCurrentBB:      else
3766     //                              ((WorkFnTy*)WorkFn)(...);
3767     // SMEndParallelBB:           __kmpc_kernel_end_parallel(...);
3768     //                          }
3769     // SMDoneBB:                __kmpc_barrier_simple_generic(...);
3770     //                          goto SMBeginBB;
3771     //                       }
3772     // UserCodeEntryBB:      // user code
3773     //                       __kmpc_target_deinit(...)
3774     //
3775     Function *Kernel = getAssociatedFunction();
3776     assert(Kernel && "Expected an associated function!");
3777 
3778     BasicBlock *InitBB = KernelInitCB->getParent();
3779     BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock(
3780         KernelInitCB->getNextNode(), "thread.user_code.check");
3781     BasicBlock *IsWorkerCheckBB =
3782         BasicBlock::Create(Ctx, "is_worker_check", Kernel, UserCodeEntryBB);
3783     BasicBlock *StateMachineBeginBB = BasicBlock::Create(
3784         Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB);
3785     BasicBlock *StateMachineFinishedBB = BasicBlock::Create(
3786         Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB);
3787     BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create(
3788         Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB);
3789     BasicBlock *StateMachineIfCascadeCurrentBB =
3790         BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check",
3791                            Kernel, UserCodeEntryBB);
3792     BasicBlock *StateMachineEndParallelBB =
3793         BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end",
3794                            Kernel, UserCodeEntryBB);
3795     BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create(
3796         Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB);
3797     A.registerManifestAddedBasicBlock(*InitBB);
3798     A.registerManifestAddedBasicBlock(*UserCodeEntryBB);
3799     A.registerManifestAddedBasicBlock(*IsWorkerCheckBB);
3800     A.registerManifestAddedBasicBlock(*StateMachineBeginBB);
3801     A.registerManifestAddedBasicBlock(*StateMachineFinishedBB);
3802     A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB);
3803     A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB);
3804     A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB);
3805     A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB);
3806 
3807     const DebugLoc &DLoc = KernelInitCB->getDebugLoc();
3808     ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc);
3809     InitBB->getTerminator()->eraseFromParent();
3810 
3811     Instruction *IsWorker =
3812         ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB,
3813                          ConstantInt::get(KernelInitCB->getType(), -1),
3814                          "thread.is_worker", InitBB);
3815     IsWorker->setDebugLoc(DLoc);
3816     BranchInst::Create(IsWorkerCheckBB, UserCodeEntryBB, IsWorker, InitBB);
3817 
3818     Module &M = *Kernel->getParent();
3819     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3820     FunctionCallee BlockHwSizeFn =
3821         OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3822             M, OMPRTL___kmpc_get_hardware_num_threads_in_block);
3823     FunctionCallee WarpSizeFn =
3824         OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3825             M, OMPRTL___kmpc_get_warp_size);
3826     CallInst *BlockHwSize =
3827         CallInst::Create(BlockHwSizeFn, "block.hw_size", IsWorkerCheckBB);
3828     OMPInfoCache.setCallingConvention(BlockHwSizeFn, BlockHwSize);
3829     BlockHwSize->setDebugLoc(DLoc);
3830     CallInst *WarpSize =
3831         CallInst::Create(WarpSizeFn, "warp.size", IsWorkerCheckBB);
3832     OMPInfoCache.setCallingConvention(WarpSizeFn, WarpSize);
3833     WarpSize->setDebugLoc(DLoc);
3834     Instruction *BlockSize = BinaryOperator::CreateSub(
3835         BlockHwSize, WarpSize, "block.size", IsWorkerCheckBB);
3836     BlockSize->setDebugLoc(DLoc);
3837     Instruction *IsMainOrWorker = ICmpInst::Create(
3838         ICmpInst::ICmp, llvm::CmpInst::ICMP_SLT, KernelInitCB, BlockSize,
3839         "thread.is_main_or_worker", IsWorkerCheckBB);
3840     IsMainOrWorker->setDebugLoc(DLoc);
3841     BranchInst::Create(StateMachineBeginBB, StateMachineFinishedBB,
3842                        IsMainOrWorker, IsWorkerCheckBB);
3843 
3844     // Create local storage for the work function pointer.
3845     const DataLayout &DL = M.getDataLayout();
3846     Type *VoidPtrTy = Type::getInt8PtrTy(Ctx);
3847     Instruction *WorkFnAI =
3848         new AllocaInst(VoidPtrTy, DL.getAllocaAddrSpace(), nullptr,
3849                        "worker.work_fn.addr", &Kernel->getEntryBlock().front());
3850     WorkFnAI->setDebugLoc(DLoc);
3851 
3852     OMPInfoCache.OMPBuilder.updateToLocation(
3853         OpenMPIRBuilder::LocationDescription(
3854             IRBuilder<>::InsertPoint(StateMachineBeginBB,
3855                                      StateMachineBeginBB->end()),
3856             DLoc));
3857 
3858     Value *Ident = KernelInitCB->getArgOperand(0);
3859     Value *GTid = KernelInitCB;
3860 
3861     FunctionCallee BarrierFn =
3862         OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3863             M, OMPRTL___kmpc_barrier_simple_generic);
3864     CallInst *Barrier =
3865         CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB);
3866     OMPInfoCache.setCallingConvention(BarrierFn, Barrier);
3867     Barrier->setDebugLoc(DLoc);
3868 
3869     if (WorkFnAI->getType()->getPointerAddressSpace() !=
3870         (unsigned int)AddressSpace::Generic) {
3871       WorkFnAI = new AddrSpaceCastInst(
3872           WorkFnAI,
3873           PointerType::getWithSamePointeeType(
3874               cast<PointerType>(WorkFnAI->getType()),
3875               (unsigned int)AddressSpace::Generic),
3876           WorkFnAI->getName() + ".generic", StateMachineBeginBB);
3877       WorkFnAI->setDebugLoc(DLoc);
3878     }
3879 
3880     FunctionCallee KernelParallelFn =
3881         OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3882             M, OMPRTL___kmpc_kernel_parallel);
3883     CallInst *IsActiveWorker = CallInst::Create(
3884         KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB);
3885     OMPInfoCache.setCallingConvention(KernelParallelFn, IsActiveWorker);
3886     IsActiveWorker->setDebugLoc(DLoc);
3887     Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn",
3888                                        StateMachineBeginBB);
3889     WorkFn->setDebugLoc(DLoc);
3890 
3891     FunctionType *ParallelRegionFnTy = FunctionType::get(
3892         Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)},
3893         false);
3894     Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
3895         WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast",
3896         StateMachineBeginBB);
3897 
3898     Instruction *IsDone =
3899         ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn,
3900                          Constant::getNullValue(VoidPtrTy), "worker.is_done",
3901                          StateMachineBeginBB);
3902     IsDone->setDebugLoc(DLoc);
3903     BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB,
3904                        IsDone, StateMachineBeginBB)
3905         ->setDebugLoc(DLoc);
3906 
3907     BranchInst::Create(StateMachineIfCascadeCurrentBB,
3908                        StateMachineDoneBarrierBB, IsActiveWorker,
3909                        StateMachineIsActiveCheckBB)
3910         ->setDebugLoc(DLoc);
3911 
3912     Value *ZeroArg =
3913         Constant::getNullValue(ParallelRegionFnTy->getParamType(0));
3914 
3915     // Now that we have most of the CFG skeleton it is time for the if-cascade
3916     // that checks the function pointer we got from the runtime against the
3917     // parallel regions we expect, if there are any.
3918     for (int I = 0, E = ReachedKnownParallelRegions.size(); I < E; ++I) {
3919       auto *ParallelRegion = ReachedKnownParallelRegions[I];
3920       BasicBlock *PRExecuteBB = BasicBlock::Create(
3921           Ctx, "worker_state_machine.parallel_region.execute", Kernel,
3922           StateMachineEndParallelBB);
3923       CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB)
3924           ->setDebugLoc(DLoc);
3925       BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB)
3926           ->setDebugLoc(DLoc);
3927 
3928       BasicBlock *PRNextBB =
3929           BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check",
3930                              Kernel, StateMachineEndParallelBB);
3931 
3932       // Check if we need to compare the pointer at all or if we can just
3933       // call the parallel region function.
3934       Value *IsPR;
3935       if (I + 1 < E || !ReachedUnknownParallelRegions.empty()) {
3936         Instruction *CmpI = ICmpInst::Create(
3937             ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion,
3938             "worker.check_parallel_region", StateMachineIfCascadeCurrentBB);
3939         CmpI->setDebugLoc(DLoc);
3940         IsPR = CmpI;
3941       } else {
3942         IsPR = ConstantInt::getTrue(Ctx);
3943       }
3944 
3945       BranchInst::Create(PRExecuteBB, PRNextBB, IsPR,
3946                          StateMachineIfCascadeCurrentBB)
3947           ->setDebugLoc(DLoc);
3948       StateMachineIfCascadeCurrentBB = PRNextBB;
3949     }
3950 
3951     // At the end of the if-cascade we place the indirect function pointer call
3952     // in case we might need it, that is if there can be parallel regions we
3953     // have not handled in the if-cascade above.
3954     if (!ReachedUnknownParallelRegions.empty()) {
3955       StateMachineIfCascadeCurrentBB->setName(
3956           "worker_state_machine.parallel_region.fallback.execute");
3957       CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "",
3958                        StateMachineIfCascadeCurrentBB)
3959           ->setDebugLoc(DLoc);
3960     }
3961     BranchInst::Create(StateMachineEndParallelBB,
3962                        StateMachineIfCascadeCurrentBB)
3963         ->setDebugLoc(DLoc);
3964 
3965     FunctionCallee EndParallelFn =
3966         OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3967             M, OMPRTL___kmpc_kernel_end_parallel);
3968     CallInst *EndParallel =
3969         CallInst::Create(EndParallelFn, {}, "", StateMachineEndParallelBB);
3970     OMPInfoCache.setCallingConvention(EndParallelFn, EndParallel);
3971     EndParallel->setDebugLoc(DLoc);
3972     BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB)
3973         ->setDebugLoc(DLoc);
3974 
3975     CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB)
3976         ->setDebugLoc(DLoc);
3977     BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB)
3978         ->setDebugLoc(DLoc);
3979 
3980     return ChangeStatus::CHANGED;
3981   }
3982 
3983   /// Fixpoint iteration update function. Will be called every time a dependence
3984   /// changed its state (and in the beginning).
3985   ChangeStatus updateImpl(Attributor &A) override {
3986     KernelInfoState StateBefore = getState();
3987 
3988     // Callback to check a read/write instruction.
3989     auto CheckRWInst = [&](Instruction &I) {
3990       // We handle calls later.
3991       if (isa<CallBase>(I))
3992         return true;
3993       // We only care about write effects.
3994       if (!I.mayWriteToMemory())
3995         return true;
3996       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3997         SmallVector<const Value *> Objects;
3998         getUnderlyingObjects(SI->getPointerOperand(), Objects);
3999         if (llvm::all_of(Objects,
4000                          [](const Value *Obj) { return isa<AllocaInst>(Obj); }))
4001           return true;
4002         // Check for AAHeapToStack moved objects which must not be guarded.
4003         auto &HS = A.getAAFor<AAHeapToStack>(
4004             *this, IRPosition::function(*I.getFunction()),
4005             DepClassTy::OPTIONAL);
4006         if (llvm::all_of(Objects, [&HS](const Value *Obj) {
4007               auto *CB = dyn_cast<CallBase>(Obj);
4008               if (!CB)
4009                 return false;
4010               return HS.isAssumedHeapToStack(*CB);
4011             })) {
4012           return true;
4013         }
4014       }
4015 
4016       // Insert instruction that needs guarding.
4017       SPMDCompatibilityTracker.insert(&I);
4018       return true;
4019     };
4020 
4021     bool UsedAssumedInformationInCheckRWInst = false;
4022     if (!SPMDCompatibilityTracker.isAtFixpoint())
4023       if (!A.checkForAllReadWriteInstructions(
4024               CheckRWInst, *this, UsedAssumedInformationInCheckRWInst))
4025         SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4026 
4027     bool UsedAssumedInformationFromReachingKernels = false;
4028     if (!IsKernelEntry) {
4029       updateParallelLevels(A);
4030 
4031       bool AllReachingKernelsKnown = true;
4032       updateReachingKernelEntries(A, AllReachingKernelsKnown);
4033       UsedAssumedInformationFromReachingKernels = !AllReachingKernelsKnown;
4034 
4035       if (!ParallelLevels.isValidState())
4036         SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4037       else if (!ReachingKernelEntries.isValidState())
4038         SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4039       else if (!SPMDCompatibilityTracker.empty()) {
4040         // Check if all reaching kernels agree on the mode as we can otherwise
4041         // not guard instructions. We might not be sure about the mode so we
4042         // we cannot fix the internal spmd-zation state either.
4043         int SPMD = 0, Generic = 0;
4044         for (auto *Kernel : ReachingKernelEntries) {
4045           auto &CBAA = A.getAAFor<AAKernelInfo>(
4046               *this, IRPosition::function(*Kernel), DepClassTy::OPTIONAL);
4047           if (CBAA.SPMDCompatibilityTracker.isValidState() &&
4048               CBAA.SPMDCompatibilityTracker.isAssumed())
4049             ++SPMD;
4050           else
4051             ++Generic;
4052           if (!CBAA.SPMDCompatibilityTracker.isAtFixpoint())
4053             UsedAssumedInformationFromReachingKernels = true;
4054         }
4055         if (SPMD != 0 && Generic != 0)
4056           SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4057       }
4058     }
4059 
4060     // Callback to check a call instruction.
4061     bool AllParallelRegionStatesWereFixed = true;
4062     bool AllSPMDStatesWereFixed = true;
4063     auto CheckCallInst = [&](Instruction &I) {
4064       auto &CB = cast<CallBase>(I);
4065       auto &CBAA = A.getAAFor<AAKernelInfo>(
4066           *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL);
4067       getState() ^= CBAA.getState();
4068       AllSPMDStatesWereFixed &= CBAA.SPMDCompatibilityTracker.isAtFixpoint();
4069       AllParallelRegionStatesWereFixed &=
4070           CBAA.ReachedKnownParallelRegions.isAtFixpoint();
4071       AllParallelRegionStatesWereFixed &=
4072           CBAA.ReachedUnknownParallelRegions.isAtFixpoint();
4073       return true;
4074     };
4075 
4076     bool UsedAssumedInformationInCheckCallInst = false;
4077     if (!A.checkForAllCallLikeInstructions(
4078             CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) {
4079       LLVM_DEBUG(dbgs() << TAG
4080                         << "Failed to visit all call-like instructions!\n";);
4081       return indicatePessimisticFixpoint();
4082     }
4083 
4084     // If we haven't used any assumed information for the reached parallel
4085     // region states we can fix it.
4086     if (!UsedAssumedInformationInCheckCallInst &&
4087         AllParallelRegionStatesWereFixed) {
4088       ReachedKnownParallelRegions.indicateOptimisticFixpoint();
4089       ReachedUnknownParallelRegions.indicateOptimisticFixpoint();
4090     }
4091 
4092     // If we are sure there are no parallel regions in the kernel we do not
4093     // want SPMD mode.
4094     if (IsKernelEntry && ReachedUnknownParallelRegions.isAtFixpoint() &&
4095         ReachedKnownParallelRegions.isAtFixpoint() &&
4096         ReachedUnknownParallelRegions.isValidState() &&
4097         ReachedKnownParallelRegions.isValidState() &&
4098         !mayContainParallelRegion())
4099       SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4100 
4101     // If we haven't used any assumed information for the SPMD state we can fix
4102     // it.
4103     if (!UsedAssumedInformationInCheckRWInst &&
4104         !UsedAssumedInformationInCheckCallInst &&
4105         !UsedAssumedInformationFromReachingKernels && AllSPMDStatesWereFixed)
4106       SPMDCompatibilityTracker.indicateOptimisticFixpoint();
4107 
4108     return StateBefore == getState() ? ChangeStatus::UNCHANGED
4109                                      : ChangeStatus::CHANGED;
4110   }
4111 
4112 private:
4113   /// Update info regarding reaching kernels.
4114   void updateReachingKernelEntries(Attributor &A,
4115                                    bool &AllReachingKernelsKnown) {
4116     auto PredCallSite = [&](AbstractCallSite ACS) {
4117       Function *Caller = ACS.getInstruction()->getFunction();
4118 
4119       assert(Caller && "Caller is nullptr");
4120 
4121       auto &CAA = A.getOrCreateAAFor<AAKernelInfo>(
4122           IRPosition::function(*Caller), this, DepClassTy::REQUIRED);
4123       if (CAA.ReachingKernelEntries.isValidState()) {
4124         ReachingKernelEntries ^= CAA.ReachingKernelEntries;
4125         return true;
4126       }
4127 
4128       // We lost track of the caller of the associated function, any kernel
4129       // could reach now.
4130       ReachingKernelEntries.indicatePessimisticFixpoint();
4131 
4132       return true;
4133     };
4134 
4135     if (!A.checkForAllCallSites(PredCallSite, *this,
4136                                 true /* RequireAllCallSites */,
4137                                 AllReachingKernelsKnown))
4138       ReachingKernelEntries.indicatePessimisticFixpoint();
4139   }
4140 
4141   /// Update info regarding parallel levels.
4142   void updateParallelLevels(Attributor &A) {
4143     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4144     OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI =
4145         OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
4146 
4147     auto PredCallSite = [&](AbstractCallSite ACS) {
4148       Function *Caller = ACS.getInstruction()->getFunction();
4149 
4150       assert(Caller && "Caller is nullptr");
4151 
4152       auto &CAA =
4153           A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller));
4154       if (CAA.ParallelLevels.isValidState()) {
4155         // Any function that is called by `__kmpc_parallel_51` will not be
4156         // folded as the parallel level in the function is updated. In order to
4157         // get it right, all the analysis would depend on the implentation. That
4158         // said, if in the future any change to the implementation, the analysis
4159         // could be wrong. As a consequence, we are just conservative here.
4160         if (Caller == Parallel51RFI.Declaration) {
4161           ParallelLevels.indicatePessimisticFixpoint();
4162           return true;
4163         }
4164 
4165         ParallelLevels ^= CAA.ParallelLevels;
4166 
4167         return true;
4168       }
4169 
4170       // We lost track of the caller of the associated function, any kernel
4171       // could reach now.
4172       ParallelLevels.indicatePessimisticFixpoint();
4173 
4174       return true;
4175     };
4176 
4177     bool AllCallSitesKnown = true;
4178     if (!A.checkForAllCallSites(PredCallSite, *this,
4179                                 true /* RequireAllCallSites */,
4180                                 AllCallSitesKnown))
4181       ParallelLevels.indicatePessimisticFixpoint();
4182   }
4183 };
4184 
4185 /// The call site kernel info abstract attribute, basically, what can we say
4186 /// about a call site with regards to the KernelInfoState. For now this simply
4187 /// forwards the information from the callee.
4188 struct AAKernelInfoCallSite : AAKernelInfo {
4189   AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A)
4190       : AAKernelInfo(IRP, A) {}
4191 
4192   /// See AbstractAttribute::initialize(...).
4193   void initialize(Attributor &A) override {
4194     AAKernelInfo::initialize(A);
4195 
4196     CallBase &CB = cast<CallBase>(getAssociatedValue());
4197     Function *Callee = getAssociatedFunction();
4198 
4199     auto &AssumptionAA = A.getAAFor<AAAssumptionInfo>(
4200         *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL);
4201 
4202     // Check for SPMD-mode assumptions.
4203     if (AssumptionAA.hasAssumption("ompx_spmd_amenable")) {
4204       SPMDCompatibilityTracker.indicateOptimisticFixpoint();
4205       indicateOptimisticFixpoint();
4206     }
4207 
4208     // First weed out calls we do not care about, that is readonly/readnone
4209     // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a
4210     // parallel region or anything else we are looking for.
4211     if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) {
4212       indicateOptimisticFixpoint();
4213       return;
4214     }
4215 
4216     // Next we check if we know the callee. If it is a known OpenMP function
4217     // we will handle them explicitly in the switch below. If it is not, we
4218     // will use an AAKernelInfo object on the callee to gather information and
4219     // merge that into the current state. The latter happens in the updateImpl.
4220     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4221     const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee);
4222     if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) {
4223       // Unknown caller or declarations are not analyzable, we give up.
4224       if (!Callee || !A.isFunctionIPOAmendable(*Callee)) {
4225 
4226         // Unknown callees might contain parallel regions, except if they have
4227         // an appropriate assumption attached.
4228         if (!(AssumptionAA.hasAssumption("omp_no_openmp") ||
4229               AssumptionAA.hasAssumption("omp_no_parallelism")))
4230           ReachedUnknownParallelRegions.insert(&CB);
4231 
4232         // If SPMDCompatibilityTracker is not fixed, we need to give up on the
4233         // idea we can run something unknown in SPMD-mode.
4234         if (!SPMDCompatibilityTracker.isAtFixpoint()) {
4235           SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4236           SPMDCompatibilityTracker.insert(&CB);
4237         }
4238 
4239         // We have updated the state for this unknown call properly, there won't
4240         // be any change so we indicate a fixpoint.
4241         indicateOptimisticFixpoint();
4242       }
4243       // If the callee is known and can be used in IPO, we will update the state
4244       // based on the callee state in updateImpl.
4245       return;
4246     }
4247 
4248     const unsigned int WrapperFunctionArgNo = 6;
4249     RuntimeFunction RF = It->getSecond();
4250     switch (RF) {
4251     // All the functions we know are compatible with SPMD mode.
4252     case OMPRTL___kmpc_is_spmd_exec_mode:
4253     case OMPRTL___kmpc_distribute_static_fini:
4254     case OMPRTL___kmpc_for_static_fini:
4255     case OMPRTL___kmpc_global_thread_num:
4256     case OMPRTL___kmpc_get_hardware_num_threads_in_block:
4257     case OMPRTL___kmpc_get_hardware_num_blocks:
4258     case OMPRTL___kmpc_single:
4259     case OMPRTL___kmpc_end_single:
4260     case OMPRTL___kmpc_master:
4261     case OMPRTL___kmpc_end_master:
4262     case OMPRTL___kmpc_barrier:
4263     case OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2:
4264     case OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2:
4265     case OMPRTL___kmpc_nvptx_end_reduce_nowait:
4266       break;
4267     case OMPRTL___kmpc_distribute_static_init_4:
4268     case OMPRTL___kmpc_distribute_static_init_4u:
4269     case OMPRTL___kmpc_distribute_static_init_8:
4270     case OMPRTL___kmpc_distribute_static_init_8u:
4271     case OMPRTL___kmpc_for_static_init_4:
4272     case OMPRTL___kmpc_for_static_init_4u:
4273     case OMPRTL___kmpc_for_static_init_8:
4274     case OMPRTL___kmpc_for_static_init_8u: {
4275       // Check the schedule and allow static schedule in SPMD mode.
4276       unsigned ScheduleArgOpNo = 2;
4277       auto *ScheduleTypeCI =
4278           dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo));
4279       unsigned ScheduleTypeVal =
4280           ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0;
4281       switch (OMPScheduleType(ScheduleTypeVal)) {
4282       case OMPScheduleType::UnorderedStatic:
4283       case OMPScheduleType::UnorderedStaticChunked:
4284       case OMPScheduleType::OrderedDistribute:
4285       case OMPScheduleType::OrderedDistributeChunked:
4286         break;
4287       default:
4288         SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4289         SPMDCompatibilityTracker.insert(&CB);
4290         break;
4291       };
4292     } break;
4293     case OMPRTL___kmpc_target_init:
4294       KernelInitCB = &CB;
4295       break;
4296     case OMPRTL___kmpc_target_deinit:
4297       KernelDeinitCB = &CB;
4298       break;
4299     case OMPRTL___kmpc_parallel_51:
4300       if (auto *ParallelRegion = dyn_cast<Function>(
4301               CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) {
4302         ReachedKnownParallelRegions.insert(ParallelRegion);
4303         break;
4304       }
4305       // The condition above should usually get the parallel region function
4306       // pointer and record it. In the off chance it doesn't we assume the
4307       // worst.
4308       ReachedUnknownParallelRegions.insert(&CB);
4309       break;
4310     case OMPRTL___kmpc_omp_task:
4311       // We do not look into tasks right now, just give up.
4312       SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4313       SPMDCompatibilityTracker.insert(&CB);
4314       ReachedUnknownParallelRegions.insert(&CB);
4315       break;
4316     case OMPRTL___kmpc_alloc_shared:
4317     case OMPRTL___kmpc_free_shared:
4318       // Return without setting a fixpoint, to be resolved in updateImpl.
4319       return;
4320     default:
4321       // Unknown OpenMP runtime calls cannot be executed in SPMD-mode,
4322       // generally. However, they do not hide parallel regions.
4323       SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4324       SPMDCompatibilityTracker.insert(&CB);
4325       break;
4326     }
4327     // All other OpenMP runtime calls will not reach parallel regions so they
4328     // can be safely ignored for now. Since it is a known OpenMP runtime call we
4329     // have now modeled all effects and there is no need for any update.
4330     indicateOptimisticFixpoint();
4331   }
4332 
4333   ChangeStatus updateImpl(Attributor &A) override {
4334     // TODO: Once we have call site specific value information we can provide
4335     //       call site specific liveness information and then it makes
4336     //       sense to specialize attributes for call sites arguments instead of
4337     //       redirecting requests to the callee argument.
4338     Function *F = getAssociatedFunction();
4339 
4340     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4341     const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F);
4342 
4343     // If F is not a runtime function, propagate the AAKernelInfo of the callee.
4344     if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) {
4345       const IRPosition &FnPos = IRPosition::function(*F);
4346       auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED);
4347       if (getState() == FnAA.getState())
4348         return ChangeStatus::UNCHANGED;
4349       getState() = FnAA.getState();
4350       return ChangeStatus::CHANGED;
4351     }
4352 
4353     // F is a runtime function that allocates or frees memory, check
4354     // AAHeapToStack and AAHeapToShared.
4355     KernelInfoState StateBefore = getState();
4356     assert((It->getSecond() == OMPRTL___kmpc_alloc_shared ||
4357             It->getSecond() == OMPRTL___kmpc_free_shared) &&
4358            "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call");
4359 
4360     CallBase &CB = cast<CallBase>(getAssociatedValue());
4361 
4362     auto &HeapToStackAA = A.getAAFor<AAHeapToStack>(
4363         *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL);
4364     auto &HeapToSharedAA = A.getAAFor<AAHeapToShared>(
4365         *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL);
4366 
4367     RuntimeFunction RF = It->getSecond();
4368 
4369     switch (RF) {
4370     // If neither HeapToStack nor HeapToShared assume the call is removed,
4371     // assume SPMD incompatibility.
4372     case OMPRTL___kmpc_alloc_shared:
4373       if (!HeapToStackAA.isAssumedHeapToStack(CB) &&
4374           !HeapToSharedAA.isAssumedHeapToShared(CB))
4375         SPMDCompatibilityTracker.insert(&CB);
4376       break;
4377     case OMPRTL___kmpc_free_shared:
4378       if (!HeapToStackAA.isAssumedHeapToStackRemovedFree(CB) &&
4379           !HeapToSharedAA.isAssumedHeapToSharedRemovedFree(CB))
4380         SPMDCompatibilityTracker.insert(&CB);
4381       break;
4382     default:
4383       SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4384       SPMDCompatibilityTracker.insert(&CB);
4385     }
4386 
4387     return StateBefore == getState() ? ChangeStatus::UNCHANGED
4388                                      : ChangeStatus::CHANGED;
4389   }
4390 };
4391 
4392 struct AAFoldRuntimeCall
4393     : public StateWrapper<BooleanState, AbstractAttribute> {
4394   using Base = StateWrapper<BooleanState, AbstractAttribute>;
4395 
4396   AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
4397 
4398   /// Statistics are tracked as part of manifest for now.
4399   void trackStatistics() const override {}
4400 
4401   /// Create an abstract attribute biew for the position \p IRP.
4402   static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP,
4403                                               Attributor &A);
4404 
4405   /// See AbstractAttribute::getName()
4406   const std::string getName() const override { return "AAFoldRuntimeCall"; }
4407 
4408   /// See AbstractAttribute::getIdAddr()
4409   const char *getIdAddr() const override { return &ID; }
4410 
4411   /// This function should return true if the type of the \p AA is
4412   /// AAFoldRuntimeCall
4413   static bool classof(const AbstractAttribute *AA) {
4414     return (AA->getIdAddr() == &ID);
4415   }
4416 
4417   static const char ID;
4418 };
4419 
4420 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall {
4421   AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A)
4422       : AAFoldRuntimeCall(IRP, A) {}
4423 
4424   /// See AbstractAttribute::getAsStr()
4425   const std::string getAsStr() const override {
4426     if (!isValidState())
4427       return "<invalid>";
4428 
4429     std::string Str("simplified value: ");
4430 
4431     if (!SimplifiedValue)
4432       return Str + std::string("none");
4433 
4434     if (!SimplifiedValue.value())
4435       return Str + std::string("nullptr");
4436 
4437     if (ConstantInt *CI = dyn_cast<ConstantInt>(SimplifiedValue.value()))
4438       return Str + std::to_string(CI->getSExtValue());
4439 
4440     return Str + std::string("unknown");
4441   }
4442 
4443   void initialize(Attributor &A) override {
4444     if (DisableOpenMPOptFolding)
4445       indicatePessimisticFixpoint();
4446 
4447     Function *Callee = getAssociatedFunction();
4448 
4449     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4450     const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee);
4451     assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() &&
4452            "Expected a known OpenMP runtime function");
4453 
4454     RFKind = It->getSecond();
4455 
4456     CallBase &CB = cast<CallBase>(getAssociatedValue());
4457     A.registerSimplificationCallback(
4458         IRPosition::callsite_returned(CB),
4459         [&](const IRPosition &IRP, const AbstractAttribute *AA,
4460             bool &UsedAssumedInformation) -> Optional<Value *> {
4461           assert((isValidState() ||
4462                   (SimplifiedValue && SimplifiedValue.value() == nullptr)) &&
4463                  "Unexpected invalid state!");
4464 
4465           if (!isAtFixpoint()) {
4466             UsedAssumedInformation = true;
4467             if (AA)
4468               A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
4469           }
4470           return SimplifiedValue;
4471         });
4472   }
4473 
4474   ChangeStatus updateImpl(Attributor &A) override {
4475     ChangeStatus Changed = ChangeStatus::UNCHANGED;
4476     switch (RFKind) {
4477     case OMPRTL___kmpc_is_spmd_exec_mode:
4478       Changed |= foldIsSPMDExecMode(A);
4479       break;
4480     case OMPRTL___kmpc_is_generic_main_thread_id:
4481       Changed |= foldIsGenericMainThread(A);
4482       break;
4483     case OMPRTL___kmpc_parallel_level:
4484       Changed |= foldParallelLevel(A);
4485       break;
4486     case OMPRTL___kmpc_get_hardware_num_threads_in_block:
4487       Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit");
4488       break;
4489     case OMPRTL___kmpc_get_hardware_num_blocks:
4490       Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams");
4491       break;
4492     default:
4493       llvm_unreachable("Unhandled OpenMP runtime function!");
4494     }
4495 
4496     return Changed;
4497   }
4498 
4499   ChangeStatus manifest(Attributor &A) override {
4500     ChangeStatus Changed = ChangeStatus::UNCHANGED;
4501 
4502     if (SimplifiedValue && *SimplifiedValue) {
4503       Instruction &I = *getCtxI();
4504       A.changeAfterManifest(IRPosition::inst(I), **SimplifiedValue);
4505       A.deleteAfterManifest(I);
4506 
4507       CallBase *CB = dyn_cast<CallBase>(&I);
4508       auto Remark = [&](OptimizationRemark OR) {
4509         if (auto *C = dyn_cast<ConstantInt>(*SimplifiedValue))
4510           return OR << "Replacing OpenMP runtime call "
4511                     << CB->getCalledFunction()->getName() << " with "
4512                     << ore::NV("FoldedValue", C->getZExtValue()) << ".";
4513         return OR << "Replacing OpenMP runtime call "
4514                   << CB->getCalledFunction()->getName() << ".";
4515       };
4516 
4517       if (CB && EnableVerboseRemarks)
4518         A.emitRemark<OptimizationRemark>(CB, "OMP180", Remark);
4519 
4520       LLVM_DEBUG(dbgs() << TAG << "Replacing runtime call: " << I << " with "
4521                         << **SimplifiedValue << "\n");
4522 
4523       Changed = ChangeStatus::CHANGED;
4524     }
4525 
4526     return Changed;
4527   }
4528 
4529   ChangeStatus indicatePessimisticFixpoint() override {
4530     SimplifiedValue = nullptr;
4531     return AAFoldRuntimeCall::indicatePessimisticFixpoint();
4532   }
4533 
4534 private:
4535   /// Fold __kmpc_is_spmd_exec_mode into a constant if possible.
4536   ChangeStatus foldIsSPMDExecMode(Attributor &A) {
4537     Optional<Value *> SimplifiedValueBefore = SimplifiedValue;
4538 
4539     unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0;
4540     unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0;
4541     auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
4542         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
4543 
4544     if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState())
4545       return indicatePessimisticFixpoint();
4546 
4547     for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) {
4548       auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K),
4549                                           DepClassTy::REQUIRED);
4550 
4551       if (!AA.isValidState()) {
4552         SimplifiedValue = nullptr;
4553         return indicatePessimisticFixpoint();
4554       }
4555 
4556       if (AA.SPMDCompatibilityTracker.isAssumed()) {
4557         if (AA.SPMDCompatibilityTracker.isAtFixpoint())
4558           ++KnownSPMDCount;
4559         else
4560           ++AssumedSPMDCount;
4561       } else {
4562         if (AA.SPMDCompatibilityTracker.isAtFixpoint())
4563           ++KnownNonSPMDCount;
4564         else
4565           ++AssumedNonSPMDCount;
4566       }
4567     }
4568 
4569     if ((AssumedSPMDCount + KnownSPMDCount) &&
4570         (AssumedNonSPMDCount + KnownNonSPMDCount))
4571       return indicatePessimisticFixpoint();
4572 
4573     auto &Ctx = getAnchorValue().getContext();
4574     if (KnownSPMDCount || AssumedSPMDCount) {
4575       assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 &&
4576              "Expected only SPMD kernels!");
4577       // All reaching kernels are in SPMD mode. Update all function calls to
4578       // __kmpc_is_spmd_exec_mode to 1.
4579       SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true);
4580     } else if (KnownNonSPMDCount || AssumedNonSPMDCount) {
4581       assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 &&
4582              "Expected only non-SPMD kernels!");
4583       // All reaching kernels are in non-SPMD mode. Update all function
4584       // calls to __kmpc_is_spmd_exec_mode to 0.
4585       SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false);
4586     } else {
4587       // We have empty reaching kernels, therefore we cannot tell if the
4588       // associated call site can be folded. At this moment, SimplifiedValue
4589       // must be none.
4590       assert(!SimplifiedValue && "SimplifiedValue should be none");
4591     }
4592 
4593     return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
4594                                                     : ChangeStatus::CHANGED;
4595   }
4596 
4597   /// Fold __kmpc_is_generic_main_thread_id into a constant if possible.
4598   ChangeStatus foldIsGenericMainThread(Attributor &A) {
4599     Optional<Value *> SimplifiedValueBefore = SimplifiedValue;
4600 
4601     CallBase &CB = cast<CallBase>(getAssociatedValue());
4602     Function *F = CB.getFunction();
4603     const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>(
4604         *this, IRPosition::function(*F), DepClassTy::REQUIRED);
4605 
4606     if (!ExecutionDomainAA.isValidState())
4607       return indicatePessimisticFixpoint();
4608 
4609     auto &Ctx = getAnchorValue().getContext();
4610     if (ExecutionDomainAA.isExecutedByInitialThreadOnly(CB))
4611       SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true);
4612     else
4613       return indicatePessimisticFixpoint();
4614 
4615     return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
4616                                                     : ChangeStatus::CHANGED;
4617   }
4618 
4619   /// Fold __kmpc_parallel_level into a constant if possible.
4620   ChangeStatus foldParallelLevel(Attributor &A) {
4621     Optional<Value *> SimplifiedValueBefore = SimplifiedValue;
4622 
4623     auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
4624         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
4625 
4626     if (!CallerKernelInfoAA.ParallelLevels.isValidState())
4627       return indicatePessimisticFixpoint();
4628 
4629     if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState())
4630       return indicatePessimisticFixpoint();
4631 
4632     if (CallerKernelInfoAA.ReachingKernelEntries.empty()) {
4633       assert(!SimplifiedValue &&
4634              "SimplifiedValue should keep none at this point");
4635       return ChangeStatus::UNCHANGED;
4636     }
4637 
4638     unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0;
4639     unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0;
4640     for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) {
4641       auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K),
4642                                           DepClassTy::REQUIRED);
4643       if (!AA.SPMDCompatibilityTracker.isValidState())
4644         return indicatePessimisticFixpoint();
4645 
4646       if (AA.SPMDCompatibilityTracker.isAssumed()) {
4647         if (AA.SPMDCompatibilityTracker.isAtFixpoint())
4648           ++KnownSPMDCount;
4649         else
4650           ++AssumedSPMDCount;
4651       } else {
4652         if (AA.SPMDCompatibilityTracker.isAtFixpoint())
4653           ++KnownNonSPMDCount;
4654         else
4655           ++AssumedNonSPMDCount;
4656       }
4657     }
4658 
4659     if ((AssumedSPMDCount + KnownSPMDCount) &&
4660         (AssumedNonSPMDCount + KnownNonSPMDCount))
4661       return indicatePessimisticFixpoint();
4662 
4663     auto &Ctx = getAnchorValue().getContext();
4664     // If the caller can only be reached by SPMD kernel entries, the parallel
4665     // level is 1. Similarly, if the caller can only be reached by non-SPMD
4666     // kernel entries, it is 0.
4667     if (AssumedSPMDCount || KnownSPMDCount) {
4668       assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 &&
4669              "Expected only SPMD kernels!");
4670       SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1);
4671     } else {
4672       assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 &&
4673              "Expected only non-SPMD kernels!");
4674       SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 0);
4675     }
4676     return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
4677                                                     : ChangeStatus::CHANGED;
4678   }
4679 
4680   ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) {
4681     // Specialize only if all the calls agree with the attribute constant value
4682     int32_t CurrentAttrValue = -1;
4683     Optional<Value *> SimplifiedValueBefore = SimplifiedValue;
4684 
4685     auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
4686         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
4687 
4688     if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState())
4689       return indicatePessimisticFixpoint();
4690 
4691     // Iterate over the kernels that reach this function
4692     for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) {
4693       int32_t NextAttrVal = -1;
4694       if (K->hasFnAttribute(Attr))
4695         NextAttrVal =
4696             std::stoi(K->getFnAttribute(Attr).getValueAsString().str());
4697 
4698       if (NextAttrVal == -1 ||
4699           (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal))
4700         return indicatePessimisticFixpoint();
4701       CurrentAttrValue = NextAttrVal;
4702     }
4703 
4704     if (CurrentAttrValue != -1) {
4705       auto &Ctx = getAnchorValue().getContext();
4706       SimplifiedValue =
4707           ConstantInt::get(Type::getInt32Ty(Ctx), CurrentAttrValue);
4708     }
4709     return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
4710                                                     : ChangeStatus::CHANGED;
4711   }
4712 
4713   /// An optional value the associated value is assumed to fold to. That is, we
4714   /// assume the associated value (which is a call) can be replaced by this
4715   /// simplified value.
4716   Optional<Value *> SimplifiedValue;
4717 
4718   /// The runtime function kind of the callee of the associated call site.
4719   RuntimeFunction RFKind;
4720 };
4721 
4722 } // namespace
4723 
4724 /// Register folding callsite
4725 void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) {
4726   auto &RFI = OMPInfoCache.RFIs[RF];
4727   RFI.foreachUse(SCC, [&](Use &U, Function &F) {
4728     CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &RFI);
4729     if (!CI)
4730       return false;
4731     A.getOrCreateAAFor<AAFoldRuntimeCall>(
4732         IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr,
4733         DepClassTy::NONE, /* ForceUpdate */ false,
4734         /* UpdateAfterInit */ false);
4735     return false;
4736   });
4737 }
4738 
4739 void OpenMPOpt::registerAAs(bool IsModulePass) {
4740   if (SCC.empty())
4741     return;
4742 
4743   if (IsModulePass) {
4744     // Ensure we create the AAKernelInfo AAs first and without triggering an
4745     // update. This will make sure we register all value simplification
4746     // callbacks before any other AA has the chance to create an AAValueSimplify
4747     // or similar.
4748     auto CreateKernelInfoCB = [&](Use &, Function &Kernel) {
4749       A.getOrCreateAAFor<AAKernelInfo>(
4750           IRPosition::function(Kernel), /* QueryingAA */ nullptr,
4751           DepClassTy::NONE, /* ForceUpdate */ false,
4752           /* UpdateAfterInit */ false);
4753       return false;
4754     };
4755     OMPInformationCache::RuntimeFunctionInfo &InitRFI =
4756         OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
4757     InitRFI.foreachUse(SCC, CreateKernelInfoCB);
4758 
4759     registerFoldRuntimeCall(OMPRTL___kmpc_is_generic_main_thread_id);
4760     registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode);
4761     registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level);
4762     registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block);
4763     registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks);
4764   }
4765 
4766   // Create CallSite AA for all Getters.
4767   for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) {
4768     auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)];
4769 
4770     auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter];
4771 
4772     auto CreateAA = [&](Use &U, Function &Caller) {
4773       CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI);
4774       if (!CI)
4775         return false;
4776 
4777       auto &CB = cast<CallBase>(*CI);
4778 
4779       IRPosition CBPos = IRPosition::callsite_function(CB);
4780       A.getOrCreateAAFor<AAICVTracker>(CBPos);
4781       return false;
4782     };
4783 
4784     GetterRFI.foreachUse(SCC, CreateAA);
4785   }
4786   auto &GlobalizationRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
4787   auto CreateAA = [&](Use &U, Function &F) {
4788     A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F));
4789     return false;
4790   };
4791   if (!DisableOpenMPOptDeglobalization)
4792     GlobalizationRFI.foreachUse(SCC, CreateAA);
4793 
4794   // Create an ExecutionDomain AA for every function and a HeapToStack AA for
4795   // every function if there is a device kernel.
4796   if (!isOpenMPDevice(M))
4797     return;
4798 
4799   for (auto *F : SCC) {
4800     if (F->isDeclaration())
4801       continue;
4802 
4803     A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(*F));
4804     if (!DisableOpenMPOptDeglobalization)
4805       A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(*F));
4806 
4807     for (auto &I : instructions(*F)) {
4808       if (auto *LI = dyn_cast<LoadInst>(&I)) {
4809         bool UsedAssumedInformation = false;
4810         A.getAssumedSimplified(IRPosition::value(*LI), /* AA */ nullptr,
4811                                UsedAssumedInformation, AA::Interprocedural);
4812       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
4813         A.getOrCreateAAFor<AAIsDead>(IRPosition::value(*SI));
4814       }
4815     }
4816   }
4817 }
4818 
4819 const char AAICVTracker::ID = 0;
4820 const char AAKernelInfo::ID = 0;
4821 const char AAExecutionDomain::ID = 0;
4822 const char AAHeapToShared::ID = 0;
4823 const char AAFoldRuntimeCall::ID = 0;
4824 
4825 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP,
4826                                               Attributor &A) {
4827   AAICVTracker *AA = nullptr;
4828   switch (IRP.getPositionKind()) {
4829   case IRPosition::IRP_INVALID:
4830   case IRPosition::IRP_FLOAT:
4831   case IRPosition::IRP_ARGUMENT:
4832   case IRPosition::IRP_CALL_SITE_ARGUMENT:
4833     llvm_unreachable("ICVTracker can only be created for function position!");
4834   case IRPosition::IRP_RETURNED:
4835     AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A);
4836     break;
4837   case IRPosition::IRP_CALL_SITE_RETURNED:
4838     AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A);
4839     break;
4840   case IRPosition::IRP_CALL_SITE:
4841     AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A);
4842     break;
4843   case IRPosition::IRP_FUNCTION:
4844     AA = new (A.Allocator) AAICVTrackerFunction(IRP, A);
4845     break;
4846   }
4847 
4848   return *AA;
4849 }
4850 
4851 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP,
4852                                                         Attributor &A) {
4853   AAExecutionDomainFunction *AA = nullptr;
4854   switch (IRP.getPositionKind()) {
4855   case IRPosition::IRP_INVALID:
4856   case IRPosition::IRP_FLOAT:
4857   case IRPosition::IRP_ARGUMENT:
4858   case IRPosition::IRP_CALL_SITE_ARGUMENT:
4859   case IRPosition::IRP_RETURNED:
4860   case IRPosition::IRP_CALL_SITE_RETURNED:
4861   case IRPosition::IRP_CALL_SITE:
4862     llvm_unreachable(
4863         "AAExecutionDomain can only be created for function position!");
4864   case IRPosition::IRP_FUNCTION:
4865     AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A);
4866     break;
4867   }
4868 
4869   return *AA;
4870 }
4871 
4872 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP,
4873                                                   Attributor &A) {
4874   AAHeapToSharedFunction *AA = nullptr;
4875   switch (IRP.getPositionKind()) {
4876   case IRPosition::IRP_INVALID:
4877   case IRPosition::IRP_FLOAT:
4878   case IRPosition::IRP_ARGUMENT:
4879   case IRPosition::IRP_CALL_SITE_ARGUMENT:
4880   case IRPosition::IRP_RETURNED:
4881   case IRPosition::IRP_CALL_SITE_RETURNED:
4882   case IRPosition::IRP_CALL_SITE:
4883     llvm_unreachable(
4884         "AAHeapToShared can only be created for function position!");
4885   case IRPosition::IRP_FUNCTION:
4886     AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A);
4887     break;
4888   }
4889 
4890   return *AA;
4891 }
4892 
4893 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP,
4894                                               Attributor &A) {
4895   AAKernelInfo *AA = nullptr;
4896   switch (IRP.getPositionKind()) {
4897   case IRPosition::IRP_INVALID:
4898   case IRPosition::IRP_FLOAT:
4899   case IRPosition::IRP_ARGUMENT:
4900   case IRPosition::IRP_RETURNED:
4901   case IRPosition::IRP_CALL_SITE_RETURNED:
4902   case IRPosition::IRP_CALL_SITE_ARGUMENT:
4903     llvm_unreachable("KernelInfo can only be created for function position!");
4904   case IRPosition::IRP_CALL_SITE:
4905     AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A);
4906     break;
4907   case IRPosition::IRP_FUNCTION:
4908     AA = new (A.Allocator) AAKernelInfoFunction(IRP, A);
4909     break;
4910   }
4911 
4912   return *AA;
4913 }
4914 
4915 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP,
4916                                                         Attributor &A) {
4917   AAFoldRuntimeCall *AA = nullptr;
4918   switch (IRP.getPositionKind()) {
4919   case IRPosition::IRP_INVALID:
4920   case IRPosition::IRP_FLOAT:
4921   case IRPosition::IRP_ARGUMENT:
4922   case IRPosition::IRP_RETURNED:
4923   case IRPosition::IRP_FUNCTION:
4924   case IRPosition::IRP_CALL_SITE:
4925   case IRPosition::IRP_CALL_SITE_ARGUMENT:
4926     llvm_unreachable("KernelInfo can only be created for call site position!");
4927   case IRPosition::IRP_CALL_SITE_RETURNED:
4928     AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A);
4929     break;
4930   }
4931 
4932   return *AA;
4933 }
4934 
4935 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) {
4936   if (!containsOpenMP(M))
4937     return PreservedAnalyses::all();
4938   if (DisableOpenMPOptimizations)
4939     return PreservedAnalyses::all();
4940 
4941   FunctionAnalysisManager &FAM =
4942       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
4943   KernelSet Kernels = getDeviceKernels(M);
4944 
4945   if (PrintModuleBeforeOptimizations)
4946     LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt Module Pass:\n" << M);
4947 
4948   auto IsCalled = [&](Function &F) {
4949     if (Kernels.contains(&F))
4950       return true;
4951     for (const User *U : F.users())
4952       if (!isa<BlockAddress>(U))
4953         return true;
4954     return false;
4955   };
4956 
4957   auto EmitRemark = [&](Function &F) {
4958     auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
4959     ORE.emit([&]() {
4960       OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F);
4961       return ORA << "Could not internalize function. "
4962                  << "Some optimizations may not be possible. [OMP140]";
4963     });
4964   };
4965 
4966   // Create internal copies of each function if this is a kernel Module. This
4967   // allows iterprocedural passes to see every call edge.
4968   DenseMap<Function *, Function *> InternalizedMap;
4969   if (isOpenMPDevice(M)) {
4970     SmallPtrSet<Function *, 16> InternalizeFns;
4971     for (Function &F : M)
4972       if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) &&
4973           !DisableInternalization) {
4974         if (Attributor::isInternalizable(F)) {
4975           InternalizeFns.insert(&F);
4976         } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) {
4977           EmitRemark(F);
4978         }
4979       }
4980 
4981     Attributor::internalizeFunctions(InternalizeFns, InternalizedMap);
4982   }
4983 
4984   // Look at every function in the Module unless it was internalized.
4985   SmallVector<Function *, 16> SCC;
4986   for (Function &F : M)
4987     if (!F.isDeclaration() && !InternalizedMap.lookup(&F))
4988       SCC.push_back(&F);
4989 
4990   if (SCC.empty())
4991     return PreservedAnalyses::all();
4992 
4993   AnalysisGetter AG(FAM);
4994 
4995   auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & {
4996     return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
4997   };
4998 
4999   BumpPtrAllocator Allocator;
5000   CallGraphUpdater CGUpdater;
5001 
5002   SetVector<Function *> Functions(SCC.begin(), SCC.end());
5003   OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions, Kernels);
5004 
5005   unsigned MaxFixpointIterations =
5006       (isOpenMPDevice(M)) ? SetFixpointIterations : 32;
5007 
5008   AttributorConfig AC(CGUpdater);
5009   AC.DefaultInitializeLiveInternals = false;
5010   AC.RewriteSignatures = false;
5011   AC.MaxFixpointIterations = MaxFixpointIterations;
5012   AC.OREGetter = OREGetter;
5013   AC.PassName = DEBUG_TYPE;
5014 
5015   Attributor A(Functions, InfoCache, AC);
5016 
5017   OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
5018   bool Changed = OMPOpt.run(true);
5019 
5020   // Optionally inline device functions for potentially better performance.
5021   if (AlwaysInlineDeviceFunctions && isOpenMPDevice(M))
5022     for (Function &F : M)
5023       if (!F.isDeclaration() && !Kernels.contains(&F) &&
5024           !F.hasFnAttribute(Attribute::NoInline))
5025         F.addFnAttr(Attribute::AlwaysInline);
5026 
5027   if (PrintModuleAfterOptimizations)
5028     LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt Module Pass:\n" << M);
5029 
5030   if (Changed)
5031     return PreservedAnalyses::none();
5032 
5033   return PreservedAnalyses::all();
5034 }
5035 
5036 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C,
5037                                           CGSCCAnalysisManager &AM,
5038                                           LazyCallGraph &CG,
5039                                           CGSCCUpdateResult &UR) {
5040   if (!containsOpenMP(*C.begin()->getFunction().getParent()))
5041     return PreservedAnalyses::all();
5042   if (DisableOpenMPOptimizations)
5043     return PreservedAnalyses::all();
5044 
5045   SmallVector<Function *, 16> SCC;
5046   // If there are kernels in the module, we have to run on all SCC's.
5047   for (LazyCallGraph::Node &N : C) {
5048     Function *Fn = &N.getFunction();
5049     SCC.push_back(Fn);
5050   }
5051 
5052   if (SCC.empty())
5053     return PreservedAnalyses::all();
5054 
5055   Module &M = *C.begin()->getFunction().getParent();
5056 
5057   if (PrintModuleBeforeOptimizations)
5058     LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt CGSCC Pass:\n" << M);
5059 
5060   KernelSet Kernels = getDeviceKernels(M);
5061 
5062   FunctionAnalysisManager &FAM =
5063       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
5064 
5065   AnalysisGetter AG(FAM);
5066 
5067   auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & {
5068     return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
5069   };
5070 
5071   BumpPtrAllocator Allocator;
5072   CallGraphUpdater CGUpdater;
5073   CGUpdater.initialize(CG, C, AM, UR);
5074 
5075   SetVector<Function *> Functions(SCC.begin(), SCC.end());
5076   OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator,
5077                                 /*CGSCC*/ Functions, Kernels);
5078 
5079   unsigned MaxFixpointIterations =
5080       (isOpenMPDevice(M)) ? SetFixpointIterations : 32;
5081 
5082   AttributorConfig AC(CGUpdater);
5083   AC.DefaultInitializeLiveInternals = false;
5084   AC.IsModulePass = false;
5085   AC.RewriteSignatures = false;
5086   AC.MaxFixpointIterations = MaxFixpointIterations;
5087   AC.OREGetter = OREGetter;
5088   AC.PassName = DEBUG_TYPE;
5089 
5090   Attributor A(Functions, InfoCache, AC);
5091 
5092   OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
5093   bool Changed = OMPOpt.run(false);
5094 
5095   if (PrintModuleAfterOptimizations)
5096     LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M);
5097 
5098   if (Changed)
5099     return PreservedAnalyses::none();
5100 
5101   return PreservedAnalyses::all();
5102 }
5103 
5104 namespace {
5105 
5106 struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass {
5107   CallGraphUpdater CGUpdater;
5108   static char ID;
5109 
5110   OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) {
5111     initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry());
5112   }
5113 
5114   void getAnalysisUsage(AnalysisUsage &AU) const override {
5115     CallGraphSCCPass::getAnalysisUsage(AU);
5116   }
5117 
5118   bool runOnSCC(CallGraphSCC &CGSCC) override {
5119     if (!containsOpenMP(CGSCC.getCallGraph().getModule()))
5120       return false;
5121     if (DisableOpenMPOptimizations || skipSCC(CGSCC))
5122       return false;
5123 
5124     SmallVector<Function *, 16> SCC;
5125     // If there are kernels in the module, we have to run on all SCC's.
5126     for (CallGraphNode *CGN : CGSCC) {
5127       Function *Fn = CGN->getFunction();
5128       if (!Fn || Fn->isDeclaration())
5129         continue;
5130       SCC.push_back(Fn);
5131     }
5132 
5133     if (SCC.empty())
5134       return false;
5135 
5136     Module &M = CGSCC.getCallGraph().getModule();
5137     KernelSet Kernels = getDeviceKernels(M);
5138 
5139     CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
5140     CGUpdater.initialize(CG, CGSCC);
5141 
5142     // Maintain a map of functions to avoid rebuilding the ORE
5143     DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap;
5144     auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & {
5145       std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F];
5146       if (!ORE)
5147         ORE = std::make_unique<OptimizationRemarkEmitter>(F);
5148       return *ORE;
5149     };
5150 
5151     AnalysisGetter AG;
5152     SetVector<Function *> Functions(SCC.begin(), SCC.end());
5153     BumpPtrAllocator Allocator;
5154     OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG,
5155                                   Allocator,
5156                                   /*CGSCC*/ Functions, Kernels);
5157 
5158     unsigned MaxFixpointIterations =
5159         (isOpenMPDevice(M)) ? SetFixpointIterations : 32;
5160 
5161     AttributorConfig AC(CGUpdater);
5162     AC.DefaultInitializeLiveInternals = false;
5163     AC.IsModulePass = false;
5164     AC.RewriteSignatures = false;
5165     AC.MaxFixpointIterations = MaxFixpointIterations;
5166     AC.OREGetter = OREGetter;
5167     AC.PassName = DEBUG_TYPE;
5168 
5169     Attributor A(Functions, InfoCache, AC);
5170 
5171     OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
5172     bool Result = OMPOpt.run(false);
5173 
5174     if (PrintModuleAfterOptimizations)
5175       LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M);
5176 
5177     return Result;
5178   }
5179 
5180   bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); }
5181 };
5182 
5183 } // end anonymous namespace
5184 
5185 KernelSet llvm::omp::getDeviceKernels(Module &M) {
5186   // TODO: Create a more cross-platform way of determining device kernels.
5187   NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
5188   KernelSet Kernels;
5189 
5190   if (!MD)
5191     return Kernels;
5192 
5193   for (auto *Op : MD->operands()) {
5194     if (Op->getNumOperands() < 2)
5195       continue;
5196     MDString *KindID = dyn_cast<MDString>(Op->getOperand(1));
5197     if (!KindID || KindID->getString() != "kernel")
5198       continue;
5199 
5200     Function *KernelFn =
5201         mdconst::dyn_extract_or_null<Function>(Op->getOperand(0));
5202     if (!KernelFn)
5203       continue;
5204 
5205     ++NumOpenMPTargetRegionKernels;
5206 
5207     Kernels.insert(KernelFn);
5208   }
5209 
5210   return Kernels;
5211 }
5212 
5213 bool llvm::omp::containsOpenMP(Module &M) {
5214   Metadata *MD = M.getModuleFlag("openmp");
5215   if (!MD)
5216     return false;
5217 
5218   return true;
5219 }
5220 
5221 bool llvm::omp::isOpenMPDevice(Module &M) {
5222   Metadata *MD = M.getModuleFlag("openmp-device");
5223   if (!MD)
5224     return false;
5225 
5226   return true;
5227 }
5228 
5229 char OpenMPOptCGSCCLegacyPass::ID = 0;
5230 
5231 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc",
5232                       "OpenMP specific optimizations", false, false)
5233 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
5234 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc",
5235                     "OpenMP specific optimizations", false, false)
5236 
5237 Pass *llvm::createOpenMPOptCGSCCLegacyPass() {
5238   return new OpenMPOptCGSCCLegacyPass();
5239 }
5240