1 //===- SampleProfileProbe.cpp - Pseudo probe Instrumentation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SampleProfileProber transformation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/IPO/SampleProfileProbe.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/BlockFrequencyInfo.h"
16 #include "llvm/Analysis/EHUtils.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/IR/BasicBlock.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/MDBuilder.h"
25 #include "llvm/IR/PseudoProbe.h"
26 #include "llvm/ProfileData/SampleProf.h"
27 #include "llvm/Support/CRC.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include "llvm/Transforms/Instrumentation.h"
31 #include "llvm/Transforms/Utils/ModuleUtils.h"
32 #include <unordered_set>
33 #include <vector>
34 
35 using namespace llvm;
36 #define DEBUG_TYPE "pseudo-probe"
37 
38 STATISTIC(ArtificialDbgLine,
39           "Number of probes that have an artificial debug line");
40 
41 static cl::opt<bool>
42     VerifyPseudoProbe("verify-pseudo-probe", cl::init(false), cl::Hidden,
43                       cl::desc("Do pseudo probe verification"));
44 
45 static cl::list<std::string> VerifyPseudoProbeFuncList(
46     "verify-pseudo-probe-funcs", cl::Hidden,
47     cl::desc("The option to specify the name of the functions to verify."));
48 
49 static cl::opt<bool>
50     UpdatePseudoProbe("update-pseudo-probe", cl::init(true), cl::Hidden,
51                       cl::desc("Update pseudo probe distribution factor"));
52 
53 static uint64_t getCallStackHash(const DILocation *DIL) {
54   uint64_t Hash = 0;
55   const DILocation *InlinedAt = DIL ? DIL->getInlinedAt() : nullptr;
56   while (InlinedAt) {
57     Hash ^= MD5Hash(std::to_string(InlinedAt->getLine()));
58     Hash ^= MD5Hash(std::to_string(InlinedAt->getColumn()));
59     auto Name = InlinedAt->getSubprogramLinkageName();
60     Hash ^= MD5Hash(Name);
61     InlinedAt = InlinedAt->getInlinedAt();
62   }
63   return Hash;
64 }
65 
66 static uint64_t computeCallStackHash(const Instruction &Inst) {
67   return getCallStackHash(Inst.getDebugLoc());
68 }
69 
70 bool PseudoProbeVerifier::shouldVerifyFunction(const Function *F) {
71   // Skip function declaration.
72   if (F->isDeclaration())
73     return false;
74   // Skip function that will not be emitted into object file. The prevailing
75   // defintion will be verified instead.
76   if (F->hasAvailableExternallyLinkage())
77     return false;
78   // Do a name matching.
79   static std::unordered_set<std::string> VerifyFuncNames(
80       VerifyPseudoProbeFuncList.begin(), VerifyPseudoProbeFuncList.end());
81   return VerifyFuncNames.empty() || VerifyFuncNames.count(F->getName().str());
82 }
83 
84 void PseudoProbeVerifier::registerCallbacks(PassInstrumentationCallbacks &PIC) {
85   if (VerifyPseudoProbe) {
86     PIC.registerAfterPassCallback(
87         [this](StringRef P, Any IR, const PreservedAnalyses &) {
88           this->runAfterPass(P, IR);
89         });
90   }
91 }
92 
93 // Callback to run after each transformation for the new pass manager.
94 void PseudoProbeVerifier::runAfterPass(StringRef PassID, Any IR) {
95   std::string Banner =
96       "\n*** Pseudo Probe Verification After " + PassID.str() + " ***\n";
97   dbgs() << Banner;
98   if (const auto **M = any_cast<const Module *>(&IR))
99     runAfterPass(*M);
100   else if (const auto **F = any_cast<const Function *>(&IR))
101     runAfterPass(*F);
102   else if (const auto **C = any_cast<const LazyCallGraph::SCC *>(&IR))
103     runAfterPass(*C);
104   else if (const auto **L = any_cast<const Loop *>(&IR))
105     runAfterPass(*L);
106   else
107     llvm_unreachable("Unknown IR unit");
108 }
109 
110 void PseudoProbeVerifier::runAfterPass(const Module *M) {
111   for (const Function &F : *M)
112     runAfterPass(&F);
113 }
114 
115 void PseudoProbeVerifier::runAfterPass(const LazyCallGraph::SCC *C) {
116   for (const LazyCallGraph::Node &N : *C)
117     runAfterPass(&N.getFunction());
118 }
119 
120 void PseudoProbeVerifier::runAfterPass(const Function *F) {
121   if (!shouldVerifyFunction(F))
122     return;
123   ProbeFactorMap ProbeFactors;
124   for (const auto &BB : *F)
125     collectProbeFactors(&BB, ProbeFactors);
126   verifyProbeFactors(F, ProbeFactors);
127 }
128 
129 void PseudoProbeVerifier::runAfterPass(const Loop *L) {
130   const Function *F = L->getHeader()->getParent();
131   runAfterPass(F);
132 }
133 
134 void PseudoProbeVerifier::collectProbeFactors(const BasicBlock *Block,
135                                               ProbeFactorMap &ProbeFactors) {
136   for (const auto &I : *Block) {
137     if (std::optional<PseudoProbe> Probe = extractProbe(I)) {
138       uint64_t Hash = computeCallStackHash(I);
139       ProbeFactors[{Probe->Id, Hash}] += Probe->Factor;
140     }
141   }
142 }
143 
144 void PseudoProbeVerifier::verifyProbeFactors(
145     const Function *F, const ProbeFactorMap &ProbeFactors) {
146   bool BannerPrinted = false;
147   auto &PrevProbeFactors = FunctionProbeFactors[F->getName()];
148   for (const auto &I : ProbeFactors) {
149     float CurProbeFactor = I.second;
150     if (PrevProbeFactors.count(I.first)) {
151       float PrevProbeFactor = PrevProbeFactors[I.first];
152       if (std::abs(CurProbeFactor - PrevProbeFactor) >
153           DistributionFactorVariance) {
154         if (!BannerPrinted) {
155           dbgs() << "Function " << F->getName() << ":\n";
156           BannerPrinted = true;
157         }
158         dbgs() << "Probe " << I.first.first << "\tprevious factor "
159                << format("%0.2f", PrevProbeFactor) << "\tcurrent factor "
160                << format("%0.2f", CurProbeFactor) << "\n";
161       }
162     }
163 
164     // Update
165     PrevProbeFactors[I.first] = I.second;
166   }
167 }
168 
169 SampleProfileProber::SampleProfileProber(Function &Func,
170                                          const std::string &CurModuleUniqueId)
171     : F(&Func), CurModuleUniqueId(CurModuleUniqueId) {
172   BlockProbeIds.clear();
173   CallProbeIds.clear();
174   LastProbeId = (uint32_t)PseudoProbeReservedId::Last;
175   computeProbeIdForBlocks();
176   computeProbeIdForCallsites();
177   computeCFGHash();
178 }
179 
180 // Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index
181 // value of each BB in the CFG. The higher 32 bits record the number of edges
182 // preceded by the number of indirect calls.
183 // This is derived from FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash().
184 void SampleProfileProber::computeCFGHash() {
185   std::vector<uint8_t> Indexes;
186   JamCRC JC;
187   for (auto &BB : *F) {
188     auto *TI = BB.getTerminator();
189     for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
190       auto *Succ = TI->getSuccessor(I);
191       auto Index = getBlockId(Succ);
192       for (int J = 0; J < 4; J++)
193         Indexes.push_back((uint8_t)(Index >> (J * 8)));
194     }
195   }
196 
197   JC.update(Indexes);
198 
199   FunctionHash = (uint64_t)CallProbeIds.size() << 48 |
200                  (uint64_t)Indexes.size() << 32 | JC.getCRC();
201   // Reserve bit 60-63 for other information purpose.
202   FunctionHash &= 0x0FFFFFFFFFFFFFFF;
203   assert(FunctionHash && "Function checksum should not be zero");
204   LLVM_DEBUG(dbgs() << "\nFunction Hash Computation for " << F->getName()
205                     << ":\n"
206                     << " CRC = " << JC.getCRC() << ", Edges = "
207                     << Indexes.size() << ", ICSites = " << CallProbeIds.size()
208                     << ", Hash = " << FunctionHash << "\n");
209 }
210 
211 void SampleProfileProber::computeProbeIdForBlocks() {
212   DenseSet<BasicBlock *> KnownColdBlocks;
213   computeEHOnlyBlocks(*F, KnownColdBlocks);
214   // Insert pseudo probe to non-cold blocks only. This will reduce IR size as
215   // well as the binary size while retaining the profile quality.
216   for (auto &BB : *F) {
217     ++LastProbeId;
218     if (!KnownColdBlocks.contains(&BB))
219       BlockProbeIds[&BB] = LastProbeId;
220   }
221 }
222 
223 void SampleProfileProber::computeProbeIdForCallsites() {
224   for (auto &BB : *F) {
225     for (auto &I : BB) {
226       if (!isa<CallBase>(I))
227         continue;
228       if (isa<IntrinsicInst>(&I))
229         continue;
230       CallProbeIds[&I] = ++LastProbeId;
231     }
232   }
233 }
234 
235 uint32_t SampleProfileProber::getBlockId(const BasicBlock *BB) const {
236   auto I = BlockProbeIds.find(const_cast<BasicBlock *>(BB));
237   return I == BlockProbeIds.end() ? 0 : I->second;
238 }
239 
240 uint32_t SampleProfileProber::getCallsiteId(const Instruction *Call) const {
241   auto Iter = CallProbeIds.find(const_cast<Instruction *>(Call));
242   return Iter == CallProbeIds.end() ? 0 : Iter->second;
243 }
244 
245 void SampleProfileProber::instrumentOneFunc(Function &F, TargetMachine *TM) {
246   Module *M = F.getParent();
247   MDBuilder MDB(F.getContext());
248   // Since the GUID from probe desc and inline stack are computed seperately, we
249   // need to make sure their names are consistent, so here also use the name
250   // from debug info.
251   StringRef FName = F.getName();
252   if (auto *SP = F.getSubprogram()) {
253     FName = SP->getLinkageName();
254     if (FName.empty())
255       FName = SP->getName();
256   }
257   uint64_t Guid = Function::getGUID(FName);
258 
259   // Assign an artificial debug line to a probe that doesn't come with a real
260   // line. A probe not having a debug line will get an incomplete inline
261   // context. This will cause samples collected on the probe to be counted
262   // into the base profile instead of a context profile. The line number
263   // itself is not important though.
264   auto AssignDebugLoc = [&](Instruction *I) {
265     assert((isa<PseudoProbeInst>(I) || isa<CallBase>(I)) &&
266            "Expecting pseudo probe or call instructions");
267     if (!I->getDebugLoc()) {
268       if (auto *SP = F.getSubprogram()) {
269         auto DIL = DILocation::get(SP->getContext(), 0, 0, SP);
270         I->setDebugLoc(DIL);
271         ArtificialDbgLine++;
272         LLVM_DEBUG({
273           dbgs() << "\nIn Function " << F.getName()
274                  << " Probe gets an artificial debug line\n";
275           I->dump();
276         });
277       }
278     }
279   };
280 
281   // Probe basic blocks.
282   for (auto &I : BlockProbeIds) {
283     BasicBlock *BB = I.first;
284     uint32_t Index = I.second;
285     // Insert a probe before an instruction with a valid debug line number which
286     // will be assigned to the probe. The line number will be used later to
287     // model the inline context when the probe is inlined into other functions.
288     // Debug instructions, phi nodes and lifetime markers do not have an valid
289     // line number. Real instructions generated by optimizations may not come
290     // with a line number either.
291     auto HasValidDbgLine = [](Instruction *J) {
292       return !isa<PHINode>(J) && !isa<DbgInfoIntrinsic>(J) &&
293              !J->isLifetimeStartOrEnd() && J->getDebugLoc();
294     };
295 
296     Instruction *J = &*BB->getFirstInsertionPt();
297     while (J != BB->getTerminator() && !HasValidDbgLine(J)) {
298       J = J->getNextNode();
299     }
300 
301     IRBuilder<> Builder(J);
302     assert(Builder.GetInsertPoint() != BB->end() &&
303            "Cannot get the probing point");
304     Function *ProbeFn =
305         llvm::Intrinsic::getDeclaration(M, Intrinsic::pseudoprobe);
306     Value *Args[] = {Builder.getInt64(Guid), Builder.getInt64(Index),
307                      Builder.getInt32(0),
308                      Builder.getInt64(PseudoProbeFullDistributionFactor)};
309     auto *Probe = Builder.CreateCall(ProbeFn, Args);
310     AssignDebugLoc(Probe);
311     // Reset the dwarf discriminator if the debug location comes with any. The
312     // discriminator field may be used by FS-AFDO later in the pipeline.
313     if (auto DIL = Probe->getDebugLoc()) {
314       if (DIL->getDiscriminator()) {
315         DIL = DIL->cloneWithDiscriminator(0);
316         Probe->setDebugLoc(DIL);
317       }
318     }
319   }
320 
321   // Probe both direct calls and indirect calls. Direct calls are probed so that
322   // their probe ID can be used as an call site identifier to represent a
323   // calling context.
324   for (auto &I : CallProbeIds) {
325     auto *Call = I.first;
326     uint32_t Index = I.second;
327     uint32_t Type = cast<CallBase>(Call)->getCalledFunction()
328                         ? (uint32_t)PseudoProbeType::DirectCall
329                         : (uint32_t)PseudoProbeType::IndirectCall;
330     AssignDebugLoc(Call);
331     if (auto DIL = Call->getDebugLoc()) {
332       // Levarge the 32-bit discriminator field of debug data to store the ID
333       // and type of a callsite probe. This gets rid of the dependency on
334       // plumbing a customized metadata through the codegen pipeline.
335       uint32_t V = PseudoProbeDwarfDiscriminator::packProbeData(
336           Index, Type, 0,
337           PseudoProbeDwarfDiscriminator::FullDistributionFactor);
338       DIL = DIL->cloneWithDiscriminator(V);
339       Call->setDebugLoc(DIL);
340     }
341   }
342 
343   // Create module-level metadata that contains function info necessary to
344   // synthesize probe-based sample counts,  which are
345   // - FunctionGUID
346   // - FunctionHash.
347   // - FunctionName
348   auto Hash = getFunctionHash();
349   auto *MD = MDB.createPseudoProbeDesc(Guid, Hash, FName);
350   auto *NMD = M->getNamedMetadata(PseudoProbeDescMetadataName);
351   assert(NMD && "llvm.pseudo_probe_desc should be pre-created");
352   NMD->addOperand(MD);
353 }
354 
355 PreservedAnalyses SampleProfileProbePass::run(Module &M,
356                                               ModuleAnalysisManager &AM) {
357   auto ModuleId = getUniqueModuleId(&M);
358   // Create the pseudo probe desc metadata beforehand.
359   // Note that modules with only data but no functions will require this to
360   // be set up so that they will be known as probed later.
361   M.getOrInsertNamedMetadata(PseudoProbeDescMetadataName);
362 
363   for (auto &F : M) {
364     if (F.isDeclaration())
365       continue;
366     SampleProfileProber ProbeManager(F, ModuleId);
367     ProbeManager.instrumentOneFunc(F, TM);
368   }
369 
370   return PreservedAnalyses::none();
371 }
372 
373 void PseudoProbeUpdatePass::runOnFunction(Function &F,
374                                           FunctionAnalysisManager &FAM) {
375   BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
376   auto BBProfileCount = [&BFI](BasicBlock *BB) {
377     return BFI.getBlockProfileCount(BB).value_or(0);
378   };
379 
380   // Collect the sum of execution weight for each probe.
381   ProbeFactorMap ProbeFactors;
382   for (auto &Block : F) {
383     for (auto &I : Block) {
384       if (std::optional<PseudoProbe> Probe = extractProbe(I)) {
385         uint64_t Hash = computeCallStackHash(I);
386         ProbeFactors[{Probe->Id, Hash}] += BBProfileCount(&Block);
387       }
388     }
389   }
390 
391   // Fix up over-counted probes.
392   for (auto &Block : F) {
393     for (auto &I : Block) {
394       if (std::optional<PseudoProbe> Probe = extractProbe(I)) {
395         uint64_t Hash = computeCallStackHash(I);
396         float Sum = ProbeFactors[{Probe->Id, Hash}];
397         if (Sum != 0)
398           setProbeDistributionFactor(I, BBProfileCount(&Block) / Sum);
399       }
400     }
401   }
402 }
403 
404 PreservedAnalyses PseudoProbeUpdatePass::run(Module &M,
405                                              ModuleAnalysisManager &AM) {
406   if (UpdatePseudoProbe) {
407     for (auto &F : M) {
408       if (F.isDeclaration())
409         continue;
410       FunctionAnalysisManager &FAM =
411           AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
412       runOnFunction(F, FAM);
413     }
414   }
415   return PreservedAnalyses::none();
416 }
417