1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
10 #include "llvm/Analysis/BasicAliasAnalysis.h"
11 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
12 #include "llvm/Analysis/ProfileSummaryInfo.h"
13 #include "llvm/Analysis/TypeMetadataUtils.h"
14 #include "llvm/Bitcode/BitcodeWriter.h"
15 #include "llvm/IR/Constants.h"
16 #include "llvm/IR/DebugInfo.h"
17 #include "llvm/IR/Intrinsics.h"
18 #include "llvm/IR/Module.h"
19 #include "llvm/IR/PassManager.h"
20 #include "llvm/InitializePasses.h"
21 #include "llvm/Object/ModuleSymbolTable.h"
22 #include "llvm/Pass.h"
23 #include "llvm/Support/ScopedPrinter.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Transforms/IPO.h"
26 #include "llvm/Transforms/IPO/FunctionAttrs.h"
27 #include "llvm/Transforms/IPO/FunctionImport.h"
28 #include "llvm/Transforms/IPO/LowerTypeTests.h"
29 #include "llvm/Transforms/Utils/Cloning.h"
30 #include "llvm/Transforms/Utils/ModuleUtils.h"
31 using namespace llvm;
32 
33 namespace {
34 
35 // Promote each local-linkage entity defined by ExportM and used by ImportM by
36 // changing visibility and appending the given ModuleId.
37 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId,
38                       SetVector<GlobalValue *> &PromoteExtra) {
39   DenseMap<const Comdat *, Comdat *> RenamedComdats;
40   for (auto &ExportGV : ExportM.global_values()) {
41     if (!ExportGV.hasLocalLinkage())
42       continue;
43 
44     auto Name = ExportGV.getName();
45     GlobalValue *ImportGV = nullptr;
46     if (!PromoteExtra.count(&ExportGV)) {
47       ImportGV = ImportM.getNamedValue(Name);
48       if (!ImportGV)
49         continue;
50       ImportGV->removeDeadConstantUsers();
51       if (ImportGV->use_empty()) {
52         ImportGV->eraseFromParent();
53         continue;
54       }
55     }
56 
57     std::string NewName = (Name + ModuleId).str();
58 
59     if (const auto *C = ExportGV.getComdat())
60       if (C->getName() == Name)
61         RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName));
62 
63     ExportGV.setName(NewName);
64     ExportGV.setLinkage(GlobalValue::ExternalLinkage);
65     ExportGV.setVisibility(GlobalValue::HiddenVisibility);
66 
67     if (ImportGV) {
68       ImportGV->setName(NewName);
69       ImportGV->setVisibility(GlobalValue::HiddenVisibility);
70     }
71   }
72 
73   if (!RenamedComdats.empty())
74     for (auto &GO : ExportM.global_objects())
75       if (auto *C = GO.getComdat()) {
76         auto Replacement = RenamedComdats.find(C);
77         if (Replacement != RenamedComdats.end())
78           GO.setComdat(Replacement->second);
79       }
80 }
81 
82 // Promote all internal (i.e. distinct) type ids used by the module by replacing
83 // them with external type ids formed using the module id.
84 //
85 // Note that this needs to be done before we clone the module because each clone
86 // will receive its own set of distinct metadata nodes.
87 void promoteTypeIds(Module &M, StringRef ModuleId) {
88   DenseMap<Metadata *, Metadata *> LocalToGlobal;
89   auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) {
90     Metadata *MD =
91         cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata();
92 
93     if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) {
94       Metadata *&GlobalMD = LocalToGlobal[MD];
95       if (!GlobalMD) {
96         std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str();
97         GlobalMD = MDString::get(M.getContext(), NewName);
98       }
99 
100       CI->setArgOperand(ArgNo,
101                         MetadataAsValue::get(M.getContext(), GlobalMD));
102     }
103   };
104 
105   if (Function *TypeTestFunc =
106           M.getFunction(Intrinsic::getName(Intrinsic::type_test))) {
107     for (const Use &U : TypeTestFunc->uses()) {
108       auto CI = cast<CallInst>(U.getUser());
109       ExternalizeTypeId(CI, 1);
110     }
111   }
112 
113   if (Function *TypeCheckedLoadFunc =
114           M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) {
115     for (const Use &U : TypeCheckedLoadFunc->uses()) {
116       auto CI = cast<CallInst>(U.getUser());
117       ExternalizeTypeId(CI, 2);
118     }
119   }
120 
121   for (GlobalObject &GO : M.global_objects()) {
122     SmallVector<MDNode *, 1> MDs;
123     GO.getMetadata(LLVMContext::MD_type, MDs);
124 
125     GO.eraseMetadata(LLVMContext::MD_type);
126     for (auto MD : MDs) {
127       auto I = LocalToGlobal.find(MD->getOperand(1));
128       if (I == LocalToGlobal.end()) {
129         GO.addMetadata(LLVMContext::MD_type, *MD);
130         continue;
131       }
132       GO.addMetadata(
133           LLVMContext::MD_type,
134           *MDNode::get(M.getContext(), {MD->getOperand(0), I->second}));
135     }
136   }
137 }
138 
139 // Drop unused globals, and drop type information from function declarations.
140 // FIXME: If we made functions typeless then there would be no need to do this.
141 void simplifyExternals(Module &M) {
142   FunctionType *EmptyFT =
143       FunctionType::get(Type::getVoidTy(M.getContext()), false);
144 
145   for (auto I = M.begin(), E = M.end(); I != E;) {
146     Function &F = *I++;
147     if (F.isDeclaration() && F.use_empty()) {
148       F.eraseFromParent();
149       continue;
150     }
151 
152     if (!F.isDeclaration() || F.getFunctionType() == EmptyFT ||
153         // Changing the type of an intrinsic may invalidate the IR.
154         F.getName().startswith("llvm."))
155       continue;
156 
157     Function *NewF =
158         Function::Create(EmptyFT, GlobalValue::ExternalLinkage,
159                          F.getAddressSpace(), "", &M);
160     NewF->setVisibility(F.getVisibility());
161     NewF->takeName(&F);
162     F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType()));
163     F.eraseFromParent();
164   }
165 
166   for (auto I = M.global_begin(), E = M.global_end(); I != E;) {
167     GlobalVariable &GV = *I++;
168     if (GV.isDeclaration() && GV.use_empty()) {
169       GV.eraseFromParent();
170       continue;
171     }
172   }
173 }
174 
175 static void
176 filterModule(Module *M,
177              function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) {
178   std::vector<GlobalValue *> V;
179   for (GlobalValue &GV : M->global_values())
180     if (!ShouldKeepDefinition(&GV))
181       V.push_back(&GV);
182 
183   for (GlobalValue *GV : V)
184     if (!convertToDeclaration(*GV))
185       GV->eraseFromParent();
186 }
187 
188 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) {
189   if (auto *F = dyn_cast<Function>(C))
190     return Fn(F);
191   if (isa<GlobalValue>(C))
192     return;
193   for (Value *Op : C->operands())
194     forEachVirtualFunction(cast<Constant>(Op), Fn);
195 }
196 
197 // If it's possible to split M into regular and thin LTO parts, do so and write
198 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a
199 // regular LTO bitcode file to OS.
200 void splitAndWriteThinLTOBitcode(
201     raw_ostream &OS, raw_ostream *ThinLinkOS,
202     function_ref<AAResults &(Function &)> AARGetter, Module &M) {
203   std::string ModuleId = getUniqueModuleId(&M);
204   if (ModuleId.empty()) {
205     // We couldn't generate a module ID for this module, write it out as a
206     // regular LTO module with an index for summary-based dead stripping.
207     ProfileSummaryInfo PSI(M);
208     M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
209     ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
210     WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index);
211 
212     if (ThinLinkOS)
213       // We don't have a ThinLTO part, but still write the module to the
214       // ThinLinkOS if requested so that the expected output file is produced.
215       WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false,
216                          &Index);
217 
218     return;
219   }
220 
221   promoteTypeIds(M, ModuleId);
222 
223   // Returns whether a global or its associated global has attached type
224   // metadata. The former may participate in CFI or whole-program
225   // devirtualization, so they need to appear in the merged module instead of
226   // the thin LTO module. Similarly, globals that are associated with globals
227   // with type metadata need to appear in the merged module because they will
228   // reference the global's section directly.
229   auto HasTypeMetadata = [](const GlobalObject *GO) {
230     if (MDNode *MD = GO->getMetadata(LLVMContext::MD_associated))
231       if (auto *AssocVM = dyn_cast_or_null<ValueAsMetadata>(MD->getOperand(0)))
232         if (auto *AssocGO = dyn_cast<GlobalObject>(AssocVM->getValue()))
233           if (AssocGO->hasMetadata(LLVMContext::MD_type))
234             return true;
235     return GO->hasMetadata(LLVMContext::MD_type);
236   };
237 
238   // Collect the set of virtual functions that are eligible for virtual constant
239   // propagation. Each eligible function must not access memory, must return
240   // an integer of width <=64 bits, must take at least one argument, must not
241   // use its first argument (assumed to be "this") and all arguments other than
242   // the first one must be of <=64 bit integer type.
243   //
244   // Note that we test whether this copy of the function is readnone, rather
245   // than testing function attributes, which must hold for any copy of the
246   // function, even a less optimized version substituted at link time. This is
247   // sound because the virtual constant propagation optimizations effectively
248   // inline all implementations of the virtual function into each call site,
249   // rather than using function attributes to perform local optimization.
250   DenseSet<const Function *> EligibleVirtualFns;
251   // If any member of a comdat lives in MergedM, put all members of that
252   // comdat in MergedM to keep the comdat together.
253   DenseSet<const Comdat *> MergedMComdats;
254   for (GlobalVariable &GV : M.globals())
255     if (HasTypeMetadata(&GV)) {
256       if (const auto *C = GV.getComdat())
257         MergedMComdats.insert(C);
258       forEachVirtualFunction(GV.getInitializer(), [&](Function *F) {
259         auto *RT = dyn_cast<IntegerType>(F->getReturnType());
260         if (!RT || RT->getBitWidth() > 64 || F->arg_empty() ||
261             !F->arg_begin()->use_empty())
262           return;
263         for (auto &Arg : make_range(std::next(F->arg_begin()), F->arg_end())) {
264           auto *ArgT = dyn_cast<IntegerType>(Arg.getType());
265           if (!ArgT || ArgT->getBitWidth() > 64)
266             return;
267         }
268         if (!F->isDeclaration() &&
269             computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone)
270           EligibleVirtualFns.insert(F);
271       });
272     }
273 
274   ValueToValueMapTy VMap;
275   std::unique_ptr<Module> MergedM(
276       CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool {
277         if (const auto *C = GV->getComdat())
278           if (MergedMComdats.count(C))
279             return true;
280         if (auto *F = dyn_cast<Function>(GV))
281           return EligibleVirtualFns.count(F);
282         if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
283           return HasTypeMetadata(GVar);
284         return false;
285       }));
286   StripDebugInfo(*MergedM);
287   MergedM->setModuleInlineAsm("");
288 
289   for (Function &F : *MergedM)
290     if (!F.isDeclaration()) {
291       // Reset the linkage of all functions eligible for virtual constant
292       // propagation. The canonical definitions live in the thin LTO module so
293       // that they can be imported.
294       F.setLinkage(GlobalValue::AvailableExternallyLinkage);
295       F.setComdat(nullptr);
296     }
297 
298   SetVector<GlobalValue *> CfiFunctions;
299   for (auto &F : M)
300     if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F))
301       CfiFunctions.insert(&F);
302 
303   // Remove all globals with type metadata, globals with comdats that live in
304   // MergedM, and aliases pointing to such globals from the thin LTO module.
305   filterModule(&M, [&](const GlobalValue *GV) {
306     if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
307       if (HasTypeMetadata(GVar))
308         return false;
309     if (const auto *C = GV->getComdat())
310       if (MergedMComdats.count(C))
311         return false;
312     return true;
313   });
314 
315   promoteInternals(*MergedM, M, ModuleId, CfiFunctions);
316   promoteInternals(M, *MergedM, ModuleId, CfiFunctions);
317 
318   auto &Ctx = MergedM->getContext();
319   SmallVector<MDNode *, 8> CfiFunctionMDs;
320   for (auto V : CfiFunctions) {
321     Function &F = *cast<Function>(V);
322     SmallVector<MDNode *, 2> Types;
323     F.getMetadata(LLVMContext::MD_type, Types);
324 
325     SmallVector<Metadata *, 4> Elts;
326     Elts.push_back(MDString::get(Ctx, F.getName()));
327     CfiFunctionLinkage Linkage;
328     if (lowertypetests::isJumpTableCanonical(&F))
329       Linkage = CFL_Definition;
330     else if (F.hasExternalWeakLinkage())
331       Linkage = CFL_WeakDeclaration;
332     else
333       Linkage = CFL_Declaration;
334     Elts.push_back(ConstantAsMetadata::get(
335         llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage)));
336     for (auto Type : Types)
337       Elts.push_back(Type);
338     CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts));
339   }
340 
341   if(!CfiFunctionMDs.empty()) {
342     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions");
343     for (auto MD : CfiFunctionMDs)
344       NMD->addOperand(MD);
345   }
346 
347   SmallVector<MDNode *, 8> FunctionAliases;
348   for (auto &A : M.aliases()) {
349     if (!isa<Function>(A.getAliasee()))
350       continue;
351 
352     auto *F = cast<Function>(A.getAliasee());
353 
354     Metadata *Elts[] = {
355         MDString::get(Ctx, A.getName()),
356         MDString::get(Ctx, F->getName()),
357         ConstantAsMetadata::get(
358             ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())),
359         ConstantAsMetadata::get(
360             ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())),
361     };
362 
363     FunctionAliases.push_back(MDTuple::get(Ctx, Elts));
364   }
365 
366   if (!FunctionAliases.empty()) {
367     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases");
368     for (auto MD : FunctionAliases)
369       NMD->addOperand(MD);
370   }
371 
372   SmallVector<MDNode *, 8> Symvers;
373   ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) {
374     Function *F = M.getFunction(Name);
375     if (!F || F->use_empty())
376       return;
377 
378     Symvers.push_back(MDTuple::get(
379         Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)}));
380   });
381 
382   if (!Symvers.empty()) {
383     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers");
384     for (auto MD : Symvers)
385       NMD->addOperand(MD);
386   }
387 
388   simplifyExternals(*MergedM);
389 
390   // FIXME: Try to re-use BSI and PFI from the original module here.
391   ProfileSummaryInfo PSI(M);
392   ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
393 
394   // Mark the merged module as requiring full LTO. We still want an index for
395   // it though, so that it can participate in summary-based dead stripping.
396   MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
397   ModuleSummaryIndex MergedMIndex =
398       buildModuleSummaryIndex(*MergedM, nullptr, &PSI);
399 
400   SmallVector<char, 0> Buffer;
401 
402   BitcodeWriter W(Buffer);
403   // Save the module hash produced for the full bitcode, which will
404   // be used in the backends, and use that in the minimized bitcode
405   // produced for the full link.
406   ModuleHash ModHash = {{0}};
407   W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index,
408                 /*GenerateHash=*/true, &ModHash);
409   W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex);
410   W.writeSymtab();
411   W.writeStrtab();
412   OS << Buffer;
413 
414   // If a minimized bitcode module was requested for the thin link, only
415   // the information that is needed by thin link will be written in the
416   // given OS (the merged module will be written as usual).
417   if (ThinLinkOS) {
418     Buffer.clear();
419     BitcodeWriter W2(Buffer);
420     StripDebugInfo(M);
421     W2.writeThinLinkBitcode(M, Index, ModHash);
422     W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false,
423                    &MergedMIndex);
424     W2.writeSymtab();
425     W2.writeStrtab();
426     *ThinLinkOS << Buffer;
427   }
428 }
429 
430 // Check if the LTO Unit splitting has been enabled.
431 bool enableSplitLTOUnit(Module &M) {
432   bool EnableSplitLTOUnit = false;
433   if (auto *MD = mdconst::extract_or_null<ConstantInt>(
434           M.getModuleFlag("EnableSplitLTOUnit")))
435     EnableSplitLTOUnit = MD->getZExtValue();
436   return EnableSplitLTOUnit;
437 }
438 
439 // Returns whether this module needs to be split because it uses type metadata.
440 bool hasTypeMetadata(Module &M) {
441   for (auto &GO : M.global_objects()) {
442     if (GO.hasMetadata(LLVMContext::MD_type))
443       return true;
444   }
445   return false;
446 }
447 
448 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS,
449                          function_ref<AAResults &(Function &)> AARGetter,
450                          Module &M, const ModuleSummaryIndex *Index) {
451   std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr;
452   // See if this module has any type metadata. If so, we try to split it
453   // or at least promote type ids to enable WPD.
454   if (hasTypeMetadata(M)) {
455     if (enableSplitLTOUnit(M))
456       return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M);
457     // Promote type ids as needed for index-based WPD.
458     std::string ModuleId = getUniqueModuleId(&M);
459     if (!ModuleId.empty()) {
460       promoteTypeIds(M, ModuleId);
461       // Need to rebuild the index so that it contains type metadata
462       // for the newly promoted type ids.
463       // FIXME: Probably should not bother building the index at all
464       // in the caller of writeThinLTOBitcode (which does so via the
465       // ModuleSummaryIndexAnalysis pass), since we have to rebuild it
466       // anyway whenever there is type metadata (here or in
467       // splitAndWriteThinLTOBitcode). Just always build it once via the
468       // buildModuleSummaryIndex when Module(s) are ready.
469       ProfileSummaryInfo PSI(M);
470       NewIndex = std::make_unique<ModuleSummaryIndex>(
471           buildModuleSummaryIndex(M, nullptr, &PSI));
472       Index = NewIndex.get();
473     }
474   }
475 
476   // Write it out as an unsplit ThinLTO module.
477 
478   // Save the module hash produced for the full bitcode, which will
479   // be used in the backends, and use that in the minimized bitcode
480   // produced for the full link.
481   ModuleHash ModHash = {{0}};
482   WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index,
483                      /*GenerateHash=*/true, &ModHash);
484   // If a minimized bitcode module was requested for the thin link, only
485   // the information that is needed by thin link will be written in the
486   // given OS.
487   if (ThinLinkOS && Index)
488     WriteThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash);
489 }
490 
491 class WriteThinLTOBitcode : public ModulePass {
492   raw_ostream &OS; // raw_ostream to print on
493   // The output stream on which to emit a minimized module for use
494   // just in the thin link, if requested.
495   raw_ostream *ThinLinkOS;
496 
497 public:
498   static char ID; // Pass identification, replacement for typeid
499   WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) {
500     initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
501   }
502 
503   explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS)
504       : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) {
505     initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
506   }
507 
508   StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; }
509 
510   bool runOnModule(Module &M) override {
511     const ModuleSummaryIndex *Index =
512         &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex());
513     writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index);
514     return true;
515   }
516   void getAnalysisUsage(AnalysisUsage &AU) const override {
517     AU.setPreservesAll();
518     AU.addRequired<AssumptionCacheTracker>();
519     AU.addRequired<ModuleSummaryIndexWrapperPass>();
520     AU.addRequired<TargetLibraryInfoWrapperPass>();
521   }
522 };
523 } // anonymous namespace
524 
525 char WriteThinLTOBitcode::ID = 0;
526 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode",
527                       "Write ThinLTO Bitcode", false, true)
528 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
529 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass)
530 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
531 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode",
532                     "Write ThinLTO Bitcode", false, true)
533 
534 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str,
535                                                 raw_ostream *ThinLinkOS) {
536   return new WriteThinLTOBitcode(Str, ThinLinkOS);
537 }
538 
539 PreservedAnalyses
540 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) {
541   FunctionAnalysisManager &FAM =
542       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
543   writeThinLTOBitcode(OS, ThinLinkOS,
544                       [&FAM](Function &F) -> AAResults & {
545                         return FAM.getResult<AAManager>(F);
546                       },
547                       M, &AM.getResult<ModuleSummaryIndexAnalysis>(M));
548   return PreservedAnalyses::all();
549 }
550