1 //===- InstCombineAndOrXor.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitAnd, visitOr, and visitXor functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/Analysis/CmpInstAnalysis.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/IR/ConstantRange.h"
17 #include "llvm/IR/Intrinsics.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Transforms/InstCombine/InstCombiner.h"
20 #include "llvm/Transforms/Utils/Local.h"
21 
22 using namespace llvm;
23 using namespace PatternMatch;
24 
25 #define DEBUG_TYPE "instcombine"
26 
27 /// This is the complement of getICmpCode, which turns an opcode and two
28 /// operands into either a constant true or false, or a brand new ICmp
29 /// instruction. The sign is passed in to determine which kind of predicate to
30 /// use in the new icmp instruction.
31 static Value *getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS,
32                               InstCombiner::BuilderTy &Builder) {
33   ICmpInst::Predicate NewPred;
34   if (Constant *TorF = getPredForICmpCode(Code, Sign, LHS->getType(), NewPred))
35     return TorF;
36   return Builder.CreateICmp(NewPred, LHS, RHS);
37 }
38 
39 /// This is the complement of getFCmpCode, which turns an opcode and two
40 /// operands into either a FCmp instruction, or a true/false constant.
41 static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS,
42                            InstCombiner::BuilderTy &Builder) {
43   FCmpInst::Predicate NewPred;
44   if (Constant *TorF = getPredForFCmpCode(Code, LHS->getType(), NewPred))
45     return TorF;
46   return Builder.CreateFCmp(NewPred, LHS, RHS);
47 }
48 
49 /// Transform BITWISE_OP(BSWAP(A),BSWAP(B)) or
50 /// BITWISE_OP(BSWAP(A), Constant) to BSWAP(BITWISE_OP(A, B))
51 /// \param I Binary operator to transform.
52 /// \return Pointer to node that must replace the original binary operator, or
53 ///         null pointer if no transformation was made.
54 static Value *SimplifyBSwap(BinaryOperator &I,
55                             InstCombiner::BuilderTy &Builder) {
56   assert(I.isBitwiseLogicOp() && "Unexpected opcode for bswap simplifying");
57 
58   Value *OldLHS = I.getOperand(0);
59   Value *OldRHS = I.getOperand(1);
60 
61   Value *NewLHS;
62   if (!match(OldLHS, m_BSwap(m_Value(NewLHS))))
63     return nullptr;
64 
65   Value *NewRHS;
66   const APInt *C;
67 
68   if (match(OldRHS, m_BSwap(m_Value(NewRHS)))) {
69     // OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
70     if (!OldLHS->hasOneUse() && !OldRHS->hasOneUse())
71       return nullptr;
72     // NewRHS initialized by the matcher.
73   } else if (match(OldRHS, m_APInt(C))) {
74     // OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
75     if (!OldLHS->hasOneUse())
76       return nullptr;
77     NewRHS = ConstantInt::get(I.getType(), C->byteSwap());
78   } else
79     return nullptr;
80 
81   Value *BinOp = Builder.CreateBinOp(I.getOpcode(), NewLHS, NewRHS);
82   Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap,
83                                           I.getType());
84   return Builder.CreateCall(F, BinOp);
85 }
86 
87 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
88 /// (V < Lo || V >= Hi). This method expects that Lo < Hi. IsSigned indicates
89 /// whether to treat V, Lo, and Hi as signed or not.
90 Value *InstCombinerImpl::insertRangeTest(Value *V, const APInt &Lo,
91                                          const APInt &Hi, bool isSigned,
92                                          bool Inside) {
93   assert((isSigned ? Lo.slt(Hi) : Lo.ult(Hi)) &&
94          "Lo is not < Hi in range emission code!");
95 
96   Type *Ty = V->getType();
97 
98   // V >= Min && V <  Hi --> V <  Hi
99   // V <  Min || V >= Hi --> V >= Hi
100   ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
101   if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) {
102     Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred;
103     return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi));
104   }
105 
106   // V >= Lo && V <  Hi --> V - Lo u<  Hi - Lo
107   // V <  Lo || V >= Hi --> V - Lo u>= Hi - Lo
108   Value *VMinusLo =
109       Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off");
110   Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo);
111   return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo);
112 }
113 
114 /// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns
115 /// that can be simplified.
116 /// One of A and B is considered the mask. The other is the value. This is
117 /// described as the "AMask" or "BMask" part of the enum. If the enum contains
118 /// only "Mask", then both A and B can be considered masks. If A is the mask,
119 /// then it was proven that (A & C) == C. This is trivial if C == A or C == 0.
120 /// If both A and C are constants, this proof is also easy.
121 /// For the following explanations, we assume that A is the mask.
122 ///
123 /// "AllOnes" declares that the comparison is true only if (A & B) == A or all
124 /// bits of A are set in B.
125 ///   Example: (icmp eq (A & 3), 3) -> AMask_AllOnes
126 ///
127 /// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all
128 /// bits of A are cleared in B.
129 ///   Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes
130 ///
131 /// "Mixed" declares that (A & B) == C and C might or might not contain any
132 /// number of one bits and zero bits.
133 ///   Example: (icmp eq (A & 3), 1) -> AMask_Mixed
134 ///
135 /// "Not" means that in above descriptions "==" should be replaced by "!=".
136 ///   Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes
137 ///
138 /// If the mask A contains a single bit, then the following is equivalent:
139 ///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
140 ///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
141 enum MaskedICmpType {
142   AMask_AllOnes           =     1,
143   AMask_NotAllOnes        =     2,
144   BMask_AllOnes           =     4,
145   BMask_NotAllOnes        =     8,
146   Mask_AllZeros           =    16,
147   Mask_NotAllZeros        =    32,
148   AMask_Mixed             =    64,
149   AMask_NotMixed          =   128,
150   BMask_Mixed             =   256,
151   BMask_NotMixed          =   512
152 };
153 
154 /// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C)
155 /// satisfies.
156 static unsigned getMaskedICmpType(Value *A, Value *B, Value *C,
157                                   ICmpInst::Predicate Pred) {
158   const APInt *ConstA = nullptr, *ConstB = nullptr, *ConstC = nullptr;
159   match(A, m_APInt(ConstA));
160   match(B, m_APInt(ConstB));
161   match(C, m_APInt(ConstC));
162   bool IsEq = (Pred == ICmpInst::ICMP_EQ);
163   bool IsAPow2 = ConstA && ConstA->isPowerOf2();
164   bool IsBPow2 = ConstB && ConstB->isPowerOf2();
165   unsigned MaskVal = 0;
166   if (ConstC && ConstC->isZero()) {
167     // if C is zero, then both A and B qualify as mask
168     MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed)
169                      : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed));
170     if (IsAPow2)
171       MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed)
172                        : (AMask_AllOnes | AMask_Mixed));
173     if (IsBPow2)
174       MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed)
175                        : (BMask_AllOnes | BMask_Mixed));
176     return MaskVal;
177   }
178 
179   if (A == C) {
180     MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed)
181                      : (AMask_NotAllOnes | AMask_NotMixed));
182     if (IsAPow2)
183       MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed)
184                        : (Mask_AllZeros | AMask_Mixed));
185   } else if (ConstA && ConstC && ConstC->isSubsetOf(*ConstA)) {
186     MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed);
187   }
188 
189   if (B == C) {
190     MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed)
191                      : (BMask_NotAllOnes | BMask_NotMixed));
192     if (IsBPow2)
193       MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed)
194                        : (Mask_AllZeros | BMask_Mixed));
195   } else if (ConstB && ConstC && ConstC->isSubsetOf(*ConstB)) {
196     MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed);
197   }
198 
199   return MaskVal;
200 }
201 
202 /// Convert an analysis of a masked ICmp into its equivalent if all boolean
203 /// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
204 /// is adjacent to the corresponding normal flag (recording ==), this just
205 /// involves swapping those bits over.
206 static unsigned conjugateICmpMask(unsigned Mask) {
207   unsigned NewMask;
208   NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros |
209                      AMask_Mixed | BMask_Mixed))
210             << 1;
211 
212   NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros |
213                       AMask_NotMixed | BMask_NotMixed))
214              >> 1;
215 
216   return NewMask;
217 }
218 
219 // Adapts the external decomposeBitTestICmp for local use.
220 static bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred,
221                                  Value *&X, Value *&Y, Value *&Z) {
222   APInt Mask;
223   if (!llvm::decomposeBitTestICmp(LHS, RHS, Pred, X, Mask))
224     return false;
225 
226   Y = ConstantInt::get(X->getType(), Mask);
227   Z = ConstantInt::get(X->getType(), 0);
228   return true;
229 }
230 
231 /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E).
232 /// Return the pattern classes (from MaskedICmpType) for the left hand side and
233 /// the right hand side as a pair.
234 /// LHS and RHS are the left hand side and the right hand side ICmps and PredL
235 /// and PredR are their predicates, respectively.
236 static std::optional<std::pair<unsigned, unsigned>> getMaskedTypeForICmpPair(
237     Value *&A, Value *&B, Value *&C, Value *&D, Value *&E, ICmpInst *LHS,
238     ICmpInst *RHS, ICmpInst::Predicate &PredL, ICmpInst::Predicate &PredR) {
239   // Don't allow pointers. Splat vectors are fine.
240   if (!LHS->getOperand(0)->getType()->isIntOrIntVectorTy() ||
241       !RHS->getOperand(0)->getType()->isIntOrIntVectorTy())
242     return std::nullopt;
243 
244   // Here comes the tricky part:
245   // LHS might be of the form L11 & L12 == X, X == L21 & L22,
246   // and L11 & L12 == L21 & L22. The same goes for RHS.
247   // Now we must find those components L** and R**, that are equal, so
248   // that we can extract the parameters A, B, C, D, and E for the canonical
249   // above.
250   Value *L1 = LHS->getOperand(0);
251   Value *L2 = LHS->getOperand(1);
252   Value *L11, *L12, *L21, *L22;
253   // Check whether the icmp can be decomposed into a bit test.
254   if (decomposeBitTestICmp(L1, L2, PredL, L11, L12, L2)) {
255     L21 = L22 = L1 = nullptr;
256   } else {
257     // Look for ANDs in the LHS icmp.
258     if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
259       // Any icmp can be viewed as being trivially masked; if it allows us to
260       // remove one, it's worth it.
261       L11 = L1;
262       L12 = Constant::getAllOnesValue(L1->getType());
263     }
264 
265     if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
266       L21 = L2;
267       L22 = Constant::getAllOnesValue(L2->getType());
268     }
269   }
270 
271   // Bail if LHS was a icmp that can't be decomposed into an equality.
272   if (!ICmpInst::isEquality(PredL))
273     return std::nullopt;
274 
275   Value *R1 = RHS->getOperand(0);
276   Value *R2 = RHS->getOperand(1);
277   Value *R11, *R12;
278   bool Ok = false;
279   if (decomposeBitTestICmp(R1, R2, PredR, R11, R12, R2)) {
280     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
281       A = R11;
282       D = R12;
283     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
284       A = R12;
285       D = R11;
286     } else {
287       return std::nullopt;
288     }
289     E = R2;
290     R1 = nullptr;
291     Ok = true;
292   } else {
293     if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
294       // As before, model no mask as a trivial mask if it'll let us do an
295       // optimization.
296       R11 = R1;
297       R12 = Constant::getAllOnesValue(R1->getType());
298     }
299 
300     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
301       A = R11;
302       D = R12;
303       E = R2;
304       Ok = true;
305     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
306       A = R12;
307       D = R11;
308       E = R2;
309       Ok = true;
310     }
311   }
312 
313   // Bail if RHS was a icmp that can't be decomposed into an equality.
314   if (!ICmpInst::isEquality(PredR))
315     return std::nullopt;
316 
317   // Look for ANDs on the right side of the RHS icmp.
318   if (!Ok) {
319     if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
320       R11 = R2;
321       R12 = Constant::getAllOnesValue(R2->getType());
322     }
323 
324     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
325       A = R11;
326       D = R12;
327       E = R1;
328       Ok = true;
329     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
330       A = R12;
331       D = R11;
332       E = R1;
333       Ok = true;
334     } else {
335       return std::nullopt;
336     }
337 
338     assert(Ok && "Failed to find AND on the right side of the RHS icmp.");
339   }
340 
341   if (L11 == A) {
342     B = L12;
343     C = L2;
344   } else if (L12 == A) {
345     B = L11;
346     C = L2;
347   } else if (L21 == A) {
348     B = L22;
349     C = L1;
350   } else if (L22 == A) {
351     B = L21;
352     C = L1;
353   }
354 
355   unsigned LeftType = getMaskedICmpType(A, B, C, PredL);
356   unsigned RightType = getMaskedICmpType(A, D, E, PredR);
357   return std::optional<std::pair<unsigned, unsigned>>(
358       std::make_pair(LeftType, RightType));
359 }
360 
361 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single
362 /// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros
363 /// and the right hand side is of type BMask_Mixed. For example,
364 /// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8).
365 /// Also used for logical and/or, must be poison safe.
366 static Value *foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
367     ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C,
368     Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
369     InstCombiner::BuilderTy &Builder) {
370   // We are given the canonical form:
371   //   (icmp ne (A & B), 0) & (icmp eq (A & D), E).
372   // where D & E == E.
373   //
374   // If IsAnd is false, we get it in negated form:
375   //   (icmp eq (A & B), 0) | (icmp ne (A & D), E) ->
376   //      !((icmp ne (A & B), 0) & (icmp eq (A & D), E)).
377   //
378   // We currently handle the case of B, C, D, E are constant.
379   //
380   const APInt *BCst, *CCst, *DCst, *OrigECst;
381   if (!match(B, m_APInt(BCst)) || !match(C, m_APInt(CCst)) ||
382       !match(D, m_APInt(DCst)) || !match(E, m_APInt(OrigECst)))
383     return nullptr;
384 
385   ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
386 
387   // Update E to the canonical form when D is a power of two and RHS is
388   // canonicalized as,
389   // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or
390   // (icmp ne (A & D), D) -> (icmp eq (A & D), 0).
391   APInt ECst = *OrigECst;
392   if (PredR != NewCC)
393     ECst ^= *DCst;
394 
395   // If B or D is zero, skip because if LHS or RHS can be trivially folded by
396   // other folding rules and this pattern won't apply any more.
397   if (*BCst == 0 || *DCst == 0)
398     return nullptr;
399 
400   // If B and D don't intersect, ie. (B & D) == 0, no folding because we can't
401   // deduce anything from it.
402   // For example,
403   // (icmp ne (A & 12), 0) & (icmp eq (A & 3), 1) -> no folding.
404   if ((*BCst & *DCst) == 0)
405     return nullptr;
406 
407   // If the following two conditions are met:
408   //
409   // 1. mask B covers only a single bit that's not covered by mask D, that is,
410   // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of
411   // B and D has only one bit set) and,
412   //
413   // 2. RHS (and E) indicates that the rest of B's bits are zero (in other
414   // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0
415   //
416   // then that single bit in B must be one and thus the whole expression can be
417   // folded to
418   //   (A & (B | D)) == (B & (B ^ D)) | E.
419   //
420   // For example,
421   // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9)
422   // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8)
423   if ((((*BCst & *DCst) & ECst) == 0) &&
424       (*BCst & (*BCst ^ *DCst)).isPowerOf2()) {
425     APInt BorD = *BCst | *DCst;
426     APInt BandBxorDorE = (*BCst & (*BCst ^ *DCst)) | ECst;
427     Value *NewMask = ConstantInt::get(A->getType(), BorD);
428     Value *NewMaskedValue = ConstantInt::get(A->getType(), BandBxorDorE);
429     Value *NewAnd = Builder.CreateAnd(A, NewMask);
430     return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue);
431   }
432 
433   auto IsSubSetOrEqual = [](const APInt *C1, const APInt *C2) {
434     return (*C1 & *C2) == *C1;
435   };
436   auto IsSuperSetOrEqual = [](const APInt *C1, const APInt *C2) {
437     return (*C1 & *C2) == *C2;
438   };
439 
440   // In the following, we consider only the cases where B is a superset of D, B
441   // is a subset of D, or B == D because otherwise there's at least one bit
442   // covered by B but not D, in which case we can't deduce much from it, so
443   // no folding (aside from the single must-be-one bit case right above.)
444   // For example,
445   // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding.
446   if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst))
447     return nullptr;
448 
449   // At this point, either B is a superset of D, B is a subset of D or B == D.
450 
451   // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict
452   // and the whole expression becomes false (or true if negated), otherwise, no
453   // folding.
454   // For example,
455   // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false.
456   // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding.
457   if (ECst.isZero()) {
458     if (IsSubSetOrEqual(BCst, DCst))
459       return ConstantInt::get(LHS->getType(), !IsAnd);
460     return nullptr;
461   }
462 
463   // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B ==
464   // D. If B is a superset of (or equal to) D, since E is not zero, LHS is
465   // subsumed by RHS (RHS implies LHS.) So the whole expression becomes
466   // RHS. For example,
467   // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
468   // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
469   if (IsSuperSetOrEqual(BCst, DCst))
470     return RHS;
471   // Otherwise, B is a subset of D. If B and E have a common bit set,
472   // ie. (B & E) != 0, then LHS is subsumed by RHS. For example.
473   // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
474   assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code");
475   if ((*BCst & ECst) != 0)
476     return RHS;
477   // Otherwise, LHS and RHS contradict and the whole expression becomes false
478   // (or true if negated.) For example,
479   // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false.
480   // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false.
481   return ConstantInt::get(LHS->getType(), !IsAnd);
482 }
483 
484 /// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single
485 /// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side
486 /// aren't of the common mask pattern type.
487 /// Also used for logical and/or, must be poison safe.
488 static Value *foldLogOpOfMaskedICmpsAsymmetric(
489     ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C,
490     Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
491     unsigned LHSMask, unsigned RHSMask, InstCombiner::BuilderTy &Builder) {
492   assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
493          "Expected equality predicates for masked type of icmps.");
494   // Handle Mask_NotAllZeros-BMask_Mixed cases.
495   // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or
496   // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E)
497   //    which gets swapped to
498   //    (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C).
499   if (!IsAnd) {
500     LHSMask = conjugateICmpMask(LHSMask);
501     RHSMask = conjugateICmpMask(RHSMask);
502   }
503   if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) {
504     if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
505             LHS, RHS, IsAnd, A, B, C, D, E,
506             PredL, PredR, Builder)) {
507       return V;
508     }
509   } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) {
510     if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
511             RHS, LHS, IsAnd, A, D, E, B, C,
512             PredR, PredL, Builder)) {
513       return V;
514     }
515   }
516   return nullptr;
517 }
518 
519 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
520 /// into a single (icmp(A & X) ==/!= Y).
521 static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
522                                      bool IsLogical,
523                                      InstCombiner::BuilderTy &Builder) {
524   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
525   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
526   std::optional<std::pair<unsigned, unsigned>> MaskPair =
527       getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR);
528   if (!MaskPair)
529     return nullptr;
530   assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
531          "Expected equality predicates for masked type of icmps.");
532   unsigned LHSMask = MaskPair->first;
533   unsigned RHSMask = MaskPair->second;
534   unsigned Mask = LHSMask & RHSMask;
535   if (Mask == 0) {
536     // Even if the two sides don't share a common pattern, check if folding can
537     // still happen.
538     if (Value *V = foldLogOpOfMaskedICmpsAsymmetric(
539             LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask,
540             Builder))
541       return V;
542     return nullptr;
543   }
544 
545   // In full generality:
546   //     (icmp (A & B) Op C) | (icmp (A & D) Op E)
547   // ==  ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
548   //
549   // If the latter can be converted into (icmp (A & X) Op Y) then the former is
550   // equivalent to (icmp (A & X) !Op Y).
551   //
552   // Therefore, we can pretend for the rest of this function that we're dealing
553   // with the conjunction, provided we flip the sense of any comparisons (both
554   // input and output).
555 
556   // In most cases we're going to produce an EQ for the "&&" case.
557   ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
558   if (!IsAnd) {
559     // Convert the masking analysis into its equivalent with negated
560     // comparisons.
561     Mask = conjugateICmpMask(Mask);
562   }
563 
564   if (Mask & Mask_AllZeros) {
565     // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
566     // -> (icmp eq (A & (B|D)), 0)
567     if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
568       return nullptr; // TODO: Use freeze?
569     Value *NewOr = Builder.CreateOr(B, D);
570     Value *NewAnd = Builder.CreateAnd(A, NewOr);
571     // We can't use C as zero because we might actually handle
572     //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
573     // with B and D, having a single bit set.
574     Value *Zero = Constant::getNullValue(A->getType());
575     return Builder.CreateICmp(NewCC, NewAnd, Zero);
576   }
577   if (Mask & BMask_AllOnes) {
578     // (icmp eq (A & B), B) & (icmp eq (A & D), D)
579     // -> (icmp eq (A & (B|D)), (B|D))
580     if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
581       return nullptr; // TODO: Use freeze?
582     Value *NewOr = Builder.CreateOr(B, D);
583     Value *NewAnd = Builder.CreateAnd(A, NewOr);
584     return Builder.CreateICmp(NewCC, NewAnd, NewOr);
585   }
586   if (Mask & AMask_AllOnes) {
587     // (icmp eq (A & B), A) & (icmp eq (A & D), A)
588     // -> (icmp eq (A & (B&D)), A)
589     if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
590       return nullptr; // TODO: Use freeze?
591     Value *NewAnd1 = Builder.CreateAnd(B, D);
592     Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1);
593     return Builder.CreateICmp(NewCC, NewAnd2, A);
594   }
595 
596   // Remaining cases assume at least that B and D are constant, and depend on
597   // their actual values. This isn't strictly necessary, just a "handle the
598   // easy cases for now" decision.
599   const APInt *ConstB, *ConstD;
600   if (!match(B, m_APInt(ConstB)) || !match(D, m_APInt(ConstD)))
601     return nullptr;
602 
603   if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) {
604     // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
605     // (icmp ne (A & B), B) & (icmp ne (A & D), D)
606     //     -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
607     // Only valid if one of the masks is a superset of the other (check "B&D" is
608     // the same as either B or D).
609     APInt NewMask = *ConstB & *ConstD;
610     if (NewMask == *ConstB)
611       return LHS;
612     else if (NewMask == *ConstD)
613       return RHS;
614   }
615 
616   if (Mask & AMask_NotAllOnes) {
617     // (icmp ne (A & B), B) & (icmp ne (A & D), D)
618     //     -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
619     // Only valid if one of the masks is a superset of the other (check "B|D" is
620     // the same as either B or D).
621     APInt NewMask = *ConstB | *ConstD;
622     if (NewMask == *ConstB)
623       return LHS;
624     else if (NewMask == *ConstD)
625       return RHS;
626   }
627 
628   if (Mask & BMask_Mixed) {
629     // (icmp eq (A & B), C) & (icmp eq (A & D), E)
630     // We already know that B & C == C && D & E == E.
631     // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
632     // C and E, which are shared by both the mask B and the mask D, don't
633     // contradict, then we can transform to
634     // -> (icmp eq (A & (B|D)), (C|E))
635     // Currently, we only handle the case of B, C, D, and E being constant.
636     // We can't simply use C and E because we might actually handle
637     //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
638     // with B and D, having a single bit set.
639     const APInt *OldConstC, *OldConstE;
640     if (!match(C, m_APInt(OldConstC)) || !match(E, m_APInt(OldConstE)))
641       return nullptr;
642 
643     const APInt ConstC = PredL != NewCC ? *ConstB ^ *OldConstC : *OldConstC;
644     const APInt ConstE = PredR != NewCC ? *ConstD ^ *OldConstE : *OldConstE;
645 
646     // If there is a conflict, we should actually return a false for the
647     // whole construct.
648     if (((*ConstB & *ConstD) & (ConstC ^ ConstE)).getBoolValue())
649       return ConstantInt::get(LHS->getType(), !IsAnd);
650 
651     Value *NewOr1 = Builder.CreateOr(B, D);
652     Value *NewAnd = Builder.CreateAnd(A, NewOr1);
653     Constant *NewOr2 = ConstantInt::get(A->getType(), ConstC | ConstE);
654     return Builder.CreateICmp(NewCC, NewAnd, NewOr2);
655   }
656 
657   return nullptr;
658 }
659 
660 /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
661 /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
662 /// If \p Inverted is true then the check is for the inverted range, e.g.
663 /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
664 Value *InstCombinerImpl::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
665                                             bool Inverted) {
666   // Check the lower range comparison, e.g. x >= 0
667   // InstCombine already ensured that if there is a constant it's on the RHS.
668   ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
669   if (!RangeStart)
670     return nullptr;
671 
672   ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
673                                Cmp0->getPredicate());
674 
675   // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
676   if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
677         (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
678     return nullptr;
679 
680   ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
681                                Cmp1->getPredicate());
682 
683   Value *Input = Cmp0->getOperand(0);
684   Value *RangeEnd;
685   if (Cmp1->getOperand(0) == Input) {
686     // For the upper range compare we have: icmp x, n
687     RangeEnd = Cmp1->getOperand(1);
688   } else if (Cmp1->getOperand(1) == Input) {
689     // For the upper range compare we have: icmp n, x
690     RangeEnd = Cmp1->getOperand(0);
691     Pred1 = ICmpInst::getSwappedPredicate(Pred1);
692   } else {
693     return nullptr;
694   }
695 
696   // Check the upper range comparison, e.g. x < n
697   ICmpInst::Predicate NewPred;
698   switch (Pred1) {
699     case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
700     case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
701     default: return nullptr;
702   }
703 
704   // This simplification is only valid if the upper range is not negative.
705   KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1);
706   if (!Known.isNonNegative())
707     return nullptr;
708 
709   if (Inverted)
710     NewPred = ICmpInst::getInversePredicate(NewPred);
711 
712   return Builder.CreateICmp(NewPred, Input, RangeEnd);
713 }
714 
715 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
716 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
717 Value *InstCombinerImpl::foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS,
718                                                        ICmpInst *RHS,
719                                                        Instruction *CxtI,
720                                                        bool IsAnd,
721                                                        bool IsLogical) {
722   CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
723   if (LHS->getPredicate() != Pred || RHS->getPredicate() != Pred)
724     return nullptr;
725 
726   if (!match(LHS->getOperand(1), m_Zero()) ||
727       !match(RHS->getOperand(1), m_Zero()))
728     return nullptr;
729 
730   Value *L1, *L2, *R1, *R2;
731   if (match(LHS->getOperand(0), m_And(m_Value(L1), m_Value(L2))) &&
732       match(RHS->getOperand(0), m_And(m_Value(R1), m_Value(R2)))) {
733     if (L1 == R2 || L2 == R2)
734       std::swap(R1, R2);
735     if (L2 == R1)
736       std::swap(L1, L2);
737 
738     if (L1 == R1 &&
739         isKnownToBeAPowerOfTwo(L2, false, 0, CxtI) &&
740         isKnownToBeAPowerOfTwo(R2, false, 0, CxtI)) {
741       // If this is a logical and/or, then we must prevent propagation of a
742       // poison value from the RHS by inserting freeze.
743       if (IsLogical)
744         R2 = Builder.CreateFreeze(R2);
745       Value *Mask = Builder.CreateOr(L2, R2);
746       Value *Masked = Builder.CreateAnd(L1, Mask);
747       auto NewPred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
748       return Builder.CreateICmp(NewPred, Masked, Mask);
749     }
750   }
751 
752   return nullptr;
753 }
754 
755 /// General pattern:
756 ///   X & Y
757 ///
758 /// Where Y is checking that all the high bits (covered by a mask 4294967168)
759 /// are uniform, i.e.  %arg & 4294967168  can be either  4294967168  or  0
760 /// Pattern can be one of:
761 ///   %t = add        i32 %arg,    128
762 ///   %r = icmp   ult i32 %t,      256
763 /// Or
764 ///   %t0 = shl       i32 %arg,    24
765 ///   %t1 = ashr      i32 %t0,     24
766 ///   %r  = icmp  eq  i32 %t1,     %arg
767 /// Or
768 ///   %t0 = trunc     i32 %arg  to i8
769 ///   %t1 = sext      i8  %t0   to i32
770 ///   %r  = icmp  eq  i32 %t1,     %arg
771 /// This pattern is a signed truncation check.
772 ///
773 /// And X is checking that some bit in that same mask is zero.
774 /// I.e. can be one of:
775 ///   %r = icmp sgt i32   %arg,    -1
776 /// Or
777 ///   %t = and      i32   %arg,    2147483648
778 ///   %r = icmp eq  i32   %t,      0
779 ///
780 /// Since we are checking that all the bits in that mask are the same,
781 /// and a particular bit is zero, what we are really checking is that all the
782 /// masked bits are zero.
783 /// So this should be transformed to:
784 ///   %r = icmp ult i32 %arg, 128
785 static Value *foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1,
786                                         Instruction &CxtI,
787                                         InstCombiner::BuilderTy &Builder) {
788   assert(CxtI.getOpcode() == Instruction::And);
789 
790   // Match  icmp ult (add %arg, C01), C1   (C1 == C01 << 1; powers of two)
791   auto tryToMatchSignedTruncationCheck = [](ICmpInst *ICmp, Value *&X,
792                                             APInt &SignBitMask) -> bool {
793     CmpInst::Predicate Pred;
794     const APInt *I01, *I1; // powers of two; I1 == I01 << 1
795     if (!(match(ICmp,
796                 m_ICmp(Pred, m_Add(m_Value(X), m_Power2(I01)), m_Power2(I1))) &&
797           Pred == ICmpInst::ICMP_ULT && I1->ugt(*I01) && I01->shl(1) == *I1))
798       return false;
799     // Which bit is the new sign bit as per the 'signed truncation' pattern?
800     SignBitMask = *I01;
801     return true;
802   };
803 
804   // One icmp needs to be 'signed truncation check'.
805   // We need to match this first, else we will mismatch commutative cases.
806   Value *X1;
807   APInt HighestBit;
808   ICmpInst *OtherICmp;
809   if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit))
810     OtherICmp = ICmp0;
811   else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit))
812     OtherICmp = ICmp1;
813   else
814     return nullptr;
815 
816   assert(HighestBit.isPowerOf2() && "expected to be power of two (non-zero)");
817 
818   // Try to match/decompose into:  icmp eq (X & Mask), 0
819   auto tryToDecompose = [](ICmpInst *ICmp, Value *&X,
820                            APInt &UnsetBitsMask) -> bool {
821     CmpInst::Predicate Pred = ICmp->getPredicate();
822     // Can it be decomposed into  icmp eq (X & Mask), 0  ?
823     if (llvm::decomposeBitTestICmp(ICmp->getOperand(0), ICmp->getOperand(1),
824                                    Pred, X, UnsetBitsMask,
825                                    /*LookThroughTrunc=*/false) &&
826         Pred == ICmpInst::ICMP_EQ)
827       return true;
828     // Is it  icmp eq (X & Mask), 0  already?
829     const APInt *Mask;
830     if (match(ICmp, m_ICmp(Pred, m_And(m_Value(X), m_APInt(Mask)), m_Zero())) &&
831         Pred == ICmpInst::ICMP_EQ) {
832       UnsetBitsMask = *Mask;
833       return true;
834     }
835     return false;
836   };
837 
838   // And the other icmp needs to be decomposable into a bit test.
839   Value *X0;
840   APInt UnsetBitsMask;
841   if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask))
842     return nullptr;
843 
844   assert(!UnsetBitsMask.isZero() && "empty mask makes no sense.");
845 
846   // Are they working on the same value?
847   Value *X;
848   if (X1 == X0) {
849     // Ok as is.
850     X = X1;
851   } else if (match(X0, m_Trunc(m_Specific(X1)))) {
852     UnsetBitsMask = UnsetBitsMask.zext(X1->getType()->getScalarSizeInBits());
853     X = X1;
854   } else
855     return nullptr;
856 
857   // So which bits should be uniform as per the 'signed truncation check'?
858   // (all the bits starting with (i.e. including) HighestBit)
859   APInt SignBitsMask = ~(HighestBit - 1U);
860 
861   // UnsetBitsMask must have some common bits with SignBitsMask,
862   if (!UnsetBitsMask.intersects(SignBitsMask))
863     return nullptr;
864 
865   // Does UnsetBitsMask contain any bits outside of SignBitsMask?
866   if (!UnsetBitsMask.isSubsetOf(SignBitsMask)) {
867     APInt OtherHighestBit = (~UnsetBitsMask) + 1U;
868     if (!OtherHighestBit.isPowerOf2())
869       return nullptr;
870     HighestBit = APIntOps::umin(HighestBit, OtherHighestBit);
871   }
872   // Else, if it does not, then all is ok as-is.
873 
874   // %r = icmp ult %X, SignBit
875   return Builder.CreateICmpULT(X, ConstantInt::get(X->getType(), HighestBit),
876                                CxtI.getName() + ".simplified");
877 }
878 
879 /// Fold (icmp eq ctpop(X) 1) | (icmp eq X 0) into (icmp ult ctpop(X) 2) and
880 /// fold (icmp ne ctpop(X) 1) & (icmp ne X 0) into (icmp ugt ctpop(X) 1).
881 /// Also used for logical and/or, must be poison safe.
882 static Value *foldIsPowerOf2OrZero(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd,
883                                    InstCombiner::BuilderTy &Builder) {
884   CmpInst::Predicate Pred0, Pred1;
885   Value *X;
886   if (!match(Cmp0, m_ICmp(Pred0, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)),
887                           m_SpecificInt(1))) ||
888       !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt())))
889     return nullptr;
890 
891   Value *CtPop = Cmp0->getOperand(0);
892   if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_NE)
893     return Builder.CreateICmpUGT(CtPop, ConstantInt::get(CtPop->getType(), 1));
894   if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_EQ)
895     return Builder.CreateICmpULT(CtPop, ConstantInt::get(CtPop->getType(), 2));
896 
897   return nullptr;
898 }
899 
900 /// Reduce a pair of compares that check if a value has exactly 1 bit set.
901 /// Also used for logical and/or, must be poison safe.
902 static Value *foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd,
903                              InstCombiner::BuilderTy &Builder) {
904   // Handle 'and' / 'or' commutation: make the equality check the first operand.
905   if (JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_NE)
906     std::swap(Cmp0, Cmp1);
907   else if (!JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_EQ)
908     std::swap(Cmp0, Cmp1);
909 
910   // (X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1
911   CmpInst::Predicate Pred0, Pred1;
912   Value *X;
913   if (JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
914       match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
915                          m_SpecificInt(2))) &&
916       Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) {
917     Value *CtPop = Cmp1->getOperand(0);
918     return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1));
919   }
920   // (X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1
921   if (!JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
922       match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
923                          m_SpecificInt(1))) &&
924       Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_UGT) {
925     Value *CtPop = Cmp1->getOperand(0);
926     return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1));
927   }
928   return nullptr;
929 }
930 
931 /// Commuted variants are assumed to be handled by calling this function again
932 /// with the parameters swapped.
933 static Value *foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp,
934                                          ICmpInst *UnsignedICmp, bool IsAnd,
935                                          const SimplifyQuery &Q,
936                                          InstCombiner::BuilderTy &Builder) {
937   Value *ZeroCmpOp;
938   ICmpInst::Predicate EqPred;
939   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(ZeroCmpOp), m_Zero())) ||
940       !ICmpInst::isEquality(EqPred))
941     return nullptr;
942 
943   auto IsKnownNonZero = [&](Value *V) {
944     return isKnownNonZero(V, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
945   };
946 
947   ICmpInst::Predicate UnsignedPred;
948 
949   Value *A, *B;
950   if (match(UnsignedICmp,
951             m_c_ICmp(UnsignedPred, m_Specific(ZeroCmpOp), m_Value(A))) &&
952       match(ZeroCmpOp, m_c_Add(m_Specific(A), m_Value(B))) &&
953       (ZeroICmp->hasOneUse() || UnsignedICmp->hasOneUse())) {
954     auto GetKnownNonZeroAndOther = [&](Value *&NonZero, Value *&Other) {
955       if (!IsKnownNonZero(NonZero))
956         std::swap(NonZero, Other);
957       return IsKnownNonZero(NonZero);
958     };
959 
960     // Given  ZeroCmpOp = (A + B)
961     //   ZeroCmpOp <  A && ZeroCmpOp != 0  -->  (0-X) <  Y  iff
962     //   ZeroCmpOp >= A || ZeroCmpOp == 0  -->  (0-X) >= Y  iff
963     //     with X being the value (A/B) that is known to be non-zero,
964     //     and Y being remaining value.
965     if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE &&
966         IsAnd && GetKnownNonZeroAndOther(B, A))
967       return Builder.CreateICmpULT(Builder.CreateNeg(B), A);
968     if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ &&
969         !IsAnd && GetKnownNonZeroAndOther(B, A))
970       return Builder.CreateICmpUGE(Builder.CreateNeg(B), A);
971   }
972 
973   Value *Base, *Offset;
974   if (!match(ZeroCmpOp, m_Sub(m_Value(Base), m_Value(Offset))))
975     return nullptr;
976 
977   if (!match(UnsignedICmp,
978              m_c_ICmp(UnsignedPred, m_Specific(Base), m_Specific(Offset))) ||
979       !ICmpInst::isUnsigned(UnsignedPred))
980     return nullptr;
981 
982   // Base >=/> Offset && (Base - Offset) != 0  <-->  Base > Offset
983   // (no overflow and not null)
984   if ((UnsignedPred == ICmpInst::ICMP_UGE ||
985        UnsignedPred == ICmpInst::ICMP_UGT) &&
986       EqPred == ICmpInst::ICMP_NE && IsAnd)
987     return Builder.CreateICmpUGT(Base, Offset);
988 
989   // Base <=/< Offset || (Base - Offset) == 0  <-->  Base <= Offset
990   // (overflow or null)
991   if ((UnsignedPred == ICmpInst::ICMP_ULE ||
992        UnsignedPred == ICmpInst::ICMP_ULT) &&
993       EqPred == ICmpInst::ICMP_EQ && !IsAnd)
994     return Builder.CreateICmpULE(Base, Offset);
995 
996   // Base <= Offset && (Base - Offset) != 0  -->  Base < Offset
997   if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
998       IsAnd)
999     return Builder.CreateICmpULT(Base, Offset);
1000 
1001   // Base > Offset || (Base - Offset) == 0  -->  Base >= Offset
1002   if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1003       !IsAnd)
1004     return Builder.CreateICmpUGE(Base, Offset);
1005 
1006   return nullptr;
1007 }
1008 
1009 struct IntPart {
1010   Value *From;
1011   unsigned StartBit;
1012   unsigned NumBits;
1013 };
1014 
1015 /// Match an extraction of bits from an integer.
1016 static std::optional<IntPart> matchIntPart(Value *V) {
1017   Value *X;
1018   if (!match(V, m_OneUse(m_Trunc(m_Value(X)))))
1019     return std::nullopt;
1020 
1021   unsigned NumOriginalBits = X->getType()->getScalarSizeInBits();
1022   unsigned NumExtractedBits = V->getType()->getScalarSizeInBits();
1023   Value *Y;
1024   const APInt *Shift;
1025   // For a trunc(lshr Y, Shift) pattern, make sure we're only extracting bits
1026   // from Y, not any shifted-in zeroes.
1027   if (match(X, m_OneUse(m_LShr(m_Value(Y), m_APInt(Shift)))) &&
1028       Shift->ule(NumOriginalBits - NumExtractedBits))
1029     return {{Y, (unsigned)Shift->getZExtValue(), NumExtractedBits}};
1030   return {{X, 0, NumExtractedBits}};
1031 }
1032 
1033 /// Materialize an extraction of bits from an integer in IR.
1034 static Value *extractIntPart(const IntPart &P, IRBuilderBase &Builder) {
1035   Value *V = P.From;
1036   if (P.StartBit)
1037     V = Builder.CreateLShr(V, P.StartBit);
1038   Type *TruncTy = V->getType()->getWithNewBitWidth(P.NumBits);
1039   if (TruncTy != V->getType())
1040     V = Builder.CreateTrunc(V, TruncTy);
1041   return V;
1042 }
1043 
1044 /// (icmp eq X0, Y0) & (icmp eq X1, Y1) -> icmp eq X01, Y01
1045 /// (icmp ne X0, Y0) | (icmp ne X1, Y1) -> icmp ne X01, Y01
1046 /// where X0, X1 and Y0, Y1 are adjacent parts extracted from an integer.
1047 Value *InstCombinerImpl::foldEqOfParts(ICmpInst *Cmp0, ICmpInst *Cmp1,
1048                                        bool IsAnd) {
1049   if (!Cmp0->hasOneUse() || !Cmp1->hasOneUse())
1050     return nullptr;
1051 
1052   CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1053   if (Cmp0->getPredicate() != Pred || Cmp1->getPredicate() != Pred)
1054     return nullptr;
1055 
1056   std::optional<IntPart> L0 = matchIntPart(Cmp0->getOperand(0));
1057   std::optional<IntPart> R0 = matchIntPart(Cmp0->getOperand(1));
1058   std::optional<IntPart> L1 = matchIntPart(Cmp1->getOperand(0));
1059   std::optional<IntPart> R1 = matchIntPart(Cmp1->getOperand(1));
1060   if (!L0 || !R0 || !L1 || !R1)
1061     return nullptr;
1062 
1063   // Make sure the LHS/RHS compare a part of the same value, possibly after
1064   // an operand swap.
1065   if (L0->From != L1->From || R0->From != R1->From) {
1066     if (L0->From != R1->From || R0->From != L1->From)
1067       return nullptr;
1068     std::swap(L1, R1);
1069   }
1070 
1071   // Make sure the extracted parts are adjacent, canonicalizing to L0/R0 being
1072   // the low part and L1/R1 being the high part.
1073   if (L0->StartBit + L0->NumBits != L1->StartBit ||
1074       R0->StartBit + R0->NumBits != R1->StartBit) {
1075     if (L1->StartBit + L1->NumBits != L0->StartBit ||
1076         R1->StartBit + R1->NumBits != R0->StartBit)
1077       return nullptr;
1078     std::swap(L0, L1);
1079     std::swap(R0, R1);
1080   }
1081 
1082   // We can simplify to a comparison of these larger parts of the integers.
1083   IntPart L = {L0->From, L0->StartBit, L0->NumBits + L1->NumBits};
1084   IntPart R = {R0->From, R0->StartBit, R0->NumBits + R1->NumBits};
1085   Value *LValue = extractIntPart(L, Builder);
1086   Value *RValue = extractIntPart(R, Builder);
1087   return Builder.CreateICmp(Pred, LValue, RValue);
1088 }
1089 
1090 /// Reduce logic-of-compares with equality to a constant by substituting a
1091 /// common operand with the constant. Callers are expected to call this with
1092 /// Cmp0/Cmp1 switched to handle logic op commutativity.
1093 static Value *foldAndOrOfICmpsWithConstEq(ICmpInst *Cmp0, ICmpInst *Cmp1,
1094                                           bool IsAnd, bool IsLogical,
1095                                           InstCombiner::BuilderTy &Builder,
1096                                           const SimplifyQuery &Q) {
1097   // Match an equality compare with a non-poison constant as Cmp0.
1098   // Also, give up if the compare can be constant-folded to avoid looping.
1099   ICmpInst::Predicate Pred0;
1100   Value *X;
1101   Constant *C;
1102   if (!match(Cmp0, m_ICmp(Pred0, m_Value(X), m_Constant(C))) ||
1103       !isGuaranteedNotToBeUndefOrPoison(C) || isa<Constant>(X))
1104     return nullptr;
1105   if ((IsAnd && Pred0 != ICmpInst::ICMP_EQ) ||
1106       (!IsAnd && Pred0 != ICmpInst::ICMP_NE))
1107     return nullptr;
1108 
1109   // The other compare must include a common operand (X). Canonicalize the
1110   // common operand as operand 1 (Pred1 is swapped if the common operand was
1111   // operand 0).
1112   Value *Y;
1113   ICmpInst::Predicate Pred1;
1114   if (!match(Cmp1, m_c_ICmp(Pred1, m_Value(Y), m_Deferred(X))))
1115     return nullptr;
1116 
1117   // Replace variable with constant value equivalence to remove a variable use:
1118   // (X == C) && (Y Pred1 X) --> (X == C) && (Y Pred1 C)
1119   // (X != C) || (Y Pred1 X) --> (X != C) || (Y Pred1 C)
1120   // Can think of the 'or' substitution with the 'and' bool equivalent:
1121   // A || B --> A || (!A && B)
1122   Value *SubstituteCmp = simplifyICmpInst(Pred1, Y, C, Q);
1123   if (!SubstituteCmp) {
1124     // If we need to create a new instruction, require that the old compare can
1125     // be removed.
1126     if (!Cmp1->hasOneUse())
1127       return nullptr;
1128     SubstituteCmp = Builder.CreateICmp(Pred1, Y, C);
1129   }
1130   if (IsLogical)
1131     return IsAnd ? Builder.CreateLogicalAnd(Cmp0, SubstituteCmp)
1132                  : Builder.CreateLogicalOr(Cmp0, SubstituteCmp);
1133   return Builder.CreateBinOp(IsAnd ? Instruction::And : Instruction::Or, Cmp0,
1134                              SubstituteCmp);
1135 }
1136 
1137 /// Fold (icmp Pred1 V1, C1) & (icmp Pred2 V2, C2)
1138 /// or   (icmp Pred1 V1, C1) | (icmp Pred2 V2, C2)
1139 /// into a single comparison using range-based reasoning.
1140 /// NOTE: This is also used for logical and/or, must be poison-safe!
1141 Value *InstCombinerImpl::foldAndOrOfICmpsUsingRanges(ICmpInst *ICmp1,
1142                                                      ICmpInst *ICmp2,
1143                                                      bool IsAnd) {
1144   ICmpInst::Predicate Pred1, Pred2;
1145   Value *V1, *V2;
1146   const APInt *C1, *C2;
1147   if (!match(ICmp1, m_ICmp(Pred1, m_Value(V1), m_APInt(C1))) ||
1148       !match(ICmp2, m_ICmp(Pred2, m_Value(V2), m_APInt(C2))))
1149     return nullptr;
1150 
1151   // Look through add of a constant offset on V1, V2, or both operands. This
1152   // allows us to interpret the V + C' < C'' range idiom into a proper range.
1153   const APInt *Offset1 = nullptr, *Offset2 = nullptr;
1154   if (V1 != V2) {
1155     Value *X;
1156     if (match(V1, m_Add(m_Value(X), m_APInt(Offset1))))
1157       V1 = X;
1158     if (match(V2, m_Add(m_Value(X), m_APInt(Offset2))))
1159       V2 = X;
1160   }
1161 
1162   if (V1 != V2)
1163     return nullptr;
1164 
1165   ConstantRange CR1 = ConstantRange::makeExactICmpRegion(
1166       IsAnd ? ICmpInst::getInversePredicate(Pred1) : Pred1, *C1);
1167   if (Offset1)
1168     CR1 = CR1.subtract(*Offset1);
1169 
1170   ConstantRange CR2 = ConstantRange::makeExactICmpRegion(
1171       IsAnd ? ICmpInst::getInversePredicate(Pred2) : Pred2, *C2);
1172   if (Offset2)
1173     CR2 = CR2.subtract(*Offset2);
1174 
1175   Type *Ty = V1->getType();
1176   Value *NewV = V1;
1177   std::optional<ConstantRange> CR = CR1.exactUnionWith(CR2);
1178   if (!CR) {
1179     if (!(ICmp1->hasOneUse() && ICmp2->hasOneUse()) || CR1.isWrappedSet() ||
1180         CR2.isWrappedSet())
1181       return nullptr;
1182 
1183     // Check whether we have equal-size ranges that only differ by one bit.
1184     // In that case we can apply a mask to map one range onto the other.
1185     APInt LowerDiff = CR1.getLower() ^ CR2.getLower();
1186     APInt UpperDiff = (CR1.getUpper() - 1) ^ (CR2.getUpper() - 1);
1187     APInt CR1Size = CR1.getUpper() - CR1.getLower();
1188     if (!LowerDiff.isPowerOf2() || LowerDiff != UpperDiff ||
1189         CR1Size != CR2.getUpper() - CR2.getLower())
1190       return nullptr;
1191 
1192     CR = CR1.getLower().ult(CR2.getLower()) ? CR1 : CR2;
1193     NewV = Builder.CreateAnd(NewV, ConstantInt::get(Ty, ~LowerDiff));
1194   }
1195 
1196   if (IsAnd)
1197     CR = CR->inverse();
1198 
1199   CmpInst::Predicate NewPred;
1200   APInt NewC, Offset;
1201   CR->getEquivalentICmp(NewPred, NewC, Offset);
1202 
1203   if (Offset != 0)
1204     NewV = Builder.CreateAdd(NewV, ConstantInt::get(Ty, Offset));
1205   return Builder.CreateICmp(NewPred, NewV, ConstantInt::get(Ty, NewC));
1206 }
1207 
1208 /// Ignore all operations which only change the sign of a value, returning the
1209 /// underlying magnitude value.
1210 static Value *stripSignOnlyFPOps(Value *Val) {
1211   match(Val, m_FNeg(m_Value(Val)));
1212   match(Val, m_FAbs(m_Value(Val)));
1213   match(Val, m_CopySign(m_Value(Val), m_Value()));
1214   return Val;
1215 }
1216 
1217 /// Matches canonical form of isnan, fcmp ord x, 0
1218 static bool matchIsNotNaN(FCmpInst::Predicate P, Value *LHS, Value *RHS) {
1219   return P == FCmpInst::FCMP_ORD && match(RHS, m_AnyZeroFP());
1220 }
1221 
1222 /// Matches fcmp u__ x, +/-inf
1223 static bool matchUnorderedInfCompare(FCmpInst::Predicate P, Value *LHS,
1224                                      Value *RHS) {
1225   return FCmpInst::isUnordered(P) && match(RHS, m_Inf());
1226 }
1227 
1228 /// and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf
1229 ///
1230 /// Clang emits this pattern for doing an isfinite check in __builtin_isnormal.
1231 static Value *matchIsFiniteTest(InstCombiner::BuilderTy &Builder, FCmpInst *LHS,
1232                                 FCmpInst *RHS) {
1233   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1234   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1235   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1236 
1237   if (!matchIsNotNaN(PredL, LHS0, LHS1) ||
1238       !matchUnorderedInfCompare(PredR, RHS0, RHS1))
1239     return nullptr;
1240 
1241   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1242   FastMathFlags FMF = LHS->getFastMathFlags();
1243   FMF &= RHS->getFastMathFlags();
1244   Builder.setFastMathFlags(FMF);
1245 
1246   return Builder.CreateFCmp(FCmpInst::getOrderedPredicate(PredR), RHS0, RHS1);
1247 }
1248 
1249 Value *InstCombinerImpl::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS,
1250                                           bool IsAnd, bool IsLogicalSelect) {
1251   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1252   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1253   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1254 
1255   if (LHS0 == RHS1 && RHS0 == LHS1) {
1256     // Swap RHS operands to match LHS.
1257     PredR = FCmpInst::getSwappedPredicate(PredR);
1258     std::swap(RHS0, RHS1);
1259   }
1260 
1261   // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
1262   // Suppose the relation between x and y is R, where R is one of
1263   // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for
1264   // testing the desired relations.
1265   //
1266   // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1267   //    bool(R & CC0) && bool(R & CC1)
1268   //  = bool((R & CC0) & (R & CC1))
1269   //  = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency
1270   //
1271   // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1272   //    bool(R & CC0) || bool(R & CC1)
1273   //  = bool((R & CC0) | (R & CC1))
1274   //  = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;)
1275   if (LHS0 == RHS0 && LHS1 == RHS1) {
1276     unsigned FCmpCodeL = getFCmpCode(PredL);
1277     unsigned FCmpCodeR = getFCmpCode(PredR);
1278     unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR;
1279 
1280     // Intersect the fast math flags.
1281     // TODO: We can union the fast math flags unless this is a logical select.
1282     IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1283     FastMathFlags FMF = LHS->getFastMathFlags();
1284     FMF &= RHS->getFastMathFlags();
1285     Builder.setFastMathFlags(FMF);
1286 
1287     return getFCmpValue(NewPred, LHS0, LHS1, Builder);
1288   }
1289 
1290   // This transform is not valid for a logical select.
1291   if (!IsLogicalSelect &&
1292       ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1293        (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO &&
1294         !IsAnd))) {
1295     if (LHS0->getType() != RHS0->getType())
1296       return nullptr;
1297 
1298     // FCmp canonicalization ensures that (fcmp ord/uno X, X) and
1299     // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0).
1300     if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP()))
1301       // Ignore the constants because they are obviously not NANs:
1302       // (fcmp ord x, 0.0) & (fcmp ord y, 0.0)  -> (fcmp ord x, y)
1303       // (fcmp uno x, 0.0) | (fcmp uno y, 0.0)  -> (fcmp uno x, y)
1304       return Builder.CreateFCmp(PredL, LHS0, RHS0);
1305   }
1306 
1307   if (IsAnd && stripSignOnlyFPOps(LHS0) == stripSignOnlyFPOps(RHS0)) {
1308     // and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf
1309     // and (fcmp ord x, 0), (fcmp u* fabs(x), inf) -> fcmp o* x, inf
1310     if (Value *Left = matchIsFiniteTest(Builder, LHS, RHS))
1311       return Left;
1312     if (Value *Right = matchIsFiniteTest(Builder, RHS, LHS))
1313       return Right;
1314   }
1315 
1316   return nullptr;
1317 }
1318 
1319 /// or (is_fpclass x, mask0), (is_fpclass x, mask1)
1320 ///     -> is_fpclass x, (mask0 | mask1)
1321 /// and (is_fpclass x, mask0), (is_fpclass x, mask1)
1322 ///     -> is_fpclass x, (mask0 & mask1)
1323 /// xor (is_fpclass x, mask0), (is_fpclass x, mask1)
1324 ///     -> is_fpclass x, (mask0 ^ mask1)
1325 Instruction *InstCombinerImpl::foldLogicOfIsFPClass(BinaryOperator &BO,
1326                                                     Value *Op0, Value *Op1) {
1327   Value *ClassVal;
1328   uint64_t ClassMask0, ClassMask1;
1329 
1330   if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::is_fpclass>(
1331                      m_Value(ClassVal), m_ConstantInt(ClassMask0)))) &&
1332       match(Op1, m_OneUse(m_Intrinsic<Intrinsic::is_fpclass>(
1333                      m_Specific(ClassVal), m_ConstantInt(ClassMask1))))) {
1334     unsigned NewClassMask;
1335     switch (BO.getOpcode()) {
1336     case Instruction::And:
1337       NewClassMask = ClassMask0 & ClassMask1;
1338       break;
1339     case Instruction::Or:
1340       NewClassMask = ClassMask0 | ClassMask1;
1341       break;
1342     case Instruction::Xor:
1343       NewClassMask = ClassMask0 ^ ClassMask1;
1344       break;
1345     default:
1346       llvm_unreachable("not a binary logic operator");
1347     }
1348 
1349     // TODO: Also check for special fcmps
1350     auto *II = cast<IntrinsicInst>(Op0);
1351     II->setArgOperand(
1352         1, ConstantInt::get(II->getArgOperand(1)->getType(), NewClassMask));
1353     return replaceInstUsesWith(BO, II);
1354   }
1355 
1356   return nullptr;
1357 }
1358 
1359 /// Look for the pattern that conditionally negates a value via math operations:
1360 ///   cond.splat = sext i1 cond
1361 ///   sub = add cond.splat, x
1362 ///   xor = xor sub, cond.splat
1363 /// and rewrite it to do the same, but via logical operations:
1364 ///   value.neg = sub 0, value
1365 ///   cond = select i1 neg, value.neg, value
1366 Instruction *InstCombinerImpl::canonicalizeConditionalNegationViaMathToSelect(
1367     BinaryOperator &I) {
1368   assert(I.getOpcode() == BinaryOperator::Xor && "Only for xor!");
1369   Value *Cond, *X;
1370   // As per complexity ordering, `xor` is not commutative here.
1371   if (!match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())) ||
1372       !match(I.getOperand(1), m_SExt(m_Value(Cond))) ||
1373       !Cond->getType()->isIntOrIntVectorTy(1) ||
1374       !match(I.getOperand(0), m_c_Add(m_SExt(m_Deferred(Cond)), m_Value(X))))
1375     return nullptr;
1376   return SelectInst::Create(Cond, Builder.CreateNeg(X, X->getName() + ".neg"),
1377                             X);
1378 }
1379 
1380 /// This a limited reassociation for a special case (see above) where we are
1381 /// checking if two values are either both NAN (unordered) or not-NAN (ordered).
1382 /// This could be handled more generally in '-reassociation', but it seems like
1383 /// an unlikely pattern for a large number of logic ops and fcmps.
1384 static Instruction *reassociateFCmps(BinaryOperator &BO,
1385                                      InstCombiner::BuilderTy &Builder) {
1386   Instruction::BinaryOps Opcode = BO.getOpcode();
1387   assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1388          "Expecting and/or op for fcmp transform");
1389 
1390   // There are 4 commuted variants of the pattern. Canonicalize operands of this
1391   // logic op so an fcmp is operand 0 and a matching logic op is operand 1.
1392   Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1), *X;
1393   FCmpInst::Predicate Pred;
1394   if (match(Op1, m_FCmp(Pred, m_Value(), m_AnyZeroFP())))
1395     std::swap(Op0, Op1);
1396 
1397   // Match inner binop and the predicate for combining 2 NAN checks into 1.
1398   Value *BO10, *BO11;
1399   FCmpInst::Predicate NanPred = Opcode == Instruction::And ? FCmpInst::FCMP_ORD
1400                                                            : FCmpInst::FCMP_UNO;
1401   if (!match(Op0, m_FCmp(Pred, m_Value(X), m_AnyZeroFP())) || Pred != NanPred ||
1402       !match(Op1, m_BinOp(Opcode, m_Value(BO10), m_Value(BO11))))
1403     return nullptr;
1404 
1405   // The inner logic op must have a matching fcmp operand.
1406   Value *Y;
1407   if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
1408       Pred != NanPred || X->getType() != Y->getType())
1409     std::swap(BO10, BO11);
1410 
1411   if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
1412       Pred != NanPred || X->getType() != Y->getType())
1413     return nullptr;
1414 
1415   // and (fcmp ord X, 0), (and (fcmp ord Y, 0), Z) --> and (fcmp ord X, Y), Z
1416   // or  (fcmp uno X, 0), (or  (fcmp uno Y, 0), Z) --> or  (fcmp uno X, Y), Z
1417   Value *NewFCmp = Builder.CreateFCmp(Pred, X, Y);
1418   if (auto *NewFCmpInst = dyn_cast<FCmpInst>(NewFCmp)) {
1419     // Intersect FMF from the 2 source fcmps.
1420     NewFCmpInst->copyIRFlags(Op0);
1421     NewFCmpInst->andIRFlags(BO10);
1422   }
1423   return BinaryOperator::Create(Opcode, NewFCmp, BO11);
1424 }
1425 
1426 /// Match variations of De Morgan's Laws:
1427 /// (~A & ~B) == (~(A | B))
1428 /// (~A | ~B) == (~(A & B))
1429 static Instruction *matchDeMorgansLaws(BinaryOperator &I,
1430                                        InstCombiner::BuilderTy &Builder) {
1431   const Instruction::BinaryOps Opcode = I.getOpcode();
1432   assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1433          "Trying to match De Morgan's Laws with something other than and/or");
1434 
1435   // Flip the logic operation.
1436   const Instruction::BinaryOps FlippedOpcode =
1437       (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
1438 
1439   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1440   Value *A, *B;
1441   if (match(Op0, m_OneUse(m_Not(m_Value(A)))) &&
1442       match(Op1, m_OneUse(m_Not(m_Value(B)))) &&
1443       !InstCombiner::isFreeToInvert(A, A->hasOneUse()) &&
1444       !InstCombiner::isFreeToInvert(B, B->hasOneUse())) {
1445     Value *AndOr =
1446         Builder.CreateBinOp(FlippedOpcode, A, B, I.getName() + ".demorgan");
1447     return BinaryOperator::CreateNot(AndOr);
1448   }
1449 
1450   // The 'not' ops may require reassociation.
1451   // (A & ~B) & ~C --> A & ~(B | C)
1452   // (~B & A) & ~C --> A & ~(B | C)
1453   // (A | ~B) | ~C --> A | ~(B & C)
1454   // (~B | A) | ~C --> A | ~(B & C)
1455   Value *C;
1456   if (match(Op0, m_OneUse(m_c_BinOp(Opcode, m_Value(A), m_Not(m_Value(B))))) &&
1457       match(Op1, m_Not(m_Value(C)))) {
1458     Value *FlippedBO = Builder.CreateBinOp(FlippedOpcode, B, C);
1459     return BinaryOperator::Create(Opcode, A, Builder.CreateNot(FlippedBO));
1460   }
1461 
1462   return nullptr;
1463 }
1464 
1465 bool InstCombinerImpl::shouldOptimizeCast(CastInst *CI) {
1466   Value *CastSrc = CI->getOperand(0);
1467 
1468   // Noop casts and casts of constants should be eliminated trivially.
1469   if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc))
1470     return false;
1471 
1472   // If this cast is paired with another cast that can be eliminated, we prefer
1473   // to have it eliminated.
1474   if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc))
1475     if (isEliminableCastPair(PrecedingCI, CI))
1476       return false;
1477 
1478   return true;
1479 }
1480 
1481 /// Fold {and,or,xor} (cast X), C.
1482 static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast,
1483                                           InstCombiner::BuilderTy &Builder) {
1484   Constant *C = dyn_cast<Constant>(Logic.getOperand(1));
1485   if (!C)
1486     return nullptr;
1487 
1488   auto LogicOpc = Logic.getOpcode();
1489   Type *DestTy = Logic.getType();
1490   Type *SrcTy = Cast->getSrcTy();
1491 
1492   // Move the logic operation ahead of a zext or sext if the constant is
1493   // unchanged in the smaller source type. Performing the logic in a smaller
1494   // type may provide more information to later folds, and the smaller logic
1495   // instruction may be cheaper (particularly in the case of vectors).
1496   Value *X;
1497   if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) {
1498     Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
1499     Constant *ZextTruncC = ConstantExpr::getZExt(TruncC, DestTy);
1500     if (ZextTruncC == C) {
1501       // LogicOpc (zext X), C --> zext (LogicOpc X, C)
1502       Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
1503       return new ZExtInst(NewOp, DestTy);
1504     }
1505   }
1506 
1507   if (match(Cast, m_OneUse(m_SExt(m_Value(X))))) {
1508     Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
1509     Constant *SextTruncC = ConstantExpr::getSExt(TruncC, DestTy);
1510     if (SextTruncC == C) {
1511       // LogicOpc (sext X), C --> sext (LogicOpc X, C)
1512       Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
1513       return new SExtInst(NewOp, DestTy);
1514     }
1515   }
1516 
1517   return nullptr;
1518 }
1519 
1520 /// Fold {and,or,xor} (cast X), Y.
1521 Instruction *InstCombinerImpl::foldCastedBitwiseLogic(BinaryOperator &I) {
1522   auto LogicOpc = I.getOpcode();
1523   assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding");
1524 
1525   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1526   CastInst *Cast0 = dyn_cast<CastInst>(Op0);
1527   if (!Cast0)
1528     return nullptr;
1529 
1530   // This must be a cast from an integer or integer vector source type to allow
1531   // transformation of the logic operation to the source type.
1532   Type *DestTy = I.getType();
1533   Type *SrcTy = Cast0->getSrcTy();
1534   if (!SrcTy->isIntOrIntVectorTy())
1535     return nullptr;
1536 
1537   if (Instruction *Ret = foldLogicCastConstant(I, Cast0, Builder))
1538     return Ret;
1539 
1540   CastInst *Cast1 = dyn_cast<CastInst>(Op1);
1541   if (!Cast1)
1542     return nullptr;
1543 
1544   // Both operands of the logic operation are casts. The casts must be the
1545   // same kind for reduction.
1546   Instruction::CastOps CastOpcode = Cast0->getOpcode();
1547   if (CastOpcode != Cast1->getOpcode())
1548     return nullptr;
1549 
1550   // If the source types do not match, but the casts are matching extends, we
1551   // can still narrow the logic op.
1552   if (SrcTy != Cast1->getSrcTy()) {
1553     Value *X, *Y;
1554     if (match(Cast0, m_OneUse(m_ZExtOrSExt(m_Value(X)))) &&
1555         match(Cast1, m_OneUse(m_ZExtOrSExt(m_Value(Y))))) {
1556       // Cast the narrower source to the wider source type.
1557       unsigned XNumBits = X->getType()->getScalarSizeInBits();
1558       unsigned YNumBits = Y->getType()->getScalarSizeInBits();
1559       if (XNumBits < YNumBits)
1560         X = Builder.CreateCast(CastOpcode, X, Y->getType());
1561       else
1562         Y = Builder.CreateCast(CastOpcode, Y, X->getType());
1563       // Do the logic op in the intermediate width, then widen more.
1564       Value *NarrowLogic = Builder.CreateBinOp(LogicOpc, X, Y);
1565       return CastInst::Create(CastOpcode, NarrowLogic, DestTy);
1566     }
1567 
1568     // Give up for other cast opcodes.
1569     return nullptr;
1570   }
1571 
1572   Value *Cast0Src = Cast0->getOperand(0);
1573   Value *Cast1Src = Cast1->getOperand(0);
1574 
1575   // fold logic(cast(A), cast(B)) -> cast(logic(A, B))
1576   if ((Cast0->hasOneUse() || Cast1->hasOneUse()) &&
1577       shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) {
1578     Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src,
1579                                        I.getName());
1580     return CastInst::Create(CastOpcode, NewOp, DestTy);
1581   }
1582 
1583   // For now, only 'and'/'or' have optimizations after this.
1584   if (LogicOpc == Instruction::Xor)
1585     return nullptr;
1586 
1587   // If this is logic(cast(icmp), cast(icmp)), try to fold this even if the
1588   // cast is otherwise not optimizable.  This happens for vector sexts.
1589   ICmpInst *ICmp0 = dyn_cast<ICmpInst>(Cast0Src);
1590   ICmpInst *ICmp1 = dyn_cast<ICmpInst>(Cast1Src);
1591   if (ICmp0 && ICmp1) {
1592     if (Value *Res =
1593             foldAndOrOfICmps(ICmp0, ICmp1, I, LogicOpc == Instruction::And))
1594       return CastInst::Create(CastOpcode, Res, DestTy);
1595     return nullptr;
1596   }
1597 
1598   // If this is logic(cast(fcmp), cast(fcmp)), try to fold this even if the
1599   // cast is otherwise not optimizable.  This happens for vector sexts.
1600   FCmpInst *FCmp0 = dyn_cast<FCmpInst>(Cast0Src);
1601   FCmpInst *FCmp1 = dyn_cast<FCmpInst>(Cast1Src);
1602   if (FCmp0 && FCmp1)
1603     if (Value *R = foldLogicOfFCmps(FCmp0, FCmp1, LogicOpc == Instruction::And))
1604       return CastInst::Create(CastOpcode, R, DestTy);
1605 
1606   return nullptr;
1607 }
1608 
1609 static Instruction *foldAndToXor(BinaryOperator &I,
1610                                  InstCombiner::BuilderTy &Builder) {
1611   assert(I.getOpcode() == Instruction::And);
1612   Value *Op0 = I.getOperand(0);
1613   Value *Op1 = I.getOperand(1);
1614   Value *A, *B;
1615 
1616   // Operand complexity canonicalization guarantees that the 'or' is Op0.
1617   // (A | B) & ~(A & B) --> A ^ B
1618   // (A | B) & ~(B & A) --> A ^ B
1619   if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)),
1620                         m_Not(m_c_And(m_Deferred(A), m_Deferred(B))))))
1621     return BinaryOperator::CreateXor(A, B);
1622 
1623   // (A | ~B) & (~A | B) --> ~(A ^ B)
1624   // (A | ~B) & (B | ~A) --> ~(A ^ B)
1625   // (~B | A) & (~A | B) --> ~(A ^ B)
1626   // (~B | A) & (B | ~A) --> ~(A ^ B)
1627   if (Op0->hasOneUse() || Op1->hasOneUse())
1628     if (match(&I, m_BinOp(m_c_Or(m_Value(A), m_Not(m_Value(B))),
1629                           m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
1630       return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1631 
1632   return nullptr;
1633 }
1634 
1635 static Instruction *foldOrToXor(BinaryOperator &I,
1636                                 InstCombiner::BuilderTy &Builder) {
1637   assert(I.getOpcode() == Instruction::Or);
1638   Value *Op0 = I.getOperand(0);
1639   Value *Op1 = I.getOperand(1);
1640   Value *A, *B;
1641 
1642   // Operand complexity canonicalization guarantees that the 'and' is Op0.
1643   // (A & B) | ~(A | B) --> ~(A ^ B)
1644   // (A & B) | ~(B | A) --> ~(A ^ B)
1645   if (Op0->hasOneUse() || Op1->hasOneUse())
1646     if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1647         match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
1648       return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1649 
1650   // Operand complexity canonicalization guarantees that the 'xor' is Op0.
1651   // (A ^ B) | ~(A | B) --> ~(A & B)
1652   // (A ^ B) | ~(B | A) --> ~(A & B)
1653   if (Op0->hasOneUse() || Op1->hasOneUse())
1654     if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
1655         match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
1656       return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
1657 
1658   // (A & ~B) | (~A & B) --> A ^ B
1659   // (A & ~B) | (B & ~A) --> A ^ B
1660   // (~B & A) | (~A & B) --> A ^ B
1661   // (~B & A) | (B & ~A) --> A ^ B
1662   if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
1663       match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))
1664     return BinaryOperator::CreateXor(A, B);
1665 
1666   return nullptr;
1667 }
1668 
1669 /// Return true if a constant shift amount is always less than the specified
1670 /// bit-width. If not, the shift could create poison in the narrower type.
1671 static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) {
1672   APInt Threshold(C->getType()->getScalarSizeInBits(), BitWidth);
1673   return match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold));
1674 }
1675 
1676 /// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and
1677 /// a common zext operand: and (binop (zext X), C), (zext X).
1678 Instruction *InstCombinerImpl::narrowMaskedBinOp(BinaryOperator &And) {
1679   // This transform could also apply to {or, and, xor}, but there are better
1680   // folds for those cases, so we don't expect those patterns here. AShr is not
1681   // handled because it should always be transformed to LShr in this sequence.
1682   // The subtract transform is different because it has a constant on the left.
1683   // Add/mul commute the constant to RHS; sub with constant RHS becomes add.
1684   Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1);
1685   Constant *C;
1686   if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) &&
1687       !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) &&
1688       !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) &&
1689       !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) &&
1690       !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1)))))
1691     return nullptr;
1692 
1693   Value *X;
1694   if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3))
1695     return nullptr;
1696 
1697   Type *Ty = And.getType();
1698   if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType()))
1699     return nullptr;
1700 
1701   // If we're narrowing a shift, the shift amount must be safe (less than the
1702   // width) in the narrower type. If the shift amount is greater, instsimplify
1703   // usually handles that case, but we can't guarantee/assert it.
1704   Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode();
1705   if (Opc == Instruction::LShr || Opc == Instruction::Shl)
1706     if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits()))
1707       return nullptr;
1708 
1709   // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X)
1710   // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X)
1711   Value *NewC = ConstantExpr::getTrunc(C, X->getType());
1712   Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X)
1713                                          : Builder.CreateBinOp(Opc, X, NewC);
1714   return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty);
1715 }
1716 
1717 /// Try folding relatively complex patterns for both And and Or operations
1718 /// with all And and Or swapped.
1719 static Instruction *foldComplexAndOrPatterns(BinaryOperator &I,
1720                                              InstCombiner::BuilderTy &Builder) {
1721   const Instruction::BinaryOps Opcode = I.getOpcode();
1722   assert(Opcode == Instruction::And || Opcode == Instruction::Or);
1723 
1724   // Flip the logic operation.
1725   const Instruction::BinaryOps FlippedOpcode =
1726       (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
1727 
1728   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1729   Value *A, *B, *C, *X, *Y, *Dummy;
1730 
1731   // Match following expressions:
1732   // (~(A | B) & C)
1733   // (~(A & B) | C)
1734   // Captures X = ~(A | B) or ~(A & B)
1735   const auto matchNotOrAnd =
1736       [Opcode, FlippedOpcode](Value *Op, auto m_A, auto m_B, auto m_C,
1737                               Value *&X, bool CountUses = false) -> bool {
1738     if (CountUses && !Op->hasOneUse())
1739       return false;
1740 
1741     if (match(Op, m_c_BinOp(FlippedOpcode,
1742                             m_CombineAnd(m_Value(X),
1743                                          m_Not(m_c_BinOp(Opcode, m_A, m_B))),
1744                             m_C)))
1745       return !CountUses || X->hasOneUse();
1746 
1747     return false;
1748   };
1749 
1750   // (~(A | B) & C) | ... --> ...
1751   // (~(A & B) | C) & ... --> ...
1752   // TODO: One use checks are conservative. We just need to check that a total
1753   //       number of multiple used values does not exceed reduction
1754   //       in operations.
1755   if (matchNotOrAnd(Op0, m_Value(A), m_Value(B), m_Value(C), X)) {
1756     // (~(A | B) & C) | (~(A | C) & B) --> (B ^ C) & ~A
1757     // (~(A & B) | C) & (~(A & C) | B) --> ~((B ^ C) & A)
1758     if (matchNotOrAnd(Op1, m_Specific(A), m_Specific(C), m_Specific(B), Dummy,
1759                       true)) {
1760       Value *Xor = Builder.CreateXor(B, C);
1761       return (Opcode == Instruction::Or)
1762                  ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(A))
1763                  : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, A));
1764     }
1765 
1766     // (~(A | B) & C) | (~(B | C) & A) --> (A ^ C) & ~B
1767     // (~(A & B) | C) & (~(B & C) | A) --> ~((A ^ C) & B)
1768     if (matchNotOrAnd(Op1, m_Specific(B), m_Specific(C), m_Specific(A), Dummy,
1769                       true)) {
1770       Value *Xor = Builder.CreateXor(A, C);
1771       return (Opcode == Instruction::Or)
1772                  ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(B))
1773                  : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, B));
1774     }
1775 
1776     // (~(A | B) & C) | ~(A | C) --> ~((B & C) | A)
1777     // (~(A & B) | C) & ~(A & C) --> ~((B | C) & A)
1778     if (match(Op1, m_OneUse(m_Not(m_OneUse(
1779                        m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)))))))
1780       return BinaryOperator::CreateNot(Builder.CreateBinOp(
1781           Opcode, Builder.CreateBinOp(FlippedOpcode, B, C), A));
1782 
1783     // (~(A | B) & C) | ~(B | C) --> ~((A & C) | B)
1784     // (~(A & B) | C) & ~(B & C) --> ~((A | C) & B)
1785     if (match(Op1, m_OneUse(m_Not(m_OneUse(
1786                        m_c_BinOp(Opcode, m_Specific(B), m_Specific(C)))))))
1787       return BinaryOperator::CreateNot(Builder.CreateBinOp(
1788           Opcode, Builder.CreateBinOp(FlippedOpcode, A, C), B));
1789 
1790     // (~(A | B) & C) | ~(C | (A ^ B)) --> ~((A | B) & (C | (A ^ B)))
1791     // Note, the pattern with swapped and/or is not handled because the
1792     // result is more undefined than a source:
1793     // (~(A & B) | C) & ~(C & (A ^ B)) --> (A ^ B ^ C) | ~(A | C) is invalid.
1794     if (Opcode == Instruction::Or && Op0->hasOneUse() &&
1795         match(Op1, m_OneUse(m_Not(m_CombineAnd(
1796                        m_Value(Y),
1797                        m_c_BinOp(Opcode, m_Specific(C),
1798                                  m_c_Xor(m_Specific(A), m_Specific(B)))))))) {
1799       // X = ~(A | B)
1800       // Y = (C | (A ^ B)
1801       Value *Or = cast<BinaryOperator>(X)->getOperand(0);
1802       return BinaryOperator::CreateNot(Builder.CreateAnd(Or, Y));
1803     }
1804   }
1805 
1806   // (~A & B & C) | ... --> ...
1807   // (~A | B | C) | ... --> ...
1808   // TODO: One use checks are conservative. We just need to check that a total
1809   //       number of multiple used values does not exceed reduction
1810   //       in operations.
1811   if (match(Op0,
1812             m_OneUse(m_c_BinOp(FlippedOpcode,
1813                                m_BinOp(FlippedOpcode, m_Value(B), m_Value(C)),
1814                                m_CombineAnd(m_Value(X), m_Not(m_Value(A)))))) ||
1815       match(Op0, m_OneUse(m_c_BinOp(
1816                      FlippedOpcode,
1817                      m_c_BinOp(FlippedOpcode, m_Value(C),
1818                                m_CombineAnd(m_Value(X), m_Not(m_Value(A)))),
1819                      m_Value(B))))) {
1820     // X = ~A
1821     // (~A & B & C) | ~(A | B | C) --> ~(A | (B ^ C))
1822     // (~A | B | C) & ~(A & B & C) --> (~A | (B ^ C))
1823     if (match(Op1, m_OneUse(m_Not(m_c_BinOp(
1824                        Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(B)),
1825                        m_Specific(C))))) ||
1826         match(Op1, m_OneUse(m_Not(m_c_BinOp(
1827                        Opcode, m_c_BinOp(Opcode, m_Specific(B), m_Specific(C)),
1828                        m_Specific(A))))) ||
1829         match(Op1, m_OneUse(m_Not(m_c_BinOp(
1830                        Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)),
1831                        m_Specific(B)))))) {
1832       Value *Xor = Builder.CreateXor(B, C);
1833       return (Opcode == Instruction::Or)
1834                  ? BinaryOperator::CreateNot(Builder.CreateOr(Xor, A))
1835                  : BinaryOperator::CreateOr(Xor, X);
1836     }
1837 
1838     // (~A & B & C) | ~(A | B) --> (C | ~B) & ~A
1839     // (~A | B | C) & ~(A & B) --> (C & ~B) | ~A
1840     if (match(Op1, m_OneUse(m_Not(m_OneUse(
1841                        m_c_BinOp(Opcode, m_Specific(A), m_Specific(B)))))))
1842       return BinaryOperator::Create(
1843           FlippedOpcode, Builder.CreateBinOp(Opcode, C, Builder.CreateNot(B)),
1844           X);
1845 
1846     // (~A & B & C) | ~(A | C) --> (B | ~C) & ~A
1847     // (~A | B | C) & ~(A & C) --> (B & ~C) | ~A
1848     if (match(Op1, m_OneUse(m_Not(m_OneUse(
1849                        m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)))))))
1850       return BinaryOperator::Create(
1851           FlippedOpcode, Builder.CreateBinOp(Opcode, B, Builder.CreateNot(C)),
1852           X);
1853   }
1854 
1855   return nullptr;
1856 }
1857 
1858 /// Try to reassociate a pair of binops so that values with one use only are
1859 /// part of the same instruction. This may enable folds that are limited with
1860 /// multi-use restrictions and makes it more likely to match other patterns that
1861 /// are looking for a common operand.
1862 static Instruction *reassociateForUses(BinaryOperator &BO,
1863                                        InstCombinerImpl::BuilderTy &Builder) {
1864   Instruction::BinaryOps Opcode = BO.getOpcode();
1865   Value *X, *Y, *Z;
1866   if (match(&BO,
1867             m_c_BinOp(Opcode, m_OneUse(m_BinOp(Opcode, m_Value(X), m_Value(Y))),
1868                       m_OneUse(m_Value(Z))))) {
1869     if (!isa<Constant>(X) && !isa<Constant>(Y) && !isa<Constant>(Z)) {
1870       // (X op Y) op Z --> (Y op Z) op X
1871       if (!X->hasOneUse()) {
1872         Value *YZ = Builder.CreateBinOp(Opcode, Y, Z);
1873         return BinaryOperator::Create(Opcode, YZ, X);
1874       }
1875       // (X op Y) op Z --> (X op Z) op Y
1876       if (!Y->hasOneUse()) {
1877         Value *XZ = Builder.CreateBinOp(Opcode, X, Z);
1878         return BinaryOperator::Create(Opcode, XZ, Y);
1879       }
1880     }
1881   }
1882 
1883   return nullptr;
1884 }
1885 
1886 // Match
1887 // (X + C2) | C
1888 // (X + C2) ^ C
1889 // (X + C2) & C
1890 // and convert to do the bitwise logic first:
1891 // (X | C) + C2
1892 // (X ^ C) + C2
1893 // (X & C) + C2
1894 // iff bits affected by logic op are lower than last bit affected by math op
1895 static Instruction *canonicalizeLogicFirst(BinaryOperator &I,
1896                                            InstCombiner::BuilderTy &Builder) {
1897   Type *Ty = I.getType();
1898   Instruction::BinaryOps OpC = I.getOpcode();
1899   Value *Op0 = I.getOperand(0);
1900   Value *Op1 = I.getOperand(1);
1901   Value *X;
1902   const APInt *C, *C2;
1903 
1904   if (!(match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C2)))) &&
1905         match(Op1, m_APInt(C))))
1906     return nullptr;
1907 
1908   unsigned Width = Ty->getScalarSizeInBits();
1909   unsigned LastOneMath = Width - C2->countTrailingZeros();
1910 
1911   switch (OpC) {
1912   case Instruction::And:
1913     if (C->countLeadingOnes() < LastOneMath)
1914       return nullptr;
1915     break;
1916   case Instruction::Xor:
1917   case Instruction::Or:
1918     if (C->countLeadingZeros() < LastOneMath)
1919       return nullptr;
1920     break;
1921   default:
1922     llvm_unreachable("Unexpected BinaryOp!");
1923   }
1924 
1925   Value *NewBinOp = Builder.CreateBinOp(OpC, X, ConstantInt::get(Ty, *C));
1926   return BinaryOperator::CreateAdd(NewBinOp, ConstantInt::get(Ty, *C2));
1927 }
1928 
1929 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
1930 // here. We should standardize that construct where it is needed or choose some
1931 // other way to ensure that commutated variants of patterns are not missed.
1932 Instruction *InstCombinerImpl::visitAnd(BinaryOperator &I) {
1933   Type *Ty = I.getType();
1934 
1935   if (Value *V = simplifyAndInst(I.getOperand(0), I.getOperand(1),
1936                                  SQ.getWithInstruction(&I)))
1937     return replaceInstUsesWith(I, V);
1938 
1939   if (SimplifyAssociativeOrCommutative(I))
1940     return &I;
1941 
1942   if (Instruction *X = foldVectorBinop(I))
1943     return X;
1944 
1945   if (Instruction *Phi = foldBinopWithPhiOperands(I))
1946     return Phi;
1947 
1948   // See if we can simplify any instructions used by the instruction whose sole
1949   // purpose is to compute bits we don't care about.
1950   if (SimplifyDemandedInstructionBits(I))
1951     return &I;
1952 
1953   // Do this before using distributive laws to catch simple and/or/not patterns.
1954   if (Instruction *Xor = foldAndToXor(I, Builder))
1955     return Xor;
1956 
1957   if (Instruction *X = foldComplexAndOrPatterns(I, Builder))
1958     return X;
1959 
1960   // (A|B)&(A|C) -> A|(B&C) etc
1961   if (Value *V = foldUsingDistributiveLaws(I))
1962     return replaceInstUsesWith(I, V);
1963 
1964   if (Value *V = SimplifyBSwap(I, Builder))
1965     return replaceInstUsesWith(I, V);
1966 
1967   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1968 
1969   Value *X, *Y;
1970   if (match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) &&
1971       match(Op1, m_One())) {
1972     // (1 << X) & 1 --> zext(X == 0)
1973     // (1 >> X) & 1 --> zext(X == 0)
1974     Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, 0));
1975     return new ZExtInst(IsZero, Ty);
1976   }
1977 
1978   // (-(X & 1)) & Y --> (X & 1) == 0 ? 0 : Y
1979   Value *Neg;
1980   if (match(&I,
1981             m_c_And(m_CombineAnd(m_Value(Neg),
1982                                  m_OneUse(m_Neg(m_And(m_Value(), m_One())))),
1983                     m_Value(Y)))) {
1984     Value *Cmp = Builder.CreateIsNull(Neg);
1985     return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Y);
1986   }
1987 
1988   const APInt *C;
1989   if (match(Op1, m_APInt(C))) {
1990     const APInt *XorC;
1991     if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) {
1992       // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
1993       Constant *NewC = ConstantInt::get(Ty, *C & *XorC);
1994       Value *And = Builder.CreateAnd(X, Op1);
1995       And->takeName(Op0);
1996       return BinaryOperator::CreateXor(And, NewC);
1997     }
1998 
1999     const APInt *OrC;
2000     if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) {
2001       // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2)
2002       // NOTE: This reduces the number of bits set in the & mask, which
2003       // can expose opportunities for store narrowing for scalars.
2004       // NOTE: SimplifyDemandedBits should have already removed bits from C1
2005       // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in
2006       // above, but this feels safer.
2007       APInt Together = *C & *OrC;
2008       Value *And = Builder.CreateAnd(X, ConstantInt::get(Ty, Together ^ *C));
2009       And->takeName(Op0);
2010       return BinaryOperator::CreateOr(And, ConstantInt::get(Ty, Together));
2011     }
2012 
2013     unsigned Width = Ty->getScalarSizeInBits();
2014     const APInt *ShiftC;
2015     if (match(Op0, m_OneUse(m_SExt(m_AShr(m_Value(X), m_APInt(ShiftC))))) &&
2016         ShiftC->ult(Width)) {
2017       if (*C == APInt::getLowBitsSet(Width, Width - ShiftC->getZExtValue())) {
2018         // We are clearing high bits that were potentially set by sext+ashr:
2019         // and (sext (ashr X, ShiftC)), C --> lshr (sext X), ShiftC
2020         Value *Sext = Builder.CreateSExt(X, Ty);
2021         Constant *ShAmtC = ConstantInt::get(Ty, ShiftC->zext(Width));
2022         return BinaryOperator::CreateLShr(Sext, ShAmtC);
2023       }
2024     }
2025 
2026     // If this 'and' clears the sign-bits added by ashr, replace with lshr:
2027     // and (ashr X, ShiftC), C --> lshr X, ShiftC
2028     if (match(Op0, m_AShr(m_Value(X), m_APInt(ShiftC))) && ShiftC->ult(Width) &&
2029         C->isMask(Width - ShiftC->getZExtValue()))
2030       return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, *ShiftC));
2031 
2032     const APInt *AddC;
2033     if (match(Op0, m_Add(m_Value(X), m_APInt(AddC)))) {
2034       // If we add zeros to every bit below a mask, the add has no effect:
2035       // (X + AddC) & LowMaskC --> X & LowMaskC
2036       unsigned Ctlz = C->countLeadingZeros();
2037       APInt LowMask(APInt::getLowBitsSet(Width, Width - Ctlz));
2038       if ((*AddC & LowMask).isZero())
2039         return BinaryOperator::CreateAnd(X, Op1);
2040 
2041       // If we are masking the result of the add down to exactly one bit and
2042       // the constant we are adding has no bits set below that bit, then the
2043       // add is flipping a single bit. Example:
2044       // (X + 4) & 4 --> (X & 4) ^ 4
2045       if (Op0->hasOneUse() && C->isPowerOf2() && (*AddC & (*C - 1)) == 0) {
2046         assert((*C & *AddC) != 0 && "Expected common bit");
2047         Value *NewAnd = Builder.CreateAnd(X, Op1);
2048         return BinaryOperator::CreateXor(NewAnd, Op1);
2049       }
2050     }
2051 
2052     // ((C1 OP zext(X)) & C2) -> zext((C1 OP X) & C2) if C2 fits in the
2053     // bitwidth of X and OP behaves well when given trunc(C1) and X.
2054     auto isNarrowableBinOpcode = [](BinaryOperator *B) {
2055       switch (B->getOpcode()) {
2056       case Instruction::Xor:
2057       case Instruction::Or:
2058       case Instruction::Mul:
2059       case Instruction::Add:
2060       case Instruction::Sub:
2061         return true;
2062       default:
2063         return false;
2064       }
2065     };
2066     BinaryOperator *BO;
2067     if (match(Op0, m_OneUse(m_BinOp(BO))) && isNarrowableBinOpcode(BO)) {
2068       Instruction::BinaryOps BOpcode = BO->getOpcode();
2069       Value *X;
2070       const APInt *C1;
2071       // TODO: The one-use restrictions could be relaxed a little if the AND
2072       // is going to be removed.
2073       // Try to narrow the 'and' and a binop with constant operand:
2074       // and (bo (zext X), C1), C --> zext (and (bo X, TruncC1), TruncC)
2075       if (match(BO, m_c_BinOp(m_OneUse(m_ZExt(m_Value(X))), m_APInt(C1))) &&
2076           C->isIntN(X->getType()->getScalarSizeInBits())) {
2077         unsigned XWidth = X->getType()->getScalarSizeInBits();
2078         Constant *TruncC1 = ConstantInt::get(X->getType(), C1->trunc(XWidth));
2079         Value *BinOp = isa<ZExtInst>(BO->getOperand(0))
2080                            ? Builder.CreateBinOp(BOpcode, X, TruncC1)
2081                            : Builder.CreateBinOp(BOpcode, TruncC1, X);
2082         Constant *TruncC = ConstantInt::get(X->getType(), C->trunc(XWidth));
2083         Value *And = Builder.CreateAnd(BinOp, TruncC);
2084         return new ZExtInst(And, Ty);
2085       }
2086 
2087       // Similar to above: if the mask matches the zext input width, then the
2088       // 'and' can be eliminated, so we can truncate the other variable op:
2089       // and (bo (zext X), Y), C --> zext (bo X, (trunc Y))
2090       if (isa<Instruction>(BO->getOperand(0)) &&
2091           match(BO->getOperand(0), m_OneUse(m_ZExt(m_Value(X)))) &&
2092           C->isMask(X->getType()->getScalarSizeInBits())) {
2093         Y = BO->getOperand(1);
2094         Value *TrY = Builder.CreateTrunc(Y, X->getType(), Y->getName() + ".tr");
2095         Value *NewBO =
2096             Builder.CreateBinOp(BOpcode, X, TrY, BO->getName() + ".narrow");
2097         return new ZExtInst(NewBO, Ty);
2098       }
2099       // and (bo Y, (zext X)), C --> zext (bo (trunc Y), X)
2100       if (isa<Instruction>(BO->getOperand(1)) &&
2101           match(BO->getOperand(1), m_OneUse(m_ZExt(m_Value(X)))) &&
2102           C->isMask(X->getType()->getScalarSizeInBits())) {
2103         Y = BO->getOperand(0);
2104         Value *TrY = Builder.CreateTrunc(Y, X->getType(), Y->getName() + ".tr");
2105         Value *NewBO =
2106             Builder.CreateBinOp(BOpcode, TrY, X, BO->getName() + ".narrow");
2107         return new ZExtInst(NewBO, Ty);
2108       }
2109     }
2110 
2111     // This is intentionally placed after the narrowing transforms for
2112     // efficiency (transform directly to the narrow logic op if possible).
2113     // If the mask is only needed on one incoming arm, push the 'and' op up.
2114     if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) ||
2115         match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2116       APInt NotAndMask(~(*C));
2117       BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode();
2118       if (MaskedValueIsZero(X, NotAndMask, 0, &I)) {
2119         // Not masking anything out for the LHS, move mask to RHS.
2120         // and ({x}or X, Y), C --> {x}or X, (and Y, C)
2121         Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked");
2122         return BinaryOperator::Create(BinOp, X, NewRHS);
2123       }
2124       if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) {
2125         // Not masking anything out for the RHS, move mask to LHS.
2126         // and ({x}or X, Y), C --> {x}or (and X, C), Y
2127         Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked");
2128         return BinaryOperator::Create(BinOp, NewLHS, Y);
2129       }
2130     }
2131 
2132     // When the mask is a power-of-2 constant and op0 is a shifted-power-of-2
2133     // constant, test if the shift amount equals the offset bit index:
2134     // (ShiftC << X) & C --> X == (log2(C) - log2(ShiftC)) ? C : 0
2135     // (ShiftC >> X) & C --> X == (log2(ShiftC) - log2(C)) ? C : 0
2136     if (C->isPowerOf2() &&
2137         match(Op0, m_OneUse(m_LogicalShift(m_Power2(ShiftC), m_Value(X))))) {
2138       int Log2ShiftC = ShiftC->exactLogBase2();
2139       int Log2C = C->exactLogBase2();
2140       bool IsShiftLeft =
2141          cast<BinaryOperator>(Op0)->getOpcode() == Instruction::Shl;
2142       int BitNum = IsShiftLeft ? Log2C - Log2ShiftC : Log2ShiftC - Log2C;
2143       assert(BitNum >= 0 && "Expected demanded bits to handle impossible mask");
2144       Value *Cmp = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, BitNum));
2145       return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C),
2146                                 ConstantInt::getNullValue(Ty));
2147     }
2148 
2149     Constant *C1, *C2;
2150     const APInt *C3 = C;
2151     Value *X;
2152     if (C3->isPowerOf2()) {
2153       Constant *Log2C3 = ConstantInt::get(Ty, C3->countTrailingZeros());
2154       if (match(Op0, m_OneUse(m_LShr(m_Shl(m_ImmConstant(C1), m_Value(X)),
2155                                      m_ImmConstant(C2)))) &&
2156           match(C1, m_Power2())) {
2157         Constant *Log2C1 = ConstantExpr::getExactLogBase2(C1);
2158         Constant *LshrC = ConstantExpr::getAdd(C2, Log2C3);
2159         KnownBits KnownLShrc = computeKnownBits(LshrC, 0, nullptr);
2160         if (KnownLShrc.getMaxValue().ult(Width)) {
2161           // iff C1,C3 is pow2 and C2 + cttz(C3) < BitWidth:
2162           // ((C1 << X) >> C2) & C3 -> X == (cttz(C3)+C2-cttz(C1)) ? C3 : 0
2163           Constant *CmpC = ConstantExpr::getSub(LshrC, Log2C1);
2164           Value *Cmp = Builder.CreateICmpEQ(X, CmpC);
2165           return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C3),
2166                                     ConstantInt::getNullValue(Ty));
2167         }
2168       }
2169 
2170       if (match(Op0, m_OneUse(m_Shl(m_LShr(m_ImmConstant(C1), m_Value(X)),
2171                                     m_ImmConstant(C2)))) &&
2172           match(C1, m_Power2())) {
2173         Constant *Log2C1 = ConstantExpr::getExactLogBase2(C1);
2174         Constant *Cmp =
2175             ConstantExpr::getCompare(ICmpInst::ICMP_ULT, Log2C3, C2);
2176         if (Cmp->isZeroValue()) {
2177           // iff C1,C3 is pow2 and Log2(C3) >= C2:
2178           // ((C1 >> X) << C2) & C3 -> X == (cttz(C1)+C2-cttz(C3)) ? C3 : 0
2179           Constant *ShlC = ConstantExpr::getAdd(C2, Log2C1);
2180           Constant *CmpC = ConstantExpr::getSub(ShlC, Log2C3);
2181           Value *Cmp = Builder.CreateICmpEQ(X, CmpC);
2182           return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C3),
2183                                     ConstantInt::getNullValue(Ty));
2184         }
2185       }
2186     }
2187   }
2188 
2189   if (match(&I, m_And(m_OneUse(m_Shl(m_ZExt(m_Value(X)), m_Value(Y))),
2190                       m_SignMask())) &&
2191       match(Y, m_SpecificInt_ICMP(
2192                    ICmpInst::Predicate::ICMP_EQ,
2193                    APInt(Ty->getScalarSizeInBits(),
2194                          Ty->getScalarSizeInBits() -
2195                              X->getType()->getScalarSizeInBits())))) {
2196     auto *SExt = Builder.CreateSExt(X, Ty, X->getName() + ".signext");
2197     auto *SanitizedSignMask = cast<Constant>(Op1);
2198     // We must be careful with the undef elements of the sign bit mask, however:
2199     // the mask elt can be undef iff the shift amount for that lane was undef,
2200     // otherwise we need to sanitize undef masks to zero.
2201     SanitizedSignMask = Constant::replaceUndefsWith(
2202         SanitizedSignMask, ConstantInt::getNullValue(Ty->getScalarType()));
2203     SanitizedSignMask =
2204         Constant::mergeUndefsWith(SanitizedSignMask, cast<Constant>(Y));
2205     return BinaryOperator::CreateAnd(SExt, SanitizedSignMask);
2206   }
2207 
2208   if (Instruction *Z = narrowMaskedBinOp(I))
2209     return Z;
2210 
2211   if (I.getType()->isIntOrIntVectorTy(1)) {
2212     if (auto *SI0 = dyn_cast<SelectInst>(Op0)) {
2213       if (auto *I =
2214               foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ true))
2215         return I;
2216     }
2217     if (auto *SI1 = dyn_cast<SelectInst>(Op1)) {
2218       if (auto *I =
2219               foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ true))
2220         return I;
2221     }
2222   }
2223 
2224   if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
2225     return FoldedLogic;
2226 
2227   if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
2228     return DeMorgan;
2229 
2230   {
2231     Value *A, *B, *C;
2232     // A & (A ^ B) --> A & ~B
2233     if (match(Op1, m_OneUse(m_c_Xor(m_Specific(Op0), m_Value(B)))))
2234       return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(B));
2235     // (A ^ B) & A --> A & ~B
2236     if (match(Op0, m_OneUse(m_c_Xor(m_Specific(Op1), m_Value(B)))))
2237       return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(B));
2238 
2239     // A & ~(A ^ B) --> A & B
2240     if (match(Op1, m_Not(m_c_Xor(m_Specific(Op0), m_Value(B)))))
2241       return BinaryOperator::CreateAnd(Op0, B);
2242     // ~(A ^ B) & A --> A & B
2243     if (match(Op0, m_Not(m_c_Xor(m_Specific(Op1), m_Value(B)))))
2244       return BinaryOperator::CreateAnd(Op1, B);
2245 
2246     // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
2247     if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
2248       if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
2249         if (Op1->hasOneUse() || isFreeToInvert(C, C->hasOneUse()))
2250           return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(C));
2251 
2252     // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
2253     if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
2254       if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
2255         if (Op0->hasOneUse() || isFreeToInvert(C, C->hasOneUse()))
2256           return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C));
2257 
2258     // (A | B) & (~A ^ B) -> A & B
2259     // (A | B) & (B ^ ~A) -> A & B
2260     // (B | A) & (~A ^ B) -> A & B
2261     // (B | A) & (B ^ ~A) -> A & B
2262     if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2263         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
2264       return BinaryOperator::CreateAnd(A, B);
2265 
2266     // (~A ^ B) & (A | B) -> A & B
2267     // (~A ^ B) & (B | A) -> A & B
2268     // (B ^ ~A) & (A | B) -> A & B
2269     // (B ^ ~A) & (B | A) -> A & B
2270     if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2271         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
2272       return BinaryOperator::CreateAnd(A, B);
2273 
2274     // (~A | B) & (A ^ B) -> ~A & B
2275     // (~A | B) & (B ^ A) -> ~A & B
2276     // (B | ~A) & (A ^ B) -> ~A & B
2277     // (B | ~A) & (B ^ A) -> ~A & B
2278     if (match(Op0, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
2279         match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
2280       return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
2281 
2282     // (A ^ B) & (~A | B) -> ~A & B
2283     // (B ^ A) & (~A | B) -> ~A & B
2284     // (A ^ B) & (B | ~A) -> ~A & B
2285     // (B ^ A) & (B | ~A) -> ~A & B
2286     if (match(Op1, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
2287         match(Op0, m_c_Xor(m_Specific(A), m_Specific(B))))
2288       return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
2289   }
2290 
2291   {
2292     ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
2293     ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
2294     if (LHS && RHS)
2295       if (Value *Res = foldAndOrOfICmps(LHS, RHS, I, /* IsAnd */ true))
2296         return replaceInstUsesWith(I, Res);
2297 
2298     // TODO: Make this recursive; it's a little tricky because an arbitrary
2299     // number of 'and' instructions might have to be created.
2300     if (LHS && match(Op1, m_OneUse(m_LogicalAnd(m_Value(X), m_Value(Y))))) {
2301       bool IsLogical = isa<SelectInst>(Op1);
2302       // LHS & (X && Y) --> (LHS && X) && Y
2303       if (auto *Cmp = dyn_cast<ICmpInst>(X))
2304         if (Value *Res =
2305                 foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ true, IsLogical))
2306           return replaceInstUsesWith(I, IsLogical
2307                                             ? Builder.CreateLogicalAnd(Res, Y)
2308                                             : Builder.CreateAnd(Res, Y));
2309       // LHS & (X && Y) --> X && (LHS & Y)
2310       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2311         if (Value *Res = foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ true,
2312                                           /* IsLogical */ false))
2313           return replaceInstUsesWith(I, IsLogical
2314                                             ? Builder.CreateLogicalAnd(X, Res)
2315                                             : Builder.CreateAnd(X, Res));
2316     }
2317     if (RHS && match(Op0, m_OneUse(m_LogicalAnd(m_Value(X), m_Value(Y))))) {
2318       bool IsLogical = isa<SelectInst>(Op0);
2319       // (X && Y) & RHS --> (X && RHS) && Y
2320       if (auto *Cmp = dyn_cast<ICmpInst>(X))
2321         if (Value *Res =
2322                 foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ true, IsLogical))
2323           return replaceInstUsesWith(I, IsLogical
2324                                             ? Builder.CreateLogicalAnd(Res, Y)
2325                                             : Builder.CreateAnd(Res, Y));
2326       // (X && Y) & RHS --> X && (Y & RHS)
2327       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2328         if (Value *Res = foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ true,
2329                                           /* IsLogical */ false))
2330           return replaceInstUsesWith(I, IsLogical
2331                                             ? Builder.CreateLogicalAnd(X, Res)
2332                                             : Builder.CreateAnd(X, Res));
2333     }
2334   }
2335 
2336   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
2337     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
2338       if (Value *Res = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ true))
2339         return replaceInstUsesWith(I, Res);
2340 
2341   if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
2342     return FoldedFCmps;
2343 
2344   if (Instruction *CastedAnd = foldCastedBitwiseLogic(I))
2345     return CastedAnd;
2346 
2347   if (Instruction *Sel = foldBinopOfSextBoolToSelect(I))
2348     return Sel;
2349 
2350   // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>.
2351   // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold
2352   //       with binop identity constant. But creating a select with non-constant
2353   //       arm may not be reversible due to poison semantics. Is that a good
2354   //       canonicalization?
2355   Value *A;
2356   if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
2357       A->getType()->isIntOrIntVectorTy(1))
2358     return SelectInst::Create(A, Op1, Constant::getNullValue(Ty));
2359   if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
2360       A->getType()->isIntOrIntVectorTy(1))
2361     return SelectInst::Create(A, Op0, Constant::getNullValue(Ty));
2362 
2363   // Similarly, a 'not' of the bool translates to a swap of the select arms:
2364   // ~sext(A) & Op1 --> A ? 0 : Op1
2365   // Op0 & ~sext(A) --> A ? 0 : Op0
2366   if (match(Op0, m_Not(m_SExt(m_Value(A)))) &&
2367       A->getType()->isIntOrIntVectorTy(1))
2368     return SelectInst::Create(A, Constant::getNullValue(Ty), Op1);
2369   if (match(Op1, m_Not(m_SExt(m_Value(A)))) &&
2370       A->getType()->isIntOrIntVectorTy(1))
2371     return SelectInst::Create(A, Constant::getNullValue(Ty), Op0);
2372 
2373   // (iN X s>> (N-1)) & Y --> (X s< 0) ? Y : 0 -- with optional sext
2374   if (match(&I, m_c_And(m_OneUse(m_SExtOrSelf(
2375                             m_AShr(m_Value(X), m_APIntAllowUndef(C)))),
2376                         m_Value(Y))) &&
2377       *C == X->getType()->getScalarSizeInBits() - 1) {
2378     Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
2379     return SelectInst::Create(IsNeg, Y, ConstantInt::getNullValue(Ty));
2380   }
2381   // If there's a 'not' of the shifted value, swap the select operands:
2382   // ~(iN X s>> (N-1)) & Y --> (X s< 0) ? 0 : Y -- with optional sext
2383   if (match(&I, m_c_And(m_OneUse(m_SExtOrSelf(
2384                             m_Not(m_AShr(m_Value(X), m_APIntAllowUndef(C))))),
2385                         m_Value(Y))) &&
2386       *C == X->getType()->getScalarSizeInBits() - 1) {
2387     Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
2388     return SelectInst::Create(IsNeg, ConstantInt::getNullValue(Ty), Y);
2389   }
2390 
2391   // (~x) & y  -->  ~(x | (~y))  iff that gets rid of inversions
2392   if (sinkNotIntoOtherHandOfLogicalOp(I))
2393     return &I;
2394 
2395   // An and recurrence w/loop invariant step is equivelent to (and start, step)
2396   PHINode *PN = nullptr;
2397   Value *Start = nullptr, *Step = nullptr;
2398   if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN))
2399     return replaceInstUsesWith(I, Builder.CreateAnd(Start, Step));
2400 
2401   if (Instruction *R = reassociateForUses(I, Builder))
2402     return R;
2403 
2404   if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder))
2405     return Canonicalized;
2406 
2407   if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1))
2408     return Folded;
2409 
2410   return nullptr;
2411 }
2412 
2413 Instruction *InstCombinerImpl::matchBSwapOrBitReverse(Instruction &I,
2414                                                       bool MatchBSwaps,
2415                                                       bool MatchBitReversals) {
2416   SmallVector<Instruction *, 4> Insts;
2417   if (!recognizeBSwapOrBitReverseIdiom(&I, MatchBSwaps, MatchBitReversals,
2418                                        Insts))
2419     return nullptr;
2420   Instruction *LastInst = Insts.pop_back_val();
2421   LastInst->removeFromParent();
2422 
2423   for (auto *Inst : Insts)
2424     Worklist.push(Inst);
2425   return LastInst;
2426 }
2427 
2428 /// Match UB-safe variants of the funnel shift intrinsic.
2429 static Instruction *matchFunnelShift(Instruction &Or, InstCombinerImpl &IC) {
2430   // TODO: Can we reduce the code duplication between this and the related
2431   // rotate matching code under visitSelect and visitTrunc?
2432   unsigned Width = Or.getType()->getScalarSizeInBits();
2433 
2434   // First, find an or'd pair of opposite shifts:
2435   // or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1)
2436   BinaryOperator *Or0, *Or1;
2437   if (!match(Or.getOperand(0), m_BinOp(Or0)) ||
2438       !match(Or.getOperand(1), m_BinOp(Or1)))
2439     return nullptr;
2440 
2441   Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
2442   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
2443       !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
2444       Or0->getOpcode() == Or1->getOpcode())
2445     return nullptr;
2446 
2447   // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
2448   if (Or0->getOpcode() == BinaryOperator::LShr) {
2449     std::swap(Or0, Or1);
2450     std::swap(ShVal0, ShVal1);
2451     std::swap(ShAmt0, ShAmt1);
2452   }
2453   assert(Or0->getOpcode() == BinaryOperator::Shl &&
2454          Or1->getOpcode() == BinaryOperator::LShr &&
2455          "Illegal or(shift,shift) pair");
2456 
2457   // Match the shift amount operands for a funnel shift pattern. This always
2458   // matches a subtraction on the R operand.
2459   auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
2460     // Check for constant shift amounts that sum to the bitwidth.
2461     const APInt *LI, *RI;
2462     if (match(L, m_APIntAllowUndef(LI)) && match(R, m_APIntAllowUndef(RI)))
2463       if (LI->ult(Width) && RI->ult(Width) && (*LI + *RI) == Width)
2464         return ConstantInt::get(L->getType(), *LI);
2465 
2466     Constant *LC, *RC;
2467     if (match(L, m_Constant(LC)) && match(R, m_Constant(RC)) &&
2468         match(L, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) &&
2469         match(R, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) &&
2470         match(ConstantExpr::getAdd(LC, RC), m_SpecificIntAllowUndef(Width)))
2471       return ConstantExpr::mergeUndefsWith(LC, RC);
2472 
2473     // (shl ShVal, X) | (lshr ShVal, (Width - x)) iff X < Width.
2474     // We limit this to X < Width in case the backend re-expands the intrinsic,
2475     // and has to reintroduce a shift modulo operation (InstCombine might remove
2476     // it after this fold). This still doesn't guarantee that the final codegen
2477     // will match this original pattern.
2478     if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) {
2479       KnownBits KnownL = IC.computeKnownBits(L, /*Depth*/ 0, &Or);
2480       return KnownL.getMaxValue().ult(Width) ? L : nullptr;
2481     }
2482 
2483     // For non-constant cases, the following patterns currently only work for
2484     // rotation patterns.
2485     // TODO: Add general funnel-shift compatible patterns.
2486     if (ShVal0 != ShVal1)
2487       return nullptr;
2488 
2489     // For non-constant cases we don't support non-pow2 shift masks.
2490     // TODO: Is it worth matching urem as well?
2491     if (!isPowerOf2_32(Width))
2492       return nullptr;
2493 
2494     // The shift amount may be masked with negation:
2495     // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
2496     Value *X;
2497     unsigned Mask = Width - 1;
2498     if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
2499         match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
2500       return X;
2501 
2502     // Similar to above, but the shift amount may be extended after masking,
2503     // so return the extended value as the parameter for the intrinsic.
2504     if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
2505         match(R, m_And(m_Neg(m_ZExt(m_And(m_Specific(X), m_SpecificInt(Mask)))),
2506                        m_SpecificInt(Mask))))
2507       return L;
2508 
2509     if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
2510         match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
2511       return L;
2512 
2513     return nullptr;
2514   };
2515 
2516   Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width);
2517   bool IsFshl = true; // Sub on LSHR.
2518   if (!ShAmt) {
2519     ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width);
2520     IsFshl = false; // Sub on SHL.
2521   }
2522   if (!ShAmt)
2523     return nullptr;
2524 
2525   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2526   Function *F = Intrinsic::getDeclaration(Or.getModule(), IID, Or.getType());
2527   return CallInst::Create(F, {ShVal0, ShVal1, ShAmt});
2528 }
2529 
2530 /// Attempt to combine or(zext(x),shl(zext(y),bw/2) concat packing patterns.
2531 static Instruction *matchOrConcat(Instruction &Or,
2532                                   InstCombiner::BuilderTy &Builder) {
2533   assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'");
2534   Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1);
2535   Type *Ty = Or.getType();
2536 
2537   unsigned Width = Ty->getScalarSizeInBits();
2538   if ((Width & 1) != 0)
2539     return nullptr;
2540   unsigned HalfWidth = Width / 2;
2541 
2542   // Canonicalize zext (lower half) to LHS.
2543   if (!isa<ZExtInst>(Op0))
2544     std::swap(Op0, Op1);
2545 
2546   // Find lower/upper half.
2547   Value *LowerSrc, *ShlVal, *UpperSrc;
2548   const APInt *C;
2549   if (!match(Op0, m_OneUse(m_ZExt(m_Value(LowerSrc)))) ||
2550       !match(Op1, m_OneUse(m_Shl(m_Value(ShlVal), m_APInt(C)))) ||
2551       !match(ShlVal, m_OneUse(m_ZExt(m_Value(UpperSrc)))))
2552     return nullptr;
2553   if (*C != HalfWidth || LowerSrc->getType() != UpperSrc->getType() ||
2554       LowerSrc->getType()->getScalarSizeInBits() != HalfWidth)
2555     return nullptr;
2556 
2557   auto ConcatIntrinsicCalls = [&](Intrinsic::ID id, Value *Lo, Value *Hi) {
2558     Value *NewLower = Builder.CreateZExt(Lo, Ty);
2559     Value *NewUpper = Builder.CreateZExt(Hi, Ty);
2560     NewUpper = Builder.CreateShl(NewUpper, HalfWidth);
2561     Value *BinOp = Builder.CreateOr(NewLower, NewUpper);
2562     Function *F = Intrinsic::getDeclaration(Or.getModule(), id, Ty);
2563     return Builder.CreateCall(F, BinOp);
2564   };
2565 
2566   // BSWAP: Push the concat down, swapping the lower/upper sources.
2567   // concat(bswap(x),bswap(y)) -> bswap(concat(x,y))
2568   Value *LowerBSwap, *UpperBSwap;
2569   if (match(LowerSrc, m_BSwap(m_Value(LowerBSwap))) &&
2570       match(UpperSrc, m_BSwap(m_Value(UpperBSwap))))
2571     return ConcatIntrinsicCalls(Intrinsic::bswap, UpperBSwap, LowerBSwap);
2572 
2573   // BITREVERSE: Push the concat down, swapping the lower/upper sources.
2574   // concat(bitreverse(x),bitreverse(y)) -> bitreverse(concat(x,y))
2575   Value *LowerBRev, *UpperBRev;
2576   if (match(LowerSrc, m_BitReverse(m_Value(LowerBRev))) &&
2577       match(UpperSrc, m_BitReverse(m_Value(UpperBRev))))
2578     return ConcatIntrinsicCalls(Intrinsic::bitreverse, UpperBRev, LowerBRev);
2579 
2580   return nullptr;
2581 }
2582 
2583 /// If all elements of two constant vectors are 0/-1 and inverses, return true.
2584 static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) {
2585   unsigned NumElts = cast<FixedVectorType>(C1->getType())->getNumElements();
2586   for (unsigned i = 0; i != NumElts; ++i) {
2587     Constant *EltC1 = C1->getAggregateElement(i);
2588     Constant *EltC2 = C2->getAggregateElement(i);
2589     if (!EltC1 || !EltC2)
2590       return false;
2591 
2592     // One element must be all ones, and the other must be all zeros.
2593     if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) ||
2594           (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes()))))
2595       return false;
2596   }
2597   return true;
2598 }
2599 
2600 /// We have an expression of the form (A & C) | (B & D). If A is a scalar or
2601 /// vector composed of all-zeros or all-ones values and is the bitwise 'not' of
2602 /// B, it can be used as the condition operand of a select instruction.
2603 /// We will detect (A & C) | ~(B | D) when the flag ABIsTheSame enabled.
2604 Value *InstCombinerImpl::getSelectCondition(Value *A, Value *B,
2605                                             bool ABIsTheSame) {
2606   // We may have peeked through bitcasts in the caller.
2607   // Exit immediately if we don't have (vector) integer types.
2608   Type *Ty = A->getType();
2609   if (!Ty->isIntOrIntVectorTy() || !B->getType()->isIntOrIntVectorTy())
2610     return nullptr;
2611 
2612   // If A is the 'not' operand of B and has enough signbits, we have our answer.
2613   if (ABIsTheSame ? (A == B) : match(B, m_Not(m_Specific(A)))) {
2614     // If these are scalars or vectors of i1, A can be used directly.
2615     if (Ty->isIntOrIntVectorTy(1))
2616       return A;
2617 
2618     // If we look through a vector bitcast, the caller will bitcast the operands
2619     // to match the condition's number of bits (N x i1).
2620     // To make this poison-safe, disallow bitcast from wide element to narrow
2621     // element. That could allow poison in lanes where it was not present in the
2622     // original code.
2623     A = peekThroughBitcast(A);
2624     if (A->getType()->isIntOrIntVectorTy()) {
2625       unsigned NumSignBits = ComputeNumSignBits(A);
2626       if (NumSignBits == A->getType()->getScalarSizeInBits() &&
2627           NumSignBits <= Ty->getScalarSizeInBits())
2628         return Builder.CreateTrunc(A, CmpInst::makeCmpResultType(A->getType()));
2629     }
2630     return nullptr;
2631   }
2632 
2633   // TODO: add support for sext and constant case
2634   if (ABIsTheSame)
2635     return nullptr;
2636 
2637   // If both operands are constants, see if the constants are inverse bitmasks.
2638   Constant *AConst, *BConst;
2639   if (match(A, m_Constant(AConst)) && match(B, m_Constant(BConst)))
2640     if (AConst == ConstantExpr::getNot(BConst) &&
2641         ComputeNumSignBits(A) == Ty->getScalarSizeInBits())
2642       return Builder.CreateZExtOrTrunc(A, CmpInst::makeCmpResultType(Ty));
2643 
2644   // Look for more complex patterns. The 'not' op may be hidden behind various
2645   // casts. Look through sexts and bitcasts to find the booleans.
2646   Value *Cond;
2647   Value *NotB;
2648   if (match(A, m_SExt(m_Value(Cond))) &&
2649       Cond->getType()->isIntOrIntVectorTy(1)) {
2650     // A = sext i1 Cond; B = sext (not (i1 Cond))
2651     if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
2652       return Cond;
2653 
2654     // A = sext i1 Cond; B = not ({bitcast} (sext (i1 Cond)))
2655     // TODO: The one-use checks are unnecessary or misplaced. If the caller
2656     //       checked for uses on logic ops/casts, that should be enough to
2657     //       make this transform worthwhile.
2658     if (match(B, m_OneUse(m_Not(m_Value(NotB))))) {
2659       NotB = peekThroughBitcast(NotB, true);
2660       if (match(NotB, m_SExt(m_Specific(Cond))))
2661         return Cond;
2662     }
2663   }
2664 
2665   // All scalar (and most vector) possibilities should be handled now.
2666   // Try more matches that only apply to non-splat constant vectors.
2667   if (!Ty->isVectorTy())
2668     return nullptr;
2669 
2670   // If both operands are xor'd with constants using the same sexted boolean
2671   // operand, see if the constants are inverse bitmasks.
2672   // TODO: Use ConstantExpr::getNot()?
2673   if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AConst)))) &&
2674       match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BConst)))) &&
2675       Cond->getType()->isIntOrIntVectorTy(1) &&
2676       areInverseVectorBitmasks(AConst, BConst)) {
2677     AConst = ConstantExpr::getTrunc(AConst, CmpInst::makeCmpResultType(Ty));
2678     return Builder.CreateXor(Cond, AConst);
2679   }
2680   return nullptr;
2681 }
2682 
2683 /// We have an expression of the form (A & C) | (B & D). Try to simplify this
2684 /// to "A' ? C : D", where A' is a boolean or vector of booleans.
2685 /// When InvertFalseVal is set to true, we try to match the pattern
2686 /// where we have peeked through a 'not' op and A and B are the same:
2687 /// (A & C) | ~(A | D) --> (A & C) | (~A & ~D) --> A' ? C : ~D
2688 Value *InstCombinerImpl::matchSelectFromAndOr(Value *A, Value *C, Value *B,
2689                                               Value *D, bool InvertFalseVal) {
2690   // The potential condition of the select may be bitcasted. In that case, look
2691   // through its bitcast and the corresponding bitcast of the 'not' condition.
2692   Type *OrigType = A->getType();
2693   A = peekThroughBitcast(A, true);
2694   B = peekThroughBitcast(B, true);
2695   if (Value *Cond = getSelectCondition(A, B, InvertFalseVal)) {
2696     // ((bc Cond) & C) | ((bc ~Cond) & D) --> bc (select Cond, (bc C), (bc D))
2697     // If this is a vector, we may need to cast to match the condition's length.
2698     // The bitcasts will either all exist or all not exist. The builder will
2699     // not create unnecessary casts if the types already match.
2700     Type *SelTy = A->getType();
2701     if (auto *VecTy = dyn_cast<VectorType>(Cond->getType())) {
2702       // For a fixed or scalable vector get N from <{vscale x} N x iM>
2703       unsigned Elts = VecTy->getElementCount().getKnownMinValue();
2704       // For a fixed or scalable vector, get the size in bits of N x iM; for a
2705       // scalar this is just M.
2706       unsigned SelEltSize = SelTy->getPrimitiveSizeInBits().getKnownMinValue();
2707       Type *EltTy = Builder.getIntNTy(SelEltSize / Elts);
2708       SelTy = VectorType::get(EltTy, VecTy->getElementCount());
2709     }
2710     Value *BitcastC = Builder.CreateBitCast(C, SelTy);
2711     if (InvertFalseVal)
2712       D = Builder.CreateNot(D);
2713     Value *BitcastD = Builder.CreateBitCast(D, SelTy);
2714     Value *Select = Builder.CreateSelect(Cond, BitcastC, BitcastD);
2715     return Builder.CreateBitCast(Select, OrigType);
2716   }
2717 
2718   return nullptr;
2719 }
2720 
2721 // (icmp eq X, 0) | (icmp ult Other, X) -> (icmp ule Other, X-1)
2722 // (icmp ne X, 0) & (icmp uge Other, X) -> (icmp ugt Other, X-1)
2723 static Value *foldAndOrOfICmpEqZeroAndICmp(ICmpInst *LHS, ICmpInst *RHS,
2724                                            bool IsAnd, bool IsLogical,
2725                                            IRBuilderBase &Builder) {
2726   ICmpInst::Predicate LPred =
2727       IsAnd ? LHS->getInversePredicate() : LHS->getPredicate();
2728   ICmpInst::Predicate RPred =
2729       IsAnd ? RHS->getInversePredicate() : RHS->getPredicate();
2730   Value *LHS0 = LHS->getOperand(0);
2731   if (LPred != ICmpInst::ICMP_EQ || !match(LHS->getOperand(1), m_Zero()) ||
2732       !LHS0->getType()->isIntOrIntVectorTy() ||
2733       !(LHS->hasOneUse() || RHS->hasOneUse()))
2734     return nullptr;
2735 
2736   Value *Other;
2737   if (RPred == ICmpInst::ICMP_ULT && RHS->getOperand(1) == LHS0)
2738     Other = RHS->getOperand(0);
2739   else if (RPred == ICmpInst::ICMP_UGT && RHS->getOperand(0) == LHS0)
2740     Other = RHS->getOperand(1);
2741   else
2742     return nullptr;
2743 
2744   if (IsLogical)
2745     Other = Builder.CreateFreeze(Other);
2746   return Builder.CreateICmp(
2747       IsAnd ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE,
2748       Builder.CreateAdd(LHS0, Constant::getAllOnesValue(LHS0->getType())),
2749       Other);
2750 }
2751 
2752 /// Fold (icmp)&(icmp) or (icmp)|(icmp) if possible.
2753 /// If IsLogical is true, then the and/or is in select form and the transform
2754 /// must be poison-safe.
2755 Value *InstCombinerImpl::foldAndOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
2756                                           Instruction &I, bool IsAnd,
2757                                           bool IsLogical) {
2758   const SimplifyQuery Q = SQ.getWithInstruction(&I);
2759 
2760   // Fold (iszero(A & K1) | iszero(A & K2)) ->  (A & (K1 | K2)) != (K1 | K2)
2761   // Fold (!iszero(A & K1) & !iszero(A & K2)) ->  (A & (K1 | K2)) == (K1 | K2)
2762   // if K1 and K2 are a one-bit mask.
2763   if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, &I, IsAnd, IsLogical))
2764     return V;
2765 
2766   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
2767   Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
2768   Value *LHS1 = LHS->getOperand(1), *RHS1 = RHS->getOperand(1);
2769   const APInt *LHSC = nullptr, *RHSC = nullptr;
2770   match(LHS1, m_APInt(LHSC));
2771   match(RHS1, m_APInt(RHSC));
2772 
2773   // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
2774   // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
2775   if (predicatesFoldable(PredL, PredR)) {
2776     if (LHS0 == RHS1 && LHS1 == RHS0) {
2777       PredL = ICmpInst::getSwappedPredicate(PredL);
2778       std::swap(LHS0, LHS1);
2779     }
2780     if (LHS0 == RHS0 && LHS1 == RHS1) {
2781       unsigned Code = IsAnd ? getICmpCode(PredL) & getICmpCode(PredR)
2782                             : getICmpCode(PredL) | getICmpCode(PredR);
2783       bool IsSigned = LHS->isSigned() || RHS->isSigned();
2784       return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder);
2785     }
2786   }
2787 
2788   // handle (roughly):
2789   // (icmp ne (A & B), C) | (icmp ne (A & D), E)
2790   // (icmp eq (A & B), C) & (icmp eq (A & D), E)
2791   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, IsAnd, IsLogical, Builder))
2792     return V;
2793 
2794   if (Value *V =
2795           foldAndOrOfICmpEqZeroAndICmp(LHS, RHS, IsAnd, IsLogical, Builder))
2796     return V;
2797   // We can treat logical like bitwise here, because both operands are used on
2798   // the LHS, and as such poison from both will propagate.
2799   if (Value *V = foldAndOrOfICmpEqZeroAndICmp(RHS, LHS, IsAnd,
2800                                               /*IsLogical*/ false, Builder))
2801     return V;
2802 
2803   if (Value *V =
2804           foldAndOrOfICmpsWithConstEq(LHS, RHS, IsAnd, IsLogical, Builder, Q))
2805     return V;
2806   // We can convert this case to bitwise and, because both operands are used
2807   // on the LHS, and as such poison from both will propagate.
2808   if (Value *V = foldAndOrOfICmpsWithConstEq(RHS, LHS, IsAnd,
2809                                              /*IsLogical*/ false, Builder, Q))
2810     return V;
2811 
2812   if (Value *V = foldIsPowerOf2OrZero(LHS, RHS, IsAnd, Builder))
2813     return V;
2814   if (Value *V = foldIsPowerOf2OrZero(RHS, LHS, IsAnd, Builder))
2815     return V;
2816 
2817   // TODO: One of these directions is fine with logical and/or, the other could
2818   // be supported by inserting freeze.
2819   if (!IsLogical) {
2820     // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
2821     // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
2822     if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/!IsAnd))
2823       return V;
2824 
2825     // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
2826     // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
2827     if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/!IsAnd))
2828       return V;
2829   }
2830 
2831   // TODO: Add conjugated or fold, check whether it is safe for logical and/or.
2832   if (IsAnd && !IsLogical)
2833     if (Value *V = foldSignedTruncationCheck(LHS, RHS, I, Builder))
2834       return V;
2835 
2836   if (Value *V = foldIsPowerOf2(LHS, RHS, IsAnd, Builder))
2837     return V;
2838 
2839   // TODO: Verify whether this is safe for logical and/or.
2840   if (!IsLogical) {
2841     if (Value *X = foldUnsignedUnderflowCheck(LHS, RHS, IsAnd, Q, Builder))
2842       return X;
2843     if (Value *X = foldUnsignedUnderflowCheck(RHS, LHS, IsAnd, Q, Builder))
2844       return X;
2845   }
2846 
2847   if (Value *X = foldEqOfParts(LHS, RHS, IsAnd))
2848     return X;
2849 
2850   // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
2851   // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
2852   // TODO: Remove this when foldLogOpOfMaskedICmps can handle undefs.
2853   if (!IsLogical && PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
2854       PredL == PredR && match(LHS1, m_ZeroInt()) && match(RHS1, m_ZeroInt()) &&
2855       LHS0->getType() == RHS0->getType()) {
2856     Value *NewOr = Builder.CreateOr(LHS0, RHS0);
2857     return Builder.CreateICmp(PredL, NewOr,
2858                               Constant::getNullValue(NewOr->getType()));
2859   }
2860 
2861   // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
2862   if (!LHSC || !RHSC)
2863     return nullptr;
2864 
2865   // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
2866   // (trunc x) != C1 | (and x, CA) != C2 -> (and x, CA|CMAX) != C1|C2
2867   // where CMAX is the all ones value for the truncated type,
2868   // iff the lower bits of C2 and CA are zero.
2869   if (PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
2870       PredL == PredR && LHS->hasOneUse() && RHS->hasOneUse()) {
2871     Value *V;
2872     const APInt *AndC, *SmallC = nullptr, *BigC = nullptr;
2873 
2874     // (trunc x) == C1 & (and x, CA) == C2
2875     // (and x, CA) == C2 & (trunc x) == C1
2876     if (match(RHS0, m_Trunc(m_Value(V))) &&
2877         match(LHS0, m_And(m_Specific(V), m_APInt(AndC)))) {
2878       SmallC = RHSC;
2879       BigC = LHSC;
2880     } else if (match(LHS0, m_Trunc(m_Value(V))) &&
2881                match(RHS0, m_And(m_Specific(V), m_APInt(AndC)))) {
2882       SmallC = LHSC;
2883       BigC = RHSC;
2884     }
2885 
2886     if (SmallC && BigC) {
2887       unsigned BigBitSize = BigC->getBitWidth();
2888       unsigned SmallBitSize = SmallC->getBitWidth();
2889 
2890       // Check that the low bits are zero.
2891       APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
2892       if ((Low & *AndC).isZero() && (Low & *BigC).isZero()) {
2893         Value *NewAnd = Builder.CreateAnd(V, Low | *AndC);
2894         APInt N = SmallC->zext(BigBitSize) | *BigC;
2895         Value *NewVal = ConstantInt::get(NewAnd->getType(), N);
2896         return Builder.CreateICmp(PredL, NewAnd, NewVal);
2897       }
2898     }
2899   }
2900 
2901   // Match naive pattern (and its inverted form) for checking if two values
2902   // share same sign. An example of the pattern:
2903   // (icmp slt (X & Y), 0) | (icmp sgt (X | Y), -1) -> (icmp sgt (X ^ Y), -1)
2904   // Inverted form (example):
2905   // (icmp slt (X | Y), 0) & (icmp sgt (X & Y), -1) -> (icmp slt (X ^ Y), 0)
2906   bool TrueIfSignedL, TrueIfSignedR;
2907   if (isSignBitCheck(PredL, *LHSC, TrueIfSignedL) &&
2908       isSignBitCheck(PredR, *RHSC, TrueIfSignedR) &&
2909       (RHS->hasOneUse() || LHS->hasOneUse())) {
2910     Value *X, *Y;
2911     if (IsAnd) {
2912       if ((TrueIfSignedL && !TrueIfSignedR &&
2913            match(LHS0, m_Or(m_Value(X), m_Value(Y))) &&
2914            match(RHS0, m_c_And(m_Specific(X), m_Specific(Y)))) ||
2915           (!TrueIfSignedL && TrueIfSignedR &&
2916            match(LHS0, m_And(m_Value(X), m_Value(Y))) &&
2917            match(RHS0, m_c_Or(m_Specific(X), m_Specific(Y))))) {
2918         Value *NewXor = Builder.CreateXor(X, Y);
2919         return Builder.CreateIsNeg(NewXor);
2920       }
2921     } else {
2922       if ((TrueIfSignedL && !TrueIfSignedR &&
2923             match(LHS0, m_And(m_Value(X), m_Value(Y))) &&
2924             match(RHS0, m_c_Or(m_Specific(X), m_Specific(Y)))) ||
2925           (!TrueIfSignedL && TrueIfSignedR &&
2926            match(LHS0, m_Or(m_Value(X), m_Value(Y))) &&
2927            match(RHS0, m_c_And(m_Specific(X), m_Specific(Y))))) {
2928         Value *NewXor = Builder.CreateXor(X, Y);
2929         return Builder.CreateIsNotNeg(NewXor);
2930       }
2931     }
2932   }
2933 
2934   return foldAndOrOfICmpsUsingRanges(LHS, RHS, IsAnd);
2935 }
2936 
2937 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
2938 // here. We should standardize that construct where it is needed or choose some
2939 // other way to ensure that commutated variants of patterns are not missed.
2940 Instruction *InstCombinerImpl::visitOr(BinaryOperator &I) {
2941   if (Value *V = simplifyOrInst(I.getOperand(0), I.getOperand(1),
2942                                 SQ.getWithInstruction(&I)))
2943     return replaceInstUsesWith(I, V);
2944 
2945   if (SimplifyAssociativeOrCommutative(I))
2946     return &I;
2947 
2948   if (Instruction *X = foldVectorBinop(I))
2949     return X;
2950 
2951   if (Instruction *Phi = foldBinopWithPhiOperands(I))
2952     return Phi;
2953 
2954   // See if we can simplify any instructions used by the instruction whose sole
2955   // purpose is to compute bits we don't care about.
2956   if (SimplifyDemandedInstructionBits(I))
2957     return &I;
2958 
2959   // Do this before using distributive laws to catch simple and/or/not patterns.
2960   if (Instruction *Xor = foldOrToXor(I, Builder))
2961     return Xor;
2962 
2963   if (Instruction *X = foldComplexAndOrPatterns(I, Builder))
2964     return X;
2965 
2966   // (A&B)|(A&C) -> A&(B|C) etc
2967   if (Value *V = foldUsingDistributiveLaws(I))
2968     return replaceInstUsesWith(I, V);
2969 
2970   if (Value *V = SimplifyBSwap(I, Builder))
2971     return replaceInstUsesWith(I, V);
2972 
2973   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2974   Type *Ty = I.getType();
2975   if (Ty->isIntOrIntVectorTy(1)) {
2976     if (auto *SI0 = dyn_cast<SelectInst>(Op0)) {
2977       if (auto *I =
2978               foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ false))
2979         return I;
2980     }
2981     if (auto *SI1 = dyn_cast<SelectInst>(Op1)) {
2982       if (auto *I =
2983               foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ false))
2984         return I;
2985     }
2986   }
2987 
2988   if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
2989     return FoldedLogic;
2990 
2991   if (Instruction *BitOp = matchBSwapOrBitReverse(I, /*MatchBSwaps*/ true,
2992                                                   /*MatchBitReversals*/ true))
2993     return BitOp;
2994 
2995   if (Instruction *Funnel = matchFunnelShift(I, *this))
2996     return Funnel;
2997 
2998   if (Instruction *Concat = matchOrConcat(I, Builder))
2999     return replaceInstUsesWith(I, Concat);
3000 
3001   Value *X, *Y;
3002   const APInt *CV;
3003   if (match(&I, m_c_Or(m_OneUse(m_Xor(m_Value(X), m_APInt(CV))), m_Value(Y))) &&
3004       !CV->isAllOnes() && MaskedValueIsZero(Y, *CV, 0, &I)) {
3005     // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0
3006     // The check for a 'not' op is for efficiency (if Y is known zero --> ~X).
3007     Value *Or = Builder.CreateOr(X, Y);
3008     return BinaryOperator::CreateXor(Or, ConstantInt::get(Ty, *CV));
3009   }
3010 
3011   // If the operands have no common bits set:
3012   // or (mul X, Y), X --> add (mul X, Y), X --> mul X, (Y + 1)
3013   if (match(&I,
3014             m_c_Or(m_OneUse(m_Mul(m_Value(X), m_Value(Y))), m_Deferred(X))) &&
3015       haveNoCommonBitsSet(Op0, Op1, DL)) {
3016     Value *IncrementY = Builder.CreateAdd(Y, ConstantInt::get(Ty, 1));
3017     return BinaryOperator::CreateMul(X, IncrementY);
3018   }
3019 
3020   // X | (X ^ Y) --> X | Y (4 commuted patterns)
3021   if (match(&I, m_c_Or(m_Value(X), m_c_Xor(m_Deferred(X), m_Value(Y)))))
3022     return BinaryOperator::CreateOr(X, Y);
3023 
3024   // (A & C) | (B & D)
3025   Value *A, *B, *C, *D;
3026   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
3027       match(Op1, m_And(m_Value(B), m_Value(D)))) {
3028 
3029     // (A & C0) | (B & C1)
3030     const APInt *C0, *C1;
3031     if (match(C, m_APInt(C0)) && match(D, m_APInt(C1))) {
3032       Value *X;
3033       if (*C0 == ~*C1) {
3034         // ((X | B) & MaskC) | (B & ~MaskC) -> (X & MaskC) | B
3035         if (match(A, m_c_Or(m_Value(X), m_Specific(B))))
3036           return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C0), B);
3037         // (A & MaskC) | ((X | A) & ~MaskC) -> (X & ~MaskC) | A
3038         if (match(B, m_c_Or(m_Specific(A), m_Value(X))))
3039           return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C1), A);
3040 
3041         // ((X ^ B) & MaskC) | (B & ~MaskC) -> (X & MaskC) ^ B
3042         if (match(A, m_c_Xor(m_Value(X), m_Specific(B))))
3043           return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C0), B);
3044         // (A & MaskC) | ((X ^ A) & ~MaskC) -> (X & ~MaskC) ^ A
3045         if (match(B, m_c_Xor(m_Specific(A), m_Value(X))))
3046           return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C1), A);
3047       }
3048 
3049       if ((*C0 & *C1).isZero()) {
3050         // ((X | B) & C0) | (B & C1) --> (X | B) & (C0 | C1)
3051         // iff (C0 & C1) == 0 and (X & ~C0) == 0
3052         if (match(A, m_c_Or(m_Value(X), m_Specific(B))) &&
3053             MaskedValueIsZero(X, ~*C0, 0, &I)) {
3054           Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
3055           return BinaryOperator::CreateAnd(A, C01);
3056         }
3057         // (A & C0) | ((X | A) & C1) --> (X | A) & (C0 | C1)
3058         // iff (C0 & C1) == 0 and (X & ~C1) == 0
3059         if (match(B, m_c_Or(m_Value(X), m_Specific(A))) &&
3060             MaskedValueIsZero(X, ~*C1, 0, &I)) {
3061           Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
3062           return BinaryOperator::CreateAnd(B, C01);
3063         }
3064         // ((X | C2) & C0) | ((X | C3) & C1) --> (X | C2 | C3) & (C0 | C1)
3065         // iff (C0 & C1) == 0 and (C2 & ~C0) == 0 and (C3 & ~C1) == 0.
3066         const APInt *C2, *C3;
3067         if (match(A, m_Or(m_Value(X), m_APInt(C2))) &&
3068             match(B, m_Or(m_Specific(X), m_APInt(C3))) &&
3069             (*C2 & ~*C0).isZero() && (*C3 & ~*C1).isZero()) {
3070           Value *Or = Builder.CreateOr(X, *C2 | *C3, "bitfield");
3071           Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
3072           return BinaryOperator::CreateAnd(Or, C01);
3073         }
3074       }
3075     }
3076 
3077     // Don't try to form a select if it's unlikely that we'll get rid of at
3078     // least one of the operands. A select is generally more expensive than the
3079     // 'or' that it is replacing.
3080     if (Op0->hasOneUse() || Op1->hasOneUse()) {
3081       // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants.
3082       if (Value *V = matchSelectFromAndOr(A, C, B, D))
3083         return replaceInstUsesWith(I, V);
3084       if (Value *V = matchSelectFromAndOr(A, C, D, B))
3085         return replaceInstUsesWith(I, V);
3086       if (Value *V = matchSelectFromAndOr(C, A, B, D))
3087         return replaceInstUsesWith(I, V);
3088       if (Value *V = matchSelectFromAndOr(C, A, D, B))
3089         return replaceInstUsesWith(I, V);
3090       if (Value *V = matchSelectFromAndOr(B, D, A, C))
3091         return replaceInstUsesWith(I, V);
3092       if (Value *V = matchSelectFromAndOr(B, D, C, A))
3093         return replaceInstUsesWith(I, V);
3094       if (Value *V = matchSelectFromAndOr(D, B, A, C))
3095         return replaceInstUsesWith(I, V);
3096       if (Value *V = matchSelectFromAndOr(D, B, C, A))
3097         return replaceInstUsesWith(I, V);
3098     }
3099   }
3100 
3101   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
3102       match(Op1, m_Not(m_Or(m_Value(B), m_Value(D)))) &&
3103       (Op0->hasOneUse() || Op1->hasOneUse())) {
3104     // (Cond & C) | ~(Cond | D) -> Cond ? C : ~D
3105     if (Value *V = matchSelectFromAndOr(A, C, B, D, true))
3106       return replaceInstUsesWith(I, V);
3107     if (Value *V = matchSelectFromAndOr(A, C, D, B, true))
3108       return replaceInstUsesWith(I, V);
3109     if (Value *V = matchSelectFromAndOr(C, A, B, D, true))
3110       return replaceInstUsesWith(I, V);
3111     if (Value *V = matchSelectFromAndOr(C, A, D, B, true))
3112       return replaceInstUsesWith(I, V);
3113   }
3114 
3115   // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
3116   if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
3117     if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
3118       return BinaryOperator::CreateOr(Op0, C);
3119 
3120   // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
3121   if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
3122     if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
3123       return BinaryOperator::CreateOr(Op1, C);
3124 
3125   // ((A & B) ^ C) | B -> C | B
3126   if (match(Op0, m_c_Xor(m_c_And(m_Value(A), m_Specific(Op1)), m_Value(C))))
3127     return BinaryOperator::CreateOr(C, Op1);
3128 
3129   // B | ((A & B) ^ C) -> B | C
3130   if (match(Op1, m_c_Xor(m_c_And(m_Value(A), m_Specific(Op0)), m_Value(C))))
3131     return BinaryOperator::CreateOr(Op0, C);
3132 
3133   // ((B | C) & A) | B -> B | (A & C)
3134   if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
3135     return BinaryOperator::CreateOr(Op1, Builder.CreateAnd(A, C));
3136 
3137   if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
3138     return DeMorgan;
3139 
3140   // Canonicalize xor to the RHS.
3141   bool SwappedForXor = false;
3142   if (match(Op0, m_Xor(m_Value(), m_Value()))) {
3143     std::swap(Op0, Op1);
3144     SwappedForXor = true;
3145   }
3146 
3147   if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
3148     // (A | ?) | (A ^ B) --> (A | ?) | B
3149     // (B | ?) | (A ^ B) --> (B | ?) | A
3150     if (match(Op0, m_c_Or(m_Specific(A), m_Value())))
3151       return BinaryOperator::CreateOr(Op0, B);
3152     if (match(Op0, m_c_Or(m_Specific(B), m_Value())))
3153       return BinaryOperator::CreateOr(Op0, A);
3154 
3155     // (A & B) | (A ^ B) --> A | B
3156     // (B & A) | (A ^ B) --> A | B
3157     if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
3158         match(Op0, m_And(m_Specific(B), m_Specific(A))))
3159       return BinaryOperator::CreateOr(A, B);
3160 
3161     // ~A | (A ^ B) --> ~(A & B)
3162     // ~B | (A ^ B) --> ~(A & B)
3163     // The swap above should always make Op0 the 'not'.
3164     if ((Op0->hasOneUse() || Op1->hasOneUse()) &&
3165         (match(Op0, m_Not(m_Specific(A))) || match(Op0, m_Not(m_Specific(B)))))
3166       return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
3167 
3168     // Same as above, but peek through an 'and' to the common operand:
3169     // ~(A & ?) | (A ^ B) --> ~((A & ?) & B)
3170     // ~(B & ?) | (A ^ B) --> ~((B & ?) & A)
3171     Instruction *And;
3172     if ((Op0->hasOneUse() || Op1->hasOneUse()) &&
3173         match(Op0, m_Not(m_CombineAnd(m_Instruction(And),
3174                                       m_c_And(m_Specific(A), m_Value())))))
3175       return BinaryOperator::CreateNot(Builder.CreateAnd(And, B));
3176     if ((Op0->hasOneUse() || Op1->hasOneUse()) &&
3177         match(Op0, m_Not(m_CombineAnd(m_Instruction(And),
3178                                       m_c_And(m_Specific(B), m_Value())))))
3179       return BinaryOperator::CreateNot(Builder.CreateAnd(And, A));
3180 
3181     // (~A | C) | (A ^ B) --> ~(A & B) | C
3182     // (~B | C) | (A ^ B) --> ~(A & B) | C
3183     if (Op0->hasOneUse() && Op1->hasOneUse() &&
3184         (match(Op0, m_c_Or(m_Not(m_Specific(A)), m_Value(C))) ||
3185          match(Op0, m_c_Or(m_Not(m_Specific(B)), m_Value(C))))) {
3186       Value *Nand = Builder.CreateNot(Builder.CreateAnd(A, B), "nand");
3187       return BinaryOperator::CreateOr(Nand, C);
3188     }
3189 
3190     // A | (~A ^ B) --> ~B | A
3191     // B | (A ^ ~B) --> ~A | B
3192     if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
3193       Value *NotB = Builder.CreateNot(B, B->getName() + ".not");
3194       return BinaryOperator::CreateOr(NotB, Op0);
3195     }
3196     if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
3197       Value *NotA = Builder.CreateNot(A, A->getName() + ".not");
3198       return BinaryOperator::CreateOr(NotA, Op0);
3199     }
3200   }
3201 
3202   // A | ~(A | B) -> A | ~B
3203   // A | ~(A ^ B) -> A | ~B
3204   if (match(Op1, m_Not(m_Value(A))))
3205     if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
3206       if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
3207           Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
3208                                B->getOpcode() == Instruction::Xor)) {
3209         Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
3210                                                  B->getOperand(0);
3211         Value *Not = Builder.CreateNot(NotOp, NotOp->getName() + ".not");
3212         return BinaryOperator::CreateOr(Not, Op0);
3213       }
3214 
3215   if (SwappedForXor)
3216     std::swap(Op0, Op1);
3217 
3218   {
3219     ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
3220     ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
3221     if (LHS && RHS)
3222       if (Value *Res = foldAndOrOfICmps(LHS, RHS, I, /* IsAnd */ false))
3223         return replaceInstUsesWith(I, Res);
3224 
3225     // TODO: Make this recursive; it's a little tricky because an arbitrary
3226     // number of 'or' instructions might have to be created.
3227     Value *X, *Y;
3228     if (LHS && match(Op1, m_OneUse(m_LogicalOr(m_Value(X), m_Value(Y))))) {
3229       bool IsLogical = isa<SelectInst>(Op1);
3230       // LHS | (X || Y) --> (LHS || X) || Y
3231       if (auto *Cmp = dyn_cast<ICmpInst>(X))
3232         if (Value *Res =
3233                 foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ false, IsLogical))
3234           return replaceInstUsesWith(I, IsLogical
3235                                             ? Builder.CreateLogicalOr(Res, Y)
3236                                             : Builder.CreateOr(Res, Y));
3237       // LHS | (X || Y) --> X || (LHS | Y)
3238       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
3239         if (Value *Res = foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ false,
3240                                           /* IsLogical */ false))
3241           return replaceInstUsesWith(I, IsLogical
3242                                             ? Builder.CreateLogicalOr(X, Res)
3243                                             : Builder.CreateOr(X, Res));
3244     }
3245     if (RHS && match(Op0, m_OneUse(m_LogicalOr(m_Value(X), m_Value(Y))))) {
3246       bool IsLogical = isa<SelectInst>(Op0);
3247       // (X || Y) | RHS --> (X || RHS) || Y
3248       if (auto *Cmp = dyn_cast<ICmpInst>(X))
3249         if (Value *Res =
3250                 foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ false, IsLogical))
3251           return replaceInstUsesWith(I, IsLogical
3252                                             ? Builder.CreateLogicalOr(Res, Y)
3253                                             : Builder.CreateOr(Res, Y));
3254       // (X || Y) | RHS --> X || (Y | RHS)
3255       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
3256         if (Value *Res = foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ false,
3257                                           /* IsLogical */ false))
3258           return replaceInstUsesWith(I, IsLogical
3259                                             ? Builder.CreateLogicalOr(X, Res)
3260                                             : Builder.CreateOr(X, Res));
3261     }
3262   }
3263 
3264   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
3265     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
3266       if (Value *Res = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ false))
3267         return replaceInstUsesWith(I, Res);
3268 
3269   if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
3270     return FoldedFCmps;
3271 
3272   if (Instruction *CastedOr = foldCastedBitwiseLogic(I))
3273     return CastedOr;
3274 
3275   if (Instruction *Sel = foldBinopOfSextBoolToSelect(I))
3276     return Sel;
3277 
3278   // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>.
3279   // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold
3280   //       with binop identity constant. But creating a select with non-constant
3281   //       arm may not be reversible due to poison semantics. Is that a good
3282   //       canonicalization?
3283   if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
3284       A->getType()->isIntOrIntVectorTy(1))
3285     return SelectInst::Create(A, ConstantInt::getAllOnesValue(Ty), Op1);
3286   if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
3287       A->getType()->isIntOrIntVectorTy(1))
3288     return SelectInst::Create(A, ConstantInt::getAllOnesValue(Ty), Op0);
3289 
3290   // Note: If we've gotten to the point of visiting the outer OR, then the
3291   // inner one couldn't be simplified.  If it was a constant, then it won't
3292   // be simplified by a later pass either, so we try swapping the inner/outer
3293   // ORs in the hopes that we'll be able to simplify it this way.
3294   // (X|C) | V --> (X|V) | C
3295   ConstantInt *CI;
3296   if (Op0->hasOneUse() && !match(Op1, m_ConstantInt()) &&
3297       match(Op0, m_Or(m_Value(A), m_ConstantInt(CI)))) {
3298     Value *Inner = Builder.CreateOr(A, Op1);
3299     Inner->takeName(Op0);
3300     return BinaryOperator::CreateOr(Inner, CI);
3301   }
3302 
3303   // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
3304   // Since this OR statement hasn't been optimized further yet, we hope
3305   // that this transformation will allow the new ORs to be optimized.
3306   {
3307     Value *X = nullptr, *Y = nullptr;
3308     if (Op0->hasOneUse() && Op1->hasOneUse() &&
3309         match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
3310         match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
3311       Value *orTrue = Builder.CreateOr(A, C);
3312       Value *orFalse = Builder.CreateOr(B, D);
3313       return SelectInst::Create(X, orTrue, orFalse);
3314     }
3315   }
3316 
3317   // or(ashr(subNSW(Y, X), ScalarSizeInBits(Y) - 1), X)  --> X s> Y ? -1 : X.
3318   {
3319     Value *X, *Y;
3320     if (match(&I, m_c_Or(m_OneUse(m_AShr(
3321                              m_NSWSub(m_Value(Y), m_Value(X)),
3322                              m_SpecificInt(Ty->getScalarSizeInBits() - 1))),
3323                          m_Deferred(X)))) {
3324       Value *NewICmpInst = Builder.CreateICmpSGT(X, Y);
3325       Value *AllOnes = ConstantInt::getAllOnesValue(Ty);
3326       return SelectInst::Create(NewICmpInst, AllOnes, X);
3327     }
3328   }
3329 
3330   if (Instruction *V =
3331           canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
3332     return V;
3333 
3334   CmpInst::Predicate Pred;
3335   Value *Mul, *Ov, *MulIsNotZero, *UMulWithOv;
3336   // Check if the OR weakens the overflow condition for umul.with.overflow by
3337   // treating any non-zero result as overflow. In that case, we overflow if both
3338   // umul.with.overflow operands are != 0, as in that case the result can only
3339   // be 0, iff the multiplication overflows.
3340   if (match(&I,
3341             m_c_Or(m_CombineAnd(m_ExtractValue<1>(m_Value(UMulWithOv)),
3342                                 m_Value(Ov)),
3343                    m_CombineAnd(m_ICmp(Pred,
3344                                        m_CombineAnd(m_ExtractValue<0>(
3345                                                         m_Deferred(UMulWithOv)),
3346                                                     m_Value(Mul)),
3347                                        m_ZeroInt()),
3348                                 m_Value(MulIsNotZero)))) &&
3349       (Ov->hasOneUse() || (MulIsNotZero->hasOneUse() && Mul->hasOneUse())) &&
3350       Pred == CmpInst::ICMP_NE) {
3351     Value *A, *B;
3352     if (match(UMulWithOv, m_Intrinsic<Intrinsic::umul_with_overflow>(
3353                               m_Value(A), m_Value(B)))) {
3354       Value *NotNullA = Builder.CreateIsNotNull(A);
3355       Value *NotNullB = Builder.CreateIsNotNull(B);
3356       return BinaryOperator::CreateAnd(NotNullA, NotNullB);
3357     }
3358   }
3359 
3360   // (~x) | y  -->  ~(x & (~y))  iff that gets rid of inversions
3361   if (sinkNotIntoOtherHandOfLogicalOp(I))
3362     return &I;
3363 
3364   // Improve "get low bit mask up to and including bit X" pattern:
3365   //   (1 << X) | ((1 << X) + -1)  -->  -1 l>> (bitwidth(x) - 1 - X)
3366   if (match(&I, m_c_Or(m_Add(m_Shl(m_One(), m_Value(X)), m_AllOnes()),
3367                        m_Shl(m_One(), m_Deferred(X)))) &&
3368       match(&I, m_c_Or(m_OneUse(m_Value()), m_Value()))) {
3369     Value *Sub = Builder.CreateSub(
3370         ConstantInt::get(Ty, Ty->getScalarSizeInBits() - 1), X);
3371     return BinaryOperator::CreateLShr(Constant::getAllOnesValue(Ty), Sub);
3372   }
3373 
3374   // An or recurrence w/loop invariant step is equivelent to (or start, step)
3375   PHINode *PN = nullptr;
3376   Value *Start = nullptr, *Step = nullptr;
3377   if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN))
3378     return replaceInstUsesWith(I, Builder.CreateOr(Start, Step));
3379 
3380   // (A & B) | (C | D) or (C | D) | (A & B)
3381   // Can be combined if C or D is of type (A/B & X)
3382   if (match(&I, m_c_Or(m_OneUse(m_And(m_Value(A), m_Value(B))),
3383                        m_OneUse(m_Or(m_Value(C), m_Value(D)))))) {
3384     // (A & B) | (C | ?) -> C | (? | (A & B))
3385     // (A & B) | (C | ?) -> C | (? | (A & B))
3386     // (A & B) | (C | ?) -> C | (? | (A & B))
3387     // (A & B) | (C | ?) -> C | (? | (A & B))
3388     // (C | ?) | (A & B) -> C | (? | (A & B))
3389     // (C | ?) | (A & B) -> C | (? | (A & B))
3390     // (C | ?) | (A & B) -> C | (? | (A & B))
3391     // (C | ?) | (A & B) -> C | (? | (A & B))
3392     if (match(D, m_OneUse(m_c_And(m_Specific(A), m_Value()))) ||
3393         match(D, m_OneUse(m_c_And(m_Specific(B), m_Value()))))
3394       return BinaryOperator::CreateOr(
3395           C, Builder.CreateOr(D, Builder.CreateAnd(A, B)));
3396     // (A & B) | (? | D) -> (? | (A & B)) | D
3397     // (A & B) | (? | D) -> (? | (A & B)) | D
3398     // (A & B) | (? | D) -> (? | (A & B)) | D
3399     // (A & B) | (? | D) -> (? | (A & B)) | D
3400     // (? | D) | (A & B) -> (? | (A & B)) | D
3401     // (? | D) | (A & B) -> (? | (A & B)) | D
3402     // (? | D) | (A & B) -> (? | (A & B)) | D
3403     // (? | D) | (A & B) -> (? | (A & B)) | D
3404     if (match(C, m_OneUse(m_c_And(m_Specific(A), m_Value()))) ||
3405         match(C, m_OneUse(m_c_And(m_Specific(B), m_Value()))))
3406       return BinaryOperator::CreateOr(
3407           Builder.CreateOr(C, Builder.CreateAnd(A, B)), D);
3408   }
3409 
3410   if (Instruction *R = reassociateForUses(I, Builder))
3411     return R;
3412 
3413   if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder))
3414     return Canonicalized;
3415 
3416   if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1))
3417     return Folded;
3418 
3419   return nullptr;
3420 }
3421 
3422 /// A ^ B can be specified using other logic ops in a variety of patterns. We
3423 /// can fold these early and efficiently by morphing an existing instruction.
3424 static Instruction *foldXorToXor(BinaryOperator &I,
3425                                  InstCombiner::BuilderTy &Builder) {
3426   assert(I.getOpcode() == Instruction::Xor);
3427   Value *Op0 = I.getOperand(0);
3428   Value *Op1 = I.getOperand(1);
3429   Value *A, *B;
3430 
3431   // There are 4 commuted variants for each of the basic patterns.
3432 
3433   // (A & B) ^ (A | B) -> A ^ B
3434   // (A & B) ^ (B | A) -> A ^ B
3435   // (A | B) ^ (A & B) -> A ^ B
3436   // (A | B) ^ (B & A) -> A ^ B
3437   if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)),
3438                         m_c_Or(m_Deferred(A), m_Deferred(B)))))
3439     return BinaryOperator::CreateXor(A, B);
3440 
3441   // (A | ~B) ^ (~A | B) -> A ^ B
3442   // (~B | A) ^ (~A | B) -> A ^ B
3443   // (~A | B) ^ (A | ~B) -> A ^ B
3444   // (B | ~A) ^ (A | ~B) -> A ^ B
3445   if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))),
3446                       m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
3447     return BinaryOperator::CreateXor(A, B);
3448 
3449   // (A & ~B) ^ (~A & B) -> A ^ B
3450   // (~B & A) ^ (~A & B) -> A ^ B
3451   // (~A & B) ^ (A & ~B) -> A ^ B
3452   // (B & ~A) ^ (A & ~B) -> A ^ B
3453   if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))),
3454                       m_c_And(m_Not(m_Deferred(A)), m_Deferred(B)))))
3455     return BinaryOperator::CreateXor(A, B);
3456 
3457   // For the remaining cases we need to get rid of one of the operands.
3458   if (!Op0->hasOneUse() && !Op1->hasOneUse())
3459     return nullptr;
3460 
3461   // (A | B) ^ ~(A & B) -> ~(A ^ B)
3462   // (A | B) ^ ~(B & A) -> ~(A ^ B)
3463   // (A & B) ^ ~(A | B) -> ~(A ^ B)
3464   // (A & B) ^ ~(B | A) -> ~(A ^ B)
3465   // Complexity sorting ensures the not will be on the right side.
3466   if ((match(Op0, m_Or(m_Value(A), m_Value(B))) &&
3467        match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) ||
3468       (match(Op0, m_And(m_Value(A), m_Value(B))) &&
3469        match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))))
3470     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
3471 
3472   return nullptr;
3473 }
3474 
3475 Value *InstCombinerImpl::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS,
3476                                         BinaryOperator &I) {
3477   assert(I.getOpcode() == Instruction::Xor && I.getOperand(0) == LHS &&
3478          I.getOperand(1) == RHS && "Should be 'xor' with these operands");
3479 
3480   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
3481   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
3482   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
3483 
3484   if (predicatesFoldable(PredL, PredR)) {
3485     if (LHS0 == RHS1 && LHS1 == RHS0) {
3486       std::swap(LHS0, LHS1);
3487       PredL = ICmpInst::getSwappedPredicate(PredL);
3488     }
3489     if (LHS0 == RHS0 && LHS1 == RHS1) {
3490       // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
3491       unsigned Code = getICmpCode(PredL) ^ getICmpCode(PredR);
3492       bool IsSigned = LHS->isSigned() || RHS->isSigned();
3493       return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder);
3494     }
3495   }
3496 
3497   // TODO: This can be generalized to compares of non-signbits using
3498   // decomposeBitTestICmp(). It could be enhanced more by using (something like)
3499   // foldLogOpOfMaskedICmps().
3500   const APInt *LC, *RC;
3501   if (match(LHS1, m_APInt(LC)) && match(RHS1, m_APInt(RC)) &&
3502       LHS0->getType() == RHS0->getType() &&
3503       LHS0->getType()->isIntOrIntVectorTy() &&
3504       (LHS->hasOneUse() || RHS->hasOneUse())) {
3505     // Convert xor of signbit tests to signbit test of xor'd values:
3506     // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0
3507     // (X <  0) ^ (Y <  0) --> (X ^ Y) < 0
3508     // (X > -1) ^ (Y <  0) --> (X ^ Y) > -1
3509     // (X <  0) ^ (Y > -1) --> (X ^ Y) > -1
3510     bool TrueIfSignedL, TrueIfSignedR;
3511     if (isSignBitCheck(PredL, *LC, TrueIfSignedL) &&
3512         isSignBitCheck(PredR, *RC, TrueIfSignedR)) {
3513       Value *XorLR = Builder.CreateXor(LHS0, RHS0);
3514       return TrueIfSignedL == TrueIfSignedR ? Builder.CreateIsNeg(XorLR) :
3515                                               Builder.CreateIsNotNeg(XorLR);
3516     }
3517 
3518     // (X > C) ^ (X < C + 2) --> X != C + 1
3519     // (X < C + 2) ^ (X > C) --> X != C + 1
3520     // Considering the correctness of this pattern, we should avoid that C is
3521     // non-negative and C + 2 is negative, although it will be matched by other
3522     // patterns.
3523     const APInt *C1, *C2;
3524     if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_APInt(C1)) &&
3525          PredR == CmpInst::ICMP_SLT && match(RHS1, m_APInt(C2))) ||
3526         (PredL == CmpInst::ICMP_SLT && match(LHS1, m_APInt(C2)) &&
3527          PredR == CmpInst::ICMP_SGT && match(RHS1, m_APInt(C1))))
3528       if (LHS0 == RHS0 && *C1 + 2 == *C2 &&
3529           (C1->isNegative() || C2->isNonNegative()))
3530         return Builder.CreateICmpNE(LHS0,
3531                                     ConstantInt::get(LHS0->getType(), *C1 + 1));
3532   }
3533 
3534   // Instead of trying to imitate the folds for and/or, decompose this 'xor'
3535   // into those logic ops. That is, try to turn this into an and-of-icmps
3536   // because we have many folds for that pattern.
3537   //
3538   // This is based on a truth table definition of xor:
3539   // X ^ Y --> (X | Y) & !(X & Y)
3540   if (Value *OrICmp = simplifyBinOp(Instruction::Or, LHS, RHS, SQ)) {
3541     // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y).
3542     // TODO: If OrICmp is false, the whole thing is false (InstSimplify?).
3543     if (Value *AndICmp = simplifyBinOp(Instruction::And, LHS, RHS, SQ)) {
3544       // TODO: Independently handle cases where the 'and' side is a constant.
3545       ICmpInst *X = nullptr, *Y = nullptr;
3546       if (OrICmp == LHS && AndICmp == RHS) {
3547         // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS  --> X & !Y
3548         X = LHS;
3549         Y = RHS;
3550       }
3551       if (OrICmp == RHS && AndICmp == LHS) {
3552         // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS  --> !Y & X
3553         X = RHS;
3554         Y = LHS;
3555       }
3556       if (X && Y && (Y->hasOneUse() || canFreelyInvertAllUsersOf(Y, &I))) {
3557         // Invert the predicate of 'Y', thus inverting its output.
3558         Y->setPredicate(Y->getInversePredicate());
3559         // So, are there other uses of Y?
3560         if (!Y->hasOneUse()) {
3561           // We need to adapt other uses of Y though. Get a value that matches
3562           // the original value of Y before inversion. While this increases
3563           // immediate instruction count, we have just ensured that all the
3564           // users are freely-invertible, so that 'not' *will* get folded away.
3565           BuilderTy::InsertPointGuard Guard(Builder);
3566           // Set insertion point to right after the Y.
3567           Builder.SetInsertPoint(Y->getParent(), ++(Y->getIterator()));
3568           Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3569           // Replace all uses of Y (excluding the one in NotY!) with NotY.
3570           Worklist.pushUsersToWorkList(*Y);
3571           Y->replaceUsesWithIf(NotY,
3572                                [NotY](Use &U) { return U.getUser() != NotY; });
3573         }
3574         // All done.
3575         return Builder.CreateAnd(LHS, RHS);
3576       }
3577     }
3578   }
3579 
3580   return nullptr;
3581 }
3582 
3583 /// If we have a masked merge, in the canonical form of:
3584 /// (assuming that A only has one use.)
3585 ///   |        A  |  |B|
3586 ///   ((x ^ y) & M) ^ y
3587 ///    |  D  |
3588 /// * If M is inverted:
3589 ///      |  D  |
3590 ///     ((x ^ y) & ~M) ^ y
3591 ///   We can canonicalize by swapping the final xor operand
3592 ///   to eliminate the 'not' of the mask.
3593 ///     ((x ^ y) & M) ^ x
3594 /// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops
3595 ///   because that shortens the dependency chain and improves analysis:
3596 ///     (x & M) | (y & ~M)
3597 static Instruction *visitMaskedMerge(BinaryOperator &I,
3598                                      InstCombiner::BuilderTy &Builder) {
3599   Value *B, *X, *D;
3600   Value *M;
3601   if (!match(&I, m_c_Xor(m_Value(B),
3602                          m_OneUse(m_c_And(
3603                              m_CombineAnd(m_c_Xor(m_Deferred(B), m_Value(X)),
3604                                           m_Value(D)),
3605                              m_Value(M))))))
3606     return nullptr;
3607 
3608   Value *NotM;
3609   if (match(M, m_Not(m_Value(NotM)))) {
3610     // De-invert the mask and swap the value in B part.
3611     Value *NewA = Builder.CreateAnd(D, NotM);
3612     return BinaryOperator::CreateXor(NewA, X);
3613   }
3614 
3615   Constant *C;
3616   if (D->hasOneUse() && match(M, m_Constant(C))) {
3617     // Propagating undef is unsafe. Clamp undef elements to -1.
3618     Type *EltTy = C->getType()->getScalarType();
3619     C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy));
3620     // Unfold.
3621     Value *LHS = Builder.CreateAnd(X, C);
3622     Value *NotC = Builder.CreateNot(C);
3623     Value *RHS = Builder.CreateAnd(B, NotC);
3624     return BinaryOperator::CreateOr(LHS, RHS);
3625   }
3626 
3627   return nullptr;
3628 }
3629 
3630 // Transform
3631 //   ~(x ^ y)
3632 // into:
3633 //   (~x) ^ y
3634 // or into
3635 //   x ^ (~y)
3636 static Instruction *sinkNotIntoXor(BinaryOperator &I, Value *X, Value *Y,
3637                                    InstCombiner::BuilderTy &Builder) {
3638   // We only want to do the transform if it is free to do.
3639   if (InstCombiner::isFreeToInvert(X, X->hasOneUse())) {
3640     // Ok, good.
3641   } else if (InstCombiner::isFreeToInvert(Y, Y->hasOneUse())) {
3642     std::swap(X, Y);
3643   } else
3644     return nullptr;
3645 
3646   Value *NotX = Builder.CreateNot(X, X->getName() + ".not");
3647   return BinaryOperator::CreateXor(NotX, Y, I.getName() + ".demorgan");
3648 }
3649 
3650 static Instruction *foldNotXor(BinaryOperator &I,
3651                                InstCombiner::BuilderTy &Builder) {
3652   Value *X, *Y;
3653   // FIXME: one-use check is not needed in general, but currently we are unable
3654   // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182)
3655   if (!match(&I, m_Not(m_OneUse(m_Xor(m_Value(X), m_Value(Y))))))
3656     return nullptr;
3657 
3658   if (Instruction *NewXor = sinkNotIntoXor(I, X, Y, Builder))
3659     return NewXor;
3660 
3661   auto hasCommonOperand = [](Value *A, Value *B, Value *C, Value *D) {
3662     return A == C || A == D || B == C || B == D;
3663   };
3664 
3665   Value *A, *B, *C, *D;
3666   // Canonicalize ~((A & B) ^ (A | ?)) -> (A & B) | ~(A | ?)
3667   // 4 commuted variants
3668   if (match(X, m_And(m_Value(A), m_Value(B))) &&
3669       match(Y, m_Or(m_Value(C), m_Value(D))) && hasCommonOperand(A, B, C, D)) {
3670     Value *NotY = Builder.CreateNot(Y);
3671     return BinaryOperator::CreateOr(X, NotY);
3672   };
3673 
3674   // Canonicalize ~((A | ?) ^ (A & B)) -> (A & B) | ~(A | ?)
3675   // 4 commuted variants
3676   if (match(Y, m_And(m_Value(A), m_Value(B))) &&
3677       match(X, m_Or(m_Value(C), m_Value(D))) && hasCommonOperand(A, B, C, D)) {
3678     Value *NotX = Builder.CreateNot(X);
3679     return BinaryOperator::CreateOr(Y, NotX);
3680   };
3681 
3682   return nullptr;
3683 }
3684 
3685 /// Canonicalize a shifty way to code absolute value to the more common pattern
3686 /// that uses negation and select.
3687 static Instruction *canonicalizeAbs(BinaryOperator &Xor,
3688                                     InstCombiner::BuilderTy &Builder) {
3689   assert(Xor.getOpcode() == Instruction::Xor && "Expected an xor instruction.");
3690 
3691   // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1.
3692   // We're relying on the fact that we only do this transform when the shift has
3693   // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase
3694   // instructions).
3695   Value *Op0 = Xor.getOperand(0), *Op1 = Xor.getOperand(1);
3696   if (Op0->hasNUses(2))
3697     std::swap(Op0, Op1);
3698 
3699   Type *Ty = Xor.getType();
3700   Value *A;
3701   const APInt *ShAmt;
3702   if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
3703       Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
3704       match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) {
3705     // Op1 = ashr i32 A, 31   ; smear the sign bit
3706     // xor (add A, Op1), Op1  ; add -1 and flip bits if negative
3707     // --> (A < 0) ? -A : A
3708     Value *IsNeg = Builder.CreateIsNeg(A);
3709     // Copy the nuw/nsw flags from the add to the negate.
3710     auto *Add = cast<BinaryOperator>(Op0);
3711     Value *NegA = Builder.CreateNeg(A, "", Add->hasNoUnsignedWrap(),
3712                                    Add->hasNoSignedWrap());
3713     return SelectInst::Create(IsNeg, NegA, A);
3714   }
3715   return nullptr;
3716 }
3717 
3718 // Transform
3719 //   z = ~(x &/| y)
3720 // into:
3721 //   z = ((~x) |/& (~y))
3722 // iff both x and y are free to invert and all uses of z can be freely updated.
3723 bool InstCombinerImpl::sinkNotIntoLogicalOp(Instruction &I) {
3724   Value *Op0, *Op1;
3725   if (!match(&I, m_LogicalOp(m_Value(Op0), m_Value(Op1))))
3726     return false;
3727 
3728   // If this logic op has not been simplified yet, just bail out and let that
3729   // happen first. Otherwise, the code below may wrongly invert.
3730   if (Op0 == Op1)
3731     return false;
3732 
3733   Instruction::BinaryOps NewOpc =
3734       match(&I, m_LogicalAnd()) ? Instruction::Or : Instruction::And;
3735   bool IsBinaryOp = isa<BinaryOperator>(I);
3736 
3737   // Can our users be adapted?
3738   if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
3739     return false;
3740 
3741   // And can the operands be adapted?
3742   for (Value *Op : {Op0, Op1})
3743     if (!(InstCombiner::isFreeToInvert(Op, /*WillInvertAllUses=*/true) &&
3744           (match(Op, m_ImmConstant()) ||
3745            (isa<Instruction>(Op) &&
3746             InstCombiner::canFreelyInvertAllUsersOf(cast<Instruction>(Op),
3747                                                     /*IgnoredUser=*/&I)))))
3748       return false;
3749 
3750   for (Value **Op : {&Op0, &Op1}) {
3751     Value *NotOp;
3752     if (auto *C = dyn_cast<Constant>(*Op)) {
3753       NotOp = ConstantExpr::getNot(C);
3754     } else {
3755       Builder.SetInsertPoint(
3756           &*cast<Instruction>(*Op)->getInsertionPointAfterDef());
3757       NotOp = Builder.CreateNot(*Op, (*Op)->getName() + ".not");
3758       (*Op)->replaceUsesWithIf(
3759           NotOp, [NotOp](Use &U) { return U.getUser() != NotOp; });
3760       freelyInvertAllUsersOf(NotOp, /*IgnoredUser=*/&I);
3761     }
3762     *Op = NotOp;
3763   }
3764 
3765   Builder.SetInsertPoint(I.getInsertionPointAfterDef());
3766   Value *NewLogicOp;
3767   if (IsBinaryOp)
3768     NewLogicOp = Builder.CreateBinOp(NewOpc, Op0, Op1, I.getName() + ".not");
3769   else
3770     NewLogicOp =
3771         Builder.CreateLogicalOp(NewOpc, Op0, Op1, I.getName() + ".not");
3772 
3773   replaceInstUsesWith(I, NewLogicOp);
3774   // We can not just create an outer `not`, it will most likely be immediately
3775   // folded back, reconstructing our initial pattern, and causing an
3776   // infinite combine loop, so immediately manually fold it away.
3777   freelyInvertAllUsersOf(NewLogicOp);
3778   return true;
3779 }
3780 
3781 // Transform
3782 //   z = (~x) &/| y
3783 // into:
3784 //   z = ~(x |/& (~y))
3785 // iff y is free to invert and all uses of z can be freely updated.
3786 bool InstCombinerImpl::sinkNotIntoOtherHandOfLogicalOp(Instruction &I) {
3787   Value *Op0, *Op1;
3788   if (!match(&I, m_LogicalOp(m_Value(Op0), m_Value(Op1))))
3789     return false;
3790   Instruction::BinaryOps NewOpc =
3791       match(&I, m_LogicalAnd()) ? Instruction::Or : Instruction::And;
3792   bool IsBinaryOp = isa<BinaryOperator>(I);
3793 
3794   Value *NotOp0 = nullptr;
3795   Value *NotOp1 = nullptr;
3796   Value **OpToInvert = nullptr;
3797   if (match(Op0, m_Not(m_Value(NotOp0))) &&
3798       InstCombiner::isFreeToInvert(Op1, /*WillInvertAllUses=*/true) &&
3799       (match(Op1, m_ImmConstant()) ||
3800        (isa<Instruction>(Op1) &&
3801         InstCombiner::canFreelyInvertAllUsersOf(cast<Instruction>(Op1),
3802                                                 /*IgnoredUser=*/&I)))) {
3803     Op0 = NotOp0;
3804     OpToInvert = &Op1;
3805   } else if (match(Op1, m_Not(m_Value(NotOp1))) &&
3806              InstCombiner::isFreeToInvert(Op0, /*WillInvertAllUses=*/true) &&
3807              (match(Op0, m_ImmConstant()) ||
3808               (isa<Instruction>(Op0) &&
3809                InstCombiner::canFreelyInvertAllUsersOf(cast<Instruction>(Op0),
3810                                                        /*IgnoredUser=*/&I)))) {
3811     Op1 = NotOp1;
3812     OpToInvert = &Op0;
3813   } else
3814     return false;
3815 
3816   // And can our users be adapted?
3817   if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
3818     return false;
3819 
3820   if (auto *C = dyn_cast<Constant>(*OpToInvert)) {
3821     *OpToInvert = ConstantExpr::getNot(C);
3822   } else {
3823     Builder.SetInsertPoint(
3824         &*cast<Instruction>(*OpToInvert)->getInsertionPointAfterDef());
3825     Value *NotOpToInvert =
3826         Builder.CreateNot(*OpToInvert, (*OpToInvert)->getName() + ".not");
3827     (*OpToInvert)->replaceUsesWithIf(NotOpToInvert, [NotOpToInvert](Use &U) {
3828       return U.getUser() != NotOpToInvert;
3829     });
3830     freelyInvertAllUsersOf(NotOpToInvert, /*IgnoredUser=*/&I);
3831     *OpToInvert = NotOpToInvert;
3832   }
3833 
3834   Builder.SetInsertPoint(&*I.getInsertionPointAfterDef());
3835   Value *NewBinOp;
3836   if (IsBinaryOp)
3837     NewBinOp = Builder.CreateBinOp(NewOpc, Op0, Op1, I.getName() + ".not");
3838   else
3839     NewBinOp = Builder.CreateLogicalOp(NewOpc, Op0, Op1, I.getName() + ".not");
3840   replaceInstUsesWith(I, NewBinOp);
3841   // We can not just create an outer `not`, it will most likely be immediately
3842   // folded back, reconstructing our initial pattern, and causing an
3843   // infinite combine loop, so immediately manually fold it away.
3844   freelyInvertAllUsersOf(NewBinOp);
3845   return true;
3846 }
3847 
3848 Instruction *InstCombinerImpl::foldNot(BinaryOperator &I) {
3849   Value *NotOp;
3850   if (!match(&I, m_Not(m_Value(NotOp))))
3851     return nullptr;
3852 
3853   // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand.
3854   // We must eliminate the and/or (one-use) for these transforms to not increase
3855   // the instruction count.
3856   //
3857   // ~(~X & Y) --> (X | ~Y)
3858   // ~(Y & ~X) --> (X | ~Y)
3859   //
3860   // Note: The logical matches do not check for the commuted patterns because
3861   //       those are handled via SimplifySelectsFeedingBinaryOp().
3862   Type *Ty = I.getType();
3863   Value *X, *Y;
3864   if (match(NotOp, m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y))))) {
3865     Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3866     return BinaryOperator::CreateOr(X, NotY);
3867   }
3868   if (match(NotOp, m_OneUse(m_LogicalAnd(m_Not(m_Value(X)), m_Value(Y))))) {
3869     Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3870     return SelectInst::Create(X, ConstantInt::getTrue(Ty), NotY);
3871   }
3872 
3873   // ~(~X | Y) --> (X & ~Y)
3874   // ~(Y | ~X) --> (X & ~Y)
3875   if (match(NotOp, m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y))))) {
3876     Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3877     return BinaryOperator::CreateAnd(X, NotY);
3878   }
3879   if (match(NotOp, m_OneUse(m_LogicalOr(m_Not(m_Value(X)), m_Value(Y))))) {
3880     Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3881     return SelectInst::Create(X, NotY, ConstantInt::getFalse(Ty));
3882   }
3883 
3884   // Is this a 'not' (~) fed by a binary operator?
3885   BinaryOperator *NotVal;
3886   if (match(NotOp, m_BinOp(NotVal))) {
3887     // ~((-X) | Y) --> (X - 1) & (~Y)
3888     if (match(NotVal,
3889               m_OneUse(m_c_Or(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))) {
3890       Value *DecX = Builder.CreateAdd(X, ConstantInt::getAllOnesValue(Ty));
3891       Value *NotY = Builder.CreateNot(Y);
3892       return BinaryOperator::CreateAnd(DecX, NotY);
3893     }
3894 
3895     // ~(~X >>s Y) --> (X >>s Y)
3896     if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y))))
3897       return BinaryOperator::CreateAShr(X, Y);
3898 
3899     // Bit-hack form of a signbit test:
3900     // iN ~X >>s (N-1) --> sext i1 (X > -1) to iN
3901     unsigned FullShift = Ty->getScalarSizeInBits() - 1;
3902     if (match(NotVal, m_OneUse(m_AShr(m_Value(X), m_SpecificInt(FullShift))))) {
3903       Value *IsNotNeg = Builder.CreateIsNotNeg(X, "isnotneg");
3904       return new SExtInst(IsNotNeg, Ty);
3905     }
3906 
3907     // If we are inverting a right-shifted constant, we may be able to eliminate
3908     // the 'not' by inverting the constant and using the opposite shift type.
3909     // Canonicalization rules ensure that only a negative constant uses 'ashr',
3910     // but we must check that in case that transform has not fired yet.
3911 
3912     // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits)
3913     Constant *C;
3914     if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) &&
3915         match(C, m_Negative())) {
3916       // We matched a negative constant, so propagating undef is unsafe.
3917       // Clamp undef elements to -1.
3918       Type *EltTy = Ty->getScalarType();
3919       C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy));
3920       return BinaryOperator::CreateLShr(ConstantExpr::getNot(C), Y);
3921     }
3922 
3923     // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits)
3924     if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) &&
3925         match(C, m_NonNegative())) {
3926       // We matched a non-negative constant, so propagating undef is unsafe.
3927       // Clamp undef elements to 0.
3928       Type *EltTy = Ty->getScalarType();
3929       C = Constant::replaceUndefsWith(C, ConstantInt::getNullValue(EltTy));
3930       return BinaryOperator::CreateAShr(ConstantExpr::getNot(C), Y);
3931     }
3932 
3933     // ~(X + C) --> ~C - X
3934     if (match(NotVal, m_c_Add(m_Value(X), m_ImmConstant(C))))
3935       return BinaryOperator::CreateSub(ConstantExpr::getNot(C), X);
3936 
3937     // ~(X - Y) --> ~X + Y
3938     // FIXME: is it really beneficial to sink the `not` here?
3939     if (match(NotVal, m_Sub(m_Value(X), m_Value(Y))))
3940       if (isa<Constant>(X) || NotVal->hasOneUse())
3941         return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y);
3942 
3943     // ~(~X + Y) --> X - Y
3944     if (match(NotVal, m_c_Add(m_Not(m_Value(X)), m_Value(Y))))
3945       return BinaryOperator::CreateWithCopiedFlags(Instruction::Sub, X, Y,
3946                                                    NotVal);
3947   }
3948 
3949   // not (cmp A, B) = !cmp A, B
3950   CmpInst::Predicate Pred;
3951   if (match(NotOp, m_Cmp(Pred, m_Value(), m_Value())) &&
3952       (NotOp->hasOneUse() ||
3953        InstCombiner::canFreelyInvertAllUsersOf(cast<Instruction>(NotOp),
3954                                                /*IgnoredUser=*/nullptr))) {
3955     cast<CmpInst>(NotOp)->setPredicate(CmpInst::getInversePredicate(Pred));
3956     freelyInvertAllUsersOf(NotOp);
3957     return &I;
3958   }
3959 
3960   // Move a 'not' ahead of casts of a bool to enable logic reduction:
3961   // not (bitcast (sext i1 X)) --> bitcast (sext (not i1 X))
3962   if (match(NotOp, m_OneUse(m_BitCast(m_OneUse(m_SExt(m_Value(X)))))) && X->getType()->isIntOrIntVectorTy(1)) {
3963     Type *SextTy = cast<BitCastOperator>(NotOp)->getSrcTy();
3964     Value *NotX = Builder.CreateNot(X);
3965     Value *Sext = Builder.CreateSExt(NotX, SextTy);
3966     return CastInst::CreateBitOrPointerCast(Sext, Ty);
3967   }
3968 
3969   if (auto *NotOpI = dyn_cast<Instruction>(NotOp))
3970     if (sinkNotIntoLogicalOp(*NotOpI))
3971       return &I;
3972 
3973   // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max:
3974   // ~min(~X, ~Y) --> max(X, Y)
3975   // ~max(~X, Y) --> min(X, ~Y)
3976   auto *II = dyn_cast<IntrinsicInst>(NotOp);
3977   if (II && II->hasOneUse()) {
3978     if (match(NotOp, m_MaxOrMin(m_Value(X), m_Value(Y))) &&
3979         isFreeToInvert(X, X->hasOneUse()) &&
3980         isFreeToInvert(Y, Y->hasOneUse())) {
3981       Intrinsic::ID InvID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
3982       Value *NotX = Builder.CreateNot(X);
3983       Value *NotY = Builder.CreateNot(Y);
3984       Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, NotX, NotY);
3985       return replaceInstUsesWith(I, InvMaxMin);
3986     }
3987     if (match(NotOp, m_c_MaxOrMin(m_Not(m_Value(X)), m_Value(Y)))) {
3988       Intrinsic::ID InvID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
3989       Value *NotY = Builder.CreateNot(Y);
3990       Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, NotY);
3991       return replaceInstUsesWith(I, InvMaxMin);
3992     }
3993 
3994     if (II->getIntrinsicID() == Intrinsic::is_fpclass) {
3995       ConstantInt *ClassMask = cast<ConstantInt>(II->getArgOperand(1));
3996       II->setArgOperand(
3997           1, ConstantInt::get(ClassMask->getType(),
3998                               ~ClassMask->getZExtValue() & fcAllFlags));
3999       return replaceInstUsesWith(I, II);
4000     }
4001   }
4002 
4003   if (NotOp->hasOneUse()) {
4004     // Pull 'not' into operands of select if both operands are one-use compares
4005     // or one is one-use compare and the other one is a constant.
4006     // Inverting the predicates eliminates the 'not' operation.
4007     // Example:
4008     //   not (select ?, (cmp TPred, ?, ?), (cmp FPred, ?, ?) -->
4009     //     select ?, (cmp InvTPred, ?, ?), (cmp InvFPred, ?, ?)
4010     //   not (select ?, (cmp TPred, ?, ?), true -->
4011     //     select ?, (cmp InvTPred, ?, ?), false
4012     if (auto *Sel = dyn_cast<SelectInst>(NotOp)) {
4013       Value *TV = Sel->getTrueValue();
4014       Value *FV = Sel->getFalseValue();
4015       auto *CmpT = dyn_cast<CmpInst>(TV);
4016       auto *CmpF = dyn_cast<CmpInst>(FV);
4017       bool InvertibleT = (CmpT && CmpT->hasOneUse()) || isa<Constant>(TV);
4018       bool InvertibleF = (CmpF && CmpF->hasOneUse()) || isa<Constant>(FV);
4019       if (InvertibleT && InvertibleF) {
4020         if (CmpT)
4021           CmpT->setPredicate(CmpT->getInversePredicate());
4022         else
4023           Sel->setTrueValue(ConstantExpr::getNot(cast<Constant>(TV)));
4024         if (CmpF)
4025           CmpF->setPredicate(CmpF->getInversePredicate());
4026         else
4027           Sel->setFalseValue(ConstantExpr::getNot(cast<Constant>(FV)));
4028         return replaceInstUsesWith(I, Sel);
4029       }
4030     }
4031   }
4032 
4033   if (Instruction *NewXor = foldNotXor(I, Builder))
4034     return NewXor;
4035 
4036   return nullptr;
4037 }
4038 
4039 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
4040 // here. We should standardize that construct where it is needed or choose some
4041 // other way to ensure that commutated variants of patterns are not missed.
4042 Instruction *InstCombinerImpl::visitXor(BinaryOperator &I) {
4043   if (Value *V = simplifyXorInst(I.getOperand(0), I.getOperand(1),
4044                                  SQ.getWithInstruction(&I)))
4045     return replaceInstUsesWith(I, V);
4046 
4047   if (SimplifyAssociativeOrCommutative(I))
4048     return &I;
4049 
4050   if (Instruction *X = foldVectorBinop(I))
4051     return X;
4052 
4053   if (Instruction *Phi = foldBinopWithPhiOperands(I))
4054     return Phi;
4055 
4056   if (Instruction *NewXor = foldXorToXor(I, Builder))
4057     return NewXor;
4058 
4059   // (A&B)^(A&C) -> A&(B^C) etc
4060   if (Value *V = foldUsingDistributiveLaws(I))
4061     return replaceInstUsesWith(I, V);
4062 
4063   // See if we can simplify any instructions used by the instruction whose sole
4064   // purpose is to compute bits we don't care about.
4065   if (SimplifyDemandedInstructionBits(I))
4066     return &I;
4067 
4068   if (Value *V = SimplifyBSwap(I, Builder))
4069     return replaceInstUsesWith(I, V);
4070 
4071   if (Instruction *R = foldNot(I))
4072     return R;
4073 
4074   // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M)
4075   // This it a special case in haveNoCommonBitsSet, but the computeKnownBits
4076   // calls in there are unnecessary as SimplifyDemandedInstructionBits should
4077   // have already taken care of those cases.
4078   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4079   Value *M;
4080   if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(M)), m_Value()),
4081                         m_c_And(m_Deferred(M), m_Value()))))
4082     return BinaryOperator::CreateOr(Op0, Op1);
4083 
4084   if (Instruction *Xor = visitMaskedMerge(I, Builder))
4085     return Xor;
4086 
4087   Value *X, *Y;
4088   Constant *C1;
4089   if (match(Op1, m_Constant(C1))) {
4090     Constant *C2;
4091 
4092     if (match(Op0, m_OneUse(m_Or(m_Value(X), m_ImmConstant(C2)))) &&
4093         match(C1, m_ImmConstant())) {
4094       // (X | C2) ^ C1 --> (X & ~C2) ^ (C1^C2)
4095       C2 = Constant::replaceUndefsWith(
4096           C2, Constant::getAllOnesValue(C2->getType()->getScalarType()));
4097       Value *And = Builder.CreateAnd(
4098           X, Constant::mergeUndefsWith(ConstantExpr::getNot(C2), C1));
4099       return BinaryOperator::CreateXor(
4100           And, Constant::mergeUndefsWith(ConstantExpr::getXor(C1, C2), C1));
4101     }
4102 
4103     // Use DeMorgan and reassociation to eliminate a 'not' op.
4104     if (match(Op0, m_OneUse(m_Or(m_Not(m_Value(X)), m_Constant(C2))))) {
4105       // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1
4106       Value *And = Builder.CreateAnd(X, ConstantExpr::getNot(C2));
4107       return BinaryOperator::CreateXor(And, ConstantExpr::getNot(C1));
4108     }
4109     if (match(Op0, m_OneUse(m_And(m_Not(m_Value(X)), m_Constant(C2))))) {
4110       // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1
4111       Value *Or = Builder.CreateOr(X, ConstantExpr::getNot(C2));
4112       return BinaryOperator::CreateXor(Or, ConstantExpr::getNot(C1));
4113     }
4114 
4115     // Convert xor ([trunc] (ashr X, BW-1)), C =>
4116     //   select(X >s -1, C, ~C)
4117     // The ashr creates "AllZeroOrAllOne's", which then optionally inverses the
4118     // constant depending on whether this input is less than 0.
4119     const APInt *CA;
4120     if (match(Op0, m_OneUse(m_TruncOrSelf(
4121                        m_AShr(m_Value(X), m_APIntAllowUndef(CA))))) &&
4122         *CA == X->getType()->getScalarSizeInBits() - 1 &&
4123         !match(C1, m_AllOnes())) {
4124       assert(!C1->isZeroValue() && "Unexpected xor with 0");
4125       Value *IsNotNeg = Builder.CreateIsNotNeg(X);
4126       return SelectInst::Create(IsNotNeg, Op1, Builder.CreateNot(Op1));
4127     }
4128   }
4129 
4130   Type *Ty = I.getType();
4131   {
4132     const APInt *RHSC;
4133     if (match(Op1, m_APInt(RHSC))) {
4134       Value *X;
4135       const APInt *C;
4136       // (C - X) ^ signmaskC --> (C + signmaskC) - X
4137       if (RHSC->isSignMask() && match(Op0, m_Sub(m_APInt(C), m_Value(X))))
4138         return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C + *RHSC), X);
4139 
4140       // (X + C) ^ signmaskC --> X + (C + signmaskC)
4141       if (RHSC->isSignMask() && match(Op0, m_Add(m_Value(X), m_APInt(C))))
4142         return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C + *RHSC));
4143 
4144       // (X | C) ^ RHSC --> X ^ (C ^ RHSC) iff X & C == 0
4145       if (match(Op0, m_Or(m_Value(X), m_APInt(C))) &&
4146           MaskedValueIsZero(X, *C, 0, &I))
4147         return BinaryOperator::CreateXor(X, ConstantInt::get(Ty, *C ^ *RHSC));
4148 
4149       // When X is a power-of-two or zero and zero input is poison:
4150       // ctlz(i32 X) ^ 31 --> cttz(X)
4151       // cttz(i32 X) ^ 31 --> ctlz(X)
4152       auto *II = dyn_cast<IntrinsicInst>(Op0);
4153       if (II && II->hasOneUse() && *RHSC == Ty->getScalarSizeInBits() - 1) {
4154         Intrinsic::ID IID = II->getIntrinsicID();
4155         if ((IID == Intrinsic::ctlz || IID == Intrinsic::cttz) &&
4156             match(II->getArgOperand(1), m_One()) &&
4157             isKnownToBeAPowerOfTwo(II->getArgOperand(0), /*OrZero */ true)) {
4158           IID = (IID == Intrinsic::ctlz) ? Intrinsic::cttz : Intrinsic::ctlz;
4159           Function *F = Intrinsic::getDeclaration(II->getModule(), IID, Ty);
4160           return CallInst::Create(F, {II->getArgOperand(0), Builder.getTrue()});
4161         }
4162       }
4163 
4164       // If RHSC is inverting the remaining bits of shifted X,
4165       // canonicalize to a 'not' before the shift to help SCEV and codegen:
4166       // (X << C) ^ RHSC --> ~X << C
4167       if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_APInt(C)))) &&
4168           *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).shl(*C)) {
4169         Value *NotX = Builder.CreateNot(X);
4170         return BinaryOperator::CreateShl(NotX, ConstantInt::get(Ty, *C));
4171       }
4172       // (X >>u C) ^ RHSC --> ~X >>u C
4173       if (match(Op0, m_OneUse(m_LShr(m_Value(X), m_APInt(C)))) &&
4174           *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).lshr(*C)) {
4175         Value *NotX = Builder.CreateNot(X);
4176         return BinaryOperator::CreateLShr(NotX, ConstantInt::get(Ty, *C));
4177       }
4178       // TODO: We could handle 'ashr' here as well. That would be matching
4179       //       a 'not' op and moving it before the shift. Doing that requires
4180       //       preventing the inverse fold in canShiftBinOpWithConstantRHS().
4181     }
4182   }
4183 
4184   // FIXME: This should not be limited to scalar (pull into APInt match above).
4185   {
4186     Value *X;
4187     ConstantInt *C1, *C2, *C3;
4188     // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
4189     if (match(Op1, m_ConstantInt(C3)) &&
4190         match(Op0, m_LShr(m_Xor(m_Value(X), m_ConstantInt(C1)),
4191                           m_ConstantInt(C2))) &&
4192         Op0->hasOneUse()) {
4193       // fold (C1 >> C2) ^ C3
4194       APInt FoldConst = C1->getValue().lshr(C2->getValue());
4195       FoldConst ^= C3->getValue();
4196       // Prepare the two operands.
4197       auto *Opnd0 = Builder.CreateLShr(X, C2);
4198       Opnd0->takeName(Op0);
4199       return BinaryOperator::CreateXor(Opnd0, ConstantInt::get(Ty, FoldConst));
4200     }
4201   }
4202 
4203   if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
4204     return FoldedLogic;
4205 
4206   // Y ^ (X | Y) --> X & ~Y
4207   // Y ^ (Y | X) --> X & ~Y
4208   if (match(Op1, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op0)))))
4209     return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op0));
4210   // (X | Y) ^ Y --> X & ~Y
4211   // (Y | X) ^ Y --> X & ~Y
4212   if (match(Op0, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op1)))))
4213     return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op1));
4214 
4215   // Y ^ (X & Y) --> ~X & Y
4216   // Y ^ (Y & X) --> ~X & Y
4217   if (match(Op1, m_OneUse(m_c_And(m_Value(X), m_Specific(Op0)))))
4218     return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(X));
4219   // (X & Y) ^ Y --> ~X & Y
4220   // (Y & X) ^ Y --> ~X & Y
4221   // Canonical form is (X & C) ^ C; don't touch that.
4222   // TODO: A 'not' op is better for analysis and codegen, but demanded bits must
4223   //       be fixed to prefer that (otherwise we get infinite looping).
4224   if (!match(Op1, m_Constant()) &&
4225       match(Op0, m_OneUse(m_c_And(m_Value(X), m_Specific(Op1)))))
4226     return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(X));
4227 
4228   Value *A, *B, *C;
4229   // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants.
4230   if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
4231                         m_OneUse(m_c_Or(m_Deferred(A), m_Value(C))))))
4232       return BinaryOperator::CreateXor(
4233           Builder.CreateAnd(Builder.CreateNot(A), C), B);
4234 
4235   // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants.
4236   if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
4237                         m_OneUse(m_c_Or(m_Deferred(B), m_Value(C))))))
4238       return BinaryOperator::CreateXor(
4239           Builder.CreateAnd(Builder.CreateNot(B), C), A);
4240 
4241   // (A & B) ^ (A ^ B) -> (A | B)
4242   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
4243       match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
4244     return BinaryOperator::CreateOr(A, B);
4245   // (A ^ B) ^ (A & B) -> (A | B)
4246   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
4247       match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
4248     return BinaryOperator::CreateOr(A, B);
4249 
4250   // (A & ~B) ^ ~A -> ~(A & B)
4251   // (~B & A) ^ ~A -> ~(A & B)
4252   if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
4253       match(Op1, m_Not(m_Specific(A))))
4254     return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
4255 
4256   // (~A & B) ^ A --> A | B -- There are 4 commuted variants.
4257   if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(A)), m_Value(B)), m_Deferred(A))))
4258     return BinaryOperator::CreateOr(A, B);
4259 
4260   // (~A | B) ^ A --> ~(A & B)
4261   if (match(Op0, m_OneUse(m_c_Or(m_Not(m_Specific(Op1)), m_Value(B)))))
4262     return BinaryOperator::CreateNot(Builder.CreateAnd(Op1, B));
4263 
4264   // A ^ (~A | B) --> ~(A & B)
4265   if (match(Op1, m_OneUse(m_c_Or(m_Not(m_Specific(Op0)), m_Value(B)))))
4266     return BinaryOperator::CreateNot(Builder.CreateAnd(Op0, B));
4267 
4268   // (A | B) ^ (A | C) --> (B ^ C) & ~A -- There are 4 commuted variants.
4269   // TODO: Loosen one-use restriction if common operand is a constant.
4270   Value *D;
4271   if (match(Op0, m_OneUse(m_Or(m_Value(A), m_Value(B)))) &&
4272       match(Op1, m_OneUse(m_Or(m_Value(C), m_Value(D))))) {
4273     if (B == C || B == D)
4274       std::swap(A, B);
4275     if (A == C)
4276       std::swap(C, D);
4277     if (A == D) {
4278       Value *NotA = Builder.CreateNot(A);
4279       return BinaryOperator::CreateAnd(Builder.CreateXor(B, C), NotA);
4280     }
4281   }
4282 
4283   if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
4284     if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
4285       if (Value *V = foldXorOfICmps(LHS, RHS, I))
4286         return replaceInstUsesWith(I, V);
4287 
4288   if (Instruction *CastedXor = foldCastedBitwiseLogic(I))
4289     return CastedXor;
4290 
4291   if (Instruction *Abs = canonicalizeAbs(I, Builder))
4292     return Abs;
4293 
4294   // Otherwise, if all else failed, try to hoist the xor-by-constant:
4295   //   (X ^ C) ^ Y --> (X ^ Y) ^ C
4296   // Just like we do in other places, we completely avoid the fold
4297   // for constantexprs, at least to avoid endless combine loop.
4298   if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_CombineAnd(m_Value(X),
4299                                                     m_Unless(m_ConstantExpr())),
4300                                        m_ImmConstant(C1))),
4301                         m_Value(Y))))
4302     return BinaryOperator::CreateXor(Builder.CreateXor(X, Y), C1);
4303 
4304   if (Instruction *R = reassociateForUses(I, Builder))
4305     return R;
4306 
4307   if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder))
4308     return Canonicalized;
4309 
4310   if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1))
4311     return Folded;
4312 
4313   if (Instruction *Folded = canonicalizeConditionalNegationViaMathToSelect(I))
4314     return Folded;
4315 
4316   return nullptr;
4317 }
4318