1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for cast operations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/IR/DebugInfo.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Support/KnownBits.h"
20 #include "llvm/Transforms/InstCombine/InstCombiner.h"
21 #include <optional>
22 
23 using namespace llvm;
24 using namespace PatternMatch;
25 
26 #define DEBUG_TYPE "instcombine"
27 
28 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
29 /// true for, actually insert the code to evaluate the expression.
30 Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty,
31                                                  bool isSigned) {
32   if (Constant *C = dyn_cast<Constant>(V)) {
33     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
34     // If we got a constantexpr back, try to simplify it with DL info.
35     return ConstantFoldConstant(C, DL, &TLI);
36   }
37 
38   // Otherwise, it must be an instruction.
39   Instruction *I = cast<Instruction>(V);
40   Instruction *Res = nullptr;
41   unsigned Opc = I->getOpcode();
42   switch (Opc) {
43   case Instruction::Add:
44   case Instruction::Sub:
45   case Instruction::Mul:
46   case Instruction::And:
47   case Instruction::Or:
48   case Instruction::Xor:
49   case Instruction::AShr:
50   case Instruction::LShr:
51   case Instruction::Shl:
52   case Instruction::UDiv:
53   case Instruction::URem: {
54     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
55     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
56     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
57     break;
58   }
59   case Instruction::Trunc:
60   case Instruction::ZExt:
61   case Instruction::SExt:
62     // If the source type of the cast is the type we're trying for then we can
63     // just return the source.  There's no need to insert it because it is not
64     // new.
65     if (I->getOperand(0)->getType() == Ty)
66       return I->getOperand(0);
67 
68     // Otherwise, must be the same type of cast, so just reinsert a new one.
69     // This also handles the case of zext(trunc(x)) -> zext(x).
70     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
71                                       Opc == Instruction::SExt);
72     break;
73   case Instruction::Select: {
74     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
75     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
76     Res = SelectInst::Create(I->getOperand(0), True, False);
77     break;
78   }
79   case Instruction::PHI: {
80     PHINode *OPN = cast<PHINode>(I);
81     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
82     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
83       Value *V =
84           EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
85       NPN->addIncoming(V, OPN->getIncomingBlock(i));
86     }
87     Res = NPN;
88     break;
89   }
90   case Instruction::FPToUI:
91   case Instruction::FPToSI:
92     Res = CastInst::Create(
93       static_cast<Instruction::CastOps>(Opc), I->getOperand(0), Ty);
94     break;
95   case Instruction::Call:
96     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
97       switch (II->getIntrinsicID()) {
98       default:
99         llvm_unreachable("Unsupported call!");
100       case Intrinsic::vscale: {
101         Function *Fn =
102             Intrinsic::getDeclaration(I->getModule(), Intrinsic::vscale, {Ty});
103         Res = CallInst::Create(Fn->getFunctionType(), Fn);
104         break;
105       }
106       }
107     }
108     break;
109   default:
110     // TODO: Can handle more cases here.
111     llvm_unreachable("Unreachable!");
112   }
113 
114   Res->takeName(I);
115   return InsertNewInstWith(Res, *I);
116 }
117 
118 Instruction::CastOps
119 InstCombinerImpl::isEliminableCastPair(const CastInst *CI1,
120                                        const CastInst *CI2) {
121   Type *SrcTy = CI1->getSrcTy();
122   Type *MidTy = CI1->getDestTy();
123   Type *DstTy = CI2->getDestTy();
124 
125   Instruction::CastOps firstOp = CI1->getOpcode();
126   Instruction::CastOps secondOp = CI2->getOpcode();
127   Type *SrcIntPtrTy =
128       SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
129   Type *MidIntPtrTy =
130       MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
131   Type *DstIntPtrTy =
132       DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
133   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
134                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
135                                                 DstIntPtrTy);
136 
137   // We don't want to form an inttoptr or ptrtoint that converts to an integer
138   // type that differs from the pointer size.
139   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
140       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
141     Res = 0;
142 
143   return Instruction::CastOps(Res);
144 }
145 
146 /// Implement the transforms common to all CastInst visitors.
147 Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) {
148   Value *Src = CI.getOperand(0);
149   Type *Ty = CI.getType();
150 
151   if (auto *SrcC = dyn_cast<Constant>(Src))
152     if (Constant *Res = ConstantFoldCastOperand(CI.getOpcode(), SrcC, Ty, DL))
153       return replaceInstUsesWith(CI, Res);
154 
155   // Try to eliminate a cast of a cast.
156   if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
157     if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
158       // The first cast (CSrc) is eliminable so we need to fix up or replace
159       // the second cast (CI). CSrc will then have a good chance of being dead.
160       auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
161       // Point debug users of the dying cast to the new one.
162       if (CSrc->hasOneUse())
163         replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
164       return Res;
165     }
166   }
167 
168   if (auto *Sel = dyn_cast<SelectInst>(Src)) {
169     // We are casting a select. Try to fold the cast into the select if the
170     // select does not have a compare instruction with matching operand types
171     // or the select is likely better done in a narrow type.
172     // Creating a select with operands that are different sizes than its
173     // condition may inhibit other folds and lead to worse codegen.
174     auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
175     if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() ||
176         (CI.getOpcode() == Instruction::Trunc &&
177          shouldChangeType(CI.getSrcTy(), CI.getType()))) {
178       if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
179         replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
180         return NV;
181       }
182     }
183   }
184 
185   // If we are casting a PHI, then fold the cast into the PHI.
186   if (auto *PN = dyn_cast<PHINode>(Src)) {
187     // Don't do this if it would create a PHI node with an illegal type from a
188     // legal type.
189     if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
190         shouldChangeType(CI.getSrcTy(), CI.getType()))
191       if (Instruction *NV = foldOpIntoPhi(CI, PN))
192         return NV;
193   }
194 
195   // Canonicalize a unary shuffle after the cast if neither operation changes
196   // the size or element size of the input vector.
197   // TODO: We could allow size-changing ops if that doesn't harm codegen.
198   // cast (shuffle X, Mask) --> shuffle (cast X), Mask
199   Value *X;
200   ArrayRef<int> Mask;
201   if (match(Src, m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))) {
202     // TODO: Allow scalable vectors?
203     auto *SrcTy = dyn_cast<FixedVectorType>(X->getType());
204     auto *DestTy = dyn_cast<FixedVectorType>(Ty);
205     if (SrcTy && DestTy &&
206         SrcTy->getNumElements() == DestTy->getNumElements() &&
207         SrcTy->getPrimitiveSizeInBits() == DestTy->getPrimitiveSizeInBits()) {
208       Value *CastX = Builder.CreateCast(CI.getOpcode(), X, DestTy);
209       return new ShuffleVectorInst(CastX, Mask);
210     }
211   }
212 
213   return nullptr;
214 }
215 
216 /// Constants and extensions/truncates from the destination type are always
217 /// free to be evaluated in that type. This is a helper for canEvaluate*.
218 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
219   if (isa<Constant>(V))
220     return true;
221   Value *X;
222   if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
223       X->getType() == Ty)
224     return true;
225 
226   return false;
227 }
228 
229 /// Filter out values that we can not evaluate in the destination type for free.
230 /// This is a helper for canEvaluate*.
231 static bool canNotEvaluateInType(Value *V, Type *Ty) {
232   assert(!isa<Constant>(V) && "Constant should already be handled.");
233   if (!isa<Instruction>(V))
234     return true;
235   // We don't extend or shrink something that has multiple uses --  doing so
236   // would require duplicating the instruction which isn't profitable.
237   if (!V->hasOneUse())
238     return true;
239 
240   return false;
241 }
242 
243 /// Return true if we can evaluate the specified expression tree as type Ty
244 /// instead of its larger type, and arrive with the same value.
245 /// This is used by code that tries to eliminate truncates.
246 ///
247 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
248 /// can be computed by computing V in the smaller type.  If V is an instruction,
249 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
250 /// makes sense if x and y can be efficiently truncated.
251 ///
252 /// This function works on both vectors and scalars.
253 ///
254 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC,
255                                  Instruction *CxtI) {
256   if (canAlwaysEvaluateInType(V, Ty))
257     return true;
258   if (canNotEvaluateInType(V, Ty))
259     return false;
260 
261   auto *I = cast<Instruction>(V);
262   Type *OrigTy = V->getType();
263   switch (I->getOpcode()) {
264   case Instruction::Add:
265   case Instruction::Sub:
266   case Instruction::Mul:
267   case Instruction::And:
268   case Instruction::Or:
269   case Instruction::Xor:
270     // These operators can all arbitrarily be extended or truncated.
271     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
272            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
273 
274   case Instruction::UDiv:
275   case Instruction::URem: {
276     // UDiv and URem can be truncated if all the truncated bits are zero.
277     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
278     uint32_t BitWidth = Ty->getScalarSizeInBits();
279     assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
280     APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
281     if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
282         IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
283       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
284              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
285     }
286     break;
287   }
288   case Instruction::Shl: {
289     // If we are truncating the result of this SHL, and if it's a shift of an
290     // inrange amount, we can always perform a SHL in a smaller type.
291     uint32_t BitWidth = Ty->getScalarSizeInBits();
292     KnownBits AmtKnownBits =
293         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
294     if (AmtKnownBits.getMaxValue().ult(BitWidth))
295       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
296              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
297     break;
298   }
299   case Instruction::LShr: {
300     // If this is a truncate of a logical shr, we can truncate it to a smaller
301     // lshr iff we know that the bits we would otherwise be shifting in are
302     // already zeros.
303     // TODO: It is enough to check that the bits we would be shifting in are
304     //       zero - use AmtKnownBits.getMaxValue().
305     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
306     uint32_t BitWidth = Ty->getScalarSizeInBits();
307     KnownBits AmtKnownBits =
308         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
309     APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
310     if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
311         IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) {
312       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
313              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
314     }
315     break;
316   }
317   case Instruction::AShr: {
318     // If this is a truncate of an arithmetic shr, we can truncate it to a
319     // smaller ashr iff we know that all the bits from the sign bit of the
320     // original type and the sign bit of the truncate type are similar.
321     // TODO: It is enough to check that the bits we would be shifting in are
322     //       similar to sign bit of the truncate type.
323     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
324     uint32_t BitWidth = Ty->getScalarSizeInBits();
325     KnownBits AmtKnownBits =
326         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
327     unsigned ShiftedBits = OrigBitWidth - BitWidth;
328     if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
329         ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
330       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
331              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
332     break;
333   }
334   case Instruction::Trunc:
335     // trunc(trunc(x)) -> trunc(x)
336     return true;
337   case Instruction::ZExt:
338   case Instruction::SExt:
339     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
340     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
341     return true;
342   case Instruction::Select: {
343     SelectInst *SI = cast<SelectInst>(I);
344     return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
345            canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
346   }
347   case Instruction::PHI: {
348     // We can change a phi if we can change all operands.  Note that we never
349     // get into trouble with cyclic PHIs here because we only consider
350     // instructions with a single use.
351     PHINode *PN = cast<PHINode>(I);
352     for (Value *IncValue : PN->incoming_values())
353       if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
354         return false;
355     return true;
356   }
357   case Instruction::FPToUI:
358   case Instruction::FPToSI: {
359     // If the integer type can hold the max FP value, it is safe to cast
360     // directly to that type. Otherwise, we may create poison via overflow
361     // that did not exist in the original code.
362     Type *InputTy = I->getOperand(0)->getType()->getScalarType();
363     const fltSemantics &Semantics = InputTy->getFltSemantics();
364     uint32_t MinBitWidth =
365       APFloatBase::semanticsIntSizeInBits(Semantics,
366           I->getOpcode() == Instruction::FPToSI);
367     return Ty->getScalarSizeInBits() >= MinBitWidth;
368   }
369   default:
370     // TODO: Can handle more cases here.
371     break;
372   }
373 
374   return false;
375 }
376 
377 /// Given a vector that is bitcast to an integer, optionally logically
378 /// right-shifted, and truncated, convert it to an extractelement.
379 /// Example (big endian):
380 ///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
381 ///   --->
382 ///   extractelement <4 x i32> %X, 1
383 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc,
384                                          InstCombinerImpl &IC) {
385   Value *TruncOp = Trunc.getOperand(0);
386   Type *DestType = Trunc.getType();
387   if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
388     return nullptr;
389 
390   Value *VecInput = nullptr;
391   ConstantInt *ShiftVal = nullptr;
392   if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
393                                   m_LShr(m_BitCast(m_Value(VecInput)),
394                                          m_ConstantInt(ShiftVal)))) ||
395       !isa<VectorType>(VecInput->getType()))
396     return nullptr;
397 
398   VectorType *VecType = cast<VectorType>(VecInput->getType());
399   unsigned VecWidth = VecType->getPrimitiveSizeInBits();
400   unsigned DestWidth = DestType->getPrimitiveSizeInBits();
401   unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
402 
403   if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
404     return nullptr;
405 
406   // If the element type of the vector doesn't match the result type,
407   // bitcast it to a vector type that we can extract from.
408   unsigned NumVecElts = VecWidth / DestWidth;
409   if (VecType->getElementType() != DestType) {
410     VecType = FixedVectorType::get(DestType, NumVecElts);
411     VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
412   }
413 
414   unsigned Elt = ShiftAmount / DestWidth;
415   if (IC.getDataLayout().isBigEndian())
416     Elt = NumVecElts - 1 - Elt;
417 
418   return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
419 }
420 
421 /// Funnel/Rotate left/right may occur in a wider type than necessary because of
422 /// type promotion rules. Try to narrow the inputs and convert to funnel shift.
423 Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) {
424   assert((isa<VectorType>(Trunc.getSrcTy()) ||
425           shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
426          "Don't narrow to an illegal scalar type");
427 
428   // Bail out on strange types. It is possible to handle some of these patterns
429   // even with non-power-of-2 sizes, but it is not a likely scenario.
430   Type *DestTy = Trunc.getType();
431   unsigned NarrowWidth = DestTy->getScalarSizeInBits();
432   unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
433   if (!isPowerOf2_32(NarrowWidth))
434     return nullptr;
435 
436   // First, find an or'd pair of opposite shifts:
437   // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1))
438   BinaryOperator *Or0, *Or1;
439   if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
440     return nullptr;
441 
442   Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
443   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
444       !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
445       Or0->getOpcode() == Or1->getOpcode())
446     return nullptr;
447 
448   // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
449   if (Or0->getOpcode() == BinaryOperator::LShr) {
450     std::swap(Or0, Or1);
451     std::swap(ShVal0, ShVal1);
452     std::swap(ShAmt0, ShAmt1);
453   }
454   assert(Or0->getOpcode() == BinaryOperator::Shl &&
455          Or1->getOpcode() == BinaryOperator::LShr &&
456          "Illegal or(shift,shift) pair");
457 
458   // Match the shift amount operands for a funnel/rotate pattern. This always
459   // matches a subtraction on the R operand.
460   auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
461     // The shift amounts may add up to the narrow bit width:
462     // (shl ShVal0, L) | (lshr ShVal1, Width - L)
463     // If this is a funnel shift (different operands are shifted), then the
464     // shift amount can not over-shift (create poison) in the narrow type.
465     unsigned MaxShiftAmountWidth = Log2_32(NarrowWidth);
466     APInt HiBitMask = ~APInt::getLowBitsSet(WideWidth, MaxShiftAmountWidth);
467     if (ShVal0 == ShVal1 || MaskedValueIsZero(L, HiBitMask))
468       if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L)))))
469         return L;
470 
471     // The following patterns currently only work for rotation patterns.
472     // TODO: Add more general funnel-shift compatible patterns.
473     if (ShVal0 != ShVal1)
474       return nullptr;
475 
476     // The shift amount may be masked with negation:
477     // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1)))
478     Value *X;
479     unsigned Mask = Width - 1;
480     if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
481         match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
482       return X;
483 
484     // Same as above, but the shift amount may be extended after masking:
485     if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
486         match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
487       return X;
488 
489     return nullptr;
490   };
491 
492   Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth);
493   bool IsFshl = true; // Sub on LSHR.
494   if (!ShAmt) {
495     ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth);
496     IsFshl = false; // Sub on SHL.
497   }
498   if (!ShAmt)
499     return nullptr;
500 
501   // The right-shifted value must have high zeros in the wide type (for example
502   // from 'zext', 'and' or 'shift'). High bits of the left-shifted value are
503   // truncated, so those do not matter.
504   APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
505   if (!MaskedValueIsZero(ShVal1, HiBitMask, 0, &Trunc))
506     return nullptr;
507 
508   // We have an unnecessarily wide rotate!
509   // trunc (or (shl ShVal0, ShAmt), (lshr ShVal1, BitWidth - ShAmt))
510   // Narrow the inputs and convert to funnel shift intrinsic:
511   // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt))
512   Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
513   Value *X, *Y;
514   X = Y = Builder.CreateTrunc(ShVal0, DestTy);
515   if (ShVal0 != ShVal1)
516     Y = Builder.CreateTrunc(ShVal1, DestTy);
517   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
518   Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy);
519   return CallInst::Create(F, {X, Y, NarrowShAmt});
520 }
521 
522 /// Try to narrow the width of math or bitwise logic instructions by pulling a
523 /// truncate ahead of binary operators.
524 Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) {
525   Type *SrcTy = Trunc.getSrcTy();
526   Type *DestTy = Trunc.getType();
527   unsigned SrcWidth = SrcTy->getScalarSizeInBits();
528   unsigned DestWidth = DestTy->getScalarSizeInBits();
529 
530   if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
531     return nullptr;
532 
533   BinaryOperator *BinOp;
534   if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
535     return nullptr;
536 
537   Value *BinOp0 = BinOp->getOperand(0);
538   Value *BinOp1 = BinOp->getOperand(1);
539   switch (BinOp->getOpcode()) {
540   case Instruction::And:
541   case Instruction::Or:
542   case Instruction::Xor:
543   case Instruction::Add:
544   case Instruction::Sub:
545   case Instruction::Mul: {
546     Constant *C;
547     if (match(BinOp0, m_Constant(C))) {
548       // trunc (binop C, X) --> binop (trunc C', X)
549       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
550       Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
551       return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
552     }
553     if (match(BinOp1, m_Constant(C))) {
554       // trunc (binop X, C) --> binop (trunc X, C')
555       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
556       Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
557       return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
558     }
559     Value *X;
560     if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
561       // trunc (binop (ext X), Y) --> binop X, (trunc Y)
562       Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
563       return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
564     }
565     if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
566       // trunc (binop Y, (ext X)) --> binop (trunc Y), X
567       Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
568       return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
569     }
570     break;
571   }
572   case Instruction::LShr:
573   case Instruction::AShr: {
574     // trunc (*shr (trunc A), C) --> trunc(*shr A, C)
575     Value *A;
576     Constant *C;
577     if (match(BinOp0, m_Trunc(m_Value(A))) && match(BinOp1, m_Constant(C))) {
578       unsigned MaxShiftAmt = SrcWidth - DestWidth;
579       // If the shift is small enough, all zero/sign bits created by the shift
580       // are removed by the trunc.
581       if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
582                                       APInt(SrcWidth, MaxShiftAmt)))) {
583         auto *OldShift = cast<Instruction>(Trunc.getOperand(0));
584         bool IsExact = OldShift->isExact();
585         auto *ShAmt = ConstantExpr::getIntegerCast(C, A->getType(), true);
586         ShAmt = Constant::mergeUndefsWith(ShAmt, C);
587         Value *Shift =
588             OldShift->getOpcode() == Instruction::AShr
589                 ? Builder.CreateAShr(A, ShAmt, OldShift->getName(), IsExact)
590                 : Builder.CreateLShr(A, ShAmt, OldShift->getName(), IsExact);
591         return CastInst::CreateTruncOrBitCast(Shift, DestTy);
592       }
593     }
594     break;
595   }
596   default: break;
597   }
598 
599   if (Instruction *NarrowOr = narrowFunnelShift(Trunc))
600     return NarrowOr;
601 
602   return nullptr;
603 }
604 
605 /// Try to narrow the width of a splat shuffle. This could be generalized to any
606 /// shuffle with a constant operand, but we limit the transform to avoid
607 /// creating a shuffle type that targets may not be able to lower effectively.
608 static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
609                                        InstCombiner::BuilderTy &Builder) {
610   auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
611   if (Shuf && Shuf->hasOneUse() && match(Shuf->getOperand(1), m_Undef()) &&
612       all_equal(Shuf->getShuffleMask()) &&
613       Shuf->getType() == Shuf->getOperand(0)->getType()) {
614     // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Poison, SplatMask
615     // trunc (shuf X, Poison, SplatMask) --> shuf (trunc X), Poison, SplatMask
616     Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
617     return new ShuffleVectorInst(NarrowOp, Shuf->getShuffleMask());
618   }
619 
620   return nullptr;
621 }
622 
623 /// Try to narrow the width of an insert element. This could be generalized for
624 /// any vector constant, but we limit the transform to insertion into undef to
625 /// avoid potential backend problems from unsupported insertion widths. This
626 /// could also be extended to handle the case of inserting a scalar constant
627 /// into a vector variable.
628 static Instruction *shrinkInsertElt(CastInst &Trunc,
629                                     InstCombiner::BuilderTy &Builder) {
630   Instruction::CastOps Opcode = Trunc.getOpcode();
631   assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
632          "Unexpected instruction for shrinking");
633 
634   auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
635   if (!InsElt || !InsElt->hasOneUse())
636     return nullptr;
637 
638   Type *DestTy = Trunc.getType();
639   Type *DestScalarTy = DestTy->getScalarType();
640   Value *VecOp = InsElt->getOperand(0);
641   Value *ScalarOp = InsElt->getOperand(1);
642   Value *Index = InsElt->getOperand(2);
643 
644   if (match(VecOp, m_Undef())) {
645     // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
646     // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
647     UndefValue *NarrowUndef = UndefValue::get(DestTy);
648     Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
649     return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
650   }
651 
652   return nullptr;
653 }
654 
655 Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) {
656   if (Instruction *Result = commonCastTransforms(Trunc))
657     return Result;
658 
659   Value *Src = Trunc.getOperand(0);
660   Type *DestTy = Trunc.getType(), *SrcTy = Src->getType();
661   unsigned DestWidth = DestTy->getScalarSizeInBits();
662   unsigned SrcWidth = SrcTy->getScalarSizeInBits();
663 
664   // Attempt to truncate the entire input expression tree to the destination
665   // type.   Only do this if the dest type is a simple type, don't convert the
666   // expression tree to something weird like i93 unless the source is also
667   // strange.
668   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
669       canEvaluateTruncated(Src, DestTy, *this, &Trunc)) {
670 
671     // If this cast is a truncate, evaluting in a different type always
672     // eliminates the cast, so it is always a win.
673     LLVM_DEBUG(
674         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
675                   " to avoid cast: "
676                << Trunc << '\n');
677     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
678     assert(Res->getType() == DestTy);
679     return replaceInstUsesWith(Trunc, Res);
680   }
681 
682   // For integer types, check if we can shorten the entire input expression to
683   // DestWidth * 2, which won't allow removing the truncate, but reducing the
684   // width may enable further optimizations, e.g. allowing for larger
685   // vectorization factors.
686   if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) {
687     if (DestWidth * 2 < SrcWidth) {
688       auto *NewDestTy = DestITy->getExtendedType();
689       if (shouldChangeType(SrcTy, NewDestTy) &&
690           canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) {
691         LLVM_DEBUG(
692             dbgs() << "ICE: EvaluateInDifferentType converting expression type"
693                       " to reduce the width of operand of"
694                    << Trunc << '\n');
695         Value *Res = EvaluateInDifferentType(Src, NewDestTy, false);
696         return new TruncInst(Res, DestTy);
697       }
698     }
699   }
700 
701   // Test if the trunc is the user of a select which is part of a
702   // minimum or maximum operation. If so, don't do any more simplification.
703   // Even simplifying demanded bits can break the canonical form of a
704   // min/max.
705   Value *LHS, *RHS;
706   if (SelectInst *Sel = dyn_cast<SelectInst>(Src))
707     if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN)
708       return nullptr;
709 
710   // See if we can simplify any instructions used by the input whose sole
711   // purpose is to compute bits we don't care about.
712   if (SimplifyDemandedInstructionBits(Trunc))
713     return &Trunc;
714 
715   if (DestWidth == 1) {
716     Value *Zero = Constant::getNullValue(SrcTy);
717     if (DestTy->isIntegerTy()) {
718       // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only).
719       // TODO: We canonicalize to more instructions here because we are probably
720       // lacking equivalent analysis for trunc relative to icmp. There may also
721       // be codegen concerns. If those trunc limitations were removed, we could
722       // remove this transform.
723       Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1));
724       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
725     }
726 
727     // For vectors, we do not canonicalize all truncs to icmp, so optimize
728     // patterns that would be covered within visitICmpInst.
729     Value *X;
730     Constant *C;
731     if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) {
732       // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0
733       Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
734       Constant *MaskC = ConstantExpr::getShl(One, C);
735       Value *And = Builder.CreateAnd(X, MaskC);
736       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
737     }
738     if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_ImmConstant(C)),
739                                    m_Deferred(X))))) {
740       // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0
741       Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
742       Constant *MaskC = ConstantExpr::getShl(One, C);
743       Value *And = Builder.CreateAnd(X, Builder.CreateOr(MaskC, One));
744       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
745     }
746   }
747 
748   Value *A, *B;
749   Constant *C;
750   if (match(Src, m_LShr(m_SExt(m_Value(A)), m_Constant(C)))) {
751     unsigned AWidth = A->getType()->getScalarSizeInBits();
752     unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth);
753     auto *OldSh = cast<Instruction>(Src);
754     bool IsExact = OldSh->isExact();
755 
756     // If the shift is small enough, all zero bits created by the shift are
757     // removed by the trunc.
758     if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
759                                     APInt(SrcWidth, MaxShiftAmt)))) {
760       auto GetNewShAmt = [&](unsigned Width) {
761         Constant *MaxAmt = ConstantInt::get(SrcTy, Width - 1, false);
762         Constant *Cmp =
763             ConstantFoldCompareInstOperands(ICmpInst::ICMP_ULT, C, MaxAmt, DL);
764         Constant *ShAmt = ConstantFoldSelectInstruction(Cmp, C, MaxAmt);
765         return ConstantFoldCastOperand(Instruction::Trunc, ShAmt, A->getType(),
766                                        DL);
767       };
768 
769       // trunc (lshr (sext A), C) --> ashr A, C
770       if (A->getType() == DestTy) {
771         Constant *ShAmt = GetNewShAmt(DestWidth);
772         ShAmt = Constant::mergeUndefsWith(ShAmt, C);
773         return IsExact ? BinaryOperator::CreateExactAShr(A, ShAmt)
774                        : BinaryOperator::CreateAShr(A, ShAmt);
775       }
776       // The types are mismatched, so create a cast after shifting:
777       // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C)
778       if (Src->hasOneUse()) {
779         Constant *ShAmt = GetNewShAmt(AWidth);
780         Value *Shift = Builder.CreateAShr(A, ShAmt, "", IsExact);
781         return CastInst::CreateIntegerCast(Shift, DestTy, true);
782       }
783     }
784     // TODO: Mask high bits with 'and'.
785   }
786 
787   if (Instruction *I = narrowBinOp(Trunc))
788     return I;
789 
790   if (Instruction *I = shrinkSplatShuffle(Trunc, Builder))
791     return I;
792 
793   if (Instruction *I = shrinkInsertElt(Trunc, Builder))
794     return I;
795 
796   if (Src->hasOneUse() &&
797       (isa<VectorType>(SrcTy) || shouldChangeType(SrcTy, DestTy))) {
798     // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
799     // dest type is native and cst < dest size.
800     if (match(Src, m_Shl(m_Value(A), m_Constant(C))) &&
801         !match(A, m_Shr(m_Value(), m_Constant()))) {
802       // Skip shifts of shift by constants. It undoes a combine in
803       // FoldShiftByConstant and is the extend in reg pattern.
804       APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth);
805       if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold))) {
806         Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
807         return BinaryOperator::Create(Instruction::Shl, NewTrunc,
808                                       ConstantExpr::getTrunc(C, DestTy));
809       }
810     }
811   }
812 
813   if (Instruction *I = foldVecTruncToExtElt(Trunc, *this))
814     return I;
815 
816   // Whenever an element is extracted from a vector, and then truncated,
817   // canonicalize by converting it to a bitcast followed by an
818   // extractelement.
819   //
820   // Example (little endian):
821   //   trunc (extractelement <4 x i64> %X, 0) to i32
822   //   --->
823   //   extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0
824   Value *VecOp;
825   ConstantInt *Cst;
826   if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) {
827     auto *VecOpTy = cast<VectorType>(VecOp->getType());
828     auto VecElts = VecOpTy->getElementCount();
829 
830     // A badly fit destination size would result in an invalid cast.
831     if (SrcWidth % DestWidth == 0) {
832       uint64_t TruncRatio = SrcWidth / DestWidth;
833       uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio;
834       uint64_t VecOpIdx = Cst->getZExtValue();
835       uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1
836                                          : VecOpIdx * TruncRatio;
837       assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() &&
838              "overflow 32-bits");
839 
840       auto *BitCastTo =
841           VectorType::get(DestTy, BitCastNumElts, VecElts.isScalable());
842       Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo);
843       return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx));
844     }
845   }
846 
847   // trunc (ctlz_i32(zext(A), B) --> add(ctlz_i16(A, B), C)
848   if (match(Src, m_OneUse(m_Intrinsic<Intrinsic::ctlz>(m_ZExt(m_Value(A)),
849                                                        m_Value(B))))) {
850     unsigned AWidth = A->getType()->getScalarSizeInBits();
851     if (AWidth == DestWidth && AWidth > Log2_32(SrcWidth)) {
852       Value *WidthDiff = ConstantInt::get(A->getType(), SrcWidth - AWidth);
853       Value *NarrowCtlz =
854           Builder.CreateIntrinsic(Intrinsic::ctlz, {Trunc.getType()}, {A, B});
855       return BinaryOperator::CreateAdd(NarrowCtlz, WidthDiff);
856     }
857   }
858 
859   if (match(Src, m_VScale())) {
860     if (Trunc.getFunction() &&
861         Trunc.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
862       Attribute Attr =
863           Trunc.getFunction()->getFnAttribute(Attribute::VScaleRange);
864       if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
865         if (Log2_32(*MaxVScale) < DestWidth) {
866           Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
867           return replaceInstUsesWith(Trunc, VScale);
868         }
869       }
870     }
871   }
872 
873   return nullptr;
874 }
875 
876 Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp,
877                                                  ZExtInst &Zext) {
878   // If we are just checking for a icmp eq of a single bit and zext'ing it
879   // to an integer, then shift the bit to the appropriate place and then
880   // cast to integer to avoid the comparison.
881 
882   // FIXME: This set of transforms does not check for extra uses and/or creates
883   //        an extra instruction (an optional final cast is not included
884   //        in the transform comments). We may also want to favor icmp over
885   //        shifts in cases of equal instructions because icmp has better
886   //        analysis in general (invert the transform).
887 
888   const APInt *Op1CV;
889   if (match(Cmp->getOperand(1), m_APInt(Op1CV))) {
890 
891     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
892     if (Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isZero()) {
893       Value *In = Cmp->getOperand(0);
894       Value *Sh = ConstantInt::get(In->getType(),
895                                    In->getType()->getScalarSizeInBits() - 1);
896       In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
897       if (In->getType() != Zext.getType())
898         In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/);
899 
900       return replaceInstUsesWith(Zext, In);
901     }
902 
903     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
904     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
905     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
906     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
907     if (Op1CV->isZero() && Cmp->isEquality() &&
908         (Cmp->getOperand(0)->getType() == Zext.getType() ||
909          Cmp->getPredicate() == ICmpInst::ICMP_NE)) {
910       // If Op1C some other power of two, convert:
911       KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext);
912 
913       // Exactly 1 possible 1? But not the high-bit because that is
914       // canonicalized to this form.
915       APInt KnownZeroMask(~Known.Zero);
916       if (KnownZeroMask.isPowerOf2() &&
917           (Zext.getType()->getScalarSizeInBits() !=
918            KnownZeroMask.logBase2() + 1)) {
919         uint32_t ShAmt = KnownZeroMask.logBase2();
920         Value *In = Cmp->getOperand(0);
921         if (ShAmt) {
922           // Perform a logical shr by shiftamt.
923           // Insert the shift to put the result in the low bit.
924           In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
925                                   In->getName() + ".lobit");
926         }
927 
928         // Toggle the low bit for "X == 0".
929         if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
930           In = Builder.CreateXor(In, ConstantInt::get(In->getType(), 1));
931 
932         if (Zext.getType() == In->getType())
933           return replaceInstUsesWith(Zext, In);
934 
935         Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false);
936         return replaceInstUsesWith(Zext, IntCast);
937       }
938     }
939   }
940 
941   if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) {
942     // Test if a bit is clear/set using a shifted-one mask:
943     // zext (icmp eq (and X, (1 << ShAmt)), 0) --> and (lshr (not X), ShAmt), 1
944     // zext (icmp ne (and X, (1 << ShAmt)), 0) --> and (lshr X, ShAmt), 1
945     Value *X, *ShAmt;
946     if (Cmp->hasOneUse() && match(Cmp->getOperand(1), m_ZeroInt()) &&
947         match(Cmp->getOperand(0),
948               m_OneUse(m_c_And(m_Shl(m_One(), m_Value(ShAmt)), m_Value(X))))) {
949       if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
950         X = Builder.CreateNot(X);
951       Value *Lshr = Builder.CreateLShr(X, ShAmt);
952       Value *And1 = Builder.CreateAnd(Lshr, ConstantInt::get(X->getType(), 1));
953       return replaceInstUsesWith(Zext, And1);
954     }
955   }
956 
957   return nullptr;
958 }
959 
960 /// Determine if the specified value can be computed in the specified wider type
961 /// and produce the same low bits. If not, return false.
962 ///
963 /// If this function returns true, it can also return a non-zero number of bits
964 /// (in BitsToClear) which indicates that the value it computes is correct for
965 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
966 /// out.  For example, to promote something like:
967 ///
968 ///   %B = trunc i64 %A to i32
969 ///   %C = lshr i32 %B, 8
970 ///   %E = zext i32 %C to i64
971 ///
972 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
973 /// set to 8 to indicate that the promoted value needs to have bits 24-31
974 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
975 /// clear the top bits anyway, doing this has no extra cost.
976 ///
977 /// This function works on both vectors and scalars.
978 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
979                              InstCombinerImpl &IC, Instruction *CxtI) {
980   BitsToClear = 0;
981   if (canAlwaysEvaluateInType(V, Ty))
982     return true;
983   if (canNotEvaluateInType(V, Ty))
984     return false;
985 
986   auto *I = cast<Instruction>(V);
987   unsigned Tmp;
988   switch (I->getOpcode()) {
989   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
990   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
991   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
992     return true;
993   case Instruction::And:
994   case Instruction::Or:
995   case Instruction::Xor:
996   case Instruction::Add:
997   case Instruction::Sub:
998   case Instruction::Mul:
999     if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
1000         !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
1001       return false;
1002     // These can all be promoted if neither operand has 'bits to clear'.
1003     if (BitsToClear == 0 && Tmp == 0)
1004       return true;
1005 
1006     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
1007     // other side, BitsToClear is ok.
1008     if (Tmp == 0 && I->isBitwiseLogicOp()) {
1009       // We use MaskedValueIsZero here for generality, but the case we care
1010       // about the most is constant RHS.
1011       unsigned VSize = V->getType()->getScalarSizeInBits();
1012       if (IC.MaskedValueIsZero(I->getOperand(1),
1013                                APInt::getHighBitsSet(VSize, BitsToClear),
1014                                0, CxtI)) {
1015         // If this is an And instruction and all of the BitsToClear are
1016         // known to be zero we can reset BitsToClear.
1017         if (I->getOpcode() == Instruction::And)
1018           BitsToClear = 0;
1019         return true;
1020       }
1021     }
1022 
1023     // Otherwise, we don't know how to analyze this BitsToClear case yet.
1024     return false;
1025 
1026   case Instruction::Shl: {
1027     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
1028     // upper bits we can reduce BitsToClear by the shift amount.
1029     const APInt *Amt;
1030     if (match(I->getOperand(1), m_APInt(Amt))) {
1031       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1032         return false;
1033       uint64_t ShiftAmt = Amt->getZExtValue();
1034       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
1035       return true;
1036     }
1037     return false;
1038   }
1039   case Instruction::LShr: {
1040     // We can promote lshr(x, cst) if we can promote x.  This requires the
1041     // ultimate 'and' to clear out the high zero bits we're clearing out though.
1042     const APInt *Amt;
1043     if (match(I->getOperand(1), m_APInt(Amt))) {
1044       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1045         return false;
1046       BitsToClear += Amt->getZExtValue();
1047       if (BitsToClear > V->getType()->getScalarSizeInBits())
1048         BitsToClear = V->getType()->getScalarSizeInBits();
1049       return true;
1050     }
1051     // Cannot promote variable LSHR.
1052     return false;
1053   }
1054   case Instruction::Select:
1055     if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
1056         !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
1057         // TODO: If important, we could handle the case when the BitsToClear are
1058         // known zero in the disagreeing side.
1059         Tmp != BitsToClear)
1060       return false;
1061     return true;
1062 
1063   case Instruction::PHI: {
1064     // We can change a phi if we can change all operands.  Note that we never
1065     // get into trouble with cyclic PHIs here because we only consider
1066     // instructions with a single use.
1067     PHINode *PN = cast<PHINode>(I);
1068     if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
1069       return false;
1070     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
1071       if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
1072           // TODO: If important, we could handle the case when the BitsToClear
1073           // are known zero in the disagreeing input.
1074           Tmp != BitsToClear)
1075         return false;
1076     return true;
1077   }
1078   case Instruction::Call:
1079     // llvm.vscale() can always be executed in larger type, because the
1080     // value is automatically zero-extended.
1081     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1082       if (II->getIntrinsicID() == Intrinsic::vscale)
1083         return true;
1084     return false;
1085   default:
1086     // TODO: Can handle more cases here.
1087     return false;
1088   }
1089 }
1090 
1091 Instruction *InstCombinerImpl::visitZExt(ZExtInst &Zext) {
1092   // If this zero extend is only used by a truncate, let the truncate be
1093   // eliminated before we try to optimize this zext.
1094   if (Zext.hasOneUse() && isa<TruncInst>(Zext.user_back()) &&
1095       !isa<Constant>(Zext.getOperand(0)))
1096     return nullptr;
1097 
1098   // If one of the common conversion will work, do it.
1099   if (Instruction *Result = commonCastTransforms(Zext))
1100     return Result;
1101 
1102   Value *Src = Zext.getOperand(0);
1103   Type *SrcTy = Src->getType(), *DestTy = Zext.getType();
1104 
1105   // Try to extend the entire expression tree to the wide destination type.
1106   unsigned BitsToClear;
1107   if (shouldChangeType(SrcTy, DestTy) &&
1108       canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &Zext)) {
1109     assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
1110            "Can't clear more bits than in SrcTy");
1111 
1112     // Okay, we can transform this!  Insert the new expression now.
1113     LLVM_DEBUG(
1114         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1115                   " to avoid zero extend: "
1116                << Zext << '\n');
1117     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
1118     assert(Res->getType() == DestTy);
1119 
1120     // Preserve debug values referring to Src if the zext is its last use.
1121     if (auto *SrcOp = dyn_cast<Instruction>(Src))
1122       if (SrcOp->hasOneUse())
1123         replaceAllDbgUsesWith(*SrcOp, *Res, Zext, DT);
1124 
1125     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits() - BitsToClear;
1126     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1127 
1128     // If the high bits are already filled with zeros, just replace this
1129     // cast with the result.
1130     if (MaskedValueIsZero(Res,
1131                           APInt::getHighBitsSet(DestBitSize,
1132                                                 DestBitSize - SrcBitsKept),
1133                              0, &Zext))
1134       return replaceInstUsesWith(Zext, Res);
1135 
1136     // We need to emit an AND to clear the high bits.
1137     Constant *C = ConstantInt::get(Res->getType(),
1138                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
1139     return BinaryOperator::CreateAnd(Res, C);
1140   }
1141 
1142   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
1143   // types and if the sizes are just right we can convert this into a logical
1144   // 'and' which will be much cheaper than the pair of casts.
1145   if (auto *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
1146     // TODO: Subsume this into EvaluateInDifferentType.
1147 
1148     // Get the sizes of the types involved.  We know that the intermediate type
1149     // will be smaller than A or C, but don't know the relation between A and C.
1150     Value *A = CSrc->getOperand(0);
1151     unsigned SrcSize = A->getType()->getScalarSizeInBits();
1152     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
1153     unsigned DstSize = DestTy->getScalarSizeInBits();
1154     // If we're actually extending zero bits, then if
1155     // SrcSize <  DstSize: zext(a & mask)
1156     // SrcSize == DstSize: a & mask
1157     // SrcSize  > DstSize: trunc(a) & mask
1158     if (SrcSize < DstSize) {
1159       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1160       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
1161       Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
1162       return new ZExtInst(And, DestTy);
1163     }
1164 
1165     if (SrcSize == DstSize) {
1166       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1167       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
1168                                                            AndValue));
1169     }
1170     if (SrcSize > DstSize) {
1171       Value *Trunc = Builder.CreateTrunc(A, DestTy);
1172       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
1173       return BinaryOperator::CreateAnd(Trunc,
1174                                        ConstantInt::get(Trunc->getType(),
1175                                                         AndValue));
1176     }
1177   }
1178 
1179   if (auto *Cmp = dyn_cast<ICmpInst>(Src))
1180     return transformZExtICmp(Cmp, Zext);
1181 
1182   // zext(trunc(X) & C) -> (X & zext(C)).
1183   Constant *C;
1184   Value *X;
1185   if (match(Src, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1186       X->getType() == DestTy)
1187     return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, DestTy));
1188 
1189   // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1190   Value *And;
1191   if (match(Src, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1192       match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
1193       X->getType() == DestTy) {
1194     Constant *ZC = ConstantExpr::getZExt(C, DestTy);
1195     return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
1196   }
1197 
1198   // If we are truncating, masking, and then zexting back to the original type,
1199   // that's just a mask. This is not handled by canEvaluateZextd if the
1200   // intermediate values have extra uses. This could be generalized further for
1201   // a non-constant mask operand.
1202   // zext (and (trunc X), C) --> and X, (zext C)
1203   if (match(Src, m_And(m_Trunc(m_Value(X)), m_Constant(C))) &&
1204       X->getType() == DestTy) {
1205     Constant *ZextC = ConstantExpr::getZExt(C, DestTy);
1206     return BinaryOperator::CreateAnd(X, ZextC);
1207   }
1208 
1209   if (match(Src, m_VScale())) {
1210     if (Zext.getFunction() &&
1211         Zext.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
1212       Attribute Attr =
1213           Zext.getFunction()->getFnAttribute(Attribute::VScaleRange);
1214       if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
1215         unsigned TypeWidth = Src->getType()->getScalarSizeInBits();
1216         if (Log2_32(*MaxVScale) < TypeWidth) {
1217           Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
1218           return replaceInstUsesWith(Zext, VScale);
1219         }
1220       }
1221     }
1222   }
1223 
1224   return nullptr;
1225 }
1226 
1227 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
1228 Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *Cmp,
1229                                                  SExtInst &Sext) {
1230   Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
1231   ICmpInst::Predicate Pred = Cmp->getPredicate();
1232 
1233   // Don't bother if Op1 isn't of vector or integer type.
1234   if (!Op1->getType()->isIntOrIntVectorTy())
1235     return nullptr;
1236 
1237   if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) {
1238     // sext (x <s 0) --> ashr x, 31 (all ones if negative)
1239     Value *Sh = ConstantInt::get(Op0->getType(),
1240                                  Op0->getType()->getScalarSizeInBits() - 1);
1241     Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
1242     if (In->getType() != Sext.getType())
1243       In = Builder.CreateIntCast(In, Sext.getType(), true /*SExt*/);
1244 
1245     return replaceInstUsesWith(Sext, In);
1246   }
1247 
1248   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1249     // If we know that only one bit of the LHS of the icmp can be set and we
1250     // have an equality comparison with zero or a power of 2, we can transform
1251     // the icmp and sext into bitwise/integer operations.
1252     if (Cmp->hasOneUse() &&
1253         Cmp->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1254       KnownBits Known = computeKnownBits(Op0, 0, &Sext);
1255 
1256       APInt KnownZeroMask(~Known.Zero);
1257       if (KnownZeroMask.isPowerOf2()) {
1258         Value *In = Cmp->getOperand(0);
1259 
1260         // If the icmp tests for a known zero bit we can constant fold it.
1261         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1262           Value *V = Pred == ICmpInst::ICMP_NE ?
1263                        ConstantInt::getAllOnesValue(Sext.getType()) :
1264                        ConstantInt::getNullValue(Sext.getType());
1265           return replaceInstUsesWith(Sext, V);
1266         }
1267 
1268         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1269           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
1270           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1271           unsigned ShiftAmt = KnownZeroMask.countr_zero();
1272           // Perform a right shift to place the desired bit in the LSB.
1273           if (ShiftAmt)
1274             In = Builder.CreateLShr(In,
1275                                     ConstantInt::get(In->getType(), ShiftAmt));
1276 
1277           // At this point "In" is either 1 or 0. Subtract 1 to turn
1278           // {1, 0} -> {0, -1}.
1279           In = Builder.CreateAdd(In,
1280                                  ConstantInt::getAllOnesValue(In->getType()),
1281                                  "sext");
1282         } else {
1283           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
1284           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1285           unsigned ShiftAmt = KnownZeroMask.countl_zero();
1286           // Perform a left shift to place the desired bit in the MSB.
1287           if (ShiftAmt)
1288             In = Builder.CreateShl(In,
1289                                    ConstantInt::get(In->getType(), ShiftAmt));
1290 
1291           // Distribute the bit over the whole bit width.
1292           In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
1293                                   KnownZeroMask.getBitWidth() - 1), "sext");
1294         }
1295 
1296         if (Sext.getType() == In->getType())
1297           return replaceInstUsesWith(Sext, In);
1298         return CastInst::CreateIntegerCast(In, Sext.getType(), true/*SExt*/);
1299       }
1300     }
1301   }
1302 
1303   return nullptr;
1304 }
1305 
1306 /// Return true if we can take the specified value and return it as type Ty
1307 /// without inserting any new casts and without changing the value of the common
1308 /// low bits.  This is used by code that tries to promote integer operations to
1309 /// a wider types will allow us to eliminate the extension.
1310 ///
1311 /// This function works on both vectors and scalars.
1312 ///
1313 static bool canEvaluateSExtd(Value *V, Type *Ty) {
1314   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1315          "Can't sign extend type to a smaller type");
1316   if (canAlwaysEvaluateInType(V, Ty))
1317     return true;
1318   if (canNotEvaluateInType(V, Ty))
1319     return false;
1320 
1321   auto *I = cast<Instruction>(V);
1322   switch (I->getOpcode()) {
1323   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1324   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1325   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1326     return true;
1327   case Instruction::And:
1328   case Instruction::Or:
1329   case Instruction::Xor:
1330   case Instruction::Add:
1331   case Instruction::Sub:
1332   case Instruction::Mul:
1333     // These operators can all arbitrarily be extended if their inputs can.
1334     return canEvaluateSExtd(I->getOperand(0), Ty) &&
1335            canEvaluateSExtd(I->getOperand(1), Ty);
1336 
1337   //case Instruction::Shl:   TODO
1338   //case Instruction::LShr:  TODO
1339 
1340   case Instruction::Select:
1341     return canEvaluateSExtd(I->getOperand(1), Ty) &&
1342            canEvaluateSExtd(I->getOperand(2), Ty);
1343 
1344   case Instruction::PHI: {
1345     // We can change a phi if we can change all operands.  Note that we never
1346     // get into trouble with cyclic PHIs here because we only consider
1347     // instructions with a single use.
1348     PHINode *PN = cast<PHINode>(I);
1349     for (Value *IncValue : PN->incoming_values())
1350       if (!canEvaluateSExtd(IncValue, Ty)) return false;
1351     return true;
1352   }
1353   default:
1354     // TODO: Can handle more cases here.
1355     break;
1356   }
1357 
1358   return false;
1359 }
1360 
1361 Instruction *InstCombinerImpl::visitSExt(SExtInst &Sext) {
1362   // If this sign extend is only used by a truncate, let the truncate be
1363   // eliminated before we try to optimize this sext.
1364   if (Sext.hasOneUse() && isa<TruncInst>(Sext.user_back()))
1365     return nullptr;
1366 
1367   if (Instruction *I = commonCastTransforms(Sext))
1368     return I;
1369 
1370   Value *Src = Sext.getOperand(0);
1371   Type *SrcTy = Src->getType(), *DestTy = Sext.getType();
1372   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1373   unsigned DestBitSize = DestTy->getScalarSizeInBits();
1374 
1375   // If the value being extended is zero or positive, use a zext instead.
1376   if (isKnownNonNegative(Src, DL, 0, &AC, &Sext, &DT))
1377     return CastInst::Create(Instruction::ZExt, Src, DestTy);
1378 
1379   // Try to extend the entire expression tree to the wide destination type.
1380   if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) {
1381     // Okay, we can transform this!  Insert the new expression now.
1382     LLVM_DEBUG(
1383         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1384                   " to avoid sign extend: "
1385                << Sext << '\n');
1386     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1387     assert(Res->getType() == DestTy);
1388 
1389     // If the high bits are already filled with sign bit, just replace this
1390     // cast with the result.
1391     if (ComputeNumSignBits(Res, 0, &Sext) > DestBitSize - SrcBitSize)
1392       return replaceInstUsesWith(Sext, Res);
1393 
1394     // We need to emit a shl + ashr to do the sign extend.
1395     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1396     return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
1397                                       ShAmt);
1398   }
1399 
1400   Value *X;
1401   if (match(Src, m_Trunc(m_Value(X)))) {
1402     // If the input has more sign bits than bits truncated, then convert
1403     // directly to final type.
1404     unsigned XBitSize = X->getType()->getScalarSizeInBits();
1405     if (ComputeNumSignBits(X, 0, &Sext) > XBitSize - SrcBitSize)
1406       return CastInst::CreateIntegerCast(X, DestTy, /* isSigned */ true);
1407 
1408     // If input is a trunc from the destination type, then convert into shifts.
1409     if (Src->hasOneUse() && X->getType() == DestTy) {
1410       // sext (trunc X) --> ashr (shl X, C), C
1411       Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1412       return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
1413     }
1414 
1415     // If we are replacing shifted-in high zero bits with sign bits, convert
1416     // the logic shift to arithmetic shift and eliminate the cast to
1417     // intermediate type:
1418     // sext (trunc (lshr Y, C)) --> sext/trunc (ashr Y, C)
1419     Value *Y;
1420     if (Src->hasOneUse() &&
1421         match(X, m_LShr(m_Value(Y),
1422                         m_SpecificIntAllowUndef(XBitSize - SrcBitSize)))) {
1423       Value *Ashr = Builder.CreateAShr(Y, XBitSize - SrcBitSize);
1424       return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true);
1425     }
1426   }
1427 
1428   if (auto *Cmp = dyn_cast<ICmpInst>(Src))
1429     return transformSExtICmp(Cmp, Sext);
1430 
1431   // If the input is a shl/ashr pair of a same constant, then this is a sign
1432   // extension from a smaller value.  If we could trust arbitrary bitwidth
1433   // integers, we could turn this into a truncate to the smaller bit and then
1434   // use a sext for the whole extension.  Since we don't, look deeper and check
1435   // for a truncate.  If the source and dest are the same type, eliminate the
1436   // trunc and extend and just do shifts.  For example, turn:
1437   //   %a = trunc i32 %i to i8
1438   //   %b = shl i8 %a, C
1439   //   %c = ashr i8 %b, C
1440   //   %d = sext i8 %c to i32
1441   // into:
1442   //   %a = shl i32 %i, 32-(8-C)
1443   //   %d = ashr i32 %a, 32-(8-C)
1444   Value *A = nullptr;
1445   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1446   Constant *BA = nullptr, *CA = nullptr;
1447   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)),
1448                         m_Constant(CA))) &&
1449       BA->isElementWiseEqual(CA) && A->getType() == DestTy) {
1450     Constant *WideCurrShAmt = ConstantExpr::getSExt(CA, DestTy);
1451     Constant *NumLowbitsLeft = ConstantExpr::getSub(
1452         ConstantInt::get(DestTy, SrcTy->getScalarSizeInBits()), WideCurrShAmt);
1453     Constant *NewShAmt = ConstantExpr::getSub(
1454         ConstantInt::get(DestTy, DestTy->getScalarSizeInBits()),
1455         NumLowbitsLeft);
1456     NewShAmt =
1457         Constant::mergeUndefsWith(Constant::mergeUndefsWith(NewShAmt, BA), CA);
1458     A = Builder.CreateShl(A, NewShAmt, Sext.getName());
1459     return BinaryOperator::CreateAShr(A, NewShAmt);
1460   }
1461 
1462   // Splatting a bit of constant-index across a value:
1463   // sext (ashr (trunc iN X to iM), M-1) to iN --> ashr (shl X, N-M), N-1
1464   // If the dest type is different, use a cast (adjust use check).
1465   if (match(Src, m_OneUse(m_AShr(m_Trunc(m_Value(X)),
1466                                  m_SpecificInt(SrcBitSize - 1))))) {
1467     Type *XTy = X->getType();
1468     unsigned XBitSize = XTy->getScalarSizeInBits();
1469     Constant *ShlAmtC = ConstantInt::get(XTy, XBitSize - SrcBitSize);
1470     Constant *AshrAmtC = ConstantInt::get(XTy, XBitSize - 1);
1471     if (XTy == DestTy)
1472       return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShlAmtC),
1473                                         AshrAmtC);
1474     if (cast<BinaryOperator>(Src)->getOperand(0)->hasOneUse()) {
1475       Value *Ashr = Builder.CreateAShr(Builder.CreateShl(X, ShlAmtC), AshrAmtC);
1476       return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true);
1477     }
1478   }
1479 
1480   if (match(Src, m_VScale())) {
1481     if (Sext.getFunction() &&
1482         Sext.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
1483       Attribute Attr =
1484           Sext.getFunction()->getFnAttribute(Attribute::VScaleRange);
1485       if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
1486         if (Log2_32(*MaxVScale) < (SrcBitSize - 1)) {
1487           Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
1488           return replaceInstUsesWith(Sext, VScale);
1489         }
1490       }
1491     }
1492   }
1493 
1494   return nullptr;
1495 }
1496 
1497 /// Return a Constant* for the specified floating-point constant if it fits
1498 /// in the specified FP type without changing its value.
1499 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1500   bool losesInfo;
1501   APFloat F = CFP->getValueAPF();
1502   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1503   return !losesInfo;
1504 }
1505 
1506 static Type *shrinkFPConstant(ConstantFP *CFP) {
1507   if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
1508     return nullptr;  // No constant folding of this.
1509   // See if the value can be truncated to half and then reextended.
1510   if (fitsInFPType(CFP, APFloat::IEEEhalf()))
1511     return Type::getHalfTy(CFP->getContext());
1512   // See if the value can be truncated to float and then reextended.
1513   if (fitsInFPType(CFP, APFloat::IEEEsingle()))
1514     return Type::getFloatTy(CFP->getContext());
1515   if (CFP->getType()->isDoubleTy())
1516     return nullptr;  // Won't shrink.
1517   if (fitsInFPType(CFP, APFloat::IEEEdouble()))
1518     return Type::getDoubleTy(CFP->getContext());
1519   // Don't try to shrink to various long double types.
1520   return nullptr;
1521 }
1522 
1523 // Determine if this is a vector of ConstantFPs and if so, return the minimal
1524 // type we can safely truncate all elements to.
1525 static Type *shrinkFPConstantVector(Value *V) {
1526   auto *CV = dyn_cast<Constant>(V);
1527   auto *CVVTy = dyn_cast<FixedVectorType>(V->getType());
1528   if (!CV || !CVVTy)
1529     return nullptr;
1530 
1531   Type *MinType = nullptr;
1532 
1533   unsigned NumElts = CVVTy->getNumElements();
1534 
1535   // For fixed-width vectors we find the minimal type by looking
1536   // through the constant values of the vector.
1537   for (unsigned i = 0; i != NumElts; ++i) {
1538     if (isa<UndefValue>(CV->getAggregateElement(i)))
1539       continue;
1540 
1541     auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
1542     if (!CFP)
1543       return nullptr;
1544 
1545     Type *T = shrinkFPConstant(CFP);
1546     if (!T)
1547       return nullptr;
1548 
1549     // If we haven't found a type yet or this type has a larger mantissa than
1550     // our previous type, this is our new minimal type.
1551     if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
1552       MinType = T;
1553   }
1554 
1555   // Make a vector type from the minimal type.
1556   return MinType ? FixedVectorType::get(MinType, NumElts) : nullptr;
1557 }
1558 
1559 /// Find the minimum FP type we can safely truncate to.
1560 static Type *getMinimumFPType(Value *V) {
1561   if (auto *FPExt = dyn_cast<FPExtInst>(V))
1562     return FPExt->getOperand(0)->getType();
1563 
1564   // If this value is a constant, return the constant in the smallest FP type
1565   // that can accurately represent it.  This allows us to turn
1566   // (float)((double)X+2.0) into x+2.0f.
1567   if (auto *CFP = dyn_cast<ConstantFP>(V))
1568     if (Type *T = shrinkFPConstant(CFP))
1569       return T;
1570 
1571   // We can only correctly find a minimum type for a scalable vector when it is
1572   // a splat. For splats of constant values the fpext is wrapped up as a
1573   // ConstantExpr.
1574   if (auto *FPCExt = dyn_cast<ConstantExpr>(V))
1575     if (FPCExt->getOpcode() == Instruction::FPExt)
1576       return FPCExt->getOperand(0)->getType();
1577 
1578   // Try to shrink a vector of FP constants. This returns nullptr on scalable
1579   // vectors
1580   if (Type *T = shrinkFPConstantVector(V))
1581     return T;
1582 
1583   return V->getType();
1584 }
1585 
1586 /// Return true if the cast from integer to FP can be proven to be exact for all
1587 /// possible inputs (the conversion does not lose any precision).
1588 static bool isKnownExactCastIntToFP(CastInst &I, InstCombinerImpl &IC) {
1589   CastInst::CastOps Opcode = I.getOpcode();
1590   assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) &&
1591          "Unexpected cast");
1592   Value *Src = I.getOperand(0);
1593   Type *SrcTy = Src->getType();
1594   Type *FPTy = I.getType();
1595   bool IsSigned = Opcode == Instruction::SIToFP;
1596   int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned;
1597 
1598   // Easy case - if the source integer type has less bits than the FP mantissa,
1599   // then the cast must be exact.
1600   int DestNumSigBits = FPTy->getFPMantissaWidth();
1601   if (SrcSize <= DestNumSigBits)
1602     return true;
1603 
1604   // Cast from FP to integer and back to FP is independent of the intermediate
1605   // integer width because of poison on overflow.
1606   Value *F;
1607   if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) {
1608     // If this is uitofp (fptosi F), the source needs an extra bit to avoid
1609     // potential rounding of negative FP input values.
1610     int SrcNumSigBits = F->getType()->getFPMantissaWidth();
1611     if (!IsSigned && match(Src, m_FPToSI(m_Value())))
1612       SrcNumSigBits++;
1613 
1614     // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal
1615     // significant bits than the destination (and make sure neither type is
1616     // weird -- ppc_fp128).
1617     if (SrcNumSigBits > 0 && DestNumSigBits > 0 &&
1618         SrcNumSigBits <= DestNumSigBits)
1619       return true;
1620   }
1621 
1622   // TODO:
1623   // Try harder to find if the source integer type has less significant bits.
1624   // For example, compute number of sign bits.
1625   KnownBits SrcKnown = IC.computeKnownBits(Src, 0, &I);
1626   int SigBits = (int)SrcTy->getScalarSizeInBits() -
1627                 SrcKnown.countMinLeadingZeros() -
1628                 SrcKnown.countMinTrailingZeros();
1629   if (SigBits <= DestNumSigBits)
1630     return true;
1631 
1632   return false;
1633 }
1634 
1635 Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) {
1636   if (Instruction *I = commonCastTransforms(FPT))
1637     return I;
1638 
1639   // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1640   // simplify this expression to avoid one or more of the trunc/extend
1641   // operations if we can do so without changing the numerical results.
1642   //
1643   // The exact manner in which the widths of the operands interact to limit
1644   // what we can and cannot do safely varies from operation to operation, and
1645   // is explained below in the various case statements.
1646   Type *Ty = FPT.getType();
1647   auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0));
1648   if (BO && BO->hasOneUse()) {
1649     Type *LHSMinType = getMinimumFPType(BO->getOperand(0));
1650     Type *RHSMinType = getMinimumFPType(BO->getOperand(1));
1651     unsigned OpWidth = BO->getType()->getFPMantissaWidth();
1652     unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
1653     unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
1654     unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1655     unsigned DstWidth = Ty->getFPMantissaWidth();
1656     switch (BO->getOpcode()) {
1657       default: break;
1658       case Instruction::FAdd:
1659       case Instruction::FSub:
1660         // For addition and subtraction, the infinitely precise result can
1661         // essentially be arbitrarily wide; proving that double rounding
1662         // will not occur because the result of OpI is exact (as we will for
1663         // FMul, for example) is hopeless.  However, we *can* nonetheless
1664         // frequently know that double rounding cannot occur (or that it is
1665         // innocuous) by taking advantage of the specific structure of
1666         // infinitely-precise results that admit double rounding.
1667         //
1668         // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1669         // to represent both sources, we can guarantee that the double
1670         // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1671         // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1672         // for proof of this fact).
1673         //
1674         // Note: Figueroa does not consider the case where DstFormat !=
1675         // SrcFormat.  It's possible (likely even!) that this analysis
1676         // could be tightened for those cases, but they are rare (the main
1677         // case of interest here is (float)((double)float + float)).
1678         if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1679           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1680           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1681           Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS);
1682           RI->copyFastMathFlags(BO);
1683           return RI;
1684         }
1685         break;
1686       case Instruction::FMul:
1687         // For multiplication, the infinitely precise result has at most
1688         // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1689         // that such a value can be exactly represented, then no double
1690         // rounding can possibly occur; we can safely perform the operation
1691         // in the destination format if it can represent both sources.
1692         if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1693           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1694           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1695           return BinaryOperator::CreateFMulFMF(LHS, RHS, BO);
1696         }
1697         break;
1698       case Instruction::FDiv:
1699         // For division, we use again use the bound from Figueroa's
1700         // dissertation.  I am entirely certain that this bound can be
1701         // tightened in the unbalanced operand case by an analysis based on
1702         // the diophantine rational approximation bound, but the well-known
1703         // condition used here is a good conservative first pass.
1704         // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1705         if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1706           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1707           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1708           return BinaryOperator::CreateFDivFMF(LHS, RHS, BO);
1709         }
1710         break;
1711       case Instruction::FRem: {
1712         // Remainder is straightforward.  Remainder is always exact, so the
1713         // type of OpI doesn't enter into things at all.  We simply evaluate
1714         // in whichever source type is larger, then convert to the
1715         // destination type.
1716         if (SrcWidth == OpWidth)
1717           break;
1718         Value *LHS, *RHS;
1719         if (LHSWidth == SrcWidth) {
1720            LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType);
1721            RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType);
1722         } else {
1723            LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType);
1724            RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType);
1725         }
1726 
1727         Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO);
1728         return CastInst::CreateFPCast(ExactResult, Ty);
1729       }
1730     }
1731   }
1732 
1733   // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1734   Value *X;
1735   Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0));
1736   if (Op && Op->hasOneUse()) {
1737     // FIXME: The FMF should propagate from the fptrunc, not the source op.
1738     IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1739     if (isa<FPMathOperator>(Op))
1740       Builder.setFastMathFlags(Op->getFastMathFlags());
1741 
1742     if (match(Op, m_FNeg(m_Value(X)))) {
1743       Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty);
1744 
1745       return UnaryOperator::CreateFNegFMF(InnerTrunc, Op);
1746     }
1747 
1748     // If we are truncating a select that has an extended operand, we can
1749     // narrow the other operand and do the select as a narrow op.
1750     Value *Cond, *X, *Y;
1751     if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) &&
1752         X->getType() == Ty) {
1753       // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y)
1754       Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1755       Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op);
1756       return replaceInstUsesWith(FPT, Sel);
1757     }
1758     if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) &&
1759         X->getType() == Ty) {
1760       // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X
1761       Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1762       Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op);
1763       return replaceInstUsesWith(FPT, Sel);
1764     }
1765   }
1766 
1767   if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
1768     switch (II->getIntrinsicID()) {
1769     default: break;
1770     case Intrinsic::ceil:
1771     case Intrinsic::fabs:
1772     case Intrinsic::floor:
1773     case Intrinsic::nearbyint:
1774     case Intrinsic::rint:
1775     case Intrinsic::round:
1776     case Intrinsic::roundeven:
1777     case Intrinsic::trunc: {
1778       Value *Src = II->getArgOperand(0);
1779       if (!Src->hasOneUse())
1780         break;
1781 
1782       // Except for fabs, this transformation requires the input of the unary FP
1783       // operation to be itself an fpext from the type to which we're
1784       // truncating.
1785       if (II->getIntrinsicID() != Intrinsic::fabs) {
1786         FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
1787         if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
1788           break;
1789       }
1790 
1791       // Do unary FP operation on smaller type.
1792       // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1793       Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
1794       Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
1795                                                      II->getIntrinsicID(), Ty);
1796       SmallVector<OperandBundleDef, 1> OpBundles;
1797       II->getOperandBundlesAsDefs(OpBundles);
1798       CallInst *NewCI =
1799           CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName());
1800       NewCI->copyFastMathFlags(II);
1801       return NewCI;
1802     }
1803     }
1804   }
1805 
1806   if (Instruction *I = shrinkInsertElt(FPT, Builder))
1807     return I;
1808 
1809   Value *Src = FPT.getOperand(0);
1810   if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1811     auto *FPCast = cast<CastInst>(Src);
1812     if (isKnownExactCastIntToFP(*FPCast, *this))
1813       return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1814   }
1815 
1816   return nullptr;
1817 }
1818 
1819 Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) {
1820   // If the source operand is a cast from integer to FP and known exact, then
1821   // cast the integer operand directly to the destination type.
1822   Type *Ty = FPExt.getType();
1823   Value *Src = FPExt.getOperand(0);
1824   if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1825     auto *FPCast = cast<CastInst>(Src);
1826     if (isKnownExactCastIntToFP(*FPCast, *this))
1827       return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1828   }
1829 
1830   return commonCastTransforms(FPExt);
1831 }
1832 
1833 /// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1834 /// This is safe if the intermediate type has enough bits in its mantissa to
1835 /// accurately represent all values of X.  For example, this won't work with
1836 /// i64 -> float -> i64.
1837 Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) {
1838   if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1839     return nullptr;
1840 
1841   auto *OpI = cast<CastInst>(FI.getOperand(0));
1842   Value *X = OpI->getOperand(0);
1843   Type *XType = X->getType();
1844   Type *DestType = FI.getType();
1845   bool IsOutputSigned = isa<FPToSIInst>(FI);
1846 
1847   // Since we can assume the conversion won't overflow, our decision as to
1848   // whether the input will fit in the float should depend on the minimum
1849   // of the input range and output range.
1850 
1851   // This means this is also safe for a signed input and unsigned output, since
1852   // a negative input would lead to undefined behavior.
1853   if (!isKnownExactCastIntToFP(*OpI, *this)) {
1854     // The first cast may not round exactly based on the source integer width
1855     // and FP width, but the overflow UB rules can still allow this to fold.
1856     // If the destination type is narrow, that means the intermediate FP value
1857     // must be large enough to hold the source value exactly.
1858     // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior.
1859     int OutputSize = (int)DestType->getScalarSizeInBits();
1860     if (OutputSize > OpI->getType()->getFPMantissaWidth())
1861       return nullptr;
1862   }
1863 
1864   if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) {
1865     bool IsInputSigned = isa<SIToFPInst>(OpI);
1866     if (IsInputSigned && IsOutputSigned)
1867       return new SExtInst(X, DestType);
1868     return new ZExtInst(X, DestType);
1869   }
1870   if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits())
1871     return new TruncInst(X, DestType);
1872 
1873   assert(XType == DestType && "Unexpected types for int to FP to int casts");
1874   return replaceInstUsesWith(FI, X);
1875 }
1876 
1877 Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) {
1878   if (Instruction *I = foldItoFPtoI(FI))
1879     return I;
1880 
1881   return commonCastTransforms(FI);
1882 }
1883 
1884 Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) {
1885   if (Instruction *I = foldItoFPtoI(FI))
1886     return I;
1887 
1888   return commonCastTransforms(FI);
1889 }
1890 
1891 Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) {
1892   return commonCastTransforms(CI);
1893 }
1894 
1895 Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) {
1896   return commonCastTransforms(CI);
1897 }
1898 
1899 Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) {
1900   // If the source integer type is not the intptr_t type for this target, do a
1901   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1902   // cast to be exposed to other transforms.
1903   unsigned AS = CI.getAddressSpace();
1904   if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1905       DL.getPointerSizeInBits(AS)) {
1906     Type *Ty = CI.getOperand(0)->getType()->getWithNewType(
1907         DL.getIntPtrType(CI.getContext(), AS));
1908     Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
1909     return new IntToPtrInst(P, CI.getType());
1910   }
1911 
1912   if (Instruction *I = commonCastTransforms(CI))
1913     return I;
1914 
1915   return nullptr;
1916 }
1917 
1918 /// Implement the transforms for cast of pointer (bitcast/ptrtoint)
1919 Instruction *InstCombinerImpl::commonPointerCastTransforms(CastInst &CI) {
1920   Value *Src = CI.getOperand(0);
1921 
1922   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1923     // If casting the result of a getelementptr instruction with no offset, turn
1924     // this into a cast of the original pointer!
1925     if (GEP->hasAllZeroIndices() &&
1926         // If CI is an addrspacecast and GEP changes the poiner type, merging
1927         // GEP into CI would undo canonicalizing addrspacecast with different
1928         // pointer types, causing infinite loops.
1929         (!isa<AddrSpaceCastInst>(CI) ||
1930          GEP->getType() == GEP->getPointerOperandType())) {
1931       // Changing the cast operand is usually not a good idea but it is safe
1932       // here because the pointer operand is being replaced with another
1933       // pointer operand so the opcode doesn't need to change.
1934       return replaceOperand(CI, 0, GEP->getOperand(0));
1935     }
1936   }
1937 
1938   return commonCastTransforms(CI);
1939 }
1940 
1941 Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) {
1942   // If the destination integer type is not the intptr_t type for this target,
1943   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1944   // to be exposed to other transforms.
1945   Value *SrcOp = CI.getPointerOperand();
1946   Type *SrcTy = SrcOp->getType();
1947   Type *Ty = CI.getType();
1948   unsigned AS = CI.getPointerAddressSpace();
1949   unsigned TySize = Ty->getScalarSizeInBits();
1950   unsigned PtrSize = DL.getPointerSizeInBits(AS);
1951   if (TySize != PtrSize) {
1952     Type *IntPtrTy =
1953         SrcTy->getWithNewType(DL.getIntPtrType(CI.getContext(), AS));
1954     Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy);
1955     return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1956   }
1957 
1958   if (auto *GEP = dyn_cast<GetElementPtrInst>(SrcOp)) {
1959     // Fold ptrtoint(gep null, x) to multiply + constant if the GEP has one use.
1960     // While this can increase the number of instructions it doesn't actually
1961     // increase the overall complexity since the arithmetic is just part of
1962     // the GEP otherwise.
1963     if (GEP->hasOneUse() &&
1964         isa<ConstantPointerNull>(GEP->getPointerOperand())) {
1965       return replaceInstUsesWith(CI,
1966                                  Builder.CreateIntCast(EmitGEPOffset(GEP), Ty,
1967                                                        /*isSigned=*/false));
1968     }
1969   }
1970 
1971   Value *Vec, *Scalar, *Index;
1972   if (match(SrcOp, m_OneUse(m_InsertElt(m_IntToPtr(m_Value(Vec)),
1973                                         m_Value(Scalar), m_Value(Index)))) &&
1974       Vec->getType() == Ty) {
1975     assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type");
1976     // Convert the scalar to int followed by insert to eliminate one cast:
1977     // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index
1978     Value *NewCast = Builder.CreatePtrToInt(Scalar, Ty->getScalarType());
1979     return InsertElementInst::Create(Vec, NewCast, Index);
1980   }
1981 
1982   return commonPointerCastTransforms(CI);
1983 }
1984 
1985 /// This input value (which is known to have vector type) is being zero extended
1986 /// or truncated to the specified vector type. Since the zext/trunc is done
1987 /// using an integer type, we have a (bitcast(cast(bitcast))) pattern,
1988 /// endianness will impact which end of the vector that is extended or
1989 /// truncated.
1990 ///
1991 /// A vector is always stored with index 0 at the lowest address, which
1992 /// corresponds to the most significant bits for a big endian stored integer and
1993 /// the least significant bits for little endian. A trunc/zext of an integer
1994 /// impacts the big end of the integer. Thus, we need to add/remove elements at
1995 /// the front of the vector for big endian targets, and the back of the vector
1996 /// for little endian targets.
1997 ///
1998 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
1999 ///
2000 /// The source and destination vector types may have different element types.
2001 static Instruction *
2002 optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy,
2003                                         InstCombinerImpl &IC) {
2004   // We can only do this optimization if the output is a multiple of the input
2005   // element size, or the input is a multiple of the output element size.
2006   // Convert the input type to have the same element type as the output.
2007   VectorType *SrcTy = cast<VectorType>(InVal->getType());
2008 
2009   if (SrcTy->getElementType() != DestTy->getElementType()) {
2010     // The input types don't need to be identical, but for now they must be the
2011     // same size.  There is no specific reason we couldn't handle things like
2012     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
2013     // there yet.
2014     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
2015         DestTy->getElementType()->getPrimitiveSizeInBits())
2016       return nullptr;
2017 
2018     SrcTy =
2019         FixedVectorType::get(DestTy->getElementType(),
2020                              cast<FixedVectorType>(SrcTy)->getNumElements());
2021     InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
2022   }
2023 
2024   bool IsBigEndian = IC.getDataLayout().isBigEndian();
2025   unsigned SrcElts = cast<FixedVectorType>(SrcTy)->getNumElements();
2026   unsigned DestElts = cast<FixedVectorType>(DestTy)->getNumElements();
2027 
2028   assert(SrcElts != DestElts && "Element counts should be different.");
2029 
2030   // Now that the element types match, get the shuffle mask and RHS of the
2031   // shuffle to use, which depends on whether we're increasing or decreasing the
2032   // size of the input.
2033   auto ShuffleMaskStorage = llvm::to_vector<16>(llvm::seq<int>(0, SrcElts));
2034   ArrayRef<int> ShuffleMask;
2035   Value *V2;
2036 
2037   if (SrcElts > DestElts) {
2038     // If we're shrinking the number of elements (rewriting an integer
2039     // truncate), just shuffle in the elements corresponding to the least
2040     // significant bits from the input and use poison as the second shuffle
2041     // input.
2042     V2 = PoisonValue::get(SrcTy);
2043     // Make sure the shuffle mask selects the "least significant bits" by
2044     // keeping elements from back of the src vector for big endian, and from the
2045     // front for little endian.
2046     ShuffleMask = ShuffleMaskStorage;
2047     if (IsBigEndian)
2048       ShuffleMask = ShuffleMask.take_back(DestElts);
2049     else
2050       ShuffleMask = ShuffleMask.take_front(DestElts);
2051   } else {
2052     // If we're increasing the number of elements (rewriting an integer zext),
2053     // shuffle in all of the elements from InVal. Fill the rest of the result
2054     // elements with zeros from a constant zero.
2055     V2 = Constant::getNullValue(SrcTy);
2056     // Use first elt from V2 when indicating zero in the shuffle mask.
2057     uint32_t NullElt = SrcElts;
2058     // Extend with null values in the "most significant bits" by adding elements
2059     // in front of the src vector for big endian, and at the back for little
2060     // endian.
2061     unsigned DeltaElts = DestElts - SrcElts;
2062     if (IsBigEndian)
2063       ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt);
2064     else
2065       ShuffleMaskStorage.append(DeltaElts, NullElt);
2066     ShuffleMask = ShuffleMaskStorage;
2067   }
2068 
2069   return new ShuffleVectorInst(InVal, V2, ShuffleMask);
2070 }
2071 
2072 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
2073   return Value % Ty->getPrimitiveSizeInBits() == 0;
2074 }
2075 
2076 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
2077   return Value / Ty->getPrimitiveSizeInBits();
2078 }
2079 
2080 /// V is a value which is inserted into a vector of VecEltTy.
2081 /// Look through the value to see if we can decompose it into
2082 /// insertions into the vector.  See the example in the comment for
2083 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
2084 /// The type of V is always a non-zero multiple of VecEltTy's size.
2085 /// Shift is the number of bits between the lsb of V and the lsb of
2086 /// the vector.
2087 ///
2088 /// This returns false if the pattern can't be matched or true if it can,
2089 /// filling in Elements with the elements found here.
2090 static bool collectInsertionElements(Value *V, unsigned Shift,
2091                                      SmallVectorImpl<Value *> &Elements,
2092                                      Type *VecEltTy, bool isBigEndian) {
2093   assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
2094          "Shift should be a multiple of the element type size");
2095 
2096   // Undef values never contribute useful bits to the result.
2097   if (isa<UndefValue>(V)) return true;
2098 
2099   // If we got down to a value of the right type, we win, try inserting into the
2100   // right element.
2101   if (V->getType() == VecEltTy) {
2102     // Inserting null doesn't actually insert any elements.
2103     if (Constant *C = dyn_cast<Constant>(V))
2104       if (C->isNullValue())
2105         return true;
2106 
2107     unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
2108     if (isBigEndian)
2109       ElementIndex = Elements.size() - ElementIndex - 1;
2110 
2111     // Fail if multiple elements are inserted into this slot.
2112     if (Elements[ElementIndex])
2113       return false;
2114 
2115     Elements[ElementIndex] = V;
2116     return true;
2117   }
2118 
2119   if (Constant *C = dyn_cast<Constant>(V)) {
2120     // Figure out the # elements this provides, and bitcast it or slice it up
2121     // as required.
2122     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
2123                                         VecEltTy);
2124     // If the constant is the size of a vector element, we just need to bitcast
2125     // it to the right type so it gets properly inserted.
2126     if (NumElts == 1)
2127       return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
2128                                       Shift, Elements, VecEltTy, isBigEndian);
2129 
2130     // Okay, this is a constant that covers multiple elements.  Slice it up into
2131     // pieces and insert each element-sized piece into the vector.
2132     if (!isa<IntegerType>(C->getType()))
2133       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
2134                                        C->getType()->getPrimitiveSizeInBits()));
2135     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
2136     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
2137 
2138     for (unsigned i = 0; i != NumElts; ++i) {
2139       unsigned ShiftI = Shift+i*ElementSize;
2140       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
2141                                                                   ShiftI));
2142       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
2143       if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
2144                                     isBigEndian))
2145         return false;
2146     }
2147     return true;
2148   }
2149 
2150   if (!V->hasOneUse()) return false;
2151 
2152   Instruction *I = dyn_cast<Instruction>(V);
2153   if (!I) return false;
2154   switch (I->getOpcode()) {
2155   default: return false; // Unhandled case.
2156   case Instruction::BitCast:
2157     if (I->getOperand(0)->getType()->isVectorTy())
2158       return false;
2159     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2160                                     isBigEndian);
2161   case Instruction::ZExt:
2162     if (!isMultipleOfTypeSize(
2163                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
2164                               VecEltTy))
2165       return false;
2166     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2167                                     isBigEndian);
2168   case Instruction::Or:
2169     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2170                                     isBigEndian) &&
2171            collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
2172                                     isBigEndian);
2173   case Instruction::Shl: {
2174     // Must be shifting by a constant that is a multiple of the element size.
2175     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
2176     if (!CI) return false;
2177     Shift += CI->getZExtValue();
2178     if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
2179     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2180                                     isBigEndian);
2181   }
2182 
2183   }
2184 }
2185 
2186 
2187 /// If the input is an 'or' instruction, we may be doing shifts and ors to
2188 /// assemble the elements of the vector manually.
2189 /// Try to rip the code out and replace it with insertelements.  This is to
2190 /// optimize code like this:
2191 ///
2192 ///    %tmp37 = bitcast float %inc to i32
2193 ///    %tmp38 = zext i32 %tmp37 to i64
2194 ///    %tmp31 = bitcast float %inc5 to i32
2195 ///    %tmp32 = zext i32 %tmp31 to i64
2196 ///    %tmp33 = shl i64 %tmp32, 32
2197 ///    %ins35 = or i64 %tmp33, %tmp38
2198 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
2199 ///
2200 /// Into two insertelements that do "buildvector{%inc, %inc5}".
2201 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
2202                                                 InstCombinerImpl &IC) {
2203   auto *DestVecTy = cast<FixedVectorType>(CI.getType());
2204   Value *IntInput = CI.getOperand(0);
2205 
2206   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
2207   if (!collectInsertionElements(IntInput, 0, Elements,
2208                                 DestVecTy->getElementType(),
2209                                 IC.getDataLayout().isBigEndian()))
2210     return nullptr;
2211 
2212   // If we succeeded, we know that all of the element are specified by Elements
2213   // or are zero if Elements has a null entry.  Recast this as a set of
2214   // insertions.
2215   Value *Result = Constant::getNullValue(CI.getType());
2216   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
2217     if (!Elements[i]) continue;  // Unset element.
2218 
2219     Result = IC.Builder.CreateInsertElement(Result, Elements[i],
2220                                             IC.Builder.getInt32(i));
2221   }
2222 
2223   return Result;
2224 }
2225 
2226 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
2227 /// vector followed by extract element. The backend tends to handle bitcasts of
2228 /// vectors better than bitcasts of scalars because vector registers are
2229 /// usually not type-specific like scalar integer or scalar floating-point.
2230 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
2231                                               InstCombinerImpl &IC) {
2232   Value *VecOp, *Index;
2233   if (!match(BitCast.getOperand(0),
2234              m_OneUse(m_ExtractElt(m_Value(VecOp), m_Value(Index)))))
2235     return nullptr;
2236 
2237   // The bitcast must be to a vectorizable type, otherwise we can't make a new
2238   // type to extract from.
2239   Type *DestType = BitCast.getType();
2240   VectorType *VecType = cast<VectorType>(VecOp->getType());
2241   if (VectorType::isValidElementType(DestType)) {
2242     auto *NewVecType = VectorType::get(DestType, VecType);
2243     auto *NewBC = IC.Builder.CreateBitCast(VecOp, NewVecType, "bc");
2244     return ExtractElementInst::Create(NewBC, Index);
2245   }
2246 
2247   // Only solve DestType is vector to avoid inverse transform in visitBitCast.
2248   // bitcast (extractelement <1 x elt>, dest) -> bitcast(<1 x elt>, dest)
2249   auto *FixedVType = dyn_cast<FixedVectorType>(VecType);
2250   if (DestType->isVectorTy() && FixedVType && FixedVType->getNumElements() == 1)
2251     return CastInst::Create(Instruction::BitCast, VecOp, DestType);
2252 
2253   return nullptr;
2254 }
2255 
2256 /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
2257 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
2258                                             InstCombiner::BuilderTy &Builder) {
2259   Type *DestTy = BitCast.getType();
2260   BinaryOperator *BO;
2261 
2262   if (!match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
2263       !BO->isBitwiseLogicOp())
2264     return nullptr;
2265 
2266   // FIXME: This transform is restricted to vector types to avoid backend
2267   // problems caused by creating potentially illegal operations. If a fix-up is
2268   // added to handle that situation, we can remove this check.
2269   if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
2270     return nullptr;
2271 
2272   if (DestTy->isFPOrFPVectorTy()) {
2273     Value *X, *Y;
2274     // bitcast(logic(bitcast(X), bitcast(Y))) -> bitcast'(logic(bitcast'(X), Y))
2275     if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2276         match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(Y))))) {
2277       if (X->getType()->isFPOrFPVectorTy() &&
2278           Y->getType()->isIntOrIntVectorTy()) {
2279         Value *CastedOp =
2280             Builder.CreateBitCast(BO->getOperand(0), Y->getType());
2281         Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, Y);
2282         return CastInst::CreateBitOrPointerCast(NewBO, DestTy);
2283       }
2284       if (X->getType()->isIntOrIntVectorTy() &&
2285           Y->getType()->isFPOrFPVectorTy()) {
2286         Value *CastedOp =
2287             Builder.CreateBitCast(BO->getOperand(1), X->getType());
2288         Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, X);
2289         return CastInst::CreateBitOrPointerCast(NewBO, DestTy);
2290       }
2291     }
2292     return nullptr;
2293   }
2294 
2295   if (!DestTy->isIntOrIntVectorTy())
2296     return nullptr;
2297 
2298   Value *X;
2299   if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2300       X->getType() == DestTy && !isa<Constant>(X)) {
2301     // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
2302     Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
2303     return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
2304   }
2305 
2306   if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
2307       X->getType() == DestTy && !isa<Constant>(X)) {
2308     // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
2309     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2310     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
2311   }
2312 
2313   // Canonicalize vector bitcasts to come before vector bitwise logic with a
2314   // constant. This eases recognition of special constants for later ops.
2315   // Example:
2316   // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
2317   Constant *C;
2318   if (match(BO->getOperand(1), m_Constant(C))) {
2319     // bitcast (logic X, C) --> logic (bitcast X, C')
2320     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2321     Value *CastedC = Builder.CreateBitCast(C, DestTy);
2322     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
2323   }
2324 
2325   return nullptr;
2326 }
2327 
2328 /// Change the type of a select if we can eliminate a bitcast.
2329 static Instruction *foldBitCastSelect(BitCastInst &BitCast,
2330                                       InstCombiner::BuilderTy &Builder) {
2331   Value *Cond, *TVal, *FVal;
2332   if (!match(BitCast.getOperand(0),
2333              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
2334     return nullptr;
2335 
2336   // A vector select must maintain the same number of elements in its operands.
2337   Type *CondTy = Cond->getType();
2338   Type *DestTy = BitCast.getType();
2339   if (auto *CondVTy = dyn_cast<VectorType>(CondTy))
2340     if (!DestTy->isVectorTy() ||
2341         CondVTy->getElementCount() !=
2342             cast<VectorType>(DestTy)->getElementCount())
2343       return nullptr;
2344 
2345   // FIXME: This transform is restricted from changing the select between
2346   // scalars and vectors to avoid backend problems caused by creating
2347   // potentially illegal operations. If a fix-up is added to handle that
2348   // situation, we can remove this check.
2349   if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
2350     return nullptr;
2351 
2352   auto *Sel = cast<Instruction>(BitCast.getOperand(0));
2353   Value *X;
2354   if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2355       !isa<Constant>(X)) {
2356     // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
2357     Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
2358     return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
2359   }
2360 
2361   if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2362       !isa<Constant>(X)) {
2363     // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
2364     Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
2365     return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
2366   }
2367 
2368   return nullptr;
2369 }
2370 
2371 /// Check if all users of CI are StoreInsts.
2372 static bool hasStoreUsersOnly(CastInst &CI) {
2373   for (User *U : CI.users()) {
2374     if (!isa<StoreInst>(U))
2375       return false;
2376   }
2377   return true;
2378 }
2379 
2380 /// This function handles following case
2381 ///
2382 ///     A  ->  B    cast
2383 ///     PHI
2384 ///     B  ->  A    cast
2385 ///
2386 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
2387 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
2388 Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI,
2389                                                       PHINode *PN) {
2390   // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
2391   if (hasStoreUsersOnly(CI))
2392     return nullptr;
2393 
2394   Value *Src = CI.getOperand(0);
2395   Type *SrcTy = Src->getType();         // Type B
2396   Type *DestTy = CI.getType();          // Type A
2397 
2398   SmallVector<PHINode *, 4> PhiWorklist;
2399   SmallSetVector<PHINode *, 4> OldPhiNodes;
2400 
2401   // Find all of the A->B casts and PHI nodes.
2402   // We need to inspect all related PHI nodes, but PHIs can be cyclic, so
2403   // OldPhiNodes is used to track all known PHI nodes, before adding a new
2404   // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
2405   PhiWorklist.push_back(PN);
2406   OldPhiNodes.insert(PN);
2407   while (!PhiWorklist.empty()) {
2408     auto *OldPN = PhiWorklist.pop_back_val();
2409     for (Value *IncValue : OldPN->incoming_values()) {
2410       if (isa<Constant>(IncValue))
2411         continue;
2412 
2413       if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
2414         // If there is a sequence of one or more load instructions, each loaded
2415         // value is used as address of later load instruction, bitcast is
2416         // necessary to change the value type, don't optimize it. For
2417         // simplicity we give up if the load address comes from another load.
2418         Value *Addr = LI->getOperand(0);
2419         if (Addr == &CI || isa<LoadInst>(Addr))
2420           return nullptr;
2421         // Don't tranform "load <256 x i32>, <256 x i32>*" to
2422         // "load x86_amx, x86_amx*", because x86_amx* is invalid.
2423         // TODO: Remove this check when bitcast between vector and x86_amx
2424         // is replaced with a specific intrinsic.
2425         if (DestTy->isX86_AMXTy())
2426           return nullptr;
2427         if (LI->hasOneUse() && LI->isSimple())
2428           continue;
2429         // If a LoadInst has more than one use, changing the type of loaded
2430         // value may create another bitcast.
2431         return nullptr;
2432       }
2433 
2434       if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
2435         if (OldPhiNodes.insert(PNode))
2436           PhiWorklist.push_back(PNode);
2437         continue;
2438       }
2439 
2440       auto *BCI = dyn_cast<BitCastInst>(IncValue);
2441       // We can't handle other instructions.
2442       if (!BCI)
2443         return nullptr;
2444 
2445       // Verify it's a A->B cast.
2446       Type *TyA = BCI->getOperand(0)->getType();
2447       Type *TyB = BCI->getType();
2448       if (TyA != DestTy || TyB != SrcTy)
2449         return nullptr;
2450     }
2451   }
2452 
2453   // Check that each user of each old PHI node is something that we can
2454   // rewrite, so that all of the old PHI nodes can be cleaned up afterwards.
2455   for (auto *OldPN : OldPhiNodes) {
2456     for (User *V : OldPN->users()) {
2457       if (auto *SI = dyn_cast<StoreInst>(V)) {
2458         if (!SI->isSimple() || SI->getOperand(0) != OldPN)
2459           return nullptr;
2460       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2461         // Verify it's a B->A cast.
2462         Type *TyB = BCI->getOperand(0)->getType();
2463         Type *TyA = BCI->getType();
2464         if (TyA != DestTy || TyB != SrcTy)
2465           return nullptr;
2466       } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2467         // As long as the user is another old PHI node, then even if we don't
2468         // rewrite it, the PHI web we're considering won't have any users
2469         // outside itself, so it'll be dead.
2470         if (!OldPhiNodes.contains(PHI))
2471           return nullptr;
2472       } else {
2473         return nullptr;
2474       }
2475     }
2476   }
2477 
2478   // For each old PHI node, create a corresponding new PHI node with a type A.
2479   SmallDenseMap<PHINode *, PHINode *> NewPNodes;
2480   for (auto *OldPN : OldPhiNodes) {
2481     Builder.SetInsertPoint(OldPN);
2482     PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
2483     NewPNodes[OldPN] = NewPN;
2484   }
2485 
2486   // Fill in the operands of new PHI nodes.
2487   for (auto *OldPN : OldPhiNodes) {
2488     PHINode *NewPN = NewPNodes[OldPN];
2489     for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2490       Value *V = OldPN->getOperand(j);
2491       Value *NewV = nullptr;
2492       if (auto *C = dyn_cast<Constant>(V)) {
2493         NewV = ConstantExpr::getBitCast(C, DestTy);
2494       } else if (auto *LI = dyn_cast<LoadInst>(V)) {
2495         // Explicitly perform load combine to make sure no opposing transform
2496         // can remove the bitcast in the meantime and trigger an infinite loop.
2497         Builder.SetInsertPoint(LI);
2498         NewV = combineLoadToNewType(*LI, DestTy);
2499         // Remove the old load and its use in the old phi, which itself becomes
2500         // dead once the whole transform finishes.
2501         replaceInstUsesWith(*LI, PoisonValue::get(LI->getType()));
2502         eraseInstFromFunction(*LI);
2503       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2504         NewV = BCI->getOperand(0);
2505       } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
2506         NewV = NewPNodes[PrevPN];
2507       }
2508       assert(NewV);
2509       NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2510     }
2511   }
2512 
2513   // Traverse all accumulated PHI nodes and process its users,
2514   // which are Stores and BitcCasts. Without this processing
2515   // NewPHI nodes could be replicated and could lead to extra
2516   // moves generated after DeSSA.
2517   // If there is a store with type B, change it to type A.
2518 
2519 
2520   // Replace users of BitCast B->A with NewPHI. These will help
2521   // later to get rid off a closure formed by OldPHI nodes.
2522   Instruction *RetVal = nullptr;
2523   for (auto *OldPN : OldPhiNodes) {
2524     PHINode *NewPN = NewPNodes[OldPN];
2525     for (User *V : make_early_inc_range(OldPN->users())) {
2526       if (auto *SI = dyn_cast<StoreInst>(V)) {
2527         assert(SI->isSimple() && SI->getOperand(0) == OldPN);
2528         Builder.SetInsertPoint(SI);
2529         auto *NewBC =
2530           cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy));
2531         SI->setOperand(0, NewBC);
2532         Worklist.push(SI);
2533         assert(hasStoreUsersOnly(*NewBC));
2534       }
2535       else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2536         Type *TyB = BCI->getOperand(0)->getType();
2537         Type *TyA = BCI->getType();
2538         assert(TyA == DestTy && TyB == SrcTy);
2539         (void) TyA;
2540         (void) TyB;
2541         Instruction *I = replaceInstUsesWith(*BCI, NewPN);
2542         if (BCI == &CI)
2543           RetVal = I;
2544       } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2545         assert(OldPhiNodes.contains(PHI));
2546         (void) PHI;
2547       } else {
2548         llvm_unreachable("all uses should be handled");
2549       }
2550     }
2551   }
2552 
2553   return RetVal;
2554 }
2555 
2556 Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) {
2557   // If the operands are integer typed then apply the integer transforms,
2558   // otherwise just apply the common ones.
2559   Value *Src = CI.getOperand(0);
2560   Type *SrcTy = Src->getType();
2561   Type *DestTy = CI.getType();
2562 
2563   // Get rid of casts from one type to the same type. These are useless and can
2564   // be replaced by the operand.
2565   if (DestTy == Src->getType())
2566     return replaceInstUsesWith(CI, Src);
2567 
2568   if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) {
2569     // Beware: messing with this target-specific oddity may cause trouble.
2570     if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) {
2571       Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
2572       return InsertElementInst::Create(PoisonValue::get(DestTy), Elem,
2573                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2574     }
2575 
2576     if (isa<IntegerType>(SrcTy)) {
2577       // If this is a cast from an integer to vector, check to see if the input
2578       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
2579       // the casts with a shuffle and (potentially) a bitcast.
2580       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2581         CastInst *SrcCast = cast<CastInst>(Src);
2582         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2583           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2584             if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts(
2585                     BCIn->getOperand(0), cast<VectorType>(DestTy), *this))
2586               return I;
2587       }
2588 
2589       // If the input is an 'or' instruction, we may be doing shifts and ors to
2590       // assemble the elements of the vector manually.  Try to rip the code out
2591       // and replace it with insertelements.
2592       if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2593         return replaceInstUsesWith(CI, V);
2594     }
2595   }
2596 
2597   if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) {
2598     if (SrcVTy->getNumElements() == 1) {
2599       // If our destination is not a vector, then make this a straight
2600       // scalar-scalar cast.
2601       if (!DestTy->isVectorTy()) {
2602         Value *Elem =
2603           Builder.CreateExtractElement(Src,
2604                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2605         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2606       }
2607 
2608       // Otherwise, see if our source is an insert. If so, then use the scalar
2609       // component directly:
2610       // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m>
2611       if (auto *InsElt = dyn_cast<InsertElementInst>(Src))
2612         return new BitCastInst(InsElt->getOperand(1), DestTy);
2613     }
2614 
2615     // Convert an artificial vector insert into more analyzable bitwise logic.
2616     unsigned BitWidth = DestTy->getScalarSizeInBits();
2617     Value *X, *Y;
2618     uint64_t IndexC;
2619     if (match(Src, m_OneUse(m_InsertElt(m_OneUse(m_BitCast(m_Value(X))),
2620                                         m_Value(Y), m_ConstantInt(IndexC)))) &&
2621         DestTy->isIntegerTy() && X->getType() == DestTy &&
2622         Y->getType()->isIntegerTy() && isDesirableIntType(BitWidth)) {
2623       // Adjust for big endian - the LSBs are at the high index.
2624       if (DL.isBigEndian())
2625         IndexC = SrcVTy->getNumElements() - 1 - IndexC;
2626 
2627       // We only handle (endian-normalized) insert to index 0. Any other insert
2628       // would require a left-shift, so that is an extra instruction.
2629       if (IndexC == 0) {
2630         // bitcast (inselt (bitcast X), Y, 0) --> or (and X, MaskC), (zext Y)
2631         unsigned EltWidth = Y->getType()->getScalarSizeInBits();
2632         APInt MaskC = APInt::getHighBitsSet(BitWidth, BitWidth - EltWidth);
2633         Value *AndX = Builder.CreateAnd(X, MaskC);
2634         Value *ZextY = Builder.CreateZExt(Y, DestTy);
2635         return BinaryOperator::CreateOr(AndX, ZextY);
2636       }
2637     }
2638   }
2639 
2640   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) {
2641     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
2642     // a bitcast to a vector with the same # elts.
2643     Value *ShufOp0 = Shuf->getOperand(0);
2644     Value *ShufOp1 = Shuf->getOperand(1);
2645     auto ShufElts = cast<VectorType>(Shuf->getType())->getElementCount();
2646     auto SrcVecElts = cast<VectorType>(ShufOp0->getType())->getElementCount();
2647     if (Shuf->hasOneUse() && DestTy->isVectorTy() &&
2648         cast<VectorType>(DestTy)->getElementCount() == ShufElts &&
2649         ShufElts == SrcVecElts) {
2650       BitCastInst *Tmp;
2651       // If either of the operands is a cast from CI.getType(), then
2652       // evaluating the shuffle in the casted destination's type will allow
2653       // us to eliminate at least one cast.
2654       if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) &&
2655            Tmp->getOperand(0)->getType() == DestTy) ||
2656           ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) &&
2657            Tmp->getOperand(0)->getType() == DestTy)) {
2658         Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy);
2659         Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy);
2660         // Return a new shuffle vector.  Use the same element ID's, as we
2661         // know the vector types match #elts.
2662         return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask());
2663       }
2664     }
2665 
2666     // A bitcasted-to-scalar and byte/bit reversing shuffle is better recognized
2667     // as a byte/bit swap:
2668     // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) -> bswap (bitcast X)
2669     // bitcast <N x i1> (shuf X, undef, <N, N-1,...0>) -> bitreverse (bitcast X)
2670     if (DestTy->isIntegerTy() && ShufElts.getKnownMinValue() % 2 == 0 &&
2671         Shuf->hasOneUse() && Shuf->isReverse()) {
2672       unsigned IntrinsicNum = 0;
2673       if (DL.isLegalInteger(DestTy->getScalarSizeInBits()) &&
2674           SrcTy->getScalarSizeInBits() == 8) {
2675         IntrinsicNum = Intrinsic::bswap;
2676       } else if (SrcTy->getScalarSizeInBits() == 1) {
2677         IntrinsicNum = Intrinsic::bitreverse;
2678       }
2679       if (IntrinsicNum != 0) {
2680         assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask");
2681         assert(match(ShufOp1, m_Undef()) && "Unexpected shuffle op");
2682         Function *BswapOrBitreverse =
2683             Intrinsic::getDeclaration(CI.getModule(), IntrinsicNum, DestTy);
2684         Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy);
2685         return CallInst::Create(BswapOrBitreverse, {ScalarX});
2686       }
2687     }
2688   }
2689 
2690   // Handle the A->B->A cast, and there is an intervening PHI node.
2691   if (PHINode *PN = dyn_cast<PHINode>(Src))
2692     if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2693       return I;
2694 
2695   if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
2696     return I;
2697 
2698   if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
2699     return I;
2700 
2701   if (Instruction *I = foldBitCastSelect(CI, Builder))
2702     return I;
2703 
2704   if (SrcTy->isPointerTy())
2705     return commonPointerCastTransforms(CI);
2706   return commonCastTransforms(CI);
2707 }
2708 
2709 Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2710   return commonPointerCastTransforms(CI);
2711 }
2712