1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/KnownBits.h"
27 
28 using namespace llvm;
29 using namespace PatternMatch;
30 
31 #define DEBUG_TYPE "instcombine"
32 
33 // How many times is a select replaced by one of its operands?
34 STATISTIC(NumSel, "Number of select opts");
35 
36 
37 /// Compute Result = In1+In2, returning true if the result overflowed for this
38 /// type.
39 static bool addWithOverflow(APInt &Result, const APInt &In1,
40                             const APInt &In2, bool IsSigned = false) {
41   bool Overflow;
42   if (IsSigned)
43     Result = In1.sadd_ov(In2, Overflow);
44   else
45     Result = In1.uadd_ov(In2, Overflow);
46 
47   return Overflow;
48 }
49 
50 /// Compute Result = In1-In2, returning true if the result overflowed for this
51 /// type.
52 static bool subWithOverflow(APInt &Result, const APInt &In1,
53                             const APInt &In2, bool IsSigned = false) {
54   bool Overflow;
55   if (IsSigned)
56     Result = In1.ssub_ov(In2, Overflow);
57   else
58     Result = In1.usub_ov(In2, Overflow);
59 
60   return Overflow;
61 }
62 
63 /// Given an icmp instruction, return true if any use of this comparison is a
64 /// branch on sign bit comparison.
65 static bool hasBranchUse(ICmpInst &I) {
66   for (auto *U : I.users())
67     if (isa<BranchInst>(U))
68       return true;
69   return false;
70 }
71 
72 /// Returns true if the exploded icmp can be expressed as a signed comparison
73 /// to zero and updates the predicate accordingly.
74 /// The signedness of the comparison is preserved.
75 /// TODO: Refactor with decomposeBitTestICmp()?
76 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
77   if (!ICmpInst::isSigned(Pred))
78     return false;
79 
80   if (C.isNullValue())
81     return ICmpInst::isRelational(Pred);
82 
83   if (C.isOneValue()) {
84     if (Pred == ICmpInst::ICMP_SLT) {
85       Pred = ICmpInst::ICMP_SLE;
86       return true;
87     }
88   } else if (C.isAllOnesValue()) {
89     if (Pred == ICmpInst::ICMP_SGT) {
90       Pred = ICmpInst::ICMP_SGE;
91       return true;
92     }
93   }
94 
95   return false;
96 }
97 
98 /// Given a signed integer type and a set of known zero and one bits, compute
99 /// the maximum and minimum values that could have the specified known zero and
100 /// known one bits, returning them in Min/Max.
101 /// TODO: Move to method on KnownBits struct?
102 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known,
103                                                    APInt &Min, APInt &Max) {
104   assert(Known.getBitWidth() == Min.getBitWidth() &&
105          Known.getBitWidth() == Max.getBitWidth() &&
106          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
107   APInt UnknownBits = ~(Known.Zero|Known.One);
108 
109   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
110   // bit if it is unknown.
111   Min = Known.One;
112   Max = Known.One|UnknownBits;
113 
114   if (UnknownBits.isNegative()) { // Sign bit is unknown
115     Min.setSignBit();
116     Max.clearSignBit();
117   }
118 }
119 
120 /// Given an unsigned integer type and a set of known zero and one bits, compute
121 /// the maximum and minimum values that could have the specified known zero and
122 /// known one bits, returning them in Min/Max.
123 /// TODO: Move to method on KnownBits struct?
124 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known,
125                                                      APInt &Min, APInt &Max) {
126   assert(Known.getBitWidth() == Min.getBitWidth() &&
127          Known.getBitWidth() == Max.getBitWidth() &&
128          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
129   APInt UnknownBits = ~(Known.Zero|Known.One);
130 
131   // The minimum value is when the unknown bits are all zeros.
132   Min = Known.One;
133   // The maximum value is when the unknown bits are all ones.
134   Max = Known.One|UnknownBits;
135 }
136 
137 /// This is called when we see this pattern:
138 ///   cmp pred (load (gep GV, ...)), cmpcst
139 /// where GV is a global variable with a constant initializer. Try to simplify
140 /// this into some simple computation that does not need the load. For example
141 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
142 ///
143 /// If AndCst is non-null, then the loaded value is masked with that constant
144 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
145 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
146                                                         GlobalVariable *GV,
147                                                         CmpInst &ICI,
148                                                         ConstantInt *AndCst) {
149   Constant *Init = GV->getInitializer();
150   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
151     return nullptr;
152 
153   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
154   // Don't blow up on huge arrays.
155   if (ArrayElementCount > MaxArraySizeForCombine)
156     return nullptr;
157 
158   // There are many forms of this optimization we can handle, for now, just do
159   // the simple index into a single-dimensional array.
160   //
161   // Require: GEP GV, 0, i {{, constant indices}}
162   if (GEP->getNumOperands() < 3 ||
163       !isa<ConstantInt>(GEP->getOperand(1)) ||
164       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
165       isa<Constant>(GEP->getOperand(2)))
166     return nullptr;
167 
168   // Check that indices after the variable are constants and in-range for the
169   // type they index.  Collect the indices.  This is typically for arrays of
170   // structs.
171   SmallVector<unsigned, 4> LaterIndices;
172 
173   Type *EltTy = Init->getType()->getArrayElementType();
174   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
175     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
176     if (!Idx) return nullptr;  // Variable index.
177 
178     uint64_t IdxVal = Idx->getZExtValue();
179     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
180 
181     if (StructType *STy = dyn_cast<StructType>(EltTy))
182       EltTy = STy->getElementType(IdxVal);
183     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
184       if (IdxVal >= ATy->getNumElements()) return nullptr;
185       EltTy = ATy->getElementType();
186     } else {
187       return nullptr; // Unknown type.
188     }
189 
190     LaterIndices.push_back(IdxVal);
191   }
192 
193   enum { Overdefined = -3, Undefined = -2 };
194 
195   // Variables for our state machines.
196 
197   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
198   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
199   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
200   // undefined, otherwise set to the first true element.  SecondTrueElement is
201   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
202   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
203 
204   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
205   // form "i != 47 & i != 87".  Same state transitions as for true elements.
206   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
207 
208   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
209   /// define a state machine that triggers for ranges of values that the index
210   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
211   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
212   /// index in the range (inclusive).  We use -2 for undefined here because we
213   /// use relative comparisons and don't want 0-1 to match -1.
214   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
215 
216   // MagicBitvector - This is a magic bitvector where we set a bit if the
217   // comparison is true for element 'i'.  If there are 64 elements or less in
218   // the array, this will fully represent all the comparison results.
219   uint64_t MagicBitvector = 0;
220 
221   // Scan the array and see if one of our patterns matches.
222   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
223   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
224     Constant *Elt = Init->getAggregateElement(i);
225     if (!Elt) return nullptr;
226 
227     // If this is indexing an array of structures, get the structure element.
228     if (!LaterIndices.empty())
229       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
230 
231     // If the element is masked, handle it.
232     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
233 
234     // Find out if the comparison would be true or false for the i'th element.
235     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
236                                                   CompareRHS, DL, &TLI);
237     // If the result is undef for this element, ignore it.
238     if (isa<UndefValue>(C)) {
239       // Extend range state machines to cover this element in case there is an
240       // undef in the middle of the range.
241       if (TrueRangeEnd == (int)i-1)
242         TrueRangeEnd = i;
243       if (FalseRangeEnd == (int)i-1)
244         FalseRangeEnd = i;
245       continue;
246     }
247 
248     // If we can't compute the result for any of the elements, we have to give
249     // up evaluating the entire conditional.
250     if (!isa<ConstantInt>(C)) return nullptr;
251 
252     // Otherwise, we know if the comparison is true or false for this element,
253     // update our state machines.
254     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
255 
256     // State machine for single/double/range index comparison.
257     if (IsTrueForElt) {
258       // Update the TrueElement state machine.
259       if (FirstTrueElement == Undefined)
260         FirstTrueElement = TrueRangeEnd = i;  // First true element.
261       else {
262         // Update double-compare state machine.
263         if (SecondTrueElement == Undefined)
264           SecondTrueElement = i;
265         else
266           SecondTrueElement = Overdefined;
267 
268         // Update range state machine.
269         if (TrueRangeEnd == (int)i-1)
270           TrueRangeEnd = i;
271         else
272           TrueRangeEnd = Overdefined;
273       }
274     } else {
275       // Update the FalseElement state machine.
276       if (FirstFalseElement == Undefined)
277         FirstFalseElement = FalseRangeEnd = i; // First false element.
278       else {
279         // Update double-compare state machine.
280         if (SecondFalseElement == Undefined)
281           SecondFalseElement = i;
282         else
283           SecondFalseElement = Overdefined;
284 
285         // Update range state machine.
286         if (FalseRangeEnd == (int)i-1)
287           FalseRangeEnd = i;
288         else
289           FalseRangeEnd = Overdefined;
290       }
291     }
292 
293     // If this element is in range, update our magic bitvector.
294     if (i < 64 && IsTrueForElt)
295       MagicBitvector |= 1ULL << i;
296 
297     // If all of our states become overdefined, bail out early.  Since the
298     // predicate is expensive, only check it every 8 elements.  This is only
299     // really useful for really huge arrays.
300     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
301         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
302         FalseRangeEnd == Overdefined)
303       return nullptr;
304   }
305 
306   // Now that we've scanned the entire array, emit our new comparison(s).  We
307   // order the state machines in complexity of the generated code.
308   Value *Idx = GEP->getOperand(2);
309 
310   // If the index is larger than the pointer size of the target, truncate the
311   // index down like the GEP would do implicitly.  We don't have to do this for
312   // an inbounds GEP because the index can't be out of range.
313   if (!GEP->isInBounds()) {
314     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
315     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
316     if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
317       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
318   }
319 
320   // If the comparison is only true for one or two elements, emit direct
321   // comparisons.
322   if (SecondTrueElement != Overdefined) {
323     // None true -> false.
324     if (FirstTrueElement == Undefined)
325       return replaceInstUsesWith(ICI, Builder.getFalse());
326 
327     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
328 
329     // True for one element -> 'i == 47'.
330     if (SecondTrueElement == Undefined)
331       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
332 
333     // True for two elements -> 'i == 47 | i == 72'.
334     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
335     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
336     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
337     return BinaryOperator::CreateOr(C1, C2);
338   }
339 
340   // If the comparison is only false for one or two elements, emit direct
341   // comparisons.
342   if (SecondFalseElement != Overdefined) {
343     // None false -> true.
344     if (FirstFalseElement == Undefined)
345       return replaceInstUsesWith(ICI, Builder.getTrue());
346 
347     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
348 
349     // False for one element -> 'i != 47'.
350     if (SecondFalseElement == Undefined)
351       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
352 
353     // False for two elements -> 'i != 47 & i != 72'.
354     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
355     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
356     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
357     return BinaryOperator::CreateAnd(C1, C2);
358   }
359 
360   // If the comparison can be replaced with a range comparison for the elements
361   // where it is true, emit the range check.
362   if (TrueRangeEnd != Overdefined) {
363     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
364 
365     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
366     if (FirstTrueElement) {
367       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
368       Idx = Builder.CreateAdd(Idx, Offs);
369     }
370 
371     Value *End = ConstantInt::get(Idx->getType(),
372                                   TrueRangeEnd-FirstTrueElement+1);
373     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
374   }
375 
376   // False range check.
377   if (FalseRangeEnd != Overdefined) {
378     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
379     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
380     if (FirstFalseElement) {
381       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
382       Idx = Builder.CreateAdd(Idx, Offs);
383     }
384 
385     Value *End = ConstantInt::get(Idx->getType(),
386                                   FalseRangeEnd-FirstFalseElement);
387     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
388   }
389 
390   // If a magic bitvector captures the entire comparison state
391   // of this load, replace it with computation that does:
392   //   ((magic_cst >> i) & 1) != 0
393   {
394     Type *Ty = nullptr;
395 
396     // Look for an appropriate type:
397     // - The type of Idx if the magic fits
398     // - The smallest fitting legal type
399     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
400       Ty = Idx->getType();
401     else
402       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
403 
404     if (Ty) {
405       Value *V = Builder.CreateIntCast(Idx, Ty, false);
406       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
407       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
408       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
409     }
410   }
411 
412   return nullptr;
413 }
414 
415 /// Return a value that can be used to compare the *offset* implied by a GEP to
416 /// zero. For example, if we have &A[i], we want to return 'i' for
417 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
418 /// are involved. The above expression would also be legal to codegen as
419 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
420 /// This latter form is less amenable to optimization though, and we are allowed
421 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
422 ///
423 /// If we can't emit an optimized form for this expression, this returns null.
424 ///
425 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
426                                           const DataLayout &DL) {
427   gep_type_iterator GTI = gep_type_begin(GEP);
428 
429   // Check to see if this gep only has a single variable index.  If so, and if
430   // any constant indices are a multiple of its scale, then we can compute this
431   // in terms of the scale of the variable index.  For example, if the GEP
432   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
433   // because the expression will cross zero at the same point.
434   unsigned i, e = GEP->getNumOperands();
435   int64_t Offset = 0;
436   for (i = 1; i != e; ++i, ++GTI) {
437     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
438       // Compute the aggregate offset of constant indices.
439       if (CI->isZero()) continue;
440 
441       // Handle a struct index, which adds its field offset to the pointer.
442       if (StructType *STy = GTI.getStructTypeOrNull()) {
443         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
444       } else {
445         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
446         Offset += Size*CI->getSExtValue();
447       }
448     } else {
449       // Found our variable index.
450       break;
451     }
452   }
453 
454   // If there are no variable indices, we must have a constant offset, just
455   // evaluate it the general way.
456   if (i == e) return nullptr;
457 
458   Value *VariableIdx = GEP->getOperand(i);
459   // Determine the scale factor of the variable element.  For example, this is
460   // 4 if the variable index is into an array of i32.
461   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
462 
463   // Verify that there are no other variable indices.  If so, emit the hard way.
464   for (++i, ++GTI; i != e; ++i, ++GTI) {
465     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
466     if (!CI) return nullptr;
467 
468     // Compute the aggregate offset of constant indices.
469     if (CI->isZero()) continue;
470 
471     // Handle a struct index, which adds its field offset to the pointer.
472     if (StructType *STy = GTI.getStructTypeOrNull()) {
473       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
474     } else {
475       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
476       Offset += Size*CI->getSExtValue();
477     }
478   }
479 
480   // Okay, we know we have a single variable index, which must be a
481   // pointer/array/vector index.  If there is no offset, life is simple, return
482   // the index.
483   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
484   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
485   if (Offset == 0) {
486     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
487     // we don't need to bother extending: the extension won't affect where the
488     // computation crosses zero.
489     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
490       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
491     }
492     return VariableIdx;
493   }
494 
495   // Otherwise, there is an index.  The computation we will do will be modulo
496   // the pointer size.
497   Offset = SignExtend64(Offset, IntPtrWidth);
498   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
499 
500   // To do this transformation, any constant index must be a multiple of the
501   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
502   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
503   // multiple of the variable scale.
504   int64_t NewOffs = Offset / (int64_t)VariableScale;
505   if (Offset != NewOffs*(int64_t)VariableScale)
506     return nullptr;
507 
508   // Okay, we can do this evaluation.  Start by converting the index to intptr.
509   if (VariableIdx->getType() != IntPtrTy)
510     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
511                                             true /*Signed*/);
512   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
513   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
514 }
515 
516 /// Returns true if we can rewrite Start as a GEP with pointer Base
517 /// and some integer offset. The nodes that need to be re-written
518 /// for this transformation will be added to Explored.
519 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
520                                   const DataLayout &DL,
521                                   SetVector<Value *> &Explored) {
522   SmallVector<Value *, 16> WorkList(1, Start);
523   Explored.insert(Base);
524 
525   // The following traversal gives us an order which can be used
526   // when doing the final transformation. Since in the final
527   // transformation we create the PHI replacement instructions first,
528   // we don't have to get them in any particular order.
529   //
530   // However, for other instructions we will have to traverse the
531   // operands of an instruction first, which means that we have to
532   // do a post-order traversal.
533   while (!WorkList.empty()) {
534     SetVector<PHINode *> PHIs;
535 
536     while (!WorkList.empty()) {
537       if (Explored.size() >= 100)
538         return false;
539 
540       Value *V = WorkList.back();
541 
542       if (Explored.count(V) != 0) {
543         WorkList.pop_back();
544         continue;
545       }
546 
547       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
548           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
549         // We've found some value that we can't explore which is different from
550         // the base. Therefore we can't do this transformation.
551         return false;
552 
553       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
554         auto *CI = dyn_cast<CastInst>(V);
555         if (!CI->isNoopCast(DL))
556           return false;
557 
558         if (Explored.count(CI->getOperand(0)) == 0)
559           WorkList.push_back(CI->getOperand(0));
560       }
561 
562       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
563         // We're limiting the GEP to having one index. This will preserve
564         // the original pointer type. We could handle more cases in the
565         // future.
566         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
567             GEP->getType() != Start->getType())
568           return false;
569 
570         if (Explored.count(GEP->getOperand(0)) == 0)
571           WorkList.push_back(GEP->getOperand(0));
572       }
573 
574       if (WorkList.back() == V) {
575         WorkList.pop_back();
576         // We've finished visiting this node, mark it as such.
577         Explored.insert(V);
578       }
579 
580       if (auto *PN = dyn_cast<PHINode>(V)) {
581         // We cannot transform PHIs on unsplittable basic blocks.
582         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
583           return false;
584         Explored.insert(PN);
585         PHIs.insert(PN);
586       }
587     }
588 
589     // Explore the PHI nodes further.
590     for (auto *PN : PHIs)
591       for (Value *Op : PN->incoming_values())
592         if (Explored.count(Op) == 0)
593           WorkList.push_back(Op);
594   }
595 
596   // Make sure that we can do this. Since we can't insert GEPs in a basic
597   // block before a PHI node, we can't easily do this transformation if
598   // we have PHI node users of transformed instructions.
599   for (Value *Val : Explored) {
600     for (Value *Use : Val->uses()) {
601 
602       auto *PHI = dyn_cast<PHINode>(Use);
603       auto *Inst = dyn_cast<Instruction>(Val);
604 
605       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
606           Explored.count(PHI) == 0)
607         continue;
608 
609       if (PHI->getParent() == Inst->getParent())
610         return false;
611     }
612   }
613   return true;
614 }
615 
616 // Sets the appropriate insert point on Builder where we can add
617 // a replacement Instruction for V (if that is possible).
618 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
619                               bool Before = true) {
620   if (auto *PHI = dyn_cast<PHINode>(V)) {
621     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
622     return;
623   }
624   if (auto *I = dyn_cast<Instruction>(V)) {
625     if (!Before)
626       I = &*std::next(I->getIterator());
627     Builder.SetInsertPoint(I);
628     return;
629   }
630   if (auto *A = dyn_cast<Argument>(V)) {
631     // Set the insertion point in the entry block.
632     BasicBlock &Entry = A->getParent()->getEntryBlock();
633     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
634     return;
635   }
636   // Otherwise, this is a constant and we don't need to set a new
637   // insertion point.
638   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
639 }
640 
641 /// Returns a re-written value of Start as an indexed GEP using Base as a
642 /// pointer.
643 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
644                                  const DataLayout &DL,
645                                  SetVector<Value *> &Explored) {
646   // Perform all the substitutions. This is a bit tricky because we can
647   // have cycles in our use-def chains.
648   // 1. Create the PHI nodes without any incoming values.
649   // 2. Create all the other values.
650   // 3. Add the edges for the PHI nodes.
651   // 4. Emit GEPs to get the original pointers.
652   // 5. Remove the original instructions.
653   Type *IndexType = IntegerType::get(
654       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
655 
656   DenseMap<Value *, Value *> NewInsts;
657   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
658 
659   // Create the new PHI nodes, without adding any incoming values.
660   for (Value *Val : Explored) {
661     if (Val == Base)
662       continue;
663     // Create empty phi nodes. This avoids cyclic dependencies when creating
664     // the remaining instructions.
665     if (auto *PHI = dyn_cast<PHINode>(Val))
666       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
667                                       PHI->getName() + ".idx", PHI);
668   }
669   IRBuilder<> Builder(Base->getContext());
670 
671   // Create all the other instructions.
672   for (Value *Val : Explored) {
673 
674     if (NewInsts.find(Val) != NewInsts.end())
675       continue;
676 
677     if (auto *CI = dyn_cast<CastInst>(Val)) {
678       // Don't get rid of the intermediate variable here; the store can grow
679       // the map which will invalidate the reference to the input value.
680       Value *V = NewInsts[CI->getOperand(0)];
681       NewInsts[CI] = V;
682       continue;
683     }
684     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
685       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
686                                                   : GEP->getOperand(1);
687       setInsertionPoint(Builder, GEP);
688       // Indices might need to be sign extended. GEPs will magically do
689       // this, but we need to do it ourselves here.
690       if (Index->getType()->getScalarSizeInBits() !=
691           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
692         Index = Builder.CreateSExtOrTrunc(
693             Index, NewInsts[GEP->getOperand(0)]->getType(),
694             GEP->getOperand(0)->getName() + ".sext");
695       }
696 
697       auto *Op = NewInsts[GEP->getOperand(0)];
698       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
699         NewInsts[GEP] = Index;
700       else
701         NewInsts[GEP] = Builder.CreateNSWAdd(
702             Op, Index, GEP->getOperand(0)->getName() + ".add");
703       continue;
704     }
705     if (isa<PHINode>(Val))
706       continue;
707 
708     llvm_unreachable("Unexpected instruction type");
709   }
710 
711   // Add the incoming values to the PHI nodes.
712   for (Value *Val : Explored) {
713     if (Val == Base)
714       continue;
715     // All the instructions have been created, we can now add edges to the
716     // phi nodes.
717     if (auto *PHI = dyn_cast<PHINode>(Val)) {
718       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
719       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
720         Value *NewIncoming = PHI->getIncomingValue(I);
721 
722         if (NewInsts.find(NewIncoming) != NewInsts.end())
723           NewIncoming = NewInsts[NewIncoming];
724 
725         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
726       }
727     }
728   }
729 
730   for (Value *Val : Explored) {
731     if (Val == Base)
732       continue;
733 
734     // Depending on the type, for external users we have to emit
735     // a GEP or a GEP + ptrtoint.
736     setInsertionPoint(Builder, Val, false);
737 
738     // If required, create an inttoptr instruction for Base.
739     Value *NewBase = Base;
740     if (!Base->getType()->isPointerTy())
741       NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
742                                                Start->getName() + "to.ptr");
743 
744     Value *GEP = Builder.CreateInBoundsGEP(
745         Start->getType()->getPointerElementType(), NewBase,
746         makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
747 
748     if (!Val->getType()->isPointerTy()) {
749       Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
750                                               Val->getName() + ".conv");
751       GEP = Cast;
752     }
753     Val->replaceAllUsesWith(GEP);
754   }
755 
756   return NewInsts[Start];
757 }
758 
759 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
760 /// the input Value as a constant indexed GEP. Returns a pair containing
761 /// the GEPs Pointer and Index.
762 static std::pair<Value *, Value *>
763 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
764   Type *IndexType = IntegerType::get(V->getContext(),
765                                      DL.getIndexTypeSizeInBits(V->getType()));
766 
767   Constant *Index = ConstantInt::getNullValue(IndexType);
768   while (true) {
769     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
770       // We accept only inbouds GEPs here to exclude the possibility of
771       // overflow.
772       if (!GEP->isInBounds())
773         break;
774       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
775           GEP->getType() == V->getType()) {
776         V = GEP->getOperand(0);
777         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
778         Index = ConstantExpr::getAdd(
779             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
780         continue;
781       }
782       break;
783     }
784     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
785       if (!CI->isNoopCast(DL))
786         break;
787       V = CI->getOperand(0);
788       continue;
789     }
790     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
791       if (!CI->isNoopCast(DL))
792         break;
793       V = CI->getOperand(0);
794       continue;
795     }
796     break;
797   }
798   return {V, Index};
799 }
800 
801 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
802 /// We can look through PHIs, GEPs and casts in order to determine a common base
803 /// between GEPLHS and RHS.
804 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
805                                               ICmpInst::Predicate Cond,
806                                               const DataLayout &DL) {
807   // FIXME: Support vector of pointers.
808   if (GEPLHS->getType()->isVectorTy())
809     return nullptr;
810 
811   if (!GEPLHS->hasAllConstantIndices())
812     return nullptr;
813 
814   // Make sure the pointers have the same type.
815   if (GEPLHS->getType() != RHS->getType())
816     return nullptr;
817 
818   Value *PtrBase, *Index;
819   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
820 
821   // The set of nodes that will take part in this transformation.
822   SetVector<Value *> Nodes;
823 
824   if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
825     return nullptr;
826 
827   // We know we can re-write this as
828   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
829   // Since we've only looked through inbouds GEPs we know that we
830   // can't have overflow on either side. We can therefore re-write
831   // this as:
832   //   OFFSET1 cmp OFFSET2
833   Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
834 
835   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
836   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
837   // offset. Since Index is the offset of LHS to the base pointer, we will now
838   // compare the offsets instead of comparing the pointers.
839   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
840 }
841 
842 /// Fold comparisons between a GEP instruction and something else. At this point
843 /// we know that the GEP is on the LHS of the comparison.
844 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
845                                        ICmpInst::Predicate Cond,
846                                        Instruction &I) {
847   // Don't transform signed compares of GEPs into index compares. Even if the
848   // GEP is inbounds, the final add of the base pointer can have signed overflow
849   // and would change the result of the icmp.
850   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
851   // the maximum signed value for the pointer type.
852   if (ICmpInst::isSigned(Cond))
853     return nullptr;
854 
855   // Look through bitcasts and addrspacecasts. We do not however want to remove
856   // 0 GEPs.
857   if (!isa<GetElementPtrInst>(RHS))
858     RHS = RHS->stripPointerCasts();
859 
860   Value *PtrBase = GEPLHS->getOperand(0);
861   // FIXME: Support vector pointer GEPs.
862   if (PtrBase == RHS && GEPLHS->isInBounds() &&
863       !GEPLHS->getType()->isVectorTy()) {
864     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
865     // This transformation (ignoring the base and scales) is valid because we
866     // know pointers can't overflow since the gep is inbounds.  See if we can
867     // output an optimized form.
868     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
869 
870     // If not, synthesize the offset the hard way.
871     if (!Offset)
872       Offset = EmitGEPOffset(GEPLHS);
873     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
874                         Constant::getNullValue(Offset->getType()));
875   }
876 
877   if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
878       isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
879       !NullPointerIsDefined(I.getFunction(),
880                             RHS->getType()->getPointerAddressSpace())) {
881     // For most address spaces, an allocation can't be placed at null, but null
882     // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
883     // the only valid inbounds address derived from null, is null itself.
884     // Thus, we have four cases to consider:
885     // 1) Base == nullptr, Offset == 0 -> inbounds, null
886     // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
887     // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
888     // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
889     //
890     // (Note if we're indexing a type of size 0, that simply collapses into one
891     //  of the buckets above.)
892     //
893     // In general, we're allowed to make values less poison (i.e. remove
894     //   sources of full UB), so in this case, we just select between the two
895     //   non-poison cases (1 and 4 above).
896     //
897     // For vectors, we apply the same reasoning on a per-lane basis.
898     auto *Base = GEPLHS->getPointerOperand();
899     if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
900       int NumElts = GEPLHS->getType()->getVectorNumElements();
901       Base = Builder.CreateVectorSplat(NumElts, Base);
902     }
903     return new ICmpInst(Cond, Base,
904                         ConstantExpr::getPointerBitCastOrAddrSpaceCast(
905                             cast<Constant>(RHS), Base->getType()));
906   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
907     // If the base pointers are different, but the indices are the same, just
908     // compare the base pointer.
909     if (PtrBase != GEPRHS->getOperand(0)) {
910       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
911       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
912                         GEPRHS->getOperand(0)->getType();
913       if (IndicesTheSame)
914         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
915           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
916             IndicesTheSame = false;
917             break;
918           }
919 
920       // If all indices are the same, just compare the base pointers.
921       Type *BaseType = GEPLHS->getOperand(0)->getType();
922       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
923         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
924 
925       // If we're comparing GEPs with two base pointers that only differ in type
926       // and both GEPs have only constant indices or just one use, then fold
927       // the compare with the adjusted indices.
928       // FIXME: Support vector of pointers.
929       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
930           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
931           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
932           PtrBase->stripPointerCasts() ==
933               GEPRHS->getOperand(0)->stripPointerCasts() &&
934           !GEPLHS->getType()->isVectorTy()) {
935         Value *LOffset = EmitGEPOffset(GEPLHS);
936         Value *ROffset = EmitGEPOffset(GEPRHS);
937 
938         // If we looked through an addrspacecast between different sized address
939         // spaces, the LHS and RHS pointers are different sized
940         // integers. Truncate to the smaller one.
941         Type *LHSIndexTy = LOffset->getType();
942         Type *RHSIndexTy = ROffset->getType();
943         if (LHSIndexTy != RHSIndexTy) {
944           if (LHSIndexTy->getPrimitiveSizeInBits() <
945               RHSIndexTy->getPrimitiveSizeInBits()) {
946             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
947           } else
948             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
949         }
950 
951         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
952                                         LOffset, ROffset);
953         return replaceInstUsesWith(I, Cmp);
954       }
955 
956       // Otherwise, the base pointers are different and the indices are
957       // different. Try convert this to an indexed compare by looking through
958       // PHIs/casts.
959       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
960     }
961 
962     // If one of the GEPs has all zero indices, recurse.
963     // FIXME: Handle vector of pointers.
964     if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
965       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
966                          ICmpInst::getSwappedPredicate(Cond), I);
967 
968     // If the other GEP has all zero indices, recurse.
969     // FIXME: Handle vector of pointers.
970     if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
971       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
972 
973     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
974     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
975       // If the GEPs only differ by one index, compare it.
976       unsigned NumDifferences = 0;  // Keep track of # differences.
977       unsigned DiffOperand = 0;     // The operand that differs.
978       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
979         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
980           Type *LHSType = GEPLHS->getOperand(i)->getType();
981           Type *RHSType = GEPRHS->getOperand(i)->getType();
982           // FIXME: Better support for vector of pointers.
983           if (LHSType->getPrimitiveSizeInBits() !=
984                    RHSType->getPrimitiveSizeInBits() ||
985               (GEPLHS->getType()->isVectorTy() &&
986                (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
987             // Irreconcilable differences.
988             NumDifferences = 2;
989             break;
990           }
991 
992           if (NumDifferences++) break;
993           DiffOperand = i;
994         }
995 
996       if (NumDifferences == 0)   // SAME GEP?
997         return replaceInstUsesWith(I, // No comparison is needed here.
998           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
999 
1000       else if (NumDifferences == 1 && GEPsInBounds) {
1001         Value *LHSV = GEPLHS->getOperand(DiffOperand);
1002         Value *RHSV = GEPRHS->getOperand(DiffOperand);
1003         // Make sure we do a signed comparison here.
1004         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
1005       }
1006     }
1007 
1008     // Only lower this if the icmp is the only user of the GEP or if we expect
1009     // the result to fold to a constant!
1010     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
1011         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
1012       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
1013       Value *L = EmitGEPOffset(GEPLHS);
1014       Value *R = EmitGEPOffset(GEPRHS);
1015       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
1016     }
1017   }
1018 
1019   // Try convert this to an indexed compare by looking through PHIs/casts as a
1020   // last resort.
1021   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1022 }
1023 
1024 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI,
1025                                          const AllocaInst *Alloca,
1026                                          const Value *Other) {
1027   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1028 
1029   // It would be tempting to fold away comparisons between allocas and any
1030   // pointer not based on that alloca (e.g. an argument). However, even
1031   // though such pointers cannot alias, they can still compare equal.
1032   //
1033   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1034   // doesn't escape we can argue that it's impossible to guess its value, and we
1035   // can therefore act as if any such guesses are wrong.
1036   //
1037   // The code below checks that the alloca doesn't escape, and that it's only
1038   // used in a comparison once (the current instruction). The
1039   // single-comparison-use condition ensures that we're trivially folding all
1040   // comparisons against the alloca consistently, and avoids the risk of
1041   // erroneously folding a comparison of the pointer with itself.
1042 
1043   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1044 
1045   SmallVector<const Use *, 32> Worklist;
1046   for (const Use &U : Alloca->uses()) {
1047     if (Worklist.size() >= MaxIter)
1048       return nullptr;
1049     Worklist.push_back(&U);
1050   }
1051 
1052   unsigned NumCmps = 0;
1053   while (!Worklist.empty()) {
1054     assert(Worklist.size() <= MaxIter);
1055     const Use *U = Worklist.pop_back_val();
1056     const Value *V = U->getUser();
1057     --MaxIter;
1058 
1059     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1060         isa<SelectInst>(V)) {
1061       // Track the uses.
1062     } else if (isa<LoadInst>(V)) {
1063       // Loading from the pointer doesn't escape it.
1064       continue;
1065     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1066       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1067       if (SI->getValueOperand() == U->get())
1068         return nullptr;
1069       continue;
1070     } else if (isa<ICmpInst>(V)) {
1071       if (NumCmps++)
1072         return nullptr; // Found more than one cmp.
1073       continue;
1074     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1075       switch (Intrin->getIntrinsicID()) {
1076         // These intrinsics don't escape or compare the pointer. Memset is safe
1077         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1078         // we don't allow stores, so src cannot point to V.
1079         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1080         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1081           continue;
1082         default:
1083           return nullptr;
1084       }
1085     } else {
1086       return nullptr;
1087     }
1088     for (const Use &U : V->uses()) {
1089       if (Worklist.size() >= MaxIter)
1090         return nullptr;
1091       Worklist.push_back(&U);
1092     }
1093   }
1094 
1095   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1096   return replaceInstUsesWith(
1097       ICI,
1098       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1099 }
1100 
1101 /// Fold "icmp pred (X+C), X".
1102 Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C,
1103                                               ICmpInst::Predicate Pred) {
1104   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1105   // so the values can never be equal.  Similarly for all other "or equals"
1106   // operators.
1107   assert(!!C && "C should not be zero!");
1108 
1109   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1110   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1111   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1112   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1113     Constant *R = ConstantInt::get(X->getType(),
1114                                    APInt::getMaxValue(C.getBitWidth()) - C);
1115     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1116   }
1117 
1118   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1119   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1120   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1121   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1122     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1123                         ConstantInt::get(X->getType(), -C));
1124 
1125   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1126 
1127   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1128   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1129   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1130   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1131   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1132   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1133   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1134     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1135                         ConstantInt::get(X->getType(), SMax - C));
1136 
1137   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1138   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1139   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1140   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1141   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1142   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1143 
1144   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1145   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1146                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1147 }
1148 
1149 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1150 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1151 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1152 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A,
1153                                                  const APInt &AP1,
1154                                                  const APInt &AP2) {
1155   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1156 
1157   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1158     if (I.getPredicate() == I.ICMP_NE)
1159       Pred = CmpInst::getInversePredicate(Pred);
1160     return new ICmpInst(Pred, LHS, RHS);
1161   };
1162 
1163   // Don't bother doing any work for cases which InstSimplify handles.
1164   if (AP2.isNullValue())
1165     return nullptr;
1166 
1167   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1168   if (IsAShr) {
1169     if (AP2.isAllOnesValue())
1170       return nullptr;
1171     if (AP2.isNegative() != AP1.isNegative())
1172       return nullptr;
1173     if (AP2.sgt(AP1))
1174       return nullptr;
1175   }
1176 
1177   if (!AP1)
1178     // 'A' must be large enough to shift out the highest set bit.
1179     return getICmp(I.ICMP_UGT, A,
1180                    ConstantInt::get(A->getType(), AP2.logBase2()));
1181 
1182   if (AP1 == AP2)
1183     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1184 
1185   int Shift;
1186   if (IsAShr && AP1.isNegative())
1187     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1188   else
1189     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1190 
1191   if (Shift > 0) {
1192     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1193       // There are multiple solutions if we are comparing against -1 and the LHS
1194       // of the ashr is not a power of two.
1195       if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1196         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1197       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1198     } else if (AP1 == AP2.lshr(Shift)) {
1199       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1200     }
1201   }
1202 
1203   // Shifting const2 will never be equal to const1.
1204   // FIXME: This should always be handled by InstSimplify?
1205   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1206   return replaceInstUsesWith(I, TorF);
1207 }
1208 
1209 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1210 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1211 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A,
1212                                                  const APInt &AP1,
1213                                                  const APInt &AP2) {
1214   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1215 
1216   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1217     if (I.getPredicate() == I.ICMP_NE)
1218       Pred = CmpInst::getInversePredicate(Pred);
1219     return new ICmpInst(Pred, LHS, RHS);
1220   };
1221 
1222   // Don't bother doing any work for cases which InstSimplify handles.
1223   if (AP2.isNullValue())
1224     return nullptr;
1225 
1226   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1227 
1228   if (!AP1 && AP2TrailingZeros != 0)
1229     return getICmp(
1230         I.ICMP_UGE, A,
1231         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1232 
1233   if (AP1 == AP2)
1234     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1235 
1236   // Get the distance between the lowest bits that are set.
1237   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1238 
1239   if (Shift > 0 && AP2.shl(Shift) == AP1)
1240     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1241 
1242   // Shifting const2 will never be equal to const1.
1243   // FIXME: This should always be handled by InstSimplify?
1244   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1245   return replaceInstUsesWith(I, TorF);
1246 }
1247 
1248 /// The caller has matched a pattern of the form:
1249 ///   I = icmp ugt (add (add A, B), CI2), CI1
1250 /// If this is of the form:
1251 ///   sum = a + b
1252 ///   if (sum+128 >u 255)
1253 /// Then replace it with llvm.sadd.with.overflow.i8.
1254 ///
1255 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1256                                           ConstantInt *CI2, ConstantInt *CI1,
1257                                           InstCombiner &IC) {
1258   // The transformation we're trying to do here is to transform this into an
1259   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1260   // with a narrower add, and discard the add-with-constant that is part of the
1261   // range check (if we can't eliminate it, this isn't profitable).
1262 
1263   // In order to eliminate the add-with-constant, the compare can be its only
1264   // use.
1265   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1266   if (!AddWithCst->hasOneUse())
1267     return nullptr;
1268 
1269   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1270   if (!CI2->getValue().isPowerOf2())
1271     return nullptr;
1272   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1273   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1274     return nullptr;
1275 
1276   // The width of the new add formed is 1 more than the bias.
1277   ++NewWidth;
1278 
1279   // Check to see that CI1 is an all-ones value with NewWidth bits.
1280   if (CI1->getBitWidth() == NewWidth ||
1281       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1282     return nullptr;
1283 
1284   // This is only really a signed overflow check if the inputs have been
1285   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1286   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1287   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1288   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1289       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1290     return nullptr;
1291 
1292   // In order to replace the original add with a narrower
1293   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1294   // and truncates that discard the high bits of the add.  Verify that this is
1295   // the case.
1296   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1297   for (User *U : OrigAdd->users()) {
1298     if (U == AddWithCst)
1299       continue;
1300 
1301     // Only accept truncates for now.  We would really like a nice recursive
1302     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1303     // chain to see which bits of a value are actually demanded.  If the
1304     // original add had another add which was then immediately truncated, we
1305     // could still do the transformation.
1306     TruncInst *TI = dyn_cast<TruncInst>(U);
1307     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1308       return nullptr;
1309   }
1310 
1311   // If the pattern matches, truncate the inputs to the narrower type and
1312   // use the sadd_with_overflow intrinsic to efficiently compute both the
1313   // result and the overflow bit.
1314   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1315   Function *F = Intrinsic::getDeclaration(
1316       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1317 
1318   InstCombiner::BuilderTy &Builder = IC.Builder;
1319 
1320   // Put the new code above the original add, in case there are any uses of the
1321   // add between the add and the compare.
1322   Builder.SetInsertPoint(OrigAdd);
1323 
1324   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1325   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1326   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1327   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1328   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1329 
1330   // The inner add was the result of the narrow add, zero extended to the
1331   // wider type.  Replace it with the result computed by the intrinsic.
1332   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1333 
1334   // The original icmp gets replaced with the overflow value.
1335   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1336 }
1337 
1338 /// If we have:
1339 ///   icmp eq/ne (urem/srem %x, %y), 0
1340 /// iff %y is a power-of-two, we can replace this with a bit test:
1341 ///   icmp eq/ne (and %x, (add %y, -1)), 0
1342 Instruction *InstCombiner::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1343   // This fold is only valid for equality predicates.
1344   if (!I.isEquality())
1345     return nullptr;
1346   ICmpInst::Predicate Pred;
1347   Value *X, *Y, *Zero;
1348   if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1349                         m_CombineAnd(m_Zero(), m_Value(Zero)))))
1350     return nullptr;
1351   if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1352     return nullptr;
1353   // This may increase instruction count, we don't enforce that Y is a constant.
1354   Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1355   Value *Masked = Builder.CreateAnd(X, Mask);
1356   return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1357 }
1358 
1359 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1360 /// by one-less-than-bitwidth into a sign test on the original value.
1361 Instruction *InstCombiner::foldSignBitTest(ICmpInst &I) {
1362   Instruction *Val;
1363   ICmpInst::Predicate Pred;
1364   if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1365     return nullptr;
1366 
1367   Value *X;
1368   Type *XTy;
1369 
1370   Constant *C;
1371   if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1372     XTy = X->getType();
1373     unsigned XBitWidth = XTy->getScalarSizeInBits();
1374     if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1375                                      APInt(XBitWidth, XBitWidth - 1))))
1376       return nullptr;
1377   } else if (isa<BinaryOperator>(Val) &&
1378              (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1379                   cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1380                   /*AnalyzeForSignBitExtraction=*/true))) {
1381     XTy = X->getType();
1382   } else
1383     return nullptr;
1384 
1385   return ICmpInst::Create(Instruction::ICmp,
1386                           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1387                                                     : ICmpInst::ICMP_SLT,
1388                           X, ConstantInt::getNullValue(XTy));
1389 }
1390 
1391 // Handle  icmp pred X, 0
1392 Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) {
1393   CmpInst::Predicate Pred = Cmp.getPredicate();
1394   if (!match(Cmp.getOperand(1), m_Zero()))
1395     return nullptr;
1396 
1397   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1398   if (Pred == ICmpInst::ICMP_SGT) {
1399     Value *A, *B;
1400     SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
1401     if (SPR.Flavor == SPF_SMIN) {
1402       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1403         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1404       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1405         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1406     }
1407   }
1408 
1409   if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1410     return New;
1411 
1412   // Given:
1413   //   icmp eq/ne (urem %x, %y), 0
1414   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1415   //   icmp eq/ne %x, 0
1416   Value *X, *Y;
1417   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1418       ICmpInst::isEquality(Pred)) {
1419     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1420     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1421     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1422       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1423   }
1424 
1425   return nullptr;
1426 }
1427 
1428 /// Fold icmp Pred X, C.
1429 /// TODO: This code structure does not make sense. The saturating add fold
1430 /// should be moved to some other helper and extended as noted below (it is also
1431 /// possible that code has been made unnecessary - do we canonicalize IR to
1432 /// overflow/saturating intrinsics or not?).
1433 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) {
1434   // Match the following pattern, which is a common idiom when writing
1435   // overflow-safe integer arithmetic functions. The source performs an addition
1436   // in wider type and explicitly checks for overflow using comparisons against
1437   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1438   //
1439   // TODO: This could probably be generalized to handle other overflow-safe
1440   // operations if we worked out the formulas to compute the appropriate magic
1441   // constants.
1442   //
1443   // sum = a + b
1444   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1445   CmpInst::Predicate Pred = Cmp.getPredicate();
1446   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1447   Value *A, *B;
1448   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1449   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1450       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1451     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1452       return Res;
1453 
1454   return nullptr;
1455 }
1456 
1457 /// Canonicalize icmp instructions based on dominating conditions.
1458 Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1459   // This is a cheap/incomplete check for dominance - just match a single
1460   // predecessor with a conditional branch.
1461   BasicBlock *CmpBB = Cmp.getParent();
1462   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1463   if (!DomBB)
1464     return nullptr;
1465 
1466   Value *DomCond;
1467   BasicBlock *TrueBB, *FalseBB;
1468   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1469     return nullptr;
1470 
1471   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1472          "Predecessor block does not point to successor?");
1473 
1474   // The branch should get simplified. Don't bother simplifying this condition.
1475   if (TrueBB == FalseBB)
1476     return nullptr;
1477 
1478   // Try to simplify this compare to T/F based on the dominating condition.
1479   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1480   if (Imp)
1481     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1482 
1483   CmpInst::Predicate Pred = Cmp.getPredicate();
1484   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1485   ICmpInst::Predicate DomPred;
1486   const APInt *C, *DomC;
1487   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1488       match(Y, m_APInt(C))) {
1489     // We have 2 compares of a variable with constants. Calculate the constant
1490     // ranges of those compares to see if we can transform the 2nd compare:
1491     // DomBB:
1492     //   DomCond = icmp DomPred X, DomC
1493     //   br DomCond, CmpBB, FalseBB
1494     // CmpBB:
1495     //   Cmp = icmp Pred X, C
1496     ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C);
1497     ConstantRange DominatingCR =
1498         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1499                           : ConstantRange::makeExactICmpRegion(
1500                                 CmpInst::getInversePredicate(DomPred), *DomC);
1501     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1502     ConstantRange Difference = DominatingCR.difference(CR);
1503     if (Intersection.isEmptySet())
1504       return replaceInstUsesWith(Cmp, Builder.getFalse());
1505     if (Difference.isEmptySet())
1506       return replaceInstUsesWith(Cmp, Builder.getTrue());
1507 
1508     // Canonicalizing a sign bit comparison that gets used in a branch,
1509     // pessimizes codegen by generating branch on zero instruction instead
1510     // of a test and branch. So we avoid canonicalizing in such situations
1511     // because test and branch instruction has better branch displacement
1512     // than compare and branch instruction.
1513     bool UnusedBit;
1514     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1515     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1516       return nullptr;
1517 
1518     if (const APInt *EqC = Intersection.getSingleElement())
1519       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1520     if (const APInt *NeC = Difference.getSingleElement())
1521       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1522   }
1523 
1524   return nullptr;
1525 }
1526 
1527 /// Fold icmp (trunc X, Y), C.
1528 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp,
1529                                                  TruncInst *Trunc,
1530                                                  const APInt &C) {
1531   ICmpInst::Predicate Pred = Cmp.getPredicate();
1532   Value *X = Trunc->getOperand(0);
1533   if (C.isOneValue() && C.getBitWidth() > 1) {
1534     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1535     Value *V = nullptr;
1536     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1537       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1538                           ConstantInt::get(V->getType(), 1));
1539   }
1540 
1541   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1542     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1543     // of the high bits truncated out of x are known.
1544     unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1545              SrcBits = X->getType()->getScalarSizeInBits();
1546     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1547 
1548     // If all the high bits are known, we can do this xform.
1549     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1550       // Pull in the high bits from known-ones set.
1551       APInt NewRHS = C.zext(SrcBits);
1552       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1553       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1554     }
1555   }
1556 
1557   return nullptr;
1558 }
1559 
1560 /// Fold icmp (xor X, Y), C.
1561 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp,
1562                                                BinaryOperator *Xor,
1563                                                const APInt &C) {
1564   Value *X = Xor->getOperand(0);
1565   Value *Y = Xor->getOperand(1);
1566   const APInt *XorC;
1567   if (!match(Y, m_APInt(XorC)))
1568     return nullptr;
1569 
1570   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1571   // fold the xor.
1572   ICmpInst::Predicate Pred = Cmp.getPredicate();
1573   bool TrueIfSigned = false;
1574   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1575 
1576     // If the sign bit of the XorCst is not set, there is no change to
1577     // the operation, just stop using the Xor.
1578     if (!XorC->isNegative()) {
1579       Cmp.setOperand(0, X);
1580       Worklist.Add(Xor);
1581       return &Cmp;
1582     }
1583 
1584     // Emit the opposite comparison.
1585     if (TrueIfSigned)
1586       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1587                           ConstantInt::getAllOnesValue(X->getType()));
1588     else
1589       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1590                           ConstantInt::getNullValue(X->getType()));
1591   }
1592 
1593   if (Xor->hasOneUse()) {
1594     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1595     if (!Cmp.isEquality() && XorC->isSignMask()) {
1596       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1597                             : Cmp.getSignedPredicate();
1598       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1599     }
1600 
1601     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1602     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1603       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1604                             : Cmp.getSignedPredicate();
1605       Pred = Cmp.getSwappedPredicate(Pred);
1606       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1607     }
1608   }
1609 
1610   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1611   if (Pred == ICmpInst::ICMP_UGT) {
1612     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1613     if (*XorC == ~C && (C + 1).isPowerOf2())
1614       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1615     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1616     if (*XorC == C && (C + 1).isPowerOf2())
1617       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1618   }
1619   if (Pred == ICmpInst::ICMP_ULT) {
1620     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1621     if (*XorC == -C && C.isPowerOf2())
1622       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1623                           ConstantInt::get(X->getType(), ~C));
1624     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1625     if (*XorC == C && (-C).isPowerOf2())
1626       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1627                           ConstantInt::get(X->getType(), ~C));
1628   }
1629   return nullptr;
1630 }
1631 
1632 /// Fold icmp (and (sh X, Y), C2), C1.
1633 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
1634                                             const APInt &C1, const APInt &C2) {
1635   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1636   if (!Shift || !Shift->isShift())
1637     return nullptr;
1638 
1639   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1640   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1641   // code produced by the clang front-end, for bitfield access.
1642   // This seemingly simple opportunity to fold away a shift turns out to be
1643   // rather complicated. See PR17827 for details.
1644   unsigned ShiftOpcode = Shift->getOpcode();
1645   bool IsShl = ShiftOpcode == Instruction::Shl;
1646   const APInt *C3;
1647   if (match(Shift->getOperand(1), m_APInt(C3))) {
1648     bool CanFold = false;
1649     if (ShiftOpcode == Instruction::Shl) {
1650       // For a left shift, we can fold if the comparison is not signed. We can
1651       // also fold a signed comparison if the mask value and comparison value
1652       // are not negative. These constraints may not be obvious, but we can
1653       // prove that they are correct using an SMT solver.
1654       if (!Cmp.isSigned() || (!C2.isNegative() && !C1.isNegative()))
1655         CanFold = true;
1656     } else {
1657       bool IsAshr = ShiftOpcode == Instruction::AShr;
1658       // For a logical right shift, we can fold if the comparison is not signed.
1659       // We can also fold a signed comparison if the shifted mask value and the
1660       // shifted comparison value are not negative. These constraints may not be
1661       // obvious, but we can prove that they are correct using an SMT solver.
1662       // For an arithmetic shift right we can do the same, if we ensure
1663       // the And doesn't use any bits being shifted in. Normally these would
1664       // be turned into lshr by SimplifyDemandedBits, but not if there is an
1665       // additional user.
1666       if (!IsAshr || (C2.shl(*C3).lshr(*C3) == C2)) {
1667         if (!Cmp.isSigned() ||
1668             (!C2.shl(*C3).isNegative() && !C1.shl(*C3).isNegative()))
1669           CanFold = true;
1670       }
1671     }
1672 
1673     if (CanFold) {
1674       APInt NewCst = IsShl ? C1.lshr(*C3) : C1.shl(*C3);
1675       APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3);
1676       // Check to see if we are shifting out any of the bits being compared.
1677       if (SameAsC1 != C1) {
1678         // If we shifted bits out, the fold is not going to work out. As a
1679         // special case, check to see if this means that the result is always
1680         // true or false now.
1681         if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1682           return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1683         if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1684           return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1685       } else {
1686         Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst));
1687         APInt NewAndCst = IsShl ? C2.lshr(*C3) : C2.shl(*C3);
1688         And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst));
1689         And->setOperand(0, Shift->getOperand(0));
1690         Worklist.Add(Shift); // Shift is dead.
1691         return &Cmp;
1692       }
1693     }
1694   }
1695 
1696   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1697   // preferable because it allows the C2 << Y expression to be hoisted out of a
1698   // loop if Y is invariant and X is not.
1699   if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() &&
1700       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1701     // Compute C2 << Y.
1702     Value *NewShift =
1703         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1704               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1705 
1706     // Compute X & (C2 << Y).
1707     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1708     Cmp.setOperand(0, NewAnd);
1709     return &Cmp;
1710   }
1711 
1712   return nullptr;
1713 }
1714 
1715 /// Fold icmp (and X, C2), C1.
1716 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp,
1717                                                  BinaryOperator *And,
1718                                                  const APInt &C1) {
1719   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1720 
1721   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1722   // TODO: We canonicalize to the longer form for scalars because we have
1723   // better analysis/folds for icmp, and codegen may be better with icmp.
1724   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() &&
1725       match(And->getOperand(1), m_One()))
1726     return new TruncInst(And->getOperand(0), Cmp.getType());
1727 
1728   const APInt *C2;
1729   Value *X;
1730   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1731     return nullptr;
1732 
1733   // Don't perform the following transforms if the AND has multiple uses
1734   if (!And->hasOneUse())
1735     return nullptr;
1736 
1737   if (Cmp.isEquality() && C1.isNullValue()) {
1738     // Restrict this fold to single-use 'and' (PR10267).
1739     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1740     if (C2->isSignMask()) {
1741       Constant *Zero = Constant::getNullValue(X->getType());
1742       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1743       return new ICmpInst(NewPred, X, Zero);
1744     }
1745 
1746     // Restrict this fold only for single-use 'and' (PR10267).
1747     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1748     if ((~(*C2) + 1).isPowerOf2()) {
1749       Constant *NegBOC =
1750           ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1751       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1752       return new ICmpInst(NewPred, X, NegBOC);
1753     }
1754   }
1755 
1756   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1757   // the input width without changing the value produced, eliminate the cast:
1758   //
1759   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1760   //
1761   // We can do this transformation if the constants do not have their sign bits
1762   // set or if it is an equality comparison. Extending a relational comparison
1763   // when we're checking the sign bit would not work.
1764   Value *W;
1765   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1766       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1767     // TODO: Is this a good transform for vectors? Wider types may reduce
1768     // throughput. Should this transform be limited (even for scalars) by using
1769     // shouldChangeType()?
1770     if (!Cmp.getType()->isVectorTy()) {
1771       Type *WideType = W->getType();
1772       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1773       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1774       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1775       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1776       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1777     }
1778   }
1779 
1780   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1781     return I;
1782 
1783   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1784   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1785   //
1786   // iff pred isn't signed
1787   if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() &&
1788       match(And->getOperand(1), m_One())) {
1789     Constant *One = cast<Constant>(And->getOperand(1));
1790     Value *Or = And->getOperand(0);
1791     Value *A, *B, *LShr;
1792     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1793         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1794       unsigned UsesRemoved = 0;
1795       if (And->hasOneUse())
1796         ++UsesRemoved;
1797       if (Or->hasOneUse())
1798         ++UsesRemoved;
1799       if (LShr->hasOneUse())
1800         ++UsesRemoved;
1801 
1802       // Compute A & ((1 << B) | 1)
1803       Value *NewOr = nullptr;
1804       if (auto *C = dyn_cast<Constant>(B)) {
1805         if (UsesRemoved >= 1)
1806           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1807       } else {
1808         if (UsesRemoved >= 3)
1809           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1810                                                      /*HasNUW=*/true),
1811                                    One, Or->getName());
1812       }
1813       if (NewOr) {
1814         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1815         Cmp.setOperand(0, NewAnd);
1816         return &Cmp;
1817       }
1818     }
1819   }
1820 
1821   return nullptr;
1822 }
1823 
1824 /// Fold icmp (and X, Y), C.
1825 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp,
1826                                                BinaryOperator *And,
1827                                                const APInt &C) {
1828   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1829     return I;
1830 
1831   // TODO: These all require that Y is constant too, so refactor with the above.
1832 
1833   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1834   Value *X = And->getOperand(0);
1835   Value *Y = And->getOperand(1);
1836   if (auto *LI = dyn_cast<LoadInst>(X))
1837     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1838       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1839         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1840             !LI->isVolatile() && isa<ConstantInt>(Y)) {
1841           ConstantInt *C2 = cast<ConstantInt>(Y);
1842           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1843             return Res;
1844         }
1845 
1846   if (!Cmp.isEquality())
1847     return nullptr;
1848 
1849   // X & -C == -C -> X >  u ~C
1850   // X & -C != -C -> X <= u ~C
1851   //   iff C is a power of 2
1852   if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) {
1853     auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
1854                                                           : CmpInst::ICMP_ULE;
1855     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1856   }
1857 
1858   // (X & C2) == 0 -> (trunc X) >= 0
1859   // (X & C2) != 0 -> (trunc X) <  0
1860   //   iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1861   const APInt *C2;
1862   if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) {
1863     int32_t ExactLogBase2 = C2->exactLogBase2();
1864     if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1865       Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1866       if (And->getType()->isVectorTy())
1867         NTy = VectorType::get(NTy, And->getType()->getVectorNumElements());
1868       Value *Trunc = Builder.CreateTrunc(X, NTy);
1869       auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
1870                                                             : CmpInst::ICMP_SLT;
1871       return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1872     }
1873   }
1874 
1875   return nullptr;
1876 }
1877 
1878 /// Fold icmp (or X, Y), C.
1879 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
1880                                               const APInt &C) {
1881   ICmpInst::Predicate Pred = Cmp.getPredicate();
1882   if (C.isOneValue()) {
1883     // icmp slt signum(V) 1 --> icmp slt V, 1
1884     Value *V = nullptr;
1885     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1886       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1887                           ConstantInt::get(V->getType(), 1));
1888   }
1889 
1890   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1891   if (Cmp.isEquality() && Cmp.getOperand(1) == OrOp1) {
1892     // X | C == C --> X <=u C
1893     // X | C != C --> X  >u C
1894     //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1895     if ((C + 1).isPowerOf2()) {
1896       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1897       return new ICmpInst(Pred, OrOp0, OrOp1);
1898     }
1899     // More general: are all bits outside of a mask constant set or not set?
1900     // X | C == C --> (X & ~C) == 0
1901     // X | C != C --> (X & ~C) != 0
1902     if (Or->hasOneUse()) {
1903       Value *A = Builder.CreateAnd(OrOp0, ~C);
1904       return new ICmpInst(Pred, A, ConstantInt::getNullValue(OrOp0->getType()));
1905     }
1906   }
1907 
1908   if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse())
1909     return nullptr;
1910 
1911   Value *P, *Q;
1912   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1913     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1914     // -> and (icmp eq P, null), (icmp eq Q, null).
1915     Value *CmpP =
1916         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1917     Value *CmpQ =
1918         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1919     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1920     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1921   }
1922 
1923   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1924   // a shorter form that has more potential to be folded even further.
1925   Value *X1, *X2, *X3, *X4;
1926   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1927       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1928     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1929     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1930     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1931     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1932     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1933     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1934   }
1935 
1936   return nullptr;
1937 }
1938 
1939 /// Fold icmp (mul X, Y), C.
1940 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp,
1941                                                BinaryOperator *Mul,
1942                                                const APInt &C) {
1943   const APInt *MulC;
1944   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1945     return nullptr;
1946 
1947   // If this is a test of the sign bit and the multiply is sign-preserving with
1948   // a constant operand, use the multiply LHS operand instead.
1949   ICmpInst::Predicate Pred = Cmp.getPredicate();
1950   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1951     if (MulC->isNegative())
1952       Pred = ICmpInst::getSwappedPredicate(Pred);
1953     return new ICmpInst(Pred, Mul->getOperand(0),
1954                         Constant::getNullValue(Mul->getType()));
1955   }
1956 
1957   return nullptr;
1958 }
1959 
1960 /// Fold icmp (shl 1, Y), C.
1961 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
1962                                    const APInt &C) {
1963   Value *Y;
1964   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
1965     return nullptr;
1966 
1967   Type *ShiftType = Shl->getType();
1968   unsigned TypeBits = C.getBitWidth();
1969   bool CIsPowerOf2 = C.isPowerOf2();
1970   ICmpInst::Predicate Pred = Cmp.getPredicate();
1971   if (Cmp.isUnsigned()) {
1972     // (1 << Y) pred C -> Y pred Log2(C)
1973     if (!CIsPowerOf2) {
1974       // (1 << Y) <  30 -> Y <= 4
1975       // (1 << Y) <= 30 -> Y <= 4
1976       // (1 << Y) >= 30 -> Y >  4
1977       // (1 << Y) >  30 -> Y >  4
1978       if (Pred == ICmpInst::ICMP_ULT)
1979         Pred = ICmpInst::ICMP_ULE;
1980       else if (Pred == ICmpInst::ICMP_UGE)
1981         Pred = ICmpInst::ICMP_UGT;
1982     }
1983 
1984     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
1985     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
1986     unsigned CLog2 = C.logBase2();
1987     if (CLog2 == TypeBits - 1) {
1988       if (Pred == ICmpInst::ICMP_UGE)
1989         Pred = ICmpInst::ICMP_EQ;
1990       else if (Pred == ICmpInst::ICMP_ULT)
1991         Pred = ICmpInst::ICMP_NE;
1992     }
1993     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
1994   } else if (Cmp.isSigned()) {
1995     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
1996     if (C.isAllOnesValue()) {
1997       // (1 << Y) <= -1 -> Y == 31
1998       if (Pred == ICmpInst::ICMP_SLE)
1999         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2000 
2001       // (1 << Y) >  -1 -> Y != 31
2002       if (Pred == ICmpInst::ICMP_SGT)
2003         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2004     } else if (!C) {
2005       // (1 << Y) <  0 -> Y == 31
2006       // (1 << Y) <= 0 -> Y == 31
2007       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2008         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2009 
2010       // (1 << Y) >= 0 -> Y != 31
2011       // (1 << Y) >  0 -> Y != 31
2012       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2013         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2014     }
2015   } else if (Cmp.isEquality() && CIsPowerOf2) {
2016     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2017   }
2018 
2019   return nullptr;
2020 }
2021 
2022 /// Fold icmp (shl X, Y), C.
2023 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp,
2024                                                BinaryOperator *Shl,
2025                                                const APInt &C) {
2026   const APInt *ShiftVal;
2027   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2028     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2029 
2030   const APInt *ShiftAmt;
2031   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2032     return foldICmpShlOne(Cmp, Shl, C);
2033 
2034   // Check that the shift amount is in range. If not, don't perform undefined
2035   // shifts. When the shift is visited, it will be simplified.
2036   unsigned TypeBits = C.getBitWidth();
2037   if (ShiftAmt->uge(TypeBits))
2038     return nullptr;
2039 
2040   ICmpInst::Predicate Pred = Cmp.getPredicate();
2041   Value *X = Shl->getOperand(0);
2042   Type *ShType = Shl->getType();
2043 
2044   // NSW guarantees that we are only shifting out sign bits from the high bits,
2045   // so we can ASHR the compare constant without needing a mask and eliminate
2046   // the shift.
2047   if (Shl->hasNoSignedWrap()) {
2048     if (Pred == ICmpInst::ICMP_SGT) {
2049       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2050       APInt ShiftedC = C.ashr(*ShiftAmt);
2051       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2052     }
2053     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2054         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2055       APInt ShiftedC = C.ashr(*ShiftAmt);
2056       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2057     }
2058     if (Pred == ICmpInst::ICMP_SLT) {
2059       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2060       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2061       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2062       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2063       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2064       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2065       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2066     }
2067     // If this is a signed comparison to 0 and the shift is sign preserving,
2068     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2069     // do that if we're sure to not continue on in this function.
2070     if (isSignTest(Pred, C))
2071       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2072   }
2073 
2074   // NUW guarantees that we are only shifting out zero bits from the high bits,
2075   // so we can LSHR the compare constant without needing a mask and eliminate
2076   // the shift.
2077   if (Shl->hasNoUnsignedWrap()) {
2078     if (Pred == ICmpInst::ICMP_UGT) {
2079       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2080       APInt ShiftedC = C.lshr(*ShiftAmt);
2081       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2082     }
2083     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2084         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2085       APInt ShiftedC = C.lshr(*ShiftAmt);
2086       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2087     }
2088     if (Pred == ICmpInst::ICMP_ULT) {
2089       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2090       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2091       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2092       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2093       assert(C.ugt(0) && "ult 0 should have been eliminated");
2094       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2095       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2096     }
2097   }
2098 
2099   if (Cmp.isEquality() && Shl->hasOneUse()) {
2100     // Strength-reduce the shift into an 'and'.
2101     Constant *Mask = ConstantInt::get(
2102         ShType,
2103         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2104     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2105     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2106     return new ICmpInst(Pred, And, LShrC);
2107   }
2108 
2109   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2110   bool TrueIfSigned = false;
2111   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2112     // (X << 31) <s 0  --> (X & 1) != 0
2113     Constant *Mask = ConstantInt::get(
2114         ShType,
2115         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2116     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2117     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2118                         And, Constant::getNullValue(ShType));
2119   }
2120 
2121   // Simplify 'shl' inequality test into 'and' equality test.
2122   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2123     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2124     if ((C + 1).isPowerOf2() &&
2125         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2126       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2127       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2128                                                      : ICmpInst::ICMP_NE,
2129                           And, Constant::getNullValue(ShType));
2130     }
2131     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2132     if (C.isPowerOf2() &&
2133         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2134       Value *And =
2135           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2136       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2137                                                      : ICmpInst::ICMP_NE,
2138                           And, Constant::getNullValue(ShType));
2139     }
2140   }
2141 
2142   // Transform (icmp pred iM (shl iM %v, N), C)
2143   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2144   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2145   // This enables us to get rid of the shift in favor of a trunc that may be
2146   // free on the target. It has the additional benefit of comparing to a
2147   // smaller constant that may be more target-friendly.
2148   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2149   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2150       DL.isLegalInteger(TypeBits - Amt)) {
2151     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2152     if (ShType->isVectorTy())
2153       TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements());
2154     Constant *NewC =
2155         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2156     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2157   }
2158 
2159   return nullptr;
2160 }
2161 
2162 /// Fold icmp ({al}shr X, Y), C.
2163 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp,
2164                                                BinaryOperator *Shr,
2165                                                const APInt &C) {
2166   // An exact shr only shifts out zero bits, so:
2167   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2168   Value *X = Shr->getOperand(0);
2169   CmpInst::Predicate Pred = Cmp.getPredicate();
2170   if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
2171       C.isNullValue())
2172     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2173 
2174   const APInt *ShiftVal;
2175   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2176     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2177 
2178   const APInt *ShiftAmt;
2179   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2180     return nullptr;
2181 
2182   // Check that the shift amount is in range. If not, don't perform undefined
2183   // shifts. When the shift is visited it will be simplified.
2184   unsigned TypeBits = C.getBitWidth();
2185   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2186   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2187     return nullptr;
2188 
2189   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2190   bool IsExact = Shr->isExact();
2191   Type *ShrTy = Shr->getType();
2192   // TODO: If we could guarantee that InstSimplify would handle all of the
2193   // constant-value-based preconditions in the folds below, then we could assert
2194   // those conditions rather than checking them. This is difficult because of
2195   // undef/poison (PR34838).
2196   if (IsAShr) {
2197     if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
2198       // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2199       // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2200       APInt ShiftedC = C.shl(ShAmtVal);
2201       if (ShiftedC.ashr(ShAmtVal) == C)
2202         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2203     }
2204     if (Pred == CmpInst::ICMP_SGT) {
2205       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2206       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2207       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2208           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2209         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2210     }
2211   } else {
2212     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2213       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2214       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2215       APInt ShiftedC = C.shl(ShAmtVal);
2216       if (ShiftedC.lshr(ShAmtVal) == C)
2217         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2218     }
2219     if (Pred == CmpInst::ICMP_UGT) {
2220       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2221       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2222       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2223         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2224     }
2225   }
2226 
2227   if (!Cmp.isEquality())
2228     return nullptr;
2229 
2230   // Handle equality comparisons of shift-by-constant.
2231 
2232   // If the comparison constant changes with the shift, the comparison cannot
2233   // succeed (bits of the comparison constant cannot match the shifted value).
2234   // This should be known by InstSimplify and already be folded to true/false.
2235   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2236           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2237          "Expected icmp+shr simplify did not occur.");
2238 
2239   // If the bits shifted out are known zero, compare the unshifted value:
2240   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2241   if (Shr->isExact())
2242     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2243 
2244   if (Shr->hasOneUse()) {
2245     // Canonicalize the shift into an 'and':
2246     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2247     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2248     Constant *Mask = ConstantInt::get(ShrTy, Val);
2249     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2250     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2251   }
2252 
2253   return nullptr;
2254 }
2255 
2256 Instruction *InstCombiner::foldICmpSRemConstant(ICmpInst &Cmp,
2257                                                 BinaryOperator *SRem,
2258                                                 const APInt &C) {
2259   // Match an 'is positive' or 'is negative' comparison of remainder by a
2260   // constant power-of-2 value:
2261   // (X % pow2C) sgt/slt 0
2262   const ICmpInst::Predicate Pred = Cmp.getPredicate();
2263   if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
2264     return nullptr;
2265 
2266   // TODO: The one-use check is standard because we do not typically want to
2267   //       create longer instruction sequences, but this might be a special-case
2268   //       because srem is not good for analysis or codegen.
2269   if (!SRem->hasOneUse())
2270     return nullptr;
2271 
2272   const APInt *DivisorC;
2273   if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
2274     return nullptr;
2275 
2276   // Mask off the sign bit and the modulo bits (low-bits).
2277   Type *Ty = SRem->getType();
2278   APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2279   Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2280   Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2281 
2282   // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2283   // bit is set. Example:
2284   // (i8 X % 32) s> 0 --> (X & 159) s> 0
2285   if (Pred == ICmpInst::ICMP_SGT)
2286     return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2287 
2288   // For 'is negative?' check that the sign-bit is set and at least 1 masked
2289   // bit is set. Example:
2290   // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2291   return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2292 }
2293 
2294 /// Fold icmp (udiv X, Y), C.
2295 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp,
2296                                                 BinaryOperator *UDiv,
2297                                                 const APInt &C) {
2298   const APInt *C2;
2299   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2300     return nullptr;
2301 
2302   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2303 
2304   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2305   Value *Y = UDiv->getOperand(1);
2306   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2307     assert(!C.isMaxValue() &&
2308            "icmp ugt X, UINT_MAX should have been simplified already.");
2309     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2310                         ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2311   }
2312 
2313   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2314   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2315     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2316     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2317                         ConstantInt::get(Y->getType(), C2->udiv(C)));
2318   }
2319 
2320   return nullptr;
2321 }
2322 
2323 /// Fold icmp ({su}div X, Y), C.
2324 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp,
2325                                                BinaryOperator *Div,
2326                                                const APInt &C) {
2327   // Fold: icmp pred ([us]div X, C2), C -> range test
2328   // Fold this div into the comparison, producing a range check.
2329   // Determine, based on the divide type, what the range is being
2330   // checked.  If there is an overflow on the low or high side, remember
2331   // it, otherwise compute the range [low, hi) bounding the new value.
2332   // See: InsertRangeTest above for the kinds of replacements possible.
2333   const APInt *C2;
2334   if (!match(Div->getOperand(1), m_APInt(C2)))
2335     return nullptr;
2336 
2337   // FIXME: If the operand types don't match the type of the divide
2338   // then don't attempt this transform. The code below doesn't have the
2339   // logic to deal with a signed divide and an unsigned compare (and
2340   // vice versa). This is because (x /s C2) <s C  produces different
2341   // results than (x /s C2) <u C or (x /u C2) <s C or even
2342   // (x /u C2) <u C.  Simply casting the operands and result won't
2343   // work. :(  The if statement below tests that condition and bails
2344   // if it finds it.
2345   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2346   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2347     return nullptr;
2348 
2349   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2350   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2351   // division-by-constant cases should be present, we can not assert that they
2352   // have happened before we reach this icmp instruction.
2353   if (C2->isNullValue() || C2->isOneValue() ||
2354       (DivIsSigned && C2->isAllOnesValue()))
2355     return nullptr;
2356 
2357   // Compute Prod = C * C2. We are essentially solving an equation of
2358   // form X / C2 = C. We solve for X by multiplying C2 and C.
2359   // By solving for X, we can turn this into a range check instead of computing
2360   // a divide.
2361   APInt Prod = C * *C2;
2362 
2363   // Determine if the product overflows by seeing if the product is not equal to
2364   // the divide. Make sure we do the same kind of divide as in the LHS
2365   // instruction that we're folding.
2366   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2367 
2368   ICmpInst::Predicate Pred = Cmp.getPredicate();
2369 
2370   // If the division is known to be exact, then there is no remainder from the
2371   // divide, so the covered range size is unit, otherwise it is the divisor.
2372   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2373 
2374   // Figure out the interval that is being checked.  For example, a comparison
2375   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2376   // Compute this interval based on the constants involved and the signedness of
2377   // the compare/divide.  This computes a half-open interval, keeping track of
2378   // whether either value in the interval overflows.  After analysis each
2379   // overflow variable is set to 0 if it's corresponding bound variable is valid
2380   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2381   int LoOverflow = 0, HiOverflow = 0;
2382   APInt LoBound, HiBound;
2383 
2384   if (!DivIsSigned) {  // udiv
2385     // e.g. X/5 op 3  --> [15, 20)
2386     LoBound = Prod;
2387     HiOverflow = LoOverflow = ProdOV;
2388     if (!HiOverflow) {
2389       // If this is not an exact divide, then many values in the range collapse
2390       // to the same result value.
2391       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2392     }
2393   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2394     if (C.isNullValue()) {       // (X / pos) op 0
2395       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2396       LoBound = -(RangeSize - 1);
2397       HiBound = RangeSize;
2398     } else if (C.isStrictlyPositive()) {   // (X / pos) op pos
2399       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2400       HiOverflow = LoOverflow = ProdOV;
2401       if (!HiOverflow)
2402         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2403     } else {                       // (X / pos) op neg
2404       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2405       HiBound = Prod + 1;
2406       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2407       if (!LoOverflow) {
2408         APInt DivNeg = -RangeSize;
2409         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2410       }
2411     }
2412   } else if (C2->isNegative()) { // Divisor is < 0.
2413     if (Div->isExact())
2414       RangeSize.negate();
2415     if (C.isNullValue()) { // (X / neg) op 0
2416       // e.g. X/-5 op 0  --> [-4, 5)
2417       LoBound = RangeSize + 1;
2418       HiBound = -RangeSize;
2419       if (HiBound == *C2) {        // -INTMIN = INTMIN
2420         HiOverflow = 1;            // [INTMIN+1, overflow)
2421         HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
2422       }
2423     } else if (C.isStrictlyPositive()) {   // (X / neg) op pos
2424       // e.g. X/-5 op 3  --> [-19, -14)
2425       HiBound = Prod + 1;
2426       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2427       if (!LoOverflow)
2428         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2429     } else {                       // (X / neg) op neg
2430       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2431       LoOverflow = HiOverflow = ProdOV;
2432       if (!HiOverflow)
2433         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2434     }
2435 
2436     // Dividing by a negative swaps the condition.  LT <-> GT
2437     Pred = ICmpInst::getSwappedPredicate(Pred);
2438   }
2439 
2440   Value *X = Div->getOperand(0);
2441   switch (Pred) {
2442     default: llvm_unreachable("Unhandled icmp opcode!");
2443     case ICmpInst::ICMP_EQ:
2444       if (LoOverflow && HiOverflow)
2445         return replaceInstUsesWith(Cmp, Builder.getFalse());
2446       if (HiOverflow)
2447         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2448                             ICmpInst::ICMP_UGE, X,
2449                             ConstantInt::get(Div->getType(), LoBound));
2450       if (LoOverflow)
2451         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2452                             ICmpInst::ICMP_ULT, X,
2453                             ConstantInt::get(Div->getType(), HiBound));
2454       return replaceInstUsesWith(
2455           Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2456     case ICmpInst::ICMP_NE:
2457       if (LoOverflow && HiOverflow)
2458         return replaceInstUsesWith(Cmp, Builder.getTrue());
2459       if (HiOverflow)
2460         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2461                             ICmpInst::ICMP_ULT, X,
2462                             ConstantInt::get(Div->getType(), LoBound));
2463       if (LoOverflow)
2464         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2465                             ICmpInst::ICMP_UGE, X,
2466                             ConstantInt::get(Div->getType(), HiBound));
2467       return replaceInstUsesWith(Cmp,
2468                                  insertRangeTest(X, LoBound, HiBound,
2469                                                  DivIsSigned, false));
2470     case ICmpInst::ICMP_ULT:
2471     case ICmpInst::ICMP_SLT:
2472       if (LoOverflow == +1)   // Low bound is greater than input range.
2473         return replaceInstUsesWith(Cmp, Builder.getTrue());
2474       if (LoOverflow == -1)   // Low bound is less than input range.
2475         return replaceInstUsesWith(Cmp, Builder.getFalse());
2476       return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2477     case ICmpInst::ICMP_UGT:
2478     case ICmpInst::ICMP_SGT:
2479       if (HiOverflow == +1)       // High bound greater than input range.
2480         return replaceInstUsesWith(Cmp, Builder.getFalse());
2481       if (HiOverflow == -1)       // High bound less than input range.
2482         return replaceInstUsesWith(Cmp, Builder.getTrue());
2483       if (Pred == ICmpInst::ICMP_UGT)
2484         return new ICmpInst(ICmpInst::ICMP_UGE, X,
2485                             ConstantInt::get(Div->getType(), HiBound));
2486       return new ICmpInst(ICmpInst::ICMP_SGE, X,
2487                           ConstantInt::get(Div->getType(), HiBound));
2488   }
2489 
2490   return nullptr;
2491 }
2492 
2493 /// Fold icmp (sub X, Y), C.
2494 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp,
2495                                                BinaryOperator *Sub,
2496                                                const APInt &C) {
2497   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2498   ICmpInst::Predicate Pred = Cmp.getPredicate();
2499   const APInt *C2;
2500   APInt SubResult;
2501 
2502   // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0
2503   if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality())
2504     return new ICmpInst(Cmp.getPredicate(), Y,
2505                         ConstantInt::get(Y->getType(), 0));
2506 
2507   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2508   if (match(X, m_APInt(C2)) &&
2509       ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) ||
2510        (Cmp.isSigned() && Sub->hasNoSignedWrap())) &&
2511       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2512     return new ICmpInst(Cmp.getSwappedPredicate(), Y,
2513                         ConstantInt::get(Y->getType(), SubResult));
2514 
2515   // The following transforms are only worth it if the only user of the subtract
2516   // is the icmp.
2517   if (!Sub->hasOneUse())
2518     return nullptr;
2519 
2520   if (Sub->hasNoSignedWrap()) {
2521     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2522     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue())
2523       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2524 
2525     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2526     if (Pred == ICmpInst::ICMP_SGT && C.isNullValue())
2527       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2528 
2529     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2530     if (Pred == ICmpInst::ICMP_SLT && C.isNullValue())
2531       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2532 
2533     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2534     if (Pred == ICmpInst::ICMP_SLT && C.isOneValue())
2535       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2536   }
2537 
2538   if (!match(X, m_APInt(C2)))
2539     return nullptr;
2540 
2541   // C2 - Y <u C -> (Y | (C - 1)) == C2
2542   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2543   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2544       (*C2 & (C - 1)) == (C - 1))
2545     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2546 
2547   // C2 - Y >u C -> (Y | C) != C2
2548   //   iff C2 & C == C and C + 1 is a power of 2
2549   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2550     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2551 
2552   return nullptr;
2553 }
2554 
2555 /// Fold icmp (add X, Y), C.
2556 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp,
2557                                                BinaryOperator *Add,
2558                                                const APInt &C) {
2559   Value *Y = Add->getOperand(1);
2560   const APInt *C2;
2561   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2562     return nullptr;
2563 
2564   // Fold icmp pred (add X, C2), C.
2565   Value *X = Add->getOperand(0);
2566   Type *Ty = Add->getType();
2567   CmpInst::Predicate Pred = Cmp.getPredicate();
2568 
2569   // If the add does not wrap, we can always adjust the compare by subtracting
2570   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2571   // are canonicalized to SGT/SLT/UGT/ULT.
2572   if ((Add->hasNoSignedWrap() &&
2573        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2574       (Add->hasNoUnsignedWrap() &&
2575        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2576     bool Overflow;
2577     APInt NewC =
2578         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2579     // If there is overflow, the result must be true or false.
2580     // TODO: Can we assert there is no overflow because InstSimplify always
2581     // handles those cases?
2582     if (!Overflow)
2583       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2584       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2585   }
2586 
2587   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2588   const APInt &Upper = CR.getUpper();
2589   const APInt &Lower = CR.getLower();
2590   if (Cmp.isSigned()) {
2591     if (Lower.isSignMask())
2592       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2593     if (Upper.isSignMask())
2594       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2595   } else {
2596     if (Lower.isMinValue())
2597       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2598     if (Upper.isMinValue())
2599       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2600   }
2601 
2602   if (!Add->hasOneUse())
2603     return nullptr;
2604 
2605   // X+C <u C2 -> (X & -C2) == C
2606   //   iff C & (C2-1) == 0
2607   //       C2 is a power of 2
2608   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2609     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2610                         ConstantExpr::getNeg(cast<Constant>(Y)));
2611 
2612   // X+C >u C2 -> (X & ~C2) != C
2613   //   iff C & C2 == 0
2614   //       C2+1 is a power of 2
2615   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2616     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2617                         ConstantExpr::getNeg(cast<Constant>(Y)));
2618 
2619   return nullptr;
2620 }
2621 
2622 bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2623                                            Value *&RHS, ConstantInt *&Less,
2624                                            ConstantInt *&Equal,
2625                                            ConstantInt *&Greater) {
2626   // TODO: Generalize this to work with other comparison idioms or ensure
2627   // they get canonicalized into this form.
2628 
2629   // select i1 (a == b),
2630   //        i32 Equal,
2631   //        i32 (select i1 (a < b), i32 Less, i32 Greater)
2632   // where Equal, Less and Greater are placeholders for any three constants.
2633   ICmpInst::Predicate PredA;
2634   if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2635       !ICmpInst::isEquality(PredA))
2636     return false;
2637   Value *EqualVal = SI->getTrueValue();
2638   Value *UnequalVal = SI->getFalseValue();
2639   // We still can get non-canonical predicate here, so canonicalize.
2640   if (PredA == ICmpInst::ICMP_NE)
2641     std::swap(EqualVal, UnequalVal);
2642   if (!match(EqualVal, m_ConstantInt(Equal)))
2643     return false;
2644   ICmpInst::Predicate PredB;
2645   Value *LHS2, *RHS2;
2646   if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2647                                   m_ConstantInt(Less), m_ConstantInt(Greater))))
2648     return false;
2649   // We can get predicate mismatch here, so canonicalize if possible:
2650   // First, ensure that 'LHS' match.
2651   if (LHS2 != LHS) {
2652     // x sgt y <--> y slt x
2653     std::swap(LHS2, RHS2);
2654     PredB = ICmpInst::getSwappedPredicate(PredB);
2655   }
2656   if (LHS2 != LHS)
2657     return false;
2658   // We also need to canonicalize 'RHS'.
2659   if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2660     // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
2661     auto FlippedStrictness =
2662         getFlippedStrictnessPredicateAndConstant(PredB, cast<Constant>(RHS2));
2663     if (!FlippedStrictness)
2664       return false;
2665     assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check");
2666     RHS2 = FlippedStrictness->second;
2667     // And kind-of perform the result swap.
2668     std::swap(Less, Greater);
2669     PredB = ICmpInst::ICMP_SLT;
2670   }
2671   return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2672 }
2673 
2674 Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp,
2675                                                   SelectInst *Select,
2676                                                   ConstantInt *C) {
2677 
2678   assert(C && "Cmp RHS should be a constant int!");
2679   // If we're testing a constant value against the result of a three way
2680   // comparison, the result can be expressed directly in terms of the
2681   // original values being compared.  Note: We could possibly be more
2682   // aggressive here and remove the hasOneUse test. The original select is
2683   // really likely to simplify or sink when we remove a test of the result.
2684   Value *OrigLHS, *OrigRHS;
2685   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2686   if (Cmp.hasOneUse() &&
2687       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2688                               C3GreaterThan)) {
2689     assert(C1LessThan && C2Equal && C3GreaterThan);
2690 
2691     bool TrueWhenLessThan =
2692         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2693             ->isAllOnesValue();
2694     bool TrueWhenEqual =
2695         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2696             ->isAllOnesValue();
2697     bool TrueWhenGreaterThan =
2698         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2699             ->isAllOnesValue();
2700 
2701     // This generates the new instruction that will replace the original Cmp
2702     // Instruction. Instead of enumerating the various combinations when
2703     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2704     // false, we rely on chaining of ORs and future passes of InstCombine to
2705     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2706 
2707     // When none of the three constants satisfy the predicate for the RHS (C),
2708     // the entire original Cmp can be simplified to a false.
2709     Value *Cond = Builder.getFalse();
2710     if (TrueWhenLessThan)
2711       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2712                                                        OrigLHS, OrigRHS));
2713     if (TrueWhenEqual)
2714       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2715                                                        OrigLHS, OrigRHS));
2716     if (TrueWhenGreaterThan)
2717       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2718                                                        OrigLHS, OrigRHS));
2719 
2720     return replaceInstUsesWith(Cmp, Cond);
2721   }
2722   return nullptr;
2723 }
2724 
2725 static Instruction *foldICmpBitCast(ICmpInst &Cmp,
2726                                     InstCombiner::BuilderTy &Builder) {
2727   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2728   if (!Bitcast)
2729     return nullptr;
2730 
2731   ICmpInst::Predicate Pred = Cmp.getPredicate();
2732   Value *Op1 = Cmp.getOperand(1);
2733   Value *BCSrcOp = Bitcast->getOperand(0);
2734 
2735   // Make sure the bitcast doesn't change the number of vector elements.
2736   if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2737           Bitcast->getDestTy()->getScalarSizeInBits()) {
2738     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2739     Value *X;
2740     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2741       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2742       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2743       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2744       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2745       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2746            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2747           match(Op1, m_Zero()))
2748         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2749 
2750       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2751       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2752         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2753 
2754       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2755       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2756         return new ICmpInst(Pred, X,
2757                             ConstantInt::getAllOnesValue(X->getType()));
2758     }
2759 
2760     // Zero-equality checks are preserved through unsigned floating-point casts:
2761     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2762     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2763     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2764       if (Cmp.isEquality() && match(Op1, m_Zero()))
2765         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2766   }
2767 
2768   // Test to see if the operands of the icmp are casted versions of other
2769   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2770   if (Bitcast->getType()->isPointerTy() &&
2771       (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2772     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2773     // so eliminate it as well.
2774     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2775       Op1 = BC2->getOperand(0);
2776 
2777     Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2778     return new ICmpInst(Pred, BCSrcOp, Op1);
2779   }
2780 
2781   // Folding: icmp <pred> iN X, C
2782   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2783   //    and C is a splat of a K-bit pattern
2784   //    and SC is a constant vector = <C', C', C', ..., C'>
2785   // Into:
2786   //   %E = extractelement <M x iK> %vec, i32 C'
2787   //   icmp <pred> iK %E, trunc(C)
2788   const APInt *C;
2789   if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2790       !Bitcast->getType()->isIntegerTy() ||
2791       !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2792     return nullptr;
2793 
2794   Value *Vec;
2795   Constant *Mask;
2796   if (match(BCSrcOp,
2797             m_ShuffleVector(m_Value(Vec), m_Undef(), m_Constant(Mask)))) {
2798     // Check whether every element of Mask is the same constant
2799     if (auto *Elem = dyn_cast_or_null<ConstantInt>(Mask->getSplatValue())) {
2800       auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2801       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2802       if (C->isSplat(EltTy->getBitWidth())) {
2803         // Fold the icmp based on the value of C
2804         // If C is M copies of an iK sized bit pattern,
2805         // then:
2806         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
2807         //       icmp <pred> iK %SplatVal, <pattern>
2808         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2809         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2810         return new ICmpInst(Pred, Extract, NewC);
2811       }
2812     }
2813   }
2814   return nullptr;
2815 }
2816 
2817 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2818 /// where X is some kind of instruction.
2819 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) {
2820   const APInt *C;
2821   if (!match(Cmp.getOperand(1), m_APInt(C)))
2822     return nullptr;
2823 
2824   if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
2825     switch (BO->getOpcode()) {
2826     case Instruction::Xor:
2827       if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
2828         return I;
2829       break;
2830     case Instruction::And:
2831       if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
2832         return I;
2833       break;
2834     case Instruction::Or:
2835       if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
2836         return I;
2837       break;
2838     case Instruction::Mul:
2839       if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
2840         return I;
2841       break;
2842     case Instruction::Shl:
2843       if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
2844         return I;
2845       break;
2846     case Instruction::LShr:
2847     case Instruction::AShr:
2848       if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
2849         return I;
2850       break;
2851     case Instruction::SRem:
2852       if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
2853         return I;
2854       break;
2855     case Instruction::UDiv:
2856       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
2857         return I;
2858       LLVM_FALLTHROUGH;
2859     case Instruction::SDiv:
2860       if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
2861         return I;
2862       break;
2863     case Instruction::Sub:
2864       if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
2865         return I;
2866       break;
2867     case Instruction::Add:
2868       if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
2869         return I;
2870       break;
2871     default:
2872       break;
2873     }
2874     // TODO: These folds could be refactored to be part of the above calls.
2875     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
2876       return I;
2877   }
2878 
2879   // Match against CmpInst LHS being instructions other than binary operators.
2880 
2881   if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
2882     // For now, we only support constant integers while folding the
2883     // ICMP(SELECT)) pattern. We can extend this to support vector of integers
2884     // similar to the cases handled by binary ops above.
2885     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
2886       if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
2887         return I;
2888   }
2889 
2890   if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
2891     if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
2892       return I;
2893   }
2894 
2895   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
2896     if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
2897       return I;
2898 
2899   return nullptr;
2900 }
2901 
2902 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2903 /// icmp eq/ne BO, C.
2904 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
2905                                                              BinaryOperator *BO,
2906                                                              const APInt &C) {
2907   // TODO: Some of these folds could work with arbitrary constants, but this
2908   // function is limited to scalar and vector splat constants.
2909   if (!Cmp.isEquality())
2910     return nullptr;
2911 
2912   ICmpInst::Predicate Pred = Cmp.getPredicate();
2913   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
2914   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
2915   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
2916 
2917   switch (BO->getOpcode()) {
2918   case Instruction::SRem:
2919     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2920     if (C.isNullValue() && BO->hasOneUse()) {
2921       const APInt *BOC;
2922       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
2923         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
2924         return new ICmpInst(Pred, NewRem,
2925                             Constant::getNullValue(BO->getType()));
2926       }
2927     }
2928     break;
2929   case Instruction::Add: {
2930     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
2931     const APInt *BOC;
2932     if (match(BOp1, m_APInt(BOC))) {
2933       if (BO->hasOneUse()) {
2934         Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1));
2935         return new ICmpInst(Pred, BOp0, SubC);
2936       }
2937     } else if (C.isNullValue()) {
2938       // Replace ((add A, B) != 0) with (A != -B) if A or B is
2939       // efficiently invertible, or if the add has just this one use.
2940       if (Value *NegVal = dyn_castNegVal(BOp1))
2941         return new ICmpInst(Pred, BOp0, NegVal);
2942       if (Value *NegVal = dyn_castNegVal(BOp0))
2943         return new ICmpInst(Pred, NegVal, BOp1);
2944       if (BO->hasOneUse()) {
2945         Value *Neg = Builder.CreateNeg(BOp1);
2946         Neg->takeName(BO);
2947         return new ICmpInst(Pred, BOp0, Neg);
2948       }
2949     }
2950     break;
2951   }
2952   case Instruction::Xor:
2953     if (BO->hasOneUse()) {
2954       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
2955         // For the xor case, we can xor two constants together, eliminating
2956         // the explicit xor.
2957         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
2958       } else if (C.isNullValue()) {
2959         // Replace ((xor A, B) != 0) with (A != B)
2960         return new ICmpInst(Pred, BOp0, BOp1);
2961       }
2962     }
2963     break;
2964   case Instruction::Sub:
2965     if (BO->hasOneUse()) {
2966       const APInt *BOC;
2967       if (match(BOp0, m_APInt(BOC))) {
2968         // Replace ((sub BOC, B) != C) with (B != BOC-C).
2969         Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS);
2970         return new ICmpInst(Pred, BOp1, SubC);
2971       } else if (C.isNullValue()) {
2972         // Replace ((sub A, B) != 0) with (A != B).
2973         return new ICmpInst(Pred, BOp0, BOp1);
2974       }
2975     }
2976     break;
2977   case Instruction::Or: {
2978     const APInt *BOC;
2979     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
2980       // Comparing if all bits outside of a constant mask are set?
2981       // Replace (X | C) == -1 with (X & ~C) == ~C.
2982       // This removes the -1 constant.
2983       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
2984       Value *And = Builder.CreateAnd(BOp0, NotBOC);
2985       return new ICmpInst(Pred, And, NotBOC);
2986     }
2987     break;
2988   }
2989   case Instruction::And: {
2990     const APInt *BOC;
2991     if (match(BOp1, m_APInt(BOC))) {
2992       // If we have ((X & C) == C), turn it into ((X & C) != 0).
2993       if (C == *BOC && C.isPowerOf2())
2994         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
2995                             BO, Constant::getNullValue(RHS->getType()));
2996     }
2997     break;
2998   }
2999   case Instruction::Mul:
3000     if (C.isNullValue() && BO->hasNoSignedWrap()) {
3001       const APInt *BOC;
3002       if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) {
3003         // The trivial case (mul X, 0) is handled by InstSimplify.
3004         // General case : (mul X, C) != 0 iff X != 0
3005         //                (mul X, C) == 0 iff X == 0
3006         return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType()));
3007       }
3008     }
3009     break;
3010   case Instruction::UDiv:
3011     if (C.isNullValue()) {
3012       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3013       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3014       return new ICmpInst(NewPred, BOp1, BOp0);
3015     }
3016     break;
3017   default:
3018     break;
3019   }
3020   return nullptr;
3021 }
3022 
3023 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3024 Instruction *InstCombiner::foldICmpEqIntrinsicWithConstant(ICmpInst &Cmp,
3025                                                            IntrinsicInst *II,
3026                                                            const APInt &C) {
3027   Type *Ty = II->getType();
3028   unsigned BitWidth = C.getBitWidth();
3029   switch (II->getIntrinsicID()) {
3030   case Intrinsic::bswap:
3031     Worklist.Add(II);
3032     Cmp.setOperand(0, II->getArgOperand(0));
3033     Cmp.setOperand(1, ConstantInt::get(Ty, C.byteSwap()));
3034     return &Cmp;
3035 
3036   case Intrinsic::ctlz:
3037   case Intrinsic::cttz: {
3038     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3039     if (C == BitWidth) {
3040       Worklist.Add(II);
3041       Cmp.setOperand(0, II->getArgOperand(0));
3042       Cmp.setOperand(1, ConstantInt::getNullValue(Ty));
3043       return &Cmp;
3044     }
3045 
3046     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3047     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3048     // Limit to one use to ensure we don't increase instruction count.
3049     unsigned Num = C.getLimitedValue(BitWidth);
3050     if (Num != BitWidth && II->hasOneUse()) {
3051       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3052       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3053                                : APInt::getHighBitsSet(BitWidth, Num + 1);
3054       APInt Mask2 = IsTrailing
3055         ? APInt::getOneBitSet(BitWidth, Num)
3056         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3057       Cmp.setOperand(0, Builder.CreateAnd(II->getArgOperand(0), Mask1));
3058       Cmp.setOperand(1, ConstantInt::get(Ty, Mask2));
3059       Worklist.Add(II);
3060       return &Cmp;
3061     }
3062     break;
3063   }
3064 
3065   case Intrinsic::ctpop: {
3066     // popcount(A) == 0  ->  A == 0 and likewise for !=
3067     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3068     bool IsZero = C.isNullValue();
3069     if (IsZero || C == BitWidth) {
3070       Worklist.Add(II);
3071       Cmp.setOperand(0, II->getArgOperand(0));
3072       auto *NewOp =
3073           IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty);
3074       Cmp.setOperand(1, NewOp);
3075       return &Cmp;
3076     }
3077     break;
3078   }
3079 
3080   case Intrinsic::uadd_sat: {
3081     // uadd.sat(a, b) == 0  ->  (a | b) == 0
3082     if (C.isNullValue()) {
3083       Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3084       return replaceInstUsesWith(Cmp, Builder.CreateICmp(
3085           Cmp.getPredicate(), Or, Constant::getNullValue(Ty)));
3086 
3087     }
3088     break;
3089   }
3090 
3091   case Intrinsic::usub_sat: {
3092     // usub.sat(a, b) == 0  ->  a <= b
3093     if (C.isNullValue()) {
3094       ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ
3095           ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3096       return ICmpInst::Create(Instruction::ICmp, NewPred,
3097                               II->getArgOperand(0), II->getArgOperand(1));
3098     }
3099     break;
3100   }
3101   default:
3102     break;
3103   }
3104 
3105   return nullptr;
3106 }
3107 
3108 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3109 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3110                                                          IntrinsicInst *II,
3111                                                          const APInt &C) {
3112   if (Cmp.isEquality())
3113     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3114 
3115   Type *Ty = II->getType();
3116   unsigned BitWidth = C.getBitWidth();
3117   switch (II->getIntrinsicID()) {
3118   case Intrinsic::ctlz: {
3119     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3120     if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3121       unsigned Num = C.getLimitedValue();
3122       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3123       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3124                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3125     }
3126 
3127     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3128     if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
3129         C.uge(1) && C.ule(BitWidth)) {
3130       unsigned Num = C.getLimitedValue();
3131       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3132       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3133                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3134     }
3135     break;
3136   }
3137   case Intrinsic::cttz: {
3138     // Limit to one use to ensure we don't increase instruction count.
3139     if (!II->hasOneUse())
3140       return nullptr;
3141 
3142     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3143     if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3144       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3145       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3146                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3147                              ConstantInt::getNullValue(Ty));
3148     }
3149 
3150     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3151     if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
3152         C.uge(1) && C.ule(BitWidth)) {
3153       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3154       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3155                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3156                              ConstantInt::getNullValue(Ty));
3157     }
3158     break;
3159   }
3160   default:
3161     break;
3162   }
3163 
3164   return nullptr;
3165 }
3166 
3167 /// Handle icmp with constant (but not simple integer constant) RHS.
3168 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3169   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3170   Constant *RHSC = dyn_cast<Constant>(Op1);
3171   Instruction *LHSI = dyn_cast<Instruction>(Op0);
3172   if (!RHSC || !LHSI)
3173     return nullptr;
3174 
3175   switch (LHSI->getOpcode()) {
3176   case Instruction::GetElementPtr:
3177     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3178     if (RHSC->isNullValue() &&
3179         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3180       return new ICmpInst(
3181           I.getPredicate(), LHSI->getOperand(0),
3182           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3183     break;
3184   case Instruction::PHI:
3185     // Only fold icmp into the PHI if the phi and icmp are in the same
3186     // block.  If in the same block, we're encouraging jump threading.  If
3187     // not, we are just pessimizing the code by making an i1 phi.
3188     if (LHSI->getParent() == I.getParent())
3189       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3190         return NV;
3191     break;
3192   case Instruction::Select: {
3193     // If either operand of the select is a constant, we can fold the
3194     // comparison into the select arms, which will cause one to be
3195     // constant folded and the select turned into a bitwise or.
3196     Value *Op1 = nullptr, *Op2 = nullptr;
3197     ConstantInt *CI = nullptr;
3198     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3199       Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3200       CI = dyn_cast<ConstantInt>(Op1);
3201     }
3202     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3203       Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3204       CI = dyn_cast<ConstantInt>(Op2);
3205     }
3206 
3207     // We only want to perform this transformation if it will not lead to
3208     // additional code. This is true if either both sides of the select
3209     // fold to a constant (in which case the icmp is replaced with a select
3210     // which will usually simplify) or this is the only user of the
3211     // select (in which case we are trading a select+icmp for a simpler
3212     // select+icmp) or all uses of the select can be replaced based on
3213     // dominance information ("Global cases").
3214     bool Transform = false;
3215     if (Op1 && Op2)
3216       Transform = true;
3217     else if (Op1 || Op2) {
3218       // Local case
3219       if (LHSI->hasOneUse())
3220         Transform = true;
3221       // Global cases
3222       else if (CI && !CI->isZero())
3223         // When Op1 is constant try replacing select with second operand.
3224         // Otherwise Op2 is constant and try replacing select with first
3225         // operand.
3226         Transform =
3227             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3228     }
3229     if (Transform) {
3230       if (!Op1)
3231         Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3232                                  I.getName());
3233       if (!Op2)
3234         Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3235                                  I.getName());
3236       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3237     }
3238     break;
3239   }
3240   case Instruction::IntToPtr:
3241     // icmp pred inttoptr(X), null -> icmp pred X, 0
3242     if (RHSC->isNullValue() &&
3243         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3244       return new ICmpInst(
3245           I.getPredicate(), LHSI->getOperand(0),
3246           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3247     break;
3248 
3249   case Instruction::Load:
3250     // Try to optimize things like "A[i] > 4" to index computations.
3251     if (GetElementPtrInst *GEP =
3252             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3253       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3254         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3255             !cast<LoadInst>(LHSI)->isVolatile())
3256           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3257             return Res;
3258     }
3259     break;
3260   }
3261 
3262   return nullptr;
3263 }
3264 
3265 /// Some comparisons can be simplified.
3266 /// In this case, we are looking for comparisons that look like
3267 /// a check for a lossy truncation.
3268 /// Folds:
3269 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3270 /// Where Mask is some pattern that produces all-ones in low bits:
3271 ///    (-1 >> y)
3272 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3273 ///   ~(-1 << y)
3274 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3275 /// The Mask can be a constant, too.
3276 /// For some predicates, the operands are commutative.
3277 /// For others, x can only be on a specific side.
3278 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3279                                           InstCombiner::BuilderTy &Builder) {
3280   ICmpInst::Predicate SrcPred;
3281   Value *X, *M, *Y;
3282   auto m_VariableMask = m_CombineOr(
3283       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3284                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3285       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3286                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3287   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3288   if (!match(&I, m_c_ICmp(SrcPred,
3289                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3290                           m_Deferred(X))))
3291     return nullptr;
3292 
3293   ICmpInst::Predicate DstPred;
3294   switch (SrcPred) {
3295   case ICmpInst::Predicate::ICMP_EQ:
3296     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3297     DstPred = ICmpInst::Predicate::ICMP_ULE;
3298     break;
3299   case ICmpInst::Predicate::ICMP_NE:
3300     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3301     DstPred = ICmpInst::Predicate::ICMP_UGT;
3302     break;
3303   case ICmpInst::Predicate::ICMP_UGT:
3304     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3305     assert(X == I.getOperand(0) && "instsimplify took care of commut. variant");
3306     DstPred = ICmpInst::Predicate::ICMP_UGT;
3307     break;
3308   case ICmpInst::Predicate::ICMP_UGE:
3309     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3310     assert(X == I.getOperand(1) && "instsimplify took care of commut. variant");
3311     DstPred = ICmpInst::Predicate::ICMP_ULE;
3312     break;
3313   case ICmpInst::Predicate::ICMP_ULT:
3314     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3315     assert(X == I.getOperand(1) && "instsimplify took care of commut. variant");
3316     DstPred = ICmpInst::Predicate::ICMP_UGT;
3317     break;
3318   case ICmpInst::Predicate::ICMP_ULE:
3319     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3320     assert(X == I.getOperand(0) && "instsimplify took care of commut. variant");
3321     DstPred = ICmpInst::Predicate::ICMP_ULE;
3322     break;
3323   case ICmpInst::Predicate::ICMP_SGT:
3324     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3325     if (X != I.getOperand(0)) // X must be on LHS of comparison!
3326       return nullptr;         // Ignore the other case.
3327     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3328       return nullptr;
3329     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3330       return nullptr;
3331     DstPred = ICmpInst::Predicate::ICMP_SGT;
3332     break;
3333   case ICmpInst::Predicate::ICMP_SGE:
3334     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3335     if (X != I.getOperand(1)) // X must be on RHS of comparison!
3336       return nullptr;         // Ignore the other case.
3337     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3338       return nullptr;
3339     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3340       return nullptr;
3341     DstPred = ICmpInst::Predicate::ICMP_SLE;
3342     break;
3343   case ICmpInst::Predicate::ICMP_SLT:
3344     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3345     if (X != I.getOperand(1)) // X must be on RHS of comparison!
3346       return nullptr;         // Ignore the other case.
3347     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3348       return nullptr;
3349     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3350       return nullptr;
3351     DstPred = ICmpInst::Predicate::ICMP_SGT;
3352     break;
3353   case ICmpInst::Predicate::ICMP_SLE:
3354     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3355     if (X != I.getOperand(0)) // X must be on LHS of comparison!
3356       return nullptr;         // Ignore the other case.
3357     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3358       return nullptr;
3359     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3360       return nullptr;
3361     DstPred = ICmpInst::Predicate::ICMP_SLE;
3362     break;
3363   default:
3364     llvm_unreachable("All possible folds are handled.");
3365   }
3366 
3367   // The mask value may be a vector constant that has undefined elements. But it
3368   // may not be safe to propagate those undefs into the new compare, so replace
3369   // those elements by copying an existing, defined, and safe scalar constant.
3370   Type *OpTy = M->getType();
3371   auto *VecC = dyn_cast<Constant>(M);
3372   if (OpTy->isVectorTy() && VecC && VecC->containsUndefElement()) {
3373     Constant *SafeReplacementConstant = nullptr;
3374     for (unsigned i = 0, e = OpTy->getVectorNumElements(); i != e; ++i) {
3375       if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3376         SafeReplacementConstant = VecC->getAggregateElement(i);
3377         break;
3378       }
3379     }
3380     assert(SafeReplacementConstant && "Failed to find undef replacement");
3381     M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3382   }
3383 
3384   return Builder.CreateICmp(DstPred, X, M);
3385 }
3386 
3387 /// Some comparisons can be simplified.
3388 /// In this case, we are looking for comparisons that look like
3389 /// a check for a lossy signed truncation.
3390 /// Folds:   (MaskedBits is a constant.)
3391 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3392 /// Into:
3393 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3394 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3395 static Value *
3396 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3397                                  InstCombiner::BuilderTy &Builder) {
3398   ICmpInst::Predicate SrcPred;
3399   Value *X;
3400   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3401   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3402   if (!match(&I, m_c_ICmp(SrcPred,
3403                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3404                                           m_APInt(C1))),
3405                           m_Deferred(X))))
3406     return nullptr;
3407 
3408   // Potential handling of non-splats: for each element:
3409   //  * if both are undef, replace with constant 0.
3410   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3411   //  * if both are not undef, and are different, bailout.
3412   //  * else, only one is undef, then pick the non-undef one.
3413 
3414   // The shift amount must be equal.
3415   if (*C0 != *C1)
3416     return nullptr;
3417   const APInt &MaskedBits = *C0;
3418   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3419 
3420   ICmpInst::Predicate DstPred;
3421   switch (SrcPred) {
3422   case ICmpInst::Predicate::ICMP_EQ:
3423     // ((%x << MaskedBits) a>> MaskedBits) == %x
3424     //   =>
3425     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3426     DstPred = ICmpInst::Predicate::ICMP_ULT;
3427     break;
3428   case ICmpInst::Predicate::ICMP_NE:
3429     // ((%x << MaskedBits) a>> MaskedBits) != %x
3430     //   =>
3431     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3432     DstPred = ICmpInst::Predicate::ICMP_UGE;
3433     break;
3434   // FIXME: are more folds possible?
3435   default:
3436     return nullptr;
3437   }
3438 
3439   auto *XType = X->getType();
3440   const unsigned XBitWidth = XType->getScalarSizeInBits();
3441   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3442   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3443 
3444   // KeptBits = bitwidth(%x) - MaskedBits
3445   const APInt KeptBits = BitWidth - MaskedBits;
3446   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3447   // ICmpCst = (1 << KeptBits)
3448   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3449   assert(ICmpCst.isPowerOf2());
3450   // AddCst = (1 << (KeptBits-1))
3451   const APInt AddCst = ICmpCst.lshr(1);
3452   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3453 
3454   // T0 = add %x, AddCst
3455   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3456   // T1 = T0 DstPred ICmpCst
3457   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3458 
3459   return T1;
3460 }
3461 
3462 // Given pattern:
3463 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3464 // we should move shifts to the same hand of 'and', i.e. rewrite as
3465 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3466 // We are only interested in opposite logical shifts here.
3467 // One of the shifts can be truncated.
3468 // If we can, we want to end up creating 'lshr' shift.
3469 static Value *
3470 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3471                                            InstCombiner::BuilderTy &Builder) {
3472   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3473       !I.getOperand(0)->hasOneUse())
3474     return nullptr;
3475 
3476   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3477 
3478   // Look for an 'and' of two logical shifts, one of which may be truncated.
3479   // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3480   Instruction *XShift, *MaybeTruncation, *YShift;
3481   if (!match(
3482           I.getOperand(0),
3483           m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3484                   m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3485                                    m_AnyLogicalShift, m_Instruction(YShift))),
3486                                m_Instruction(MaybeTruncation)))))
3487     return nullptr;
3488 
3489   // We potentially looked past 'trunc', but only when matching YShift,
3490   // therefore YShift must have the widest type.
3491   Instruction *WidestShift = YShift;
3492   // Therefore XShift must have the shallowest type.
3493   // Or they both have identical types if there was no truncation.
3494   Instruction *NarrowestShift = XShift;
3495 
3496   Type *WidestTy = WidestShift->getType();
3497   Type *NarrowestTy = NarrowestShift->getType();
3498   assert(NarrowestTy == I.getOperand(0)->getType() &&
3499          "We did not look past any shifts while matching XShift though.");
3500   bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3501 
3502   // If YShift is a 'lshr', swap the shifts around.
3503   if (match(YShift, m_LShr(m_Value(), m_Value())))
3504     std::swap(XShift, YShift);
3505 
3506   // The shifts must be in opposite directions.
3507   auto XShiftOpcode = XShift->getOpcode();
3508   if (XShiftOpcode == YShift->getOpcode())
3509     return nullptr; // Do not care about same-direction shifts here.
3510 
3511   Value *X, *XShAmt, *Y, *YShAmt;
3512   match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3513   match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3514 
3515   // If one of the values being shifted is a constant, then we will end with
3516   // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3517   // however, we will need to ensure that we won't increase instruction count.
3518   if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3519     // At least one of the hands of the 'and' should be one-use shift.
3520     if (!match(I.getOperand(0),
3521                m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3522       return nullptr;
3523     if (HadTrunc) {
3524       // Due to the 'trunc', we will need to widen X. For that either the old
3525       // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3526       if (!MaybeTruncation->hasOneUse() &&
3527           !NarrowestShift->getOperand(1)->hasOneUse())
3528         return nullptr;
3529     }
3530   }
3531 
3532   // We have two shift amounts from two different shifts. The types of those
3533   // shift amounts may not match. If that's the case let's bailout now.
3534   if (XShAmt->getType() != YShAmt->getType())
3535     return nullptr;
3536 
3537   // As input, we have the following pattern:
3538   //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3539   // We want to rewrite that as:
3540   //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3541   // While we know that originally (Q+K) would not overflow
3542   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
3543   // shift amounts. so it may now overflow in smaller bitwidth.
3544   // To ensure that does not happen, we need to ensure that the total maximal
3545   // shift amount is still representable in that smaller bit width.
3546   unsigned MaximalPossibleTotalShiftAmount =
3547       (WidestTy->getScalarSizeInBits() - 1) +
3548       (NarrowestTy->getScalarSizeInBits() - 1);
3549   APInt MaximalRepresentableShiftAmount =
3550       APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits());
3551   if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3552     return nullptr;
3553 
3554   // Can we fold (XShAmt+YShAmt) ?
3555   auto *NewShAmt = dyn_cast_or_null<Constant>(
3556       SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3557                       /*isNUW=*/false, SQ.getWithInstruction(&I)));
3558   if (!NewShAmt)
3559     return nullptr;
3560   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3561   unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3562 
3563   // Is the new shift amount smaller than the bit width?
3564   // FIXME: could also rely on ConstantRange.
3565   if (!match(NewShAmt,
3566              m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3567                                 APInt(WidestBitWidth, WidestBitWidth))))
3568     return nullptr;
3569 
3570   // An extra legality check is needed if we had trunc-of-lshr.
3571   if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3572     auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3573                     WidestShift]() {
3574       // It isn't obvious whether it's worth it to analyze non-constants here.
3575       // Also, let's basically give up on non-splat cases, pessimizing vectors.
3576       // If *any* of these preconditions matches we can perform the fold.
3577       Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3578                                     ? NewShAmt->getSplatValue()
3579                                     : NewShAmt;
3580       // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3581       if (NewShAmtSplat &&
3582           (NewShAmtSplat->isNullValue() ||
3583            NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3584         return true;
3585       // We consider *min* leading zeros so a single outlier
3586       // blocks the transform as opposed to allowing it.
3587       if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3588         KnownBits Known = computeKnownBits(C, SQ.DL);
3589         unsigned MinLeadZero = Known.countMinLeadingZeros();
3590         // If the value being shifted has at most lowest bit set we can fold.
3591         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3592         if (MaxActiveBits <= 1)
3593           return true;
3594         // Precondition:  NewShAmt u<= countLeadingZeros(C)
3595         if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3596           return true;
3597       }
3598       if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3599         KnownBits Known = computeKnownBits(C, SQ.DL);
3600         unsigned MinLeadZero = Known.countMinLeadingZeros();
3601         // If the value being shifted has at most lowest bit set we can fold.
3602         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3603         if (MaxActiveBits <= 1)
3604           return true;
3605         // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3606         if (NewShAmtSplat) {
3607           APInt AdjNewShAmt =
3608               (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3609           if (AdjNewShAmt.ule(MinLeadZero))
3610             return true;
3611         }
3612       }
3613       return false; // Can't tell if it's ok.
3614     };
3615     if (!CanFold())
3616       return nullptr;
3617   }
3618 
3619   // All good, we can do this fold.
3620   X = Builder.CreateZExt(X, WidestTy);
3621   Y = Builder.CreateZExt(Y, WidestTy);
3622   // The shift is the same that was for X.
3623   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3624                   ? Builder.CreateLShr(X, NewShAmt)
3625                   : Builder.CreateShl(X, NewShAmt);
3626   Value *T1 = Builder.CreateAnd(T0, Y);
3627   return Builder.CreateICmp(I.getPredicate(), T1,
3628                             Constant::getNullValue(WidestTy));
3629 }
3630 
3631 /// Fold
3632 ///   (-1 u/ x) u< y
3633 ///   ((x * y) u/ x) != y
3634 /// to
3635 ///   @llvm.umul.with.overflow(x, y) plus extraction of overflow bit
3636 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3637 /// will mean that we are looking for the opposite answer.
3638 Value *InstCombiner::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) {
3639   ICmpInst::Predicate Pred;
3640   Value *X, *Y;
3641   Instruction *Mul;
3642   bool NeedNegation;
3643   // Look for: (-1 u/ x) u</u>= y
3644   if (!I.isEquality() &&
3645       match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3646                          m_Value(Y)))) {
3647     Mul = nullptr;
3648     // Canonicalize as-if y was on RHS.
3649     if (I.getOperand(1) != Y)
3650       Pred = I.getSwappedPredicate();
3651 
3652     // Are we checking that overflow does not happen, or does happen?
3653     switch (Pred) {
3654     case ICmpInst::Predicate::ICMP_ULT:
3655       NeedNegation = false;
3656       break; // OK
3657     case ICmpInst::Predicate::ICMP_UGE:
3658       NeedNegation = true;
3659       break; // OK
3660     default:
3661       return nullptr; // Wrong predicate.
3662     }
3663   } else // Look for: ((x * y) u/ x) !=/== y
3664       if (I.isEquality() &&
3665           match(&I, m_c_ICmp(Pred, m_Value(Y),
3666                              m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3667                                                                   m_Value(X)),
3668                                                           m_Instruction(Mul)),
3669                                              m_Deferred(X)))))) {
3670     NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3671   } else
3672     return nullptr;
3673 
3674   BuilderTy::InsertPointGuard Guard(Builder);
3675   // If the pattern included (x * y), we'll want to insert new instructions
3676   // right before that original multiplication so that we can replace it.
3677   bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3678   if (MulHadOtherUses)
3679     Builder.SetInsertPoint(Mul);
3680 
3681   Function *F = Intrinsic::getDeclaration(
3682       I.getModule(), Intrinsic::umul_with_overflow, X->getType());
3683   CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul");
3684 
3685   // If the multiplication was used elsewhere, to ensure that we don't leave
3686   // "duplicate" instructions, replace uses of that original multiplication
3687   // with the multiplication result from the with.overflow intrinsic.
3688   if (MulHadOtherUses)
3689     replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val"));
3690 
3691   Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov");
3692   if (NeedNegation) // This technically increases instruction count.
3693     Res = Builder.CreateNot(Res, "umul.not.ov");
3694 
3695   return Res;
3696 }
3697 
3698 /// Try to fold icmp (binop), X or icmp X, (binop).
3699 /// TODO: A large part of this logic is duplicated in InstSimplify's
3700 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3701 /// duplication.
3702 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I, const SimplifyQuery &SQ) {
3703   const SimplifyQuery Q = SQ.getWithInstruction(&I);
3704   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3705 
3706   // Special logic for binary operators.
3707   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3708   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3709   if (!BO0 && !BO1)
3710     return nullptr;
3711 
3712   const CmpInst::Predicate Pred = I.getPredicate();
3713   Value *X;
3714 
3715   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3716   // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3717   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3718       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3719     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3720   // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3721   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3722       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3723     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3724 
3725   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3726   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3727     NoOp0WrapProblem =
3728         ICmpInst::isEquality(Pred) ||
3729         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3730         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3731   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3732     NoOp1WrapProblem =
3733         ICmpInst::isEquality(Pred) ||
3734         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3735         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3736 
3737   // Analyze the case when either Op0 or Op1 is an add instruction.
3738   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3739   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3740   if (BO0 && BO0->getOpcode() == Instruction::Add) {
3741     A = BO0->getOperand(0);
3742     B = BO0->getOperand(1);
3743   }
3744   if (BO1 && BO1->getOpcode() == Instruction::Add) {
3745     C = BO1->getOperand(0);
3746     D = BO1->getOperand(1);
3747   }
3748 
3749   // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
3750   // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
3751   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3752     return new ICmpInst(Pred, A == Op1 ? B : A,
3753                         Constant::getNullValue(Op1->getType()));
3754 
3755   // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
3756   // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
3757   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3758     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3759                         C == Op0 ? D : C);
3760 
3761   // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
3762   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
3763       NoOp1WrapProblem) {
3764     // Determine Y and Z in the form icmp (X+Y), (X+Z).
3765     Value *Y, *Z;
3766     if (A == C) {
3767       // C + B == C + D  ->  B == D
3768       Y = B;
3769       Z = D;
3770     } else if (A == D) {
3771       // D + B == C + D  ->  B == C
3772       Y = B;
3773       Z = C;
3774     } else if (B == C) {
3775       // A + C == C + D  ->  A == D
3776       Y = A;
3777       Z = D;
3778     } else {
3779       assert(B == D);
3780       // A + D == C + D  ->  A == C
3781       Y = A;
3782       Z = C;
3783     }
3784     return new ICmpInst(Pred, Y, Z);
3785   }
3786 
3787   // icmp slt (A + -1), Op1 -> icmp sle A, Op1
3788   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3789       match(B, m_AllOnes()))
3790     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3791 
3792   // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
3793   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3794       match(B, m_AllOnes()))
3795     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3796 
3797   // icmp sle (A + 1), Op1 -> icmp slt A, Op1
3798   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
3799     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3800 
3801   // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
3802   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
3803     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3804 
3805   // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
3806   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
3807       match(D, m_AllOnes()))
3808     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
3809 
3810   // icmp sle Op0, (C + -1) -> icmp slt Op0, C
3811   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
3812       match(D, m_AllOnes()))
3813     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
3814 
3815   // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
3816   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
3817     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
3818 
3819   // icmp slt Op0, (C + 1) -> icmp sle Op0, C
3820   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
3821     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
3822 
3823   // TODO: The subtraction-related identities shown below also hold, but
3824   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
3825   // wouldn't happen even if they were implemented.
3826   //
3827   // icmp ult (A - 1), Op1 -> icmp ule A, Op1
3828   // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
3829   // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
3830   // icmp ule Op0, (C - 1) -> icmp ult Op0, C
3831 
3832   // icmp ule (A + 1), Op0 -> icmp ult A, Op1
3833   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
3834     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
3835 
3836   // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
3837   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
3838     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
3839 
3840   // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
3841   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
3842     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
3843 
3844   // icmp ult Op0, (C + 1) -> icmp ule Op0, C
3845   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
3846     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
3847 
3848   // if C1 has greater magnitude than C2:
3849   //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
3850   //  s.t. C3 = C1 - C2
3851   //
3852   // if C2 has greater magnitude than C1:
3853   //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
3854   //  s.t. C3 = C2 - C1
3855   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3856       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3857     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3858       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3859         const APInt &AP1 = C1->getValue();
3860         const APInt &AP2 = C2->getValue();
3861         if (AP1.isNegative() == AP2.isNegative()) {
3862           APInt AP1Abs = C1->getValue().abs();
3863           APInt AP2Abs = C2->getValue().abs();
3864           if (AP1Abs.uge(AP2Abs)) {
3865             ConstantInt *C3 = Builder.getInt(AP1 - AP2);
3866             Value *NewAdd = Builder.CreateNSWAdd(A, C3);
3867             return new ICmpInst(Pred, NewAdd, C);
3868           } else {
3869             ConstantInt *C3 = Builder.getInt(AP2 - AP1);
3870             Value *NewAdd = Builder.CreateNSWAdd(C, C3);
3871             return new ICmpInst(Pred, A, NewAdd);
3872           }
3873         }
3874       }
3875 
3876   // Analyze the case when either Op0 or Op1 is a sub instruction.
3877   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3878   A = nullptr;
3879   B = nullptr;
3880   C = nullptr;
3881   D = nullptr;
3882   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
3883     A = BO0->getOperand(0);
3884     B = BO0->getOperand(1);
3885   }
3886   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
3887     C = BO1->getOperand(0);
3888     D = BO1->getOperand(1);
3889   }
3890 
3891   // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
3892   if (A == Op1 && NoOp0WrapProblem)
3893     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3894   // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
3895   if (C == Op0 && NoOp1WrapProblem)
3896     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3897 
3898   // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
3899   // (A - B) u>/u<= A --> B u>/u<= A
3900   if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3901     return new ICmpInst(Pred, B, A);
3902   // C u</u>= (C - D) --> C u</u>= D
3903   if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3904     return new ICmpInst(Pred, C, D);
3905   // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
3906   if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
3907       isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3908     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
3909   // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
3910   if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
3911       isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3912     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
3913 
3914   // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
3915   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
3916     return new ICmpInst(Pred, A, C);
3917 
3918   // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
3919   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
3920     return new ICmpInst(Pred, D, B);
3921 
3922   // icmp (0-X) < cst --> x > -cst
3923   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3924     Value *X;
3925     if (match(BO0, m_Neg(m_Value(X))))
3926       if (Constant *RHSC = dyn_cast<Constant>(Op1))
3927         if (RHSC->isNotMinSignedValue())
3928           return new ICmpInst(I.getSwappedPredicate(), X,
3929                               ConstantExpr::getNeg(RHSC));
3930   }
3931 
3932   BinaryOperator *SRem = nullptr;
3933   // icmp (srem X, Y), Y
3934   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
3935     SRem = BO0;
3936   // icmp Y, (srem X, Y)
3937   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
3938            Op0 == BO1->getOperand(1))
3939     SRem = BO1;
3940   if (SRem) {
3941     // We don't check hasOneUse to avoid increasing register pressure because
3942     // the value we use is the same value this instruction was already using.
3943     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
3944     default:
3945       break;
3946     case ICmpInst::ICMP_EQ:
3947       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3948     case ICmpInst::ICMP_NE:
3949       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3950     case ICmpInst::ICMP_SGT:
3951     case ICmpInst::ICMP_SGE:
3952       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
3953                           Constant::getAllOnesValue(SRem->getType()));
3954     case ICmpInst::ICMP_SLT:
3955     case ICmpInst::ICMP_SLE:
3956       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
3957                           Constant::getNullValue(SRem->getType()));
3958     }
3959   }
3960 
3961   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
3962       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
3963     switch (BO0->getOpcode()) {
3964     default:
3965       break;
3966     case Instruction::Add:
3967     case Instruction::Sub:
3968     case Instruction::Xor: {
3969       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
3970         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3971 
3972       const APInt *C;
3973       if (match(BO0->getOperand(1), m_APInt(C))) {
3974         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
3975         if (C->isSignMask()) {
3976           ICmpInst::Predicate NewPred =
3977               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3978           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
3979         }
3980 
3981         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
3982         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
3983           ICmpInst::Predicate NewPred =
3984               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3985           NewPred = I.getSwappedPredicate(NewPred);
3986           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
3987         }
3988       }
3989       break;
3990     }
3991     case Instruction::Mul: {
3992       if (!I.isEquality())
3993         break;
3994 
3995       const APInt *C;
3996       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
3997           !C->isOneValue()) {
3998         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
3999         // Mask = -1 >> count-trailing-zeros(C).
4000         if (unsigned TZs = C->countTrailingZeros()) {
4001           Constant *Mask = ConstantInt::get(
4002               BO0->getType(),
4003               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4004           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4005           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4006           return new ICmpInst(Pred, And1, And2);
4007         }
4008         // If there are no trailing zeros in the multiplier, just eliminate
4009         // the multiplies (no masking is needed):
4010         // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y
4011         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4012       }
4013       break;
4014     }
4015     case Instruction::UDiv:
4016     case Instruction::LShr:
4017       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4018         break;
4019       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4020 
4021     case Instruction::SDiv:
4022       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
4023         break;
4024       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4025 
4026     case Instruction::AShr:
4027       if (!BO0->isExact() || !BO1->isExact())
4028         break;
4029       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4030 
4031     case Instruction::Shl: {
4032       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
4033       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
4034       if (!NUW && !NSW)
4035         break;
4036       if (!NSW && I.isSigned())
4037         break;
4038       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4039     }
4040     }
4041   }
4042 
4043   if (BO0) {
4044     // Transform  A & (L - 1) `ult` L --> L != 0
4045     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4046     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4047 
4048     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4049       auto *Zero = Constant::getNullValue(BO0->getType());
4050       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4051     }
4052   }
4053 
4054   if (Value *V = foldUnsignedMultiplicationOverflowCheck(I))
4055     return replaceInstUsesWith(I, V);
4056 
4057   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4058     return replaceInstUsesWith(I, V);
4059 
4060   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4061     return replaceInstUsesWith(I, V);
4062 
4063   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4064     return replaceInstUsesWith(I, V);
4065 
4066   return nullptr;
4067 }
4068 
4069 /// Fold icmp Pred min|max(X, Y), X.
4070 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4071   ICmpInst::Predicate Pred = Cmp.getPredicate();
4072   Value *Op0 = Cmp.getOperand(0);
4073   Value *X = Cmp.getOperand(1);
4074 
4075   // Canonicalize minimum or maximum operand to LHS of the icmp.
4076   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4077       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4078       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4079       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4080     std::swap(Op0, X);
4081     Pred = Cmp.getSwappedPredicate();
4082   }
4083 
4084   Value *Y;
4085   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4086     // smin(X, Y)  == X --> X s<= Y
4087     // smin(X, Y) s>= X --> X s<= Y
4088     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4089       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4090 
4091     // smin(X, Y) != X --> X s> Y
4092     // smin(X, Y) s< X --> X s> Y
4093     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4094       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4095 
4096     // These cases should be handled in InstSimplify:
4097     // smin(X, Y) s<= X --> true
4098     // smin(X, Y) s> X --> false
4099     return nullptr;
4100   }
4101 
4102   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4103     // smax(X, Y)  == X --> X s>= Y
4104     // smax(X, Y) s<= X --> X s>= Y
4105     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4106       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4107 
4108     // smax(X, Y) != X --> X s< Y
4109     // smax(X, Y) s> X --> X s< Y
4110     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4111       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4112 
4113     // These cases should be handled in InstSimplify:
4114     // smax(X, Y) s>= X --> true
4115     // smax(X, Y) s< X --> false
4116     return nullptr;
4117   }
4118 
4119   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4120     // umin(X, Y)  == X --> X u<= Y
4121     // umin(X, Y) u>= X --> X u<= Y
4122     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4123       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4124 
4125     // umin(X, Y) != X --> X u> Y
4126     // umin(X, Y) u< X --> X u> Y
4127     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4128       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4129 
4130     // These cases should be handled in InstSimplify:
4131     // umin(X, Y) u<= X --> true
4132     // umin(X, Y) u> X --> false
4133     return nullptr;
4134   }
4135 
4136   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4137     // umax(X, Y)  == X --> X u>= Y
4138     // umax(X, Y) u<= X --> X u>= Y
4139     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4140       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4141 
4142     // umax(X, Y) != X --> X u< Y
4143     // umax(X, Y) u> X --> X u< Y
4144     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4145       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4146 
4147     // These cases should be handled in InstSimplify:
4148     // umax(X, Y) u>= X --> true
4149     // umax(X, Y) u< X --> false
4150     return nullptr;
4151   }
4152 
4153   return nullptr;
4154 }
4155 
4156 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) {
4157   if (!I.isEquality())
4158     return nullptr;
4159 
4160   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4161   const CmpInst::Predicate Pred = I.getPredicate();
4162   Value *A, *B, *C, *D;
4163   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4164     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
4165       Value *OtherVal = A == Op1 ? B : A;
4166       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4167     }
4168 
4169     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4170       // A^c1 == C^c2 --> A == C^(c1^c2)
4171       ConstantInt *C1, *C2;
4172       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4173           Op1->hasOneUse()) {
4174         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4175         Value *Xor = Builder.CreateXor(C, NC);
4176         return new ICmpInst(Pred, A, Xor);
4177       }
4178 
4179       // A^B == A^D -> B == D
4180       if (A == C)
4181         return new ICmpInst(Pred, B, D);
4182       if (A == D)
4183         return new ICmpInst(Pred, B, C);
4184       if (B == C)
4185         return new ICmpInst(Pred, A, D);
4186       if (B == D)
4187         return new ICmpInst(Pred, A, C);
4188     }
4189   }
4190 
4191   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4192     // A == (A^B)  ->  B == 0
4193     Value *OtherVal = A == Op0 ? B : A;
4194     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4195   }
4196 
4197   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4198   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4199       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4200     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4201 
4202     if (A == C) {
4203       X = B;
4204       Y = D;
4205       Z = A;
4206     } else if (A == D) {
4207       X = B;
4208       Y = C;
4209       Z = A;
4210     } else if (B == C) {
4211       X = A;
4212       Y = D;
4213       Z = B;
4214     } else if (B == D) {
4215       X = A;
4216       Y = C;
4217       Z = B;
4218     }
4219 
4220     if (X) { // Build (X^Y) & Z
4221       Op1 = Builder.CreateXor(X, Y);
4222       Op1 = Builder.CreateAnd(Op1, Z);
4223       I.setOperand(0, Op1);
4224       I.setOperand(1, Constant::getNullValue(Op1->getType()));
4225       return &I;
4226     }
4227   }
4228 
4229   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4230   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4231   ConstantInt *Cst1;
4232   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4233        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4234       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4235        match(Op1, m_ZExt(m_Value(A))))) {
4236     APInt Pow2 = Cst1->getValue() + 1;
4237     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4238         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4239       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4240   }
4241 
4242   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4243   // For lshr and ashr pairs.
4244   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4245        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4246       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4247        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4248     unsigned TypeBits = Cst1->getBitWidth();
4249     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4250     if (ShAmt < TypeBits && ShAmt != 0) {
4251       ICmpInst::Predicate NewPred =
4252           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4253       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4254       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4255       return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
4256     }
4257   }
4258 
4259   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4260   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4261       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4262     unsigned TypeBits = Cst1->getBitWidth();
4263     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4264     if (ShAmt < TypeBits && ShAmt != 0) {
4265       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4266       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4267       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4268                                       I.getName() + ".mask");
4269       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4270     }
4271   }
4272 
4273   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4274   // "icmp (and X, mask), cst"
4275   uint64_t ShAmt = 0;
4276   if (Op0->hasOneUse() &&
4277       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4278       match(Op1, m_ConstantInt(Cst1)) &&
4279       // Only do this when A has multiple uses.  This is most important to do
4280       // when it exposes other optimizations.
4281       !A->hasOneUse()) {
4282     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4283 
4284     if (ShAmt < ASize) {
4285       APInt MaskV =
4286           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4287       MaskV <<= ShAmt;
4288 
4289       APInt CmpV = Cst1->getValue().zext(ASize);
4290       CmpV <<= ShAmt;
4291 
4292       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4293       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4294     }
4295   }
4296 
4297   // If both operands are byte-swapped or bit-reversed, just compare the
4298   // original values.
4299   // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
4300   // and handle more intrinsics.
4301   if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
4302       (match(Op0, m_BitReverse(m_Value(A))) &&
4303        match(Op1, m_BitReverse(m_Value(B)))))
4304     return new ICmpInst(Pred, A, B);
4305 
4306   // Canonicalize checking for a power-of-2-or-zero value:
4307   // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4308   // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4309   if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4310                                    m_Deferred(A)))) ||
4311       !match(Op1, m_ZeroInt()))
4312     A = nullptr;
4313 
4314   // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4315   // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4316   if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4317     A = Op1;
4318   else if (match(Op1,
4319                  m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4320     A = Op0;
4321 
4322   if (A) {
4323     Type *Ty = A->getType();
4324     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4325     return Pred == ICmpInst::ICMP_EQ
4326         ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4327         : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4328   }
4329 
4330   return nullptr;
4331 }
4332 
4333 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
4334                                            InstCombiner::BuilderTy &Builder) {
4335   assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4336   auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4337   Value *X;
4338   if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4339     return nullptr;
4340 
4341   bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4342   bool IsSignedCmp = ICmp.isSigned();
4343   if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
4344     // If the signedness of the two casts doesn't agree (i.e. one is a sext
4345     // and the other is a zext), then we can't handle this.
4346     // TODO: This is too strict. We can handle some predicates (equality?).
4347     if (CastOp0->getOpcode() != CastOp1->getOpcode())
4348       return nullptr;
4349 
4350     // Not an extension from the same type?
4351     Value *Y = CastOp1->getOperand(0);
4352     Type *XTy = X->getType(), *YTy = Y->getType();
4353     if (XTy != YTy) {
4354       // One of the casts must have one use because we are creating a new cast.
4355       if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
4356         return nullptr;
4357       // Extend the narrower operand to the type of the wider operand.
4358       if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4359         X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
4360       else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4361         Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
4362       else
4363         return nullptr;
4364     }
4365 
4366     // (zext X) == (zext Y) --> X == Y
4367     // (sext X) == (sext Y) --> X == Y
4368     if (ICmp.isEquality())
4369       return new ICmpInst(ICmp.getPredicate(), X, Y);
4370 
4371     // A signed comparison of sign extended values simplifies into a
4372     // signed comparison.
4373     if (IsSignedCmp && IsSignedExt)
4374       return new ICmpInst(ICmp.getPredicate(), X, Y);
4375 
4376     // The other three cases all fold into an unsigned comparison.
4377     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4378   }
4379 
4380   // Below here, we are only folding a compare with constant.
4381   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4382   if (!C)
4383     return nullptr;
4384 
4385   // Compute the constant that would happen if we truncated to SrcTy then
4386   // re-extended to DestTy.
4387   Type *SrcTy = CastOp0->getSrcTy();
4388   Type *DestTy = CastOp0->getDestTy();
4389   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4390   Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4391 
4392   // If the re-extended constant didn't change...
4393   if (Res2 == C) {
4394     if (ICmp.isEquality())
4395       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4396 
4397     // A signed comparison of sign extended values simplifies into a
4398     // signed comparison.
4399     if (IsSignedExt && IsSignedCmp)
4400       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4401 
4402     // The other three cases all fold into an unsigned comparison.
4403     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4404   }
4405 
4406   // The re-extended constant changed, partly changed (in the case of a vector),
4407   // or could not be determined to be equal (in the case of a constant
4408   // expression), so the constant cannot be represented in the shorter type.
4409   // All the cases that fold to true or false will have already been handled
4410   // by SimplifyICmpInst, so only deal with the tricky case.
4411   if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4412     return nullptr;
4413 
4414   // Is source op positive?
4415   // icmp ult (sext X), C --> icmp sgt X, -1
4416   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4417     return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4418 
4419   // Is source op negative?
4420   // icmp ugt (sext X), C --> icmp slt X, 0
4421   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4422   return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4423 }
4424 
4425 /// Handle icmp (cast x), (cast or constant).
4426 Instruction *InstCombiner::foldICmpWithCastOp(ICmpInst &ICmp) {
4427   auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4428   if (!CastOp0)
4429     return nullptr;
4430   if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4431     return nullptr;
4432 
4433   Value *Op0Src = CastOp0->getOperand(0);
4434   Type *SrcTy = CastOp0->getSrcTy();
4435   Type *DestTy = CastOp0->getDestTy();
4436 
4437   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4438   // integer type is the same size as the pointer type.
4439   auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4440     if (isa<VectorType>(SrcTy)) {
4441       SrcTy = cast<VectorType>(SrcTy)->getElementType();
4442       DestTy = cast<VectorType>(DestTy)->getElementType();
4443     }
4444     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4445   };
4446   if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4447       CompatibleSizes(SrcTy, DestTy)) {
4448     Value *NewOp1 = nullptr;
4449     if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4450       Value *PtrSrc = PtrToIntOp1->getOperand(0);
4451       if (PtrSrc->getType()->getPointerAddressSpace() ==
4452           Op0Src->getType()->getPointerAddressSpace()) {
4453         NewOp1 = PtrToIntOp1->getOperand(0);
4454         // If the pointer types don't match, insert a bitcast.
4455         if (Op0Src->getType() != NewOp1->getType())
4456           NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4457       }
4458     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4459       NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4460     }
4461 
4462     if (NewOp1)
4463       return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4464   }
4465 
4466   return foldICmpWithZextOrSext(ICmp, Builder);
4467 }
4468 
4469 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4470   switch (BinaryOp) {
4471     default:
4472       llvm_unreachable("Unsupported binary op");
4473     case Instruction::Add:
4474     case Instruction::Sub:
4475       return match(RHS, m_Zero());
4476     case Instruction::Mul:
4477       return match(RHS, m_One());
4478   }
4479 }
4480 
4481 OverflowResult InstCombiner::computeOverflow(
4482     Instruction::BinaryOps BinaryOp, bool IsSigned,
4483     Value *LHS, Value *RHS, Instruction *CxtI) const {
4484   switch (BinaryOp) {
4485     default:
4486       llvm_unreachable("Unsupported binary op");
4487     case Instruction::Add:
4488       if (IsSigned)
4489         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4490       else
4491         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4492     case Instruction::Sub:
4493       if (IsSigned)
4494         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4495       else
4496         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4497     case Instruction::Mul:
4498       if (IsSigned)
4499         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4500       else
4501         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4502   }
4503 }
4504 
4505 bool InstCombiner::OptimizeOverflowCheck(
4506     Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS,
4507     Instruction &OrigI, Value *&Result, Constant *&Overflow) {
4508   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4509     std::swap(LHS, RHS);
4510 
4511   // If the overflow check was an add followed by a compare, the insertion point
4512   // may be pointing to the compare.  We want to insert the new instructions
4513   // before the add in case there are uses of the add between the add and the
4514   // compare.
4515   Builder.SetInsertPoint(&OrigI);
4516 
4517   if (isNeutralValue(BinaryOp, RHS)) {
4518     Result = LHS;
4519     Overflow = Builder.getFalse();
4520     return true;
4521   }
4522 
4523   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4524     case OverflowResult::MayOverflow:
4525       return false;
4526     case OverflowResult::AlwaysOverflowsLow:
4527     case OverflowResult::AlwaysOverflowsHigh:
4528       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4529       Result->takeName(&OrigI);
4530       Overflow = Builder.getTrue();
4531       return true;
4532     case OverflowResult::NeverOverflows:
4533       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4534       Result->takeName(&OrigI);
4535       Overflow = Builder.getFalse();
4536       if (auto *Inst = dyn_cast<Instruction>(Result)) {
4537         if (IsSigned)
4538           Inst->setHasNoSignedWrap();
4539         else
4540           Inst->setHasNoUnsignedWrap();
4541       }
4542       return true;
4543   }
4544 
4545   llvm_unreachable("Unexpected overflow result");
4546 }
4547 
4548 /// Recognize and process idiom involving test for multiplication
4549 /// overflow.
4550 ///
4551 /// The caller has matched a pattern of the form:
4552 ///   I = cmp u (mul(zext A, zext B), V
4553 /// The function checks if this is a test for overflow and if so replaces
4554 /// multiplication with call to 'mul.with.overflow' intrinsic.
4555 ///
4556 /// \param I Compare instruction.
4557 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
4558 ///               the compare instruction.  Must be of integer type.
4559 /// \param OtherVal The other argument of compare instruction.
4560 /// \returns Instruction which must replace the compare instruction, NULL if no
4561 ///          replacement required.
4562 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4563                                          Value *OtherVal, InstCombiner &IC) {
4564   // Don't bother doing this transformation for pointers, don't do it for
4565   // vectors.
4566   if (!isa<IntegerType>(MulVal->getType()))
4567     return nullptr;
4568 
4569   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4570   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4571   auto *MulInstr = dyn_cast<Instruction>(MulVal);
4572   if (!MulInstr)
4573     return nullptr;
4574   assert(MulInstr->getOpcode() == Instruction::Mul);
4575 
4576   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4577        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4578   assert(LHS->getOpcode() == Instruction::ZExt);
4579   assert(RHS->getOpcode() == Instruction::ZExt);
4580   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4581 
4582   // Calculate type and width of the result produced by mul.with.overflow.
4583   Type *TyA = A->getType(), *TyB = B->getType();
4584   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4585            WidthB = TyB->getPrimitiveSizeInBits();
4586   unsigned MulWidth;
4587   Type *MulType;
4588   if (WidthB > WidthA) {
4589     MulWidth = WidthB;
4590     MulType = TyB;
4591   } else {
4592     MulWidth = WidthA;
4593     MulType = TyA;
4594   }
4595 
4596   // In order to replace the original mul with a narrower mul.with.overflow,
4597   // all uses must ignore upper bits of the product.  The number of used low
4598   // bits must be not greater than the width of mul.with.overflow.
4599   if (MulVal->hasNUsesOrMore(2))
4600     for (User *U : MulVal->users()) {
4601       if (U == &I)
4602         continue;
4603       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4604         // Check if truncation ignores bits above MulWidth.
4605         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4606         if (TruncWidth > MulWidth)
4607           return nullptr;
4608       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4609         // Check if AND ignores bits above MulWidth.
4610         if (BO->getOpcode() != Instruction::And)
4611           return nullptr;
4612         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4613           const APInt &CVal = CI->getValue();
4614           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4615             return nullptr;
4616         } else {
4617           // In this case we could have the operand of the binary operation
4618           // being defined in another block, and performing the replacement
4619           // could break the dominance relation.
4620           return nullptr;
4621         }
4622       } else {
4623         // Other uses prohibit this transformation.
4624         return nullptr;
4625       }
4626     }
4627 
4628   // Recognize patterns
4629   switch (I.getPredicate()) {
4630   case ICmpInst::ICMP_EQ:
4631   case ICmpInst::ICMP_NE:
4632     // Recognize pattern:
4633     //   mulval = mul(zext A, zext B)
4634     //   cmp eq/neq mulval, zext trunc mulval
4635     if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
4636       if (Zext->hasOneUse()) {
4637         Value *ZextArg = Zext->getOperand(0);
4638         if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
4639           if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
4640             break; //Recognized
4641       }
4642 
4643     // Recognize pattern:
4644     //   mulval = mul(zext A, zext B)
4645     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4646     ConstantInt *CI;
4647     Value *ValToMask;
4648     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4649       if (ValToMask != MulVal)
4650         return nullptr;
4651       const APInt &CVal = CI->getValue() + 1;
4652       if (CVal.isPowerOf2()) {
4653         unsigned MaskWidth = CVal.logBase2();
4654         if (MaskWidth == MulWidth)
4655           break; // Recognized
4656       }
4657     }
4658     return nullptr;
4659 
4660   case ICmpInst::ICMP_UGT:
4661     // Recognize pattern:
4662     //   mulval = mul(zext A, zext B)
4663     //   cmp ugt mulval, max
4664     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4665       APInt MaxVal = APInt::getMaxValue(MulWidth);
4666       MaxVal = MaxVal.zext(CI->getBitWidth());
4667       if (MaxVal.eq(CI->getValue()))
4668         break; // Recognized
4669     }
4670     return nullptr;
4671 
4672   case ICmpInst::ICMP_UGE:
4673     // Recognize pattern:
4674     //   mulval = mul(zext A, zext B)
4675     //   cmp uge mulval, max+1
4676     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4677       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4678       if (MaxVal.eq(CI->getValue()))
4679         break; // Recognized
4680     }
4681     return nullptr;
4682 
4683   case ICmpInst::ICMP_ULE:
4684     // Recognize pattern:
4685     //   mulval = mul(zext A, zext B)
4686     //   cmp ule mulval, max
4687     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4688       APInt MaxVal = APInt::getMaxValue(MulWidth);
4689       MaxVal = MaxVal.zext(CI->getBitWidth());
4690       if (MaxVal.eq(CI->getValue()))
4691         break; // Recognized
4692     }
4693     return nullptr;
4694 
4695   case ICmpInst::ICMP_ULT:
4696     // Recognize pattern:
4697     //   mulval = mul(zext A, zext B)
4698     //   cmp ule mulval, max + 1
4699     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4700       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4701       if (MaxVal.eq(CI->getValue()))
4702         break; // Recognized
4703     }
4704     return nullptr;
4705 
4706   default:
4707     return nullptr;
4708   }
4709 
4710   InstCombiner::BuilderTy &Builder = IC.Builder;
4711   Builder.SetInsertPoint(MulInstr);
4712 
4713   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
4714   Value *MulA = A, *MulB = B;
4715   if (WidthA < MulWidth)
4716     MulA = Builder.CreateZExt(A, MulType);
4717   if (WidthB < MulWidth)
4718     MulB = Builder.CreateZExt(B, MulType);
4719   Function *F = Intrinsic::getDeclaration(
4720       I.getModule(), Intrinsic::umul_with_overflow, MulType);
4721   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
4722   IC.Worklist.Add(MulInstr);
4723 
4724   // If there are uses of mul result other than the comparison, we know that
4725   // they are truncation or binary AND. Change them to use result of
4726   // mul.with.overflow and adjust properly mask/size.
4727   if (MulVal->hasNUsesOrMore(2)) {
4728     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
4729     for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) {
4730       User *U = *UI++;
4731       if (U == &I || U == OtherVal)
4732         continue;
4733       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4734         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
4735           IC.replaceInstUsesWith(*TI, Mul);
4736         else
4737           TI->setOperand(0, Mul);
4738       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4739         assert(BO->getOpcode() == Instruction::And);
4740         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
4741         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
4742         APInt ShortMask = CI->getValue().trunc(MulWidth);
4743         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
4744         Instruction *Zext =
4745             cast<Instruction>(Builder.CreateZExt(ShortAnd, BO->getType()));
4746         IC.Worklist.Add(Zext);
4747         IC.replaceInstUsesWith(*BO, Zext);
4748       } else {
4749         llvm_unreachable("Unexpected Binary operation");
4750       }
4751       IC.Worklist.Add(cast<Instruction>(U));
4752     }
4753   }
4754   if (isa<Instruction>(OtherVal))
4755     IC.Worklist.Add(cast<Instruction>(OtherVal));
4756 
4757   // The original icmp gets replaced with the overflow value, maybe inverted
4758   // depending on predicate.
4759   bool Inverse = false;
4760   switch (I.getPredicate()) {
4761   case ICmpInst::ICMP_NE:
4762     break;
4763   case ICmpInst::ICMP_EQ:
4764     Inverse = true;
4765     break;
4766   case ICmpInst::ICMP_UGT:
4767   case ICmpInst::ICMP_UGE:
4768     if (I.getOperand(0) == MulVal)
4769       break;
4770     Inverse = true;
4771     break;
4772   case ICmpInst::ICMP_ULT:
4773   case ICmpInst::ICMP_ULE:
4774     if (I.getOperand(1) == MulVal)
4775       break;
4776     Inverse = true;
4777     break;
4778   default:
4779     llvm_unreachable("Unexpected predicate");
4780   }
4781   if (Inverse) {
4782     Value *Res = Builder.CreateExtractValue(Call, 1);
4783     return BinaryOperator::CreateNot(Res);
4784   }
4785 
4786   return ExtractValueInst::Create(Call, 1);
4787 }
4788 
4789 /// When performing a comparison against a constant, it is possible that not all
4790 /// the bits in the LHS are demanded. This helper method computes the mask that
4791 /// IS demanded.
4792 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
4793   const APInt *RHS;
4794   if (!match(I.getOperand(1), m_APInt(RHS)))
4795     return APInt::getAllOnesValue(BitWidth);
4796 
4797   // If this is a normal comparison, it demands all bits. If it is a sign bit
4798   // comparison, it only demands the sign bit.
4799   bool UnusedBit;
4800   if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
4801     return APInt::getSignMask(BitWidth);
4802 
4803   switch (I.getPredicate()) {
4804   // For a UGT comparison, we don't care about any bits that
4805   // correspond to the trailing ones of the comparand.  The value of these
4806   // bits doesn't impact the outcome of the comparison, because any value
4807   // greater than the RHS must differ in a bit higher than these due to carry.
4808   case ICmpInst::ICMP_UGT:
4809     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
4810 
4811   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
4812   // Any value less than the RHS must differ in a higher bit because of carries.
4813   case ICmpInst::ICMP_ULT:
4814     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
4815 
4816   default:
4817     return APInt::getAllOnesValue(BitWidth);
4818   }
4819 }
4820 
4821 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
4822 /// should be swapped.
4823 /// The decision is based on how many times these two operands are reused
4824 /// as subtract operands and their positions in those instructions.
4825 /// The rationale is that several architectures use the same instruction for
4826 /// both subtract and cmp. Thus, it is better if the order of those operands
4827 /// match.
4828 /// \return true if Op0 and Op1 should be swapped.
4829 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
4830   // Filter out pointer values as those cannot appear directly in subtract.
4831   // FIXME: we may want to go through inttoptrs or bitcasts.
4832   if (Op0->getType()->isPointerTy())
4833     return false;
4834   // If a subtract already has the same operands as a compare, swapping would be
4835   // bad. If a subtract has the same operands as a compare but in reverse order,
4836   // then swapping is good.
4837   int GoodToSwap = 0;
4838   for (const User *U : Op0->users()) {
4839     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
4840       GoodToSwap++;
4841     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
4842       GoodToSwap--;
4843   }
4844   return GoodToSwap > 0;
4845 }
4846 
4847 /// Check that one use is in the same block as the definition and all
4848 /// other uses are in blocks dominated by a given block.
4849 ///
4850 /// \param DI Definition
4851 /// \param UI Use
4852 /// \param DB Block that must dominate all uses of \p DI outside
4853 ///           the parent block
4854 /// \return true when \p UI is the only use of \p DI in the parent block
4855 /// and all other uses of \p DI are in blocks dominated by \p DB.
4856 ///
4857 bool InstCombiner::dominatesAllUses(const Instruction *DI,
4858                                     const Instruction *UI,
4859                                     const BasicBlock *DB) const {
4860   assert(DI && UI && "Instruction not defined\n");
4861   // Ignore incomplete definitions.
4862   if (!DI->getParent())
4863     return false;
4864   // DI and UI must be in the same block.
4865   if (DI->getParent() != UI->getParent())
4866     return false;
4867   // Protect from self-referencing blocks.
4868   if (DI->getParent() == DB)
4869     return false;
4870   for (const User *U : DI->users()) {
4871     auto *Usr = cast<Instruction>(U);
4872     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
4873       return false;
4874   }
4875   return true;
4876 }
4877 
4878 /// Return true when the instruction sequence within a block is select-cmp-br.
4879 static bool isChainSelectCmpBranch(const SelectInst *SI) {
4880   const BasicBlock *BB = SI->getParent();
4881   if (!BB)
4882     return false;
4883   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
4884   if (!BI || BI->getNumSuccessors() != 2)
4885     return false;
4886   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
4887   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
4888     return false;
4889   return true;
4890 }
4891 
4892 /// True when a select result is replaced by one of its operands
4893 /// in select-icmp sequence. This will eventually result in the elimination
4894 /// of the select.
4895 ///
4896 /// \param SI    Select instruction
4897 /// \param Icmp  Compare instruction
4898 /// \param SIOpd Operand that replaces the select
4899 ///
4900 /// Notes:
4901 /// - The replacement is global and requires dominator information
4902 /// - The caller is responsible for the actual replacement
4903 ///
4904 /// Example:
4905 ///
4906 /// entry:
4907 ///  %4 = select i1 %3, %C* %0, %C* null
4908 ///  %5 = icmp eq %C* %4, null
4909 ///  br i1 %5, label %9, label %7
4910 ///  ...
4911 ///  ; <label>:7                                       ; preds = %entry
4912 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
4913 ///  ...
4914 ///
4915 /// can be transformed to
4916 ///
4917 ///  %5 = icmp eq %C* %0, null
4918 ///  %6 = select i1 %3, i1 %5, i1 true
4919 ///  br i1 %6, label %9, label %7
4920 ///  ...
4921 ///  ; <label>:7                                       ; preds = %entry
4922 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
4923 ///
4924 /// Similar when the first operand of the select is a constant or/and
4925 /// the compare is for not equal rather than equal.
4926 ///
4927 /// NOTE: The function is only called when the select and compare constants
4928 /// are equal, the optimization can work only for EQ predicates. This is not a
4929 /// major restriction since a NE compare should be 'normalized' to an equal
4930 /// compare, which usually happens in the combiner and test case
4931 /// select-cmp-br.ll checks for it.
4932 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
4933                                              const ICmpInst *Icmp,
4934                                              const unsigned SIOpd) {
4935   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
4936   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
4937     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
4938     // The check for the single predecessor is not the best that can be
4939     // done. But it protects efficiently against cases like when SI's
4940     // home block has two successors, Succ and Succ1, and Succ1 predecessor
4941     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
4942     // replaced can be reached on either path. So the uniqueness check
4943     // guarantees that the path all uses of SI (outside SI's parent) are on
4944     // is disjoint from all other paths out of SI. But that information
4945     // is more expensive to compute, and the trade-off here is in favor
4946     // of compile-time. It should also be noticed that we check for a single
4947     // predecessor and not only uniqueness. This to handle the situation when
4948     // Succ and Succ1 points to the same basic block.
4949     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
4950       NumSel++;
4951       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
4952       return true;
4953     }
4954   }
4955   return false;
4956 }
4957 
4958 /// Try to fold the comparison based on range information we can get by checking
4959 /// whether bits are known to be zero or one in the inputs.
4960 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) {
4961   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4962   Type *Ty = Op0->getType();
4963   ICmpInst::Predicate Pred = I.getPredicate();
4964 
4965   // Get scalar or pointer size.
4966   unsigned BitWidth = Ty->isIntOrIntVectorTy()
4967                           ? Ty->getScalarSizeInBits()
4968                           : DL.getPointerTypeSizeInBits(Ty->getScalarType());
4969 
4970   if (!BitWidth)
4971     return nullptr;
4972 
4973   KnownBits Op0Known(BitWidth);
4974   KnownBits Op1Known(BitWidth);
4975 
4976   if (SimplifyDemandedBits(&I, 0,
4977                            getDemandedBitsLHSMask(I, BitWidth),
4978                            Op0Known, 0))
4979     return &I;
4980 
4981   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
4982                            Op1Known, 0))
4983     return &I;
4984 
4985   // Given the known and unknown bits, compute a range that the LHS could be
4986   // in.  Compute the Min, Max and RHS values based on the known bits. For the
4987   // EQ and NE we use unsigned values.
4988   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
4989   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
4990   if (I.isSigned()) {
4991     computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4992     computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4993   } else {
4994     computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4995     computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4996   }
4997 
4998   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
4999   // out that the LHS or RHS is a constant. Constant fold this now, so that
5000   // code below can assume that Min != Max.
5001   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
5002     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
5003   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
5004     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
5005 
5006   // Based on the range information we know about the LHS, see if we can
5007   // simplify this comparison.  For example, (x&4) < 8 is always true.
5008   switch (Pred) {
5009   default:
5010     llvm_unreachable("Unknown icmp opcode!");
5011   case ICmpInst::ICMP_EQ:
5012   case ICmpInst::ICMP_NE: {
5013     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) {
5014       return Pred == CmpInst::ICMP_EQ
5015                  ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()))
5016                  : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5017     }
5018 
5019     // If all bits are known zero except for one, then we know at most one bit
5020     // is set. If the comparison is against zero, then this is a check to see if
5021     // *that* bit is set.
5022     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
5023     if (Op1Known.isZero()) {
5024       // If the LHS is an AND with the same constant, look through it.
5025       Value *LHS = nullptr;
5026       const APInt *LHSC;
5027       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
5028           *LHSC != Op0KnownZeroInverted)
5029         LHS = Op0;
5030 
5031       Value *X;
5032       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
5033         APInt ValToCheck = Op0KnownZeroInverted;
5034         Type *XTy = X->getType();
5035         if (ValToCheck.isPowerOf2()) {
5036           // ((1 << X) & 8) == 0 -> X != 3
5037           // ((1 << X) & 8) != 0 -> X == 3
5038           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5039           auto NewPred = ICmpInst::getInversePredicate(Pred);
5040           return new ICmpInst(NewPred, X, CmpC);
5041         } else if ((++ValToCheck).isPowerOf2()) {
5042           // ((1 << X) & 7) == 0 -> X >= 3
5043           // ((1 << X) & 7) != 0 -> X  < 3
5044           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5045           auto NewPred =
5046               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
5047           return new ICmpInst(NewPred, X, CmpC);
5048         }
5049       }
5050 
5051       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
5052       const APInt *CI;
5053       if (Op0KnownZeroInverted.isOneValue() &&
5054           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
5055         // ((8 >>u X) & 1) == 0 -> X != 3
5056         // ((8 >>u X) & 1) != 0 -> X == 3
5057         unsigned CmpVal = CI->countTrailingZeros();
5058         auto NewPred = ICmpInst::getInversePredicate(Pred);
5059         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
5060       }
5061     }
5062     break;
5063   }
5064   case ICmpInst::ICMP_ULT: {
5065     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5066       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5067     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5068       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5069     if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5070       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5071 
5072     const APInt *CmpC;
5073     if (match(Op1, m_APInt(CmpC))) {
5074       // A <u C -> A == C-1 if min(A)+1 == C
5075       if (*CmpC == Op0Min + 1)
5076         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5077                             ConstantInt::get(Op1->getType(), *CmpC - 1));
5078       // X <u C --> X == 0, if the number of zero bits in the bottom of X
5079       // exceeds the log2 of C.
5080       if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5081         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5082                             Constant::getNullValue(Op1->getType()));
5083     }
5084     break;
5085   }
5086   case ICmpInst::ICMP_UGT: {
5087     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5088       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5089     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5090       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5091     if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5092       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5093 
5094     const APInt *CmpC;
5095     if (match(Op1, m_APInt(CmpC))) {
5096       // A >u C -> A == C+1 if max(a)-1 == C
5097       if (*CmpC == Op0Max - 1)
5098         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5099                             ConstantInt::get(Op1->getType(), *CmpC + 1));
5100       // X >u C --> X != 0, if the number of zero bits in the bottom of X
5101       // exceeds the log2 of C.
5102       if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5103         return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5104                             Constant::getNullValue(Op1->getType()));
5105     }
5106     break;
5107   }
5108   case ICmpInst::ICMP_SLT: {
5109     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5110       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5111     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5112       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5113     if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5114       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5115     const APInt *CmpC;
5116     if (match(Op1, m_APInt(CmpC))) {
5117       if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5118         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5119                             ConstantInt::get(Op1->getType(), *CmpC - 1));
5120     }
5121     break;
5122   }
5123   case ICmpInst::ICMP_SGT: {
5124     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5125       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5126     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5127       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5128     if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5129       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5130     const APInt *CmpC;
5131     if (match(Op1, m_APInt(CmpC))) {
5132       if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5133         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5134                             ConstantInt::get(Op1->getType(), *CmpC + 1));
5135     }
5136     break;
5137   }
5138   case ICmpInst::ICMP_SGE:
5139     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5140     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5141       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5142     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5143       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5144     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5145       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5146     break;
5147   case ICmpInst::ICMP_SLE:
5148     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5149     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5150       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5151     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5152       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5153     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5154       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5155     break;
5156   case ICmpInst::ICMP_UGE:
5157     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5158     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5159       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5160     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5161       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5162     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5163       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5164     break;
5165   case ICmpInst::ICMP_ULE:
5166     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5167     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5168       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5169     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5170       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5171     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5172       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5173     break;
5174   }
5175 
5176   // Turn a signed comparison into an unsigned one if both operands are known to
5177   // have the same sign.
5178   if (I.isSigned() &&
5179       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5180        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5181     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5182 
5183   return nullptr;
5184 }
5185 
5186 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5187 llvm::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5188                                                Constant *C) {
5189   assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5190          "Only for relational integer predicates.");
5191 
5192   Type *Type = C->getType();
5193   bool IsSigned = ICmpInst::isSigned(Pred);
5194 
5195   CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5196   bool WillIncrement =
5197       UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5198 
5199   // Check if the constant operand can be safely incremented/decremented
5200   // without overflowing/underflowing.
5201   auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5202     return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5203   };
5204 
5205   Constant *SafeReplacementConstant = nullptr;
5206   if (auto *CI = dyn_cast<ConstantInt>(C)) {
5207     // Bail out if the constant can't be safely incremented/decremented.
5208     if (!ConstantIsOk(CI))
5209       return llvm::None;
5210   } else if (Type->isVectorTy()) {
5211     unsigned NumElts = Type->getVectorNumElements();
5212     for (unsigned i = 0; i != NumElts; ++i) {
5213       Constant *Elt = C->getAggregateElement(i);
5214       if (!Elt)
5215         return llvm::None;
5216 
5217       if (isa<UndefValue>(Elt))
5218         continue;
5219 
5220       // Bail out if we can't determine if this constant is min/max or if we
5221       // know that this constant is min/max.
5222       auto *CI = dyn_cast<ConstantInt>(Elt);
5223       if (!CI || !ConstantIsOk(CI))
5224         return llvm::None;
5225 
5226       if (!SafeReplacementConstant)
5227         SafeReplacementConstant = CI;
5228     }
5229   } else {
5230     // ConstantExpr?
5231     return llvm::None;
5232   }
5233 
5234   // It may not be safe to change a compare predicate in the presence of
5235   // undefined elements, so replace those elements with the first safe constant
5236   // that we found.
5237   if (C->containsUndefElement()) {
5238     assert(SafeReplacementConstant && "Replacement constant not set");
5239     C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5240   }
5241 
5242   CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5243 
5244   // Increment or decrement the constant.
5245   Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5246   Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5247 
5248   return std::make_pair(NewPred, NewC);
5249 }
5250 
5251 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5252 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5253 /// allows them to be folded in visitICmpInst.
5254 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5255   ICmpInst::Predicate Pred = I.getPredicate();
5256   if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5257       isCanonicalPredicate(Pred))
5258     return nullptr;
5259 
5260   Value *Op0 = I.getOperand(0);
5261   Value *Op1 = I.getOperand(1);
5262   auto *Op1C = dyn_cast<Constant>(Op1);
5263   if (!Op1C)
5264     return nullptr;
5265 
5266   auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5267   if (!FlippedStrictness)
5268     return nullptr;
5269 
5270   return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5271 }
5272 
5273 /// Integer compare with boolean values can always be turned into bitwise ops.
5274 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5275                                          InstCombiner::BuilderTy &Builder) {
5276   Value *A = I.getOperand(0), *B = I.getOperand(1);
5277   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5278 
5279   // A boolean compared to true/false can be simplified to Op0/true/false in
5280   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5281   // Cases not handled by InstSimplify are always 'not' of Op0.
5282   if (match(B, m_Zero())) {
5283     switch (I.getPredicate()) {
5284       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
5285       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
5286       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
5287         return BinaryOperator::CreateNot(A);
5288       default:
5289         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5290     }
5291   } else if (match(B, m_One())) {
5292     switch (I.getPredicate()) {
5293       case CmpInst::ICMP_NE:  // A !=  1 -> !A
5294       case CmpInst::ICMP_ULT: // A <u  1 -> !A
5295       case CmpInst::ICMP_SGT: // A >s -1 -> !A
5296         return BinaryOperator::CreateNot(A);
5297       default:
5298         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5299     }
5300   }
5301 
5302   switch (I.getPredicate()) {
5303   default:
5304     llvm_unreachable("Invalid icmp instruction!");
5305   case ICmpInst::ICMP_EQ:
5306     // icmp eq i1 A, B -> ~(A ^ B)
5307     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5308 
5309   case ICmpInst::ICMP_NE:
5310     // icmp ne i1 A, B -> A ^ B
5311     return BinaryOperator::CreateXor(A, B);
5312 
5313   case ICmpInst::ICMP_UGT:
5314     // icmp ugt -> icmp ult
5315     std::swap(A, B);
5316     LLVM_FALLTHROUGH;
5317   case ICmpInst::ICMP_ULT:
5318     // icmp ult i1 A, B -> ~A & B
5319     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5320 
5321   case ICmpInst::ICMP_SGT:
5322     // icmp sgt -> icmp slt
5323     std::swap(A, B);
5324     LLVM_FALLTHROUGH;
5325   case ICmpInst::ICMP_SLT:
5326     // icmp slt i1 A, B -> A & ~B
5327     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5328 
5329   case ICmpInst::ICMP_UGE:
5330     // icmp uge -> icmp ule
5331     std::swap(A, B);
5332     LLVM_FALLTHROUGH;
5333   case ICmpInst::ICMP_ULE:
5334     // icmp ule i1 A, B -> ~A | B
5335     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5336 
5337   case ICmpInst::ICMP_SGE:
5338     // icmp sge -> icmp sle
5339     std::swap(A, B);
5340     LLVM_FALLTHROUGH;
5341   case ICmpInst::ICMP_SLE:
5342     // icmp sle i1 A, B -> A | ~B
5343     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5344   }
5345 }
5346 
5347 // Transform pattern like:
5348 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
5349 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
5350 // Into:
5351 //   (X l>> Y) != 0
5352 //   (X l>> Y) == 0
5353 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5354                                             InstCombiner::BuilderTy &Builder) {
5355   ICmpInst::Predicate Pred, NewPred;
5356   Value *X, *Y;
5357   if (match(&Cmp,
5358             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5359     // We want X to be the icmp's second operand, so swap predicate if it isn't.
5360     if (Cmp.getOperand(0) == X)
5361       Pred = Cmp.getSwappedPredicate();
5362 
5363     switch (Pred) {
5364     case ICmpInst::ICMP_ULE:
5365       NewPred = ICmpInst::ICMP_NE;
5366       break;
5367     case ICmpInst::ICMP_UGT:
5368       NewPred = ICmpInst::ICMP_EQ;
5369       break;
5370     default:
5371       return nullptr;
5372     }
5373   } else if (match(&Cmp, m_c_ICmp(Pred,
5374                                   m_OneUse(m_CombineOr(
5375                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5376                                       m_Add(m_Shl(m_One(), m_Value(Y)),
5377                                             m_AllOnes()))),
5378                                   m_Value(X)))) {
5379     // The variant with 'add' is not canonical, (the variant with 'not' is)
5380     // we only get it because it has extra uses, and can't be canonicalized,
5381 
5382     // We want X to be the icmp's second operand, so swap predicate if it isn't.
5383     if (Cmp.getOperand(0) == X)
5384       Pred = Cmp.getSwappedPredicate();
5385 
5386     switch (Pred) {
5387     case ICmpInst::ICMP_ULT:
5388       NewPred = ICmpInst::ICMP_NE;
5389       break;
5390     case ICmpInst::ICMP_UGE:
5391       NewPred = ICmpInst::ICMP_EQ;
5392       break;
5393     default:
5394       return nullptr;
5395     }
5396   } else
5397     return nullptr;
5398 
5399   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5400   Constant *Zero = Constant::getNullValue(NewX->getType());
5401   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5402 }
5403 
5404 static Instruction *foldVectorCmp(CmpInst &Cmp,
5405                                   InstCombiner::BuilderTy &Builder) {
5406   // If both arguments of the cmp are shuffles that use the same mask and
5407   // shuffle within a single vector, move the shuffle after the cmp.
5408   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5409   Value *V1, *V2;
5410   Constant *M;
5411   if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(M))) &&
5412       match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(M))) &&
5413       V1->getType() == V2->getType() &&
5414       (LHS->hasOneUse() || RHS->hasOneUse())) {
5415     // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5416     CmpInst::Predicate P = Cmp.getPredicate();
5417     Value *NewCmp = isa<ICmpInst>(Cmp) ? Builder.CreateICmp(P, V1, V2)
5418                                        : Builder.CreateFCmp(P, V1, V2);
5419     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
5420   }
5421   return nullptr;
5422 }
5423 
5424 // extract(uadd.with.overflow(A, B), 0) ult A
5425 //  -> extract(uadd.with.overflow(A, B), 1)
5426 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5427   CmpInst::Predicate Pred = I.getPredicate();
5428   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5429 
5430   Value *UAddOv;
5431   Value *A, *B;
5432   auto UAddOvResultPat = m_ExtractValue<0>(
5433       m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5434   if (match(Op0, UAddOvResultPat) &&
5435       ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5436        (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5437         (match(A, m_One()) || match(B, m_One()))) ||
5438        (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5439         (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5440     // extract(uadd.with.overflow(A, B), 0) < A
5441     // extract(uadd.with.overflow(A, 1), 0) == 0
5442     // extract(uadd.with.overflow(A, -1), 0) != -1
5443     UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5444   else if (match(Op1, UAddOvResultPat) &&
5445            Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5446     // A > extract(uadd.with.overflow(A, B), 0)
5447     UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
5448   else
5449     return nullptr;
5450 
5451   return ExtractValueInst::Create(UAddOv, 1);
5452 }
5453 
5454 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5455   bool Changed = false;
5456   const SimplifyQuery Q = SQ.getWithInstruction(&I);
5457   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5458   unsigned Op0Cplxity = getComplexity(Op0);
5459   unsigned Op1Cplxity = getComplexity(Op1);
5460 
5461   /// Orders the operands of the compare so that they are listed from most
5462   /// complex to least complex.  This puts constants before unary operators,
5463   /// before binary operators.
5464   if (Op0Cplxity < Op1Cplxity ||
5465       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5466     I.swapOperands();
5467     std::swap(Op0, Op1);
5468     Changed = true;
5469   }
5470 
5471   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
5472     return replaceInstUsesWith(I, V);
5473 
5474   // Comparing -val or val with non-zero is the same as just comparing val
5475   // ie, abs(val) != 0 -> val != 0
5476   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
5477     Value *Cond, *SelectTrue, *SelectFalse;
5478     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
5479                             m_Value(SelectFalse)))) {
5480       if (Value *V = dyn_castNegVal(SelectTrue)) {
5481         if (V == SelectFalse)
5482           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5483       }
5484       else if (Value *V = dyn_castNegVal(SelectFalse)) {
5485         if (V == SelectTrue)
5486           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5487       }
5488     }
5489   }
5490 
5491   if (Op0->getType()->isIntOrIntVectorTy(1))
5492     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
5493       return Res;
5494 
5495   if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I))
5496     return NewICmp;
5497 
5498   if (Instruction *Res = foldICmpWithConstant(I))
5499     return Res;
5500 
5501   if (Instruction *Res = foldICmpWithDominatingICmp(I))
5502     return Res;
5503 
5504   if (Instruction *Res = foldICmpBinOp(I, Q))
5505     return Res;
5506 
5507   if (Instruction *Res = foldICmpUsingKnownBits(I))
5508     return Res;
5509 
5510   // Test if the ICmpInst instruction is used exclusively by a select as
5511   // part of a minimum or maximum operation. If so, refrain from doing
5512   // any other folding. This helps out other analyses which understand
5513   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5514   // and CodeGen. And in this case, at least one of the comparison
5515   // operands has at least one user besides the compare (the select),
5516   // which would often largely negate the benefit of folding anyway.
5517   //
5518   // Do the same for the other patterns recognized by matchSelectPattern.
5519   if (I.hasOneUse())
5520     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5521       Value *A, *B;
5522       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5523       if (SPR.Flavor != SPF_UNKNOWN)
5524         return nullptr;
5525     }
5526 
5527   // Do this after checking for min/max to prevent infinite looping.
5528   if (Instruction *Res = foldICmpWithZero(I))
5529     return Res;
5530 
5531   // FIXME: We only do this after checking for min/max to prevent infinite
5532   // looping caused by a reverse canonicalization of these patterns for min/max.
5533   // FIXME: The organization of folds is a mess. These would naturally go into
5534   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5535   // down here after the min/max restriction.
5536   ICmpInst::Predicate Pred = I.getPredicate();
5537   const APInt *C;
5538   if (match(Op1, m_APInt(C))) {
5539     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
5540     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
5541       Constant *Zero = Constant::getNullValue(Op0->getType());
5542       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
5543     }
5544 
5545     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
5546     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
5547       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
5548       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
5549     }
5550   }
5551 
5552   if (Instruction *Res = foldICmpInstWithConstant(I))
5553     return Res;
5554 
5555   // Try to match comparison as a sign bit test. Intentionally do this after
5556   // foldICmpInstWithConstant() to potentially let other folds to happen first.
5557   if (Instruction *New = foldSignBitTest(I))
5558     return New;
5559 
5560   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
5561     return Res;
5562 
5563   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5564   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
5565     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
5566       return NI;
5567   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
5568     if (Instruction *NI = foldGEPICmp(GEP, Op0,
5569                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5570       return NI;
5571 
5572   // Try to optimize equality comparisons against alloca-based pointers.
5573   if (Op0->getType()->isPointerTy() && I.isEquality()) {
5574     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
5575     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
5576       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
5577         return New;
5578     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
5579       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
5580         return New;
5581   }
5582 
5583   if (Instruction *Res = foldICmpBitCast(I, Builder))
5584     return Res;
5585 
5586   if (Instruction *R = foldICmpWithCastOp(I))
5587     return R;
5588 
5589   if (Instruction *Res = foldICmpWithMinMax(I))
5590     return Res;
5591 
5592   {
5593     Value *A, *B;
5594     // Transform (A & ~B) == 0 --> (A & B) != 0
5595     // and       (A & ~B) != 0 --> (A & B) == 0
5596     // if A is a power of 2.
5597     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
5598         match(Op1, m_Zero()) &&
5599         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
5600       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
5601                           Op1);
5602 
5603     // ~X < ~Y --> Y < X
5604     // ~X < C -->  X > ~C
5605     if (match(Op0, m_Not(m_Value(A)))) {
5606       if (match(Op1, m_Not(m_Value(B))))
5607         return new ICmpInst(I.getPredicate(), B, A);
5608 
5609       const APInt *C;
5610       if (match(Op1, m_APInt(C)))
5611         return new ICmpInst(I.getSwappedPredicate(), A,
5612                             ConstantInt::get(Op1->getType(), ~(*C)));
5613     }
5614 
5615     Instruction *AddI = nullptr;
5616     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
5617                                      m_Instruction(AddI))) &&
5618         isa<IntegerType>(A->getType())) {
5619       Value *Result;
5620       Constant *Overflow;
5621       if (OptimizeOverflowCheck(Instruction::Add, /*Signed*/false, A, B,
5622                                 *AddI, Result, Overflow)) {
5623         replaceInstUsesWith(*AddI, Result);
5624         return replaceInstUsesWith(I, Overflow);
5625       }
5626     }
5627 
5628     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
5629     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5630       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
5631         return R;
5632     }
5633     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5634       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
5635         return R;
5636     }
5637   }
5638 
5639   if (Instruction *Res = foldICmpEquality(I))
5640     return Res;
5641 
5642   if (Instruction *Res = foldICmpOfUAddOv(I))
5643     return Res;
5644 
5645   // The 'cmpxchg' instruction returns an aggregate containing the old value and
5646   // an i1 which indicates whether or not we successfully did the swap.
5647   //
5648   // Replace comparisons between the old value and the expected value with the
5649   // indicator that 'cmpxchg' returns.
5650   //
5651   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
5652   // spuriously fail.  In those cases, the old value may equal the expected
5653   // value but it is possible for the swap to not occur.
5654   if (I.getPredicate() == ICmpInst::ICMP_EQ)
5655     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
5656       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
5657         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
5658             !ACXI->isWeak())
5659           return ExtractValueInst::Create(ACXI, 1);
5660 
5661   {
5662     Value *X;
5663     const APInt *C;
5664     // icmp X+Cst, X
5665     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
5666       return foldICmpAddOpConst(X, *C, I.getPredicate());
5667 
5668     // icmp X, X+Cst
5669     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
5670       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
5671   }
5672 
5673   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
5674     return Res;
5675 
5676   if (I.getType()->isVectorTy())
5677     if (Instruction *Res = foldVectorCmp(I, Builder))
5678       return Res;
5679 
5680   return Changed ? &I : nullptr;
5681 }
5682 
5683 /// Fold fcmp ([us]itofp x, cst) if possible.
5684 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
5685                                                 Constant *RHSC) {
5686   if (!isa<ConstantFP>(RHSC)) return nullptr;
5687   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5688 
5689   // Get the width of the mantissa.  We don't want to hack on conversions that
5690   // might lose information from the integer, e.g. "i64 -> float"
5691   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
5692   if (MantissaWidth == -1) return nullptr;  // Unknown.
5693 
5694   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5695 
5696   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5697 
5698   if (I.isEquality()) {
5699     FCmpInst::Predicate P = I.getPredicate();
5700     bool IsExact = false;
5701     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
5702     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
5703 
5704     // If the floating point constant isn't an integer value, we know if we will
5705     // ever compare equal / not equal to it.
5706     if (!IsExact) {
5707       // TODO: Can never be -0.0 and other non-representable values
5708       APFloat RHSRoundInt(RHS);
5709       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
5710       if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
5711         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
5712           return replaceInstUsesWith(I, Builder.getFalse());
5713 
5714         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
5715         return replaceInstUsesWith(I, Builder.getTrue());
5716       }
5717     }
5718 
5719     // TODO: If the constant is exactly representable, is it always OK to do
5720     // equality compares as integer?
5721   }
5722 
5723   // Check to see that the input is converted from an integer type that is small
5724   // enough that preserves all bits.  TODO: check here for "known" sign bits.
5725   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5726   unsigned InputSize = IntTy->getScalarSizeInBits();
5727 
5728   // Following test does NOT adjust InputSize downwards for signed inputs,
5729   // because the most negative value still requires all the mantissa bits
5730   // to distinguish it from one less than that value.
5731   if ((int)InputSize > MantissaWidth) {
5732     // Conversion would lose accuracy. Check if loss can impact comparison.
5733     int Exp = ilogb(RHS);
5734     if (Exp == APFloat::IEK_Inf) {
5735       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
5736       if (MaxExponent < (int)InputSize - !LHSUnsigned)
5737         // Conversion could create infinity.
5738         return nullptr;
5739     } else {
5740       // Note that if RHS is zero or NaN, then Exp is negative
5741       // and first condition is trivially false.
5742       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
5743         // Conversion could affect comparison.
5744         return nullptr;
5745     }
5746   }
5747 
5748   // Otherwise, we can potentially simplify the comparison.  We know that it
5749   // will always come through as an integer value and we know the constant is
5750   // not a NAN (it would have been previously simplified).
5751   assert(!RHS.isNaN() && "NaN comparison not already folded!");
5752 
5753   ICmpInst::Predicate Pred;
5754   switch (I.getPredicate()) {
5755   default: llvm_unreachable("Unexpected predicate!");
5756   case FCmpInst::FCMP_UEQ:
5757   case FCmpInst::FCMP_OEQ:
5758     Pred = ICmpInst::ICMP_EQ;
5759     break;
5760   case FCmpInst::FCMP_UGT:
5761   case FCmpInst::FCMP_OGT:
5762     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5763     break;
5764   case FCmpInst::FCMP_UGE:
5765   case FCmpInst::FCMP_OGE:
5766     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5767     break;
5768   case FCmpInst::FCMP_ULT:
5769   case FCmpInst::FCMP_OLT:
5770     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5771     break;
5772   case FCmpInst::FCMP_ULE:
5773   case FCmpInst::FCMP_OLE:
5774     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5775     break;
5776   case FCmpInst::FCMP_UNE:
5777   case FCmpInst::FCMP_ONE:
5778     Pred = ICmpInst::ICMP_NE;
5779     break;
5780   case FCmpInst::FCMP_ORD:
5781     return replaceInstUsesWith(I, Builder.getTrue());
5782   case FCmpInst::FCMP_UNO:
5783     return replaceInstUsesWith(I, Builder.getFalse());
5784   }
5785 
5786   // Now we know that the APFloat is a normal number, zero or inf.
5787 
5788   // See if the FP constant is too large for the integer.  For example,
5789   // comparing an i8 to 300.0.
5790   unsigned IntWidth = IntTy->getScalarSizeInBits();
5791 
5792   if (!LHSUnsigned) {
5793     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
5794     // and large values.
5795     APFloat SMax(RHS.getSemantics());
5796     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5797                           APFloat::rmNearestTiesToEven);
5798     if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
5799       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
5800           Pred == ICmpInst::ICMP_SLE)
5801         return replaceInstUsesWith(I, Builder.getTrue());
5802       return replaceInstUsesWith(I, Builder.getFalse());
5803     }
5804   } else {
5805     // If the RHS value is > UnsignedMax, fold the comparison. This handles
5806     // +INF and large values.
5807     APFloat UMax(RHS.getSemantics());
5808     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5809                           APFloat::rmNearestTiesToEven);
5810     if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
5811       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
5812           Pred == ICmpInst::ICMP_ULE)
5813         return replaceInstUsesWith(I, Builder.getTrue());
5814       return replaceInstUsesWith(I, Builder.getFalse());
5815     }
5816   }
5817 
5818   if (!LHSUnsigned) {
5819     // See if the RHS value is < SignedMin.
5820     APFloat SMin(RHS.getSemantics());
5821     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5822                           APFloat::rmNearestTiesToEven);
5823     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
5824       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5825           Pred == ICmpInst::ICMP_SGE)
5826         return replaceInstUsesWith(I, Builder.getTrue());
5827       return replaceInstUsesWith(I, Builder.getFalse());
5828     }
5829   } else {
5830     // See if the RHS value is < UnsignedMin.
5831     APFloat SMin(RHS.getSemantics());
5832     SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
5833                           APFloat::rmNearestTiesToEven);
5834     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
5835       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
5836           Pred == ICmpInst::ICMP_UGE)
5837         return replaceInstUsesWith(I, Builder.getTrue());
5838       return replaceInstUsesWith(I, Builder.getFalse());
5839     }
5840   }
5841 
5842   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5843   // [0, UMAX], but it may still be fractional.  See if it is fractional by
5844   // casting the FP value to the integer value and back, checking for equality.
5845   // Don't do this for zero, because -0.0 is not fractional.
5846   Constant *RHSInt = LHSUnsigned
5847     ? ConstantExpr::getFPToUI(RHSC, IntTy)
5848     : ConstantExpr::getFPToSI(RHSC, IntTy);
5849   if (!RHS.isZero()) {
5850     bool Equal = LHSUnsigned
5851       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
5852       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
5853     if (!Equal) {
5854       // If we had a comparison against a fractional value, we have to adjust
5855       // the compare predicate and sometimes the value.  RHSC is rounded towards
5856       // zero at this point.
5857       switch (Pred) {
5858       default: llvm_unreachable("Unexpected integer comparison!");
5859       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
5860         return replaceInstUsesWith(I, Builder.getTrue());
5861       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
5862         return replaceInstUsesWith(I, Builder.getFalse());
5863       case ICmpInst::ICMP_ULE:
5864         // (float)int <= 4.4   --> int <= 4
5865         // (float)int <= -4.4  --> false
5866         if (RHS.isNegative())
5867           return replaceInstUsesWith(I, Builder.getFalse());
5868         break;
5869       case ICmpInst::ICMP_SLE:
5870         // (float)int <= 4.4   --> int <= 4
5871         // (float)int <= -4.4  --> int < -4
5872         if (RHS.isNegative())
5873           Pred = ICmpInst::ICMP_SLT;
5874         break;
5875       case ICmpInst::ICMP_ULT:
5876         // (float)int < -4.4   --> false
5877         // (float)int < 4.4    --> int <= 4
5878         if (RHS.isNegative())
5879           return replaceInstUsesWith(I, Builder.getFalse());
5880         Pred = ICmpInst::ICMP_ULE;
5881         break;
5882       case ICmpInst::ICMP_SLT:
5883         // (float)int < -4.4   --> int < -4
5884         // (float)int < 4.4    --> int <= 4
5885         if (!RHS.isNegative())
5886           Pred = ICmpInst::ICMP_SLE;
5887         break;
5888       case ICmpInst::ICMP_UGT:
5889         // (float)int > 4.4    --> int > 4
5890         // (float)int > -4.4   --> true
5891         if (RHS.isNegative())
5892           return replaceInstUsesWith(I, Builder.getTrue());
5893         break;
5894       case ICmpInst::ICMP_SGT:
5895         // (float)int > 4.4    --> int > 4
5896         // (float)int > -4.4   --> int >= -4
5897         if (RHS.isNegative())
5898           Pred = ICmpInst::ICMP_SGE;
5899         break;
5900       case ICmpInst::ICMP_UGE:
5901         // (float)int >= -4.4   --> true
5902         // (float)int >= 4.4    --> int > 4
5903         if (RHS.isNegative())
5904           return replaceInstUsesWith(I, Builder.getTrue());
5905         Pred = ICmpInst::ICMP_UGT;
5906         break;
5907       case ICmpInst::ICMP_SGE:
5908         // (float)int >= -4.4   --> int >= -4
5909         // (float)int >= 4.4    --> int > 4
5910         if (!RHS.isNegative())
5911           Pred = ICmpInst::ICMP_SGT;
5912         break;
5913       }
5914     }
5915   }
5916 
5917   // Lower this FP comparison into an appropriate integer version of the
5918   // comparison.
5919   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5920 }
5921 
5922 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
5923 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
5924                                               Constant *RHSC) {
5925   // When C is not 0.0 and infinities are not allowed:
5926   // (C / X) < 0.0 is a sign-bit test of X
5927   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
5928   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
5929   //
5930   // Proof:
5931   // Multiply (C / X) < 0.0 by X * X / C.
5932   // - X is non zero, if it is the flag 'ninf' is violated.
5933   // - C defines the sign of X * X * C. Thus it also defines whether to swap
5934   //   the predicate. C is also non zero by definition.
5935   //
5936   // Thus X * X / C is non zero and the transformation is valid. [qed]
5937 
5938   FCmpInst::Predicate Pred = I.getPredicate();
5939 
5940   // Check that predicates are valid.
5941   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
5942       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
5943     return nullptr;
5944 
5945   // Check that RHS operand is zero.
5946   if (!match(RHSC, m_AnyZeroFP()))
5947     return nullptr;
5948 
5949   // Check fastmath flags ('ninf').
5950   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
5951     return nullptr;
5952 
5953   // Check the properties of the dividend. It must not be zero to avoid a
5954   // division by zero (see Proof).
5955   const APFloat *C;
5956   if (!match(LHSI->getOperand(0), m_APFloat(C)))
5957     return nullptr;
5958 
5959   if (C->isZero())
5960     return nullptr;
5961 
5962   // Get swapped predicate if necessary.
5963   if (C->isNegative())
5964     Pred = I.getSwappedPredicate();
5965 
5966   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
5967 }
5968 
5969 /// Optimize fabs(X) compared with zero.
5970 static Instruction *foldFabsWithFcmpZero(FCmpInst &I) {
5971   Value *X;
5972   if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) ||
5973       !match(I.getOperand(1), m_PosZeroFP()))
5974     return nullptr;
5975 
5976   auto replacePredAndOp0 = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
5977     I->setPredicate(P);
5978     I->setOperand(0, X);
5979     return I;
5980   };
5981 
5982   switch (I.getPredicate()) {
5983   case FCmpInst::FCMP_UGE:
5984   case FCmpInst::FCMP_OLT:
5985     // fabs(X) >= 0.0 --> true
5986     // fabs(X) <  0.0 --> false
5987     llvm_unreachable("fcmp should have simplified");
5988 
5989   case FCmpInst::FCMP_OGT:
5990     // fabs(X) > 0.0 --> X != 0.0
5991     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
5992 
5993   case FCmpInst::FCMP_UGT:
5994     // fabs(X) u> 0.0 --> X u!= 0.0
5995     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
5996 
5997   case FCmpInst::FCMP_OLE:
5998     // fabs(X) <= 0.0 --> X == 0.0
5999     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
6000 
6001   case FCmpInst::FCMP_ULE:
6002     // fabs(X) u<= 0.0 --> X u== 0.0
6003     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
6004 
6005   case FCmpInst::FCMP_OGE:
6006     // fabs(X) >= 0.0 --> !isnan(X)
6007     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6008     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
6009 
6010   case FCmpInst::FCMP_ULT:
6011     // fabs(X) u< 0.0 --> isnan(X)
6012     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6013     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
6014 
6015   case FCmpInst::FCMP_OEQ:
6016   case FCmpInst::FCMP_UEQ:
6017   case FCmpInst::FCMP_ONE:
6018   case FCmpInst::FCMP_UNE:
6019   case FCmpInst::FCMP_ORD:
6020   case FCmpInst::FCMP_UNO:
6021     // Look through the fabs() because it doesn't change anything but the sign.
6022     // fabs(X) == 0.0 --> X == 0.0,
6023     // fabs(X) != 0.0 --> X != 0.0
6024     // isnan(fabs(X)) --> isnan(X)
6025     // !isnan(fabs(X) --> !isnan(X)
6026     return replacePredAndOp0(&I, I.getPredicate(), X);
6027 
6028   default:
6029     return nullptr;
6030   }
6031 }
6032 
6033 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
6034   bool Changed = false;
6035 
6036   /// Orders the operands of the compare so that they are listed from most
6037   /// complex to least complex.  This puts constants before unary operators,
6038   /// before binary operators.
6039   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6040     I.swapOperands();
6041     Changed = true;
6042   }
6043 
6044   const CmpInst::Predicate Pred = I.getPredicate();
6045   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6046   if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6047                                   SQ.getWithInstruction(&I)))
6048     return replaceInstUsesWith(I, V);
6049 
6050   // Simplify 'fcmp pred X, X'
6051   Type *OpType = Op0->getType();
6052   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6053   if (Op0 == Op1) {
6054     switch (Pred) {
6055       default: break;
6056     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
6057     case FCmpInst::FCMP_ULT:    // True if unordered or less than
6058     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
6059     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
6060       // Canonicalize these to be 'fcmp uno %X, 0.0'.
6061       I.setPredicate(FCmpInst::FCMP_UNO);
6062       I.setOperand(1, Constant::getNullValue(OpType));
6063       return &I;
6064 
6065     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
6066     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
6067     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
6068     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
6069       // Canonicalize these to be 'fcmp ord %X, 0.0'.
6070       I.setPredicate(FCmpInst::FCMP_ORD);
6071       I.setOperand(1, Constant::getNullValue(OpType));
6072       return &I;
6073     }
6074   }
6075 
6076   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6077   // then canonicalize the operand to 0.0.
6078   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6079     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) {
6080       I.setOperand(0, ConstantFP::getNullValue(OpType));
6081       return &I;
6082     }
6083     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) {
6084       I.setOperand(1, ConstantFP::getNullValue(OpType));
6085       return &I;
6086     }
6087   }
6088 
6089   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6090   Value *X, *Y;
6091   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6092     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6093 
6094   // Test if the FCmpInst instruction is used exclusively by a select as
6095   // part of a minimum or maximum operation. If so, refrain from doing
6096   // any other folding. This helps out other analyses which understand
6097   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6098   // and CodeGen. And in this case, at least one of the comparison
6099   // operands has at least one user besides the compare (the select),
6100   // which would often largely negate the benefit of folding anyway.
6101   if (I.hasOneUse())
6102     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6103       Value *A, *B;
6104       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6105       if (SPR.Flavor != SPF_UNKNOWN)
6106         return nullptr;
6107     }
6108 
6109   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6110   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6111   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) {
6112     I.setOperand(1, ConstantFP::getNullValue(OpType));
6113     return &I;
6114   }
6115 
6116   // Handle fcmp with instruction LHS and constant RHS.
6117   Instruction *LHSI;
6118   Constant *RHSC;
6119   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6120     switch (LHSI->getOpcode()) {
6121     case Instruction::PHI:
6122       // Only fold fcmp into the PHI if the phi and fcmp are in the same
6123       // block.  If in the same block, we're encouraging jump threading.  If
6124       // not, we are just pessimizing the code by making an i1 phi.
6125       if (LHSI->getParent() == I.getParent())
6126         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6127           return NV;
6128       break;
6129     case Instruction::SIToFP:
6130     case Instruction::UIToFP:
6131       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6132         return NV;
6133       break;
6134     case Instruction::FDiv:
6135       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6136         return NV;
6137       break;
6138     case Instruction::Load:
6139       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6140         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6141           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
6142               !cast<LoadInst>(LHSI)->isVolatile())
6143             if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
6144               return Res;
6145       break;
6146   }
6147   }
6148 
6149   if (Instruction *R = foldFabsWithFcmpZero(I))
6150     return R;
6151 
6152   if (match(Op0, m_FNeg(m_Value(X)))) {
6153     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6154     Constant *C;
6155     if (match(Op1, m_Constant(C))) {
6156       Constant *NegC = ConstantExpr::getFNeg(C);
6157       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6158     }
6159   }
6160 
6161   if (match(Op0, m_FPExt(m_Value(X)))) {
6162     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6163     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6164       return new FCmpInst(Pred, X, Y, "", &I);
6165 
6166     // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6167     const APFloat *C;
6168     if (match(Op1, m_APFloat(C))) {
6169       const fltSemantics &FPSem =
6170           X->getType()->getScalarType()->getFltSemantics();
6171       bool Lossy;
6172       APFloat TruncC = *C;
6173       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6174 
6175       // Avoid lossy conversions and denormals.
6176       // Zero is a special case that's OK to convert.
6177       APFloat Fabs = TruncC;
6178       Fabs.clearSign();
6179       if (!Lossy &&
6180           ((Fabs.compare(APFloat::getSmallestNormalized(FPSem)) !=
6181             APFloat::cmpLessThan) || Fabs.isZero())) {
6182         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6183         return new FCmpInst(Pred, X, NewC, "", &I);
6184       }
6185     }
6186   }
6187 
6188   if (I.getType()->isVectorTy())
6189     if (Instruction *Res = foldVectorCmp(I, Builder))
6190       return Res;
6191 
6192   return Changed ? &I : nullptr;
6193 }
6194