1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/CmpInstAnalysis.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/KnownBits.h"
26 #include "llvm/Transforms/InstCombine/InstCombiner.h"
27 
28 using namespace llvm;
29 using namespace PatternMatch;
30 
31 #define DEBUG_TYPE "instcombine"
32 
33 // How many times is a select replaced by one of its operands?
34 STATISTIC(NumSel, "Number of select opts");
35 
36 
37 /// Compute Result = In1+In2, returning true if the result overflowed for this
38 /// type.
39 static bool addWithOverflow(APInt &Result, const APInt &In1,
40                             const APInt &In2, bool IsSigned = false) {
41   bool Overflow;
42   if (IsSigned)
43     Result = In1.sadd_ov(In2, Overflow);
44   else
45     Result = In1.uadd_ov(In2, Overflow);
46 
47   return Overflow;
48 }
49 
50 /// Compute Result = In1-In2, returning true if the result overflowed for this
51 /// type.
52 static bool subWithOverflow(APInt &Result, const APInt &In1,
53                             const APInt &In2, bool IsSigned = false) {
54   bool Overflow;
55   if (IsSigned)
56     Result = In1.ssub_ov(In2, Overflow);
57   else
58     Result = In1.usub_ov(In2, Overflow);
59 
60   return Overflow;
61 }
62 
63 /// Given an icmp instruction, return true if any use of this comparison is a
64 /// branch on sign bit comparison.
65 static bool hasBranchUse(ICmpInst &I) {
66   for (auto *U : I.users())
67     if (isa<BranchInst>(U))
68       return true;
69   return false;
70 }
71 
72 /// Returns true if the exploded icmp can be expressed as a signed comparison
73 /// to zero and updates the predicate accordingly.
74 /// The signedness of the comparison is preserved.
75 /// TODO: Refactor with decomposeBitTestICmp()?
76 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
77   if (!ICmpInst::isSigned(Pred))
78     return false;
79 
80   if (C.isZero())
81     return ICmpInst::isRelational(Pred);
82 
83   if (C.isOne()) {
84     if (Pred == ICmpInst::ICMP_SLT) {
85       Pred = ICmpInst::ICMP_SLE;
86       return true;
87     }
88   } else if (C.isAllOnes()) {
89     if (Pred == ICmpInst::ICMP_SGT) {
90       Pred = ICmpInst::ICMP_SGE;
91       return true;
92     }
93   }
94 
95   return false;
96 }
97 
98 /// This is called when we see this pattern:
99 ///   cmp pred (load (gep GV, ...)), cmpcst
100 /// where GV is a global variable with a constant initializer. Try to simplify
101 /// this into some simple computation that does not need the load. For example
102 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
103 ///
104 /// If AndCst is non-null, then the loaded value is masked with that constant
105 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
106 Instruction *InstCombinerImpl::foldCmpLoadFromIndexedGlobal(
107     LoadInst *LI, GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI,
108     ConstantInt *AndCst) {
109   if (LI->isVolatile() || LI->getType() != GEP->getResultElementType() ||
110       GV->getValueType() != GEP->getSourceElementType() ||
111       !GV->isConstant() || !GV->hasDefinitiveInitializer())
112     return nullptr;
113 
114   Constant *Init = GV->getInitializer();
115   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
116     return nullptr;
117 
118   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
119   // Don't blow up on huge arrays.
120   if (ArrayElementCount > MaxArraySizeForCombine)
121     return nullptr;
122 
123   // There are many forms of this optimization we can handle, for now, just do
124   // the simple index into a single-dimensional array.
125   //
126   // Require: GEP GV, 0, i {{, constant indices}}
127   if (GEP->getNumOperands() < 3 ||
128       !isa<ConstantInt>(GEP->getOperand(1)) ||
129       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
130       isa<Constant>(GEP->getOperand(2)))
131     return nullptr;
132 
133   // Check that indices after the variable are constants and in-range for the
134   // type they index.  Collect the indices.  This is typically for arrays of
135   // structs.
136   SmallVector<unsigned, 4> LaterIndices;
137 
138   Type *EltTy = Init->getType()->getArrayElementType();
139   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
140     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
141     if (!Idx) return nullptr;  // Variable index.
142 
143     uint64_t IdxVal = Idx->getZExtValue();
144     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
145 
146     if (StructType *STy = dyn_cast<StructType>(EltTy))
147       EltTy = STy->getElementType(IdxVal);
148     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
149       if (IdxVal >= ATy->getNumElements()) return nullptr;
150       EltTy = ATy->getElementType();
151     } else {
152       return nullptr; // Unknown type.
153     }
154 
155     LaterIndices.push_back(IdxVal);
156   }
157 
158   enum { Overdefined = -3, Undefined = -2 };
159 
160   // Variables for our state machines.
161 
162   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
163   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
164   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
165   // undefined, otherwise set to the first true element.  SecondTrueElement is
166   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
167   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
168 
169   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
170   // form "i != 47 & i != 87".  Same state transitions as for true elements.
171   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
172 
173   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
174   /// define a state machine that triggers for ranges of values that the index
175   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
176   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
177   /// index in the range (inclusive).  We use -2 for undefined here because we
178   /// use relative comparisons and don't want 0-1 to match -1.
179   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
180 
181   // MagicBitvector - This is a magic bitvector where we set a bit if the
182   // comparison is true for element 'i'.  If there are 64 elements or less in
183   // the array, this will fully represent all the comparison results.
184   uint64_t MagicBitvector = 0;
185 
186   // Scan the array and see if one of our patterns matches.
187   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
188   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
189     Constant *Elt = Init->getAggregateElement(i);
190     if (!Elt) return nullptr;
191 
192     // If this is indexing an array of structures, get the structure element.
193     if (!LaterIndices.empty()) {
194       Elt = ConstantFoldExtractValueInstruction(Elt, LaterIndices);
195       if (!Elt)
196         return nullptr;
197     }
198 
199     // If the element is masked, handle it.
200     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
201 
202     // Find out if the comparison would be true or false for the i'th element.
203     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
204                                                   CompareRHS, DL, &TLI);
205     // If the result is undef for this element, ignore it.
206     if (isa<UndefValue>(C)) {
207       // Extend range state machines to cover this element in case there is an
208       // undef in the middle of the range.
209       if (TrueRangeEnd == (int)i-1)
210         TrueRangeEnd = i;
211       if (FalseRangeEnd == (int)i-1)
212         FalseRangeEnd = i;
213       continue;
214     }
215 
216     // If we can't compute the result for any of the elements, we have to give
217     // up evaluating the entire conditional.
218     if (!isa<ConstantInt>(C)) return nullptr;
219 
220     // Otherwise, we know if the comparison is true or false for this element,
221     // update our state machines.
222     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
223 
224     // State machine for single/double/range index comparison.
225     if (IsTrueForElt) {
226       // Update the TrueElement state machine.
227       if (FirstTrueElement == Undefined)
228         FirstTrueElement = TrueRangeEnd = i;  // First true element.
229       else {
230         // Update double-compare state machine.
231         if (SecondTrueElement == Undefined)
232           SecondTrueElement = i;
233         else
234           SecondTrueElement = Overdefined;
235 
236         // Update range state machine.
237         if (TrueRangeEnd == (int)i-1)
238           TrueRangeEnd = i;
239         else
240           TrueRangeEnd = Overdefined;
241       }
242     } else {
243       // Update the FalseElement state machine.
244       if (FirstFalseElement == Undefined)
245         FirstFalseElement = FalseRangeEnd = i; // First false element.
246       else {
247         // Update double-compare state machine.
248         if (SecondFalseElement == Undefined)
249           SecondFalseElement = i;
250         else
251           SecondFalseElement = Overdefined;
252 
253         // Update range state machine.
254         if (FalseRangeEnd == (int)i-1)
255           FalseRangeEnd = i;
256         else
257           FalseRangeEnd = Overdefined;
258       }
259     }
260 
261     // If this element is in range, update our magic bitvector.
262     if (i < 64 && IsTrueForElt)
263       MagicBitvector |= 1ULL << i;
264 
265     // If all of our states become overdefined, bail out early.  Since the
266     // predicate is expensive, only check it every 8 elements.  This is only
267     // really useful for really huge arrays.
268     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
269         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
270         FalseRangeEnd == Overdefined)
271       return nullptr;
272   }
273 
274   // Now that we've scanned the entire array, emit our new comparison(s).  We
275   // order the state machines in complexity of the generated code.
276   Value *Idx = GEP->getOperand(2);
277 
278   // If the index is larger than the pointer size of the target, truncate the
279   // index down like the GEP would do implicitly.  We don't have to do this for
280   // an inbounds GEP because the index can't be out of range.
281   if (!GEP->isInBounds()) {
282     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
283     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
284     if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize)
285       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
286   }
287 
288   // If inbounds keyword is not present, Idx * ElementSize can overflow.
289   // Let's assume that ElementSize is 2 and the wanted value is at offset 0.
290   // Then, there are two possible values for Idx to match offset 0:
291   // 0x00..00, 0x80..00.
292   // Emitting 'icmp eq Idx, 0' isn't correct in this case because the
293   // comparison is false if Idx was 0x80..00.
294   // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx.
295   unsigned ElementSize =
296       DL.getTypeAllocSize(Init->getType()->getArrayElementType());
297   auto MaskIdx = [&](Value* Idx){
298     if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) {
299       Value *Mask = ConstantInt::get(Idx->getType(), -1);
300       Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize));
301       Idx = Builder.CreateAnd(Idx, Mask);
302     }
303     return Idx;
304   };
305 
306   // If the comparison is only true for one or two elements, emit direct
307   // comparisons.
308   if (SecondTrueElement != Overdefined) {
309     Idx = MaskIdx(Idx);
310     // None true -> false.
311     if (FirstTrueElement == Undefined)
312       return replaceInstUsesWith(ICI, Builder.getFalse());
313 
314     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
315 
316     // True for one element -> 'i == 47'.
317     if (SecondTrueElement == Undefined)
318       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
319 
320     // True for two elements -> 'i == 47 | i == 72'.
321     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
322     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
323     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
324     return BinaryOperator::CreateOr(C1, C2);
325   }
326 
327   // If the comparison is only false for one or two elements, emit direct
328   // comparisons.
329   if (SecondFalseElement != Overdefined) {
330     Idx = MaskIdx(Idx);
331     // None false -> true.
332     if (FirstFalseElement == Undefined)
333       return replaceInstUsesWith(ICI, Builder.getTrue());
334 
335     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
336 
337     // False for one element -> 'i != 47'.
338     if (SecondFalseElement == Undefined)
339       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
340 
341     // False for two elements -> 'i != 47 & i != 72'.
342     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
343     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
344     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
345     return BinaryOperator::CreateAnd(C1, C2);
346   }
347 
348   // If the comparison can be replaced with a range comparison for the elements
349   // where it is true, emit the range check.
350   if (TrueRangeEnd != Overdefined) {
351     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
352     Idx = MaskIdx(Idx);
353 
354     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
355     if (FirstTrueElement) {
356       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
357       Idx = Builder.CreateAdd(Idx, Offs);
358     }
359 
360     Value *End = ConstantInt::get(Idx->getType(),
361                                   TrueRangeEnd-FirstTrueElement+1);
362     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
363   }
364 
365   // False range check.
366   if (FalseRangeEnd != Overdefined) {
367     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
368     Idx = MaskIdx(Idx);
369     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
370     if (FirstFalseElement) {
371       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
372       Idx = Builder.CreateAdd(Idx, Offs);
373     }
374 
375     Value *End = ConstantInt::get(Idx->getType(),
376                                   FalseRangeEnd-FirstFalseElement);
377     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
378   }
379 
380   // If a magic bitvector captures the entire comparison state
381   // of this load, replace it with computation that does:
382   //   ((magic_cst >> i) & 1) != 0
383   {
384     Type *Ty = nullptr;
385 
386     // Look for an appropriate type:
387     // - The type of Idx if the magic fits
388     // - The smallest fitting legal type
389     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
390       Ty = Idx->getType();
391     else
392       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
393 
394     if (Ty) {
395       Idx = MaskIdx(Idx);
396       Value *V = Builder.CreateIntCast(Idx, Ty, false);
397       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
398       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
399       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
400     }
401   }
402 
403   return nullptr;
404 }
405 
406 /// Return a value that can be used to compare the *offset* implied by a GEP to
407 /// zero. For example, if we have &A[i], we want to return 'i' for
408 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
409 /// are involved. The above expression would also be legal to codegen as
410 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
411 /// This latter form is less amenable to optimization though, and we are allowed
412 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
413 ///
414 /// If we can't emit an optimized form for this expression, this returns null.
415 ///
416 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC,
417                                           const DataLayout &DL) {
418   gep_type_iterator GTI = gep_type_begin(GEP);
419 
420   // Check to see if this gep only has a single variable index.  If so, and if
421   // any constant indices are a multiple of its scale, then we can compute this
422   // in terms of the scale of the variable index.  For example, if the GEP
423   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
424   // because the expression will cross zero at the same point.
425   unsigned i, e = GEP->getNumOperands();
426   int64_t Offset = 0;
427   for (i = 1; i != e; ++i, ++GTI) {
428     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
429       // Compute the aggregate offset of constant indices.
430       if (CI->isZero()) continue;
431 
432       // Handle a struct index, which adds its field offset to the pointer.
433       if (StructType *STy = GTI.getStructTypeOrNull()) {
434         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
435       } else {
436         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
437         Offset += Size*CI->getSExtValue();
438       }
439     } else {
440       // Found our variable index.
441       break;
442     }
443   }
444 
445   // If there are no variable indices, we must have a constant offset, just
446   // evaluate it the general way.
447   if (i == e) return nullptr;
448 
449   Value *VariableIdx = GEP->getOperand(i);
450   // Determine the scale factor of the variable element.  For example, this is
451   // 4 if the variable index is into an array of i32.
452   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
453 
454   // Verify that there are no other variable indices.  If so, emit the hard way.
455   for (++i, ++GTI; i != e; ++i, ++GTI) {
456     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
457     if (!CI) return nullptr;
458 
459     // Compute the aggregate offset of constant indices.
460     if (CI->isZero()) continue;
461 
462     // Handle a struct index, which adds its field offset to the pointer.
463     if (StructType *STy = GTI.getStructTypeOrNull()) {
464       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
465     } else {
466       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
467       Offset += Size*CI->getSExtValue();
468     }
469   }
470 
471   // Okay, we know we have a single variable index, which must be a
472   // pointer/array/vector index.  If there is no offset, life is simple, return
473   // the index.
474   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
475   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
476   if (Offset == 0) {
477     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
478     // we don't need to bother extending: the extension won't affect where the
479     // computation crosses zero.
480     if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() >
481         IntPtrWidth) {
482       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
483     }
484     return VariableIdx;
485   }
486 
487   // Otherwise, there is an index.  The computation we will do will be modulo
488   // the pointer size.
489   Offset = SignExtend64(Offset, IntPtrWidth);
490   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
491 
492   // To do this transformation, any constant index must be a multiple of the
493   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
494   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
495   // multiple of the variable scale.
496   int64_t NewOffs = Offset / (int64_t)VariableScale;
497   if (Offset != NewOffs*(int64_t)VariableScale)
498     return nullptr;
499 
500   // Okay, we can do this evaluation.  Start by converting the index to intptr.
501   if (VariableIdx->getType() != IntPtrTy)
502     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
503                                             true /*Signed*/);
504   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
505   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
506 }
507 
508 /// Returns true if we can rewrite Start as a GEP with pointer Base
509 /// and some integer offset. The nodes that need to be re-written
510 /// for this transformation will be added to Explored.
511 static bool canRewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base,
512                                   const DataLayout &DL,
513                                   SetVector<Value *> &Explored) {
514   SmallVector<Value *, 16> WorkList(1, Start);
515   Explored.insert(Base);
516 
517   // The following traversal gives us an order which can be used
518   // when doing the final transformation. Since in the final
519   // transformation we create the PHI replacement instructions first,
520   // we don't have to get them in any particular order.
521   //
522   // However, for other instructions we will have to traverse the
523   // operands of an instruction first, which means that we have to
524   // do a post-order traversal.
525   while (!WorkList.empty()) {
526     SetVector<PHINode *> PHIs;
527 
528     while (!WorkList.empty()) {
529       if (Explored.size() >= 100)
530         return false;
531 
532       Value *V = WorkList.back();
533 
534       if (Explored.contains(V)) {
535         WorkList.pop_back();
536         continue;
537       }
538 
539       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
540           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
541         // We've found some value that we can't explore which is different from
542         // the base. Therefore we can't do this transformation.
543         return false;
544 
545       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
546         auto *CI = cast<CastInst>(V);
547         if (!CI->isNoopCast(DL))
548           return false;
549 
550         if (!Explored.contains(CI->getOperand(0)))
551           WorkList.push_back(CI->getOperand(0));
552       }
553 
554       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
555         // We're limiting the GEP to having one index. This will preserve
556         // the original pointer type. We could handle more cases in the
557         // future.
558         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
559             GEP->getSourceElementType() != ElemTy)
560           return false;
561 
562         if (!Explored.contains(GEP->getOperand(0)))
563           WorkList.push_back(GEP->getOperand(0));
564       }
565 
566       if (WorkList.back() == V) {
567         WorkList.pop_back();
568         // We've finished visiting this node, mark it as such.
569         Explored.insert(V);
570       }
571 
572       if (auto *PN = dyn_cast<PHINode>(V)) {
573         // We cannot transform PHIs on unsplittable basic blocks.
574         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
575           return false;
576         Explored.insert(PN);
577         PHIs.insert(PN);
578       }
579     }
580 
581     // Explore the PHI nodes further.
582     for (auto *PN : PHIs)
583       for (Value *Op : PN->incoming_values())
584         if (!Explored.contains(Op))
585           WorkList.push_back(Op);
586   }
587 
588   // Make sure that we can do this. Since we can't insert GEPs in a basic
589   // block before a PHI node, we can't easily do this transformation if
590   // we have PHI node users of transformed instructions.
591   for (Value *Val : Explored) {
592     for (Value *Use : Val->uses()) {
593 
594       auto *PHI = dyn_cast<PHINode>(Use);
595       auto *Inst = dyn_cast<Instruction>(Val);
596 
597       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
598           !Explored.contains(PHI))
599         continue;
600 
601       if (PHI->getParent() == Inst->getParent())
602         return false;
603     }
604   }
605   return true;
606 }
607 
608 // Sets the appropriate insert point on Builder where we can add
609 // a replacement Instruction for V (if that is possible).
610 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
611                               bool Before = true) {
612   if (auto *PHI = dyn_cast<PHINode>(V)) {
613     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
614     return;
615   }
616   if (auto *I = dyn_cast<Instruction>(V)) {
617     if (!Before)
618       I = &*std::next(I->getIterator());
619     Builder.SetInsertPoint(I);
620     return;
621   }
622   if (auto *A = dyn_cast<Argument>(V)) {
623     // Set the insertion point in the entry block.
624     BasicBlock &Entry = A->getParent()->getEntryBlock();
625     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
626     return;
627   }
628   // Otherwise, this is a constant and we don't need to set a new
629   // insertion point.
630   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
631 }
632 
633 /// Returns a re-written value of Start as an indexed GEP using Base as a
634 /// pointer.
635 static Value *rewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base,
636                                  const DataLayout &DL,
637                                  SetVector<Value *> &Explored) {
638   // Perform all the substitutions. This is a bit tricky because we can
639   // have cycles in our use-def chains.
640   // 1. Create the PHI nodes without any incoming values.
641   // 2. Create all the other values.
642   // 3. Add the edges for the PHI nodes.
643   // 4. Emit GEPs to get the original pointers.
644   // 5. Remove the original instructions.
645   Type *IndexType = IntegerType::get(
646       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
647 
648   DenseMap<Value *, Value *> NewInsts;
649   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
650 
651   // Create the new PHI nodes, without adding any incoming values.
652   for (Value *Val : Explored) {
653     if (Val == Base)
654       continue;
655     // Create empty phi nodes. This avoids cyclic dependencies when creating
656     // the remaining instructions.
657     if (auto *PHI = dyn_cast<PHINode>(Val))
658       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
659                                       PHI->getName() + ".idx", PHI);
660   }
661   IRBuilder<> Builder(Base->getContext());
662 
663   // Create all the other instructions.
664   for (Value *Val : Explored) {
665 
666     if (NewInsts.find(Val) != NewInsts.end())
667       continue;
668 
669     if (auto *CI = dyn_cast<CastInst>(Val)) {
670       // Don't get rid of the intermediate variable here; the store can grow
671       // the map which will invalidate the reference to the input value.
672       Value *V = NewInsts[CI->getOperand(0)];
673       NewInsts[CI] = V;
674       continue;
675     }
676     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
677       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
678                                                   : GEP->getOperand(1);
679       setInsertionPoint(Builder, GEP);
680       // Indices might need to be sign extended. GEPs will magically do
681       // this, but we need to do it ourselves here.
682       if (Index->getType()->getScalarSizeInBits() !=
683           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
684         Index = Builder.CreateSExtOrTrunc(
685             Index, NewInsts[GEP->getOperand(0)]->getType(),
686             GEP->getOperand(0)->getName() + ".sext");
687       }
688 
689       auto *Op = NewInsts[GEP->getOperand(0)];
690       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
691         NewInsts[GEP] = Index;
692       else
693         NewInsts[GEP] = Builder.CreateNSWAdd(
694             Op, Index, GEP->getOperand(0)->getName() + ".add");
695       continue;
696     }
697     if (isa<PHINode>(Val))
698       continue;
699 
700     llvm_unreachable("Unexpected instruction type");
701   }
702 
703   // Add the incoming values to the PHI nodes.
704   for (Value *Val : Explored) {
705     if (Val == Base)
706       continue;
707     // All the instructions have been created, we can now add edges to the
708     // phi nodes.
709     if (auto *PHI = dyn_cast<PHINode>(Val)) {
710       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
711       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
712         Value *NewIncoming = PHI->getIncomingValue(I);
713 
714         if (NewInsts.find(NewIncoming) != NewInsts.end())
715           NewIncoming = NewInsts[NewIncoming];
716 
717         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
718       }
719     }
720   }
721 
722   PointerType *PtrTy =
723       ElemTy->getPointerTo(Start->getType()->getPointerAddressSpace());
724   for (Value *Val : Explored) {
725     if (Val == Base)
726       continue;
727 
728     // Depending on the type, for external users we have to emit
729     // a GEP or a GEP + ptrtoint.
730     setInsertionPoint(Builder, Val, false);
731 
732     // Cast base to the expected type.
733     Value *NewVal = Builder.CreateBitOrPointerCast(
734         Base, PtrTy, Start->getName() + "to.ptr");
735     NewVal = Builder.CreateInBoundsGEP(
736         ElemTy, NewVal, makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
737     NewVal = Builder.CreateBitOrPointerCast(
738         NewVal, Val->getType(), Val->getName() + ".conv");
739     Val->replaceAllUsesWith(NewVal);
740   }
741 
742   return NewInsts[Start];
743 }
744 
745 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
746 /// the input Value as a constant indexed GEP. Returns a pair containing
747 /// the GEPs Pointer and Index.
748 static std::pair<Value *, Value *>
749 getAsConstantIndexedAddress(Type *ElemTy, Value *V, const DataLayout &DL) {
750   Type *IndexType = IntegerType::get(V->getContext(),
751                                      DL.getIndexTypeSizeInBits(V->getType()));
752 
753   Constant *Index = ConstantInt::getNullValue(IndexType);
754   while (true) {
755     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
756       // We accept only inbouds GEPs here to exclude the possibility of
757       // overflow.
758       if (!GEP->isInBounds())
759         break;
760       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
761           GEP->getSourceElementType() == ElemTy) {
762         V = GEP->getOperand(0);
763         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
764         Index = ConstantExpr::getAdd(
765             Index, ConstantExpr::getSExtOrTrunc(GEPIndex, IndexType));
766         continue;
767       }
768       break;
769     }
770     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
771       if (!CI->isNoopCast(DL))
772         break;
773       V = CI->getOperand(0);
774       continue;
775     }
776     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
777       if (!CI->isNoopCast(DL))
778         break;
779       V = CI->getOperand(0);
780       continue;
781     }
782     break;
783   }
784   return {V, Index};
785 }
786 
787 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
788 /// We can look through PHIs, GEPs and casts in order to determine a common base
789 /// between GEPLHS and RHS.
790 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
791                                               ICmpInst::Predicate Cond,
792                                               const DataLayout &DL) {
793   // FIXME: Support vector of pointers.
794   if (GEPLHS->getType()->isVectorTy())
795     return nullptr;
796 
797   if (!GEPLHS->hasAllConstantIndices())
798     return nullptr;
799 
800   Type *ElemTy = GEPLHS->getSourceElementType();
801   Value *PtrBase, *Index;
802   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(ElemTy, GEPLHS, DL);
803 
804   // The set of nodes that will take part in this transformation.
805   SetVector<Value *> Nodes;
806 
807   if (!canRewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes))
808     return nullptr;
809 
810   // We know we can re-write this as
811   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
812   // Since we've only looked through inbouds GEPs we know that we
813   // can't have overflow on either side. We can therefore re-write
814   // this as:
815   //   OFFSET1 cmp OFFSET2
816   Value *NewRHS = rewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes);
817 
818   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
819   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
820   // offset. Since Index is the offset of LHS to the base pointer, we will now
821   // compare the offsets instead of comparing the pointers.
822   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
823 }
824 
825 /// Fold comparisons between a GEP instruction and something else. At this point
826 /// we know that the GEP is on the LHS of the comparison.
827 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
828                                            ICmpInst::Predicate Cond,
829                                            Instruction &I) {
830   // Don't transform signed compares of GEPs into index compares. Even if the
831   // GEP is inbounds, the final add of the base pointer can have signed overflow
832   // and would change the result of the icmp.
833   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
834   // the maximum signed value for the pointer type.
835   if (ICmpInst::isSigned(Cond))
836     return nullptr;
837 
838   // Look through bitcasts and addrspacecasts. We do not however want to remove
839   // 0 GEPs.
840   if (!isa<GetElementPtrInst>(RHS))
841     RHS = RHS->stripPointerCasts();
842 
843   Value *PtrBase = GEPLHS->getOperand(0);
844   // FIXME: Support vector pointer GEPs.
845   if (PtrBase == RHS && GEPLHS->isInBounds() &&
846       !GEPLHS->getType()->isVectorTy()) {
847     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
848     // This transformation (ignoring the base and scales) is valid because we
849     // know pointers can't overflow since the gep is inbounds.  See if we can
850     // output an optimized form.
851     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
852 
853     // If not, synthesize the offset the hard way.
854     if (!Offset)
855       Offset = EmitGEPOffset(GEPLHS);
856     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
857                         Constant::getNullValue(Offset->getType()));
858   }
859 
860   if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
861       isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
862       !NullPointerIsDefined(I.getFunction(),
863                             RHS->getType()->getPointerAddressSpace())) {
864     // For most address spaces, an allocation can't be placed at null, but null
865     // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
866     // the only valid inbounds address derived from null, is null itself.
867     // Thus, we have four cases to consider:
868     // 1) Base == nullptr, Offset == 0 -> inbounds, null
869     // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
870     // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
871     // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
872     //
873     // (Note if we're indexing a type of size 0, that simply collapses into one
874     //  of the buckets above.)
875     //
876     // In general, we're allowed to make values less poison (i.e. remove
877     //   sources of full UB), so in this case, we just select between the two
878     //   non-poison cases (1 and 4 above).
879     //
880     // For vectors, we apply the same reasoning on a per-lane basis.
881     auto *Base = GEPLHS->getPointerOperand();
882     if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
883       auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount();
884       Base = Builder.CreateVectorSplat(EC, Base);
885     }
886     return new ICmpInst(Cond, Base,
887                         ConstantExpr::getPointerBitCastOrAddrSpaceCast(
888                             cast<Constant>(RHS), Base->getType()));
889   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
890     // If the base pointers are different, but the indices are the same, just
891     // compare the base pointer.
892     if (PtrBase != GEPRHS->getOperand(0)) {
893       bool IndicesTheSame =
894           GEPLHS->getNumOperands() == GEPRHS->getNumOperands() &&
895           GEPLHS->getPointerOperand()->getType() ==
896               GEPRHS->getPointerOperand()->getType() &&
897           GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType();
898       if (IndicesTheSame)
899         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
900           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
901             IndicesTheSame = false;
902             break;
903           }
904 
905       // If all indices are the same, just compare the base pointers.
906       Type *BaseType = GEPLHS->getOperand(0)->getType();
907       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
908         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
909 
910       // If we're comparing GEPs with two base pointers that only differ in type
911       // and both GEPs have only constant indices or just one use, then fold
912       // the compare with the adjusted indices.
913       // FIXME: Support vector of pointers.
914       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
915           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
916           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
917           PtrBase->stripPointerCasts() ==
918               GEPRHS->getOperand(0)->stripPointerCasts() &&
919           !GEPLHS->getType()->isVectorTy()) {
920         Value *LOffset = EmitGEPOffset(GEPLHS);
921         Value *ROffset = EmitGEPOffset(GEPRHS);
922 
923         // If we looked through an addrspacecast between different sized address
924         // spaces, the LHS and RHS pointers are different sized
925         // integers. Truncate to the smaller one.
926         Type *LHSIndexTy = LOffset->getType();
927         Type *RHSIndexTy = ROffset->getType();
928         if (LHSIndexTy != RHSIndexTy) {
929           if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() <
930               RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) {
931             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
932           } else
933             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
934         }
935 
936         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
937                                         LOffset, ROffset);
938         return replaceInstUsesWith(I, Cmp);
939       }
940 
941       // Otherwise, the base pointers are different and the indices are
942       // different. Try convert this to an indexed compare by looking through
943       // PHIs/casts.
944       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
945     }
946 
947     // If one of the GEPs has all zero indices, recurse.
948     // FIXME: Handle vector of pointers.
949     if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
950       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
951                          ICmpInst::getSwappedPredicate(Cond), I);
952 
953     // If the other GEP has all zero indices, recurse.
954     // FIXME: Handle vector of pointers.
955     if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
956       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
957 
958     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
959     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands() &&
960         GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType()) {
961       // If the GEPs only differ by one index, compare it.
962       unsigned NumDifferences = 0;  // Keep track of # differences.
963       unsigned DiffOperand = 0;     // The operand that differs.
964       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
965         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
966           Type *LHSType = GEPLHS->getOperand(i)->getType();
967           Type *RHSType = GEPRHS->getOperand(i)->getType();
968           // FIXME: Better support for vector of pointers.
969           if (LHSType->getPrimitiveSizeInBits() !=
970                    RHSType->getPrimitiveSizeInBits() ||
971               (GEPLHS->getType()->isVectorTy() &&
972                (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
973             // Irreconcilable differences.
974             NumDifferences = 2;
975             break;
976           }
977 
978           if (NumDifferences++) break;
979           DiffOperand = i;
980         }
981 
982       if (NumDifferences == 0)   // SAME GEP?
983         return replaceInstUsesWith(I, // No comparison is needed here.
984           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
985 
986       else if (NumDifferences == 1 && GEPsInBounds) {
987         Value *LHSV = GEPLHS->getOperand(DiffOperand);
988         Value *RHSV = GEPRHS->getOperand(DiffOperand);
989         // Make sure we do a signed comparison here.
990         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
991       }
992     }
993 
994     // Only lower this if the icmp is the only user of the GEP or if we expect
995     // the result to fold to a constant!
996     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
997         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
998       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
999       Value *L = EmitGEPOffset(GEPLHS);
1000       Value *R = EmitGEPOffset(GEPRHS);
1001       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
1002     }
1003   }
1004 
1005   // Try convert this to an indexed compare by looking through PHIs/casts as a
1006   // last resort.
1007   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1008 }
1009 
1010 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI,
1011                                              const AllocaInst *Alloca) {
1012   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1013 
1014   // It would be tempting to fold away comparisons between allocas and any
1015   // pointer not based on that alloca (e.g. an argument). However, even
1016   // though such pointers cannot alias, they can still compare equal.
1017   //
1018   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1019   // doesn't escape we can argue that it's impossible to guess its value, and we
1020   // can therefore act as if any such guesses are wrong.
1021   //
1022   // The code below checks that the alloca doesn't escape, and that it's only
1023   // used in a comparison once (the current instruction). The
1024   // single-comparison-use condition ensures that we're trivially folding all
1025   // comparisons against the alloca consistently, and avoids the risk of
1026   // erroneously folding a comparison of the pointer with itself.
1027 
1028   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1029 
1030   SmallVector<const Use *, 32> Worklist;
1031   for (const Use &U : Alloca->uses()) {
1032     if (Worklist.size() >= MaxIter)
1033       return nullptr;
1034     Worklist.push_back(&U);
1035   }
1036 
1037   unsigned NumCmps = 0;
1038   while (!Worklist.empty()) {
1039     assert(Worklist.size() <= MaxIter);
1040     const Use *U = Worklist.pop_back_val();
1041     const Value *V = U->getUser();
1042     --MaxIter;
1043 
1044     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1045         isa<SelectInst>(V)) {
1046       // Track the uses.
1047     } else if (isa<LoadInst>(V)) {
1048       // Loading from the pointer doesn't escape it.
1049       continue;
1050     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1051       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1052       if (SI->getValueOperand() == U->get())
1053         return nullptr;
1054       continue;
1055     } else if (isa<ICmpInst>(V)) {
1056       if (NumCmps++)
1057         return nullptr; // Found more than one cmp.
1058       continue;
1059     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1060       switch (Intrin->getIntrinsicID()) {
1061         // These intrinsics don't escape or compare the pointer. Memset is safe
1062         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1063         // we don't allow stores, so src cannot point to V.
1064         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1065         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1066           continue;
1067         default:
1068           return nullptr;
1069       }
1070     } else {
1071       return nullptr;
1072     }
1073     for (const Use &U : V->uses()) {
1074       if (Worklist.size() >= MaxIter)
1075         return nullptr;
1076       Worklist.push_back(&U);
1077     }
1078   }
1079 
1080   auto *Res = ConstantInt::get(ICI.getType(),
1081                                !CmpInst::isTrueWhenEqual(ICI.getPredicate()));
1082   return replaceInstUsesWith(ICI, Res);
1083 }
1084 
1085 /// Fold "icmp pred (X+C), X".
1086 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
1087                                                   ICmpInst::Predicate Pred) {
1088   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1089   // so the values can never be equal.  Similarly for all other "or equals"
1090   // operators.
1091   assert(!!C && "C should not be zero!");
1092 
1093   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1094   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1095   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1096   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1097     Constant *R = ConstantInt::get(X->getType(),
1098                                    APInt::getMaxValue(C.getBitWidth()) - C);
1099     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1100   }
1101 
1102   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1103   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1104   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1105   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1106     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1107                         ConstantInt::get(X->getType(), -C));
1108 
1109   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1110 
1111   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1112   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1113   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1114   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1115   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1116   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1117   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1118     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1119                         ConstantInt::get(X->getType(), SMax - C));
1120 
1121   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1122   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1123   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1124   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1125   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1126   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1127 
1128   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1129   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1130                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1131 }
1132 
1133 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1134 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1135 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1136 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
1137                                                      const APInt &AP1,
1138                                                      const APInt &AP2) {
1139   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1140 
1141   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1142     if (I.getPredicate() == I.ICMP_NE)
1143       Pred = CmpInst::getInversePredicate(Pred);
1144     return new ICmpInst(Pred, LHS, RHS);
1145   };
1146 
1147   // Don't bother doing any work for cases which InstSimplify handles.
1148   if (AP2.isZero())
1149     return nullptr;
1150 
1151   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1152   if (IsAShr) {
1153     if (AP2.isAllOnes())
1154       return nullptr;
1155     if (AP2.isNegative() != AP1.isNegative())
1156       return nullptr;
1157     if (AP2.sgt(AP1))
1158       return nullptr;
1159   }
1160 
1161   if (!AP1)
1162     // 'A' must be large enough to shift out the highest set bit.
1163     return getICmp(I.ICMP_UGT, A,
1164                    ConstantInt::get(A->getType(), AP2.logBase2()));
1165 
1166   if (AP1 == AP2)
1167     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1168 
1169   int Shift;
1170   if (IsAShr && AP1.isNegative())
1171     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1172   else
1173     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1174 
1175   if (Shift > 0) {
1176     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1177       // There are multiple solutions if we are comparing against -1 and the LHS
1178       // of the ashr is not a power of two.
1179       if (AP1.isAllOnes() && !AP2.isPowerOf2())
1180         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1181       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1182     } else if (AP1 == AP2.lshr(Shift)) {
1183       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1184     }
1185   }
1186 
1187   // Shifting const2 will never be equal to const1.
1188   // FIXME: This should always be handled by InstSimplify?
1189   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1190   return replaceInstUsesWith(I, TorF);
1191 }
1192 
1193 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1194 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1195 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
1196                                                      const APInt &AP1,
1197                                                      const APInt &AP2) {
1198   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1199 
1200   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1201     if (I.getPredicate() == I.ICMP_NE)
1202       Pred = CmpInst::getInversePredicate(Pred);
1203     return new ICmpInst(Pred, LHS, RHS);
1204   };
1205 
1206   // Don't bother doing any work for cases which InstSimplify handles.
1207   if (AP2.isZero())
1208     return nullptr;
1209 
1210   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1211 
1212   if (!AP1 && AP2TrailingZeros != 0)
1213     return getICmp(
1214         I.ICMP_UGE, A,
1215         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1216 
1217   if (AP1 == AP2)
1218     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1219 
1220   // Get the distance between the lowest bits that are set.
1221   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1222 
1223   if (Shift > 0 && AP2.shl(Shift) == AP1)
1224     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1225 
1226   // Shifting const2 will never be equal to const1.
1227   // FIXME: This should always be handled by InstSimplify?
1228   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1229   return replaceInstUsesWith(I, TorF);
1230 }
1231 
1232 /// The caller has matched a pattern of the form:
1233 ///   I = icmp ugt (add (add A, B), CI2), CI1
1234 /// If this is of the form:
1235 ///   sum = a + b
1236 ///   if (sum+128 >u 255)
1237 /// Then replace it with llvm.sadd.with.overflow.i8.
1238 ///
1239 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1240                                           ConstantInt *CI2, ConstantInt *CI1,
1241                                           InstCombinerImpl &IC) {
1242   // The transformation we're trying to do here is to transform this into an
1243   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1244   // with a narrower add, and discard the add-with-constant that is part of the
1245   // range check (if we can't eliminate it, this isn't profitable).
1246 
1247   // In order to eliminate the add-with-constant, the compare can be its only
1248   // use.
1249   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1250   if (!AddWithCst->hasOneUse())
1251     return nullptr;
1252 
1253   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1254   if (!CI2->getValue().isPowerOf2())
1255     return nullptr;
1256   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1257   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1258     return nullptr;
1259 
1260   // The width of the new add formed is 1 more than the bias.
1261   ++NewWidth;
1262 
1263   // Check to see that CI1 is an all-ones value with NewWidth bits.
1264   if (CI1->getBitWidth() == NewWidth ||
1265       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1266     return nullptr;
1267 
1268   // This is only really a signed overflow check if the inputs have been
1269   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1270   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1271   if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth ||
1272       IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth)
1273     return nullptr;
1274 
1275   // In order to replace the original add with a narrower
1276   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1277   // and truncates that discard the high bits of the add.  Verify that this is
1278   // the case.
1279   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1280   for (User *U : OrigAdd->users()) {
1281     if (U == AddWithCst)
1282       continue;
1283 
1284     // Only accept truncates for now.  We would really like a nice recursive
1285     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1286     // chain to see which bits of a value are actually demanded.  If the
1287     // original add had another add which was then immediately truncated, we
1288     // could still do the transformation.
1289     TruncInst *TI = dyn_cast<TruncInst>(U);
1290     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1291       return nullptr;
1292   }
1293 
1294   // If the pattern matches, truncate the inputs to the narrower type and
1295   // use the sadd_with_overflow intrinsic to efficiently compute both the
1296   // result and the overflow bit.
1297   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1298   Function *F = Intrinsic::getDeclaration(
1299       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1300 
1301   InstCombiner::BuilderTy &Builder = IC.Builder;
1302 
1303   // Put the new code above the original add, in case there are any uses of the
1304   // add between the add and the compare.
1305   Builder.SetInsertPoint(OrigAdd);
1306 
1307   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1308   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1309   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1310   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1311   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1312 
1313   // The inner add was the result of the narrow add, zero extended to the
1314   // wider type.  Replace it with the result computed by the intrinsic.
1315   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1316   IC.eraseInstFromFunction(*OrigAdd);
1317 
1318   // The original icmp gets replaced with the overflow value.
1319   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1320 }
1321 
1322 /// If we have:
1323 ///   icmp eq/ne (urem/srem %x, %y), 0
1324 /// iff %y is a power-of-two, we can replace this with a bit test:
1325 ///   icmp eq/ne (and %x, (add %y, -1)), 0
1326 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1327   // This fold is only valid for equality predicates.
1328   if (!I.isEquality())
1329     return nullptr;
1330   ICmpInst::Predicate Pred;
1331   Value *X, *Y, *Zero;
1332   if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1333                         m_CombineAnd(m_Zero(), m_Value(Zero)))))
1334     return nullptr;
1335   if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1336     return nullptr;
1337   // This may increase instruction count, we don't enforce that Y is a constant.
1338   Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1339   Value *Masked = Builder.CreateAnd(X, Mask);
1340   return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1341 }
1342 
1343 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1344 /// by one-less-than-bitwidth into a sign test on the original value.
1345 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
1346   Instruction *Val;
1347   ICmpInst::Predicate Pred;
1348   if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1349     return nullptr;
1350 
1351   Value *X;
1352   Type *XTy;
1353 
1354   Constant *C;
1355   if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1356     XTy = X->getType();
1357     unsigned XBitWidth = XTy->getScalarSizeInBits();
1358     if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1359                                      APInt(XBitWidth, XBitWidth - 1))))
1360       return nullptr;
1361   } else if (isa<BinaryOperator>(Val) &&
1362              (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1363                   cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1364                   /*AnalyzeForSignBitExtraction=*/true))) {
1365     XTy = X->getType();
1366   } else
1367     return nullptr;
1368 
1369   return ICmpInst::Create(Instruction::ICmp,
1370                           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1371                                                     : ICmpInst::ICMP_SLT,
1372                           X, ConstantInt::getNullValue(XTy));
1373 }
1374 
1375 // Handle  icmp pred X, 0
1376 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
1377   CmpInst::Predicate Pred = Cmp.getPredicate();
1378   if (!match(Cmp.getOperand(1), m_Zero()))
1379     return nullptr;
1380 
1381   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1382   if (Pred == ICmpInst::ICMP_SGT) {
1383     Value *A, *B;
1384     if (match(Cmp.getOperand(0), m_SMin(m_Value(A), m_Value(B)))) {
1385       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1386         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1387       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1388         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1389     }
1390   }
1391 
1392   if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1393     return New;
1394 
1395   // Given:
1396   //   icmp eq/ne (urem %x, %y), 0
1397   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1398   //   icmp eq/ne %x, 0
1399   Value *X, *Y;
1400   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1401       ICmpInst::isEquality(Pred)) {
1402     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1403     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1404     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1405       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1406   }
1407 
1408   return nullptr;
1409 }
1410 
1411 /// Fold icmp Pred X, C.
1412 /// TODO: This code structure does not make sense. The saturating add fold
1413 /// should be moved to some other helper and extended as noted below (it is also
1414 /// possible that code has been made unnecessary - do we canonicalize IR to
1415 /// overflow/saturating intrinsics or not?).
1416 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
1417   // Match the following pattern, which is a common idiom when writing
1418   // overflow-safe integer arithmetic functions. The source performs an addition
1419   // in wider type and explicitly checks for overflow using comparisons against
1420   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1421   //
1422   // TODO: This could probably be generalized to handle other overflow-safe
1423   // operations if we worked out the formulas to compute the appropriate magic
1424   // constants.
1425   //
1426   // sum = a + b
1427   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1428   CmpInst::Predicate Pred = Cmp.getPredicate();
1429   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1430   Value *A, *B;
1431   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1432   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1433       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1434     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1435       return Res;
1436 
1437   // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1438   Constant *C = dyn_cast<Constant>(Op1);
1439   if (!C || C->canTrap())
1440     return nullptr;
1441 
1442   if (auto *Phi = dyn_cast<PHINode>(Op0))
1443     if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1444       Type *Ty = Cmp.getType();
1445       Builder.SetInsertPoint(Phi);
1446       PHINode *NewPhi =
1447           Builder.CreatePHI(Ty, Phi->getNumOperands());
1448       for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
1449         auto *Input =
1450             cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
1451         auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
1452         NewPhi->addIncoming(BoolInput, Predecessor);
1453       }
1454       NewPhi->takeName(&Cmp);
1455       return replaceInstUsesWith(Cmp, NewPhi);
1456     }
1457 
1458   return nullptr;
1459 }
1460 
1461 /// Canonicalize icmp instructions based on dominating conditions.
1462 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1463   // This is a cheap/incomplete check for dominance - just match a single
1464   // predecessor with a conditional branch.
1465   BasicBlock *CmpBB = Cmp.getParent();
1466   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1467   if (!DomBB)
1468     return nullptr;
1469 
1470   Value *DomCond;
1471   BasicBlock *TrueBB, *FalseBB;
1472   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1473     return nullptr;
1474 
1475   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1476          "Predecessor block does not point to successor?");
1477 
1478   // The branch should get simplified. Don't bother simplifying this condition.
1479   if (TrueBB == FalseBB)
1480     return nullptr;
1481 
1482   // Try to simplify this compare to T/F based on the dominating condition.
1483   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1484   if (Imp)
1485     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1486 
1487   CmpInst::Predicate Pred = Cmp.getPredicate();
1488   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1489   ICmpInst::Predicate DomPred;
1490   const APInt *C, *DomC;
1491   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1492       match(Y, m_APInt(C))) {
1493     // We have 2 compares of a variable with constants. Calculate the constant
1494     // ranges of those compares to see if we can transform the 2nd compare:
1495     // DomBB:
1496     //   DomCond = icmp DomPred X, DomC
1497     //   br DomCond, CmpBB, FalseBB
1498     // CmpBB:
1499     //   Cmp = icmp Pred X, C
1500     ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C);
1501     ConstantRange DominatingCR =
1502         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1503                           : ConstantRange::makeExactICmpRegion(
1504                                 CmpInst::getInversePredicate(DomPred), *DomC);
1505     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1506     ConstantRange Difference = DominatingCR.difference(CR);
1507     if (Intersection.isEmptySet())
1508       return replaceInstUsesWith(Cmp, Builder.getFalse());
1509     if (Difference.isEmptySet())
1510       return replaceInstUsesWith(Cmp, Builder.getTrue());
1511 
1512     // Canonicalizing a sign bit comparison that gets used in a branch,
1513     // pessimizes codegen by generating branch on zero instruction instead
1514     // of a test and branch. So we avoid canonicalizing in such situations
1515     // because test and branch instruction has better branch displacement
1516     // than compare and branch instruction.
1517     bool UnusedBit;
1518     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1519     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1520       return nullptr;
1521 
1522     // Avoid an infinite loop with min/max canonicalization.
1523     // TODO: This will be unnecessary if we canonicalize to min/max intrinsics.
1524     if (Cmp.hasOneUse() &&
1525         match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value())))
1526       return nullptr;
1527 
1528     if (const APInt *EqC = Intersection.getSingleElement())
1529       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1530     if (const APInt *NeC = Difference.getSingleElement())
1531       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1532   }
1533 
1534   return nullptr;
1535 }
1536 
1537 /// Fold icmp (trunc X), C.
1538 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
1539                                                      TruncInst *Trunc,
1540                                                      const APInt &C) {
1541   ICmpInst::Predicate Pred = Cmp.getPredicate();
1542   Value *X = Trunc->getOperand(0);
1543   if (C.isOne() && C.getBitWidth() > 1) {
1544     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1545     Value *V = nullptr;
1546     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1547       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1548                           ConstantInt::get(V->getType(), 1));
1549   }
1550 
1551   unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1552            SrcBits = X->getType()->getScalarSizeInBits();
1553   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1554     // Canonicalize to a mask and wider compare if the wide type is suitable:
1555     // (trunc X to i8) == C --> (X & 0xff) == (zext C)
1556     if (!X->getType()->isVectorTy() && shouldChangeType(DstBits, SrcBits)) {
1557       Constant *Mask = ConstantInt::get(X->getType(),
1558                                         APInt::getLowBitsSet(SrcBits, DstBits));
1559       Value *And = Builder.CreateAnd(X, Mask);
1560       Constant *WideC = ConstantInt::get(X->getType(), C.zext(SrcBits));
1561       return new ICmpInst(Pred, And, WideC);
1562     }
1563 
1564     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1565     // of the high bits truncated out of x are known.
1566     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1567 
1568     // If all the high bits are known, we can do this xform.
1569     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1570       // Pull in the high bits from known-ones set.
1571       APInt NewRHS = C.zext(SrcBits);
1572       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1573       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1574     }
1575   }
1576 
1577   // Look through truncated right-shift of the sign-bit for a sign-bit check:
1578   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0  --> ShOp <  0
1579   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1
1580   Value *ShOp;
1581   const APInt *ShAmtC;
1582   bool TrueIfSigned;
1583   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1584       match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) &&
1585       DstBits == SrcBits - ShAmtC->getZExtValue()) {
1586     return TrueIfSigned
1587                ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp,
1588                               ConstantInt::getNullValue(X->getType()))
1589                : new ICmpInst(ICmpInst::ICMP_SGT, ShOp,
1590                               ConstantInt::getAllOnesValue(X->getType()));
1591   }
1592 
1593   return nullptr;
1594 }
1595 
1596 /// Fold icmp (xor X, Y), C.
1597 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
1598                                                    BinaryOperator *Xor,
1599                                                    const APInt &C) {
1600   Value *X = Xor->getOperand(0);
1601   Value *Y = Xor->getOperand(1);
1602   const APInt *XorC;
1603   if (!match(Y, m_APInt(XorC)))
1604     return nullptr;
1605 
1606   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1607   // fold the xor.
1608   ICmpInst::Predicate Pred = Cmp.getPredicate();
1609   bool TrueIfSigned = false;
1610   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1611 
1612     // If the sign bit of the XorCst is not set, there is no change to
1613     // the operation, just stop using the Xor.
1614     if (!XorC->isNegative())
1615       return replaceOperand(Cmp, 0, X);
1616 
1617     // Emit the opposite comparison.
1618     if (TrueIfSigned)
1619       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1620                           ConstantInt::getAllOnesValue(X->getType()));
1621     else
1622       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1623                           ConstantInt::getNullValue(X->getType()));
1624   }
1625 
1626   if (Xor->hasOneUse()) {
1627     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1628     if (!Cmp.isEquality() && XorC->isSignMask()) {
1629       Pred = Cmp.getFlippedSignednessPredicate();
1630       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1631     }
1632 
1633     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1634     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1635       Pred = Cmp.getFlippedSignednessPredicate();
1636       Pred = Cmp.getSwappedPredicate(Pred);
1637       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1638     }
1639   }
1640 
1641   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1642   if (Pred == ICmpInst::ICMP_UGT) {
1643     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1644     if (*XorC == ~C && (C + 1).isPowerOf2())
1645       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1646     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1647     if (*XorC == C && (C + 1).isPowerOf2())
1648       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1649   }
1650   if (Pred == ICmpInst::ICMP_ULT) {
1651     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1652     if (*XorC == -C && C.isPowerOf2())
1653       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1654                           ConstantInt::get(X->getType(), ~C));
1655     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1656     if (*XorC == C && (-C).isPowerOf2())
1657       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1658                           ConstantInt::get(X->getType(), ~C));
1659   }
1660   return nullptr;
1661 }
1662 
1663 /// Fold icmp (and (sh X, Y), C2), C1.
1664 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
1665                                                 BinaryOperator *And,
1666                                                 const APInt &C1,
1667                                                 const APInt &C2) {
1668   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1669   if (!Shift || !Shift->isShift())
1670     return nullptr;
1671 
1672   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1673   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1674   // code produced by the clang front-end, for bitfield access.
1675   // This seemingly simple opportunity to fold away a shift turns out to be
1676   // rather complicated. See PR17827 for details.
1677   unsigned ShiftOpcode = Shift->getOpcode();
1678   bool IsShl = ShiftOpcode == Instruction::Shl;
1679   const APInt *C3;
1680   if (match(Shift->getOperand(1), m_APInt(C3))) {
1681     APInt NewAndCst, NewCmpCst;
1682     bool AnyCmpCstBitsShiftedOut;
1683     if (ShiftOpcode == Instruction::Shl) {
1684       // For a left shift, we can fold if the comparison is not signed. We can
1685       // also fold a signed comparison if the mask value and comparison value
1686       // are not negative. These constraints may not be obvious, but we can
1687       // prove that they are correct using an SMT solver.
1688       if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1689         return nullptr;
1690 
1691       NewCmpCst = C1.lshr(*C3);
1692       NewAndCst = C2.lshr(*C3);
1693       AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1694     } else if (ShiftOpcode == Instruction::LShr) {
1695       // For a logical right shift, we can fold if the comparison is not signed.
1696       // We can also fold a signed comparison if the shifted mask value and the
1697       // shifted comparison value are not negative. These constraints may not be
1698       // obvious, but we can prove that they are correct using an SMT solver.
1699       NewCmpCst = C1.shl(*C3);
1700       NewAndCst = C2.shl(*C3);
1701       AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1702       if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1703         return nullptr;
1704     } else {
1705       // For an arithmetic shift, check that both constants don't use (in a
1706       // signed sense) the top bits being shifted out.
1707       assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1708       NewCmpCst = C1.shl(*C3);
1709       NewAndCst = C2.shl(*C3);
1710       AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1711       if (NewAndCst.ashr(*C3) != C2)
1712         return nullptr;
1713     }
1714 
1715     if (AnyCmpCstBitsShiftedOut) {
1716       // If we shifted bits out, the fold is not going to work out. As a
1717       // special case, check to see if this means that the result is always
1718       // true or false now.
1719       if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1720         return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1721       if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1722         return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1723     } else {
1724       Value *NewAnd = Builder.CreateAnd(
1725           Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1726       return new ICmpInst(Cmp.getPredicate(),
1727           NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1728     }
1729   }
1730 
1731   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1732   // preferable because it allows the C2 << Y expression to be hoisted out of a
1733   // loop if Y is invariant and X is not.
1734   if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() &&
1735       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1736     // Compute C2 << Y.
1737     Value *NewShift =
1738         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1739               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1740 
1741     // Compute X & (C2 << Y).
1742     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1743     return replaceOperand(Cmp, 0, NewAnd);
1744   }
1745 
1746   return nullptr;
1747 }
1748 
1749 /// Fold icmp (and X, C2), C1.
1750 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
1751                                                      BinaryOperator *And,
1752                                                      const APInt &C1) {
1753   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1754 
1755   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1756   // TODO: We canonicalize to the longer form for scalars because we have
1757   // better analysis/folds for icmp, and codegen may be better with icmp.
1758   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() &&
1759       match(And->getOperand(1), m_One()))
1760     return new TruncInst(And->getOperand(0), Cmp.getType());
1761 
1762   const APInt *C2;
1763   Value *X;
1764   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1765     return nullptr;
1766 
1767   // Don't perform the following transforms if the AND has multiple uses
1768   if (!And->hasOneUse())
1769     return nullptr;
1770 
1771   if (Cmp.isEquality() && C1.isZero()) {
1772     // Restrict this fold to single-use 'and' (PR10267).
1773     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1774     if (C2->isSignMask()) {
1775       Constant *Zero = Constant::getNullValue(X->getType());
1776       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1777       return new ICmpInst(NewPred, X, Zero);
1778     }
1779 
1780     // Restrict this fold only for single-use 'and' (PR10267).
1781     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1782     if ((~(*C2) + 1).isPowerOf2()) {
1783       Constant *NegBOC =
1784           ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1785       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1786       return new ICmpInst(NewPred, X, NegBOC);
1787     }
1788   }
1789 
1790   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1791   // the input width without changing the value produced, eliminate the cast:
1792   //
1793   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1794   //
1795   // We can do this transformation if the constants do not have their sign bits
1796   // set or if it is an equality comparison. Extending a relational comparison
1797   // when we're checking the sign bit would not work.
1798   Value *W;
1799   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1800       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1801     // TODO: Is this a good transform for vectors? Wider types may reduce
1802     // throughput. Should this transform be limited (even for scalars) by using
1803     // shouldChangeType()?
1804     if (!Cmp.getType()->isVectorTy()) {
1805       Type *WideType = W->getType();
1806       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1807       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1808       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1809       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1810       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1811     }
1812   }
1813 
1814   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1815     return I;
1816 
1817   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1818   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1819   //
1820   // iff pred isn't signed
1821   if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() &&
1822       match(And->getOperand(1), m_One())) {
1823     Constant *One = cast<Constant>(And->getOperand(1));
1824     Value *Or = And->getOperand(0);
1825     Value *A, *B, *LShr;
1826     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1827         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1828       unsigned UsesRemoved = 0;
1829       if (And->hasOneUse())
1830         ++UsesRemoved;
1831       if (Or->hasOneUse())
1832         ++UsesRemoved;
1833       if (LShr->hasOneUse())
1834         ++UsesRemoved;
1835 
1836       // Compute A & ((1 << B) | 1)
1837       Value *NewOr = nullptr;
1838       if (auto *C = dyn_cast<Constant>(B)) {
1839         if (UsesRemoved >= 1)
1840           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1841       } else {
1842         if (UsesRemoved >= 3)
1843           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1844                                                      /*HasNUW=*/true),
1845                                    One, Or->getName());
1846       }
1847       if (NewOr) {
1848         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1849         return replaceOperand(Cmp, 0, NewAnd);
1850       }
1851     }
1852   }
1853 
1854   return nullptr;
1855 }
1856 
1857 /// Fold icmp (and X, Y), C.
1858 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
1859                                                    BinaryOperator *And,
1860                                                    const APInt &C) {
1861   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1862     return I;
1863 
1864   const ICmpInst::Predicate Pred = Cmp.getPredicate();
1865   bool TrueIfNeg;
1866   if (isSignBitCheck(Pred, C, TrueIfNeg)) {
1867     // ((X - 1) & ~X) <  0 --> X == 0
1868     // ((X - 1) & ~X) >= 0 --> X != 0
1869     Value *X;
1870     if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) &&
1871         match(And->getOperand(1), m_Not(m_Specific(X)))) {
1872       auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1873       return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType()));
1874     }
1875   }
1876 
1877   // TODO: These all require that Y is constant too, so refactor with the above.
1878 
1879   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1880   Value *X = And->getOperand(0);
1881   Value *Y = And->getOperand(1);
1882   if (auto *C2 = dyn_cast<ConstantInt>(Y))
1883     if (auto *LI = dyn_cast<LoadInst>(X))
1884       if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1885         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1886           if (Instruction *Res =
1887                   foldCmpLoadFromIndexedGlobal(LI, GEP, GV, Cmp, C2))
1888             return Res;
1889 
1890   if (!Cmp.isEquality())
1891     return nullptr;
1892 
1893   // X & -C == -C -> X >  u ~C
1894   // X & -C != -C -> X <= u ~C
1895   //   iff C is a power of 2
1896   if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) {
1897     auto NewPred =
1898         Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE;
1899     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1900   }
1901 
1902   return nullptr;
1903 }
1904 
1905 /// Fold icmp (or X, Y), C.
1906 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
1907                                                   BinaryOperator *Or,
1908                                                   const APInt &C) {
1909   ICmpInst::Predicate Pred = Cmp.getPredicate();
1910   if (C.isOne()) {
1911     // icmp slt signum(V) 1 --> icmp slt V, 1
1912     Value *V = nullptr;
1913     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1914       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1915                           ConstantInt::get(V->getType(), 1));
1916   }
1917 
1918   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1919   const APInt *MaskC;
1920   if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
1921     if (*MaskC == C && (C + 1).isPowerOf2()) {
1922       // X | C == C --> X <=u C
1923       // X | C != C --> X  >u C
1924       //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1925       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1926       return new ICmpInst(Pred, OrOp0, OrOp1);
1927     }
1928 
1929     // More general: canonicalize 'equality with set bits mask' to
1930     // 'equality with clear bits mask'.
1931     // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
1932     // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
1933     if (Or->hasOneUse()) {
1934       Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
1935       Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
1936       return new ICmpInst(Pred, And, NewC);
1937     }
1938   }
1939 
1940   // (X | (X-1)) s<  0 --> X s< 1
1941   // (X | (X-1)) s> -1 --> X s> 0
1942   Value *X;
1943   bool TrueIfSigned;
1944   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1945       match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) {
1946     auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT;
1947     Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0);
1948     return new ICmpInst(NewPred, X, NewC);
1949   }
1950 
1951   if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse())
1952     return nullptr;
1953 
1954   Value *P, *Q;
1955   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1956     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1957     // -> and (icmp eq P, null), (icmp eq Q, null).
1958     Value *CmpP =
1959         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1960     Value *CmpQ =
1961         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1962     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1963     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1964   }
1965 
1966   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1967   // a shorter form that has more potential to be folded even further.
1968   Value *X1, *X2, *X3, *X4;
1969   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1970       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1971     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1972     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1973     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1974     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1975     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1976     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1977   }
1978 
1979   return nullptr;
1980 }
1981 
1982 /// Fold icmp (mul X, Y), C.
1983 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
1984                                                    BinaryOperator *Mul,
1985                                                    const APInt &C) {
1986   const APInt *MulC;
1987   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1988     return nullptr;
1989 
1990   // If this is a test of the sign bit and the multiply is sign-preserving with
1991   // a constant operand, use the multiply LHS operand instead.
1992   ICmpInst::Predicate Pred = Cmp.getPredicate();
1993   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1994     if (MulC->isNegative())
1995       Pred = ICmpInst::getSwappedPredicate(Pred);
1996     return new ICmpInst(Pred, Mul->getOperand(0),
1997                         Constant::getNullValue(Mul->getType()));
1998   }
1999 
2000   // If the multiply does not wrap, try to divide the compare constant by the
2001   // multiplication factor.
2002   if (Cmp.isEquality() && !MulC->isZero()) {
2003     // (mul nsw X, MulC) == C --> X == C /s MulC
2004     if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) {
2005       Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC));
2006       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
2007     }
2008     // (mul nuw X, MulC) == C --> X == C /u MulC
2009     if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isZero()) {
2010       Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC));
2011       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
2012     }
2013   }
2014 
2015   return nullptr;
2016 }
2017 
2018 /// Fold icmp (shl 1, Y), C.
2019 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
2020                                    const APInt &C) {
2021   Value *Y;
2022   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
2023     return nullptr;
2024 
2025   Type *ShiftType = Shl->getType();
2026   unsigned TypeBits = C.getBitWidth();
2027   bool CIsPowerOf2 = C.isPowerOf2();
2028   ICmpInst::Predicate Pred = Cmp.getPredicate();
2029   if (Cmp.isUnsigned()) {
2030     // (1 << Y) pred C -> Y pred Log2(C)
2031     if (!CIsPowerOf2) {
2032       // (1 << Y) <  30 -> Y <= 4
2033       // (1 << Y) <= 30 -> Y <= 4
2034       // (1 << Y) >= 30 -> Y >  4
2035       // (1 << Y) >  30 -> Y >  4
2036       if (Pred == ICmpInst::ICMP_ULT)
2037         Pred = ICmpInst::ICMP_ULE;
2038       else if (Pred == ICmpInst::ICMP_UGE)
2039         Pred = ICmpInst::ICMP_UGT;
2040     }
2041 
2042     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
2043     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
2044     unsigned CLog2 = C.logBase2();
2045     if (CLog2 == TypeBits - 1) {
2046       if (Pred == ICmpInst::ICMP_UGE)
2047         Pred = ICmpInst::ICMP_EQ;
2048       else if (Pred == ICmpInst::ICMP_ULT)
2049         Pred = ICmpInst::ICMP_NE;
2050     }
2051     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2052   } else if (Cmp.isSigned()) {
2053     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2054     if (C.isAllOnes()) {
2055       // (1 << Y) <= -1 -> Y == 31
2056       if (Pred == ICmpInst::ICMP_SLE)
2057         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2058 
2059       // (1 << Y) >  -1 -> Y != 31
2060       if (Pred == ICmpInst::ICMP_SGT)
2061         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2062     } else if (!C) {
2063       // (1 << Y) <  0 -> Y == 31
2064       // (1 << Y) <= 0 -> Y == 31
2065       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2066         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2067 
2068       // (1 << Y) >= 0 -> Y != 31
2069       // (1 << Y) >  0 -> Y != 31
2070       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2071         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2072     }
2073   } else if (Cmp.isEquality() && CIsPowerOf2) {
2074     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2075   }
2076 
2077   return nullptr;
2078 }
2079 
2080 /// Fold icmp (shl X, Y), C.
2081 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
2082                                                    BinaryOperator *Shl,
2083                                                    const APInt &C) {
2084   const APInt *ShiftVal;
2085   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2086     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2087 
2088   const APInt *ShiftAmt;
2089   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2090     return foldICmpShlOne(Cmp, Shl, C);
2091 
2092   // Check that the shift amount is in range. If not, don't perform undefined
2093   // shifts. When the shift is visited, it will be simplified.
2094   unsigned TypeBits = C.getBitWidth();
2095   if (ShiftAmt->uge(TypeBits))
2096     return nullptr;
2097 
2098   ICmpInst::Predicate Pred = Cmp.getPredicate();
2099   Value *X = Shl->getOperand(0);
2100   Type *ShType = Shl->getType();
2101 
2102   // NSW guarantees that we are only shifting out sign bits from the high bits,
2103   // so we can ASHR the compare constant without needing a mask and eliminate
2104   // the shift.
2105   if (Shl->hasNoSignedWrap()) {
2106     if (Pred == ICmpInst::ICMP_SGT) {
2107       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2108       APInt ShiftedC = C.ashr(*ShiftAmt);
2109       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2110     }
2111     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2112         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2113       APInt ShiftedC = C.ashr(*ShiftAmt);
2114       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2115     }
2116     if (Pred == ICmpInst::ICMP_SLT) {
2117       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2118       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2119       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2120       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2121       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2122       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2123       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2124     }
2125     // If this is a signed comparison to 0 and the shift is sign preserving,
2126     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2127     // do that if we're sure to not continue on in this function.
2128     if (isSignTest(Pred, C))
2129       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2130   }
2131 
2132   // NUW guarantees that we are only shifting out zero bits from the high bits,
2133   // so we can LSHR the compare constant without needing a mask and eliminate
2134   // the shift.
2135   if (Shl->hasNoUnsignedWrap()) {
2136     if (Pred == ICmpInst::ICMP_UGT) {
2137       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2138       APInt ShiftedC = C.lshr(*ShiftAmt);
2139       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2140     }
2141     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2142         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2143       APInt ShiftedC = C.lshr(*ShiftAmt);
2144       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2145     }
2146     if (Pred == ICmpInst::ICMP_ULT) {
2147       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2148       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2149       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2150       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2151       assert(C.ugt(0) && "ult 0 should have been eliminated");
2152       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2153       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2154     }
2155   }
2156 
2157   if (Cmp.isEquality() && Shl->hasOneUse()) {
2158     // Strength-reduce the shift into an 'and'.
2159     Constant *Mask = ConstantInt::get(
2160         ShType,
2161         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2162     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2163     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2164     return new ICmpInst(Pred, And, LShrC);
2165   }
2166 
2167   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2168   bool TrueIfSigned = false;
2169   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2170     // (X << 31) <s 0  --> (X & 1) != 0
2171     Constant *Mask = ConstantInt::get(
2172         ShType,
2173         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2174     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2175     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2176                         And, Constant::getNullValue(ShType));
2177   }
2178 
2179   // Simplify 'shl' inequality test into 'and' equality test.
2180   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2181     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2182     if ((C + 1).isPowerOf2() &&
2183         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2184       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2185       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2186                                                      : ICmpInst::ICMP_NE,
2187                           And, Constant::getNullValue(ShType));
2188     }
2189     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2190     if (C.isPowerOf2() &&
2191         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2192       Value *And =
2193           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2194       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2195                                                      : ICmpInst::ICMP_NE,
2196                           And, Constant::getNullValue(ShType));
2197     }
2198   }
2199 
2200   // Transform (icmp pred iM (shl iM %v, N), C)
2201   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2202   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2203   // This enables us to get rid of the shift in favor of a trunc that may be
2204   // free on the target. It has the additional benefit of comparing to a
2205   // smaller constant that may be more target-friendly.
2206   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2207   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2208       DL.isLegalInteger(TypeBits - Amt)) {
2209     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2210     if (auto *ShVTy = dyn_cast<VectorType>(ShType))
2211       TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount());
2212     Constant *NewC =
2213         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2214     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2215   }
2216 
2217   return nullptr;
2218 }
2219 
2220 /// Fold icmp ({al}shr X, Y), C.
2221 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
2222                                                    BinaryOperator *Shr,
2223                                                    const APInt &C) {
2224   // An exact shr only shifts out zero bits, so:
2225   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2226   Value *X = Shr->getOperand(0);
2227   CmpInst::Predicate Pred = Cmp.getPredicate();
2228   if (Cmp.isEquality() && Shr->isExact() && C.isZero())
2229     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2230 
2231   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2232   const APInt *ShiftValC;
2233   if (match(Shr->getOperand(0), m_APInt(ShiftValC))) {
2234     if (Cmp.isEquality())
2235       return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftValC);
2236 
2237     // If the shifted constant is a power-of-2, test the shift amount directly:
2238     // (ShiftValC >> X) >u C --> X <u (LZ(C) - LZ(ShiftValC))
2239     // (ShiftValC >> X) <u C --> X >=u (LZ(C-1) - LZ(ShiftValC))
2240     if (!IsAShr && ShiftValC->isPowerOf2() &&
2241         (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_ULT)) {
2242       bool IsUGT = Pred == CmpInst::ICMP_UGT;
2243       assert(ShiftValC->uge(C) && "Expected simplify of compare");
2244       assert((IsUGT || !C.isZero()) && "Expected X u< 0 to simplify");
2245 
2246       unsigned CmpLZ =
2247           IsUGT ? C.countLeadingZeros() : (C - 1).countLeadingZeros();
2248       unsigned ShiftLZ = ShiftValC->countLeadingZeros();
2249       Constant *NewC = ConstantInt::get(Shr->getType(), CmpLZ - ShiftLZ);
2250       auto NewPred = IsUGT ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
2251       return new ICmpInst(NewPred, Shr->getOperand(1), NewC);
2252     }
2253   }
2254 
2255   const APInt *ShiftAmtC;
2256   if (!match(Shr->getOperand(1), m_APInt(ShiftAmtC)))
2257     return nullptr;
2258 
2259   // Check that the shift amount is in range. If not, don't perform undefined
2260   // shifts. When the shift is visited it will be simplified.
2261   unsigned TypeBits = C.getBitWidth();
2262   unsigned ShAmtVal = ShiftAmtC->getLimitedValue(TypeBits);
2263   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2264     return nullptr;
2265 
2266   bool IsExact = Shr->isExact();
2267   Type *ShrTy = Shr->getType();
2268   // TODO: If we could guarantee that InstSimplify would handle all of the
2269   // constant-value-based preconditions in the folds below, then we could assert
2270   // those conditions rather than checking them. This is difficult because of
2271   // undef/poison (PR34838).
2272   if (IsAShr) {
2273     if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) {
2274       // When ShAmtC can be shifted losslessly:
2275       // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC)
2276       // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC)
2277       APInt ShiftedC = C.shl(ShAmtVal);
2278       if (ShiftedC.ashr(ShAmtVal) == C)
2279         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2280     }
2281     if (Pred == CmpInst::ICMP_SGT) {
2282       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2283       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2284       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2285           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2286         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2287     }
2288     if (Pred == CmpInst::ICMP_UGT) {
2289       // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2290       // 'C + 1 << ShAmtC' can overflow as a signed number, so the 2nd
2291       // clause accounts for that pattern.
2292       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2293       if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1) ||
2294           (C + 1).shl(ShAmtVal).isMinSignedValue())
2295         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2296     }
2297 
2298     // If the compare constant has significant bits above the lowest sign-bit,
2299     // then convert an unsigned cmp to a test of the sign-bit:
2300     // (ashr X, ShiftC) u> C --> X s< 0
2301     // (ashr X, ShiftC) u< C --> X s> -1
2302     if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) {
2303       if (Pred == CmpInst::ICMP_UGT) {
2304         return new ICmpInst(CmpInst::ICMP_SLT, X,
2305                             ConstantInt::getNullValue(ShrTy));
2306       }
2307       if (Pred == CmpInst::ICMP_ULT) {
2308         return new ICmpInst(CmpInst::ICMP_SGT, X,
2309                             ConstantInt::getAllOnesValue(ShrTy));
2310       }
2311     }
2312   } else {
2313     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2314       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2315       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2316       APInt ShiftedC = C.shl(ShAmtVal);
2317       if (ShiftedC.lshr(ShAmtVal) == C)
2318         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2319     }
2320     if (Pred == CmpInst::ICMP_UGT) {
2321       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2322       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2323       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2324         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2325     }
2326   }
2327 
2328   if (!Cmp.isEquality())
2329     return nullptr;
2330 
2331   // Handle equality comparisons of shift-by-constant.
2332 
2333   // If the comparison constant changes with the shift, the comparison cannot
2334   // succeed (bits of the comparison constant cannot match the shifted value).
2335   // This should be known by InstSimplify and already be folded to true/false.
2336   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2337           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2338          "Expected icmp+shr simplify did not occur.");
2339 
2340   // If the bits shifted out are known zero, compare the unshifted value:
2341   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2342   if (Shr->isExact())
2343     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2344 
2345   if (C.isZero()) {
2346     // == 0 is u< 1.
2347     if (Pred == CmpInst::ICMP_EQ)
2348       return new ICmpInst(CmpInst::ICMP_ULT, X,
2349                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal)));
2350     else
2351       return new ICmpInst(CmpInst::ICMP_UGT, X,
2352                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1));
2353   }
2354 
2355   if (Shr->hasOneUse()) {
2356     // Canonicalize the shift into an 'and':
2357     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2358     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2359     Constant *Mask = ConstantInt::get(ShrTy, Val);
2360     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2361     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2362   }
2363 
2364   return nullptr;
2365 }
2366 
2367 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
2368                                                     BinaryOperator *SRem,
2369                                                     const APInt &C) {
2370   // Match an 'is positive' or 'is negative' comparison of remainder by a
2371   // constant power-of-2 value:
2372   // (X % pow2C) sgt/slt 0
2373   const ICmpInst::Predicate Pred = Cmp.getPredicate();
2374   if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT &&
2375       Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2376     return nullptr;
2377 
2378   // TODO: The one-use check is standard because we do not typically want to
2379   //       create longer instruction sequences, but this might be a special-case
2380   //       because srem is not good for analysis or codegen.
2381   if (!SRem->hasOneUse())
2382     return nullptr;
2383 
2384   const APInt *DivisorC;
2385   if (!match(SRem->getOperand(1), m_Power2(DivisorC)))
2386     return nullptr;
2387 
2388   // For cmp_sgt/cmp_slt only zero valued C is handled.
2389   // For cmp_eq/cmp_ne only positive valued C is handled.
2390   if (((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT) &&
2391        !C.isZero()) ||
2392       ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2393        !C.isStrictlyPositive()))
2394     return nullptr;
2395 
2396   // Mask off the sign bit and the modulo bits (low-bits).
2397   Type *Ty = SRem->getType();
2398   APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2399   Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2400   Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2401 
2402   if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)
2403     return new ICmpInst(Pred, And, ConstantInt::get(Ty, C));
2404 
2405   // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2406   // bit is set. Example:
2407   // (i8 X % 32) s> 0 --> (X & 159) s> 0
2408   if (Pred == ICmpInst::ICMP_SGT)
2409     return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2410 
2411   // For 'is negative?' check that the sign-bit is set and at least 1 masked
2412   // bit is set. Example:
2413   // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2414   return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2415 }
2416 
2417 /// Fold icmp (udiv X, Y), C.
2418 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
2419                                                     BinaryOperator *UDiv,
2420                                                     const APInt &C) {
2421   ICmpInst::Predicate Pred = Cmp.getPredicate();
2422   Value *X = UDiv->getOperand(0);
2423   Value *Y = UDiv->getOperand(1);
2424   Type *Ty = UDiv->getType();
2425 
2426   const APInt *C2;
2427   if (!match(X, m_APInt(C2)))
2428     return nullptr;
2429 
2430   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2431 
2432   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2433   if (Pred == ICmpInst::ICMP_UGT) {
2434     assert(!C.isMaxValue() &&
2435            "icmp ugt X, UINT_MAX should have been simplified already.");
2436     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2437                         ConstantInt::get(Ty, C2->udiv(C + 1)));
2438   }
2439 
2440   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2441   if (Pred == ICmpInst::ICMP_ULT) {
2442     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2443     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2444                         ConstantInt::get(Ty, C2->udiv(C)));
2445   }
2446 
2447   return nullptr;
2448 }
2449 
2450 /// Fold icmp ({su}div X, Y), C.
2451 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
2452                                                    BinaryOperator *Div,
2453                                                    const APInt &C) {
2454   ICmpInst::Predicate Pred = Cmp.getPredicate();
2455   Value *X = Div->getOperand(0);
2456   Value *Y = Div->getOperand(1);
2457   Type *Ty = Div->getType();
2458   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2459 
2460   // If unsigned division and the compare constant is bigger than
2461   // UMAX/2 (negative), there's only one pair of values that satisfies an
2462   // equality check, so eliminate the division:
2463   // (X u/ Y) == C --> (X == C) && (Y == 1)
2464   // (X u/ Y) != C --> (X != C) || (Y != 1)
2465   // Similarly, if signed division and the compare constant is exactly SMIN:
2466   // (X s/ Y) == SMIN --> (X == SMIN) && (Y == 1)
2467   // (X s/ Y) != SMIN --> (X != SMIN) || (Y != 1)
2468   if (Cmp.isEquality() && Div->hasOneUse() && C.isSignBitSet() &&
2469       (!DivIsSigned || C.isMinSignedValue()))   {
2470     Value *XBig = Builder.CreateICmp(Pred, X, ConstantInt::get(Ty, C));
2471     Value *YOne = Builder.CreateICmp(Pred, Y, ConstantInt::get(Ty, 1));
2472     auto Logic = Pred == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
2473     return BinaryOperator::Create(Logic, XBig, YOne);
2474   }
2475 
2476   // Fold: icmp pred ([us]div X, C2), C -> range test
2477   // Fold this div into the comparison, producing a range check.
2478   // Determine, based on the divide type, what the range is being
2479   // checked.  If there is an overflow on the low or high side, remember
2480   // it, otherwise compute the range [low, hi) bounding the new value.
2481   // See: InsertRangeTest above for the kinds of replacements possible.
2482   const APInt *C2;
2483   if (!match(Y, m_APInt(C2)))
2484     return nullptr;
2485 
2486   // FIXME: If the operand types don't match the type of the divide
2487   // then don't attempt this transform. The code below doesn't have the
2488   // logic to deal with a signed divide and an unsigned compare (and
2489   // vice versa). This is because (x /s C2) <s C  produces different
2490   // results than (x /s C2) <u C or (x /u C2) <s C or even
2491   // (x /u C2) <u C.  Simply casting the operands and result won't
2492   // work. :(  The if statement below tests that condition and bails
2493   // if it finds it.
2494   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2495     return nullptr;
2496 
2497   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2498   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2499   // division-by-constant cases should be present, we can not assert that they
2500   // have happened before we reach this icmp instruction.
2501   if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes()))
2502     return nullptr;
2503 
2504   // Compute Prod = C * C2. We are essentially solving an equation of
2505   // form X / C2 = C. We solve for X by multiplying C2 and C.
2506   // By solving for X, we can turn this into a range check instead of computing
2507   // a divide.
2508   APInt Prod = C * *C2;
2509 
2510   // Determine if the product overflows by seeing if the product is not equal to
2511   // the divide. Make sure we do the same kind of divide as in the LHS
2512   // instruction that we're folding.
2513   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2514 
2515   // If the division is known to be exact, then there is no remainder from the
2516   // divide, so the covered range size is unit, otherwise it is the divisor.
2517   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2518 
2519   // Figure out the interval that is being checked.  For example, a comparison
2520   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2521   // Compute this interval based on the constants involved and the signedness of
2522   // the compare/divide.  This computes a half-open interval, keeping track of
2523   // whether either value in the interval overflows.  After analysis each
2524   // overflow variable is set to 0 if it's corresponding bound variable is valid
2525   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2526   int LoOverflow = 0, HiOverflow = 0;
2527   APInt LoBound, HiBound;
2528 
2529   if (!DivIsSigned) { // udiv
2530     // e.g. X/5 op 3  --> [15, 20)
2531     LoBound = Prod;
2532     HiOverflow = LoOverflow = ProdOV;
2533     if (!HiOverflow) {
2534       // If this is not an exact divide, then many values in the range collapse
2535       // to the same result value.
2536       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2537     }
2538   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2539     if (C.isZero()) {                    // (X / pos) op 0
2540       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2541       LoBound = -(RangeSize - 1);
2542       HiBound = RangeSize;
2543     } else if (C.isStrictlyPositive()) { // (X / pos) op pos
2544       LoBound = Prod;                    // e.g.   X/5 op 3 --> [15, 20)
2545       HiOverflow = LoOverflow = ProdOV;
2546       if (!HiOverflow)
2547         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2548     } else { // (X / pos) op neg
2549       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2550       HiBound = Prod + 1;
2551       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2552       if (!LoOverflow) {
2553         APInt DivNeg = -RangeSize;
2554         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2555       }
2556     }
2557   } else if (C2->isNegative()) { // Divisor is < 0.
2558     if (Div->isExact())
2559       RangeSize.negate();
2560     if (C.isZero()) { // (X / neg) op 0
2561       // e.g. X/-5 op 0  --> [-4, 5)
2562       LoBound = RangeSize + 1;
2563       HiBound = -RangeSize;
2564       if (HiBound == *C2) { // -INTMIN = INTMIN
2565         HiOverflow = 1;     // [INTMIN+1, overflow)
2566         HiBound = APInt();  // e.g. X/INTMIN = 0 --> X > INTMIN
2567       }
2568     } else if (C.isStrictlyPositive()) { // (X / neg) op pos
2569       // e.g. X/-5 op 3  --> [-19, -14)
2570       HiBound = Prod + 1;
2571       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2572       if (!LoOverflow)
2573         LoOverflow =
2574             addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1 : 0;
2575     } else {          // (X / neg) op neg
2576       LoBound = Prod; // e.g. X/-5 op -3  --> [15, 20)
2577       LoOverflow = HiOverflow = ProdOV;
2578       if (!HiOverflow)
2579         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2580     }
2581 
2582     // Dividing by a negative swaps the condition.  LT <-> GT
2583     Pred = ICmpInst::getSwappedPredicate(Pred);
2584   }
2585 
2586   switch (Pred) {
2587   default:
2588     llvm_unreachable("Unhandled icmp predicate!");
2589   case ICmpInst::ICMP_EQ:
2590     if (LoOverflow && HiOverflow)
2591       return replaceInstUsesWith(Cmp, Builder.getFalse());
2592     if (HiOverflow)
2593       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE,
2594                           X, ConstantInt::get(Ty, LoBound));
2595     if (LoOverflow)
2596       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
2597                           X, ConstantInt::get(Ty, HiBound));
2598     return replaceInstUsesWith(
2599         Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2600   case ICmpInst::ICMP_NE:
2601     if (LoOverflow && HiOverflow)
2602       return replaceInstUsesWith(Cmp, Builder.getTrue());
2603     if (HiOverflow)
2604       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
2605                           X, ConstantInt::get(Ty, LoBound));
2606     if (LoOverflow)
2607       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE,
2608                           X, ConstantInt::get(Ty, HiBound));
2609     return replaceInstUsesWith(
2610         Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, false));
2611   case ICmpInst::ICMP_ULT:
2612   case ICmpInst::ICMP_SLT:
2613     if (LoOverflow == +1) // Low bound is greater than input range.
2614       return replaceInstUsesWith(Cmp, Builder.getTrue());
2615     if (LoOverflow == -1) // Low bound is less than input range.
2616       return replaceInstUsesWith(Cmp, Builder.getFalse());
2617     return new ICmpInst(Pred, X, ConstantInt::get(Ty, LoBound));
2618   case ICmpInst::ICMP_UGT:
2619   case ICmpInst::ICMP_SGT:
2620     if (HiOverflow == +1) // High bound greater than input range.
2621       return replaceInstUsesWith(Cmp, Builder.getFalse());
2622     if (HiOverflow == -1) // High bound less than input range.
2623       return replaceInstUsesWith(Cmp, Builder.getTrue());
2624     if (Pred == ICmpInst::ICMP_UGT)
2625       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, HiBound));
2626     return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, HiBound));
2627   }
2628 
2629   return nullptr;
2630 }
2631 
2632 /// Fold icmp (sub X, Y), C.
2633 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
2634                                                    BinaryOperator *Sub,
2635                                                    const APInt &C) {
2636   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2637   ICmpInst::Predicate Pred = Cmp.getPredicate();
2638   Type *Ty = Sub->getType();
2639 
2640   // (SubC - Y) == C) --> Y == (SubC - C)
2641   // (SubC - Y) != C) --> Y != (SubC - C)
2642   Constant *SubC;
2643   if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) {
2644     return new ICmpInst(Pred, Y,
2645                         ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C)));
2646   }
2647 
2648   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2649   const APInt *C2;
2650   APInt SubResult;
2651   ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate();
2652   bool HasNSW = Sub->hasNoSignedWrap();
2653   bool HasNUW = Sub->hasNoUnsignedWrap();
2654   if (match(X, m_APInt(C2)) &&
2655       ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) &&
2656       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2657     return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult));
2658 
2659   // X - Y == 0 --> X == Y.
2660   // X - Y != 0 --> X != Y.
2661   // TODO: We allow this with multiple uses as long as the other uses are not
2662   //       in phis. The phi use check is guarding against a codegen regression
2663   //       for a loop test. If the backend could undo this (and possibly
2664   //       subsequent transforms), we would not need this hack.
2665   if (Cmp.isEquality() && C.isZero() &&
2666       none_of((Sub->users()), [](const User *U) { return isa<PHINode>(U); }))
2667     return new ICmpInst(Pred, X, Y);
2668 
2669   // The following transforms are only worth it if the only user of the subtract
2670   // is the icmp.
2671   // TODO: This is an artificial restriction for all of the transforms below
2672   //       that only need a single replacement icmp. Can these use the phi test
2673   //       like the transform above here?
2674   if (!Sub->hasOneUse())
2675     return nullptr;
2676 
2677   if (Sub->hasNoSignedWrap()) {
2678     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2679     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes())
2680       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2681 
2682     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2683     if (Pred == ICmpInst::ICMP_SGT && C.isZero())
2684       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2685 
2686     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2687     if (Pred == ICmpInst::ICMP_SLT && C.isZero())
2688       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2689 
2690     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2691     if (Pred == ICmpInst::ICMP_SLT && C.isOne())
2692       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2693   }
2694 
2695   if (!match(X, m_APInt(C2)))
2696     return nullptr;
2697 
2698   // C2 - Y <u C -> (Y | (C - 1)) == C2
2699   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2700   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2701       (*C2 & (C - 1)) == (C - 1))
2702     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2703 
2704   // C2 - Y >u C -> (Y | C) != C2
2705   //   iff C2 & C == C and C + 1 is a power of 2
2706   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2707     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2708 
2709   // We have handled special cases that reduce.
2710   // Canonicalize any remaining sub to add as:
2711   // (C2 - Y) > C --> (Y + ~C2) < ~C
2712   Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub",
2713                                  HasNUW, HasNSW);
2714   return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C));
2715 }
2716 
2717 /// Fold icmp (add X, Y), C.
2718 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
2719                                                    BinaryOperator *Add,
2720                                                    const APInt &C) {
2721   Value *Y = Add->getOperand(1);
2722   const APInt *C2;
2723   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2724     return nullptr;
2725 
2726   // Fold icmp pred (add X, C2), C.
2727   Value *X = Add->getOperand(0);
2728   Type *Ty = Add->getType();
2729   const CmpInst::Predicate Pred = Cmp.getPredicate();
2730 
2731   // If the add does not wrap, we can always adjust the compare by subtracting
2732   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2733   // are canonicalized to SGT/SLT/UGT/ULT.
2734   if ((Add->hasNoSignedWrap() &&
2735        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2736       (Add->hasNoUnsignedWrap() &&
2737        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2738     bool Overflow;
2739     APInt NewC =
2740         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2741     // If there is overflow, the result must be true or false.
2742     // TODO: Can we assert there is no overflow because InstSimplify always
2743     // handles those cases?
2744     if (!Overflow)
2745       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2746       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2747   }
2748 
2749   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2750   const APInt &Upper = CR.getUpper();
2751   const APInt &Lower = CR.getLower();
2752   if (Cmp.isSigned()) {
2753     if (Lower.isSignMask())
2754       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2755     if (Upper.isSignMask())
2756       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2757   } else {
2758     if (Lower.isMinValue())
2759       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2760     if (Upper.isMinValue())
2761       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2762   }
2763 
2764   // This set of folds is intentionally placed after folds that use no-wrapping
2765   // flags because those folds are likely better for later analysis/codegen.
2766   const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
2767   const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
2768 
2769   // Fold compare with offset to opposite sign compare if it eliminates offset:
2770   // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX)
2771   if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax)
2772     return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2)));
2773 
2774   // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN)
2775   if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin)
2776     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2)));
2777 
2778   // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1)
2779   if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1)
2780     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C));
2781 
2782   // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2)
2783   if (Pred == CmpInst::ICMP_SLT && C == *C2)
2784     return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax));
2785 
2786   if (!Add->hasOneUse())
2787     return nullptr;
2788 
2789   // X+C <u C2 -> (X & -C2) == C
2790   //   iff C & (C2-1) == 0
2791   //       C2 is a power of 2
2792   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2793     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2794                         ConstantExpr::getNeg(cast<Constant>(Y)));
2795 
2796   // X+C >u C2 -> (X & ~C2) != C
2797   //   iff C & C2 == 0
2798   //       C2+1 is a power of 2
2799   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2800     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2801                         ConstantExpr::getNeg(cast<Constant>(Y)));
2802 
2803   // The range test idiom can use either ult or ugt. Arbitrarily canonicalize
2804   // to the ult form.
2805   // X+C2 >u C -> X+(C2-C-1) <u ~C
2806   if (Pred == ICmpInst::ICMP_UGT)
2807     return new ICmpInst(ICmpInst::ICMP_ULT,
2808                         Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)),
2809                         ConstantInt::get(Ty, ~C));
2810 
2811   return nullptr;
2812 }
2813 
2814 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2815                                                Value *&RHS, ConstantInt *&Less,
2816                                                ConstantInt *&Equal,
2817                                                ConstantInt *&Greater) {
2818   // TODO: Generalize this to work with other comparison idioms or ensure
2819   // they get canonicalized into this form.
2820 
2821   // select i1 (a == b),
2822   //        i32 Equal,
2823   //        i32 (select i1 (a < b), i32 Less, i32 Greater)
2824   // where Equal, Less and Greater are placeholders for any three constants.
2825   ICmpInst::Predicate PredA;
2826   if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2827       !ICmpInst::isEquality(PredA))
2828     return false;
2829   Value *EqualVal = SI->getTrueValue();
2830   Value *UnequalVal = SI->getFalseValue();
2831   // We still can get non-canonical predicate here, so canonicalize.
2832   if (PredA == ICmpInst::ICMP_NE)
2833     std::swap(EqualVal, UnequalVal);
2834   if (!match(EqualVal, m_ConstantInt(Equal)))
2835     return false;
2836   ICmpInst::Predicate PredB;
2837   Value *LHS2, *RHS2;
2838   if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2839                                   m_ConstantInt(Less), m_ConstantInt(Greater))))
2840     return false;
2841   // We can get predicate mismatch here, so canonicalize if possible:
2842   // First, ensure that 'LHS' match.
2843   if (LHS2 != LHS) {
2844     // x sgt y <--> y slt x
2845     std::swap(LHS2, RHS2);
2846     PredB = ICmpInst::getSwappedPredicate(PredB);
2847   }
2848   if (LHS2 != LHS)
2849     return false;
2850   // We also need to canonicalize 'RHS'.
2851   if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2852     // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
2853     auto FlippedStrictness =
2854         InstCombiner::getFlippedStrictnessPredicateAndConstant(
2855             PredB, cast<Constant>(RHS2));
2856     if (!FlippedStrictness)
2857       return false;
2858     assert(FlippedStrictness->first == ICmpInst::ICMP_SGE &&
2859            "basic correctness failure");
2860     RHS2 = FlippedStrictness->second;
2861     // And kind-of perform the result swap.
2862     std::swap(Less, Greater);
2863     PredB = ICmpInst::ICMP_SLT;
2864   }
2865   return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2866 }
2867 
2868 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
2869                                                       SelectInst *Select,
2870                                                       ConstantInt *C) {
2871 
2872   assert(C && "Cmp RHS should be a constant int!");
2873   // If we're testing a constant value against the result of a three way
2874   // comparison, the result can be expressed directly in terms of the
2875   // original values being compared.  Note: We could possibly be more
2876   // aggressive here and remove the hasOneUse test. The original select is
2877   // really likely to simplify or sink when we remove a test of the result.
2878   Value *OrigLHS, *OrigRHS;
2879   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2880   if (Cmp.hasOneUse() &&
2881       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2882                               C3GreaterThan)) {
2883     assert(C1LessThan && C2Equal && C3GreaterThan);
2884 
2885     bool TrueWhenLessThan =
2886         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2887             ->isAllOnesValue();
2888     bool TrueWhenEqual =
2889         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2890             ->isAllOnesValue();
2891     bool TrueWhenGreaterThan =
2892         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2893             ->isAllOnesValue();
2894 
2895     // This generates the new instruction that will replace the original Cmp
2896     // Instruction. Instead of enumerating the various combinations when
2897     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2898     // false, we rely on chaining of ORs and future passes of InstCombine to
2899     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2900 
2901     // When none of the three constants satisfy the predicate for the RHS (C),
2902     // the entire original Cmp can be simplified to a false.
2903     Value *Cond = Builder.getFalse();
2904     if (TrueWhenLessThan)
2905       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2906                                                        OrigLHS, OrigRHS));
2907     if (TrueWhenEqual)
2908       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2909                                                        OrigLHS, OrigRHS));
2910     if (TrueWhenGreaterThan)
2911       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2912                                                        OrigLHS, OrigRHS));
2913 
2914     return replaceInstUsesWith(Cmp, Cond);
2915   }
2916   return nullptr;
2917 }
2918 
2919 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) {
2920   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2921   if (!Bitcast)
2922     return nullptr;
2923 
2924   ICmpInst::Predicate Pred = Cmp.getPredicate();
2925   Value *Op1 = Cmp.getOperand(1);
2926   Value *BCSrcOp = Bitcast->getOperand(0);
2927   Type *SrcType = Bitcast->getSrcTy();
2928   Type *DstType = Bitcast->getType();
2929 
2930   // Make sure the bitcast doesn't change between scalar and vector and
2931   // doesn't change the number of vector elements.
2932   if (SrcType->isVectorTy() == DstType->isVectorTy() &&
2933       SrcType->getScalarSizeInBits() == DstType->getScalarSizeInBits()) {
2934     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2935     Value *X;
2936     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2937       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2938       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2939       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2940       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2941       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2942            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2943           match(Op1, m_Zero()))
2944         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2945 
2946       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2947       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2948         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2949 
2950       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2951       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2952         return new ICmpInst(Pred, X,
2953                             ConstantInt::getAllOnesValue(X->getType()));
2954     }
2955 
2956     // Zero-equality checks are preserved through unsigned floating-point casts:
2957     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2958     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2959     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2960       if (Cmp.isEquality() && match(Op1, m_Zero()))
2961         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2962 
2963     // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
2964     // the FP extend/truncate because that cast does not change the sign-bit.
2965     // This is true for all standard IEEE-754 types and the X86 80-bit type.
2966     // The sign-bit is always the most significant bit in those types.
2967     const APInt *C;
2968     bool TrueIfSigned;
2969     if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
2970         InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) {
2971       if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
2972           match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
2973         // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
2974         // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
2975         Type *XType = X->getType();
2976 
2977         // We can't currently handle Power style floating point operations here.
2978         if (!(XType->isPPC_FP128Ty() || SrcType->isPPC_FP128Ty())) {
2979           Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
2980           if (auto *XVTy = dyn_cast<VectorType>(XType))
2981             NewType = VectorType::get(NewType, XVTy->getElementCount());
2982           Value *NewBitcast = Builder.CreateBitCast(X, NewType);
2983           if (TrueIfSigned)
2984             return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
2985                                 ConstantInt::getNullValue(NewType));
2986           else
2987             return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
2988                                 ConstantInt::getAllOnesValue(NewType));
2989         }
2990       }
2991     }
2992   }
2993 
2994   // Test to see if the operands of the icmp are casted versions of other
2995   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2996   if (DstType->isPointerTy() && (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2997     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2998     // so eliminate it as well.
2999     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
3000       Op1 = BC2->getOperand(0);
3001 
3002     Op1 = Builder.CreateBitCast(Op1, SrcType);
3003     return new ICmpInst(Pred, BCSrcOp, Op1);
3004   }
3005 
3006   const APInt *C;
3007   if (!match(Cmp.getOperand(1), m_APInt(C)) || !DstType->isIntegerTy() ||
3008       !SrcType->isIntOrIntVectorTy())
3009     return nullptr;
3010 
3011   // If this is checking if all elements of a vector compare are set or not,
3012   // invert the casted vector equality compare and test if all compare
3013   // elements are clear or not. Compare against zero is generally easier for
3014   // analysis and codegen.
3015   // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0
3016   // Example: are all elements equal? --> are zero elements not equal?
3017   // TODO: Try harder to reduce compare of 2 freely invertible operands?
3018   if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() &&
3019       isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) {
3020     Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), DstType);
3021     return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(DstType));
3022   }
3023 
3024   // If this is checking if all elements of an extended vector are clear or not,
3025   // compare in a narrow type to eliminate the extend:
3026   // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0
3027   Value *X;
3028   if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() &&
3029       match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) {
3030     if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) {
3031       Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits());
3032       Value *NewCast = Builder.CreateBitCast(X, NewType);
3033       return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType));
3034     }
3035   }
3036 
3037   // Folding: icmp <pred> iN X, C
3038   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
3039   //    and C is a splat of a K-bit pattern
3040   //    and SC is a constant vector = <C', C', C', ..., C'>
3041   // Into:
3042   //   %E = extractelement <M x iK> %vec, i32 C'
3043   //   icmp <pred> iK %E, trunc(C)
3044   Value *Vec;
3045   ArrayRef<int> Mask;
3046   if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
3047     // Check whether every element of Mask is the same constant
3048     if (is_splat(Mask)) {
3049       auto *VecTy = cast<VectorType>(SrcType);
3050       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
3051       if (C->isSplat(EltTy->getBitWidth())) {
3052         // Fold the icmp based on the value of C
3053         // If C is M copies of an iK sized bit pattern,
3054         // then:
3055         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
3056         //       icmp <pred> iK %SplatVal, <pattern>
3057         Value *Elem = Builder.getInt32(Mask[0]);
3058         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
3059         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
3060         return new ICmpInst(Pred, Extract, NewC);
3061       }
3062     }
3063   }
3064   return nullptr;
3065 }
3066 
3067 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
3068 /// where X is some kind of instruction.
3069 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
3070   const APInt *C;
3071 
3072   if (match(Cmp.getOperand(1), m_APInt(C))) {
3073     if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0)))
3074       if (Instruction *I = foldICmpBinOpWithConstant(Cmp, BO, *C))
3075         return I;
3076 
3077     if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0)))
3078       // For now, we only support constant integers while folding the
3079       // ICMP(SELECT)) pattern. We can extend this to support vector of integers
3080       // similar to the cases handled by binary ops above.
3081       if (auto *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
3082         if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
3083           return I;
3084 
3085     if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0)))
3086       if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
3087         return I;
3088 
3089     if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
3090       if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
3091         return I;
3092   }
3093 
3094   if (match(Cmp.getOperand(1), m_APIntAllowUndef(C)))
3095     return foldICmpInstWithConstantAllowUndef(Cmp, *C);
3096 
3097   return nullptr;
3098 }
3099 
3100 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
3101 /// icmp eq/ne BO, C.
3102 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
3103     ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
3104   // TODO: Some of these folds could work with arbitrary constants, but this
3105   // function is limited to scalar and vector splat constants.
3106   if (!Cmp.isEquality())
3107     return nullptr;
3108 
3109   ICmpInst::Predicate Pred = Cmp.getPredicate();
3110   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
3111   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
3112   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
3113 
3114   switch (BO->getOpcode()) {
3115   case Instruction::SRem:
3116     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
3117     if (C.isZero() && BO->hasOneUse()) {
3118       const APInt *BOC;
3119       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
3120         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
3121         return new ICmpInst(Pred, NewRem,
3122                             Constant::getNullValue(BO->getType()));
3123       }
3124     }
3125     break;
3126   case Instruction::Add: {
3127     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
3128     if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3129       if (BO->hasOneUse())
3130         return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
3131     } else if (C.isZero()) {
3132       // Replace ((add A, B) != 0) with (A != -B) if A or B is
3133       // efficiently invertible, or if the add has just this one use.
3134       if (Value *NegVal = dyn_castNegVal(BOp1))
3135         return new ICmpInst(Pred, BOp0, NegVal);
3136       if (Value *NegVal = dyn_castNegVal(BOp0))
3137         return new ICmpInst(Pred, NegVal, BOp1);
3138       if (BO->hasOneUse()) {
3139         Value *Neg = Builder.CreateNeg(BOp1);
3140         Neg->takeName(BO);
3141         return new ICmpInst(Pred, BOp0, Neg);
3142       }
3143     }
3144     break;
3145   }
3146   case Instruction::Xor:
3147     if (BO->hasOneUse()) {
3148       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3149         // For the xor case, we can xor two constants together, eliminating
3150         // the explicit xor.
3151         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3152       } else if (C.isZero()) {
3153         // Replace ((xor A, B) != 0) with (A != B)
3154         return new ICmpInst(Pred, BOp0, BOp1);
3155       }
3156     }
3157     break;
3158   case Instruction::Or: {
3159     const APInt *BOC;
3160     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3161       // Comparing if all bits outside of a constant mask are set?
3162       // Replace (X | C) == -1 with (X & ~C) == ~C.
3163       // This removes the -1 constant.
3164       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3165       Value *And = Builder.CreateAnd(BOp0, NotBOC);
3166       return new ICmpInst(Pred, And, NotBOC);
3167     }
3168     break;
3169   }
3170   case Instruction::And: {
3171     const APInt *BOC;
3172     if (match(BOp1, m_APInt(BOC))) {
3173       // If we have ((X & C) == C), turn it into ((X & C) != 0).
3174       if (C == *BOC && C.isPowerOf2())
3175         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
3176                             BO, Constant::getNullValue(RHS->getType()));
3177     }
3178     break;
3179   }
3180   case Instruction::UDiv:
3181     if (C.isZero()) {
3182       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3183       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3184       return new ICmpInst(NewPred, BOp1, BOp0);
3185     }
3186     break;
3187   default:
3188     break;
3189   }
3190   return nullptr;
3191 }
3192 
3193 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3194 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3195     ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
3196   Type *Ty = II->getType();
3197   unsigned BitWidth = C.getBitWidth();
3198   const ICmpInst::Predicate Pred = Cmp.getPredicate();
3199 
3200   switch (II->getIntrinsicID()) {
3201   case Intrinsic::abs:
3202     // abs(A) == 0  ->  A == 0
3203     // abs(A) == INT_MIN  ->  A == INT_MIN
3204     if (C.isZero() || C.isMinSignedValue())
3205       return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C));
3206     break;
3207 
3208   case Intrinsic::bswap:
3209     // bswap(A) == C  ->  A == bswap(C)
3210     return new ICmpInst(Pred, II->getArgOperand(0),
3211                         ConstantInt::get(Ty, C.byteSwap()));
3212 
3213   case Intrinsic::ctlz:
3214   case Intrinsic::cttz: {
3215     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3216     if (C == BitWidth)
3217       return new ICmpInst(Pred, II->getArgOperand(0),
3218                           ConstantInt::getNullValue(Ty));
3219 
3220     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3221     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3222     // Limit to one use to ensure we don't increase instruction count.
3223     unsigned Num = C.getLimitedValue(BitWidth);
3224     if (Num != BitWidth && II->hasOneUse()) {
3225       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3226       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3227                                : APInt::getHighBitsSet(BitWidth, Num + 1);
3228       APInt Mask2 = IsTrailing
3229         ? APInt::getOneBitSet(BitWidth, Num)
3230         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3231       return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1),
3232                           ConstantInt::get(Ty, Mask2));
3233     }
3234     break;
3235   }
3236 
3237   case Intrinsic::ctpop: {
3238     // popcount(A) == 0  ->  A == 0 and likewise for !=
3239     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3240     bool IsZero = C.isZero();
3241     if (IsZero || C == BitWidth)
3242       return new ICmpInst(Pred, II->getArgOperand(0),
3243                           IsZero ? Constant::getNullValue(Ty)
3244                                  : Constant::getAllOnesValue(Ty));
3245 
3246     break;
3247   }
3248 
3249   case Intrinsic::fshl:
3250   case Intrinsic::fshr:
3251     if (II->getArgOperand(0) == II->getArgOperand(1)) {
3252       const APInt *RotAmtC;
3253       // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC)
3254       // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC)
3255       if (match(II->getArgOperand(2), m_APInt(RotAmtC)))
3256         return new ICmpInst(Pred, II->getArgOperand(0),
3257                             II->getIntrinsicID() == Intrinsic::fshl
3258                                 ? ConstantInt::get(Ty, C.rotr(*RotAmtC))
3259                                 : ConstantInt::get(Ty, C.rotl(*RotAmtC)));
3260     }
3261     break;
3262 
3263   case Intrinsic::uadd_sat: {
3264     // uadd.sat(a, b) == 0  ->  (a | b) == 0
3265     if (C.isZero()) {
3266       Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3267       return new ICmpInst(Pred, Or, Constant::getNullValue(Ty));
3268     }
3269     break;
3270   }
3271 
3272   case Intrinsic::usub_sat: {
3273     // usub.sat(a, b) == 0  ->  a <= b
3274     if (C.isZero()) {
3275       ICmpInst::Predicate NewPred =
3276           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3277       return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3278     }
3279     break;
3280   }
3281   default:
3282     break;
3283   }
3284 
3285   return nullptr;
3286 }
3287 
3288 /// Fold an icmp with LLVM intrinsics
3289 static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) {
3290   assert(Cmp.isEquality());
3291 
3292   ICmpInst::Predicate Pred = Cmp.getPredicate();
3293   Value *Op0 = Cmp.getOperand(0);
3294   Value *Op1 = Cmp.getOperand(1);
3295   const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0);
3296   const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1);
3297   if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID())
3298     return nullptr;
3299 
3300   switch (IIOp0->getIntrinsicID()) {
3301   case Intrinsic::bswap:
3302   case Intrinsic::bitreverse:
3303     // If both operands are byte-swapped or bit-reversed, just compare the
3304     // original values.
3305     return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3306   case Intrinsic::fshl:
3307   case Intrinsic::fshr:
3308     // If both operands are rotated by same amount, just compare the
3309     // original values.
3310     if (IIOp0->getOperand(0) != IIOp0->getOperand(1))
3311       break;
3312     if (IIOp1->getOperand(0) != IIOp1->getOperand(1))
3313       break;
3314     if (IIOp0->getOperand(2) != IIOp1->getOperand(2))
3315       break;
3316     return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3317   default:
3318     break;
3319   }
3320 
3321   return nullptr;
3322 }
3323 
3324 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
3325 /// where X is some kind of instruction and C is AllowUndef.
3326 /// TODO: Move more folds which allow undef to this function.
3327 Instruction *
3328 InstCombinerImpl::foldICmpInstWithConstantAllowUndef(ICmpInst &Cmp,
3329                                                      const APInt &C) {
3330   const ICmpInst::Predicate Pred = Cmp.getPredicate();
3331   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) {
3332     switch (II->getIntrinsicID()) {
3333     default:
3334       break;
3335     case Intrinsic::fshl:
3336     case Intrinsic::fshr:
3337       if (Cmp.isEquality() && II->getArgOperand(0) == II->getArgOperand(1)) {
3338         // (rot X, ?) == 0/-1 --> X == 0/-1
3339         if (C.isZero() || C.isAllOnes())
3340           return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1));
3341       }
3342       break;
3343     }
3344   }
3345 
3346   return nullptr;
3347 }
3348 
3349 /// Fold an icmp with BinaryOp and constant operand: icmp Pred BO, C.
3350 Instruction *InstCombinerImpl::foldICmpBinOpWithConstant(ICmpInst &Cmp,
3351                                                          BinaryOperator *BO,
3352                                                          const APInt &C) {
3353   switch (BO->getOpcode()) {
3354   case Instruction::Xor:
3355     if (Instruction *I = foldICmpXorConstant(Cmp, BO, C))
3356       return I;
3357     break;
3358   case Instruction::And:
3359     if (Instruction *I = foldICmpAndConstant(Cmp, BO, C))
3360       return I;
3361     break;
3362   case Instruction::Or:
3363     if (Instruction *I = foldICmpOrConstant(Cmp, BO, C))
3364       return I;
3365     break;
3366   case Instruction::Mul:
3367     if (Instruction *I = foldICmpMulConstant(Cmp, BO, C))
3368       return I;
3369     break;
3370   case Instruction::Shl:
3371     if (Instruction *I = foldICmpShlConstant(Cmp, BO, C))
3372       return I;
3373     break;
3374   case Instruction::LShr:
3375   case Instruction::AShr:
3376     if (Instruction *I = foldICmpShrConstant(Cmp, BO, C))
3377       return I;
3378     break;
3379   case Instruction::SRem:
3380     if (Instruction *I = foldICmpSRemConstant(Cmp, BO, C))
3381       return I;
3382     break;
3383   case Instruction::UDiv:
3384     if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C))
3385       return I;
3386     LLVM_FALLTHROUGH;
3387   case Instruction::SDiv:
3388     if (Instruction *I = foldICmpDivConstant(Cmp, BO, C))
3389       return I;
3390     break;
3391   case Instruction::Sub:
3392     if (Instruction *I = foldICmpSubConstant(Cmp, BO, C))
3393       return I;
3394     break;
3395   case Instruction::Add:
3396     if (Instruction *I = foldICmpAddConstant(Cmp, BO, C))
3397       return I;
3398     break;
3399   default:
3400     break;
3401   }
3402 
3403   // TODO: These folds could be refactored to be part of the above calls.
3404   return foldICmpBinOpEqualityWithConstant(Cmp, BO, C);
3405 }
3406 
3407 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3408 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3409                                                              IntrinsicInst *II,
3410                                                              const APInt &C) {
3411   if (Cmp.isEquality())
3412     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3413 
3414   Type *Ty = II->getType();
3415   unsigned BitWidth = C.getBitWidth();
3416   ICmpInst::Predicate Pred = Cmp.getPredicate();
3417   switch (II->getIntrinsicID()) {
3418   case Intrinsic::ctpop: {
3419     // (ctpop X > BitWidth - 1) --> X == -1
3420     Value *X = II->getArgOperand(0);
3421     if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT)
3422       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X,
3423                              ConstantInt::getAllOnesValue(Ty));
3424     // (ctpop X < BitWidth) --> X != -1
3425     if (C == BitWidth && Pred == ICmpInst::ICMP_ULT)
3426       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X,
3427                              ConstantInt::getAllOnesValue(Ty));
3428     break;
3429   }
3430   case Intrinsic::ctlz: {
3431     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3432     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3433       unsigned Num = C.getLimitedValue();
3434       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3435       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3436                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3437     }
3438 
3439     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3440     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3441       unsigned Num = C.getLimitedValue();
3442       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3443       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3444                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3445     }
3446     break;
3447   }
3448   case Intrinsic::cttz: {
3449     // Limit to one use to ensure we don't increase instruction count.
3450     if (!II->hasOneUse())
3451       return nullptr;
3452 
3453     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3454     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3455       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3456       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3457                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3458                              ConstantInt::getNullValue(Ty));
3459     }
3460 
3461     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3462     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3463       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3464       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3465                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3466                              ConstantInt::getNullValue(Ty));
3467     }
3468     break;
3469   }
3470   default:
3471     break;
3472   }
3473 
3474   return nullptr;
3475 }
3476 
3477 /// Handle icmp with constant (but not simple integer constant) RHS.
3478 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3479   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3480   Constant *RHSC = dyn_cast<Constant>(Op1);
3481   Instruction *LHSI = dyn_cast<Instruction>(Op0);
3482   if (!RHSC || !LHSI)
3483     return nullptr;
3484 
3485   switch (LHSI->getOpcode()) {
3486   case Instruction::GetElementPtr:
3487     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3488     if (RHSC->isNullValue() &&
3489         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3490       return new ICmpInst(
3491           I.getPredicate(), LHSI->getOperand(0),
3492           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3493     break;
3494   case Instruction::PHI:
3495     // Only fold icmp into the PHI if the phi and icmp are in the same
3496     // block.  If in the same block, we're encouraging jump threading.  If
3497     // not, we are just pessimizing the code by making an i1 phi.
3498     if (LHSI->getParent() == I.getParent())
3499       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3500         return NV;
3501     break;
3502   case Instruction::IntToPtr:
3503     // icmp pred inttoptr(X), null -> icmp pred X, 0
3504     if (RHSC->isNullValue() &&
3505         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3506       return new ICmpInst(
3507           I.getPredicate(), LHSI->getOperand(0),
3508           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3509     break;
3510 
3511   case Instruction::Load:
3512     // Try to optimize things like "A[i] > 4" to index computations.
3513     if (GetElementPtrInst *GEP =
3514             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
3515       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3516         if (Instruction *Res =
3517                 foldCmpLoadFromIndexedGlobal(cast<LoadInst>(LHSI), GEP, GV, I))
3518           return Res;
3519     break;
3520   }
3521 
3522   return nullptr;
3523 }
3524 
3525 Instruction *InstCombinerImpl::foldSelectICmp(ICmpInst::Predicate Pred,
3526                                               SelectInst *SI, Value *RHS,
3527                                               const ICmpInst &I) {
3528   // Try to fold the comparison into the select arms, which will cause the
3529   // select to be converted into a logical and/or.
3530   auto SimplifyOp = [&](Value *Op, bool SelectCondIsTrue) -> Value * {
3531     if (Value *Res = simplifyICmpInst(Pred, Op, RHS, SQ))
3532       return Res;
3533     if (Optional<bool> Impl = isImpliedCondition(SI->getCondition(), Pred, Op,
3534                                                  RHS, DL, SelectCondIsTrue))
3535       return ConstantInt::get(I.getType(), *Impl);
3536     return nullptr;
3537   };
3538 
3539   ConstantInt *CI = nullptr;
3540   Value *Op1 = SimplifyOp(SI->getOperand(1), true);
3541   if (Op1)
3542     CI = dyn_cast<ConstantInt>(Op1);
3543 
3544   Value *Op2 = SimplifyOp(SI->getOperand(2), false);
3545   if (Op2)
3546     CI = dyn_cast<ConstantInt>(Op2);
3547 
3548   // We only want to perform this transformation if it will not lead to
3549   // additional code. This is true if either both sides of the select
3550   // fold to a constant (in which case the icmp is replaced with a select
3551   // which will usually simplify) or this is the only user of the
3552   // select (in which case we are trading a select+icmp for a simpler
3553   // select+icmp) or all uses of the select can be replaced based on
3554   // dominance information ("Global cases").
3555   bool Transform = false;
3556   if (Op1 && Op2)
3557     Transform = true;
3558   else if (Op1 || Op2) {
3559     // Local case
3560     if (SI->hasOneUse())
3561       Transform = true;
3562     // Global cases
3563     else if (CI && !CI->isZero())
3564       // When Op1 is constant try replacing select with second operand.
3565       // Otherwise Op2 is constant and try replacing select with first
3566       // operand.
3567       Transform = replacedSelectWithOperand(SI, &I, Op1 ? 2 : 1);
3568   }
3569   if (Transform) {
3570     if (!Op1)
3571       Op1 = Builder.CreateICmp(Pred, SI->getOperand(1), RHS, I.getName());
3572     if (!Op2)
3573       Op2 = Builder.CreateICmp(Pred, SI->getOperand(2), RHS, I.getName());
3574     return SelectInst::Create(SI->getOperand(0), Op1, Op2);
3575   }
3576 
3577   return nullptr;
3578 }
3579 
3580 /// Some comparisons can be simplified.
3581 /// In this case, we are looking for comparisons that look like
3582 /// a check for a lossy truncation.
3583 /// Folds:
3584 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3585 /// Where Mask is some pattern that produces all-ones in low bits:
3586 ///    (-1 >> y)
3587 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3588 ///   ~(-1 << y)
3589 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3590 /// The Mask can be a constant, too.
3591 /// For some predicates, the operands are commutative.
3592 /// For others, x can only be on a specific side.
3593 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3594                                           InstCombiner::BuilderTy &Builder) {
3595   ICmpInst::Predicate SrcPred;
3596   Value *X, *M, *Y;
3597   auto m_VariableMask = m_CombineOr(
3598       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3599                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3600       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3601                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3602   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3603   if (!match(&I, m_c_ICmp(SrcPred,
3604                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3605                           m_Deferred(X))))
3606     return nullptr;
3607 
3608   ICmpInst::Predicate DstPred;
3609   switch (SrcPred) {
3610   case ICmpInst::Predicate::ICMP_EQ:
3611     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3612     DstPred = ICmpInst::Predicate::ICMP_ULE;
3613     break;
3614   case ICmpInst::Predicate::ICMP_NE:
3615     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3616     DstPred = ICmpInst::Predicate::ICMP_UGT;
3617     break;
3618   case ICmpInst::Predicate::ICMP_ULT:
3619     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3620     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3621     DstPred = ICmpInst::Predicate::ICMP_UGT;
3622     break;
3623   case ICmpInst::Predicate::ICMP_UGE:
3624     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3625     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3626     DstPred = ICmpInst::Predicate::ICMP_ULE;
3627     break;
3628   case ICmpInst::Predicate::ICMP_SLT:
3629     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3630     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3631     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3632       return nullptr;
3633     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3634       return nullptr;
3635     DstPred = ICmpInst::Predicate::ICMP_SGT;
3636     break;
3637   case ICmpInst::Predicate::ICMP_SGE:
3638     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3639     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3640     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3641       return nullptr;
3642     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3643       return nullptr;
3644     DstPred = ICmpInst::Predicate::ICMP_SLE;
3645     break;
3646   case ICmpInst::Predicate::ICMP_SGT:
3647   case ICmpInst::Predicate::ICMP_SLE:
3648     return nullptr;
3649   case ICmpInst::Predicate::ICMP_UGT:
3650   case ICmpInst::Predicate::ICMP_ULE:
3651     llvm_unreachable("Instsimplify took care of commut. variant");
3652     break;
3653   default:
3654     llvm_unreachable("All possible folds are handled.");
3655   }
3656 
3657   // The mask value may be a vector constant that has undefined elements. But it
3658   // may not be safe to propagate those undefs into the new compare, so replace
3659   // those elements by copying an existing, defined, and safe scalar constant.
3660   Type *OpTy = M->getType();
3661   auto *VecC = dyn_cast<Constant>(M);
3662   auto *OpVTy = dyn_cast<FixedVectorType>(OpTy);
3663   if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) {
3664     Constant *SafeReplacementConstant = nullptr;
3665     for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
3666       if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3667         SafeReplacementConstant = VecC->getAggregateElement(i);
3668         break;
3669       }
3670     }
3671     assert(SafeReplacementConstant && "Failed to find undef replacement");
3672     M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3673   }
3674 
3675   return Builder.CreateICmp(DstPred, X, M);
3676 }
3677 
3678 /// Some comparisons can be simplified.
3679 /// In this case, we are looking for comparisons that look like
3680 /// a check for a lossy signed truncation.
3681 /// Folds:   (MaskedBits is a constant.)
3682 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3683 /// Into:
3684 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3685 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3686 static Value *
3687 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3688                                  InstCombiner::BuilderTy &Builder) {
3689   ICmpInst::Predicate SrcPred;
3690   Value *X;
3691   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3692   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3693   if (!match(&I, m_c_ICmp(SrcPred,
3694                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3695                                           m_APInt(C1))),
3696                           m_Deferred(X))))
3697     return nullptr;
3698 
3699   // Potential handling of non-splats: for each element:
3700   //  * if both are undef, replace with constant 0.
3701   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3702   //  * if both are not undef, and are different, bailout.
3703   //  * else, only one is undef, then pick the non-undef one.
3704 
3705   // The shift amount must be equal.
3706   if (*C0 != *C1)
3707     return nullptr;
3708   const APInt &MaskedBits = *C0;
3709   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3710 
3711   ICmpInst::Predicate DstPred;
3712   switch (SrcPred) {
3713   case ICmpInst::Predicate::ICMP_EQ:
3714     // ((%x << MaskedBits) a>> MaskedBits) == %x
3715     //   =>
3716     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3717     DstPred = ICmpInst::Predicate::ICMP_ULT;
3718     break;
3719   case ICmpInst::Predicate::ICMP_NE:
3720     // ((%x << MaskedBits) a>> MaskedBits) != %x
3721     //   =>
3722     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3723     DstPred = ICmpInst::Predicate::ICMP_UGE;
3724     break;
3725   // FIXME: are more folds possible?
3726   default:
3727     return nullptr;
3728   }
3729 
3730   auto *XType = X->getType();
3731   const unsigned XBitWidth = XType->getScalarSizeInBits();
3732   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3733   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3734 
3735   // KeptBits = bitwidth(%x) - MaskedBits
3736   const APInt KeptBits = BitWidth - MaskedBits;
3737   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3738   // ICmpCst = (1 << KeptBits)
3739   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3740   assert(ICmpCst.isPowerOf2());
3741   // AddCst = (1 << (KeptBits-1))
3742   const APInt AddCst = ICmpCst.lshr(1);
3743   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3744 
3745   // T0 = add %x, AddCst
3746   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3747   // T1 = T0 DstPred ICmpCst
3748   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3749 
3750   return T1;
3751 }
3752 
3753 // Given pattern:
3754 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3755 // we should move shifts to the same hand of 'and', i.e. rewrite as
3756 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3757 // We are only interested in opposite logical shifts here.
3758 // One of the shifts can be truncated.
3759 // If we can, we want to end up creating 'lshr' shift.
3760 static Value *
3761 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3762                                            InstCombiner::BuilderTy &Builder) {
3763   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3764       !I.getOperand(0)->hasOneUse())
3765     return nullptr;
3766 
3767   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3768 
3769   // Look for an 'and' of two logical shifts, one of which may be truncated.
3770   // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3771   Instruction *XShift, *MaybeTruncation, *YShift;
3772   if (!match(
3773           I.getOperand(0),
3774           m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3775                   m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3776                                    m_AnyLogicalShift, m_Instruction(YShift))),
3777                                m_Instruction(MaybeTruncation)))))
3778     return nullptr;
3779 
3780   // We potentially looked past 'trunc', but only when matching YShift,
3781   // therefore YShift must have the widest type.
3782   Instruction *WidestShift = YShift;
3783   // Therefore XShift must have the shallowest type.
3784   // Or they both have identical types if there was no truncation.
3785   Instruction *NarrowestShift = XShift;
3786 
3787   Type *WidestTy = WidestShift->getType();
3788   Type *NarrowestTy = NarrowestShift->getType();
3789   assert(NarrowestTy == I.getOperand(0)->getType() &&
3790          "We did not look past any shifts while matching XShift though.");
3791   bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3792 
3793   // If YShift is a 'lshr', swap the shifts around.
3794   if (match(YShift, m_LShr(m_Value(), m_Value())))
3795     std::swap(XShift, YShift);
3796 
3797   // The shifts must be in opposite directions.
3798   auto XShiftOpcode = XShift->getOpcode();
3799   if (XShiftOpcode == YShift->getOpcode())
3800     return nullptr; // Do not care about same-direction shifts here.
3801 
3802   Value *X, *XShAmt, *Y, *YShAmt;
3803   match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3804   match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3805 
3806   // If one of the values being shifted is a constant, then we will end with
3807   // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3808   // however, we will need to ensure that we won't increase instruction count.
3809   if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3810     // At least one of the hands of the 'and' should be one-use shift.
3811     if (!match(I.getOperand(0),
3812                m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3813       return nullptr;
3814     if (HadTrunc) {
3815       // Due to the 'trunc', we will need to widen X. For that either the old
3816       // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3817       if (!MaybeTruncation->hasOneUse() &&
3818           !NarrowestShift->getOperand(1)->hasOneUse())
3819         return nullptr;
3820     }
3821   }
3822 
3823   // We have two shift amounts from two different shifts. The types of those
3824   // shift amounts may not match. If that's the case let's bailout now.
3825   if (XShAmt->getType() != YShAmt->getType())
3826     return nullptr;
3827 
3828   // As input, we have the following pattern:
3829   //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3830   // We want to rewrite that as:
3831   //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3832   // While we know that originally (Q+K) would not overflow
3833   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
3834   // shift amounts. so it may now overflow in smaller bitwidth.
3835   // To ensure that does not happen, we need to ensure that the total maximal
3836   // shift amount is still representable in that smaller bit width.
3837   unsigned MaximalPossibleTotalShiftAmount =
3838       (WidestTy->getScalarSizeInBits() - 1) +
3839       (NarrowestTy->getScalarSizeInBits() - 1);
3840   APInt MaximalRepresentableShiftAmount =
3841       APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits());
3842   if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3843     return nullptr;
3844 
3845   // Can we fold (XShAmt+YShAmt) ?
3846   auto *NewShAmt = dyn_cast_or_null<Constant>(
3847       simplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3848                       /*isNUW=*/false, SQ.getWithInstruction(&I)));
3849   if (!NewShAmt)
3850     return nullptr;
3851   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3852   unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3853 
3854   // Is the new shift amount smaller than the bit width?
3855   // FIXME: could also rely on ConstantRange.
3856   if (!match(NewShAmt,
3857              m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3858                                 APInt(WidestBitWidth, WidestBitWidth))))
3859     return nullptr;
3860 
3861   // An extra legality check is needed if we had trunc-of-lshr.
3862   if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3863     auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3864                     WidestShift]() {
3865       // It isn't obvious whether it's worth it to analyze non-constants here.
3866       // Also, let's basically give up on non-splat cases, pessimizing vectors.
3867       // If *any* of these preconditions matches we can perform the fold.
3868       Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3869                                     ? NewShAmt->getSplatValue()
3870                                     : NewShAmt;
3871       // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3872       if (NewShAmtSplat &&
3873           (NewShAmtSplat->isNullValue() ||
3874            NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3875         return true;
3876       // We consider *min* leading zeros so a single outlier
3877       // blocks the transform as opposed to allowing it.
3878       if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3879         KnownBits Known = computeKnownBits(C, SQ.DL);
3880         unsigned MinLeadZero = Known.countMinLeadingZeros();
3881         // If the value being shifted has at most lowest bit set we can fold.
3882         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3883         if (MaxActiveBits <= 1)
3884           return true;
3885         // Precondition:  NewShAmt u<= countLeadingZeros(C)
3886         if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3887           return true;
3888       }
3889       if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3890         KnownBits Known = computeKnownBits(C, SQ.DL);
3891         unsigned MinLeadZero = Known.countMinLeadingZeros();
3892         // If the value being shifted has at most lowest bit set we can fold.
3893         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3894         if (MaxActiveBits <= 1)
3895           return true;
3896         // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3897         if (NewShAmtSplat) {
3898           APInt AdjNewShAmt =
3899               (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3900           if (AdjNewShAmt.ule(MinLeadZero))
3901             return true;
3902         }
3903       }
3904       return false; // Can't tell if it's ok.
3905     };
3906     if (!CanFold())
3907       return nullptr;
3908   }
3909 
3910   // All good, we can do this fold.
3911   X = Builder.CreateZExt(X, WidestTy);
3912   Y = Builder.CreateZExt(Y, WidestTy);
3913   // The shift is the same that was for X.
3914   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3915                   ? Builder.CreateLShr(X, NewShAmt)
3916                   : Builder.CreateShl(X, NewShAmt);
3917   Value *T1 = Builder.CreateAnd(T0, Y);
3918   return Builder.CreateICmp(I.getPredicate(), T1,
3919                             Constant::getNullValue(WidestTy));
3920 }
3921 
3922 /// Fold
3923 ///   (-1 u/ x) u< y
3924 ///   ((x * y) ?/ x) != y
3925 /// to
3926 ///   @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit
3927 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3928 /// will mean that we are looking for the opposite answer.
3929 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) {
3930   ICmpInst::Predicate Pred;
3931   Value *X, *Y;
3932   Instruction *Mul;
3933   Instruction *Div;
3934   bool NeedNegation;
3935   // Look for: (-1 u/ x) u</u>= y
3936   if (!I.isEquality() &&
3937       match(&I, m_c_ICmp(Pred,
3938                          m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3939                                       m_Instruction(Div)),
3940                          m_Value(Y)))) {
3941     Mul = nullptr;
3942 
3943     // Are we checking that overflow does not happen, or does happen?
3944     switch (Pred) {
3945     case ICmpInst::Predicate::ICMP_ULT:
3946       NeedNegation = false;
3947       break; // OK
3948     case ICmpInst::Predicate::ICMP_UGE:
3949       NeedNegation = true;
3950       break; // OK
3951     default:
3952       return nullptr; // Wrong predicate.
3953     }
3954   } else // Look for: ((x * y) / x) !=/== y
3955       if (I.isEquality() &&
3956           match(&I,
3957                 m_c_ICmp(Pred, m_Value(Y),
3958                          m_CombineAnd(
3959                              m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3960                                                                   m_Value(X)),
3961                                                           m_Instruction(Mul)),
3962                                              m_Deferred(X))),
3963                              m_Instruction(Div))))) {
3964     NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3965   } else
3966     return nullptr;
3967 
3968   BuilderTy::InsertPointGuard Guard(Builder);
3969   // If the pattern included (x * y), we'll want to insert new instructions
3970   // right before that original multiplication so that we can replace it.
3971   bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3972   if (MulHadOtherUses)
3973     Builder.SetInsertPoint(Mul);
3974 
3975   Function *F = Intrinsic::getDeclaration(I.getModule(),
3976                                           Div->getOpcode() == Instruction::UDiv
3977                                               ? Intrinsic::umul_with_overflow
3978                                               : Intrinsic::smul_with_overflow,
3979                                           X->getType());
3980   CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul");
3981 
3982   // If the multiplication was used elsewhere, to ensure that we don't leave
3983   // "duplicate" instructions, replace uses of that original multiplication
3984   // with the multiplication result from the with.overflow intrinsic.
3985   if (MulHadOtherUses)
3986     replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val"));
3987 
3988   Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov");
3989   if (NeedNegation) // This technically increases instruction count.
3990     Res = Builder.CreateNot(Res, "mul.not.ov");
3991 
3992   // If we replaced the mul, erase it. Do this after all uses of Builder,
3993   // as the mul is used as insertion point.
3994   if (MulHadOtherUses)
3995     eraseInstFromFunction(*Mul);
3996 
3997   return Res;
3998 }
3999 
4000 static Instruction *foldICmpXNegX(ICmpInst &I) {
4001   CmpInst::Predicate Pred;
4002   Value *X;
4003   if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X))))
4004     return nullptr;
4005 
4006   if (ICmpInst::isSigned(Pred))
4007     Pred = ICmpInst::getSwappedPredicate(Pred);
4008   else if (ICmpInst::isUnsigned(Pred))
4009     Pred = ICmpInst::getSignedPredicate(Pred);
4010   // else for equality-comparisons just keep the predicate.
4011 
4012   return ICmpInst::Create(Instruction::ICmp, Pred, X,
4013                           Constant::getNullValue(X->getType()), I.getName());
4014 }
4015 
4016 /// Try to fold icmp (binop), X or icmp X, (binop).
4017 /// TODO: A large part of this logic is duplicated in InstSimplify's
4018 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
4019 /// duplication.
4020 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
4021                                              const SimplifyQuery &SQ) {
4022   const SimplifyQuery Q = SQ.getWithInstruction(&I);
4023   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4024 
4025   // Special logic for binary operators.
4026   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
4027   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
4028   if (!BO0 && !BO1)
4029     return nullptr;
4030 
4031   if (Instruction *NewICmp = foldICmpXNegX(I))
4032     return NewICmp;
4033 
4034   const CmpInst::Predicate Pred = I.getPredicate();
4035   Value *X;
4036 
4037   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
4038   // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
4039   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
4040       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
4041     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
4042   // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
4043   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
4044       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
4045     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
4046 
4047   {
4048     // (Op1 + X) + C u</u>= Op1 --> ~C - X u</u>= Op1
4049     Constant *C;
4050     if (match(Op0, m_OneUse(m_Add(m_c_Add(m_Specific(Op1), m_Value(X)),
4051                                   m_ImmConstant(C)))) &&
4052         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
4053       Constant *C2 = ConstantExpr::getNot(C);
4054       return new ICmpInst(Pred, Builder.CreateSub(C2, X), Op1);
4055     }
4056     // Op0 u>/u<= (Op0 + X) + C --> Op0 u>/u<= ~C - X
4057     if (match(Op1, m_OneUse(m_Add(m_c_Add(m_Specific(Op0), m_Value(X)),
4058                                   m_ImmConstant(C)))) &&
4059         (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) {
4060       Constant *C2 = ConstantExpr::getNot(C);
4061       return new ICmpInst(Pred, Op0, Builder.CreateSub(C2, X));
4062     }
4063   }
4064 
4065   {
4066     // Similar to above: an unsigned overflow comparison may use offset + mask:
4067     // ((Op1 + C) & C) u<  Op1 --> Op1 != 0
4068     // ((Op1 + C) & C) u>= Op1 --> Op1 == 0
4069     // Op0 u>  ((Op0 + C) & C) --> Op0 != 0
4070     // Op0 u<= ((Op0 + C) & C) --> Op0 == 0
4071     BinaryOperator *BO;
4072     const APInt *C;
4073     if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) &&
4074         match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
4075         match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowUndef(*C)))) {
4076       CmpInst::Predicate NewPred =
4077           Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
4078       Constant *Zero = ConstantInt::getNullValue(Op1->getType());
4079       return new ICmpInst(NewPred, Op1, Zero);
4080     }
4081 
4082     if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) &&
4083         match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
4084         match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowUndef(*C)))) {
4085       CmpInst::Predicate NewPred =
4086           Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
4087       Constant *Zero = ConstantInt::getNullValue(Op1->getType());
4088       return new ICmpInst(NewPred, Op0, Zero);
4089     }
4090   }
4091 
4092   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
4093   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
4094     NoOp0WrapProblem =
4095         ICmpInst::isEquality(Pred) ||
4096         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
4097         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
4098   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
4099     NoOp1WrapProblem =
4100         ICmpInst::isEquality(Pred) ||
4101         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
4102         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
4103 
4104   // Analyze the case when either Op0 or Op1 is an add instruction.
4105   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
4106   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
4107   if (BO0 && BO0->getOpcode() == Instruction::Add) {
4108     A = BO0->getOperand(0);
4109     B = BO0->getOperand(1);
4110   }
4111   if (BO1 && BO1->getOpcode() == Instruction::Add) {
4112     C = BO1->getOperand(0);
4113     D = BO1->getOperand(1);
4114   }
4115 
4116   // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
4117   // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
4118   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
4119     return new ICmpInst(Pred, A == Op1 ? B : A,
4120                         Constant::getNullValue(Op1->getType()));
4121 
4122   // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
4123   // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
4124   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
4125     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
4126                         C == Op0 ? D : C);
4127 
4128   // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
4129   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
4130       NoOp1WrapProblem) {
4131     // Determine Y and Z in the form icmp (X+Y), (X+Z).
4132     Value *Y, *Z;
4133     if (A == C) {
4134       // C + B == C + D  ->  B == D
4135       Y = B;
4136       Z = D;
4137     } else if (A == D) {
4138       // D + B == C + D  ->  B == C
4139       Y = B;
4140       Z = C;
4141     } else if (B == C) {
4142       // A + C == C + D  ->  A == D
4143       Y = A;
4144       Z = D;
4145     } else {
4146       assert(B == D);
4147       // A + D == C + D  ->  A == C
4148       Y = A;
4149       Z = C;
4150     }
4151     return new ICmpInst(Pred, Y, Z);
4152   }
4153 
4154   // icmp slt (A + -1), Op1 -> icmp sle A, Op1
4155   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
4156       match(B, m_AllOnes()))
4157     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
4158 
4159   // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
4160   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
4161       match(B, m_AllOnes()))
4162     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
4163 
4164   // icmp sle (A + 1), Op1 -> icmp slt A, Op1
4165   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
4166     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
4167 
4168   // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
4169   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
4170     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
4171 
4172   // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
4173   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
4174       match(D, m_AllOnes()))
4175     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
4176 
4177   // icmp sle Op0, (C + -1) -> icmp slt Op0, C
4178   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
4179       match(D, m_AllOnes()))
4180     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
4181 
4182   // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
4183   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
4184     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
4185 
4186   // icmp slt Op0, (C + 1) -> icmp sle Op0, C
4187   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
4188     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
4189 
4190   // TODO: The subtraction-related identities shown below also hold, but
4191   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
4192   // wouldn't happen even if they were implemented.
4193   //
4194   // icmp ult (A - 1), Op1 -> icmp ule A, Op1
4195   // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
4196   // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
4197   // icmp ule Op0, (C - 1) -> icmp ult Op0, C
4198 
4199   // icmp ule (A + 1), Op0 -> icmp ult A, Op1
4200   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
4201     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
4202 
4203   // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
4204   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
4205     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
4206 
4207   // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
4208   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
4209     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
4210 
4211   // icmp ult Op0, (C + 1) -> icmp ule Op0, C
4212   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
4213     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
4214 
4215   // if C1 has greater magnitude than C2:
4216   //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
4217   //  s.t. C3 = C1 - C2
4218   //
4219   // if C2 has greater magnitude than C1:
4220   //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
4221   //  s.t. C3 = C2 - C1
4222   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
4223       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) {
4224     const APInt *AP1, *AP2;
4225     // TODO: Support non-uniform vectors.
4226     // TODO: Allow undef passthrough if B AND D's element is undef.
4227     if (match(B, m_APIntAllowUndef(AP1)) && match(D, m_APIntAllowUndef(AP2)) &&
4228         AP1->isNegative() == AP2->isNegative()) {
4229       APInt AP1Abs = AP1->abs();
4230       APInt AP2Abs = AP2->abs();
4231       if (AP1Abs.uge(AP2Abs)) {
4232         APInt Diff = *AP1 - *AP2;
4233         bool HasNUW = BO0->hasNoUnsignedWrap() && Diff.ule(*AP1);
4234         bool HasNSW = BO0->hasNoSignedWrap();
4235         Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff);
4236         Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW);
4237         return new ICmpInst(Pred, NewAdd, C);
4238       } else {
4239         APInt Diff = *AP2 - *AP1;
4240         bool HasNUW = BO1->hasNoUnsignedWrap() && Diff.ule(*AP2);
4241         bool HasNSW = BO1->hasNoSignedWrap();
4242         Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff);
4243         Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW);
4244         return new ICmpInst(Pred, A, NewAdd);
4245       }
4246     }
4247     Constant *Cst1, *Cst2;
4248     if (match(B, m_ImmConstant(Cst1)) && match(D, m_ImmConstant(Cst2)) &&
4249         ICmpInst::isEquality(Pred)) {
4250       Constant *Diff = ConstantExpr::getSub(Cst2, Cst1);
4251       Value *NewAdd = Builder.CreateAdd(C, Diff);
4252       return new ICmpInst(Pred, A, NewAdd);
4253     }
4254   }
4255 
4256   // Analyze the case when either Op0 or Op1 is a sub instruction.
4257   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
4258   A = nullptr;
4259   B = nullptr;
4260   C = nullptr;
4261   D = nullptr;
4262   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
4263     A = BO0->getOperand(0);
4264     B = BO0->getOperand(1);
4265   }
4266   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
4267     C = BO1->getOperand(0);
4268     D = BO1->getOperand(1);
4269   }
4270 
4271   // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
4272   if (A == Op1 && NoOp0WrapProblem)
4273     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
4274   // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
4275   if (C == Op0 && NoOp1WrapProblem)
4276     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
4277 
4278   // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
4279   // (A - B) u>/u<= A --> B u>/u<= A
4280   if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
4281     return new ICmpInst(Pred, B, A);
4282   // C u</u>= (C - D) --> C u</u>= D
4283   if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
4284     return new ICmpInst(Pred, C, D);
4285   // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
4286   if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
4287       isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4288     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
4289   // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
4290   if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
4291       isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4292     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
4293 
4294   // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
4295   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
4296     return new ICmpInst(Pred, A, C);
4297 
4298   // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
4299   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
4300     return new ICmpInst(Pred, D, B);
4301 
4302   // icmp (0-X) < cst --> x > -cst
4303   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
4304     Value *X;
4305     if (match(BO0, m_Neg(m_Value(X))))
4306       if (Constant *RHSC = dyn_cast<Constant>(Op1))
4307         if (RHSC->isNotMinSignedValue())
4308           return new ICmpInst(I.getSwappedPredicate(), X,
4309                               ConstantExpr::getNeg(RHSC));
4310   }
4311 
4312   {
4313     // Try to remove shared constant multiplier from equality comparison:
4314     // X * C == Y * C (with no overflowing/aliasing) --> X == Y
4315     Value *X, *Y;
4316     const APInt *C;
4317     if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 &&
4318         match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality())
4319       if (!C->countTrailingZeros() ||
4320           (BO0 && BO1 && BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) ||
4321           (BO0 && BO1 && BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap()))
4322       return new ICmpInst(Pred, X, Y);
4323   }
4324 
4325   BinaryOperator *SRem = nullptr;
4326   // icmp (srem X, Y), Y
4327   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
4328     SRem = BO0;
4329   // icmp Y, (srem X, Y)
4330   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
4331            Op0 == BO1->getOperand(1))
4332     SRem = BO1;
4333   if (SRem) {
4334     // We don't check hasOneUse to avoid increasing register pressure because
4335     // the value we use is the same value this instruction was already using.
4336     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
4337     default:
4338       break;
4339     case ICmpInst::ICMP_EQ:
4340       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4341     case ICmpInst::ICMP_NE:
4342       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4343     case ICmpInst::ICMP_SGT:
4344     case ICmpInst::ICMP_SGE:
4345       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
4346                           Constant::getAllOnesValue(SRem->getType()));
4347     case ICmpInst::ICMP_SLT:
4348     case ICmpInst::ICMP_SLE:
4349       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
4350                           Constant::getNullValue(SRem->getType()));
4351     }
4352   }
4353 
4354   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
4355       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
4356     switch (BO0->getOpcode()) {
4357     default:
4358       break;
4359     case Instruction::Add:
4360     case Instruction::Sub:
4361     case Instruction::Xor: {
4362       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
4363         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4364 
4365       const APInt *C;
4366       if (match(BO0->getOperand(1), m_APInt(C))) {
4367         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
4368         if (C->isSignMask()) {
4369           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4370           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4371         }
4372 
4373         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
4374         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
4375           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4376           NewPred = I.getSwappedPredicate(NewPred);
4377           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4378         }
4379       }
4380       break;
4381     }
4382     case Instruction::Mul: {
4383       if (!I.isEquality())
4384         break;
4385 
4386       const APInt *C;
4387       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() &&
4388           !C->isOne()) {
4389         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4390         // Mask = -1 >> count-trailing-zeros(C).
4391         if (unsigned TZs = C->countTrailingZeros()) {
4392           Constant *Mask = ConstantInt::get(
4393               BO0->getType(),
4394               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4395           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4396           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4397           return new ICmpInst(Pred, And1, And2);
4398         }
4399       }
4400       break;
4401     }
4402     case Instruction::UDiv:
4403     case Instruction::LShr:
4404       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4405         break;
4406       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4407 
4408     case Instruction::SDiv:
4409       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
4410         break;
4411       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4412 
4413     case Instruction::AShr:
4414       if (!BO0->isExact() || !BO1->isExact())
4415         break;
4416       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4417 
4418     case Instruction::Shl: {
4419       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
4420       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
4421       if (!NUW && !NSW)
4422         break;
4423       if (!NSW && I.isSigned())
4424         break;
4425       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4426     }
4427     }
4428   }
4429 
4430   if (BO0) {
4431     // Transform  A & (L - 1) `ult` L --> L != 0
4432     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4433     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4434 
4435     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4436       auto *Zero = Constant::getNullValue(BO0->getType());
4437       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4438     }
4439   }
4440 
4441   if (Value *V = foldMultiplicationOverflowCheck(I))
4442     return replaceInstUsesWith(I, V);
4443 
4444   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4445     return replaceInstUsesWith(I, V);
4446 
4447   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4448     return replaceInstUsesWith(I, V);
4449 
4450   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4451     return replaceInstUsesWith(I, V);
4452 
4453   return nullptr;
4454 }
4455 
4456 /// Fold icmp Pred min|max(X, Y), X.
4457 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4458   ICmpInst::Predicate Pred = Cmp.getPredicate();
4459   Value *Op0 = Cmp.getOperand(0);
4460   Value *X = Cmp.getOperand(1);
4461 
4462   // Canonicalize minimum or maximum operand to LHS of the icmp.
4463   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4464       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4465       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4466       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4467     std::swap(Op0, X);
4468     Pred = Cmp.getSwappedPredicate();
4469   }
4470 
4471   Value *Y;
4472   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4473     // smin(X, Y)  == X --> X s<= Y
4474     // smin(X, Y) s>= X --> X s<= Y
4475     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4476       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4477 
4478     // smin(X, Y) != X --> X s> Y
4479     // smin(X, Y) s< X --> X s> Y
4480     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4481       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4482 
4483     // These cases should be handled in InstSimplify:
4484     // smin(X, Y) s<= X --> true
4485     // smin(X, Y) s> X --> false
4486     return nullptr;
4487   }
4488 
4489   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4490     // smax(X, Y)  == X --> X s>= Y
4491     // smax(X, Y) s<= X --> X s>= Y
4492     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4493       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4494 
4495     // smax(X, Y) != X --> X s< Y
4496     // smax(X, Y) s> X --> X s< Y
4497     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4498       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4499 
4500     // These cases should be handled in InstSimplify:
4501     // smax(X, Y) s>= X --> true
4502     // smax(X, Y) s< X --> false
4503     return nullptr;
4504   }
4505 
4506   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4507     // umin(X, Y)  == X --> X u<= Y
4508     // umin(X, Y) u>= X --> X u<= Y
4509     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4510       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4511 
4512     // umin(X, Y) != X --> X u> Y
4513     // umin(X, Y) u< X --> X u> Y
4514     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4515       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4516 
4517     // These cases should be handled in InstSimplify:
4518     // umin(X, Y) u<= X --> true
4519     // umin(X, Y) u> X --> false
4520     return nullptr;
4521   }
4522 
4523   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4524     // umax(X, Y)  == X --> X u>= Y
4525     // umax(X, Y) u<= X --> X u>= Y
4526     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4527       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4528 
4529     // umax(X, Y) != X --> X u< Y
4530     // umax(X, Y) u> X --> X u< Y
4531     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4532       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4533 
4534     // These cases should be handled in InstSimplify:
4535     // umax(X, Y) u>= X --> true
4536     // umax(X, Y) u< X --> false
4537     return nullptr;
4538   }
4539 
4540   return nullptr;
4541 }
4542 
4543 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
4544   if (!I.isEquality())
4545     return nullptr;
4546 
4547   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4548   const CmpInst::Predicate Pred = I.getPredicate();
4549   Value *A, *B, *C, *D;
4550   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4551     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
4552       Value *OtherVal = A == Op1 ? B : A;
4553       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4554     }
4555 
4556     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4557       // A^c1 == C^c2 --> A == C^(c1^c2)
4558       ConstantInt *C1, *C2;
4559       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4560           Op1->hasOneUse()) {
4561         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4562         Value *Xor = Builder.CreateXor(C, NC);
4563         return new ICmpInst(Pred, A, Xor);
4564       }
4565 
4566       // A^B == A^D -> B == D
4567       if (A == C)
4568         return new ICmpInst(Pred, B, D);
4569       if (A == D)
4570         return new ICmpInst(Pred, B, C);
4571       if (B == C)
4572         return new ICmpInst(Pred, A, D);
4573       if (B == D)
4574         return new ICmpInst(Pred, A, C);
4575     }
4576   }
4577 
4578   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4579     // A == (A^B)  ->  B == 0
4580     Value *OtherVal = A == Op0 ? B : A;
4581     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4582   }
4583 
4584   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4585   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4586       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4587     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4588 
4589     if (A == C) {
4590       X = B;
4591       Y = D;
4592       Z = A;
4593     } else if (A == D) {
4594       X = B;
4595       Y = C;
4596       Z = A;
4597     } else if (B == C) {
4598       X = A;
4599       Y = D;
4600       Z = B;
4601     } else if (B == D) {
4602       X = A;
4603       Y = C;
4604       Z = B;
4605     }
4606 
4607     if (X) { // Build (X^Y) & Z
4608       Op1 = Builder.CreateXor(X, Y);
4609       Op1 = Builder.CreateAnd(Op1, Z);
4610       return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4611     }
4612   }
4613 
4614   {
4615     // Similar to above, but specialized for constant because invert is needed:
4616     // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0
4617     Value *X, *Y;
4618     Constant *C;
4619     if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) &&
4620         match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) {
4621       Value *Xor = Builder.CreateXor(X, Y);
4622       Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C));
4623       return new ICmpInst(Pred, And, Constant::getNullValue(And->getType()));
4624     }
4625   }
4626 
4627   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4628   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4629   ConstantInt *Cst1;
4630   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4631        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4632       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4633        match(Op1, m_ZExt(m_Value(A))))) {
4634     APInt Pow2 = Cst1->getValue() + 1;
4635     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4636         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4637       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4638   }
4639 
4640   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4641   // For lshr and ashr pairs.
4642   const APInt *AP1, *AP2;
4643   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_APIntAllowUndef(AP1)))) &&
4644        match(Op1, m_OneUse(m_LShr(m_Value(B), m_APIntAllowUndef(AP2))))) ||
4645       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_APIntAllowUndef(AP1)))) &&
4646        match(Op1, m_OneUse(m_AShr(m_Value(B), m_APIntAllowUndef(AP2)))))) {
4647     if (AP1 != AP2)
4648       return nullptr;
4649     unsigned TypeBits = AP1->getBitWidth();
4650     unsigned ShAmt = AP1->getLimitedValue(TypeBits);
4651     if (ShAmt < TypeBits && ShAmt != 0) {
4652       ICmpInst::Predicate NewPred =
4653           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4654       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4655       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4656       return new ICmpInst(NewPred, Xor, ConstantInt::get(A->getType(), CmpVal));
4657     }
4658   }
4659 
4660   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4661   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4662       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4663     unsigned TypeBits = Cst1->getBitWidth();
4664     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4665     if (ShAmt < TypeBits && ShAmt != 0) {
4666       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4667       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4668       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4669                                       I.getName() + ".mask");
4670       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4671     }
4672   }
4673 
4674   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4675   // "icmp (and X, mask), cst"
4676   uint64_t ShAmt = 0;
4677   if (Op0->hasOneUse() &&
4678       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4679       match(Op1, m_ConstantInt(Cst1)) &&
4680       // Only do this when A has multiple uses.  This is most important to do
4681       // when it exposes other optimizations.
4682       !A->hasOneUse()) {
4683     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4684 
4685     if (ShAmt < ASize) {
4686       APInt MaskV =
4687           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4688       MaskV <<= ShAmt;
4689 
4690       APInt CmpV = Cst1->getValue().zext(ASize);
4691       CmpV <<= ShAmt;
4692 
4693       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4694       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4695     }
4696   }
4697 
4698   if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I))
4699     return ICmp;
4700 
4701   // Canonicalize checking for a power-of-2-or-zero value:
4702   // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4703   // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4704   if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4705                                    m_Deferred(A)))) ||
4706       !match(Op1, m_ZeroInt()))
4707     A = nullptr;
4708 
4709   // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4710   // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4711   if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4712     A = Op1;
4713   else if (match(Op1,
4714                  m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4715     A = Op0;
4716 
4717   if (A) {
4718     Type *Ty = A->getType();
4719     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4720     return Pred == ICmpInst::ICMP_EQ
4721         ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4722         : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4723   }
4724 
4725   // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the
4726   // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX",
4727   // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps
4728   // of instcombine.
4729   unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
4730   if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) &&
4731       match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) &&
4732       A->getType()->getScalarSizeInBits() == BitWidth * 2 &&
4733       (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) {
4734     APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1);
4735     Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C));
4736     return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT
4737                                                   : ICmpInst::ICMP_UGE,
4738                         Add, ConstantInt::get(A->getType(), C.shl(1)));
4739   }
4740 
4741   return nullptr;
4742 }
4743 
4744 static Instruction *foldICmpWithTrunc(ICmpInst &ICmp,
4745                                       InstCombiner::BuilderTy &Builder) {
4746   ICmpInst::Predicate Pred = ICmp.getPredicate();
4747   Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1);
4748 
4749   // Try to canonicalize trunc + compare-to-constant into a mask + cmp.
4750   // The trunc masks high bits while the compare may effectively mask low bits.
4751   Value *X;
4752   const APInt *C;
4753   if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C)))
4754     return nullptr;
4755 
4756   // This matches patterns corresponding to tests of the signbit as well as:
4757   // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?)
4758   // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?)
4759   APInt Mask;
4760   if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) {
4761     Value *And = Builder.CreateAnd(X, Mask);
4762     Constant *Zero = ConstantInt::getNullValue(X->getType());
4763     return new ICmpInst(Pred, And, Zero);
4764   }
4765 
4766   unsigned SrcBits = X->getType()->getScalarSizeInBits();
4767   if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) {
4768     // If C is a negative power-of-2 (high-bit mask):
4769     // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?)
4770     Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits));
4771     Value *And = Builder.CreateAnd(X, MaskC);
4772     return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC);
4773   }
4774 
4775   if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) {
4776     // If C is not-of-power-of-2 (one clear bit):
4777     // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?)
4778     Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits));
4779     Value *And = Builder.CreateAnd(X, MaskC);
4780     return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC);
4781   }
4782 
4783   return nullptr;
4784 }
4785 
4786 Instruction *InstCombinerImpl::foldICmpWithZextOrSext(ICmpInst &ICmp) {
4787   assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4788   auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4789   Value *X;
4790   if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4791     return nullptr;
4792 
4793   bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4794   bool IsSignedCmp = ICmp.isSigned();
4795 
4796   // icmp Pred (ext X), (ext Y)
4797   Value *Y;
4798   if (match(ICmp.getOperand(1), m_ZExtOrSExt(m_Value(Y)))) {
4799     bool IsZext0 = isa<ZExtOperator>(ICmp.getOperand(0));
4800     bool IsZext1 = isa<ZExtOperator>(ICmp.getOperand(1));
4801 
4802     // If we have mismatched casts, treat the zext of a non-negative source as
4803     // a sext to simulate matching casts. Otherwise, we are done.
4804     // TODO: Can we handle some predicates (equality) without non-negative?
4805     if (IsZext0 != IsZext1) {
4806       if ((IsZext0 && isKnownNonNegative(X, DL, 0, &AC, &ICmp, &DT)) ||
4807           (IsZext1 && isKnownNonNegative(Y, DL, 0, &AC, &ICmp, &DT)))
4808         IsSignedExt = true;
4809       else
4810         return nullptr;
4811     }
4812 
4813     // Not an extension from the same type?
4814     Type *XTy = X->getType(), *YTy = Y->getType();
4815     if (XTy != YTy) {
4816       // One of the casts must have one use because we are creating a new cast.
4817       if (!ICmp.getOperand(0)->hasOneUse() && !ICmp.getOperand(1)->hasOneUse())
4818         return nullptr;
4819       // Extend the narrower operand to the type of the wider operand.
4820       CastInst::CastOps CastOpcode =
4821           IsSignedExt ? Instruction::SExt : Instruction::ZExt;
4822       if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4823         X = Builder.CreateCast(CastOpcode, X, YTy);
4824       else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4825         Y = Builder.CreateCast(CastOpcode, Y, XTy);
4826       else
4827         return nullptr;
4828     }
4829 
4830     // (zext X) == (zext Y) --> X == Y
4831     // (sext X) == (sext Y) --> X == Y
4832     if (ICmp.isEquality())
4833       return new ICmpInst(ICmp.getPredicate(), X, Y);
4834 
4835     // A signed comparison of sign extended values simplifies into a
4836     // signed comparison.
4837     if (IsSignedCmp && IsSignedExt)
4838       return new ICmpInst(ICmp.getPredicate(), X, Y);
4839 
4840     // The other three cases all fold into an unsigned comparison.
4841     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4842   }
4843 
4844   // Below here, we are only folding a compare with constant.
4845   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4846   if (!C)
4847     return nullptr;
4848 
4849   // Compute the constant that would happen if we truncated to SrcTy then
4850   // re-extended to DestTy.
4851   Type *SrcTy = CastOp0->getSrcTy();
4852   Type *DestTy = CastOp0->getDestTy();
4853   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4854   Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4855 
4856   // If the re-extended constant didn't change...
4857   if (Res2 == C) {
4858     if (ICmp.isEquality())
4859       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4860 
4861     // A signed comparison of sign extended values simplifies into a
4862     // signed comparison.
4863     if (IsSignedExt && IsSignedCmp)
4864       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4865 
4866     // The other three cases all fold into an unsigned comparison.
4867     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4868   }
4869 
4870   // The re-extended constant changed, partly changed (in the case of a vector),
4871   // or could not be determined to be equal (in the case of a constant
4872   // expression), so the constant cannot be represented in the shorter type.
4873   // All the cases that fold to true or false will have already been handled
4874   // by simplifyICmpInst, so only deal with the tricky case.
4875   if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4876     return nullptr;
4877 
4878   // Is source op positive?
4879   // icmp ult (sext X), C --> icmp sgt X, -1
4880   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4881     return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4882 
4883   // Is source op negative?
4884   // icmp ugt (sext X), C --> icmp slt X, 0
4885   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4886   return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4887 }
4888 
4889 /// Handle icmp (cast x), (cast or constant).
4890 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
4891   // If any operand of ICmp is a inttoptr roundtrip cast then remove it as
4892   // icmp compares only pointer's value.
4893   // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2.
4894   Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0));
4895   Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1));
4896   if (SimplifiedOp0 || SimplifiedOp1)
4897     return new ICmpInst(ICmp.getPredicate(),
4898                         SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0),
4899                         SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1));
4900 
4901   auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4902   if (!CastOp0)
4903     return nullptr;
4904   if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4905     return nullptr;
4906 
4907   Value *Op0Src = CastOp0->getOperand(0);
4908   Type *SrcTy = CastOp0->getSrcTy();
4909   Type *DestTy = CastOp0->getDestTy();
4910 
4911   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4912   // integer type is the same size as the pointer type.
4913   auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4914     if (isa<VectorType>(SrcTy)) {
4915       SrcTy = cast<VectorType>(SrcTy)->getElementType();
4916       DestTy = cast<VectorType>(DestTy)->getElementType();
4917     }
4918     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4919   };
4920   if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4921       CompatibleSizes(SrcTy, DestTy)) {
4922     Value *NewOp1 = nullptr;
4923     if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4924       Value *PtrSrc = PtrToIntOp1->getOperand(0);
4925       if (PtrSrc->getType()->getPointerAddressSpace() ==
4926           Op0Src->getType()->getPointerAddressSpace()) {
4927         NewOp1 = PtrToIntOp1->getOperand(0);
4928         // If the pointer types don't match, insert a bitcast.
4929         if (Op0Src->getType() != NewOp1->getType())
4930           NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4931       }
4932     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4933       NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4934     }
4935 
4936     if (NewOp1)
4937       return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4938   }
4939 
4940   if (Instruction *R = foldICmpWithTrunc(ICmp, Builder))
4941     return R;
4942 
4943   return foldICmpWithZextOrSext(ICmp);
4944 }
4945 
4946 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4947   switch (BinaryOp) {
4948     default:
4949       llvm_unreachable("Unsupported binary op");
4950     case Instruction::Add:
4951     case Instruction::Sub:
4952       return match(RHS, m_Zero());
4953     case Instruction::Mul:
4954       return match(RHS, m_One());
4955   }
4956 }
4957 
4958 OverflowResult
4959 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
4960                                   bool IsSigned, Value *LHS, Value *RHS,
4961                                   Instruction *CxtI) const {
4962   switch (BinaryOp) {
4963     default:
4964       llvm_unreachable("Unsupported binary op");
4965     case Instruction::Add:
4966       if (IsSigned)
4967         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4968       else
4969         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4970     case Instruction::Sub:
4971       if (IsSigned)
4972         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4973       else
4974         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4975     case Instruction::Mul:
4976       if (IsSigned)
4977         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4978       else
4979         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4980   }
4981 }
4982 
4983 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
4984                                              bool IsSigned, Value *LHS,
4985                                              Value *RHS, Instruction &OrigI,
4986                                              Value *&Result,
4987                                              Constant *&Overflow) {
4988   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4989     std::swap(LHS, RHS);
4990 
4991   // If the overflow check was an add followed by a compare, the insertion point
4992   // may be pointing to the compare.  We want to insert the new instructions
4993   // before the add in case there are uses of the add between the add and the
4994   // compare.
4995   Builder.SetInsertPoint(&OrigI);
4996 
4997   Type *OverflowTy = Type::getInt1Ty(LHS->getContext());
4998   if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType()))
4999     OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount());
5000 
5001   if (isNeutralValue(BinaryOp, RHS)) {
5002     Result = LHS;
5003     Overflow = ConstantInt::getFalse(OverflowTy);
5004     return true;
5005   }
5006 
5007   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
5008     case OverflowResult::MayOverflow:
5009       return false;
5010     case OverflowResult::AlwaysOverflowsLow:
5011     case OverflowResult::AlwaysOverflowsHigh:
5012       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
5013       Result->takeName(&OrigI);
5014       Overflow = ConstantInt::getTrue(OverflowTy);
5015       return true;
5016     case OverflowResult::NeverOverflows:
5017       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
5018       Result->takeName(&OrigI);
5019       Overflow = ConstantInt::getFalse(OverflowTy);
5020       if (auto *Inst = dyn_cast<Instruction>(Result)) {
5021         if (IsSigned)
5022           Inst->setHasNoSignedWrap();
5023         else
5024           Inst->setHasNoUnsignedWrap();
5025       }
5026       return true;
5027   }
5028 
5029   llvm_unreachable("Unexpected overflow result");
5030 }
5031 
5032 /// Recognize and process idiom involving test for multiplication
5033 /// overflow.
5034 ///
5035 /// The caller has matched a pattern of the form:
5036 ///   I = cmp u (mul(zext A, zext B), V
5037 /// The function checks if this is a test for overflow and if so replaces
5038 /// multiplication with call to 'mul.with.overflow' intrinsic.
5039 ///
5040 /// \param I Compare instruction.
5041 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
5042 ///               the compare instruction.  Must be of integer type.
5043 /// \param OtherVal The other argument of compare instruction.
5044 /// \returns Instruction which must replace the compare instruction, NULL if no
5045 ///          replacement required.
5046 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
5047                                          Value *OtherVal,
5048                                          InstCombinerImpl &IC) {
5049   // Don't bother doing this transformation for pointers, don't do it for
5050   // vectors.
5051   if (!isa<IntegerType>(MulVal->getType()))
5052     return nullptr;
5053 
5054   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
5055   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
5056   auto *MulInstr = dyn_cast<Instruction>(MulVal);
5057   if (!MulInstr)
5058     return nullptr;
5059   assert(MulInstr->getOpcode() == Instruction::Mul);
5060 
5061   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
5062        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
5063   assert(LHS->getOpcode() == Instruction::ZExt);
5064   assert(RHS->getOpcode() == Instruction::ZExt);
5065   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
5066 
5067   // Calculate type and width of the result produced by mul.with.overflow.
5068   Type *TyA = A->getType(), *TyB = B->getType();
5069   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
5070            WidthB = TyB->getPrimitiveSizeInBits();
5071   unsigned MulWidth;
5072   Type *MulType;
5073   if (WidthB > WidthA) {
5074     MulWidth = WidthB;
5075     MulType = TyB;
5076   } else {
5077     MulWidth = WidthA;
5078     MulType = TyA;
5079   }
5080 
5081   // In order to replace the original mul with a narrower mul.with.overflow,
5082   // all uses must ignore upper bits of the product.  The number of used low
5083   // bits must be not greater than the width of mul.with.overflow.
5084   if (MulVal->hasNUsesOrMore(2))
5085     for (User *U : MulVal->users()) {
5086       if (U == &I)
5087         continue;
5088       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
5089         // Check if truncation ignores bits above MulWidth.
5090         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
5091         if (TruncWidth > MulWidth)
5092           return nullptr;
5093       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
5094         // Check if AND ignores bits above MulWidth.
5095         if (BO->getOpcode() != Instruction::And)
5096           return nullptr;
5097         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
5098           const APInt &CVal = CI->getValue();
5099           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
5100             return nullptr;
5101         } else {
5102           // In this case we could have the operand of the binary operation
5103           // being defined in another block, and performing the replacement
5104           // could break the dominance relation.
5105           return nullptr;
5106         }
5107       } else {
5108         // Other uses prohibit this transformation.
5109         return nullptr;
5110       }
5111     }
5112 
5113   // Recognize patterns
5114   switch (I.getPredicate()) {
5115   case ICmpInst::ICMP_EQ:
5116   case ICmpInst::ICMP_NE:
5117     // Recognize pattern:
5118     //   mulval = mul(zext A, zext B)
5119     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
5120     ConstantInt *CI;
5121     Value *ValToMask;
5122     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
5123       if (ValToMask != MulVal)
5124         return nullptr;
5125       const APInt &CVal = CI->getValue() + 1;
5126       if (CVal.isPowerOf2()) {
5127         unsigned MaskWidth = CVal.logBase2();
5128         if (MaskWidth == MulWidth)
5129           break; // Recognized
5130       }
5131     }
5132     return nullptr;
5133 
5134   case ICmpInst::ICMP_UGT:
5135     // Recognize pattern:
5136     //   mulval = mul(zext A, zext B)
5137     //   cmp ugt mulval, max
5138     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5139       APInt MaxVal = APInt::getMaxValue(MulWidth);
5140       MaxVal = MaxVal.zext(CI->getBitWidth());
5141       if (MaxVal.eq(CI->getValue()))
5142         break; // Recognized
5143     }
5144     return nullptr;
5145 
5146   case ICmpInst::ICMP_UGE:
5147     // Recognize pattern:
5148     //   mulval = mul(zext A, zext B)
5149     //   cmp uge mulval, max+1
5150     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5151       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
5152       if (MaxVal.eq(CI->getValue()))
5153         break; // Recognized
5154     }
5155     return nullptr;
5156 
5157   case ICmpInst::ICMP_ULE:
5158     // Recognize pattern:
5159     //   mulval = mul(zext A, zext B)
5160     //   cmp ule mulval, max
5161     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5162       APInt MaxVal = APInt::getMaxValue(MulWidth);
5163       MaxVal = MaxVal.zext(CI->getBitWidth());
5164       if (MaxVal.eq(CI->getValue()))
5165         break; // Recognized
5166     }
5167     return nullptr;
5168 
5169   case ICmpInst::ICMP_ULT:
5170     // Recognize pattern:
5171     //   mulval = mul(zext A, zext B)
5172     //   cmp ule mulval, max + 1
5173     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5174       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
5175       if (MaxVal.eq(CI->getValue()))
5176         break; // Recognized
5177     }
5178     return nullptr;
5179 
5180   default:
5181     return nullptr;
5182   }
5183 
5184   InstCombiner::BuilderTy &Builder = IC.Builder;
5185   Builder.SetInsertPoint(MulInstr);
5186 
5187   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
5188   Value *MulA = A, *MulB = B;
5189   if (WidthA < MulWidth)
5190     MulA = Builder.CreateZExt(A, MulType);
5191   if (WidthB < MulWidth)
5192     MulB = Builder.CreateZExt(B, MulType);
5193   Function *F = Intrinsic::getDeclaration(
5194       I.getModule(), Intrinsic::umul_with_overflow, MulType);
5195   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
5196   IC.addToWorklist(MulInstr);
5197 
5198   // If there are uses of mul result other than the comparison, we know that
5199   // they are truncation or binary AND. Change them to use result of
5200   // mul.with.overflow and adjust properly mask/size.
5201   if (MulVal->hasNUsesOrMore(2)) {
5202     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
5203     for (User *U : make_early_inc_range(MulVal->users())) {
5204       if (U == &I || U == OtherVal)
5205         continue;
5206       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
5207         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
5208           IC.replaceInstUsesWith(*TI, Mul);
5209         else
5210           TI->setOperand(0, Mul);
5211       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
5212         assert(BO->getOpcode() == Instruction::And);
5213         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
5214         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
5215         APInt ShortMask = CI->getValue().trunc(MulWidth);
5216         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
5217         Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
5218         IC.replaceInstUsesWith(*BO, Zext);
5219       } else {
5220         llvm_unreachable("Unexpected Binary operation");
5221       }
5222       IC.addToWorklist(cast<Instruction>(U));
5223     }
5224   }
5225   if (isa<Instruction>(OtherVal))
5226     IC.addToWorklist(cast<Instruction>(OtherVal));
5227 
5228   // The original icmp gets replaced with the overflow value, maybe inverted
5229   // depending on predicate.
5230   bool Inverse = false;
5231   switch (I.getPredicate()) {
5232   case ICmpInst::ICMP_NE:
5233     break;
5234   case ICmpInst::ICMP_EQ:
5235     Inverse = true;
5236     break;
5237   case ICmpInst::ICMP_UGT:
5238   case ICmpInst::ICMP_UGE:
5239     if (I.getOperand(0) == MulVal)
5240       break;
5241     Inverse = true;
5242     break;
5243   case ICmpInst::ICMP_ULT:
5244   case ICmpInst::ICMP_ULE:
5245     if (I.getOperand(1) == MulVal)
5246       break;
5247     Inverse = true;
5248     break;
5249   default:
5250     llvm_unreachable("Unexpected predicate");
5251   }
5252   if (Inverse) {
5253     Value *Res = Builder.CreateExtractValue(Call, 1);
5254     return BinaryOperator::CreateNot(Res);
5255   }
5256 
5257   return ExtractValueInst::Create(Call, 1);
5258 }
5259 
5260 /// When performing a comparison against a constant, it is possible that not all
5261 /// the bits in the LHS are demanded. This helper method computes the mask that
5262 /// IS demanded.
5263 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
5264   const APInt *RHS;
5265   if (!match(I.getOperand(1), m_APInt(RHS)))
5266     return APInt::getAllOnes(BitWidth);
5267 
5268   // If this is a normal comparison, it demands all bits. If it is a sign bit
5269   // comparison, it only demands the sign bit.
5270   bool UnusedBit;
5271   if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
5272     return APInt::getSignMask(BitWidth);
5273 
5274   switch (I.getPredicate()) {
5275   // For a UGT comparison, we don't care about any bits that
5276   // correspond to the trailing ones of the comparand.  The value of these
5277   // bits doesn't impact the outcome of the comparison, because any value
5278   // greater than the RHS must differ in a bit higher than these due to carry.
5279   case ICmpInst::ICMP_UGT:
5280     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
5281 
5282   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
5283   // Any value less than the RHS must differ in a higher bit because of carries.
5284   case ICmpInst::ICMP_ULT:
5285     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
5286 
5287   default:
5288     return APInt::getAllOnes(BitWidth);
5289   }
5290 }
5291 
5292 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
5293 /// should be swapped.
5294 /// The decision is based on how many times these two operands are reused
5295 /// as subtract operands and their positions in those instructions.
5296 /// The rationale is that several architectures use the same instruction for
5297 /// both subtract and cmp. Thus, it is better if the order of those operands
5298 /// match.
5299 /// \return true if Op0 and Op1 should be swapped.
5300 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
5301   // Filter out pointer values as those cannot appear directly in subtract.
5302   // FIXME: we may want to go through inttoptrs or bitcasts.
5303   if (Op0->getType()->isPointerTy())
5304     return false;
5305   // If a subtract already has the same operands as a compare, swapping would be
5306   // bad. If a subtract has the same operands as a compare but in reverse order,
5307   // then swapping is good.
5308   int GoodToSwap = 0;
5309   for (const User *U : Op0->users()) {
5310     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
5311       GoodToSwap++;
5312     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
5313       GoodToSwap--;
5314   }
5315   return GoodToSwap > 0;
5316 }
5317 
5318 /// Check that one use is in the same block as the definition and all
5319 /// other uses are in blocks dominated by a given block.
5320 ///
5321 /// \param DI Definition
5322 /// \param UI Use
5323 /// \param DB Block that must dominate all uses of \p DI outside
5324 ///           the parent block
5325 /// \return true when \p UI is the only use of \p DI in the parent block
5326 /// and all other uses of \p DI are in blocks dominated by \p DB.
5327 ///
5328 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
5329                                         const Instruction *UI,
5330                                         const BasicBlock *DB) const {
5331   assert(DI && UI && "Instruction not defined\n");
5332   // Ignore incomplete definitions.
5333   if (!DI->getParent())
5334     return false;
5335   // DI and UI must be in the same block.
5336   if (DI->getParent() != UI->getParent())
5337     return false;
5338   // Protect from self-referencing blocks.
5339   if (DI->getParent() == DB)
5340     return false;
5341   for (const User *U : DI->users()) {
5342     auto *Usr = cast<Instruction>(U);
5343     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
5344       return false;
5345   }
5346   return true;
5347 }
5348 
5349 /// Return true when the instruction sequence within a block is select-cmp-br.
5350 static bool isChainSelectCmpBranch(const SelectInst *SI) {
5351   const BasicBlock *BB = SI->getParent();
5352   if (!BB)
5353     return false;
5354   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
5355   if (!BI || BI->getNumSuccessors() != 2)
5356     return false;
5357   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
5358   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
5359     return false;
5360   return true;
5361 }
5362 
5363 /// True when a select result is replaced by one of its operands
5364 /// in select-icmp sequence. This will eventually result in the elimination
5365 /// of the select.
5366 ///
5367 /// \param SI    Select instruction
5368 /// \param Icmp  Compare instruction
5369 /// \param SIOpd Operand that replaces the select
5370 ///
5371 /// Notes:
5372 /// - The replacement is global and requires dominator information
5373 /// - The caller is responsible for the actual replacement
5374 ///
5375 /// Example:
5376 ///
5377 /// entry:
5378 ///  %4 = select i1 %3, %C* %0, %C* null
5379 ///  %5 = icmp eq %C* %4, null
5380 ///  br i1 %5, label %9, label %7
5381 ///  ...
5382 ///  ; <label>:7                                       ; preds = %entry
5383 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
5384 ///  ...
5385 ///
5386 /// can be transformed to
5387 ///
5388 ///  %5 = icmp eq %C* %0, null
5389 ///  %6 = select i1 %3, i1 %5, i1 true
5390 ///  br i1 %6, label %9, label %7
5391 ///  ...
5392 ///  ; <label>:7                                       ; preds = %entry
5393 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
5394 ///
5395 /// Similar when the first operand of the select is a constant or/and
5396 /// the compare is for not equal rather than equal.
5397 ///
5398 /// NOTE: The function is only called when the select and compare constants
5399 /// are equal, the optimization can work only for EQ predicates. This is not a
5400 /// major restriction since a NE compare should be 'normalized' to an equal
5401 /// compare, which usually happens in the combiner and test case
5402 /// select-cmp-br.ll checks for it.
5403 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
5404                                                  const ICmpInst *Icmp,
5405                                                  const unsigned SIOpd) {
5406   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
5407   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
5408     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
5409     // The check for the single predecessor is not the best that can be
5410     // done. But it protects efficiently against cases like when SI's
5411     // home block has two successors, Succ and Succ1, and Succ1 predecessor
5412     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
5413     // replaced can be reached on either path. So the uniqueness check
5414     // guarantees that the path all uses of SI (outside SI's parent) are on
5415     // is disjoint from all other paths out of SI. But that information
5416     // is more expensive to compute, and the trade-off here is in favor
5417     // of compile-time. It should also be noticed that we check for a single
5418     // predecessor and not only uniqueness. This to handle the situation when
5419     // Succ and Succ1 points to the same basic block.
5420     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
5421       NumSel++;
5422       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
5423       return true;
5424     }
5425   }
5426   return false;
5427 }
5428 
5429 /// Try to fold the comparison based on range information we can get by checking
5430 /// whether bits are known to be zero or one in the inputs.
5431 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
5432   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5433   Type *Ty = Op0->getType();
5434   ICmpInst::Predicate Pred = I.getPredicate();
5435 
5436   // Get scalar or pointer size.
5437   unsigned BitWidth = Ty->isIntOrIntVectorTy()
5438                           ? Ty->getScalarSizeInBits()
5439                           : DL.getPointerTypeSizeInBits(Ty->getScalarType());
5440 
5441   if (!BitWidth)
5442     return nullptr;
5443 
5444   KnownBits Op0Known(BitWidth);
5445   KnownBits Op1Known(BitWidth);
5446 
5447   if (SimplifyDemandedBits(&I, 0,
5448                            getDemandedBitsLHSMask(I, BitWidth),
5449                            Op0Known, 0))
5450     return &I;
5451 
5452   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0))
5453     return &I;
5454 
5455   // Given the known and unknown bits, compute a range that the LHS could be
5456   // in.  Compute the Min, Max and RHS values based on the known bits. For the
5457   // EQ and NE we use unsigned values.
5458   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
5459   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
5460   if (I.isSigned()) {
5461     Op0Min = Op0Known.getSignedMinValue();
5462     Op0Max = Op0Known.getSignedMaxValue();
5463     Op1Min = Op1Known.getSignedMinValue();
5464     Op1Max = Op1Known.getSignedMaxValue();
5465   } else {
5466     Op0Min = Op0Known.getMinValue();
5467     Op0Max = Op0Known.getMaxValue();
5468     Op1Min = Op1Known.getMinValue();
5469     Op1Max = Op1Known.getMaxValue();
5470   }
5471 
5472   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
5473   // out that the LHS or RHS is a constant. Constant fold this now, so that
5474   // code below can assume that Min != Max.
5475   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
5476     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
5477   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
5478     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
5479 
5480   // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a
5481   // min/max canonical compare with some other compare. That could lead to
5482   // conflict with select canonicalization and infinite looping.
5483   // FIXME: This constraint may go away if min/max intrinsics are canonical.
5484   auto isMinMaxCmp = [&](Instruction &Cmp) {
5485     if (!Cmp.hasOneUse())
5486       return false;
5487     Value *A, *B;
5488     SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor;
5489     if (!SelectPatternResult::isMinOrMax(SPF))
5490       return false;
5491     return match(Op0, m_MaxOrMin(m_Value(), m_Value())) ||
5492            match(Op1, m_MaxOrMin(m_Value(), m_Value()));
5493   };
5494   if (!isMinMaxCmp(I)) {
5495     switch (Pred) {
5496     default:
5497       break;
5498     case ICmpInst::ICMP_ULT: {
5499       if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5500         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5501       const APInt *CmpC;
5502       if (match(Op1, m_APInt(CmpC))) {
5503         // A <u C -> A == C-1 if min(A)+1 == C
5504         if (*CmpC == Op0Min + 1)
5505           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5506                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5507         // X <u C --> X == 0, if the number of zero bits in the bottom of X
5508         // exceeds the log2 of C.
5509         if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5510           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5511                               Constant::getNullValue(Op1->getType()));
5512       }
5513       break;
5514     }
5515     case ICmpInst::ICMP_UGT: {
5516       if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5517         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5518       const APInt *CmpC;
5519       if (match(Op1, m_APInt(CmpC))) {
5520         // A >u C -> A == C+1 if max(a)-1 == C
5521         if (*CmpC == Op0Max - 1)
5522           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5523                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5524         // X >u C --> X != 0, if the number of zero bits in the bottom of X
5525         // exceeds the log2 of C.
5526         if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5527           return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5528                               Constant::getNullValue(Op1->getType()));
5529       }
5530       break;
5531     }
5532     case ICmpInst::ICMP_SLT: {
5533       if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5534         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5535       const APInt *CmpC;
5536       if (match(Op1, m_APInt(CmpC))) {
5537         if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5538           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5539                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5540       }
5541       break;
5542     }
5543     case ICmpInst::ICMP_SGT: {
5544       if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5545         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5546       const APInt *CmpC;
5547       if (match(Op1, m_APInt(CmpC))) {
5548         if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5549           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5550                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5551       }
5552       break;
5553     }
5554     }
5555   }
5556 
5557   // Based on the range information we know about the LHS, see if we can
5558   // simplify this comparison.  For example, (x&4) < 8 is always true.
5559   switch (Pred) {
5560   default:
5561     llvm_unreachable("Unknown icmp opcode!");
5562   case ICmpInst::ICMP_EQ:
5563   case ICmpInst::ICMP_NE: {
5564     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
5565       return replaceInstUsesWith(
5566           I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE));
5567 
5568     // If all bits are known zero except for one, then we know at most one bit
5569     // is set. If the comparison is against zero, then this is a check to see if
5570     // *that* bit is set.
5571     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
5572     if (Op1Known.isZero()) {
5573       // If the LHS is an AND with the same constant, look through it.
5574       Value *LHS = nullptr;
5575       const APInt *LHSC;
5576       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
5577           *LHSC != Op0KnownZeroInverted)
5578         LHS = Op0;
5579 
5580       Value *X;
5581       const APInt *C1;
5582       if (match(LHS, m_Shl(m_Power2(C1), m_Value(X)))) {
5583         Type *XTy = X->getType();
5584         unsigned Log2C1 = C1->countTrailingZeros();
5585         APInt C2 = Op0KnownZeroInverted;
5586         APInt C2Pow2 = (C2 & ~(*C1 - 1)) + *C1;
5587         if (C2Pow2.isPowerOf2()) {
5588           // iff (C1 is pow2) & ((C2 & ~(C1-1)) + C1) is pow2):
5589           // ((C1 << X) & C2) == 0 -> X >= (Log2(C2+C1) - Log2(C1))
5590           // ((C1 << X) & C2) != 0 -> X  < (Log2(C2+C1) - Log2(C1))
5591           unsigned Log2C2 = C2Pow2.countTrailingZeros();
5592           auto *CmpC = ConstantInt::get(XTy, Log2C2 - Log2C1);
5593           auto NewPred =
5594               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
5595           return new ICmpInst(NewPred, X, CmpC);
5596         }
5597       }
5598     }
5599     break;
5600   }
5601   case ICmpInst::ICMP_ULT: {
5602     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5603       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5604     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5605       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5606     break;
5607   }
5608   case ICmpInst::ICMP_UGT: {
5609     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5610       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5611     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5612       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5613     break;
5614   }
5615   case ICmpInst::ICMP_SLT: {
5616     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5617       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5618     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5619       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5620     break;
5621   }
5622   case ICmpInst::ICMP_SGT: {
5623     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5624       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5625     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5626       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5627     break;
5628   }
5629   case ICmpInst::ICMP_SGE:
5630     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5631     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5632       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5633     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5634       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5635     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5636       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5637     break;
5638   case ICmpInst::ICMP_SLE:
5639     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5640     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5641       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5642     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5643       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5644     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5645       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5646     break;
5647   case ICmpInst::ICMP_UGE:
5648     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5649     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5650       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5651     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5652       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5653     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5654       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5655     break;
5656   case ICmpInst::ICMP_ULE:
5657     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5658     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5659       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5660     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5661       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5662     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5663       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5664     break;
5665   }
5666 
5667   // Turn a signed comparison into an unsigned one if both operands are known to
5668   // have the same sign.
5669   if (I.isSigned() &&
5670       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5671        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5672     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5673 
5674   return nullptr;
5675 }
5676 
5677 /// If one operand of an icmp is effectively a bool (value range of {0,1}),
5678 /// then try to reduce patterns based on that limit.
5679 static Instruction *foldICmpUsingBoolRange(ICmpInst &I,
5680                                            InstCombiner::BuilderTy &Builder) {
5681   Value *X, *Y;
5682   ICmpInst::Predicate Pred;
5683 
5684   // X must be 0 and bool must be true for "ULT":
5685   // X <u (zext i1 Y) --> (X == 0) & Y
5686   if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_ZExt(m_Value(Y))))) &&
5687       Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULT)
5688     return BinaryOperator::CreateAnd(Builder.CreateIsNull(X), Y);
5689 
5690   // X must be 0 or bool must be true for "ULE":
5691   // X <=u (sext i1 Y) --> (X == 0) | Y
5692   if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_SExt(m_Value(Y))))) &&
5693       Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULE)
5694     return BinaryOperator::CreateOr(Builder.CreateIsNull(X), Y);
5695 
5696   return nullptr;
5697 }
5698 
5699 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5700 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5701                                                        Constant *C) {
5702   assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5703          "Only for relational integer predicates.");
5704 
5705   Type *Type = C->getType();
5706   bool IsSigned = ICmpInst::isSigned(Pred);
5707 
5708   CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5709   bool WillIncrement =
5710       UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5711 
5712   // Check if the constant operand can be safely incremented/decremented
5713   // without overflowing/underflowing.
5714   auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5715     return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5716   };
5717 
5718   Constant *SafeReplacementConstant = nullptr;
5719   if (auto *CI = dyn_cast<ConstantInt>(C)) {
5720     // Bail out if the constant can't be safely incremented/decremented.
5721     if (!ConstantIsOk(CI))
5722       return llvm::None;
5723   } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
5724     unsigned NumElts = FVTy->getNumElements();
5725     for (unsigned i = 0; i != NumElts; ++i) {
5726       Constant *Elt = C->getAggregateElement(i);
5727       if (!Elt)
5728         return llvm::None;
5729 
5730       if (isa<UndefValue>(Elt))
5731         continue;
5732 
5733       // Bail out if we can't determine if this constant is min/max or if we
5734       // know that this constant is min/max.
5735       auto *CI = dyn_cast<ConstantInt>(Elt);
5736       if (!CI || !ConstantIsOk(CI))
5737         return llvm::None;
5738 
5739       if (!SafeReplacementConstant)
5740         SafeReplacementConstant = CI;
5741     }
5742   } else {
5743     // ConstantExpr?
5744     return llvm::None;
5745   }
5746 
5747   // It may not be safe to change a compare predicate in the presence of
5748   // undefined elements, so replace those elements with the first safe constant
5749   // that we found.
5750   // TODO: in case of poison, it is safe; let's replace undefs only.
5751   if (C->containsUndefOrPoisonElement()) {
5752     assert(SafeReplacementConstant && "Replacement constant not set");
5753     C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5754   }
5755 
5756   CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5757 
5758   // Increment or decrement the constant.
5759   Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5760   Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5761 
5762   return std::make_pair(NewPred, NewC);
5763 }
5764 
5765 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5766 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5767 /// allows them to be folded in visitICmpInst.
5768 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5769   ICmpInst::Predicate Pred = I.getPredicate();
5770   if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5771       InstCombiner::isCanonicalPredicate(Pred))
5772     return nullptr;
5773 
5774   Value *Op0 = I.getOperand(0);
5775   Value *Op1 = I.getOperand(1);
5776   auto *Op1C = dyn_cast<Constant>(Op1);
5777   if (!Op1C)
5778     return nullptr;
5779 
5780   auto FlippedStrictness =
5781       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5782   if (!FlippedStrictness)
5783     return nullptr;
5784 
5785   return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5786 }
5787 
5788 /// If we have a comparison with a non-canonical predicate, if we can update
5789 /// all the users, invert the predicate and adjust all the users.
5790 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) {
5791   // Is the predicate already canonical?
5792   CmpInst::Predicate Pred = I.getPredicate();
5793   if (InstCombiner::isCanonicalPredicate(Pred))
5794     return nullptr;
5795 
5796   // Can all users be adjusted to predicate inversion?
5797   if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
5798     return nullptr;
5799 
5800   // Ok, we can canonicalize comparison!
5801   // Let's first invert the comparison's predicate.
5802   I.setPredicate(CmpInst::getInversePredicate(Pred));
5803   I.setName(I.getName() + ".not");
5804 
5805   // And, adapt users.
5806   freelyInvertAllUsersOf(&I);
5807 
5808   return &I;
5809 }
5810 
5811 /// Integer compare with boolean values can always be turned into bitwise ops.
5812 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5813                                          InstCombiner::BuilderTy &Builder) {
5814   Value *A = I.getOperand(0), *B = I.getOperand(1);
5815   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5816 
5817   // A boolean compared to true/false can be simplified to Op0/true/false in
5818   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5819   // Cases not handled by InstSimplify are always 'not' of Op0.
5820   if (match(B, m_Zero())) {
5821     switch (I.getPredicate()) {
5822       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
5823       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
5824       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
5825         return BinaryOperator::CreateNot(A);
5826       default:
5827         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5828     }
5829   } else if (match(B, m_One())) {
5830     switch (I.getPredicate()) {
5831       case CmpInst::ICMP_NE:  // A !=  1 -> !A
5832       case CmpInst::ICMP_ULT: // A <u  1 -> !A
5833       case CmpInst::ICMP_SGT: // A >s -1 -> !A
5834         return BinaryOperator::CreateNot(A);
5835       default:
5836         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5837     }
5838   }
5839 
5840   switch (I.getPredicate()) {
5841   default:
5842     llvm_unreachable("Invalid icmp instruction!");
5843   case ICmpInst::ICMP_EQ:
5844     // icmp eq i1 A, B -> ~(A ^ B)
5845     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5846 
5847   case ICmpInst::ICMP_NE:
5848     // icmp ne i1 A, B -> A ^ B
5849     return BinaryOperator::CreateXor(A, B);
5850 
5851   case ICmpInst::ICMP_UGT:
5852     // icmp ugt -> icmp ult
5853     std::swap(A, B);
5854     LLVM_FALLTHROUGH;
5855   case ICmpInst::ICMP_ULT:
5856     // icmp ult i1 A, B -> ~A & B
5857     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5858 
5859   case ICmpInst::ICMP_SGT:
5860     // icmp sgt -> icmp slt
5861     std::swap(A, B);
5862     LLVM_FALLTHROUGH;
5863   case ICmpInst::ICMP_SLT:
5864     // icmp slt i1 A, B -> A & ~B
5865     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5866 
5867   case ICmpInst::ICMP_UGE:
5868     // icmp uge -> icmp ule
5869     std::swap(A, B);
5870     LLVM_FALLTHROUGH;
5871   case ICmpInst::ICMP_ULE:
5872     // icmp ule i1 A, B -> ~A | B
5873     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5874 
5875   case ICmpInst::ICMP_SGE:
5876     // icmp sge -> icmp sle
5877     std::swap(A, B);
5878     LLVM_FALLTHROUGH;
5879   case ICmpInst::ICMP_SLE:
5880     // icmp sle i1 A, B -> A | ~B
5881     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5882   }
5883 }
5884 
5885 // Transform pattern like:
5886 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
5887 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
5888 // Into:
5889 //   (X l>> Y) != 0
5890 //   (X l>> Y) == 0
5891 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5892                                             InstCombiner::BuilderTy &Builder) {
5893   ICmpInst::Predicate Pred, NewPred;
5894   Value *X, *Y;
5895   if (match(&Cmp,
5896             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5897     switch (Pred) {
5898     case ICmpInst::ICMP_ULE:
5899       NewPred = ICmpInst::ICMP_NE;
5900       break;
5901     case ICmpInst::ICMP_UGT:
5902       NewPred = ICmpInst::ICMP_EQ;
5903       break;
5904     default:
5905       return nullptr;
5906     }
5907   } else if (match(&Cmp, m_c_ICmp(Pred,
5908                                   m_OneUse(m_CombineOr(
5909                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5910                                       m_Add(m_Shl(m_One(), m_Value(Y)),
5911                                             m_AllOnes()))),
5912                                   m_Value(X)))) {
5913     // The variant with 'add' is not canonical, (the variant with 'not' is)
5914     // we only get it because it has extra uses, and can't be canonicalized,
5915 
5916     switch (Pred) {
5917     case ICmpInst::ICMP_ULT:
5918       NewPred = ICmpInst::ICMP_NE;
5919       break;
5920     case ICmpInst::ICMP_UGE:
5921       NewPred = ICmpInst::ICMP_EQ;
5922       break;
5923     default:
5924       return nullptr;
5925     }
5926   } else
5927     return nullptr;
5928 
5929   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5930   Constant *Zero = Constant::getNullValue(NewX->getType());
5931   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5932 }
5933 
5934 static Instruction *foldVectorCmp(CmpInst &Cmp,
5935                                   InstCombiner::BuilderTy &Builder) {
5936   const CmpInst::Predicate Pred = Cmp.getPredicate();
5937   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5938   Value *V1, *V2;
5939   ArrayRef<int> M;
5940   if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
5941     return nullptr;
5942 
5943   // If both arguments of the cmp are shuffles that use the same mask and
5944   // shuffle within a single vector, move the shuffle after the cmp:
5945   // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5946   Type *V1Ty = V1->getType();
5947   if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
5948       V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5949     Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
5950     return new ShuffleVectorInst(NewCmp, M);
5951   }
5952 
5953   // Try to canonicalize compare with splatted operand and splat constant.
5954   // TODO: We could generalize this for more than splats. See/use the code in
5955   //       InstCombiner::foldVectorBinop().
5956   Constant *C;
5957   if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5958     return nullptr;
5959 
5960   // Length-changing splats are ok, so adjust the constants as needed:
5961   // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5962   Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5963   int MaskSplatIndex;
5964   if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
5965     // We allow undefs in matching, but this transform removes those for safety.
5966     // Demanded elements analysis should be able to recover some/all of that.
5967     C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
5968                                  ScalarC);
5969     SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
5970     Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
5971     return new ShuffleVectorInst(NewCmp, NewM);
5972   }
5973 
5974   return nullptr;
5975 }
5976 
5977 // extract(uadd.with.overflow(A, B), 0) ult A
5978 //  -> extract(uadd.with.overflow(A, B), 1)
5979 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5980   CmpInst::Predicate Pred = I.getPredicate();
5981   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5982 
5983   Value *UAddOv;
5984   Value *A, *B;
5985   auto UAddOvResultPat = m_ExtractValue<0>(
5986       m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5987   if (match(Op0, UAddOvResultPat) &&
5988       ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5989        (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5990         (match(A, m_One()) || match(B, m_One()))) ||
5991        (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5992         (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5993     // extract(uadd.with.overflow(A, B), 0) < A
5994     // extract(uadd.with.overflow(A, 1), 0) == 0
5995     // extract(uadd.with.overflow(A, -1), 0) != -1
5996     UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5997   else if (match(Op1, UAddOvResultPat) &&
5998            Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5999     // A > extract(uadd.with.overflow(A, B), 0)
6000     UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
6001   else
6002     return nullptr;
6003 
6004   return ExtractValueInst::Create(UAddOv, 1);
6005 }
6006 
6007 static Instruction *foldICmpInvariantGroup(ICmpInst &I) {
6008   if (!I.getOperand(0)->getType()->isPointerTy() ||
6009       NullPointerIsDefined(
6010           I.getParent()->getParent(),
6011           I.getOperand(0)->getType()->getPointerAddressSpace())) {
6012     return nullptr;
6013   }
6014   Instruction *Op;
6015   if (match(I.getOperand(0), m_Instruction(Op)) &&
6016       match(I.getOperand(1), m_Zero()) &&
6017       Op->isLaunderOrStripInvariantGroup()) {
6018     return ICmpInst::Create(Instruction::ICmp, I.getPredicate(),
6019                             Op->getOperand(0), I.getOperand(1));
6020   }
6021   return nullptr;
6022 }
6023 
6024 /// This function folds patterns produced by lowering of reduce idioms, such as
6025 /// llvm.vector.reduce.and which are lowered into instruction chains. This code
6026 /// attempts to generate fewer number of scalar comparisons instead of vector
6027 /// comparisons when possible.
6028 static Instruction *foldReductionIdiom(ICmpInst &I,
6029                                        InstCombiner::BuilderTy &Builder,
6030                                        const DataLayout &DL) {
6031   if (I.getType()->isVectorTy())
6032     return nullptr;
6033   ICmpInst::Predicate OuterPred, InnerPred;
6034   Value *LHS, *RHS;
6035 
6036   // Match lowering of @llvm.vector.reduce.and. Turn
6037   ///   %vec_ne = icmp ne <8 x i8> %lhs, %rhs
6038   ///   %scalar_ne = bitcast <8 x i1> %vec_ne to i8
6039   ///   %res = icmp <pred> i8 %scalar_ne, 0
6040   ///
6041   /// into
6042   ///
6043   ///   %lhs.scalar = bitcast <8 x i8> %lhs to i64
6044   ///   %rhs.scalar = bitcast <8 x i8> %rhs to i64
6045   ///   %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar
6046   ///
6047   /// for <pred> in {ne, eq}.
6048   if (!match(&I, m_ICmp(OuterPred,
6049                         m_OneUse(m_BitCast(m_OneUse(
6050                             m_ICmp(InnerPred, m_Value(LHS), m_Value(RHS))))),
6051                         m_Zero())))
6052     return nullptr;
6053   auto *LHSTy = dyn_cast<FixedVectorType>(LHS->getType());
6054   if (!LHSTy || !LHSTy->getElementType()->isIntegerTy())
6055     return nullptr;
6056   unsigned NumBits =
6057       LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth();
6058   // TODO: Relax this to "not wider than max legal integer type"?
6059   if (!DL.isLegalInteger(NumBits))
6060     return nullptr;
6061 
6062   if (ICmpInst::isEquality(OuterPred) && InnerPred == ICmpInst::ICMP_NE) {
6063     auto *ScalarTy = Builder.getIntNTy(NumBits);
6064     LHS = Builder.CreateBitCast(LHS, ScalarTy, LHS->getName() + ".scalar");
6065     RHS = Builder.CreateBitCast(RHS, ScalarTy, RHS->getName() + ".scalar");
6066     return ICmpInst::Create(Instruction::ICmp, OuterPred, LHS, RHS,
6067                             I.getName());
6068   }
6069 
6070   return nullptr;
6071 }
6072 
6073 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
6074   bool Changed = false;
6075   const SimplifyQuery Q = SQ.getWithInstruction(&I);
6076   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6077   unsigned Op0Cplxity = getComplexity(Op0);
6078   unsigned Op1Cplxity = getComplexity(Op1);
6079 
6080   /// Orders the operands of the compare so that they are listed from most
6081   /// complex to least complex.  This puts constants before unary operators,
6082   /// before binary operators.
6083   if (Op0Cplxity < Op1Cplxity ||
6084       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
6085     I.swapOperands();
6086     std::swap(Op0, Op1);
6087     Changed = true;
6088   }
6089 
6090   if (Value *V = simplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
6091     return replaceInstUsesWith(I, V);
6092 
6093   // Comparing -val or val with non-zero is the same as just comparing val
6094   // ie, abs(val) != 0 -> val != 0
6095   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
6096     Value *Cond, *SelectTrue, *SelectFalse;
6097     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
6098                             m_Value(SelectFalse)))) {
6099       if (Value *V = dyn_castNegVal(SelectTrue)) {
6100         if (V == SelectFalse)
6101           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
6102       }
6103       else if (Value *V = dyn_castNegVal(SelectFalse)) {
6104         if (V == SelectTrue)
6105           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
6106       }
6107     }
6108   }
6109 
6110   if (Op0->getType()->isIntOrIntVectorTy(1))
6111     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
6112       return Res;
6113 
6114   if (Instruction *Res = canonicalizeCmpWithConstant(I))
6115     return Res;
6116 
6117   if (Instruction *Res = canonicalizeICmpPredicate(I))
6118     return Res;
6119 
6120   if (Instruction *Res = foldICmpWithConstant(I))
6121     return Res;
6122 
6123   if (Instruction *Res = foldICmpWithDominatingICmp(I))
6124     return Res;
6125 
6126   if (Instruction *Res = foldICmpUsingBoolRange(I, Builder))
6127     return Res;
6128 
6129   if (Instruction *Res = foldICmpUsingKnownBits(I))
6130     return Res;
6131 
6132   // Test if the ICmpInst instruction is used exclusively by a select as
6133   // part of a minimum or maximum operation. If so, refrain from doing
6134   // any other folding. This helps out other analyses which understand
6135   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6136   // and CodeGen. And in this case, at least one of the comparison
6137   // operands has at least one user besides the compare (the select),
6138   // which would often largely negate the benefit of folding anyway.
6139   //
6140   // Do the same for the other patterns recognized by matchSelectPattern.
6141   if (I.hasOneUse())
6142     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6143       Value *A, *B;
6144       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6145       if (SPR.Flavor != SPF_UNKNOWN)
6146         return nullptr;
6147     }
6148 
6149   // Do this after checking for min/max to prevent infinite looping.
6150   if (Instruction *Res = foldICmpWithZero(I))
6151     return Res;
6152 
6153   // FIXME: We only do this after checking for min/max to prevent infinite
6154   // looping caused by a reverse canonicalization of these patterns for min/max.
6155   // FIXME: The organization of folds is a mess. These would naturally go into
6156   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
6157   // down here after the min/max restriction.
6158   ICmpInst::Predicate Pred = I.getPredicate();
6159   const APInt *C;
6160   if (match(Op1, m_APInt(C))) {
6161     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
6162     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
6163       Constant *Zero = Constant::getNullValue(Op0->getType());
6164       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
6165     }
6166 
6167     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
6168     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
6169       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
6170       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
6171     }
6172   }
6173 
6174   // The folds in here may rely on wrapping flags and special constants, so
6175   // they can break up min/max idioms in some cases but not seemingly similar
6176   // patterns.
6177   // FIXME: It may be possible to enhance select folding to make this
6178   //        unnecessary. It may also be moot if we canonicalize to min/max
6179   //        intrinsics.
6180   if (Instruction *Res = foldICmpBinOp(I, Q))
6181     return Res;
6182 
6183   if (Instruction *Res = foldICmpInstWithConstant(I))
6184     return Res;
6185 
6186   // Try to match comparison as a sign bit test. Intentionally do this after
6187   // foldICmpInstWithConstant() to potentially let other folds to happen first.
6188   if (Instruction *New = foldSignBitTest(I))
6189     return New;
6190 
6191   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
6192     return Res;
6193 
6194   // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'.
6195   if (auto *GEP = dyn_cast<GEPOperator>(Op0))
6196     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
6197       return NI;
6198   if (auto *GEP = dyn_cast<GEPOperator>(Op1))
6199     if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I))
6200       return NI;
6201 
6202   if (auto *SI = dyn_cast<SelectInst>(Op0))
6203     if (Instruction *NI = foldSelectICmp(I.getPredicate(), SI, Op1, I))
6204       return NI;
6205   if (auto *SI = dyn_cast<SelectInst>(Op1))
6206     if (Instruction *NI = foldSelectICmp(I.getSwappedPredicate(), SI, Op0, I))
6207       return NI;
6208 
6209   // Try to optimize equality comparisons against alloca-based pointers.
6210   if (Op0->getType()->isPointerTy() && I.isEquality()) {
6211     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
6212     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
6213       if (Instruction *New = foldAllocaCmp(I, Alloca))
6214         return New;
6215     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
6216       if (Instruction *New = foldAllocaCmp(I, Alloca))
6217         return New;
6218   }
6219 
6220   if (Instruction *Res = foldICmpBitCast(I))
6221     return Res;
6222 
6223   // TODO: Hoist this above the min/max bailout.
6224   if (Instruction *R = foldICmpWithCastOp(I))
6225     return R;
6226 
6227   if (Instruction *Res = foldICmpWithMinMax(I))
6228     return Res;
6229 
6230   {
6231     Value *A, *B;
6232     // Transform (A & ~B) == 0 --> (A & B) != 0
6233     // and       (A & ~B) != 0 --> (A & B) == 0
6234     // if A is a power of 2.
6235     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
6236         match(Op1, m_Zero()) &&
6237         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
6238       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
6239                           Op1);
6240 
6241     // ~X < ~Y --> Y < X
6242     // ~X < C -->  X > ~C
6243     if (match(Op0, m_Not(m_Value(A)))) {
6244       if (match(Op1, m_Not(m_Value(B))))
6245         return new ICmpInst(I.getPredicate(), B, A);
6246 
6247       const APInt *C;
6248       if (match(Op1, m_APInt(C)))
6249         return new ICmpInst(I.getSwappedPredicate(), A,
6250                             ConstantInt::get(Op1->getType(), ~(*C)));
6251     }
6252 
6253     Instruction *AddI = nullptr;
6254     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
6255                                      m_Instruction(AddI))) &&
6256         isa<IntegerType>(A->getType())) {
6257       Value *Result;
6258       Constant *Overflow;
6259       // m_UAddWithOverflow can match patterns that do not include  an explicit
6260       // "add" instruction, so check the opcode of the matched op.
6261       if (AddI->getOpcode() == Instruction::Add &&
6262           OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
6263                                 Result, Overflow)) {
6264         replaceInstUsesWith(*AddI, Result);
6265         eraseInstFromFunction(*AddI);
6266         return replaceInstUsesWith(I, Overflow);
6267       }
6268     }
6269 
6270     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
6271     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
6272       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
6273         return R;
6274     }
6275     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
6276       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
6277         return R;
6278     }
6279   }
6280 
6281   if (Instruction *Res = foldICmpEquality(I))
6282     return Res;
6283 
6284   if (Instruction *Res = foldICmpOfUAddOv(I))
6285     return Res;
6286 
6287   // The 'cmpxchg' instruction returns an aggregate containing the old value and
6288   // an i1 which indicates whether or not we successfully did the swap.
6289   //
6290   // Replace comparisons between the old value and the expected value with the
6291   // indicator that 'cmpxchg' returns.
6292   //
6293   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
6294   // spuriously fail.  In those cases, the old value may equal the expected
6295   // value but it is possible for the swap to not occur.
6296   if (I.getPredicate() == ICmpInst::ICMP_EQ)
6297     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
6298       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
6299         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
6300             !ACXI->isWeak())
6301           return ExtractValueInst::Create(ACXI, 1);
6302 
6303   {
6304     Value *X;
6305     const APInt *C;
6306     // icmp X+Cst, X
6307     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
6308       return foldICmpAddOpConst(X, *C, I.getPredicate());
6309 
6310     // icmp X, X+Cst
6311     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
6312       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
6313   }
6314 
6315   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
6316     return Res;
6317 
6318   if (I.getType()->isVectorTy())
6319     if (Instruction *Res = foldVectorCmp(I, Builder))
6320       return Res;
6321 
6322   if (Instruction *Res = foldICmpInvariantGroup(I))
6323     return Res;
6324 
6325   if (Instruction *Res = foldReductionIdiom(I, Builder, DL))
6326     return Res;
6327 
6328   return Changed ? &I : nullptr;
6329 }
6330 
6331 /// Fold fcmp ([us]itofp x, cst) if possible.
6332 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
6333                                                     Instruction *LHSI,
6334                                                     Constant *RHSC) {
6335   if (!isa<ConstantFP>(RHSC)) return nullptr;
6336   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
6337 
6338   // Get the width of the mantissa.  We don't want to hack on conversions that
6339   // might lose information from the integer, e.g. "i64 -> float"
6340   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
6341   if (MantissaWidth == -1) return nullptr;  // Unknown.
6342 
6343   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
6344 
6345   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
6346 
6347   if (I.isEquality()) {
6348     FCmpInst::Predicate P = I.getPredicate();
6349     bool IsExact = false;
6350     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
6351     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
6352 
6353     // If the floating point constant isn't an integer value, we know if we will
6354     // ever compare equal / not equal to it.
6355     if (!IsExact) {
6356       // TODO: Can never be -0.0 and other non-representable values
6357       APFloat RHSRoundInt(RHS);
6358       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
6359       if (RHS != RHSRoundInt) {
6360         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
6361           return replaceInstUsesWith(I, Builder.getFalse());
6362 
6363         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
6364         return replaceInstUsesWith(I, Builder.getTrue());
6365       }
6366     }
6367 
6368     // TODO: If the constant is exactly representable, is it always OK to do
6369     // equality compares as integer?
6370   }
6371 
6372   // Check to see that the input is converted from an integer type that is small
6373   // enough that preserves all bits.  TODO: check here for "known" sign bits.
6374   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
6375   unsigned InputSize = IntTy->getScalarSizeInBits();
6376 
6377   // Following test does NOT adjust InputSize downwards for signed inputs,
6378   // because the most negative value still requires all the mantissa bits
6379   // to distinguish it from one less than that value.
6380   if ((int)InputSize > MantissaWidth) {
6381     // Conversion would lose accuracy. Check if loss can impact comparison.
6382     int Exp = ilogb(RHS);
6383     if (Exp == APFloat::IEK_Inf) {
6384       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
6385       if (MaxExponent < (int)InputSize - !LHSUnsigned)
6386         // Conversion could create infinity.
6387         return nullptr;
6388     } else {
6389       // Note that if RHS is zero or NaN, then Exp is negative
6390       // and first condition is trivially false.
6391       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
6392         // Conversion could affect comparison.
6393         return nullptr;
6394     }
6395   }
6396 
6397   // Otherwise, we can potentially simplify the comparison.  We know that it
6398   // will always come through as an integer value and we know the constant is
6399   // not a NAN (it would have been previously simplified).
6400   assert(!RHS.isNaN() && "NaN comparison not already folded!");
6401 
6402   ICmpInst::Predicate Pred;
6403   switch (I.getPredicate()) {
6404   default: llvm_unreachable("Unexpected predicate!");
6405   case FCmpInst::FCMP_UEQ:
6406   case FCmpInst::FCMP_OEQ:
6407     Pred = ICmpInst::ICMP_EQ;
6408     break;
6409   case FCmpInst::FCMP_UGT:
6410   case FCmpInst::FCMP_OGT:
6411     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
6412     break;
6413   case FCmpInst::FCMP_UGE:
6414   case FCmpInst::FCMP_OGE:
6415     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
6416     break;
6417   case FCmpInst::FCMP_ULT:
6418   case FCmpInst::FCMP_OLT:
6419     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
6420     break;
6421   case FCmpInst::FCMP_ULE:
6422   case FCmpInst::FCMP_OLE:
6423     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
6424     break;
6425   case FCmpInst::FCMP_UNE:
6426   case FCmpInst::FCMP_ONE:
6427     Pred = ICmpInst::ICMP_NE;
6428     break;
6429   case FCmpInst::FCMP_ORD:
6430     return replaceInstUsesWith(I, Builder.getTrue());
6431   case FCmpInst::FCMP_UNO:
6432     return replaceInstUsesWith(I, Builder.getFalse());
6433   }
6434 
6435   // Now we know that the APFloat is a normal number, zero or inf.
6436 
6437   // See if the FP constant is too large for the integer.  For example,
6438   // comparing an i8 to 300.0.
6439   unsigned IntWidth = IntTy->getScalarSizeInBits();
6440 
6441   if (!LHSUnsigned) {
6442     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
6443     // and large values.
6444     APFloat SMax(RHS.getSemantics());
6445     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
6446                           APFloat::rmNearestTiesToEven);
6447     if (SMax < RHS) { // smax < 13123.0
6448       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
6449           Pred == ICmpInst::ICMP_SLE)
6450         return replaceInstUsesWith(I, Builder.getTrue());
6451       return replaceInstUsesWith(I, Builder.getFalse());
6452     }
6453   } else {
6454     // If the RHS value is > UnsignedMax, fold the comparison. This handles
6455     // +INF and large values.
6456     APFloat UMax(RHS.getSemantics());
6457     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
6458                           APFloat::rmNearestTiesToEven);
6459     if (UMax < RHS) { // umax < 13123.0
6460       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
6461           Pred == ICmpInst::ICMP_ULE)
6462         return replaceInstUsesWith(I, Builder.getTrue());
6463       return replaceInstUsesWith(I, Builder.getFalse());
6464     }
6465   }
6466 
6467   if (!LHSUnsigned) {
6468     // See if the RHS value is < SignedMin.
6469     APFloat SMin(RHS.getSemantics());
6470     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
6471                           APFloat::rmNearestTiesToEven);
6472     if (SMin > RHS) { // smin > 12312.0
6473       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
6474           Pred == ICmpInst::ICMP_SGE)
6475         return replaceInstUsesWith(I, Builder.getTrue());
6476       return replaceInstUsesWith(I, Builder.getFalse());
6477     }
6478   } else {
6479     // See if the RHS value is < UnsignedMin.
6480     APFloat UMin(RHS.getSemantics());
6481     UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
6482                           APFloat::rmNearestTiesToEven);
6483     if (UMin > RHS) { // umin > 12312.0
6484       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
6485           Pred == ICmpInst::ICMP_UGE)
6486         return replaceInstUsesWith(I, Builder.getTrue());
6487       return replaceInstUsesWith(I, Builder.getFalse());
6488     }
6489   }
6490 
6491   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
6492   // [0, UMAX], but it may still be fractional.  See if it is fractional by
6493   // casting the FP value to the integer value and back, checking for equality.
6494   // Don't do this for zero, because -0.0 is not fractional.
6495   Constant *RHSInt = LHSUnsigned
6496     ? ConstantExpr::getFPToUI(RHSC, IntTy)
6497     : ConstantExpr::getFPToSI(RHSC, IntTy);
6498   if (!RHS.isZero()) {
6499     bool Equal = LHSUnsigned
6500       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
6501       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
6502     if (!Equal) {
6503       // If we had a comparison against a fractional value, we have to adjust
6504       // the compare predicate and sometimes the value.  RHSC is rounded towards
6505       // zero at this point.
6506       switch (Pred) {
6507       default: llvm_unreachable("Unexpected integer comparison!");
6508       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
6509         return replaceInstUsesWith(I, Builder.getTrue());
6510       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
6511         return replaceInstUsesWith(I, Builder.getFalse());
6512       case ICmpInst::ICMP_ULE:
6513         // (float)int <= 4.4   --> int <= 4
6514         // (float)int <= -4.4  --> false
6515         if (RHS.isNegative())
6516           return replaceInstUsesWith(I, Builder.getFalse());
6517         break;
6518       case ICmpInst::ICMP_SLE:
6519         // (float)int <= 4.4   --> int <= 4
6520         // (float)int <= -4.4  --> int < -4
6521         if (RHS.isNegative())
6522           Pred = ICmpInst::ICMP_SLT;
6523         break;
6524       case ICmpInst::ICMP_ULT:
6525         // (float)int < -4.4   --> false
6526         // (float)int < 4.4    --> int <= 4
6527         if (RHS.isNegative())
6528           return replaceInstUsesWith(I, Builder.getFalse());
6529         Pred = ICmpInst::ICMP_ULE;
6530         break;
6531       case ICmpInst::ICMP_SLT:
6532         // (float)int < -4.4   --> int < -4
6533         // (float)int < 4.4    --> int <= 4
6534         if (!RHS.isNegative())
6535           Pred = ICmpInst::ICMP_SLE;
6536         break;
6537       case ICmpInst::ICMP_UGT:
6538         // (float)int > 4.4    --> int > 4
6539         // (float)int > -4.4   --> true
6540         if (RHS.isNegative())
6541           return replaceInstUsesWith(I, Builder.getTrue());
6542         break;
6543       case ICmpInst::ICMP_SGT:
6544         // (float)int > 4.4    --> int > 4
6545         // (float)int > -4.4   --> int >= -4
6546         if (RHS.isNegative())
6547           Pred = ICmpInst::ICMP_SGE;
6548         break;
6549       case ICmpInst::ICMP_UGE:
6550         // (float)int >= -4.4   --> true
6551         // (float)int >= 4.4    --> int > 4
6552         if (RHS.isNegative())
6553           return replaceInstUsesWith(I, Builder.getTrue());
6554         Pred = ICmpInst::ICMP_UGT;
6555         break;
6556       case ICmpInst::ICMP_SGE:
6557         // (float)int >= -4.4   --> int >= -4
6558         // (float)int >= 4.4    --> int > 4
6559         if (!RHS.isNegative())
6560           Pred = ICmpInst::ICMP_SGT;
6561         break;
6562       }
6563     }
6564   }
6565 
6566   // Lower this FP comparison into an appropriate integer version of the
6567   // comparison.
6568   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
6569 }
6570 
6571 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
6572 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
6573                                               Constant *RHSC) {
6574   // When C is not 0.0 and infinities are not allowed:
6575   // (C / X) < 0.0 is a sign-bit test of X
6576   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
6577   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
6578   //
6579   // Proof:
6580   // Multiply (C / X) < 0.0 by X * X / C.
6581   // - X is non zero, if it is the flag 'ninf' is violated.
6582   // - C defines the sign of X * X * C. Thus it also defines whether to swap
6583   //   the predicate. C is also non zero by definition.
6584   //
6585   // Thus X * X / C is non zero and the transformation is valid. [qed]
6586 
6587   FCmpInst::Predicate Pred = I.getPredicate();
6588 
6589   // Check that predicates are valid.
6590   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
6591       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
6592     return nullptr;
6593 
6594   // Check that RHS operand is zero.
6595   if (!match(RHSC, m_AnyZeroFP()))
6596     return nullptr;
6597 
6598   // Check fastmath flags ('ninf').
6599   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
6600     return nullptr;
6601 
6602   // Check the properties of the dividend. It must not be zero to avoid a
6603   // division by zero (see Proof).
6604   const APFloat *C;
6605   if (!match(LHSI->getOperand(0), m_APFloat(C)))
6606     return nullptr;
6607 
6608   if (C->isZero())
6609     return nullptr;
6610 
6611   // Get swapped predicate if necessary.
6612   if (C->isNegative())
6613     Pred = I.getSwappedPredicate();
6614 
6615   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
6616 }
6617 
6618 /// Optimize fabs(X) compared with zero.
6619 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
6620   Value *X;
6621   if (!match(I.getOperand(0), m_FAbs(m_Value(X))) ||
6622       !match(I.getOperand(1), m_PosZeroFP()))
6623     return nullptr;
6624 
6625   auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
6626     I->setPredicate(P);
6627     return IC.replaceOperand(*I, 0, X);
6628   };
6629 
6630   switch (I.getPredicate()) {
6631   case FCmpInst::FCMP_UGE:
6632   case FCmpInst::FCMP_OLT:
6633     // fabs(X) >= 0.0 --> true
6634     // fabs(X) <  0.0 --> false
6635     llvm_unreachable("fcmp should have simplified");
6636 
6637   case FCmpInst::FCMP_OGT:
6638     // fabs(X) > 0.0 --> X != 0.0
6639     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
6640 
6641   case FCmpInst::FCMP_UGT:
6642     // fabs(X) u> 0.0 --> X u!= 0.0
6643     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
6644 
6645   case FCmpInst::FCMP_OLE:
6646     // fabs(X) <= 0.0 --> X == 0.0
6647     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
6648 
6649   case FCmpInst::FCMP_ULE:
6650     // fabs(X) u<= 0.0 --> X u== 0.0
6651     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
6652 
6653   case FCmpInst::FCMP_OGE:
6654     // fabs(X) >= 0.0 --> !isnan(X)
6655     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6656     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
6657 
6658   case FCmpInst::FCMP_ULT:
6659     // fabs(X) u< 0.0 --> isnan(X)
6660     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6661     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
6662 
6663   case FCmpInst::FCMP_OEQ:
6664   case FCmpInst::FCMP_UEQ:
6665   case FCmpInst::FCMP_ONE:
6666   case FCmpInst::FCMP_UNE:
6667   case FCmpInst::FCMP_ORD:
6668   case FCmpInst::FCMP_UNO:
6669     // Look through the fabs() because it doesn't change anything but the sign.
6670     // fabs(X) == 0.0 --> X == 0.0,
6671     // fabs(X) != 0.0 --> X != 0.0
6672     // isnan(fabs(X)) --> isnan(X)
6673     // !isnan(fabs(X) --> !isnan(X)
6674     return replacePredAndOp0(&I, I.getPredicate(), X);
6675 
6676   default:
6677     return nullptr;
6678   }
6679 }
6680 
6681 static Instruction *foldFCmpFNegCommonOp(FCmpInst &I) {
6682   CmpInst::Predicate Pred = I.getPredicate();
6683   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6684 
6685   // Canonicalize fneg as Op1.
6686   if (match(Op0, m_FNeg(m_Value())) && !match(Op1, m_FNeg(m_Value()))) {
6687     std::swap(Op0, Op1);
6688     Pred = I.getSwappedPredicate();
6689   }
6690 
6691   if (!match(Op1, m_FNeg(m_Specific(Op0))))
6692     return nullptr;
6693 
6694   // Replace the negated operand with 0.0:
6695   // fcmp Pred Op0, -Op0 --> fcmp Pred Op0, 0.0
6696   Constant *Zero = ConstantFP::getNullValue(Op0->getType());
6697   return new FCmpInst(Pred, Op0, Zero, "", &I);
6698 }
6699 
6700 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
6701   bool Changed = false;
6702 
6703   /// Orders the operands of the compare so that they are listed from most
6704   /// complex to least complex.  This puts constants before unary operators,
6705   /// before binary operators.
6706   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6707     I.swapOperands();
6708     Changed = true;
6709   }
6710 
6711   const CmpInst::Predicate Pred = I.getPredicate();
6712   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6713   if (Value *V = simplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6714                                   SQ.getWithInstruction(&I)))
6715     return replaceInstUsesWith(I, V);
6716 
6717   // Simplify 'fcmp pred X, X'
6718   Type *OpType = Op0->getType();
6719   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6720   if (Op0 == Op1) {
6721     switch (Pred) {
6722       default: break;
6723     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
6724     case FCmpInst::FCMP_ULT:    // True if unordered or less than
6725     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
6726     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
6727       // Canonicalize these to be 'fcmp uno %X, 0.0'.
6728       I.setPredicate(FCmpInst::FCMP_UNO);
6729       I.setOperand(1, Constant::getNullValue(OpType));
6730       return &I;
6731 
6732     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
6733     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
6734     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
6735     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
6736       // Canonicalize these to be 'fcmp ord %X, 0.0'.
6737       I.setPredicate(FCmpInst::FCMP_ORD);
6738       I.setOperand(1, Constant::getNullValue(OpType));
6739       return &I;
6740     }
6741   }
6742 
6743   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6744   // then canonicalize the operand to 0.0.
6745   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6746     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6747       return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6748 
6749     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6750       return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6751   }
6752 
6753   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6754   Value *X, *Y;
6755   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6756     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6757 
6758   if (Instruction *R = foldFCmpFNegCommonOp(I))
6759     return R;
6760 
6761   // Test if the FCmpInst instruction is used exclusively by a select as
6762   // part of a minimum or maximum operation. If so, refrain from doing
6763   // any other folding. This helps out other analyses which understand
6764   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6765   // and CodeGen. And in this case, at least one of the comparison
6766   // operands has at least one user besides the compare (the select),
6767   // which would often largely negate the benefit of folding anyway.
6768   if (I.hasOneUse())
6769     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6770       Value *A, *B;
6771       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6772       if (SPR.Flavor != SPF_UNKNOWN)
6773         return nullptr;
6774     }
6775 
6776   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6777   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6778   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6779     return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6780 
6781   // Handle fcmp with instruction LHS and constant RHS.
6782   Instruction *LHSI;
6783   Constant *RHSC;
6784   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6785     switch (LHSI->getOpcode()) {
6786     case Instruction::PHI:
6787       // Only fold fcmp into the PHI if the phi and fcmp are in the same
6788       // block.  If in the same block, we're encouraging jump threading.  If
6789       // not, we are just pessimizing the code by making an i1 phi.
6790       if (LHSI->getParent() == I.getParent())
6791         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6792           return NV;
6793       break;
6794     case Instruction::SIToFP:
6795     case Instruction::UIToFP:
6796       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6797         return NV;
6798       break;
6799     case Instruction::FDiv:
6800       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6801         return NV;
6802       break;
6803     case Instruction::Load:
6804       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6805         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6806           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(
6807                   cast<LoadInst>(LHSI), GEP, GV, I))
6808             return Res;
6809       break;
6810   }
6811   }
6812 
6813   if (Instruction *R = foldFabsWithFcmpZero(I, *this))
6814     return R;
6815 
6816   if (match(Op0, m_FNeg(m_Value(X)))) {
6817     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6818     Constant *C;
6819     if (match(Op1, m_Constant(C))) {
6820       Constant *NegC = ConstantExpr::getFNeg(C);
6821       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6822     }
6823   }
6824 
6825   if (match(Op0, m_FPExt(m_Value(X)))) {
6826     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6827     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6828       return new FCmpInst(Pred, X, Y, "", &I);
6829 
6830     const APFloat *C;
6831     if (match(Op1, m_APFloat(C))) {
6832       const fltSemantics &FPSem =
6833           X->getType()->getScalarType()->getFltSemantics();
6834       bool Lossy;
6835       APFloat TruncC = *C;
6836       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6837 
6838       if (Lossy) {
6839         // X can't possibly equal the higher-precision constant, so reduce any
6840         // equality comparison.
6841         // TODO: Other predicates can be handled via getFCmpCode().
6842         switch (Pred) {
6843         case FCmpInst::FCMP_OEQ:
6844           // X is ordered and equal to an impossible constant --> false
6845           return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6846         case FCmpInst::FCMP_ONE:
6847           // X is ordered and not equal to an impossible constant --> ordered
6848           return new FCmpInst(FCmpInst::FCMP_ORD, X,
6849                               ConstantFP::getNullValue(X->getType()));
6850         case FCmpInst::FCMP_UEQ:
6851           // X is unordered or equal to an impossible constant --> unordered
6852           return new FCmpInst(FCmpInst::FCMP_UNO, X,
6853                               ConstantFP::getNullValue(X->getType()));
6854         case FCmpInst::FCMP_UNE:
6855           // X is unordered or not equal to an impossible constant --> true
6856           return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6857         default:
6858           break;
6859         }
6860       }
6861 
6862       // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6863       // Avoid lossy conversions and denormals.
6864       // Zero is a special case that's OK to convert.
6865       APFloat Fabs = TruncC;
6866       Fabs.clearSign();
6867       if (!Lossy &&
6868           (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
6869         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6870         return new FCmpInst(Pred, X, NewC, "", &I);
6871       }
6872     }
6873   }
6874 
6875   // Convert a sign-bit test of an FP value into a cast and integer compare.
6876   // TODO: Simplify if the copysign constant is 0.0 or NaN.
6877   // TODO: Handle non-zero compare constants.
6878   // TODO: Handle other predicates.
6879   const APFloat *C;
6880   if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C),
6881                                                            m_Value(X)))) &&
6882       match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) {
6883     Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits());
6884     if (auto *VecTy = dyn_cast<VectorType>(OpType))
6885       IntType = VectorType::get(IntType, VecTy->getElementCount());
6886 
6887     // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0
6888     if (Pred == FCmpInst::FCMP_OLT) {
6889       Value *IntX = Builder.CreateBitCast(X, IntType);
6890       return new ICmpInst(ICmpInst::ICMP_SLT, IntX,
6891                           ConstantInt::getNullValue(IntType));
6892     }
6893   }
6894 
6895   if (I.getType()->isVectorTy())
6896     if (Instruction *Res = foldVectorCmp(I, Builder))
6897       return Res;
6898 
6899   return Changed ? &I : nullptr;
6900 }
6901