1 //===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 ///
11 /// This file provides internal interfaces used to implement the InstCombine.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
16 #define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
17 
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/TargetFolder.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/IR/InstVisitor.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/IR/Value.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/KnownBits.h"
28 #include "llvm/Transforms/InstCombine/InstCombiner.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include <cassert>
31 
32 #define DEBUG_TYPE "instcombine"
33 #include "llvm/Transforms/Utils/InstructionWorklist.h"
34 
35 using namespace llvm::PatternMatch;
36 
37 // As a default, let's assume that we want to be aggressive,
38 // and attempt to traverse with no limits in attempt to sink negation.
39 static constexpr unsigned NegatorDefaultMaxDepth = ~0U;
40 
41 // Let's guesstimate that most often we will end up visiting/producing
42 // fairly small number of new instructions.
43 static constexpr unsigned NegatorMaxNodesSSO = 16;
44 
45 namespace llvm {
46 
47 class AAResults;
48 class APInt;
49 class AssumptionCache;
50 class BlockFrequencyInfo;
51 class DataLayout;
52 class DominatorTree;
53 class GEPOperator;
54 class GlobalVariable;
55 class LoopInfo;
56 class OptimizationRemarkEmitter;
57 class ProfileSummaryInfo;
58 class TargetLibraryInfo;
59 class User;
60 
61 class LLVM_LIBRARY_VISIBILITY InstCombinerImpl final
62     : public InstCombiner,
63       public InstVisitor<InstCombinerImpl, Instruction *> {
64 public:
65   InstCombinerImpl(InstructionWorklist &Worklist, BuilderTy &Builder,
66                    bool MinimizeSize, AAResults *AA, AssumptionCache &AC,
67                    TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
68                    DominatorTree &DT, OptimizationRemarkEmitter &ORE,
69                    BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
70                    const DataLayout &DL, LoopInfo *LI)
71       : InstCombiner(Worklist, Builder, MinimizeSize, AA, AC, TLI, TTI, DT, ORE,
72                      BFI, PSI, DL, LI) {}
73 
74   virtual ~InstCombinerImpl() = default;
75 
76   /// Run the combiner over the entire worklist until it is empty.
77   ///
78   /// \returns true if the IR is changed.
79   bool run();
80 
81   // Visitation implementation - Implement instruction combining for different
82   // instruction types.  The semantics are as follows:
83   // Return Value:
84   //    null        - No change was made
85   //     I          - Change was made, I is still valid, I may be dead though
86   //   otherwise    - Change was made, replace I with returned instruction
87   //
88   Instruction *visitFNeg(UnaryOperator &I);
89   Instruction *visitAdd(BinaryOperator &I);
90   Instruction *visitFAdd(BinaryOperator &I);
91   Value *OptimizePointerDifference(
92       Value *LHS, Value *RHS, Type *Ty, bool isNUW);
93   Instruction *visitSub(BinaryOperator &I);
94   Instruction *visitFSub(BinaryOperator &I);
95   Instruction *visitMul(BinaryOperator &I);
96   Instruction *visitFMul(BinaryOperator &I);
97   Instruction *visitURem(BinaryOperator &I);
98   Instruction *visitSRem(BinaryOperator &I);
99   Instruction *visitFRem(BinaryOperator &I);
100   bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I);
101   Instruction *commonIRemTransforms(BinaryOperator &I);
102   Instruction *commonIDivTransforms(BinaryOperator &I);
103   Instruction *visitUDiv(BinaryOperator &I);
104   Instruction *visitSDiv(BinaryOperator &I);
105   Instruction *visitFDiv(BinaryOperator &I);
106   Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
107   Instruction *visitAnd(BinaryOperator &I);
108   Instruction *visitOr(BinaryOperator &I);
109   bool sinkNotIntoLogicalOp(Instruction &I);
110   bool sinkNotIntoOtherHandOfLogicalOp(Instruction &I);
111   Instruction *visitXor(BinaryOperator &I);
112   Instruction *visitShl(BinaryOperator &I);
113   Value *reassociateShiftAmtsOfTwoSameDirectionShifts(
114       BinaryOperator *Sh0, const SimplifyQuery &SQ,
115       bool AnalyzeForSignBitExtraction = false);
116   Instruction *canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
117       BinaryOperator &I);
118   Instruction *foldVariableSignZeroExtensionOfVariableHighBitExtract(
119       BinaryOperator &OldAShr);
120   Instruction *visitAShr(BinaryOperator &I);
121   Instruction *visitLShr(BinaryOperator &I);
122   Instruction *commonShiftTransforms(BinaryOperator &I);
123   Instruction *visitFCmpInst(FCmpInst &I);
124   CmpInst *canonicalizeICmpPredicate(CmpInst &I);
125   Instruction *visitICmpInst(ICmpInst &I);
126   Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
127                                    BinaryOperator &I);
128   Instruction *commonCastTransforms(CastInst &CI);
129   Instruction *commonPointerCastTransforms(CastInst &CI);
130   Instruction *visitTrunc(TruncInst &CI);
131   Instruction *visitZExt(ZExtInst &Zext);
132   Instruction *visitSExt(SExtInst &Sext);
133   Instruction *visitFPTrunc(FPTruncInst &CI);
134   Instruction *visitFPExt(CastInst &CI);
135   Instruction *visitFPToUI(FPToUIInst &FI);
136   Instruction *visitFPToSI(FPToSIInst &FI);
137   Instruction *visitUIToFP(CastInst &CI);
138   Instruction *visitSIToFP(CastInst &CI);
139   Instruction *visitPtrToInt(PtrToIntInst &CI);
140   Instruction *visitIntToPtr(IntToPtrInst &CI);
141   Instruction *visitBitCast(BitCastInst &CI);
142   Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
143   Instruction *foldItoFPtoI(CastInst &FI);
144   Instruction *visitSelectInst(SelectInst &SI);
145   Instruction *visitCallInst(CallInst &CI);
146   Instruction *visitInvokeInst(InvokeInst &II);
147   Instruction *visitCallBrInst(CallBrInst &CBI);
148 
149   Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
150   Instruction *visitPHINode(PHINode &PN);
151   Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
152   Instruction *visitGEPOfGEP(GetElementPtrInst &GEP, GEPOperator *Src);
153   Instruction *visitGEPOfBitcast(BitCastInst *BCI, GetElementPtrInst &GEP);
154   Instruction *visitAllocaInst(AllocaInst &AI);
155   Instruction *visitAllocSite(Instruction &FI);
156   Instruction *visitFree(CallInst &FI, Value *FreedOp);
157   Instruction *visitLoadInst(LoadInst &LI);
158   Instruction *visitStoreInst(StoreInst &SI);
159   Instruction *visitAtomicRMWInst(AtomicRMWInst &SI);
160   Instruction *visitUnconditionalBranchInst(BranchInst &BI);
161   Instruction *visitBranchInst(BranchInst &BI);
162   Instruction *visitFenceInst(FenceInst &FI);
163   Instruction *visitSwitchInst(SwitchInst &SI);
164   Instruction *visitReturnInst(ReturnInst &RI);
165   Instruction *visitUnreachableInst(UnreachableInst &I);
166   Instruction *
167   foldAggregateConstructionIntoAggregateReuse(InsertValueInst &OrigIVI);
168   Instruction *visitInsertValueInst(InsertValueInst &IV);
169   Instruction *visitInsertElementInst(InsertElementInst &IE);
170   Instruction *visitExtractElementInst(ExtractElementInst &EI);
171   Instruction *simplifyBinOpSplats(ShuffleVectorInst &SVI);
172   Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
173   Instruction *visitExtractValueInst(ExtractValueInst &EV);
174   Instruction *visitLandingPadInst(LandingPadInst &LI);
175   Instruction *visitVAEndInst(VAEndInst &I);
176   Value *pushFreezeToPreventPoisonFromPropagating(FreezeInst &FI);
177   bool freezeOtherUses(FreezeInst &FI);
178   Instruction *foldFreezeIntoRecurrence(FreezeInst &I, PHINode *PN);
179   Instruction *visitFreeze(FreezeInst &I);
180 
181   /// Specify what to return for unhandled instructions.
182   Instruction *visitInstruction(Instruction &I) { return nullptr; }
183 
184   /// True when DB dominates all uses of DI except UI.
185   /// UI must be in the same block as DI.
186   /// The routine checks that the DI parent and DB are different.
187   bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
188                         const BasicBlock *DB) const;
189 
190   /// Try to replace select with select operand SIOpd in SI-ICmp sequence.
191   bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
192                                  const unsigned SIOpd);
193 
194   LoadInst *combineLoadToNewType(LoadInst &LI, Type *NewTy,
195                                  const Twine &Suffix = "");
196 
197 private:
198   bool annotateAnyAllocSite(CallBase &Call, const TargetLibraryInfo *TLI);
199   bool isDesirableIntType(unsigned BitWidth) const;
200   bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
201   bool shouldChangeType(Type *From, Type *To) const;
202   Value *dyn_castNegVal(Value *V) const;
203 
204   /// Classify whether a cast is worth optimizing.
205   ///
206   /// This is a helper to decide whether the simplification of
207   /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
208   ///
209   /// \param CI The cast we are interested in.
210   ///
211   /// \return true if this cast actually results in any code being generated and
212   /// if it cannot already be eliminated by some other transformation.
213   bool shouldOptimizeCast(CastInst *CI);
214 
215   /// Try to optimize a sequence of instructions checking if an operation
216   /// on LHS and RHS overflows.
217   ///
218   /// If this overflow check is done via one of the overflow check intrinsics,
219   /// then CtxI has to be the call instruction calling that intrinsic.  If this
220   /// overflow check is done by arithmetic followed by a compare, then CtxI has
221   /// to be the arithmetic instruction.
222   ///
223   /// If a simplification is possible, stores the simplified result of the
224   /// operation in OperationResult and result of the overflow check in
225   /// OverflowResult, and return true.  If no simplification is possible,
226   /// returns false.
227   bool OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, bool IsSigned,
228                              Value *LHS, Value *RHS,
229                              Instruction &CtxI, Value *&OperationResult,
230                              Constant *&OverflowResult);
231 
232   Instruction *visitCallBase(CallBase &Call);
233   Instruction *tryOptimizeCall(CallInst *CI);
234   bool transformConstExprCastCall(CallBase &Call);
235   Instruction *transformCallThroughTrampoline(CallBase &Call,
236                                               IntrinsicInst &Tramp);
237 
238   Value *simplifyMaskedLoad(IntrinsicInst &II);
239   Instruction *simplifyMaskedStore(IntrinsicInst &II);
240   Instruction *simplifyMaskedGather(IntrinsicInst &II);
241   Instruction *simplifyMaskedScatter(IntrinsicInst &II);
242 
243   /// Transform (zext icmp) to bitwise / integer operations in order to
244   /// eliminate it.
245   ///
246   /// \param ICI The icmp of the (zext icmp) pair we are interested in.
247   /// \parem CI The zext of the (zext icmp) pair we are interested in.
248   ///
249   /// \return null if the transformation cannot be performed. If the
250   /// transformation can be performed the new instruction that replaces the
251   /// (zext icmp) pair will be returned.
252   Instruction *transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext);
253 
254   Instruction *transformSExtICmp(ICmpInst *Cmp, SExtInst &Sext);
255 
256   bool willNotOverflowSignedAdd(const Value *LHS, const Value *RHS,
257                                 const Instruction &CxtI) const {
258     return computeOverflowForSignedAdd(LHS, RHS, &CxtI) ==
259            OverflowResult::NeverOverflows;
260   }
261 
262   bool willNotOverflowUnsignedAdd(const Value *LHS, const Value *RHS,
263                                   const Instruction &CxtI) const {
264     return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) ==
265            OverflowResult::NeverOverflows;
266   }
267 
268   bool willNotOverflowAdd(const Value *LHS, const Value *RHS,
269                           const Instruction &CxtI, bool IsSigned) const {
270     return IsSigned ? willNotOverflowSignedAdd(LHS, RHS, CxtI)
271                     : willNotOverflowUnsignedAdd(LHS, RHS, CxtI);
272   }
273 
274   bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS,
275                                 const Instruction &CxtI) const {
276     return computeOverflowForSignedSub(LHS, RHS, &CxtI) ==
277            OverflowResult::NeverOverflows;
278   }
279 
280   bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS,
281                                   const Instruction &CxtI) const {
282     return computeOverflowForUnsignedSub(LHS, RHS, &CxtI) ==
283            OverflowResult::NeverOverflows;
284   }
285 
286   bool willNotOverflowSub(const Value *LHS, const Value *RHS,
287                           const Instruction &CxtI, bool IsSigned) const {
288     return IsSigned ? willNotOverflowSignedSub(LHS, RHS, CxtI)
289                     : willNotOverflowUnsignedSub(LHS, RHS, CxtI);
290   }
291 
292   bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS,
293                                 const Instruction &CxtI) const {
294     return computeOverflowForSignedMul(LHS, RHS, &CxtI) ==
295            OverflowResult::NeverOverflows;
296   }
297 
298   bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS,
299                                   const Instruction &CxtI) const {
300     return computeOverflowForUnsignedMul(LHS, RHS, &CxtI) ==
301            OverflowResult::NeverOverflows;
302   }
303 
304   bool willNotOverflowMul(const Value *LHS, const Value *RHS,
305                           const Instruction &CxtI, bool IsSigned) const {
306     return IsSigned ? willNotOverflowSignedMul(LHS, RHS, CxtI)
307                     : willNotOverflowUnsignedMul(LHS, RHS, CxtI);
308   }
309 
310   bool willNotOverflow(BinaryOperator::BinaryOps Opcode, const Value *LHS,
311                        const Value *RHS, const Instruction &CxtI,
312                        bool IsSigned) const {
313     switch (Opcode) {
314     case Instruction::Add: return willNotOverflowAdd(LHS, RHS, CxtI, IsSigned);
315     case Instruction::Sub: return willNotOverflowSub(LHS, RHS, CxtI, IsSigned);
316     case Instruction::Mul: return willNotOverflowMul(LHS, RHS, CxtI, IsSigned);
317     default: llvm_unreachable("Unexpected opcode for overflow query");
318     }
319   }
320 
321   Value *EmitGEPOffset(User *GEP);
322   Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
323   Instruction *foldBitcastExtElt(ExtractElementInst &ExtElt);
324   Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
325   Instruction *foldBinopOfSextBoolToSelect(BinaryOperator &I);
326   Instruction *narrowBinOp(TruncInst &Trunc);
327   Instruction *narrowMaskedBinOp(BinaryOperator &And);
328   Instruction *narrowMathIfNoOverflow(BinaryOperator &I);
329   Instruction *narrowFunnelShift(TruncInst &Trunc);
330   Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN);
331   Instruction *matchSAddSubSat(IntrinsicInst &MinMax1);
332   Instruction *foldNot(BinaryOperator &I);
333 
334   void freelyInvertAllUsersOf(Value *V, Value *IgnoredUser = nullptr);
335 
336   /// Determine if a pair of casts can be replaced by a single cast.
337   ///
338   /// \param CI1 The first of a pair of casts.
339   /// \param CI2 The second of a pair of casts.
340   ///
341   /// \return 0 if the cast pair cannot be eliminated, otherwise returns an
342   /// Instruction::CastOps value for a cast that can replace the pair, casting
343   /// CI1->getSrcTy() to CI2->getDstTy().
344   ///
345   /// \see CastInst::isEliminableCastPair
346   Instruction::CastOps isEliminableCastPair(const CastInst *CI1,
347                                             const CastInst *CI2);
348   Value *simplifyIntToPtrRoundTripCast(Value *Val);
349 
350   Value *foldAndOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &I,
351                           bool IsAnd, bool IsLogical = false);
352   Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &Xor);
353 
354   Value *foldEqOfParts(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd);
355 
356   Value *foldAndOrOfICmpsUsingRanges(ICmpInst *ICmp1, ICmpInst *ICmp2,
357                                      bool IsAnd);
358 
359   /// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp).
360   /// NOTE: Unlike most of instcombine, this returns a Value which should
361   /// already be inserted into the function.
362   Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd,
363                           bool IsLogicalSelect = false);
364 
365   Instruction *foldLogicOfIsFPClass(BinaryOperator &Operator, Value *LHS,
366                                     Value *RHS);
367 
368   Instruction *
369   canonicalizeConditionalNegationViaMathToSelect(BinaryOperator &i);
370 
371   Value *foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
372                                        Instruction *CxtI, bool IsAnd,
373                                        bool IsLogical = false);
374   Value *matchSelectFromAndOr(Value *A, Value *B, Value *C, Value *D,
375                               bool InvertFalseVal = false);
376   Value *getSelectCondition(Value *A, Value *B, bool ABIsTheSame);
377 
378   Instruction *foldLShrOverflowBit(BinaryOperator &I);
379   Instruction *foldExtractOfOverflowIntrinsic(ExtractValueInst &EV);
380   Instruction *foldIntrinsicWithOverflowCommon(IntrinsicInst *II);
381   Instruction *foldFPSignBitOps(BinaryOperator &I);
382   Instruction *foldFDivConstantDivisor(BinaryOperator &I);
383 
384   // Optimize one of these forms:
385   //   and i1 Op, SI / select i1 Op, i1 SI, i1 false (if IsAnd = true)
386   //   or i1 Op, SI  / select i1 Op, i1 true, i1 SI  (if IsAnd = false)
387   // into simplier select instruction using isImpliedCondition.
388   Instruction *foldAndOrOfSelectUsingImpliedCond(Value *Op, SelectInst &SI,
389                                                  bool IsAnd);
390 
391 public:
392   /// Create and insert the idiom we use to indicate a block is unreachable
393   /// without having to rewrite the CFG from within InstCombine.
394   void CreateNonTerminatorUnreachable(Instruction *InsertAt) {
395     auto &Ctx = InsertAt->getContext();
396     new StoreInst(ConstantInt::getTrue(Ctx),
397                   PoisonValue::get(Type::getInt1PtrTy(Ctx)),
398                   InsertAt);
399   }
400 
401 
402   /// Combiner aware instruction erasure.
403   ///
404   /// When dealing with an instruction that has side effects or produces a void
405   /// value, we can't rely on DCE to delete the instruction. Instead, visit
406   /// methods should return the value returned by this function.
407   Instruction *eraseInstFromFunction(Instruction &I) override {
408     LLVM_DEBUG(dbgs() << "IC: ERASE " << I << '\n');
409     assert(I.use_empty() && "Cannot erase instruction that is used!");
410     salvageDebugInfo(I);
411 
412     // Make sure that we reprocess all operands now that we reduced their
413     // use counts.
414     for (Use &Operand : I.operands())
415       if (auto *Inst = dyn_cast<Instruction>(Operand))
416         Worklist.add(Inst);
417 
418     Worklist.remove(&I);
419     I.eraseFromParent();
420     MadeIRChange = true;
421     return nullptr; // Don't do anything with FI
422   }
423 
424   OverflowResult computeOverflow(
425       Instruction::BinaryOps BinaryOp, bool IsSigned,
426       Value *LHS, Value *RHS, Instruction *CxtI) const;
427 
428   /// Performs a few simplifications for operators which are associative
429   /// or commutative.
430   bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
431 
432   /// Tries to simplify binary operations which some other binary
433   /// operation distributes over.
434   ///
435   /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
436   /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
437   /// & (B | C) -> (A&B) | (A&C)" if this is a win).  Returns the simplified
438   /// value, or null if it didn't simplify.
439   Value *foldUsingDistributiveLaws(BinaryOperator &I);
440 
441   /// Tries to simplify add operations using the definition of remainder.
442   ///
443   /// The definition of remainder is X % C = X - (X / C ) * C. The add
444   /// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to
445   /// X % (C0 * C1)
446   Value *SimplifyAddWithRemainder(BinaryOperator &I);
447 
448   // Binary Op helper for select operations where the expression can be
449   // efficiently reorganized.
450   Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS,
451                                         Value *RHS);
452 
453   /// This tries to simplify binary operations by factorizing out common terms
454   /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
455   Value *tryFactorizationFolds(BinaryOperator &I);
456 
457   /// Match a select chain which produces one of three values based on whether
458   /// the LHS is less than, equal to, or greater than RHS respectively.
459   /// Return true if we matched a three way compare idiom. The LHS, RHS, Less,
460   /// Equal and Greater values are saved in the matching process and returned to
461   /// the caller.
462   bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS,
463                                ConstantInt *&Less, ConstantInt *&Equal,
464                                ConstantInt *&Greater);
465 
466   /// Attempts to replace V with a simpler value based on the demanded
467   /// bits.
468   Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, KnownBits &Known,
469                                  unsigned Depth, Instruction *CxtI);
470   bool SimplifyDemandedBits(Instruction *I, unsigned Op,
471                             const APInt &DemandedMask, KnownBits &Known,
472                             unsigned Depth = 0) override;
473 
474   /// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
475   /// bits. It also tries to handle simplifications that can be done based on
476   /// DemandedMask, but without modifying the Instruction.
477   Value *SimplifyMultipleUseDemandedBits(Instruction *I,
478                                          const APInt &DemandedMask,
479                                          KnownBits &Known,
480                                          unsigned Depth, Instruction *CxtI);
481 
482   /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
483   /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
484   Value *simplifyShrShlDemandedBits(
485       Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
486       const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known);
487 
488   /// Tries to simplify operands to an integer instruction based on its
489   /// demanded bits.
490   bool SimplifyDemandedInstructionBits(Instruction &Inst);
491 
492   Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
493                                     APInt &UndefElts, unsigned Depth = 0,
494                                     bool AllowMultipleUsers = false) override;
495 
496   /// Canonicalize the position of binops relative to shufflevector.
497   Instruction *foldVectorBinop(BinaryOperator &Inst);
498   Instruction *foldVectorSelect(SelectInst &Sel);
499   Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf);
500 
501   /// Given a binary operator, cast instruction, or select which has a PHI node
502   /// as operand #0, see if we can fold the instruction into the PHI (which is
503   /// only possible if all operands to the PHI are constants).
504   Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN);
505 
506   /// For a binary operator with 2 phi operands, try to hoist the binary
507   /// operation before the phi. This can result in fewer instructions in
508   /// patterns where at least one set of phi operands simplifies.
509   /// Example:
510   /// BB3: binop (phi [X, BB1], [C1, BB2]), (phi [Y, BB1], [C2, BB2])
511   /// -->
512   /// BB1: BO = binop X, Y
513   /// BB3: phi [BO, BB1], [(binop C1, C2), BB2]
514   Instruction *foldBinopWithPhiOperands(BinaryOperator &BO);
515 
516   /// Given an instruction with a select as one operand and a constant as the
517   /// other operand, try to fold the binary operator into the select arguments.
518   /// This also works for Cast instructions, which obviously do not have a
519   /// second operand.
520   Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
521                                 bool FoldWithMultiUse = false);
522 
523   /// This is a convenience wrapper function for the above two functions.
524   Instruction *foldBinOpIntoSelectOrPhi(BinaryOperator &I);
525 
526   Instruction *foldAddWithConstant(BinaryOperator &Add);
527 
528   /// Try to rotate an operation below a PHI node, using PHI nodes for
529   /// its operands.
530   Instruction *foldPHIArgOpIntoPHI(PHINode &PN);
531   Instruction *foldPHIArgBinOpIntoPHI(PHINode &PN);
532   Instruction *foldPHIArgInsertValueInstructionIntoPHI(PHINode &PN);
533   Instruction *foldPHIArgExtractValueInstructionIntoPHI(PHINode &PN);
534   Instruction *foldPHIArgGEPIntoPHI(PHINode &PN);
535   Instruction *foldPHIArgLoadIntoPHI(PHINode &PN);
536   Instruction *foldPHIArgZextsIntoPHI(PHINode &PN);
537   Instruction *foldPHIArgIntToPtrToPHI(PHINode &PN);
538 
539   /// If an integer typed PHI has only one use which is an IntToPtr operation,
540   /// replace the PHI with an existing pointer typed PHI if it exists. Otherwise
541   /// insert a new pointer typed PHI and replace the original one.
542   bool foldIntegerTypedPHI(PHINode &PN);
543 
544   /// Helper function for FoldPHIArgXIntoPHI() to set debug location for the
545   /// folded operation.
546   void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN);
547 
548   Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
549                            ICmpInst::Predicate Cond, Instruction &I);
550   Instruction *foldSelectICmp(ICmpInst::Predicate Pred, SelectInst *SI,
551                               Value *RHS, const ICmpInst &I);
552   Instruction *foldAllocaCmp(ICmpInst &ICI, const AllocaInst *Alloca);
553   Instruction *foldCmpLoadFromIndexedGlobal(LoadInst *LI,
554                                             GetElementPtrInst *GEP,
555                                             GlobalVariable *GV, CmpInst &ICI,
556                                             ConstantInt *AndCst = nullptr);
557   Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
558                                     Constant *RHSC);
559   Instruction *foldICmpAddOpConst(Value *X, const APInt &C,
560                                   ICmpInst::Predicate Pred);
561   Instruction *foldICmpWithCastOp(ICmpInst &ICmp);
562   Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp);
563 
564   Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp);
565   Instruction *foldICmpWithDominatingICmp(ICmpInst &Cmp);
566   Instruction *foldICmpWithConstant(ICmpInst &Cmp);
567   Instruction *foldICmpInstWithConstant(ICmpInst &Cmp);
568   Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp);
569   Instruction *foldICmpInstWithConstantAllowUndef(ICmpInst &Cmp,
570                                                   const APInt &C);
571   Instruction *foldICmpBinOp(ICmpInst &Cmp, const SimplifyQuery &SQ);
572   Instruction *foldICmpEquality(ICmpInst &Cmp);
573   Instruction *foldIRemByPowerOfTwoToBitTest(ICmpInst &I);
574   Instruction *foldSignBitTest(ICmpInst &I);
575   Instruction *foldICmpWithZero(ICmpInst &Cmp);
576 
577   Value *foldMultiplicationOverflowCheck(ICmpInst &Cmp);
578 
579   Instruction *foldICmpBinOpWithConstant(ICmpInst &Cmp, BinaryOperator *BO,
580                                          const APInt &C);
581   Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select,
582                                       ConstantInt *C);
583   Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc,
584                                      const APInt &C);
585   Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And,
586                                    const APInt &C);
587   Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor,
588                                    const APInt &C);
589   Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
590                                   const APInt &C);
591   Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul,
592                                    const APInt &C);
593   Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl,
594                                    const APInt &C);
595   Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr,
596                                    const APInt &C);
597   Instruction *foldICmpSRemConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
598                                     const APInt &C);
599   Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
600                                     const APInt &C);
601   Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div,
602                                    const APInt &C);
603   Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub,
604                                    const APInt &C);
605   Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add,
606                                    const APInt &C);
607   Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And,
608                                      const APInt &C1);
609   Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
610                                 const APInt &C1, const APInt &C2);
611   Instruction *foldICmpXorShiftConst(ICmpInst &Cmp, BinaryOperator *Xor,
612                                      const APInt &C);
613   Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
614                                      const APInt &C2);
615   Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
616                                      const APInt &C2);
617 
618   Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
619                                                  BinaryOperator *BO,
620                                                  const APInt &C);
621   Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
622                                              const APInt &C);
623   Instruction *foldICmpEqIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
624                                                const APInt &C);
625   Instruction *foldICmpBitCast(ICmpInst &Cmp);
626 
627   // Helpers of visitSelectInst().
628   Instruction *foldSelectOfBools(SelectInst &SI);
629   Instruction *foldSelectExtConst(SelectInst &Sel);
630   Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
631   Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *);
632   Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
633                             Value *A, Value *B, Instruction &Outer,
634                             SelectPatternFlavor SPF2, Value *C);
635   Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
636   Instruction *foldSelectValueEquivalence(SelectInst &SI, ICmpInst &ICI);
637 
638   Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
639                          bool isSigned, bool Inside);
640   Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
641   bool mergeStoreIntoSuccessor(StoreInst &SI);
642 
643   /// Given an initial instruction, check to see if it is the root of a
644   /// bswap/bitreverse idiom. If so, return the equivalent bswap/bitreverse
645   /// intrinsic.
646   Instruction *matchBSwapOrBitReverse(Instruction &I, bool MatchBSwaps,
647                                       bool MatchBitReversals);
648 
649   Instruction *SimplifyAnyMemTransfer(AnyMemTransferInst *MI);
650   Instruction *SimplifyAnyMemSet(AnyMemSetInst *MI);
651 
652   Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
653 
654   /// Returns a value X such that Val = X * Scale, or null if none.
655   ///
656   /// If the multiplication is known not to overflow then NoSignedWrap is set.
657   Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
658 };
659 
660 class Negator final {
661   /// Top-to-bottom, def-to-use negated instruction tree we produced.
662   SmallVector<Instruction *, NegatorMaxNodesSSO> NewInstructions;
663 
664   using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>;
665   BuilderTy Builder;
666 
667   const DataLayout &DL;
668   AssumptionCache &AC;
669   const DominatorTree &DT;
670 
671   const bool IsTrulyNegation;
672 
673   SmallDenseMap<Value *, Value *> NegationsCache;
674 
675   Negator(LLVMContext &C, const DataLayout &DL, AssumptionCache &AC,
676           const DominatorTree &DT, bool IsTrulyNegation);
677 
678 #if LLVM_ENABLE_STATS
679   unsigned NumValuesVisitedInThisNegator = 0;
680   ~Negator();
681 #endif
682 
683   using Result = std::pair<ArrayRef<Instruction *> /*NewInstructions*/,
684                            Value * /*NegatedRoot*/>;
685 
686   std::array<Value *, 2> getSortedOperandsOfBinOp(Instruction *I);
687 
688   [[nodiscard]] Value *visitImpl(Value *V, unsigned Depth);
689 
690   [[nodiscard]] Value *negate(Value *V, unsigned Depth);
691 
692   /// Recurse depth-first and attempt to sink the negation.
693   /// FIXME: use worklist?
694   [[nodiscard]] std::optional<Result> run(Value *Root);
695 
696   Negator(const Negator &) = delete;
697   Negator(Negator &&) = delete;
698   Negator &operator=(const Negator &) = delete;
699   Negator &operator=(Negator &&) = delete;
700 
701 public:
702   /// Attempt to negate \p Root. Retuns nullptr if negation can't be performed,
703   /// otherwise returns negated value.
704   [[nodiscard]] static Value *Negate(bool LHSIsZero, Value *Root,
705                                      InstCombinerImpl &IC);
706 };
707 
708 } // end namespace llvm
709 
710 #undef DEBUG_TYPE
711 
712 #endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
713