1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
10 // srem, urem, frem.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Transforms/InstCombine/InstCombiner.h"
34 #include "llvm/Transforms/Utils/BuildLibCalls.h"
35 #include <cassert>
36 
37 #define DEBUG_TYPE "instcombine"
38 #include "llvm/Transforms/Utils/InstructionWorklist.h"
39 
40 using namespace llvm;
41 using namespace PatternMatch;
42 
43 /// The specific integer value is used in a context where it is known to be
44 /// non-zero.  If this allows us to simplify the computation, do so and return
45 /// the new operand, otherwise return null.
46 static Value *simplifyValueKnownNonZero(Value *V, InstCombinerImpl &IC,
47                                         Instruction &CxtI) {
48   // If V has multiple uses, then we would have to do more analysis to determine
49   // if this is safe.  For example, the use could be in dynamically unreached
50   // code.
51   if (!V->hasOneUse()) return nullptr;
52 
53   bool MadeChange = false;
54 
55   // ((1 << A) >>u B) --> (1 << (A-B))
56   // Because V cannot be zero, we know that B is less than A.
57   Value *A = nullptr, *B = nullptr, *One = nullptr;
58   if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
59       match(One, m_One())) {
60     A = IC.Builder.CreateSub(A, B);
61     return IC.Builder.CreateShl(One, A);
62   }
63 
64   // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
65   // inexact.  Similarly for <<.
66   BinaryOperator *I = dyn_cast<BinaryOperator>(V);
67   if (I && I->isLogicalShift() &&
68       IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
69     // We know that this is an exact/nuw shift and that the input is a
70     // non-zero context as well.
71     if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
72       IC.replaceOperand(*I, 0, V2);
73       MadeChange = true;
74     }
75 
76     if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
77       I->setIsExact();
78       MadeChange = true;
79     }
80 
81     if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
82       I->setHasNoUnsignedWrap();
83       MadeChange = true;
84     }
85   }
86 
87   // TODO: Lots more we could do here:
88   //    If V is a phi node, we can call this on each of its operands.
89   //    "select cond, X, 0" can simplify to "X".
90 
91   return MadeChange ? V : nullptr;
92 }
93 
94 // TODO: This is a specific form of a much more general pattern.
95 //       We could detect a select with any binop identity constant, or we
96 //       could use SimplifyBinOp to see if either arm of the select reduces.
97 //       But that needs to be done carefully and/or while removing potential
98 //       reverse canonicalizations as in InstCombiner::foldSelectIntoOp().
99 static Value *foldMulSelectToNegate(BinaryOperator &I,
100                                     InstCombiner::BuilderTy &Builder) {
101   Value *Cond, *OtherOp;
102 
103   // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp
104   // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp
105   if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())),
106                         m_Value(OtherOp)))) {
107     bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
108     Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap);
109     return Builder.CreateSelect(Cond, OtherOp, Neg);
110   }
111   // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp
112   // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp
113   if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())),
114                         m_Value(OtherOp)))) {
115     bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
116     Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap);
117     return Builder.CreateSelect(Cond, Neg, OtherOp);
118   }
119 
120   // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp
121   // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp
122   if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0),
123                                            m_SpecificFP(-1.0))),
124                          m_Value(OtherOp)))) {
125     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
126     Builder.setFastMathFlags(I.getFastMathFlags());
127     return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp));
128   }
129 
130   // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp
131   // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp
132   if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0),
133                                            m_SpecificFP(1.0))),
134                          m_Value(OtherOp)))) {
135     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
136     Builder.setFastMathFlags(I.getFastMathFlags());
137     return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp);
138   }
139 
140   return nullptr;
141 }
142 
143 /// Reduce integer multiplication patterns that contain a (+/-1 << Z) factor.
144 /// Callers are expected to call this twice to handle commuted patterns.
145 static Value *foldMulShl1(BinaryOperator &Mul, bool CommuteOperands,
146                           InstCombiner::BuilderTy &Builder) {
147   Value *X = Mul.getOperand(0), *Y = Mul.getOperand(1);
148   if (CommuteOperands)
149     std::swap(X, Y);
150 
151   const bool HasNSW = Mul.hasNoSignedWrap();
152   const bool HasNUW = Mul.hasNoUnsignedWrap();
153 
154   // X * (1 << Z) --> X << Z
155   Value *Z;
156   if (match(Y, m_Shl(m_One(), m_Value(Z)))) {
157     bool PropagateNSW = HasNSW && cast<ShlOperator>(Y)->hasNoSignedWrap();
158     return Builder.CreateShl(X, Z, Mul.getName(), HasNUW, PropagateNSW);
159   }
160 
161   // Similar to above, but an increment of the shifted value becomes an add:
162   // X * ((1 << Z) + 1) --> (X * (1 << Z)) + X --> (X << Z) + X
163   // This increases uses of X, so it may require a freeze, but that is still
164   // expected to be an improvement because it removes the multiply.
165   BinaryOperator *Shift;
166   if (match(Y, m_OneUse(m_Add(m_BinOp(Shift), m_One()))) &&
167       match(Shift, m_OneUse(m_Shl(m_One(), m_Value(Z))))) {
168     bool PropagateNSW = HasNSW && Shift->hasNoSignedWrap();
169     Value *FrX = Builder.CreateFreeze(X, X->getName() + ".fr");
170     Value *Shl = Builder.CreateShl(FrX, Z, "mulshl", HasNUW, PropagateNSW);
171     return Builder.CreateAdd(Shl, FrX, Mul.getName(), HasNUW, PropagateNSW);
172   }
173 
174   // Similar to above, but a decrement of the shifted value is disguised as
175   // 'not' and becomes a sub:
176   // X * (~(-1 << Z)) --> X * ((1 << Z) - 1) --> (X << Z) - X
177   // This increases uses of X, so it may require a freeze, but that is still
178   // expected to be an improvement because it removes the multiply.
179   if (match(Y, m_OneUse(m_Not(m_OneUse(m_Shl(m_AllOnes(), m_Value(Z))))))) {
180     Value *FrX = Builder.CreateFreeze(X, X->getName() + ".fr");
181     Value *Shl = Builder.CreateShl(FrX, Z, "mulshl");
182     return Builder.CreateSub(Shl, FrX, Mul.getName());
183   }
184 
185   return nullptr;
186 }
187 
188 Instruction *InstCombinerImpl::visitMul(BinaryOperator &I) {
189   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
190   if (Value *V =
191           simplifyMulInst(Op0, Op1, I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
192                           SQ.getWithInstruction(&I)))
193     return replaceInstUsesWith(I, V);
194 
195   if (SimplifyAssociativeOrCommutative(I))
196     return &I;
197 
198   if (Instruction *X = foldVectorBinop(I))
199     return X;
200 
201   if (Instruction *Phi = foldBinopWithPhiOperands(I))
202     return Phi;
203 
204   if (Value *V = foldUsingDistributiveLaws(I))
205     return replaceInstUsesWith(I, V);
206 
207   Type *Ty = I.getType();
208   const unsigned BitWidth = Ty->getScalarSizeInBits();
209   const bool HasNSW = I.hasNoSignedWrap();
210   const bool HasNUW = I.hasNoUnsignedWrap();
211 
212   // X * -1 --> 0 - X
213   if (match(Op1, m_AllOnes())) {
214     return HasNSW ? BinaryOperator::CreateNSWNeg(Op0)
215                   : BinaryOperator::CreateNeg(Op0);
216   }
217 
218   // Also allow combining multiply instructions on vectors.
219   {
220     Value *NewOp;
221     Constant *C1, *C2;
222     const APInt *IVal;
223     if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
224                         m_Constant(C1))) &&
225         match(C1, m_APInt(IVal))) {
226       // ((X << C2)*C1) == (X * (C1 << C2))
227       Constant *Shl = ConstantExpr::getShl(C1, C2);
228       BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
229       BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
230       if (HasNUW && Mul->hasNoUnsignedWrap())
231         BO->setHasNoUnsignedWrap();
232       if (HasNSW && Mul->hasNoSignedWrap() && Shl->isNotMinSignedValue())
233         BO->setHasNoSignedWrap();
234       return BO;
235     }
236 
237     if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
238       // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
239       if (Constant *NewCst = ConstantExpr::getExactLogBase2(C1)) {
240         BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
241 
242         if (HasNUW)
243           Shl->setHasNoUnsignedWrap();
244         if (HasNSW) {
245           const APInt *V;
246           if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
247             Shl->setHasNoSignedWrap();
248         }
249 
250         return Shl;
251       }
252     }
253   }
254 
255   if (Op0->hasOneUse() && match(Op1, m_NegatedPower2())) {
256     // Interpret  X * (-1<<C)  as  (-X) * (1<<C)  and try to sink the negation.
257     // The "* (1<<C)" thus becomes a potential shifting opportunity.
258     if (Value *NegOp0 = Negator::Negate(/*IsNegation*/ true, Op0, *this))
259       return BinaryOperator::CreateMul(
260           NegOp0, ConstantExpr::getNeg(cast<Constant>(Op1)), I.getName());
261 
262     // Try to convert multiply of extended operand to narrow negate and shift
263     // for better analysis.
264     // This is valid if the shift amount (trailing zeros in the multiplier
265     // constant) clears more high bits than the bitwidth difference between
266     // source and destination types:
267     // ({z/s}ext X) * (-1<<C) --> (zext (-X)) << C
268     const APInt *NegPow2C;
269     Value *X;
270     if (match(Op0, m_ZExtOrSExt(m_Value(X))) &&
271         match(Op1, m_APIntAllowUndef(NegPow2C))) {
272       unsigned SrcWidth = X->getType()->getScalarSizeInBits();
273       unsigned ShiftAmt = NegPow2C->countTrailingZeros();
274       if (ShiftAmt >= BitWidth - SrcWidth) {
275         Value *N = Builder.CreateNeg(X, X->getName() + ".neg");
276         Value *Z = Builder.CreateZExt(N, Ty, N->getName() + ".z");
277         return BinaryOperator::CreateShl(Z, ConstantInt::get(Ty, ShiftAmt));
278       }
279     }
280   }
281 
282   if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
283     return FoldedMul;
284 
285   if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
286     return replaceInstUsesWith(I, FoldedMul);
287 
288   // Simplify mul instructions with a constant RHS.
289   Constant *MulC;
290   if (match(Op1, m_ImmConstant(MulC))) {
291     // Canonicalize (X+C1)*MulC -> X*MulC+C1*MulC.
292     // Canonicalize (X|C1)*MulC -> X*MulC+C1*MulC.
293     Value *X;
294     Constant *C1;
295     if ((match(Op0, m_OneUse(m_Add(m_Value(X), m_ImmConstant(C1))))) ||
296         (match(Op0, m_OneUse(m_Or(m_Value(X), m_ImmConstant(C1)))) &&
297          haveNoCommonBitsSet(X, C1, DL, &AC, &I, &DT))) {
298       // C1*MulC simplifies to a tidier constant.
299       Value *NewC = Builder.CreateMul(C1, MulC);
300       auto *BOp0 = cast<BinaryOperator>(Op0);
301       bool Op0NUW =
302           (BOp0->getOpcode() == Instruction::Or || BOp0->hasNoUnsignedWrap());
303       Value *NewMul = Builder.CreateMul(X, MulC);
304       auto *BO = BinaryOperator::CreateAdd(NewMul, NewC);
305       if (HasNUW && Op0NUW) {
306         // If NewMulBO is constant we also can set BO to nuw.
307         if (auto *NewMulBO = dyn_cast<BinaryOperator>(NewMul))
308           NewMulBO->setHasNoUnsignedWrap();
309         BO->setHasNoUnsignedWrap();
310       }
311       return BO;
312     }
313   }
314 
315   // abs(X) * abs(X) -> X * X
316   // nabs(X) * nabs(X) -> X * X
317   if (Op0 == Op1) {
318     Value *X, *Y;
319     SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
320     if (SPF == SPF_ABS || SPF == SPF_NABS)
321       return BinaryOperator::CreateMul(X, X);
322 
323     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
324       return BinaryOperator::CreateMul(X, X);
325   }
326 
327   // -X * C --> X * -C
328   Value *X, *Y;
329   Constant *Op1C;
330   if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
331     return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
332 
333   // -X * -Y --> X * Y
334   if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
335     auto *NewMul = BinaryOperator::CreateMul(X, Y);
336     if (HasNSW && cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
337         cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
338       NewMul->setHasNoSignedWrap();
339     return NewMul;
340   }
341 
342   // -X * Y --> -(X * Y)
343   // X * -Y --> -(X * Y)
344   if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))
345     return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y));
346 
347   // (X / Y) *  Y = X - (X % Y)
348   // (X / Y) * -Y = (X % Y) - X
349   {
350     Value *Y = Op1;
351     BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
352     if (!Div || (Div->getOpcode() != Instruction::UDiv &&
353                  Div->getOpcode() != Instruction::SDiv)) {
354       Y = Op0;
355       Div = dyn_cast<BinaryOperator>(Op1);
356     }
357     Value *Neg = dyn_castNegVal(Y);
358     if (Div && Div->hasOneUse() &&
359         (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
360         (Div->getOpcode() == Instruction::UDiv ||
361          Div->getOpcode() == Instruction::SDiv)) {
362       Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
363 
364       // If the division is exact, X % Y is zero, so we end up with X or -X.
365       if (Div->isExact()) {
366         if (DivOp1 == Y)
367           return replaceInstUsesWith(I, X);
368         return BinaryOperator::CreateNeg(X);
369       }
370 
371       auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
372                                                           : Instruction::SRem;
373       // X must be frozen because we are increasing its number of uses.
374       Value *XFreeze = Builder.CreateFreeze(X, X->getName() + ".fr");
375       Value *Rem = Builder.CreateBinOp(RemOpc, XFreeze, DivOp1);
376       if (DivOp1 == Y)
377         return BinaryOperator::CreateSub(XFreeze, Rem);
378       return BinaryOperator::CreateSub(Rem, XFreeze);
379     }
380   }
381 
382   // Fold the following two scenarios:
383   //   1) i1 mul -> i1 and.
384   //   2) X * Y --> X & Y, iff X, Y can be only {0,1}.
385   // Note: We could use known bits to generalize this and related patterns with
386   // shifts/truncs
387   if (Ty->isIntOrIntVectorTy(1) ||
388       (match(Op0, m_And(m_Value(), m_One())) &&
389        match(Op1, m_And(m_Value(), m_One()))))
390     return BinaryOperator::CreateAnd(Op0, Op1);
391 
392   if (Value *R = foldMulShl1(I, /* CommuteOperands */ false, Builder))
393     return replaceInstUsesWith(I, R);
394   if (Value *R = foldMulShl1(I, /* CommuteOperands */ true, Builder))
395     return replaceInstUsesWith(I, R);
396 
397   // (zext bool X) * (zext bool Y) --> zext (and X, Y)
398   // (sext bool X) * (sext bool Y) --> zext (and X, Y)
399   // Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same)
400   if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
401        (match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
402       X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
403       (Op0->hasOneUse() || Op1->hasOneUse() || X == Y)) {
404     Value *And = Builder.CreateAnd(X, Y, "mulbool");
405     return CastInst::Create(Instruction::ZExt, And, Ty);
406   }
407   // (sext bool X) * (zext bool Y) --> sext (and X, Y)
408   // (zext bool X) * (sext bool Y) --> sext (and X, Y)
409   // Note: -1 * 1 == 1 * -1  == -1
410   if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
411        (match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
412       X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
413       (Op0->hasOneUse() || Op1->hasOneUse())) {
414     Value *And = Builder.CreateAnd(X, Y, "mulbool");
415     return CastInst::Create(Instruction::SExt, And, Ty);
416   }
417 
418   // (zext bool X) * Y --> X ? Y : 0
419   // Y * (zext bool X) --> X ? Y : 0
420   if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
421     return SelectInst::Create(X, Op1, ConstantInt::getNullValue(Ty));
422   if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
423     return SelectInst::Create(X, Op0, ConstantInt::getNullValue(Ty));
424 
425   Constant *ImmC;
426   if (match(Op1, m_ImmConstant(ImmC))) {
427     // (sext bool X) * C --> X ? -C : 0
428     if (match(Op0, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
429       Constant *NegC = ConstantExpr::getNeg(ImmC);
430       return SelectInst::Create(X, NegC, ConstantInt::getNullValue(Ty));
431     }
432 
433     // (ashr i32 X, 31) * C --> (X < 0) ? -C : 0
434     const APInt *C;
435     if (match(Op0, m_OneUse(m_AShr(m_Value(X), m_APInt(C)))) &&
436         *C == C->getBitWidth() - 1) {
437       Constant *NegC = ConstantExpr::getNeg(ImmC);
438       Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
439       return SelectInst::Create(IsNeg, NegC, ConstantInt::getNullValue(Ty));
440     }
441   }
442 
443   // (lshr X, 31) * Y --> (X < 0) ? Y : 0
444   // TODO: We are not checking one-use because the elimination of the multiply
445   //       is better for analysis?
446   const APInt *C;
447   if (match(&I, m_c_BinOp(m_LShr(m_Value(X), m_APInt(C)), m_Value(Y))) &&
448       *C == C->getBitWidth() - 1) {
449     Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
450     return SelectInst::Create(IsNeg, Y, ConstantInt::getNullValue(Ty));
451   }
452 
453   // (and X, 1) * Y --> (trunc X) ? Y : 0
454   if (match(&I, m_c_BinOp(m_OneUse(m_And(m_Value(X), m_One())), m_Value(Y)))) {
455     Value *Tr = Builder.CreateTrunc(X, CmpInst::makeCmpResultType(Ty));
456     return SelectInst::Create(Tr, Y, ConstantInt::getNullValue(Ty));
457   }
458 
459   // ((ashr X, 31) | 1) * X --> abs(X)
460   // X * ((ashr X, 31) | 1) --> abs(X)
461   if (match(&I, m_c_BinOp(m_Or(m_AShr(m_Value(X),
462                                       m_SpecificIntAllowUndef(BitWidth - 1)),
463                                m_One()),
464                           m_Deferred(X)))) {
465     Value *Abs = Builder.CreateBinaryIntrinsic(
466         Intrinsic::abs, X, ConstantInt::getBool(I.getContext(), HasNSW));
467     Abs->takeName(&I);
468     return replaceInstUsesWith(I, Abs);
469   }
470 
471   if (Instruction *Ext = narrowMathIfNoOverflow(I))
472     return Ext;
473 
474   bool Changed = false;
475   if (!HasNSW && willNotOverflowSignedMul(Op0, Op1, I)) {
476     Changed = true;
477     I.setHasNoSignedWrap(true);
478   }
479 
480   if (!HasNUW && willNotOverflowUnsignedMul(Op0, Op1, I)) {
481     Changed = true;
482     I.setHasNoUnsignedWrap(true);
483   }
484 
485   return Changed ? &I : nullptr;
486 }
487 
488 Instruction *InstCombinerImpl::foldFPSignBitOps(BinaryOperator &I) {
489   BinaryOperator::BinaryOps Opcode = I.getOpcode();
490   assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&
491          "Expected fmul or fdiv");
492 
493   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
494   Value *X, *Y;
495 
496   // -X * -Y --> X * Y
497   // -X / -Y --> X / Y
498   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
499     return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I);
500 
501   // fabs(X) * fabs(X) -> X * X
502   // fabs(X) / fabs(X) -> X / X
503   if (Op0 == Op1 && match(Op0, m_FAbs(m_Value(X))))
504     return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I);
505 
506   // fabs(X) * fabs(Y) --> fabs(X * Y)
507   // fabs(X) / fabs(Y) --> fabs(X / Y)
508   if (match(Op0, m_FAbs(m_Value(X))) && match(Op1, m_FAbs(m_Value(Y))) &&
509       (Op0->hasOneUse() || Op1->hasOneUse())) {
510     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
511     Builder.setFastMathFlags(I.getFastMathFlags());
512     Value *XY = Builder.CreateBinOp(Opcode, X, Y);
513     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY);
514     Fabs->takeName(&I);
515     return replaceInstUsesWith(I, Fabs);
516   }
517 
518   return nullptr;
519 }
520 
521 Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) {
522   if (Value *V = simplifyFMulInst(I.getOperand(0), I.getOperand(1),
523                                   I.getFastMathFlags(),
524                                   SQ.getWithInstruction(&I)))
525     return replaceInstUsesWith(I, V);
526 
527   if (SimplifyAssociativeOrCommutative(I))
528     return &I;
529 
530   if (Instruction *X = foldVectorBinop(I))
531     return X;
532 
533   if (Instruction *Phi = foldBinopWithPhiOperands(I))
534     return Phi;
535 
536   if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
537     return FoldedMul;
538 
539   if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
540     return replaceInstUsesWith(I, FoldedMul);
541 
542   if (Instruction *R = foldFPSignBitOps(I))
543     return R;
544 
545   // X * -1.0 --> -X
546   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
547   if (match(Op1, m_SpecificFP(-1.0)))
548     return UnaryOperator::CreateFNegFMF(Op0, &I);
549 
550   // With no-nans: X * 0.0 --> copysign(0.0, X)
551   if (I.hasNoNaNs() && match(Op1, m_PosZeroFP())) {
552     CallInst *CopySign = Builder.CreateIntrinsic(Intrinsic::copysign,
553                                                  {I.getType()}, {Op1, Op0}, &I);
554     return replaceInstUsesWith(I, CopySign);
555   }
556 
557   // -X * C --> X * -C
558   Value *X, *Y;
559   Constant *C;
560   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
561     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
562       return BinaryOperator::CreateFMulFMF(X, NegC, &I);
563 
564   // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
565   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
566     return replaceInstUsesWith(I, V);
567 
568   if (I.hasAllowReassoc()) {
569     // Reassociate constant RHS with another constant to form constant
570     // expression.
571     if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
572       Constant *C1;
573       if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
574         // (C1 / X) * C --> (C * C1) / X
575         Constant *CC1 =
576             ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL);
577         if (CC1 && CC1->isNormalFP())
578           return BinaryOperator::CreateFDivFMF(CC1, X, &I);
579       }
580       if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
581         // (X / C1) * C --> X * (C / C1)
582         Constant *CDivC1 =
583             ConstantFoldBinaryOpOperands(Instruction::FDiv, C, C1, DL);
584         if (CDivC1 && CDivC1->isNormalFP())
585           return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
586 
587         // If the constant was a denormal, try reassociating differently.
588         // (X / C1) * C --> X / (C1 / C)
589         Constant *C1DivC =
590             ConstantFoldBinaryOpOperands(Instruction::FDiv, C1, C, DL);
591         if (C1DivC && Op0->hasOneUse() && C1DivC->isNormalFP())
592           return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
593       }
594 
595       // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
596       // canonicalized to 'fadd X, C'. Distributing the multiply may allow
597       // further folds and (X * C) + C2 is 'fma'.
598       if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
599         // (X + C1) * C --> (X * C) + (C * C1)
600         if (Constant *CC1 = ConstantFoldBinaryOpOperands(
601                 Instruction::FMul, C, C1, DL)) {
602           Value *XC = Builder.CreateFMulFMF(X, C, &I);
603           return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
604         }
605       }
606       if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
607         // (C1 - X) * C --> (C * C1) - (X * C)
608         if (Constant *CC1 = ConstantFoldBinaryOpOperands(
609                 Instruction::FMul, C, C1, DL)) {
610           Value *XC = Builder.CreateFMulFMF(X, C, &I);
611           return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
612         }
613       }
614     }
615 
616     Value *Z;
617     if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))),
618                            m_Value(Z)))) {
619       // Sink division: (X / Y) * Z --> (X * Z) / Y
620       Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
621       return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
622     }
623 
624     // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
625     // nnan disallows the possibility of returning a number if both operands are
626     // negative (in that case, we should return NaN).
627     if (I.hasNoNaNs() && match(Op0, m_OneUse(m_Sqrt(m_Value(X)))) &&
628         match(Op1, m_OneUse(m_Sqrt(m_Value(Y))))) {
629       Value *XY = Builder.CreateFMulFMF(X, Y, &I);
630       Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
631       return replaceInstUsesWith(I, Sqrt);
632     }
633 
634     // The following transforms are done irrespective of the number of uses
635     // for the expression "1.0/sqrt(X)".
636     //  1) 1.0/sqrt(X) * X -> X/sqrt(X)
637     //  2) X * 1.0/sqrt(X) -> X/sqrt(X)
638     // We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it
639     // has the necessary (reassoc) fast-math-flags.
640     if (I.hasNoSignedZeros() &&
641         match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
642         match(Y, m_Sqrt(m_Value(X))) && Op1 == X)
643       return BinaryOperator::CreateFDivFMF(X, Y, &I);
644     if (I.hasNoSignedZeros() &&
645         match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
646         match(Y, m_Sqrt(m_Value(X))) && Op0 == X)
647       return BinaryOperator::CreateFDivFMF(X, Y, &I);
648 
649     // Like the similar transform in instsimplify, this requires 'nsz' because
650     // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
651     if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 &&
652         Op0->hasNUses(2)) {
653       // Peek through fdiv to find squaring of square root:
654       // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
655       if (match(Op0, m_FDiv(m_Value(X), m_Sqrt(m_Value(Y))))) {
656         Value *XX = Builder.CreateFMulFMF(X, X, &I);
657         return BinaryOperator::CreateFDivFMF(XX, Y, &I);
658       }
659       // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
660       if (match(Op0, m_FDiv(m_Sqrt(m_Value(Y)), m_Value(X)))) {
661         Value *XX = Builder.CreateFMulFMF(X, X, &I);
662         return BinaryOperator::CreateFDivFMF(Y, XX, &I);
663       }
664     }
665 
666     // pow(X, Y) * X --> pow(X, Y+1)
667     // X * pow(X, Y) --> pow(X, Y+1)
668     if (match(&I, m_c_FMul(m_OneUse(m_Intrinsic<Intrinsic::pow>(m_Value(X),
669                                                                 m_Value(Y))),
670                            m_Deferred(X)))) {
671       Value *Y1 =
672           Builder.CreateFAddFMF(Y, ConstantFP::get(I.getType(), 1.0), &I);
673       Value *Pow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, Y1, &I);
674       return replaceInstUsesWith(I, Pow);
675     }
676 
677     if (I.isOnlyUserOfAnyOperand()) {
678       // pow(X, Y) * pow(X, Z) -> pow(X, Y + Z)
679       if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
680           match(Op1, m_Intrinsic<Intrinsic::pow>(m_Specific(X), m_Value(Z)))) {
681         auto *YZ = Builder.CreateFAddFMF(Y, Z, &I);
682         auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, YZ, &I);
683         return replaceInstUsesWith(I, NewPow);
684       }
685       // pow(X, Y) * pow(Z, Y) -> pow(X * Z, Y)
686       if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
687           match(Op1, m_Intrinsic<Intrinsic::pow>(m_Value(Z), m_Specific(Y)))) {
688         auto *XZ = Builder.CreateFMulFMF(X, Z, &I);
689         auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, XZ, Y, &I);
690         return replaceInstUsesWith(I, NewPow);
691       }
692 
693       // powi(x, y) * powi(x, z) -> powi(x, y + z)
694       if (match(Op0, m_Intrinsic<Intrinsic::powi>(m_Value(X), m_Value(Y))) &&
695           match(Op1, m_Intrinsic<Intrinsic::powi>(m_Specific(X), m_Value(Z))) &&
696           Y->getType() == Z->getType()) {
697         auto *YZ = Builder.CreateAdd(Y, Z);
698         auto *NewPow = Builder.CreateIntrinsic(
699             Intrinsic::powi, {X->getType(), YZ->getType()}, {X, YZ}, &I);
700         return replaceInstUsesWith(I, NewPow);
701       }
702 
703       // exp(X) * exp(Y) -> exp(X + Y)
704       if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
705           match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y)))) {
706         Value *XY = Builder.CreateFAddFMF(X, Y, &I);
707         Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
708         return replaceInstUsesWith(I, Exp);
709       }
710 
711       // exp2(X) * exp2(Y) -> exp2(X + Y)
712       if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
713           match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y)))) {
714         Value *XY = Builder.CreateFAddFMF(X, Y, &I);
715         Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
716         return replaceInstUsesWith(I, Exp2);
717       }
718     }
719 
720     // (X*Y) * X => (X*X) * Y where Y != X
721     //  The purpose is two-fold:
722     //   1) to form a power expression (of X).
723     //   2) potentially shorten the critical path: After transformation, the
724     //  latency of the instruction Y is amortized by the expression of X*X,
725     //  and therefore Y is in a "less critical" position compared to what it
726     //  was before the transformation.
727     if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
728         Op1 != Y) {
729       Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
730       return BinaryOperator::CreateFMulFMF(XX, Y, &I);
731     }
732     if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
733         Op0 != Y) {
734       Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
735       return BinaryOperator::CreateFMulFMF(XX, Y, &I);
736     }
737   }
738 
739   // log2(X * 0.5) * Y = log2(X) * Y - Y
740   if (I.isFast()) {
741     IntrinsicInst *Log2 = nullptr;
742     if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
743             m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
744       Log2 = cast<IntrinsicInst>(Op0);
745       Y = Op1;
746     }
747     if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
748             m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
749       Log2 = cast<IntrinsicInst>(Op1);
750       Y = Op0;
751     }
752     if (Log2) {
753       Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I);
754       Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
755       return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
756     }
757   }
758 
759   // Simplify FMUL recurrences starting with 0.0 to 0.0 if nnan and nsz are set.
760   // Given a phi node with entry value as 0 and it used in fmul operation,
761   // we can replace fmul with 0 safely and eleminate loop operation.
762   PHINode *PN = nullptr;
763   Value *Start = nullptr, *Step = nullptr;
764   if (matchSimpleRecurrence(&I, PN, Start, Step) && I.hasNoNaNs() &&
765       I.hasNoSignedZeros() && match(Start, m_Zero()))
766     return replaceInstUsesWith(I, Start);
767 
768   return nullptr;
769 }
770 
771 /// Fold a divide or remainder with a select instruction divisor when one of the
772 /// select operands is zero. In that case, we can use the other select operand
773 /// because div/rem by zero is undefined.
774 bool InstCombinerImpl::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
775   SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
776   if (!SI)
777     return false;
778 
779   int NonNullOperand;
780   if (match(SI->getTrueValue(), m_Zero()))
781     // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
782     NonNullOperand = 2;
783   else if (match(SI->getFalseValue(), m_Zero()))
784     // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
785     NonNullOperand = 1;
786   else
787     return false;
788 
789   // Change the div/rem to use 'Y' instead of the select.
790   replaceOperand(I, 1, SI->getOperand(NonNullOperand));
791 
792   // Okay, we know we replace the operand of the div/rem with 'Y' with no
793   // problem.  However, the select, or the condition of the select may have
794   // multiple uses.  Based on our knowledge that the operand must be non-zero,
795   // propagate the known value for the select into other uses of it, and
796   // propagate a known value of the condition into its other users.
797 
798   // If the select and condition only have a single use, don't bother with this,
799   // early exit.
800   Value *SelectCond = SI->getCondition();
801   if (SI->use_empty() && SelectCond->hasOneUse())
802     return true;
803 
804   // Scan the current block backward, looking for other uses of SI.
805   BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
806   Type *CondTy = SelectCond->getType();
807   while (BBI != BBFront) {
808     --BBI;
809     // If we found an instruction that we can't assume will return, so
810     // information from below it cannot be propagated above it.
811     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
812       break;
813 
814     // Replace uses of the select or its condition with the known values.
815     for (Use &Op : BBI->operands()) {
816       if (Op == SI) {
817         replaceUse(Op, SI->getOperand(NonNullOperand));
818         Worklist.push(&*BBI);
819       } else if (Op == SelectCond) {
820         replaceUse(Op, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
821                                            : ConstantInt::getFalse(CondTy));
822         Worklist.push(&*BBI);
823       }
824     }
825 
826     // If we past the instruction, quit looking for it.
827     if (&*BBI == SI)
828       SI = nullptr;
829     if (&*BBI == SelectCond)
830       SelectCond = nullptr;
831 
832     // If we ran out of things to eliminate, break out of the loop.
833     if (!SelectCond && !SI)
834       break;
835 
836   }
837   return true;
838 }
839 
840 /// True if the multiply can not be expressed in an int this size.
841 static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
842                               bool IsSigned) {
843   bool Overflow;
844   Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
845   return Overflow;
846 }
847 
848 /// True if C1 is a multiple of C2. Quotient contains C1/C2.
849 static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
850                        bool IsSigned) {
851   assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
852 
853   // Bail if we will divide by zero.
854   if (C2.isZero())
855     return false;
856 
857   // Bail if we would divide INT_MIN by -1.
858   if (IsSigned && C1.isMinSignedValue() && C2.isAllOnes())
859     return false;
860 
861   APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned);
862   if (IsSigned)
863     APInt::sdivrem(C1, C2, Quotient, Remainder);
864   else
865     APInt::udivrem(C1, C2, Quotient, Remainder);
866 
867   return Remainder.isMinValue();
868 }
869 
870 static Instruction *foldIDivShl(BinaryOperator &I,
871                                 InstCombiner::BuilderTy &Builder) {
872   assert((I.getOpcode() == Instruction::SDiv ||
873           I.getOpcode() == Instruction::UDiv) &&
874          "Expected integer divide");
875 
876   bool IsSigned = I.getOpcode() == Instruction::SDiv;
877   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
878   Type *Ty = I.getType();
879 
880   Instruction *Ret = nullptr;
881   Value *X, *Y, *Z;
882 
883   // With appropriate no-wrap constraints, remove a common factor in the
884   // dividend and divisor that is disguised as a left-shifted value.
885   if (match(Op1, m_Shl(m_Value(X), m_Value(Z))) &&
886       match(Op0, m_c_Mul(m_Specific(X), m_Value(Y)))) {
887     // Both operands must have the matching no-wrap for this kind of division.
888     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
889     auto *Shl = cast<OverflowingBinaryOperator>(Op1);
890     bool HasNUW = Mul->hasNoUnsignedWrap() && Shl->hasNoUnsignedWrap();
891     bool HasNSW = Mul->hasNoSignedWrap() && Shl->hasNoSignedWrap();
892 
893     // (X * Y) u/ (X << Z) --> Y u>> Z
894     if (!IsSigned && HasNUW)
895       Ret = BinaryOperator::CreateLShr(Y, Z);
896 
897     // (X * Y) s/ (X << Z) --> Y s/ (1 << Z)
898     if (IsSigned && HasNSW && (Op0->hasOneUse() || Op1->hasOneUse())) {
899       Value *Shl = Builder.CreateShl(ConstantInt::get(Ty, 1), Z);
900       Ret = BinaryOperator::CreateSDiv(Y, Shl);
901     }
902   }
903 
904   // With appropriate no-wrap constraints, remove a common factor in the
905   // dividend and divisor that is disguised as a left-shift amount.
906   if (match(Op0, m_Shl(m_Value(X), m_Value(Z))) &&
907       match(Op1, m_Shl(m_Value(Y), m_Specific(Z)))) {
908     auto *Shl0 = cast<OverflowingBinaryOperator>(Op0);
909     auto *Shl1 = cast<OverflowingBinaryOperator>(Op1);
910 
911     // For unsigned div, we need 'nuw' on both shifts or
912     // 'nsw' on both shifts + 'nuw' on the dividend.
913     // (X << Z) / (Y << Z) --> X / Y
914     if (!IsSigned &&
915         ((Shl0->hasNoUnsignedWrap() && Shl1->hasNoUnsignedWrap()) ||
916          (Shl0->hasNoUnsignedWrap() && Shl0->hasNoSignedWrap() &&
917           Shl1->hasNoSignedWrap())))
918       Ret = BinaryOperator::CreateUDiv(X, Y);
919 
920     // For signed div, we need 'nsw' on both shifts + 'nuw' on the divisor.
921     // (X << Z) / (Y << Z) --> X / Y
922     if (IsSigned && Shl0->hasNoSignedWrap() && Shl1->hasNoSignedWrap() &&
923         Shl1->hasNoUnsignedWrap())
924       Ret = BinaryOperator::CreateSDiv(X, Y);
925   }
926 
927   if (!Ret)
928     return nullptr;
929 
930   Ret->setIsExact(I.isExact());
931   return Ret;
932 }
933 
934 /// This function implements the transforms common to both integer division
935 /// instructions (udiv and sdiv). It is called by the visitors to those integer
936 /// division instructions.
937 /// Common integer divide transforms
938 Instruction *InstCombinerImpl::commonIDivTransforms(BinaryOperator &I) {
939   if (Instruction *Phi = foldBinopWithPhiOperands(I))
940     return Phi;
941 
942   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
943   bool IsSigned = I.getOpcode() == Instruction::SDiv;
944   Type *Ty = I.getType();
945 
946   // The RHS is known non-zero.
947   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
948     return replaceOperand(I, 1, V);
949 
950   // Handle cases involving: [su]div X, (select Cond, Y, Z)
951   // This does not apply for fdiv.
952   if (simplifyDivRemOfSelectWithZeroOp(I))
953     return &I;
954 
955   // If the divisor is a select-of-constants, try to constant fold all div ops:
956   // C / (select Cond, TrueC, FalseC) --> select Cond, (C / TrueC), (C / FalseC)
957   // TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds.
958   if (match(Op0, m_ImmConstant()) &&
959       match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) {
960     if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1),
961                                           /*FoldWithMultiUse*/ true))
962       return R;
963   }
964 
965   const APInt *C2;
966   if (match(Op1, m_APInt(C2))) {
967     Value *X;
968     const APInt *C1;
969 
970     // (X / C1) / C2  -> X / (C1*C2)
971     if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
972         (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
973       APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
974       if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
975         return BinaryOperator::Create(I.getOpcode(), X,
976                                       ConstantInt::get(Ty, Product));
977     }
978 
979     if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
980         (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
981       APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
982 
983       // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
984       if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
985         auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
986                                               ConstantInt::get(Ty, Quotient));
987         NewDiv->setIsExact(I.isExact());
988         return NewDiv;
989       }
990 
991       // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
992       if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
993         auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
994                                            ConstantInt::get(Ty, Quotient));
995         auto *OBO = cast<OverflowingBinaryOperator>(Op0);
996         Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
997         Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
998         return Mul;
999       }
1000     }
1001 
1002     if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
1003          C1->ult(C1->getBitWidth() - 1)) ||
1004         (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))) &&
1005          C1->ult(C1->getBitWidth()))) {
1006       APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
1007       APInt C1Shifted = APInt::getOneBitSet(
1008           C1->getBitWidth(), static_cast<unsigned>(C1->getZExtValue()));
1009 
1010       // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
1011       if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
1012         auto *BO = BinaryOperator::Create(I.getOpcode(), X,
1013                                           ConstantInt::get(Ty, Quotient));
1014         BO->setIsExact(I.isExact());
1015         return BO;
1016       }
1017 
1018       // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
1019       if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
1020         auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
1021                                            ConstantInt::get(Ty, Quotient));
1022         auto *OBO = cast<OverflowingBinaryOperator>(Op0);
1023         Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
1024         Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
1025         return Mul;
1026       }
1027     }
1028 
1029     if (!C2->isZero()) // avoid X udiv 0
1030       if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
1031         return FoldedDiv;
1032   }
1033 
1034   if (match(Op0, m_One())) {
1035     assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
1036     if (IsSigned) {
1037       // 1 / 0 --> undef ; 1 / 1 --> 1 ; 1 / -1 --> -1 ; 1 / anything else --> 0
1038       // (Op1 + 1) u< 3 ? Op1 : 0
1039       // Op1 must be frozen because we are increasing its number of uses.
1040       Value *F1 = Builder.CreateFreeze(Op1, Op1->getName() + ".fr");
1041       Value *Inc = Builder.CreateAdd(F1, Op0);
1042       Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
1043       return SelectInst::Create(Cmp, F1, ConstantInt::get(Ty, 0));
1044     } else {
1045       // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
1046       // result is one, otherwise it's zero.
1047       return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
1048     }
1049   }
1050 
1051   // See if we can fold away this div instruction.
1052   if (SimplifyDemandedInstructionBits(I))
1053     return &I;
1054 
1055   // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
1056   Value *X, *Z;
1057   if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
1058     if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
1059         (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
1060       return BinaryOperator::Create(I.getOpcode(), X, Op1);
1061 
1062   // (X << Y) / X -> 1 << Y
1063   Value *Y;
1064   if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
1065     return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
1066   if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
1067     return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
1068 
1069   // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
1070   if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
1071     bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
1072     bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
1073     if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
1074       replaceOperand(I, 0, ConstantInt::get(Ty, 1));
1075       replaceOperand(I, 1, Y);
1076       return &I;
1077     }
1078   }
1079 
1080   // (X << Z) / (X * Y) -> (1 << Z) / Y
1081   // TODO: Handle sdiv.
1082   if (!IsSigned && Op1->hasOneUse() &&
1083       match(Op0, m_NUWShl(m_Value(X), m_Value(Z))) &&
1084       match(Op1, m_c_Mul(m_Specific(X), m_Value(Y))))
1085     if (cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap()) {
1086       Instruction *NewDiv = BinaryOperator::CreateUDiv(
1087           Builder.CreateShl(ConstantInt::get(Ty, 1), Z, "", /*NUW*/ true), Y);
1088       NewDiv->setIsExact(I.isExact());
1089       return NewDiv;
1090     }
1091 
1092   if (Instruction *R = foldIDivShl(I, Builder))
1093     return R;
1094 
1095   // With the appropriate no-wrap constraint, remove a multiply by the divisor
1096   // after peeking through another divide:
1097   // ((Op1 * X) / Y) / Op1 --> X / Y
1098   if (match(Op0, m_BinOp(I.getOpcode(), m_c_Mul(m_Specific(Op1), m_Value(X)),
1099                          m_Value(Y)))) {
1100     auto *InnerDiv = cast<PossiblyExactOperator>(Op0);
1101     auto *Mul = cast<OverflowingBinaryOperator>(InnerDiv->getOperand(0));
1102     Instruction *NewDiv = nullptr;
1103     if (!IsSigned && Mul->hasNoUnsignedWrap())
1104       NewDiv = BinaryOperator::CreateUDiv(X, Y);
1105     else if (IsSigned && Mul->hasNoSignedWrap())
1106       NewDiv = BinaryOperator::CreateSDiv(X, Y);
1107 
1108     // Exact propagates only if both of the original divides are exact.
1109     if (NewDiv) {
1110       NewDiv->setIsExact(I.isExact() && InnerDiv->isExact());
1111       return NewDiv;
1112     }
1113   }
1114 
1115   return nullptr;
1116 }
1117 
1118 static const unsigned MaxDepth = 6;
1119 
1120 // Take the exact integer log2 of the value. If DoFold is true, create the
1121 // actual instructions, otherwise return a non-null dummy value. Return nullptr
1122 // on failure.
1123 static Value *takeLog2(IRBuilderBase &Builder, Value *Op, unsigned Depth,
1124                        bool AssumeNonZero, bool DoFold) {
1125   auto IfFold = [DoFold](function_ref<Value *()> Fn) {
1126     if (!DoFold)
1127       return reinterpret_cast<Value *>(-1);
1128     return Fn();
1129   };
1130 
1131   // FIXME: assert that Op1 isn't/doesn't contain undef.
1132 
1133   // log2(2^C) -> C
1134   if (match(Op, m_Power2()))
1135     return IfFold([&]() {
1136       Constant *C = ConstantExpr::getExactLogBase2(cast<Constant>(Op));
1137       if (!C)
1138         llvm_unreachable("Failed to constant fold udiv -> logbase2");
1139       return C;
1140     });
1141 
1142   // The remaining tests are all recursive, so bail out if we hit the limit.
1143   if (Depth++ == MaxDepth)
1144     return nullptr;
1145 
1146   // log2(zext X) -> zext log2(X)
1147   // FIXME: Require one use?
1148   Value *X, *Y;
1149   if (match(Op, m_ZExt(m_Value(X))))
1150     if (Value *LogX = takeLog2(Builder, X, Depth, AssumeNonZero, DoFold))
1151       return IfFold([&]() { return Builder.CreateZExt(LogX, Op->getType()); });
1152 
1153   // log2(X << Y) -> log2(X) + Y
1154   // FIXME: Require one use unless X is 1?
1155   if (match(Op, m_Shl(m_Value(X), m_Value(Y)))) {
1156     auto *BO = cast<OverflowingBinaryOperator>(Op);
1157     // nuw will be set if the `shl` is trivially non-zero.
1158     if (AssumeNonZero || BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap())
1159       if (Value *LogX = takeLog2(Builder, X, Depth, AssumeNonZero, DoFold))
1160         return IfFold([&]() { return Builder.CreateAdd(LogX, Y); });
1161   }
1162 
1163   // log2(Cond ? X : Y) -> Cond ? log2(X) : log2(Y)
1164   // FIXME: missed optimization: if one of the hands of select is/contains
1165   //        undef, just directly pick the other one.
1166   // FIXME: can both hands contain undef?
1167   // FIXME: Require one use?
1168   if (SelectInst *SI = dyn_cast<SelectInst>(Op))
1169     if (Value *LogX = takeLog2(Builder, SI->getOperand(1), Depth,
1170                                AssumeNonZero, DoFold))
1171       if (Value *LogY = takeLog2(Builder, SI->getOperand(2), Depth,
1172                                  AssumeNonZero, DoFold))
1173         return IfFold([&]() {
1174           return Builder.CreateSelect(SI->getOperand(0), LogX, LogY);
1175         });
1176 
1177   // log2(umin(X, Y)) -> umin(log2(X), log2(Y))
1178   // log2(umax(X, Y)) -> umax(log2(X), log2(Y))
1179   auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op);
1180   if (MinMax && MinMax->hasOneUse() && !MinMax->isSigned()) {
1181     // Use AssumeNonZero as false here. Otherwise we can hit case where
1182     // log2(umax(X, Y)) != umax(log2(X), log2(Y)) (because overflow).
1183     if (Value *LogX = takeLog2(Builder, MinMax->getLHS(), Depth,
1184                                /*AssumeNonZero*/ false, DoFold))
1185       if (Value *LogY = takeLog2(Builder, MinMax->getRHS(), Depth,
1186                                  /*AssumeNonZero*/ false, DoFold))
1187         return IfFold([&]() {
1188           return Builder.CreateBinaryIntrinsic(MinMax->getIntrinsicID(), LogX,
1189                                                LogY);
1190         });
1191   }
1192 
1193   return nullptr;
1194 }
1195 
1196 /// If we have zero-extended operands of an unsigned div or rem, we may be able
1197 /// to narrow the operation (sink the zext below the math).
1198 static Instruction *narrowUDivURem(BinaryOperator &I,
1199                                    InstCombiner::BuilderTy &Builder) {
1200   Instruction::BinaryOps Opcode = I.getOpcode();
1201   Value *N = I.getOperand(0);
1202   Value *D = I.getOperand(1);
1203   Type *Ty = I.getType();
1204   Value *X, *Y;
1205   if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
1206       X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
1207     // udiv (zext X), (zext Y) --> zext (udiv X, Y)
1208     // urem (zext X), (zext Y) --> zext (urem X, Y)
1209     Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
1210     return new ZExtInst(NarrowOp, Ty);
1211   }
1212 
1213   Constant *C;
1214   if (isa<Instruction>(N) && match(N, m_OneUse(m_ZExt(m_Value(X)))) &&
1215       match(D, m_Constant(C))) {
1216     // If the constant is the same in the smaller type, use the narrow version.
1217     Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
1218     if (ConstantExpr::getZExt(TruncC, Ty) != C)
1219       return nullptr;
1220 
1221     // udiv (zext X), C --> zext (udiv X, C')
1222     // urem (zext X), C --> zext (urem X, C')
1223     return new ZExtInst(Builder.CreateBinOp(Opcode, X, TruncC), Ty);
1224   }
1225   if (isa<Instruction>(D) && match(D, m_OneUse(m_ZExt(m_Value(X)))) &&
1226       match(N, m_Constant(C))) {
1227     // If the constant is the same in the smaller type, use the narrow version.
1228     Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
1229     if (ConstantExpr::getZExt(TruncC, Ty) != C)
1230       return nullptr;
1231 
1232     // udiv C, (zext X) --> zext (udiv C', X)
1233     // urem C, (zext X) --> zext (urem C', X)
1234     return new ZExtInst(Builder.CreateBinOp(Opcode, TruncC, X), Ty);
1235   }
1236 
1237   return nullptr;
1238 }
1239 
1240 Instruction *InstCombinerImpl::visitUDiv(BinaryOperator &I) {
1241   if (Value *V = simplifyUDivInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1242                                   SQ.getWithInstruction(&I)))
1243     return replaceInstUsesWith(I, V);
1244 
1245   if (Instruction *X = foldVectorBinop(I))
1246     return X;
1247 
1248   // Handle the integer div common cases
1249   if (Instruction *Common = commonIDivTransforms(I))
1250     return Common;
1251 
1252   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1253   Value *X;
1254   const APInt *C1, *C2;
1255   if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
1256     // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
1257     bool Overflow;
1258     APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
1259     if (!Overflow) {
1260       bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
1261       BinaryOperator *BO = BinaryOperator::CreateUDiv(
1262           X, ConstantInt::get(X->getType(), C2ShlC1));
1263       if (IsExact)
1264         BO->setIsExact();
1265       return BO;
1266     }
1267   }
1268 
1269   // Op0 / C where C is large (negative) --> zext (Op0 >= C)
1270   // TODO: Could use isKnownNegative() to handle non-constant values.
1271   Type *Ty = I.getType();
1272   if (match(Op1, m_Negative())) {
1273     Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
1274     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1275   }
1276   // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
1277   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1278     Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1279     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1280   }
1281 
1282   if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
1283     return NarrowDiv;
1284 
1285   // If the udiv operands are non-overflowing multiplies with a common operand,
1286   // then eliminate the common factor:
1287   // (A * B) / (A * X) --> B / X (and commuted variants)
1288   // TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
1289   // TODO: If -reassociation handled this generally, we could remove this.
1290   Value *A, *B;
1291   if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) {
1292     if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) ||
1293         match(Op1, m_NUWMul(m_Value(X), m_Specific(A))))
1294       return BinaryOperator::CreateUDiv(B, X);
1295     if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) ||
1296         match(Op1, m_NUWMul(m_Value(X), m_Specific(B))))
1297       return BinaryOperator::CreateUDiv(A, X);
1298   }
1299 
1300   // Look through a right-shift to find the common factor:
1301   // ((Op1 *nuw A) >> B) / Op1 --> A >> B
1302   if (match(Op0, m_LShr(m_NUWMul(m_Specific(Op1), m_Value(A)), m_Value(B))) ||
1303       match(Op0, m_LShr(m_NUWMul(m_Value(A), m_Specific(Op1)), m_Value(B)))) {
1304     Instruction *Lshr = BinaryOperator::CreateLShr(A, B);
1305     if (I.isExact() && cast<PossiblyExactOperator>(Op0)->isExact())
1306       Lshr->setIsExact();
1307     return Lshr;
1308   }
1309 
1310   // Op1 udiv Op2 -> Op1 lshr log2(Op2), if log2() folds away.
1311   if (takeLog2(Builder, Op1, /*Depth*/ 0, /*AssumeNonZero*/ true,
1312                /*DoFold*/ false)) {
1313     Value *Res = takeLog2(Builder, Op1, /*Depth*/ 0,
1314                           /*AssumeNonZero*/ true, /*DoFold*/ true);
1315     return replaceInstUsesWith(
1316         I, Builder.CreateLShr(Op0, Res, I.getName(), I.isExact()));
1317   }
1318 
1319   return nullptr;
1320 }
1321 
1322 Instruction *InstCombinerImpl::visitSDiv(BinaryOperator &I) {
1323   if (Value *V = simplifySDivInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1324                                   SQ.getWithInstruction(&I)))
1325     return replaceInstUsesWith(I, V);
1326 
1327   if (Instruction *X = foldVectorBinop(I))
1328     return X;
1329 
1330   // Handle the integer div common cases
1331   if (Instruction *Common = commonIDivTransforms(I))
1332     return Common;
1333 
1334   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1335   Type *Ty = I.getType();
1336   Value *X;
1337   // sdiv Op0, -1 --> -Op0
1338   // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
1339   if (match(Op1, m_AllOnes()) ||
1340       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1341     return BinaryOperator::CreateNeg(Op0);
1342 
1343   // X / INT_MIN --> X == INT_MIN
1344   if (match(Op1, m_SignMask()))
1345     return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), Ty);
1346 
1347   if (I.isExact()) {
1348     // sdiv exact X, 1<<C --> ashr exact X, C   iff  1<<C  is non-negative
1349     if (match(Op1, m_Power2()) && match(Op1, m_NonNegative())) {
1350       Constant *C = ConstantExpr::getExactLogBase2(cast<Constant>(Op1));
1351       return BinaryOperator::CreateExactAShr(Op0, C);
1352     }
1353 
1354     // sdiv exact X, (1<<ShAmt) --> ashr exact X, ShAmt (if shl is non-negative)
1355     Value *ShAmt;
1356     if (match(Op1, m_NSWShl(m_One(), m_Value(ShAmt))))
1357       return BinaryOperator::CreateExactAShr(Op0, ShAmt);
1358 
1359     // sdiv exact X, -1<<C --> -(ashr exact X, C)
1360     if (match(Op1, m_NegatedPower2())) {
1361       Constant *NegPow2C = ConstantExpr::getNeg(cast<Constant>(Op1));
1362       Constant *C = ConstantExpr::getExactLogBase2(NegPow2C);
1363       Value *Ashr = Builder.CreateAShr(Op0, C, I.getName() + ".neg", true);
1364       return BinaryOperator::CreateNeg(Ashr);
1365     }
1366   }
1367 
1368   const APInt *Op1C;
1369   if (match(Op1, m_APInt(Op1C))) {
1370     // If the dividend is sign-extended and the constant divisor is small enough
1371     // to fit in the source type, shrink the division to the narrower type:
1372     // (sext X) sdiv C --> sext (X sdiv C)
1373     Value *Op0Src;
1374     if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
1375         Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) {
1376 
1377       // In the general case, we need to make sure that the dividend is not the
1378       // minimum signed value because dividing that by -1 is UB. But here, we
1379       // know that the -1 divisor case is already handled above.
1380 
1381       Constant *NarrowDivisor =
1382           ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
1383       Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
1384       return new SExtInst(NarrowOp, Ty);
1385     }
1386 
1387     // -X / C --> X / -C (if the negation doesn't overflow).
1388     // TODO: This could be enhanced to handle arbitrary vector constants by
1389     //       checking if all elements are not the min-signed-val.
1390     if (!Op1C->isMinSignedValue() &&
1391         match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
1392       Constant *NegC = ConstantInt::get(Ty, -(*Op1C));
1393       Instruction *BO = BinaryOperator::CreateSDiv(X, NegC);
1394       BO->setIsExact(I.isExact());
1395       return BO;
1396     }
1397   }
1398 
1399   // -X / Y --> -(X / Y)
1400   Value *Y;
1401   if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1402     return BinaryOperator::CreateNSWNeg(
1403         Builder.CreateSDiv(X, Y, I.getName(), I.isExact()));
1404 
1405   // abs(X) / X --> X > -1 ? 1 : -1
1406   // X / abs(X) --> X > -1 ? 1 : -1
1407   if (match(&I, m_c_BinOp(
1408                     m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One())),
1409                     m_Deferred(X)))) {
1410     Value *Cond = Builder.CreateIsNotNeg(X);
1411     return SelectInst::Create(Cond, ConstantInt::get(Ty, 1),
1412                               ConstantInt::getAllOnesValue(Ty));
1413   }
1414 
1415   KnownBits KnownDividend = computeKnownBits(Op0, 0, &I);
1416   if (!I.isExact() &&
1417       (match(Op1, m_Power2(Op1C)) || match(Op1, m_NegatedPower2(Op1C))) &&
1418       KnownDividend.countMinTrailingZeros() >= Op1C->countTrailingZeros()) {
1419     I.setIsExact();
1420     return &I;
1421   }
1422 
1423   if (KnownDividend.isNonNegative()) {
1424     // If both operands are unsigned, turn this into a udiv.
1425     if (isKnownNonNegative(Op1, DL, 0, &AC, &I, &DT)) {
1426       auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1427       BO->setIsExact(I.isExact());
1428       return BO;
1429     }
1430 
1431     if (match(Op1, m_NegatedPower2())) {
1432       // X sdiv (-(1 << C)) -> -(X sdiv (1 << C)) ->
1433       //                    -> -(X udiv (1 << C)) -> -(X u>> C)
1434       Constant *CNegLog2 = ConstantExpr::getExactLogBase2(
1435           ConstantExpr::getNeg(cast<Constant>(Op1)));
1436       Value *Shr = Builder.CreateLShr(Op0, CNegLog2, I.getName(), I.isExact());
1437       return BinaryOperator::CreateNeg(Shr);
1438     }
1439 
1440     if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1441       // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
1442       // Safe because the only negative value (1 << Y) can take on is
1443       // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
1444       // the sign bit set.
1445       auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1446       BO->setIsExact(I.isExact());
1447       return BO;
1448     }
1449   }
1450 
1451   return nullptr;
1452 }
1453 
1454 /// Remove negation and try to convert division into multiplication.
1455 Instruction *InstCombinerImpl::foldFDivConstantDivisor(BinaryOperator &I) {
1456   Constant *C;
1457   if (!match(I.getOperand(1), m_Constant(C)))
1458     return nullptr;
1459 
1460   // -X / C --> X / -C
1461   Value *X;
1462   const DataLayout &DL = I.getModule()->getDataLayout();
1463   if (match(I.getOperand(0), m_FNeg(m_Value(X))))
1464     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
1465       return BinaryOperator::CreateFDivFMF(X, NegC, &I);
1466 
1467   // nnan X / +0.0 -> copysign(inf, X)
1468   if (I.hasNoNaNs() && match(I.getOperand(1), m_Zero())) {
1469     IRBuilder<> B(&I);
1470     // TODO: nnan nsz X / -0.0 -> copysign(inf, X)
1471     CallInst *CopySign = B.CreateIntrinsic(
1472         Intrinsic::copysign, {C->getType()},
1473         {ConstantFP::getInfinity(I.getType()), I.getOperand(0)}, &I);
1474     CopySign->takeName(&I);
1475     return replaceInstUsesWith(I, CopySign);
1476   }
1477 
1478   // If the constant divisor has an exact inverse, this is always safe. If not,
1479   // then we can still create a reciprocal if fast-math-flags allow it and the
1480   // constant is a regular number (not zero, infinite, or denormal).
1481   if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
1482     return nullptr;
1483 
1484   // Disallow denormal constants because we don't know what would happen
1485   // on all targets.
1486   // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1487   // denorms are flushed?
1488   auto *RecipC = ConstantFoldBinaryOpOperands(
1489       Instruction::FDiv, ConstantFP::get(I.getType(), 1.0), C, DL);
1490   if (!RecipC || !RecipC->isNormalFP())
1491     return nullptr;
1492 
1493   // X / C --> X * (1 / C)
1494   return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
1495 }
1496 
1497 /// Remove negation and try to reassociate constant math.
1498 static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
1499   Constant *C;
1500   if (!match(I.getOperand(0), m_Constant(C)))
1501     return nullptr;
1502 
1503   // C / -X --> -C / X
1504   Value *X;
1505   const DataLayout &DL = I.getModule()->getDataLayout();
1506   if (match(I.getOperand(1), m_FNeg(m_Value(X))))
1507     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
1508       return BinaryOperator::CreateFDivFMF(NegC, X, &I);
1509 
1510   if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
1511     return nullptr;
1512 
1513   // Try to reassociate C / X expressions where X includes another constant.
1514   Constant *C2, *NewC = nullptr;
1515   if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
1516     // C / (X * C2) --> (C / C2) / X
1517     NewC = ConstantFoldBinaryOpOperands(Instruction::FDiv, C, C2, DL);
1518   } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
1519     // C / (X / C2) --> (C * C2) / X
1520     NewC = ConstantFoldBinaryOpOperands(Instruction::FMul, C, C2, DL);
1521   }
1522   // Disallow denormal constants because we don't know what would happen
1523   // on all targets.
1524   // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1525   // denorms are flushed?
1526   if (!NewC || !NewC->isNormalFP())
1527     return nullptr;
1528 
1529   return BinaryOperator::CreateFDivFMF(NewC, X, &I);
1530 }
1531 
1532 /// Negate the exponent of pow/exp to fold division-by-pow() into multiply.
1533 static Instruction *foldFDivPowDivisor(BinaryOperator &I,
1534                                        InstCombiner::BuilderTy &Builder) {
1535   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1536   auto *II = dyn_cast<IntrinsicInst>(Op1);
1537   if (!II || !II->hasOneUse() || !I.hasAllowReassoc() ||
1538       !I.hasAllowReciprocal())
1539     return nullptr;
1540 
1541   // Z / pow(X, Y) --> Z * pow(X, -Y)
1542   // Z / exp{2}(Y) --> Z * exp{2}(-Y)
1543   // In the general case, this creates an extra instruction, but fmul allows
1544   // for better canonicalization and optimization than fdiv.
1545   Intrinsic::ID IID = II->getIntrinsicID();
1546   SmallVector<Value *> Args;
1547   switch (IID) {
1548   case Intrinsic::pow:
1549     Args.push_back(II->getArgOperand(0));
1550     Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(1), &I));
1551     break;
1552   case Intrinsic::powi: {
1553     // Require 'ninf' assuming that makes powi(X, -INT_MIN) acceptable.
1554     // That is, X ** (huge negative number) is 0.0, ~1.0, or INF and so
1555     // dividing by that is INF, ~1.0, or 0.0. Code that uses powi allows
1556     // non-standard results, so this corner case should be acceptable if the
1557     // code rules out INF values.
1558     if (!I.hasNoInfs())
1559       return nullptr;
1560     Args.push_back(II->getArgOperand(0));
1561     Args.push_back(Builder.CreateNeg(II->getArgOperand(1)));
1562     Type *Tys[] = {I.getType(), II->getArgOperand(1)->getType()};
1563     Value *Pow = Builder.CreateIntrinsic(IID, Tys, Args, &I);
1564     return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
1565   }
1566   case Intrinsic::exp:
1567   case Intrinsic::exp2:
1568     Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(0), &I));
1569     break;
1570   default:
1571     return nullptr;
1572   }
1573   Value *Pow = Builder.CreateIntrinsic(IID, I.getType(), Args, &I);
1574   return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
1575 }
1576 
1577 Instruction *InstCombinerImpl::visitFDiv(BinaryOperator &I) {
1578   Module *M = I.getModule();
1579 
1580   if (Value *V = simplifyFDivInst(I.getOperand(0), I.getOperand(1),
1581                                   I.getFastMathFlags(),
1582                                   SQ.getWithInstruction(&I)))
1583     return replaceInstUsesWith(I, V);
1584 
1585   if (Instruction *X = foldVectorBinop(I))
1586     return X;
1587 
1588   if (Instruction *Phi = foldBinopWithPhiOperands(I))
1589     return Phi;
1590 
1591   if (Instruction *R = foldFDivConstantDivisor(I))
1592     return R;
1593 
1594   if (Instruction *R = foldFDivConstantDividend(I))
1595     return R;
1596 
1597   if (Instruction *R = foldFPSignBitOps(I))
1598     return R;
1599 
1600   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1601   if (isa<Constant>(Op0))
1602     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1603       if (Instruction *R = FoldOpIntoSelect(I, SI))
1604         return R;
1605 
1606   if (isa<Constant>(Op1))
1607     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1608       if (Instruction *R = FoldOpIntoSelect(I, SI))
1609         return R;
1610 
1611   if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
1612     Value *X, *Y;
1613     if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1614         (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
1615       // (X / Y) / Z => X / (Y * Z)
1616       Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
1617       return BinaryOperator::CreateFDivFMF(X, YZ, &I);
1618     }
1619     if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1620         (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
1621       // Z / (X / Y) => (Y * Z) / X
1622       Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
1623       return BinaryOperator::CreateFDivFMF(YZ, X, &I);
1624     }
1625     // Z / (1.0 / Y) => (Y * Z)
1626     //
1627     // This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The
1628     // m_OneUse check is avoided because even in the case of the multiple uses
1629     // for 1.0/Y, the number of instructions remain the same and a division is
1630     // replaced by a multiplication.
1631     if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y))))
1632       return BinaryOperator::CreateFMulFMF(Y, Op0, &I);
1633   }
1634 
1635   if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
1636     // sin(X) / cos(X) -> tan(X)
1637     // cos(X) / sin(X) -> 1/tan(X) (cotangent)
1638     Value *X;
1639     bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
1640                  match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
1641     bool IsCot =
1642         !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
1643                   match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
1644 
1645     if ((IsTan || IsCot) && hasFloatFn(M, &TLI, I.getType(), LibFunc_tan,
1646                                        LibFunc_tanf, LibFunc_tanl)) {
1647       IRBuilder<> B(&I);
1648       IRBuilder<>::FastMathFlagGuard FMFGuard(B);
1649       B.setFastMathFlags(I.getFastMathFlags());
1650       AttributeList Attrs =
1651           cast<CallBase>(Op0)->getCalledFunction()->getAttributes();
1652       Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
1653                                         LibFunc_tanl, B, Attrs);
1654       if (IsCot)
1655         Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
1656       return replaceInstUsesWith(I, Res);
1657     }
1658   }
1659 
1660   // X / (X * Y) --> 1.0 / Y
1661   // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
1662   // We can ignore the possibility that X is infinity because INF/INF is NaN.
1663   Value *X, *Y;
1664   if (I.hasNoNaNs() && I.hasAllowReassoc() &&
1665       match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
1666     replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0));
1667     replaceOperand(I, 1, Y);
1668     return &I;
1669   }
1670 
1671   // X / fabs(X) -> copysign(1.0, X)
1672   // fabs(X) / X -> copysign(1.0, X)
1673   if (I.hasNoNaNs() && I.hasNoInfs() &&
1674       (match(&I, m_FDiv(m_Value(X), m_FAbs(m_Deferred(X)))) ||
1675        match(&I, m_FDiv(m_FAbs(m_Value(X)), m_Deferred(X))))) {
1676     Value *V = Builder.CreateBinaryIntrinsic(
1677         Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I);
1678     return replaceInstUsesWith(I, V);
1679   }
1680 
1681   if (Instruction *Mul = foldFDivPowDivisor(I, Builder))
1682     return Mul;
1683 
1684   // pow(X, Y) / X --> pow(X, Y-1)
1685   if (I.hasAllowReassoc() &&
1686       match(Op0, m_OneUse(m_Intrinsic<Intrinsic::pow>(m_Specific(Op1),
1687                                                       m_Value(Y))))) {
1688     Value *Y1 =
1689         Builder.CreateFAddFMF(Y, ConstantFP::get(I.getType(), -1.0), &I);
1690     Value *Pow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, Op1, Y1, &I);
1691     return replaceInstUsesWith(I, Pow);
1692   }
1693 
1694   return nullptr;
1695 }
1696 
1697 /// This function implements the transforms common to both integer remainder
1698 /// instructions (urem and srem). It is called by the visitors to those integer
1699 /// remainder instructions.
1700 /// Common integer remainder transforms
1701 Instruction *InstCombinerImpl::commonIRemTransforms(BinaryOperator &I) {
1702   if (Instruction *Phi = foldBinopWithPhiOperands(I))
1703     return Phi;
1704 
1705   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1706 
1707   // The RHS is known non-zero.
1708   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
1709     return replaceOperand(I, 1, V);
1710 
1711   // Handle cases involving: rem X, (select Cond, Y, Z)
1712   if (simplifyDivRemOfSelectWithZeroOp(I))
1713     return &I;
1714 
1715   // If the divisor is a select-of-constants, try to constant fold all rem ops:
1716   // C % (select Cond, TrueC, FalseC) --> select Cond, (C % TrueC), (C % FalseC)
1717   // TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds.
1718   if (match(Op0, m_ImmConstant()) &&
1719       match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) {
1720     if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1),
1721                                           /*FoldWithMultiUse*/ true))
1722       return R;
1723   }
1724 
1725   if (isa<Constant>(Op1)) {
1726     if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1727       if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1728         if (Instruction *R = FoldOpIntoSelect(I, SI))
1729           return R;
1730       } else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
1731         const APInt *Op1Int;
1732         if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
1733             (I.getOpcode() == Instruction::URem ||
1734              !Op1Int->isMinSignedValue())) {
1735           // foldOpIntoPhi will speculate instructions to the end of the PHI's
1736           // predecessor blocks, so do this only if we know the srem or urem
1737           // will not fault.
1738           if (Instruction *NV = foldOpIntoPhi(I, PN))
1739             return NV;
1740         }
1741       }
1742 
1743       // See if we can fold away this rem instruction.
1744       if (SimplifyDemandedInstructionBits(I))
1745         return &I;
1746     }
1747   }
1748 
1749   return nullptr;
1750 }
1751 
1752 Instruction *InstCombinerImpl::visitURem(BinaryOperator &I) {
1753   if (Value *V = simplifyURemInst(I.getOperand(0), I.getOperand(1),
1754                                   SQ.getWithInstruction(&I)))
1755     return replaceInstUsesWith(I, V);
1756 
1757   if (Instruction *X = foldVectorBinop(I))
1758     return X;
1759 
1760   if (Instruction *common = commonIRemTransforms(I))
1761     return common;
1762 
1763   if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
1764     return NarrowRem;
1765 
1766   // X urem Y -> X and Y-1, where Y is a power of 2,
1767   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1768   Type *Ty = I.getType();
1769   if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1770     // This may increase instruction count, we don't enforce that Y is a
1771     // constant.
1772     Constant *N1 = Constant::getAllOnesValue(Ty);
1773     Value *Add = Builder.CreateAdd(Op1, N1);
1774     return BinaryOperator::CreateAnd(Op0, Add);
1775   }
1776 
1777   // 1 urem X -> zext(X != 1)
1778   if (match(Op0, m_One())) {
1779     Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1));
1780     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1781   }
1782 
1783   // Op0 urem C -> Op0 < C ? Op0 : Op0 - C, where C >= signbit.
1784   // Op0 must be frozen because we are increasing its number of uses.
1785   if (match(Op1, m_Negative())) {
1786     Value *F0 = Builder.CreateFreeze(Op0, Op0->getName() + ".fr");
1787     Value *Cmp = Builder.CreateICmpULT(F0, Op1);
1788     Value *Sub = Builder.CreateSub(F0, Op1);
1789     return SelectInst::Create(Cmp, F0, Sub);
1790   }
1791 
1792   // If the divisor is a sext of a boolean, then the divisor must be max
1793   // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
1794   // max unsigned value. In that case, the remainder is 0:
1795   // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
1796   Value *X;
1797   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1798     Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1799     return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0);
1800   }
1801 
1802   return nullptr;
1803 }
1804 
1805 Instruction *InstCombinerImpl::visitSRem(BinaryOperator &I) {
1806   if (Value *V = simplifySRemInst(I.getOperand(0), I.getOperand(1),
1807                                   SQ.getWithInstruction(&I)))
1808     return replaceInstUsesWith(I, V);
1809 
1810   if (Instruction *X = foldVectorBinop(I))
1811     return X;
1812 
1813   // Handle the integer rem common cases
1814   if (Instruction *Common = commonIRemTransforms(I))
1815     return Common;
1816 
1817   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1818   {
1819     const APInt *Y;
1820     // X % -Y -> X % Y
1821     if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue())
1822       return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y));
1823   }
1824 
1825   // -X srem Y --> -(X srem Y)
1826   Value *X, *Y;
1827   if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1828     return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y));
1829 
1830   // If the sign bits of both operands are zero (i.e. we can prove they are
1831   // unsigned inputs), turn this into a urem.
1832   APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
1833   if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
1834       MaskedValueIsZero(Op0, Mask, 0, &I)) {
1835     // X srem Y -> X urem Y, iff X and Y don't have sign bit set
1836     return BinaryOperator::CreateURem(Op0, Op1, I.getName());
1837   }
1838 
1839   // If it's a constant vector, flip any negative values positive.
1840   if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
1841     Constant *C = cast<Constant>(Op1);
1842     unsigned VWidth = cast<FixedVectorType>(C->getType())->getNumElements();
1843 
1844     bool hasNegative = false;
1845     bool hasMissing = false;
1846     for (unsigned i = 0; i != VWidth; ++i) {
1847       Constant *Elt = C->getAggregateElement(i);
1848       if (!Elt) {
1849         hasMissing = true;
1850         break;
1851       }
1852 
1853       if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
1854         if (RHS->isNegative())
1855           hasNegative = true;
1856     }
1857 
1858     if (hasNegative && !hasMissing) {
1859       SmallVector<Constant *, 16> Elts(VWidth);
1860       for (unsigned i = 0; i != VWidth; ++i) {
1861         Elts[i] = C->getAggregateElement(i);  // Handle undef, etc.
1862         if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
1863           if (RHS->isNegative())
1864             Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
1865         }
1866       }
1867 
1868       Constant *NewRHSV = ConstantVector::get(Elts);
1869       if (NewRHSV != C)  // Don't loop on -MININT
1870         return replaceOperand(I, 1, NewRHSV);
1871     }
1872   }
1873 
1874   return nullptr;
1875 }
1876 
1877 Instruction *InstCombinerImpl::visitFRem(BinaryOperator &I) {
1878   if (Value *V = simplifyFRemInst(I.getOperand(0), I.getOperand(1),
1879                                   I.getFastMathFlags(),
1880                                   SQ.getWithInstruction(&I)))
1881     return replaceInstUsesWith(I, V);
1882 
1883   if (Instruction *X = foldVectorBinop(I))
1884     return X;
1885 
1886   if (Instruction *Phi = foldBinopWithPhiOperands(I))
1887     return Phi;
1888 
1889   return nullptr;
1890 }
1891