1 //===- InstCombineNegator.cpp -----------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements sinking of negation into expression trees,
10 // as long as that can be done without increasing instruction count.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/TargetFolder.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DebugLoc.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Use.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/DebugCounter.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/InstCombine/InstCombiner.h"
46 #include <cassert>
47 #include <cstdint>
48 #include <functional>
49 #include <tuple>
50 #include <type_traits>
51 #include <utility>
52 
53 namespace llvm {
54 class AssumptionCache;
55 class DataLayout;
56 class DominatorTree;
57 class LLVMContext;
58 } // namespace llvm
59 
60 using namespace llvm;
61 
62 #define DEBUG_TYPE "instcombine"
63 
64 STATISTIC(NegatorTotalNegationsAttempted,
65           "Negator: Number of negations attempted to be sinked");
66 STATISTIC(NegatorNumTreesNegated,
67           "Negator: Number of negations successfully sinked");
68 STATISTIC(NegatorMaxDepthVisited, "Negator: Maximal traversal depth ever "
69                                   "reached while attempting to sink negation");
70 STATISTIC(NegatorTimesDepthLimitReached,
71           "Negator: How many times did the traversal depth limit was reached "
72           "during sinking");
73 STATISTIC(
74     NegatorNumValuesVisited,
75     "Negator: Total number of values visited during attempts to sink negation");
76 STATISTIC(NegatorNumNegationsFoundInCache,
77           "Negator: How many negations did we retrieve/reuse from cache");
78 STATISTIC(NegatorMaxTotalValuesVisited,
79           "Negator: Maximal number of values ever visited while attempting to "
80           "sink negation");
81 STATISTIC(NegatorNumInstructionsCreatedTotal,
82           "Negator: Number of new negated instructions created, total");
83 STATISTIC(NegatorMaxInstructionsCreated,
84           "Negator: Maximal number of new instructions created during negation "
85           "attempt");
86 STATISTIC(NegatorNumInstructionsNegatedSuccess,
87           "Negator: Number of new negated instructions created in successful "
88           "negation sinking attempts");
89 
90 DEBUG_COUNTER(NegatorCounter, "instcombine-negator",
91               "Controls Negator transformations in InstCombine pass");
92 
93 static cl::opt<bool>
94     NegatorEnabled("instcombine-negator-enabled", cl::init(true),
95                    cl::desc("Should we attempt to sink negations?"));
96 
97 static cl::opt<unsigned>
98     NegatorMaxDepth("instcombine-negator-max-depth",
99                     cl::init(NegatorDefaultMaxDepth),
100                     cl::desc("What is the maximal lookup depth when trying to "
101                              "check for viability of negation sinking."));
102 
103 Negator::Negator(LLVMContext &C, const DataLayout &DL_, AssumptionCache &AC_,
104                  const DominatorTree &DT_, bool IsTrulyNegation_)
105     : Builder(C, TargetFolder(DL_),
106               IRBuilderCallbackInserter([&](Instruction *I) {
107                 ++NegatorNumInstructionsCreatedTotal;
108                 NewInstructions.push_back(I);
109               })),
110       DL(DL_), AC(AC_), DT(DT_), IsTrulyNegation(IsTrulyNegation_) {}
111 
112 #if LLVM_ENABLE_STATS
113 Negator::~Negator() {
114   NegatorMaxTotalValuesVisited.updateMax(NumValuesVisitedInThisNegator);
115 }
116 #endif
117 
118 // Due to the InstCombine's worklist management, there are no guarantees that
119 // each instruction we'll encounter has been visited by InstCombine already.
120 // In particular, most importantly for us, that means we have to canonicalize
121 // constants to RHS ourselves, since that is helpful sometimes.
122 std::array<Value *, 2> Negator::getSortedOperandsOfBinOp(Instruction *I) {
123   assert(I->getNumOperands() == 2 && "Only for binops!");
124   std::array<Value *, 2> Ops{I->getOperand(0), I->getOperand(1)};
125   if (I->isCommutative() && InstCombiner::getComplexity(I->getOperand(0)) <
126                                 InstCombiner::getComplexity(I->getOperand(1)))
127     std::swap(Ops[0], Ops[1]);
128   return Ops;
129 }
130 
131 // FIXME: can this be reworked into a worklist-based algorithm while preserving
132 // the depth-first, early bailout traversal?
133 LLVM_NODISCARD Value *Negator::visitImpl(Value *V, unsigned Depth) {
134   // -(undef) -> undef.
135   if (match(V, m_Undef()))
136     return V;
137 
138   // In i1, negation can simply be ignored.
139   if (V->getType()->isIntOrIntVectorTy(1))
140     return V;
141 
142   Value *X;
143 
144   // -(-(X)) -> X.
145   if (match(V, m_Neg(m_Value(X))))
146     return X;
147 
148   // Integral constants can be freely negated.
149   if (match(V, m_AnyIntegralConstant()))
150     return ConstantExpr::getNeg(cast<Constant>(V), /*HasNUW=*/false,
151                                 /*HasNSW=*/false);
152 
153   // If we have a non-instruction, then give up.
154   if (!isa<Instruction>(V))
155     return nullptr;
156 
157   // If we have started with a true negation (i.e. `sub 0, %y`), then if we've
158   // got instruction that does not require recursive reasoning, we can still
159   // negate it even if it has other uses, without increasing instruction count.
160   if (!V->hasOneUse() && !IsTrulyNegation)
161     return nullptr;
162 
163   auto *I = cast<Instruction>(V);
164   unsigned BitWidth = I->getType()->getScalarSizeInBits();
165 
166   // We must preserve the insertion point and debug info that is set in the
167   // builder at the time this function is called.
168   InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
169   // And since we are trying to negate instruction I, that tells us about the
170   // insertion point and the debug info that we need to keep.
171   Builder.SetInsertPoint(I);
172 
173   // In some cases we can give the answer without further recursion.
174   switch (I->getOpcode()) {
175   case Instruction::Add: {
176     std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
177     // `inc` is always negatible.
178     if (match(Ops[1], m_One()))
179       return Builder.CreateNot(Ops[0], I->getName() + ".neg");
180     break;
181   }
182   case Instruction::Xor:
183     // `not` is always negatible.
184     if (match(I, m_Not(m_Value(X))))
185       return Builder.CreateAdd(X, ConstantInt::get(X->getType(), 1),
186                                I->getName() + ".neg");
187     break;
188   case Instruction::AShr:
189   case Instruction::LShr: {
190     // Right-shift sign bit smear is negatible.
191     const APInt *Op1Val;
192     if (match(I->getOperand(1), m_APInt(Op1Val)) && *Op1Val == BitWidth - 1) {
193       Value *BO = I->getOpcode() == Instruction::AShr
194                       ? Builder.CreateLShr(I->getOperand(0), I->getOperand(1))
195                       : Builder.CreateAShr(I->getOperand(0), I->getOperand(1));
196       if (auto *NewInstr = dyn_cast<Instruction>(BO)) {
197         NewInstr->copyIRFlags(I);
198         NewInstr->setName(I->getName() + ".neg");
199       }
200       return BO;
201     }
202     // While we could negate exact arithmetic shift:
203     //   ashr exact %x, C  -->   sdiv exact i8 %x, -1<<C
204     // iff C != 0 and C u< bitwidth(%x), we don't want to,
205     // because division is *THAT* much worse than a shift.
206     break;
207   }
208   case Instruction::SExt:
209   case Instruction::ZExt:
210     // `*ext` of i1 is always negatible
211     if (I->getOperand(0)->getType()->isIntOrIntVectorTy(1))
212       return I->getOpcode() == Instruction::SExt
213                  ? Builder.CreateZExt(I->getOperand(0), I->getType(),
214                                       I->getName() + ".neg")
215                  : Builder.CreateSExt(I->getOperand(0), I->getType(),
216                                       I->getName() + ".neg");
217     break;
218   default:
219     break; // Other instructions require recursive reasoning.
220   }
221 
222   if (I->getOpcode() == Instruction::Sub &&
223       (I->hasOneUse() || match(I->getOperand(0), m_ImmConstant()))) {
224     // `sub` is always negatible.
225     // However, only do this either if the old `sub` doesn't stick around, or
226     // it was subtracting from a constant. Otherwise, this isn't profitable.
227     return Builder.CreateSub(I->getOperand(1), I->getOperand(0),
228                              I->getName() + ".neg");
229   }
230 
231   // Some other cases, while still don't require recursion,
232   // are restricted to the one-use case.
233   if (!V->hasOneUse())
234     return nullptr;
235 
236   switch (I->getOpcode()) {
237   case Instruction::SDiv:
238     // `sdiv` is negatible if divisor is not undef/INT_MIN/1.
239     // While this is normally not behind a use-check,
240     // let's consider division to be special since it's costly.
241     if (auto *Op1C = dyn_cast<Constant>(I->getOperand(1))) {
242       if (!Op1C->containsUndefOrPoisonElement() &&
243           Op1C->isNotMinSignedValue() && Op1C->isNotOneValue()) {
244         Value *BO =
245             Builder.CreateSDiv(I->getOperand(0), ConstantExpr::getNeg(Op1C),
246                                I->getName() + ".neg");
247         if (auto *NewInstr = dyn_cast<Instruction>(BO))
248           NewInstr->setIsExact(I->isExact());
249         return BO;
250       }
251     }
252     break;
253   }
254 
255   // Rest of the logic is recursive, so if it's time to give up then it's time.
256   if (Depth > NegatorMaxDepth) {
257     LLVM_DEBUG(dbgs() << "Negator: reached maximal allowed traversal depth in "
258                       << *V << ". Giving up.\n");
259     ++NegatorTimesDepthLimitReached;
260     return nullptr;
261   }
262 
263   switch (I->getOpcode()) {
264   case Instruction::Freeze: {
265     // `freeze` is negatible if its operand is negatible.
266     Value *NegOp = negate(I->getOperand(0), Depth + 1);
267     if (!NegOp) // Early return.
268       return nullptr;
269     return Builder.CreateFreeze(NegOp, I->getName() + ".neg");
270   }
271   case Instruction::PHI: {
272     // `phi` is negatible if all the incoming values are negatible.
273     auto *PHI = cast<PHINode>(I);
274     SmallVector<Value *, 4> NegatedIncomingValues(PHI->getNumOperands());
275     for (auto I : zip(PHI->incoming_values(), NegatedIncomingValues)) {
276       if (!(std::get<1>(I) =
277                 negate(std::get<0>(I), Depth + 1))) // Early return.
278         return nullptr;
279     }
280     // All incoming values are indeed negatible. Create negated PHI node.
281     PHINode *NegatedPHI = Builder.CreatePHI(
282         PHI->getType(), PHI->getNumOperands(), PHI->getName() + ".neg");
283     for (auto I : zip(NegatedIncomingValues, PHI->blocks()))
284       NegatedPHI->addIncoming(std::get<0>(I), std::get<1>(I));
285     return NegatedPHI;
286   }
287   case Instruction::Select: {
288     if (isKnownNegation(I->getOperand(1), I->getOperand(2))) {
289       // Of one hand of select is known to be negation of another hand,
290       // just swap the hands around.
291       auto *NewSelect = cast<SelectInst>(I->clone());
292       // Just swap the operands of the select.
293       NewSelect->swapValues();
294       // Don't swap prof metadata, we didn't change the branch behavior.
295       NewSelect->setName(I->getName() + ".neg");
296       Builder.Insert(NewSelect);
297       return NewSelect;
298     }
299     // `select` is negatible if both hands of `select` are negatible.
300     Value *NegOp1 = negate(I->getOperand(1), Depth + 1);
301     if (!NegOp1) // Early return.
302       return nullptr;
303     Value *NegOp2 = negate(I->getOperand(2), Depth + 1);
304     if (!NegOp2)
305       return nullptr;
306     // Do preserve the metadata!
307     return Builder.CreateSelect(I->getOperand(0), NegOp1, NegOp2,
308                                 I->getName() + ".neg", /*MDFrom=*/I);
309   }
310   case Instruction::ShuffleVector: {
311     // `shufflevector` is negatible if both operands are negatible.
312     auto *Shuf = cast<ShuffleVectorInst>(I);
313     Value *NegOp0 = negate(I->getOperand(0), Depth + 1);
314     if (!NegOp0) // Early return.
315       return nullptr;
316     Value *NegOp1 = negate(I->getOperand(1), Depth + 1);
317     if (!NegOp1)
318       return nullptr;
319     return Builder.CreateShuffleVector(NegOp0, NegOp1, Shuf->getShuffleMask(),
320                                        I->getName() + ".neg");
321   }
322   case Instruction::ExtractElement: {
323     // `extractelement` is negatible if source operand is negatible.
324     auto *EEI = cast<ExtractElementInst>(I);
325     Value *NegVector = negate(EEI->getVectorOperand(), Depth + 1);
326     if (!NegVector) // Early return.
327       return nullptr;
328     return Builder.CreateExtractElement(NegVector, EEI->getIndexOperand(),
329                                         I->getName() + ".neg");
330   }
331   case Instruction::InsertElement: {
332     // `insertelement` is negatible if both the source vector and
333     // element-to-be-inserted are negatible.
334     auto *IEI = cast<InsertElementInst>(I);
335     Value *NegVector = negate(IEI->getOperand(0), Depth + 1);
336     if (!NegVector) // Early return.
337       return nullptr;
338     Value *NegNewElt = negate(IEI->getOperand(1), Depth + 1);
339     if (!NegNewElt) // Early return.
340       return nullptr;
341     return Builder.CreateInsertElement(NegVector, NegNewElt, IEI->getOperand(2),
342                                        I->getName() + ".neg");
343   }
344   case Instruction::Trunc: {
345     // `trunc` is negatible if its operand is negatible.
346     Value *NegOp = negate(I->getOperand(0), Depth + 1);
347     if (!NegOp) // Early return.
348       return nullptr;
349     return Builder.CreateTrunc(NegOp, I->getType(), I->getName() + ".neg");
350   }
351   case Instruction::Shl: {
352     // `shl` is negatible if the first operand is negatible.
353     if (Value *NegOp0 = negate(I->getOperand(0), Depth + 1))
354       return Builder.CreateShl(NegOp0, I->getOperand(1), I->getName() + ".neg");
355     // Otherwise, `shl %x, C` can be interpreted as `mul %x, 1<<C`.
356     auto *Op1C = dyn_cast<Constant>(I->getOperand(1));
357     if (!Op1C) // Early return.
358       return nullptr;
359     return Builder.CreateMul(
360         I->getOperand(0),
361         ConstantExpr::getShl(Constant::getAllOnesValue(Op1C->getType()), Op1C),
362         I->getName() + ".neg");
363   }
364   case Instruction::Or: {
365     if (!haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1), DL, &AC, I,
366                              &DT))
367       return nullptr; // Don't know how to handle `or` in general.
368     std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
369     // `or`/`add` are interchangeable when operands have no common bits set.
370     // `inc` is always negatible.
371     if (match(Ops[1], m_One()))
372       return Builder.CreateNot(Ops[0], I->getName() + ".neg");
373     // Else, just defer to Instruction::Add handling.
374     LLVM_FALLTHROUGH;
375   }
376   case Instruction::Add: {
377     // `add` is negatible if both of its operands are negatible.
378     SmallVector<Value *, 2> NegatedOps, NonNegatedOps;
379     for (Value *Op : I->operands()) {
380       // Can we sink the negation into this operand?
381       if (Value *NegOp = negate(Op, Depth + 1)) {
382         NegatedOps.emplace_back(NegOp); // Successfully negated operand!
383         continue;
384       }
385       // Failed to sink negation into this operand. IFF we started from negation
386       // and we manage to sink negation into one operand, we can still do this.
387       if (!IsTrulyNegation)
388         return nullptr;
389       NonNegatedOps.emplace_back(Op); // Just record which operand that was.
390     }
391     assert((NegatedOps.size() + NonNegatedOps.size()) == 2 &&
392            "Internal consistency sanity check.");
393     // Did we manage to sink negation into both of the operands?
394     if (NegatedOps.size() == 2) // Then we get to keep the `add`!
395       return Builder.CreateAdd(NegatedOps[0], NegatedOps[1],
396                                I->getName() + ".neg");
397     assert(IsTrulyNegation && "We should have early-exited then.");
398     // Completely failed to sink negation?
399     if (NonNegatedOps.size() == 2)
400       return nullptr;
401     // 0-(a+b) --> (-a)-b
402     return Builder.CreateSub(NegatedOps[0], NonNegatedOps[0],
403                              I->getName() + ".neg");
404   }
405   case Instruction::Xor: {
406     std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
407     // `xor` is negatible if one of its operands is invertible.
408     // FIXME: InstCombineInverter? But how to connect Inverter and Negator?
409     if (auto *C = dyn_cast<Constant>(Ops[1])) {
410       Value *Xor = Builder.CreateXor(Ops[0], ConstantExpr::getNot(C));
411       return Builder.CreateAdd(Xor, ConstantInt::get(Xor->getType(), 1),
412                                I->getName() + ".neg");
413     }
414     return nullptr;
415   }
416   case Instruction::Mul: {
417     std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
418     // `mul` is negatible if one of its operands is negatible.
419     Value *NegatedOp, *OtherOp;
420     // First try the second operand, in case it's a constant it will be best to
421     // just invert it instead of sinking the `neg` deeper.
422     if (Value *NegOp1 = negate(Ops[1], Depth + 1)) {
423       NegatedOp = NegOp1;
424       OtherOp = Ops[0];
425     } else if (Value *NegOp0 = negate(Ops[0], Depth + 1)) {
426       NegatedOp = NegOp0;
427       OtherOp = Ops[1];
428     } else
429       // Can't negate either of them.
430       return nullptr;
431     return Builder.CreateMul(NegatedOp, OtherOp, I->getName() + ".neg");
432   }
433   default:
434     return nullptr; // Don't know, likely not negatible for free.
435   }
436 
437   llvm_unreachable("Can't get here. We always return from switch.");
438 }
439 
440 LLVM_NODISCARD Value *Negator::negate(Value *V, unsigned Depth) {
441   NegatorMaxDepthVisited.updateMax(Depth);
442   ++NegatorNumValuesVisited;
443 
444 #if LLVM_ENABLE_STATS
445   ++NumValuesVisitedInThisNegator;
446 #endif
447 
448 #ifndef NDEBUG
449   // We can't ever have a Value with such an address.
450   Value *Placeholder = reinterpret_cast<Value *>(static_cast<uintptr_t>(-1));
451 #endif
452 
453   // Did we already try to negate this value?
454   auto NegationsCacheIterator = NegationsCache.find(V);
455   if (NegationsCacheIterator != NegationsCache.end()) {
456     ++NegatorNumNegationsFoundInCache;
457     Value *NegatedV = NegationsCacheIterator->second;
458     assert(NegatedV != Placeholder && "Encountered a cycle during negation.");
459     return NegatedV;
460   }
461 
462 #ifndef NDEBUG
463   // We did not find a cached result for negation of V. While there,
464   // let's temporairly cache a placeholder value, with the idea that if later
465   // during negation we fetch it from cache, we'll know we're in a cycle.
466   NegationsCache[V] = Placeholder;
467 #endif
468 
469   // No luck. Try negating it for real.
470   Value *NegatedV = visitImpl(V, Depth);
471   // And cache the (real) result for the future.
472   NegationsCache[V] = NegatedV;
473 
474   return NegatedV;
475 }
476 
477 LLVM_NODISCARD Optional<Negator::Result> Negator::run(Value *Root) {
478   Value *Negated = negate(Root, /*Depth=*/0);
479   if (!Negated) {
480     // We must cleanup newly-inserted instructions, to avoid any potential
481     // endless combine looping.
482     llvm::for_each(llvm::reverse(NewInstructions),
483                    [&](Instruction *I) { I->eraseFromParent(); });
484     return llvm::None;
485   }
486   return std::make_pair(ArrayRef<Instruction *>(NewInstructions), Negated);
487 }
488 
489 LLVM_NODISCARD Value *Negator::Negate(bool LHSIsZero, Value *Root,
490                                       InstCombinerImpl &IC) {
491   ++NegatorTotalNegationsAttempted;
492   LLVM_DEBUG(dbgs() << "Negator: attempting to sink negation into " << *Root
493                     << "\n");
494 
495   if (!NegatorEnabled || !DebugCounter::shouldExecute(NegatorCounter))
496     return nullptr;
497 
498   Negator N(Root->getContext(), IC.getDataLayout(), IC.getAssumptionCache(),
499             IC.getDominatorTree(), LHSIsZero);
500   Optional<Result> Res = N.run(Root);
501   if (!Res) { // Negation failed.
502     LLVM_DEBUG(dbgs() << "Negator: failed to sink negation into " << *Root
503                       << "\n");
504     return nullptr;
505   }
506 
507   LLVM_DEBUG(dbgs() << "Negator: successfully sunk negation into " << *Root
508                     << "\n         NEW: " << *Res->second << "\n");
509   ++NegatorNumTreesNegated;
510 
511   // We must temporarily unset the 'current' insertion point and DebugLoc of the
512   // InstCombine's IRBuilder so that it won't interfere with the ones we have
513   // already specified when producing negated instructions.
514   InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
515   IC.Builder.ClearInsertionPoint();
516   IC.Builder.SetCurrentDebugLocation(DebugLoc());
517 
518   // And finally, we must add newly-created instructions into the InstCombine's
519   // worklist (in a proper order!) so it can attempt to combine them.
520   LLVM_DEBUG(dbgs() << "Negator: Propagating " << Res->first.size()
521                     << " instrs to InstCombine\n");
522   NegatorMaxInstructionsCreated.updateMax(Res->first.size());
523   NegatorNumInstructionsNegatedSuccess += Res->first.size();
524 
525   // They are in def-use order, so nothing fancy, just insert them in order.
526   llvm::for_each(Res->first,
527                  [&](Instruction *I) { IC.Builder.Insert(I, I->getName()); });
528 
529   // And return the new root.
530   return Res->second;
531 }
532