1 //===- InstCombinePHI.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitPHINode function.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/CommandLine.h"
21 #include "llvm/Transforms/InstCombine/InstCombiner.h"
22 #include "llvm/Transforms/Utils/Local.h"
23 #include <optional>
24 
25 using namespace llvm;
26 using namespace llvm::PatternMatch;
27 
28 #define DEBUG_TYPE "instcombine"
29 
30 static cl::opt<unsigned>
31 MaxNumPhis("instcombine-max-num-phis", cl::init(512),
32            cl::desc("Maximum number phis to handle in intptr/ptrint folding"));
33 
34 STATISTIC(NumPHIsOfInsertValues,
35           "Number of phi-of-insertvalue turned into insertvalue-of-phis");
36 STATISTIC(NumPHIsOfExtractValues,
37           "Number of phi-of-extractvalue turned into extractvalue-of-phi");
38 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
39 
40 /// The PHI arguments will be folded into a single operation with a PHI node
41 /// as input. The debug location of the single operation will be the merged
42 /// locations of the original PHI node arguments.
43 void InstCombinerImpl::PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN) {
44   auto *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
45   Inst->setDebugLoc(FirstInst->getDebugLoc());
46   // We do not expect a CallInst here, otherwise, N-way merging of DebugLoc
47   // will be inefficient.
48   assert(!isa<CallInst>(Inst));
49 
50   for (Value *V : drop_begin(PN.incoming_values())) {
51     auto *I = cast<Instruction>(V);
52     Inst->applyMergedLocation(Inst->getDebugLoc(), I->getDebugLoc());
53   }
54 }
55 
56 // Replace Integer typed PHI PN if the PHI's value is used as a pointer value.
57 // If there is an existing pointer typed PHI that produces the same value as PN,
58 // replace PN and the IntToPtr operation with it. Otherwise, synthesize a new
59 // PHI node:
60 //
61 // Case-1:
62 // bb1:
63 //     int_init = PtrToInt(ptr_init)
64 //     br label %bb2
65 // bb2:
66 //    int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
67 //    ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
68 //    ptr_val2 = IntToPtr(int_val)
69 //    ...
70 //    use(ptr_val2)
71 //    ptr_val_inc = ...
72 //    inc_val_inc = PtrToInt(ptr_val_inc)
73 //
74 // ==>
75 // bb1:
76 //     br label %bb2
77 // bb2:
78 //    ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
79 //    ...
80 //    use(ptr_val)
81 //    ptr_val_inc = ...
82 //
83 // Case-2:
84 // bb1:
85 //    int_ptr = BitCast(ptr_ptr)
86 //    int_init = Load(int_ptr)
87 //    br label %bb2
88 // bb2:
89 //    int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
90 //    ptr_val2 = IntToPtr(int_val)
91 //    ...
92 //    use(ptr_val2)
93 //    ptr_val_inc = ...
94 //    inc_val_inc = PtrToInt(ptr_val_inc)
95 // ==>
96 // bb1:
97 //    ptr_init = Load(ptr_ptr)
98 //    br label %bb2
99 // bb2:
100 //    ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
101 //    ...
102 //    use(ptr_val)
103 //    ptr_val_inc = ...
104 //    ...
105 //
106 bool InstCombinerImpl::foldIntegerTypedPHI(PHINode &PN) {
107   if (!PN.getType()->isIntegerTy())
108     return false;
109   if (!PN.hasOneUse())
110     return false;
111 
112   auto *IntToPtr = dyn_cast<IntToPtrInst>(PN.user_back());
113   if (!IntToPtr)
114     return false;
115 
116   // Check if the pointer is actually used as pointer:
117   auto HasPointerUse = [](Instruction *IIP) {
118     for (User *U : IIP->users()) {
119       Value *Ptr = nullptr;
120       if (LoadInst *LoadI = dyn_cast<LoadInst>(U)) {
121         Ptr = LoadI->getPointerOperand();
122       } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
123         Ptr = SI->getPointerOperand();
124       } else if (GetElementPtrInst *GI = dyn_cast<GetElementPtrInst>(U)) {
125         Ptr = GI->getPointerOperand();
126       }
127 
128       if (Ptr && Ptr == IIP)
129         return true;
130     }
131     return false;
132   };
133 
134   if (!HasPointerUse(IntToPtr))
135     return false;
136 
137   if (DL.getPointerSizeInBits(IntToPtr->getAddressSpace()) !=
138       DL.getTypeSizeInBits(IntToPtr->getOperand(0)->getType()))
139     return false;
140 
141   SmallVector<Value *, 4> AvailablePtrVals;
142   for (auto Incoming : zip(PN.blocks(), PN.incoming_values())) {
143     BasicBlock *BB = std::get<0>(Incoming);
144     Value *Arg = std::get<1>(Incoming);
145 
146     // First look backward:
147     if (auto *PI = dyn_cast<PtrToIntInst>(Arg)) {
148       AvailablePtrVals.emplace_back(PI->getOperand(0));
149       continue;
150     }
151 
152     // Next look forward:
153     Value *ArgIntToPtr = nullptr;
154     for (User *U : Arg->users()) {
155       if (isa<IntToPtrInst>(U) && U->getType() == IntToPtr->getType() &&
156           (DT.dominates(cast<Instruction>(U), BB) ||
157            cast<Instruction>(U)->getParent() == BB)) {
158         ArgIntToPtr = U;
159         break;
160       }
161     }
162 
163     if (ArgIntToPtr) {
164       AvailablePtrVals.emplace_back(ArgIntToPtr);
165       continue;
166     }
167 
168     // If Arg is defined by a PHI, allow it. This will also create
169     // more opportunities iteratively.
170     if (isa<PHINode>(Arg)) {
171       AvailablePtrVals.emplace_back(Arg);
172       continue;
173     }
174 
175     // For a single use integer load:
176     auto *LoadI = dyn_cast<LoadInst>(Arg);
177     if (!LoadI)
178       return false;
179 
180     if (!LoadI->hasOneUse())
181       return false;
182 
183     // Push the integer typed Load instruction into the available
184     // value set, and fix it up later when the pointer typed PHI
185     // is synthesized.
186     AvailablePtrVals.emplace_back(LoadI);
187   }
188 
189   // Now search for a matching PHI
190   auto *BB = PN.getParent();
191   assert(AvailablePtrVals.size() == PN.getNumIncomingValues() &&
192          "Not enough available ptr typed incoming values");
193   PHINode *MatchingPtrPHI = nullptr;
194   unsigned NumPhis = 0;
195   for (PHINode &PtrPHI : BB->phis()) {
196     // FIXME: consider handling this in AggressiveInstCombine
197     if (NumPhis++ > MaxNumPhis)
198       return false;
199     if (&PtrPHI == &PN || PtrPHI.getType() != IntToPtr->getType())
200       continue;
201     if (any_of(zip(PN.blocks(), AvailablePtrVals),
202                [&](const auto &BlockAndValue) {
203                  BasicBlock *BB = std::get<0>(BlockAndValue);
204                  Value *V = std::get<1>(BlockAndValue);
205                  return PtrPHI.getIncomingValueForBlock(BB) != V;
206                }))
207       continue;
208     MatchingPtrPHI = &PtrPHI;
209     break;
210   }
211 
212   if (MatchingPtrPHI) {
213     assert(MatchingPtrPHI->getType() == IntToPtr->getType() &&
214            "Phi's Type does not match with IntToPtr");
215     // Explicitly replace the inttoptr (rather than inserting a ptrtoint) here,
216     // to make sure another transform can't undo it in the meantime.
217     replaceInstUsesWith(*IntToPtr, MatchingPtrPHI);
218     eraseInstFromFunction(*IntToPtr);
219     eraseInstFromFunction(PN);
220     return true;
221   }
222 
223   // If it requires a conversion for every PHI operand, do not do it.
224   if (all_of(AvailablePtrVals, [&](Value *V) {
225         return (V->getType() != IntToPtr->getType()) || isa<IntToPtrInst>(V);
226       }))
227     return false;
228 
229   // If any of the operand that requires casting is a terminator
230   // instruction, do not do it. Similarly, do not do the transform if the value
231   // is PHI in a block with no insertion point, for example, a catchswitch
232   // block, since we will not be able to insert a cast after the PHI.
233   if (any_of(AvailablePtrVals, [&](Value *V) {
234         if (V->getType() == IntToPtr->getType())
235           return false;
236         auto *Inst = dyn_cast<Instruction>(V);
237         if (!Inst)
238           return false;
239         if (Inst->isTerminator())
240           return true;
241         auto *BB = Inst->getParent();
242         if (isa<PHINode>(Inst) && BB->getFirstInsertionPt() == BB->end())
243           return true;
244         return false;
245       }))
246     return false;
247 
248   PHINode *NewPtrPHI = PHINode::Create(
249       IntToPtr->getType(), PN.getNumIncomingValues(), PN.getName() + ".ptr");
250 
251   InsertNewInstBefore(NewPtrPHI, PN.getIterator());
252   SmallDenseMap<Value *, Instruction *> Casts;
253   for (auto Incoming : zip(PN.blocks(), AvailablePtrVals)) {
254     auto *IncomingBB = std::get<0>(Incoming);
255     auto *IncomingVal = std::get<1>(Incoming);
256 
257     if (IncomingVal->getType() == IntToPtr->getType()) {
258       NewPtrPHI->addIncoming(IncomingVal, IncomingBB);
259       continue;
260     }
261 
262 #ifndef NDEBUG
263     LoadInst *LoadI = dyn_cast<LoadInst>(IncomingVal);
264     assert((isa<PHINode>(IncomingVal) ||
265             IncomingVal->getType()->isPointerTy() ||
266             (LoadI && LoadI->hasOneUse())) &&
267            "Can not replace LoadInst with multiple uses");
268 #endif
269     // Need to insert a BitCast.
270     // For an integer Load instruction with a single use, the load + IntToPtr
271     // cast will be simplified into a pointer load:
272     // %v = load i64, i64* %a.ip, align 8
273     // %v.cast = inttoptr i64 %v to float **
274     // ==>
275     // %v.ptrp = bitcast i64 * %a.ip to float **
276     // %v.cast = load float *, float ** %v.ptrp, align 8
277     Instruction *&CI = Casts[IncomingVal];
278     if (!CI) {
279       CI = CastInst::CreateBitOrPointerCast(IncomingVal, IntToPtr->getType(),
280                                             IncomingVal->getName() + ".ptr");
281       if (auto *IncomingI = dyn_cast<Instruction>(IncomingVal)) {
282         BasicBlock::iterator InsertPos(IncomingI);
283         InsertPos++;
284         BasicBlock *BB = IncomingI->getParent();
285         if (isa<PHINode>(IncomingI))
286           InsertPos = BB->getFirstInsertionPt();
287         assert(InsertPos != BB->end() && "should have checked above");
288         InsertNewInstBefore(CI, InsertPos);
289       } else {
290         auto *InsertBB = &IncomingBB->getParent()->getEntryBlock();
291         InsertNewInstBefore(CI, InsertBB->getFirstInsertionPt());
292       }
293     }
294     NewPtrPHI->addIncoming(CI, IncomingBB);
295   }
296 
297   // Explicitly replace the inttoptr (rather than inserting a ptrtoint) here,
298   // to make sure another transform can't undo it in the meantime.
299   replaceInstUsesWith(*IntToPtr, NewPtrPHI);
300   eraseInstFromFunction(*IntToPtr);
301   eraseInstFromFunction(PN);
302   return true;
303 }
304 
305 // Remove RoundTrip IntToPtr/PtrToInt Cast on PHI-Operand and
306 // fold Phi-operand to bitcast.
307 Instruction *InstCombinerImpl::foldPHIArgIntToPtrToPHI(PHINode &PN) {
308   // convert ptr2int ( phi[ int2ptr(ptr2int(x))] ) --> ptr2int ( phi [ x ] )
309   // Make sure all uses of phi are ptr2int.
310   if (!all_of(PN.users(), [](User *U) { return isa<PtrToIntInst>(U); }))
311     return nullptr;
312 
313   // Iterating over all operands to check presence of target pointers for
314   // optimization.
315   bool OperandWithRoundTripCast = false;
316   for (unsigned OpNum = 0; OpNum != PN.getNumIncomingValues(); ++OpNum) {
317     if (auto *NewOp =
318             simplifyIntToPtrRoundTripCast(PN.getIncomingValue(OpNum))) {
319       replaceOperand(PN, OpNum, NewOp);
320       OperandWithRoundTripCast = true;
321     }
322   }
323   if (!OperandWithRoundTripCast)
324     return nullptr;
325   return &PN;
326 }
327 
328 /// If we have something like phi [insertvalue(a,b,0), insertvalue(c,d,0)],
329 /// turn this into a phi[a,c] and phi[b,d] and a single insertvalue.
330 Instruction *
331 InstCombinerImpl::foldPHIArgInsertValueInstructionIntoPHI(PHINode &PN) {
332   auto *FirstIVI = cast<InsertValueInst>(PN.getIncomingValue(0));
333 
334   // Scan to see if all operands are `insertvalue`'s with the same indicies,
335   // and all have a single use.
336   for (Value *V : drop_begin(PN.incoming_values())) {
337     auto *I = dyn_cast<InsertValueInst>(V);
338     if (!I || !I->hasOneUser() || I->getIndices() != FirstIVI->getIndices())
339       return nullptr;
340   }
341 
342   // For each operand of an `insertvalue`
343   std::array<PHINode *, 2> NewOperands;
344   for (int OpIdx : {0, 1}) {
345     auto *&NewOperand = NewOperands[OpIdx];
346     // Create a new PHI node to receive the values the operand has in each
347     // incoming basic block.
348     NewOperand = PHINode::Create(
349         FirstIVI->getOperand(OpIdx)->getType(), PN.getNumIncomingValues(),
350         FirstIVI->getOperand(OpIdx)->getName() + ".pn");
351     // And populate each operand's PHI with said values.
352     for (auto Incoming : zip(PN.blocks(), PN.incoming_values()))
353       NewOperand->addIncoming(
354           cast<InsertValueInst>(std::get<1>(Incoming))->getOperand(OpIdx),
355           std::get<0>(Incoming));
356     InsertNewInstBefore(NewOperand, PN.getIterator());
357   }
358 
359   // And finally, create `insertvalue` over the newly-formed PHI nodes.
360   auto *NewIVI = InsertValueInst::Create(NewOperands[0], NewOperands[1],
361                                          FirstIVI->getIndices(), PN.getName());
362 
363   PHIArgMergedDebugLoc(NewIVI, PN);
364   ++NumPHIsOfInsertValues;
365   return NewIVI;
366 }
367 
368 /// If we have something like phi [extractvalue(a,0), extractvalue(b,0)],
369 /// turn this into a phi[a,b] and a single extractvalue.
370 Instruction *
371 InstCombinerImpl::foldPHIArgExtractValueInstructionIntoPHI(PHINode &PN) {
372   auto *FirstEVI = cast<ExtractValueInst>(PN.getIncomingValue(0));
373 
374   // Scan to see if all operands are `extractvalue`'s with the same indicies,
375   // and all have a single use.
376   for (Value *V : drop_begin(PN.incoming_values())) {
377     auto *I = dyn_cast<ExtractValueInst>(V);
378     if (!I || !I->hasOneUser() || I->getIndices() != FirstEVI->getIndices() ||
379         I->getAggregateOperand()->getType() !=
380             FirstEVI->getAggregateOperand()->getType())
381       return nullptr;
382   }
383 
384   // Create a new PHI node to receive the values the aggregate operand has
385   // in each incoming basic block.
386   auto *NewAggregateOperand = PHINode::Create(
387       FirstEVI->getAggregateOperand()->getType(), PN.getNumIncomingValues(),
388       FirstEVI->getAggregateOperand()->getName() + ".pn");
389   // And populate the PHI with said values.
390   for (auto Incoming : zip(PN.blocks(), PN.incoming_values()))
391     NewAggregateOperand->addIncoming(
392         cast<ExtractValueInst>(std::get<1>(Incoming))->getAggregateOperand(),
393         std::get<0>(Incoming));
394   InsertNewInstBefore(NewAggregateOperand, PN.getIterator());
395 
396   // And finally, create `extractvalue` over the newly-formed PHI nodes.
397   auto *NewEVI = ExtractValueInst::Create(NewAggregateOperand,
398                                           FirstEVI->getIndices(), PN.getName());
399 
400   PHIArgMergedDebugLoc(NewEVI, PN);
401   ++NumPHIsOfExtractValues;
402   return NewEVI;
403 }
404 
405 /// If we have something like phi [add (a,b), add(a,c)] and if a/b/c and the
406 /// adds all have a single user, turn this into a phi and a single binop.
407 Instruction *InstCombinerImpl::foldPHIArgBinOpIntoPHI(PHINode &PN) {
408   Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
409   assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
410   unsigned Opc = FirstInst->getOpcode();
411   Value *LHSVal = FirstInst->getOperand(0);
412   Value *RHSVal = FirstInst->getOperand(1);
413 
414   Type *LHSType = LHSVal->getType();
415   Type *RHSType = RHSVal->getType();
416 
417   // Scan to see if all operands are the same opcode, and all have one user.
418   for (Value *V : drop_begin(PN.incoming_values())) {
419     Instruction *I = dyn_cast<Instruction>(V);
420     if (!I || I->getOpcode() != Opc || !I->hasOneUser() ||
421         // Verify type of the LHS matches so we don't fold cmp's of different
422         // types.
423         I->getOperand(0)->getType() != LHSType ||
424         I->getOperand(1)->getType() != RHSType)
425       return nullptr;
426 
427     // If they are CmpInst instructions, check their predicates
428     if (CmpInst *CI = dyn_cast<CmpInst>(I))
429       if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
430         return nullptr;
431 
432     // Keep track of which operand needs a phi node.
433     if (I->getOperand(0) != LHSVal) LHSVal = nullptr;
434     if (I->getOperand(1) != RHSVal) RHSVal = nullptr;
435   }
436 
437   // If both LHS and RHS would need a PHI, don't do this transformation,
438   // because it would increase the number of PHIs entering the block,
439   // which leads to higher register pressure. This is especially
440   // bad when the PHIs are in the header of a loop.
441   if (!LHSVal && !RHSVal)
442     return nullptr;
443 
444   // Otherwise, this is safe to transform!
445 
446   Value *InLHS = FirstInst->getOperand(0);
447   Value *InRHS = FirstInst->getOperand(1);
448   PHINode *NewLHS = nullptr, *NewRHS = nullptr;
449   if (!LHSVal) {
450     NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(),
451                              FirstInst->getOperand(0)->getName() + ".pn");
452     NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
453     InsertNewInstBefore(NewLHS, PN.getIterator());
454     LHSVal = NewLHS;
455   }
456 
457   if (!RHSVal) {
458     NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(),
459                              FirstInst->getOperand(1)->getName() + ".pn");
460     NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
461     InsertNewInstBefore(NewRHS, PN.getIterator());
462     RHSVal = NewRHS;
463   }
464 
465   // Add all operands to the new PHIs.
466   if (NewLHS || NewRHS) {
467     for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
468       BasicBlock *InBB = std::get<0>(Incoming);
469       Value *InVal = std::get<1>(Incoming);
470       Instruction *InInst = cast<Instruction>(InVal);
471       if (NewLHS) {
472         Value *NewInLHS = InInst->getOperand(0);
473         NewLHS->addIncoming(NewInLHS, InBB);
474       }
475       if (NewRHS) {
476         Value *NewInRHS = InInst->getOperand(1);
477         NewRHS->addIncoming(NewInRHS, InBB);
478       }
479     }
480   }
481 
482   if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) {
483     CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
484                                      LHSVal, RHSVal);
485     PHIArgMergedDebugLoc(NewCI, PN);
486     return NewCI;
487   }
488 
489   BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
490   BinaryOperator *NewBinOp =
491     BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
492 
493   NewBinOp->copyIRFlags(PN.getIncomingValue(0));
494 
495   for (Value *V : drop_begin(PN.incoming_values()))
496     NewBinOp->andIRFlags(V);
497 
498   PHIArgMergedDebugLoc(NewBinOp, PN);
499   return NewBinOp;
500 }
501 
502 Instruction *InstCombinerImpl::foldPHIArgGEPIntoPHI(PHINode &PN) {
503   GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
504 
505   SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
506                                         FirstInst->op_end());
507   // This is true if all GEP bases are allocas and if all indices into them are
508   // constants.
509   bool AllBasePointersAreAllocas = true;
510 
511   // We don't want to replace this phi if the replacement would require
512   // more than one phi, which leads to higher register pressure. This is
513   // especially bad when the PHIs are in the header of a loop.
514   bool NeededPhi = false;
515 
516   bool AllInBounds = true;
517 
518   // Scan to see if all operands are the same opcode, and all have one user.
519   for (Value *V : drop_begin(PN.incoming_values())) {
520     GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V);
521     if (!GEP || !GEP->hasOneUser() ||
522         GEP->getSourceElementType() != FirstInst->getSourceElementType() ||
523         GEP->getNumOperands() != FirstInst->getNumOperands())
524       return nullptr;
525 
526     AllInBounds &= GEP->isInBounds();
527 
528     // Keep track of whether or not all GEPs are of alloca pointers.
529     if (AllBasePointersAreAllocas &&
530         (!isa<AllocaInst>(GEP->getOperand(0)) ||
531          !GEP->hasAllConstantIndices()))
532       AllBasePointersAreAllocas = false;
533 
534     // Compare the operand lists.
535     for (unsigned Op = 0, E = FirstInst->getNumOperands(); Op != E; ++Op) {
536       if (FirstInst->getOperand(Op) == GEP->getOperand(Op))
537         continue;
538 
539       // Don't merge two GEPs when two operands differ (introducing phi nodes)
540       // if one of the PHIs has a constant for the index.  The index may be
541       // substantially cheaper to compute for the constants, so making it a
542       // variable index could pessimize the path.  This also handles the case
543       // for struct indices, which must always be constant.
544       if (isa<ConstantInt>(FirstInst->getOperand(Op)) ||
545           isa<ConstantInt>(GEP->getOperand(Op)))
546         return nullptr;
547 
548       if (FirstInst->getOperand(Op)->getType() !=
549           GEP->getOperand(Op)->getType())
550         return nullptr;
551 
552       // If we already needed a PHI for an earlier operand, and another operand
553       // also requires a PHI, we'd be introducing more PHIs than we're
554       // eliminating, which increases register pressure on entry to the PHI's
555       // block.
556       if (NeededPhi)
557         return nullptr;
558 
559       FixedOperands[Op] = nullptr; // Needs a PHI.
560       NeededPhi = true;
561     }
562   }
563 
564   // If all of the base pointers of the PHI'd GEPs are from allocas, don't
565   // bother doing this transformation.  At best, this will just save a bit of
566   // offset calculation, but all the predecessors will have to materialize the
567   // stack address into a register anyway.  We'd actually rather *clone* the
568   // load up into the predecessors so that we have a load of a gep of an alloca,
569   // which can usually all be folded into the load.
570   if (AllBasePointersAreAllocas)
571     return nullptr;
572 
573   // Otherwise, this is safe to transform.  Insert PHI nodes for each operand
574   // that is variable.
575   SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
576 
577   bool HasAnyPHIs = false;
578   for (unsigned I = 0, E = FixedOperands.size(); I != E; ++I) {
579     if (FixedOperands[I])
580       continue; // operand doesn't need a phi.
581     Value *FirstOp = FirstInst->getOperand(I);
582     PHINode *NewPN =
583         PHINode::Create(FirstOp->getType(), E, FirstOp->getName() + ".pn");
584     InsertNewInstBefore(NewPN, PN.getIterator());
585 
586     NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
587     OperandPhis[I] = NewPN;
588     FixedOperands[I] = NewPN;
589     HasAnyPHIs = true;
590   }
591 
592   // Add all operands to the new PHIs.
593   if (HasAnyPHIs) {
594     for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
595       BasicBlock *InBB = std::get<0>(Incoming);
596       Value *InVal = std::get<1>(Incoming);
597       GetElementPtrInst *InGEP = cast<GetElementPtrInst>(InVal);
598 
599       for (unsigned Op = 0, E = OperandPhis.size(); Op != E; ++Op)
600         if (PHINode *OpPhi = OperandPhis[Op])
601           OpPhi->addIncoming(InGEP->getOperand(Op), InBB);
602     }
603   }
604 
605   Value *Base = FixedOperands[0];
606   GetElementPtrInst *NewGEP =
607       GetElementPtrInst::Create(FirstInst->getSourceElementType(), Base,
608                                 ArrayRef(FixedOperands).slice(1));
609   if (AllInBounds) NewGEP->setIsInBounds();
610   PHIArgMergedDebugLoc(NewGEP, PN);
611   return NewGEP;
612 }
613 
614 /// Return true if we know that it is safe to sink the load out of the block
615 /// that defines it. This means that it must be obvious the value of the load is
616 /// not changed from the point of the load to the end of the block it is in.
617 ///
618 /// Finally, it is safe, but not profitable, to sink a load targeting a
619 /// non-address-taken alloca.  Doing so will cause us to not promote the alloca
620 /// to a register.
621 static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
622   BasicBlock::iterator BBI = L->getIterator(), E = L->getParent()->end();
623 
624   for (++BBI; BBI != E; ++BBI)
625     if (BBI->mayWriteToMemory()) {
626       // Calls that only access inaccessible memory do not block sinking the
627       // load.
628       if (auto *CB = dyn_cast<CallBase>(BBI))
629         if (CB->onlyAccessesInaccessibleMemory())
630           continue;
631       return false;
632     }
633 
634   // Check for non-address taken alloca.  If not address-taken already, it isn't
635   // profitable to do this xform.
636   if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
637     bool IsAddressTaken = false;
638     for (User *U : AI->users()) {
639       if (isa<LoadInst>(U)) continue;
640       if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
641         // If storing TO the alloca, then the address isn't taken.
642         if (SI->getOperand(1) == AI) continue;
643       }
644       IsAddressTaken = true;
645       break;
646     }
647 
648     if (!IsAddressTaken && AI->isStaticAlloca())
649       return false;
650   }
651 
652   // If this load is a load from a GEP with a constant offset from an alloca,
653   // then we don't want to sink it.  In its present form, it will be
654   // load [constant stack offset].  Sinking it will cause us to have to
655   // materialize the stack addresses in each predecessor in a register only to
656   // do a shared load from register in the successor.
657   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
658     if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
659       if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
660         return false;
661 
662   return true;
663 }
664 
665 Instruction *InstCombinerImpl::foldPHIArgLoadIntoPHI(PHINode &PN) {
666   LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
667 
668   // Can't forward swifterror through a phi.
669   if (FirstLI->getOperand(0)->isSwiftError())
670     return nullptr;
671 
672   // FIXME: This is overconservative; this transform is allowed in some cases
673   // for atomic operations.
674   if (FirstLI->isAtomic())
675     return nullptr;
676 
677   // When processing loads, we need to propagate two bits of information to the
678   // sunk load: whether it is volatile, and what its alignment is.
679   bool IsVolatile = FirstLI->isVolatile();
680   Align LoadAlignment = FirstLI->getAlign();
681   const unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();
682 
683   // We can't sink the load if the loaded value could be modified between the
684   // load and the PHI.
685   if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
686       !isSafeAndProfitableToSinkLoad(FirstLI))
687     return nullptr;
688 
689   // If the PHI is of volatile loads and the load block has multiple
690   // successors, sinking it would remove a load of the volatile value from
691   // the path through the other successor.
692   if (IsVolatile &&
693       FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
694     return nullptr;
695 
696   for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
697     BasicBlock *InBB = std::get<0>(Incoming);
698     Value *InVal = std::get<1>(Incoming);
699     LoadInst *LI = dyn_cast<LoadInst>(InVal);
700     if (!LI || !LI->hasOneUser() || LI->isAtomic())
701       return nullptr;
702 
703     // Make sure all arguments are the same type of operation.
704     if (LI->isVolatile() != IsVolatile ||
705         LI->getPointerAddressSpace() != LoadAddrSpace)
706       return nullptr;
707 
708     // Can't forward swifterror through a phi.
709     if (LI->getOperand(0)->isSwiftError())
710       return nullptr;
711 
712     // We can't sink the load if the loaded value could be modified between
713     // the load and the PHI.
714     if (LI->getParent() != InBB || !isSafeAndProfitableToSinkLoad(LI))
715       return nullptr;
716 
717     LoadAlignment = std::min(LoadAlignment, LI->getAlign());
718 
719     // If the PHI is of volatile loads and the load block has multiple
720     // successors, sinking it would remove a load of the volatile value from
721     // the path through the other successor.
722     if (IsVolatile && LI->getParent()->getTerminator()->getNumSuccessors() != 1)
723       return nullptr;
724   }
725 
726   // Okay, they are all the same operation.  Create a new PHI node of the
727   // correct type, and PHI together all of the LHS's of the instructions.
728   PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
729                                    PN.getNumIncomingValues(),
730                                    PN.getName()+".in");
731 
732   Value *InVal = FirstLI->getOperand(0);
733   NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
734   LoadInst *NewLI =
735       new LoadInst(FirstLI->getType(), NewPN, "", IsVolatile, LoadAlignment);
736 
737   unsigned KnownIDs[] = {
738     LLVMContext::MD_tbaa,
739     LLVMContext::MD_range,
740     LLVMContext::MD_invariant_load,
741     LLVMContext::MD_alias_scope,
742     LLVMContext::MD_noalias,
743     LLVMContext::MD_nonnull,
744     LLVMContext::MD_align,
745     LLVMContext::MD_dereferenceable,
746     LLVMContext::MD_dereferenceable_or_null,
747     LLVMContext::MD_access_group,
748     LLVMContext::MD_noundef,
749   };
750 
751   for (unsigned ID : KnownIDs)
752     NewLI->setMetadata(ID, FirstLI->getMetadata(ID));
753 
754   // Add all operands to the new PHI and combine TBAA metadata.
755   for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
756     BasicBlock *BB = std::get<0>(Incoming);
757     Value *V = std::get<1>(Incoming);
758     LoadInst *LI = cast<LoadInst>(V);
759     combineMetadata(NewLI, LI, KnownIDs, true);
760     Value *NewInVal = LI->getOperand(0);
761     if (NewInVal != InVal)
762       InVal = nullptr;
763     NewPN->addIncoming(NewInVal, BB);
764   }
765 
766   if (InVal) {
767     // The new PHI unions all of the same values together.  This is really
768     // common, so we handle it intelligently here for compile-time speed.
769     NewLI->setOperand(0, InVal);
770     delete NewPN;
771   } else {
772     InsertNewInstBefore(NewPN, PN.getIterator());
773   }
774 
775   // If this was a volatile load that we are merging, make sure to loop through
776   // and mark all the input loads as non-volatile.  If we don't do this, we will
777   // insert a new volatile load and the old ones will not be deletable.
778   if (IsVolatile)
779     for (Value *IncValue : PN.incoming_values())
780       cast<LoadInst>(IncValue)->setVolatile(false);
781 
782   PHIArgMergedDebugLoc(NewLI, PN);
783   return NewLI;
784 }
785 
786 /// TODO: This function could handle other cast types, but then it might
787 /// require special-casing a cast from the 'i1' type. See the comment in
788 /// FoldPHIArgOpIntoPHI() about pessimizing illegal integer types.
789 Instruction *InstCombinerImpl::foldPHIArgZextsIntoPHI(PHINode &Phi) {
790   // We cannot create a new instruction after the PHI if the terminator is an
791   // EHPad because there is no valid insertion point.
792   if (Instruction *TI = Phi.getParent()->getTerminator())
793     if (TI->isEHPad())
794       return nullptr;
795 
796   // Early exit for the common case of a phi with two operands. These are
797   // handled elsewhere. See the comment below where we check the count of zexts
798   // and constants for more details.
799   unsigned NumIncomingValues = Phi.getNumIncomingValues();
800   if (NumIncomingValues < 3)
801     return nullptr;
802 
803   // Find the narrower type specified by the first zext.
804   Type *NarrowType = nullptr;
805   for (Value *V : Phi.incoming_values()) {
806     if (auto *Zext = dyn_cast<ZExtInst>(V)) {
807       NarrowType = Zext->getSrcTy();
808       break;
809     }
810   }
811   if (!NarrowType)
812     return nullptr;
813 
814   // Walk the phi operands checking that we only have zexts or constants that
815   // we can shrink for free. Store the new operands for the new phi.
816   SmallVector<Value *, 4> NewIncoming;
817   unsigned NumZexts = 0;
818   unsigned NumConsts = 0;
819   for (Value *V : Phi.incoming_values()) {
820     if (auto *Zext = dyn_cast<ZExtInst>(V)) {
821       // All zexts must be identical and have one user.
822       if (Zext->getSrcTy() != NarrowType || !Zext->hasOneUser())
823         return nullptr;
824       NewIncoming.push_back(Zext->getOperand(0));
825       NumZexts++;
826     } else if (auto *C = dyn_cast<Constant>(V)) {
827       // Make sure that constants can fit in the new type.
828       Constant *Trunc = getLosslessUnsignedTrunc(C, NarrowType);
829       if (!Trunc)
830         return nullptr;
831       NewIncoming.push_back(Trunc);
832       NumConsts++;
833     } else {
834       // If it's not a cast or a constant, bail out.
835       return nullptr;
836     }
837   }
838 
839   // The more common cases of a phi with no constant operands or just one
840   // variable operand are handled by FoldPHIArgOpIntoPHI() and foldOpIntoPhi()
841   // respectively. foldOpIntoPhi() wants to do the opposite transform that is
842   // performed here. It tries to replicate a cast in the phi operand's basic
843   // block to expose other folding opportunities. Thus, InstCombine will
844   // infinite loop without this check.
845   if (NumConsts == 0 || NumZexts < 2)
846     return nullptr;
847 
848   // All incoming values are zexts or constants that are safe to truncate.
849   // Create a new phi node of the narrow type, phi together all of the new
850   // operands, and zext the result back to the original type.
851   PHINode *NewPhi = PHINode::Create(NarrowType, NumIncomingValues,
852                                     Phi.getName() + ".shrunk");
853   for (unsigned I = 0; I != NumIncomingValues; ++I)
854     NewPhi->addIncoming(NewIncoming[I], Phi.getIncomingBlock(I));
855 
856   InsertNewInstBefore(NewPhi, Phi.getIterator());
857   return CastInst::CreateZExtOrBitCast(NewPhi, Phi.getType());
858 }
859 
860 /// If all operands to a PHI node are the same "unary" operator and they all are
861 /// only used by the PHI, PHI together their inputs, and do the operation once,
862 /// to the result of the PHI.
863 Instruction *InstCombinerImpl::foldPHIArgOpIntoPHI(PHINode &PN) {
864   // We cannot create a new instruction after the PHI if the terminator is an
865   // EHPad because there is no valid insertion point.
866   if (Instruction *TI = PN.getParent()->getTerminator())
867     if (TI->isEHPad())
868       return nullptr;
869 
870   Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
871 
872   if (isa<GetElementPtrInst>(FirstInst))
873     return foldPHIArgGEPIntoPHI(PN);
874   if (isa<LoadInst>(FirstInst))
875     return foldPHIArgLoadIntoPHI(PN);
876   if (isa<InsertValueInst>(FirstInst))
877     return foldPHIArgInsertValueInstructionIntoPHI(PN);
878   if (isa<ExtractValueInst>(FirstInst))
879     return foldPHIArgExtractValueInstructionIntoPHI(PN);
880 
881   // Scan the instruction, looking for input operations that can be folded away.
882   // If all input operands to the phi are the same instruction (e.g. a cast from
883   // the same type or "+42") we can pull the operation through the PHI, reducing
884   // code size and simplifying code.
885   Constant *ConstantOp = nullptr;
886   Type *CastSrcTy = nullptr;
887 
888   if (isa<CastInst>(FirstInst)) {
889     CastSrcTy = FirstInst->getOperand(0)->getType();
890 
891     // Be careful about transforming integer PHIs.  We don't want to pessimize
892     // the code by turning an i32 into an i1293.
893     if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) {
894       if (!shouldChangeType(PN.getType(), CastSrcTy))
895         return nullptr;
896     }
897   } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
898     // Can fold binop, compare or shift here if the RHS is a constant,
899     // otherwise call FoldPHIArgBinOpIntoPHI.
900     ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
901     if (!ConstantOp)
902       return foldPHIArgBinOpIntoPHI(PN);
903   } else {
904     return nullptr;  // Cannot fold this operation.
905   }
906 
907   // Check to see if all arguments are the same operation.
908   for (Value *V : drop_begin(PN.incoming_values())) {
909     Instruction *I = dyn_cast<Instruction>(V);
910     if (!I || !I->hasOneUser() || !I->isSameOperationAs(FirstInst))
911       return nullptr;
912     if (CastSrcTy) {
913       if (I->getOperand(0)->getType() != CastSrcTy)
914         return nullptr; // Cast operation must match.
915     } else if (I->getOperand(1) != ConstantOp) {
916       return nullptr;
917     }
918   }
919 
920   // Okay, they are all the same operation.  Create a new PHI node of the
921   // correct type, and PHI together all of the LHS's of the instructions.
922   PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
923                                    PN.getNumIncomingValues(),
924                                    PN.getName()+".in");
925 
926   Value *InVal = FirstInst->getOperand(0);
927   NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
928 
929   // Add all operands to the new PHI.
930   for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
931     BasicBlock *BB = std::get<0>(Incoming);
932     Value *V = std::get<1>(Incoming);
933     Value *NewInVal = cast<Instruction>(V)->getOperand(0);
934     if (NewInVal != InVal)
935       InVal = nullptr;
936     NewPN->addIncoming(NewInVal, BB);
937   }
938 
939   Value *PhiVal;
940   if (InVal) {
941     // The new PHI unions all of the same values together.  This is really
942     // common, so we handle it intelligently here for compile-time speed.
943     PhiVal = InVal;
944     delete NewPN;
945   } else {
946     InsertNewInstBefore(NewPN, PN.getIterator());
947     PhiVal = NewPN;
948   }
949 
950   // Insert and return the new operation.
951   if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) {
952     CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal,
953                                        PN.getType());
954     PHIArgMergedDebugLoc(NewCI, PN);
955     return NewCI;
956   }
957 
958   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
959     BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
960     BinOp->copyIRFlags(PN.getIncomingValue(0));
961 
962     for (Value *V : drop_begin(PN.incoming_values()))
963       BinOp->andIRFlags(V);
964 
965     PHIArgMergedDebugLoc(BinOp, PN);
966     return BinOp;
967   }
968 
969   CmpInst *CIOp = cast<CmpInst>(FirstInst);
970   CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
971                                    PhiVal, ConstantOp);
972   PHIArgMergedDebugLoc(NewCI, PN);
973   return NewCI;
974 }
975 
976 /// Return true if this PHI node is only used by a PHI node cycle that is dead.
977 static bool isDeadPHICycle(PHINode *PN,
978                            SmallPtrSetImpl<PHINode *> &PotentiallyDeadPHIs) {
979   if (PN->use_empty()) return true;
980   if (!PN->hasOneUse()) return false;
981 
982   // Remember this node, and if we find the cycle, return.
983   if (!PotentiallyDeadPHIs.insert(PN).second)
984     return true;
985 
986   // Don't scan crazily complex things.
987   if (PotentiallyDeadPHIs.size() == 16)
988     return false;
989 
990   if (PHINode *PU = dyn_cast<PHINode>(PN->user_back()))
991     return isDeadPHICycle(PU, PotentiallyDeadPHIs);
992 
993   return false;
994 }
995 
996 /// Return true if this phi node is always equal to NonPhiInVal.
997 /// This happens with mutually cyclic phi nodes like:
998 ///   z = some value; x = phi (y, z); y = phi (x, z)
999 static bool PHIsEqualValue(PHINode *PN, Value *&NonPhiInVal,
1000                            SmallPtrSetImpl<PHINode *> &ValueEqualPHIs) {
1001   // See if we already saw this PHI node.
1002   if (!ValueEqualPHIs.insert(PN).second)
1003     return true;
1004 
1005   // Don't scan crazily complex things.
1006   if (ValueEqualPHIs.size() == 16)
1007     return false;
1008 
1009   // Scan the operands to see if they are either phi nodes or are equal to
1010   // the value.
1011   for (Value *Op : PN->incoming_values()) {
1012     if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
1013       if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs)) {
1014         if (NonPhiInVal)
1015           return false;
1016         NonPhiInVal = OpPN;
1017       }
1018     } else if (Op != NonPhiInVal)
1019       return false;
1020   }
1021 
1022   return true;
1023 }
1024 
1025 /// Return an existing non-zero constant if this phi node has one, otherwise
1026 /// return constant 1.
1027 static ConstantInt *getAnyNonZeroConstInt(PHINode &PN) {
1028   assert(isa<IntegerType>(PN.getType()) && "Expect only integer type phi");
1029   for (Value *V : PN.operands())
1030     if (auto *ConstVA = dyn_cast<ConstantInt>(V))
1031       if (!ConstVA->isZero())
1032         return ConstVA;
1033   return ConstantInt::get(cast<IntegerType>(PN.getType()), 1);
1034 }
1035 
1036 namespace {
1037 struct PHIUsageRecord {
1038   unsigned PHIId;     // The ID # of the PHI (something determinstic to sort on)
1039   unsigned Shift;     // The amount shifted.
1040   Instruction *Inst;  // The trunc instruction.
1041 
1042   PHIUsageRecord(unsigned Pn, unsigned Sh, Instruction *User)
1043       : PHIId(Pn), Shift(Sh), Inst(User) {}
1044 
1045   bool operator<(const PHIUsageRecord &RHS) const {
1046     if (PHIId < RHS.PHIId) return true;
1047     if (PHIId > RHS.PHIId) return false;
1048     if (Shift < RHS.Shift) return true;
1049     if (Shift > RHS.Shift) return false;
1050     return Inst->getType()->getPrimitiveSizeInBits() <
1051            RHS.Inst->getType()->getPrimitiveSizeInBits();
1052   }
1053 };
1054 
1055 struct LoweredPHIRecord {
1056   PHINode *PN;        // The PHI that was lowered.
1057   unsigned Shift;     // The amount shifted.
1058   unsigned Width;     // The width extracted.
1059 
1060   LoweredPHIRecord(PHINode *Phi, unsigned Sh, Type *Ty)
1061       : PN(Phi), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
1062 
1063   // Ctor form used by DenseMap.
1064   LoweredPHIRecord(PHINode *Phi, unsigned Sh) : PN(Phi), Shift(Sh), Width(0) {}
1065 };
1066 } // namespace
1067 
1068 namespace llvm {
1069   template<>
1070   struct DenseMapInfo<LoweredPHIRecord> {
1071     static inline LoweredPHIRecord getEmptyKey() {
1072       return LoweredPHIRecord(nullptr, 0);
1073     }
1074     static inline LoweredPHIRecord getTombstoneKey() {
1075       return LoweredPHIRecord(nullptr, 1);
1076     }
1077     static unsigned getHashValue(const LoweredPHIRecord &Val) {
1078       return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
1079              (Val.Width>>3);
1080     }
1081     static bool isEqual(const LoweredPHIRecord &LHS,
1082                         const LoweredPHIRecord &RHS) {
1083       return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
1084              LHS.Width == RHS.Width;
1085     }
1086   };
1087 } // namespace llvm
1088 
1089 
1090 /// This is an integer PHI and we know that it has an illegal type: see if it is
1091 /// only used by trunc or trunc(lshr) operations. If so, we split the PHI into
1092 /// the various pieces being extracted. This sort of thing is introduced when
1093 /// SROA promotes an aggregate to large integer values.
1094 ///
1095 /// TODO: The user of the trunc may be an bitcast to float/double/vector or an
1096 /// inttoptr.  We should produce new PHIs in the right type.
1097 ///
1098 Instruction *InstCombinerImpl::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
1099   // PHIUsers - Keep track of all of the truncated values extracted from a set
1100   // of PHIs, along with their offset.  These are the things we want to rewrite.
1101   SmallVector<PHIUsageRecord, 16> PHIUsers;
1102 
1103   // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
1104   // nodes which are extracted from. PHIsToSlice is a set we use to avoid
1105   // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
1106   // check the uses of (to ensure they are all extracts).
1107   SmallVector<PHINode*, 8> PHIsToSlice;
1108   SmallPtrSet<PHINode*, 8> PHIsInspected;
1109 
1110   PHIsToSlice.push_back(&FirstPhi);
1111   PHIsInspected.insert(&FirstPhi);
1112 
1113   for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
1114     PHINode *PN = PHIsToSlice[PHIId];
1115 
1116     // Scan the input list of the PHI.  If any input is an invoke, and if the
1117     // input is defined in the predecessor, then we won't be split the critical
1118     // edge which is required to insert a truncate.  Because of this, we have to
1119     // bail out.
1120     for (auto Incoming : zip(PN->blocks(), PN->incoming_values())) {
1121       BasicBlock *BB = std::get<0>(Incoming);
1122       Value *V = std::get<1>(Incoming);
1123       InvokeInst *II = dyn_cast<InvokeInst>(V);
1124       if (!II)
1125         continue;
1126       if (II->getParent() != BB)
1127         continue;
1128 
1129       // If we have a phi, and if it's directly in the predecessor, then we have
1130       // a critical edge where we need to put the truncate.  Since we can't
1131       // split the edge in instcombine, we have to bail out.
1132       return nullptr;
1133     }
1134 
1135     // If the incoming value is a PHI node before a catchswitch, we cannot
1136     // extract the value within that BB because we cannot insert any non-PHI
1137     // instructions in the BB.
1138     for (auto *Pred : PN->blocks())
1139       if (Pred->getFirstInsertionPt() == Pred->end())
1140         return nullptr;
1141 
1142     for (User *U : PN->users()) {
1143       Instruction *UserI = cast<Instruction>(U);
1144 
1145       // If the user is a PHI, inspect its uses recursively.
1146       if (PHINode *UserPN = dyn_cast<PHINode>(UserI)) {
1147         if (PHIsInspected.insert(UserPN).second)
1148           PHIsToSlice.push_back(UserPN);
1149         continue;
1150       }
1151 
1152       // Truncates are always ok.
1153       if (isa<TruncInst>(UserI)) {
1154         PHIUsers.push_back(PHIUsageRecord(PHIId, 0, UserI));
1155         continue;
1156       }
1157 
1158       // Otherwise it must be a lshr which can only be used by one trunc.
1159       if (UserI->getOpcode() != Instruction::LShr ||
1160           !UserI->hasOneUse() || !isa<TruncInst>(UserI->user_back()) ||
1161           !isa<ConstantInt>(UserI->getOperand(1)))
1162         return nullptr;
1163 
1164       // Bail on out of range shifts.
1165       unsigned SizeInBits = UserI->getType()->getScalarSizeInBits();
1166       if (cast<ConstantInt>(UserI->getOperand(1))->getValue().uge(SizeInBits))
1167         return nullptr;
1168 
1169       unsigned Shift = cast<ConstantInt>(UserI->getOperand(1))->getZExtValue();
1170       PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, UserI->user_back()));
1171     }
1172   }
1173 
1174   // If we have no users, they must be all self uses, just nuke the PHI.
1175   if (PHIUsers.empty())
1176     return replaceInstUsesWith(FirstPhi, PoisonValue::get(FirstPhi.getType()));
1177 
1178   // If this phi node is transformable, create new PHIs for all the pieces
1179   // extracted out of it.  First, sort the users by their offset and size.
1180   array_pod_sort(PHIUsers.begin(), PHIUsers.end());
1181 
1182   LLVM_DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n';
1183              for (unsigned I = 1; I != PHIsToSlice.size(); ++I) dbgs()
1184              << "AND USER PHI #" << I << ": " << *PHIsToSlice[I] << '\n');
1185 
1186   // PredValues - This is a temporary used when rewriting PHI nodes.  It is
1187   // hoisted out here to avoid construction/destruction thrashing.
1188   DenseMap<BasicBlock*, Value*> PredValues;
1189 
1190   // ExtractedVals - Each new PHI we introduce is saved here so we don't
1191   // introduce redundant PHIs.
1192   DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
1193 
1194   for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
1195     unsigned PHIId = PHIUsers[UserI].PHIId;
1196     PHINode *PN = PHIsToSlice[PHIId];
1197     unsigned Offset = PHIUsers[UserI].Shift;
1198     Type *Ty = PHIUsers[UserI].Inst->getType();
1199 
1200     PHINode *EltPHI;
1201 
1202     // If we've already lowered a user like this, reuse the previously lowered
1203     // value.
1204     if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) {
1205 
1206       // Otherwise, Create the new PHI node for this user.
1207       EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(),
1208                                PN->getName()+".off"+Twine(Offset), PN);
1209       assert(EltPHI->getType() != PN->getType() &&
1210              "Truncate didn't shrink phi?");
1211 
1212       for (auto Incoming : zip(PN->blocks(), PN->incoming_values())) {
1213         BasicBlock *Pred = std::get<0>(Incoming);
1214         Value *InVal = std::get<1>(Incoming);
1215         Value *&PredVal = PredValues[Pred];
1216 
1217         // If we already have a value for this predecessor, reuse it.
1218         if (PredVal) {
1219           EltPHI->addIncoming(PredVal, Pred);
1220           continue;
1221         }
1222 
1223         // Handle the PHI self-reuse case.
1224         if (InVal == PN) {
1225           PredVal = EltPHI;
1226           EltPHI->addIncoming(PredVal, Pred);
1227           continue;
1228         }
1229 
1230         if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
1231           // If the incoming value was a PHI, and if it was one of the PHIs we
1232           // already rewrote it, just use the lowered value.
1233           if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
1234             PredVal = Res;
1235             EltPHI->addIncoming(PredVal, Pred);
1236             continue;
1237           }
1238         }
1239 
1240         // Otherwise, do an extract in the predecessor.
1241         Builder.SetInsertPoint(Pred->getTerminator());
1242         Value *Res = InVal;
1243         if (Offset)
1244           Res = Builder.CreateLShr(
1245               Res, ConstantInt::get(InVal->getType(), Offset), "extract");
1246         Res = Builder.CreateTrunc(Res, Ty, "extract.t");
1247         PredVal = Res;
1248         EltPHI->addIncoming(Res, Pred);
1249 
1250         // If the incoming value was a PHI, and if it was one of the PHIs we are
1251         // rewriting, we will ultimately delete the code we inserted.  This
1252         // means we need to revisit that PHI to make sure we extract out the
1253         // needed piece.
1254         if (PHINode *OldInVal = dyn_cast<PHINode>(InVal))
1255           if (PHIsInspected.count(OldInVal)) {
1256             unsigned RefPHIId =
1257                 find(PHIsToSlice, OldInVal) - PHIsToSlice.begin();
1258             PHIUsers.push_back(
1259                 PHIUsageRecord(RefPHIId, Offset, cast<Instruction>(Res)));
1260             ++UserE;
1261           }
1262       }
1263       PredValues.clear();
1264 
1265       LLVM_DEBUG(dbgs() << "  Made element PHI for offset " << Offset << ": "
1266                         << *EltPHI << '\n');
1267       ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
1268     }
1269 
1270     // Replace the use of this piece with the PHI node.
1271     replaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
1272   }
1273 
1274   // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
1275   // with poison.
1276   Value *Poison = PoisonValue::get(FirstPhi.getType());
1277   for (PHINode *PHI : drop_begin(PHIsToSlice))
1278     replaceInstUsesWith(*PHI, Poison);
1279   return replaceInstUsesWith(FirstPhi, Poison);
1280 }
1281 
1282 static Value *simplifyUsingControlFlow(InstCombiner &Self, PHINode &PN,
1283                                        const DominatorTree &DT) {
1284   // Simplify the following patterns:
1285   //       if (cond)
1286   //       /       \
1287   //      ...      ...
1288   //       \       /
1289   //    phi [true] [false]
1290   // and
1291   //        switch (cond)
1292   // case v1: /       \ case v2:
1293   //         ...      ...
1294   //          \       /
1295   //       phi [v1] [v2]
1296   // Make sure all inputs are constants.
1297   if (!all_of(PN.operands(), [](Value *V) { return isa<ConstantInt>(V); }))
1298     return nullptr;
1299 
1300   BasicBlock *BB = PN.getParent();
1301   // Do not bother with unreachable instructions.
1302   if (!DT.isReachableFromEntry(BB))
1303     return nullptr;
1304 
1305   // Determine which value the condition of the idom has for which successor.
1306   LLVMContext &Context = PN.getContext();
1307   auto *IDom = DT.getNode(BB)->getIDom()->getBlock();
1308   Value *Cond;
1309   SmallDenseMap<ConstantInt *, BasicBlock *, 8> SuccForValue;
1310   SmallDenseMap<BasicBlock *, unsigned, 8> SuccCount;
1311   auto AddSucc = [&](ConstantInt *C, BasicBlock *Succ) {
1312     SuccForValue[C] = Succ;
1313     ++SuccCount[Succ];
1314   };
1315   if (auto *BI = dyn_cast<BranchInst>(IDom->getTerminator())) {
1316     if (BI->isUnconditional())
1317       return nullptr;
1318 
1319     Cond = BI->getCondition();
1320     AddSucc(ConstantInt::getTrue(Context), BI->getSuccessor(0));
1321     AddSucc(ConstantInt::getFalse(Context), BI->getSuccessor(1));
1322   } else if (auto *SI = dyn_cast<SwitchInst>(IDom->getTerminator())) {
1323     Cond = SI->getCondition();
1324     ++SuccCount[SI->getDefaultDest()];
1325     for (auto Case : SI->cases())
1326       AddSucc(Case.getCaseValue(), Case.getCaseSuccessor());
1327   } else {
1328     return nullptr;
1329   }
1330 
1331   if (Cond->getType() != PN.getType())
1332     return nullptr;
1333 
1334   // Check that edges outgoing from the idom's terminators dominate respective
1335   // inputs of the Phi.
1336   std::optional<bool> Invert;
1337   for (auto Pair : zip(PN.incoming_values(), PN.blocks())) {
1338     auto *Input = cast<ConstantInt>(std::get<0>(Pair));
1339     BasicBlock *Pred = std::get<1>(Pair);
1340     auto IsCorrectInput = [&](ConstantInt *Input) {
1341       // The input needs to be dominated by the corresponding edge of the idom.
1342       // This edge cannot be a multi-edge, as that would imply that multiple
1343       // different condition values follow the same edge.
1344       auto It = SuccForValue.find(Input);
1345       return It != SuccForValue.end() && SuccCount[It->second] == 1 &&
1346              DT.dominates(BasicBlockEdge(IDom, It->second),
1347                           BasicBlockEdge(Pred, BB));
1348     };
1349 
1350     // Depending on the constant, the condition may need to be inverted.
1351     bool NeedsInvert;
1352     if (IsCorrectInput(Input))
1353       NeedsInvert = false;
1354     else if (IsCorrectInput(cast<ConstantInt>(ConstantExpr::getNot(Input))))
1355       NeedsInvert = true;
1356     else
1357       return nullptr;
1358 
1359     // Make sure the inversion requirement is always the same.
1360     if (Invert && *Invert != NeedsInvert)
1361       return nullptr;
1362 
1363     Invert = NeedsInvert;
1364   }
1365 
1366   if (!*Invert)
1367     return Cond;
1368 
1369   // This Phi is actually opposite to branching condition of IDom. We invert
1370   // the condition that will potentially open up some opportunities for
1371   // sinking.
1372   auto InsertPt = BB->getFirstInsertionPt();
1373   if (InsertPt != BB->end()) {
1374     Self.Builder.SetInsertPoint(&*BB, InsertPt);
1375     return Self.Builder.CreateNot(Cond);
1376   }
1377 
1378   return nullptr;
1379 }
1380 
1381 // PHINode simplification
1382 //
1383 Instruction *InstCombinerImpl::visitPHINode(PHINode &PN) {
1384   if (Value *V = simplifyInstruction(&PN, SQ.getWithInstruction(&PN)))
1385     return replaceInstUsesWith(PN, V);
1386 
1387   if (Instruction *Result = foldPHIArgZextsIntoPHI(PN))
1388     return Result;
1389 
1390   if (Instruction *Result = foldPHIArgIntToPtrToPHI(PN))
1391     return Result;
1392 
1393   // If all PHI operands are the same operation, pull them through the PHI,
1394   // reducing code size.
1395   auto *Inst0 = dyn_cast<Instruction>(PN.getIncomingValue(0));
1396   auto *Inst1 = dyn_cast<Instruction>(PN.getIncomingValue(1));
1397   if (Inst0 && Inst1 && Inst0->getOpcode() == Inst1->getOpcode() &&
1398       Inst0->hasOneUser())
1399     if (Instruction *Result = foldPHIArgOpIntoPHI(PN))
1400       return Result;
1401 
1402   // If the incoming values are pointer casts of the same original value,
1403   // replace the phi with a single cast iff we can insert a non-PHI instruction.
1404   if (PN.getType()->isPointerTy() &&
1405       PN.getParent()->getFirstInsertionPt() != PN.getParent()->end()) {
1406     Value *IV0 = PN.getIncomingValue(0);
1407     Value *IV0Stripped = IV0->stripPointerCasts();
1408     // Set to keep track of values known to be equal to IV0Stripped after
1409     // stripping pointer casts.
1410     SmallPtrSet<Value *, 4> CheckedIVs;
1411     CheckedIVs.insert(IV0);
1412     if (IV0 != IV0Stripped &&
1413         all_of(PN.incoming_values(), [&CheckedIVs, IV0Stripped](Value *IV) {
1414           return !CheckedIVs.insert(IV).second ||
1415                  IV0Stripped == IV->stripPointerCasts();
1416         })) {
1417       return CastInst::CreatePointerCast(IV0Stripped, PN.getType());
1418     }
1419   }
1420 
1421   // If this is a trivial cycle in the PHI node graph, remove it.  Basically, if
1422   // this PHI only has a single use (a PHI), and if that PHI only has one use (a
1423   // PHI)... break the cycle.
1424   if (PN.hasOneUse()) {
1425     if (foldIntegerTypedPHI(PN))
1426       return nullptr;
1427 
1428     Instruction *PHIUser = cast<Instruction>(PN.user_back());
1429     if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
1430       SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
1431       PotentiallyDeadPHIs.insert(&PN);
1432       if (isDeadPHICycle(PU, PotentiallyDeadPHIs))
1433         return replaceInstUsesWith(PN, PoisonValue::get(PN.getType()));
1434     }
1435 
1436     // If this phi has a single use, and if that use just computes a value for
1437     // the next iteration of a loop, delete the phi.  This occurs with unused
1438     // induction variables, e.g. "for (int j = 0; ; ++j);".  Detecting this
1439     // common case here is good because the only other things that catch this
1440     // are induction variable analysis (sometimes) and ADCE, which is only run
1441     // late.
1442     if (PHIUser->hasOneUse() &&
1443         (isa<BinaryOperator>(PHIUser) || isa<UnaryOperator>(PHIUser) ||
1444          isa<GetElementPtrInst>(PHIUser)) &&
1445         PHIUser->user_back() == &PN) {
1446       return replaceInstUsesWith(PN, PoisonValue::get(PN.getType()));
1447     }
1448   }
1449 
1450   // When a PHI is used only to be compared with zero, it is safe to replace
1451   // an incoming value proved as known nonzero with any non-zero constant.
1452   // For example, in the code below, the incoming value %v can be replaced
1453   // with any non-zero constant based on the fact that the PHI is only used to
1454   // be compared with zero and %v is a known non-zero value:
1455   // %v = select %cond, 1, 2
1456   // %p = phi [%v, BB] ...
1457   //      icmp eq, %p, 0
1458   // FIXME: To be simple, handle only integer type for now.
1459   // This handles a small number of uses to keep the complexity down, and an
1460   // icmp(or(phi)) can equally be replaced with any non-zero constant as the
1461   // "or" will only add bits.
1462   if (!PN.hasNUsesOrMore(3)) {
1463     SmallVector<Instruction *> DropPoisonFlags;
1464     bool AllUsesOfPhiEndsInCmp = all_of(PN.users(), [&](User *U) {
1465       auto *CmpInst = dyn_cast<ICmpInst>(U);
1466       if (!CmpInst) {
1467         // This is always correct as OR only add bits and we are checking
1468         // against 0.
1469         if (U->hasOneUse() && match(U, m_c_Or(m_Specific(&PN), m_Value()))) {
1470           DropPoisonFlags.push_back(cast<Instruction>(U));
1471           CmpInst = dyn_cast<ICmpInst>(U->user_back());
1472         }
1473       }
1474       if (!CmpInst || !isa<IntegerType>(PN.getType()) ||
1475           !CmpInst->isEquality() || !match(CmpInst->getOperand(1), m_Zero())) {
1476         return false;
1477       }
1478       return true;
1479     });
1480     // All uses of PHI results in a compare with zero.
1481     if (AllUsesOfPhiEndsInCmp) {
1482       ConstantInt *NonZeroConst = nullptr;
1483       bool MadeChange = false;
1484       for (unsigned I = 0, E = PN.getNumIncomingValues(); I != E; ++I) {
1485         Instruction *CtxI = PN.getIncomingBlock(I)->getTerminator();
1486         Value *VA = PN.getIncomingValue(I);
1487         if (isKnownNonZero(VA, DL, 0, &AC, CtxI, &DT)) {
1488           if (!NonZeroConst)
1489             NonZeroConst = getAnyNonZeroConstInt(PN);
1490           if (NonZeroConst != VA) {
1491             replaceOperand(PN, I, NonZeroConst);
1492             // The "disjoint" flag may no longer hold after the transform.
1493             for (Instruction *I : DropPoisonFlags)
1494               I->dropPoisonGeneratingFlags();
1495             MadeChange = true;
1496           }
1497         }
1498       }
1499       if (MadeChange)
1500         return &PN;
1501     }
1502   }
1503 
1504   // We sometimes end up with phi cycles that non-obviously end up being the
1505   // same value, for example:
1506   //   z = some value; x = phi (y, z); y = phi (x, z)
1507   // where the phi nodes don't necessarily need to be in the same block.  Do a
1508   // quick check to see if the PHI node only contains a single non-phi value, if
1509   // so, scan to see if the phi cycle is actually equal to that value. If the
1510   // phi has no non-phi values then allow the "NonPhiInVal" to be set later if
1511   // one of the phis itself does not have a single input.
1512   {
1513     unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues();
1514     // Scan for the first non-phi operand.
1515     while (InValNo != NumIncomingVals &&
1516            isa<PHINode>(PN.getIncomingValue(InValNo)))
1517       ++InValNo;
1518 
1519     Value *NonPhiInVal =
1520         InValNo != NumIncomingVals ? PN.getIncomingValue(InValNo) : nullptr;
1521 
1522     // Scan the rest of the operands to see if there are any conflicts, if so
1523     // there is no need to recursively scan other phis.
1524     if (NonPhiInVal)
1525       for (++InValNo; InValNo != NumIncomingVals; ++InValNo) {
1526         Value *OpVal = PN.getIncomingValue(InValNo);
1527         if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
1528           break;
1529       }
1530 
1531     // If we scanned over all operands, then we have one unique value plus
1532     // phi values.  Scan PHI nodes to see if they all merge in each other or
1533     // the value.
1534     if (InValNo == NumIncomingVals) {
1535       SmallPtrSet<PHINode *, 16> ValueEqualPHIs;
1536       if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
1537         return replaceInstUsesWith(PN, NonPhiInVal);
1538     }
1539   }
1540 
1541   // If there are multiple PHIs, sort their operands so that they all list
1542   // the blocks in the same order. This will help identical PHIs be eliminated
1543   // by other passes. Other passes shouldn't depend on this for correctness
1544   // however.
1545   auto Res = PredOrder.try_emplace(PN.getParent());
1546   if (!Res.second) {
1547     const auto &Preds = Res.first->second;
1548     for (unsigned I = 0, E = PN.getNumIncomingValues(); I != E; ++I) {
1549       BasicBlock *BBA = PN.getIncomingBlock(I);
1550       BasicBlock *BBB = Preds[I];
1551       if (BBA != BBB) {
1552         Value *VA = PN.getIncomingValue(I);
1553         unsigned J = PN.getBasicBlockIndex(BBB);
1554         Value *VB = PN.getIncomingValue(J);
1555         PN.setIncomingBlock(I, BBB);
1556         PN.setIncomingValue(I, VB);
1557         PN.setIncomingBlock(J, BBA);
1558         PN.setIncomingValue(J, VA);
1559         // NOTE: Instcombine normally would want us to "return &PN" if we
1560         // modified any of the operands of an instruction.  However, since we
1561         // aren't adding or removing uses (just rearranging them) we don't do
1562         // this in this case.
1563       }
1564     }
1565   } else {
1566     // Remember the block order of the first encountered phi node.
1567     append_range(Res.first->second, PN.blocks());
1568   }
1569 
1570   // Is there an identical PHI node in this basic block?
1571   for (PHINode &IdenticalPN : PN.getParent()->phis()) {
1572     // Ignore the PHI node itself.
1573     if (&IdenticalPN == &PN)
1574       continue;
1575     // Note that even though we've just canonicalized this PHI, due to the
1576     // worklist visitation order, there are no guarantess that *every* PHI
1577     // has been canonicalized, so we can't just compare operands ranges.
1578     if (!PN.isIdenticalToWhenDefined(&IdenticalPN))
1579       continue;
1580     // Just use that PHI instead then.
1581     ++NumPHICSEs;
1582     return replaceInstUsesWith(PN, &IdenticalPN);
1583   }
1584 
1585   // If this is an integer PHI and we know that it has an illegal type, see if
1586   // it is only used by trunc or trunc(lshr) operations.  If so, we split the
1587   // PHI into the various pieces being extracted.  This sort of thing is
1588   // introduced when SROA promotes an aggregate to a single large integer type.
1589   if (PN.getType()->isIntegerTy() &&
1590       !DL.isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
1591     if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
1592       return Res;
1593 
1594   // Ultimately, try to replace this Phi with a dominating condition.
1595   if (auto *V = simplifyUsingControlFlow(*this, PN, DT))
1596     return replaceInstUsesWith(PN, V);
1597 
1598   return nullptr;
1599 }
1600