1 //===- InstCombineShifts.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitShl, visitLShr, and visitAShr functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/Analysis/ConstantFolding.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/IR/PatternMatch.h"
18 #include "llvm/Transforms/InstCombine/InstCombiner.h"
19 using namespace llvm;
20 using namespace PatternMatch;
21 
22 #define DEBUG_TYPE "instcombine"
23 
24 bool canTryToConstantAddTwoShiftAmounts(Value *Sh0, Value *ShAmt0, Value *Sh1,
25                                         Value *ShAmt1) {
26   // We have two shift amounts from two different shifts. The types of those
27   // shift amounts may not match. If that's the case let's bailout now..
28   if (ShAmt0->getType() != ShAmt1->getType())
29     return false;
30 
31   // As input, we have the following pattern:
32   //   Sh0 (Sh1 X, Q), K
33   // We want to rewrite that as:
34   //   Sh x, (Q+K)  iff (Q+K) u< bitwidth(x)
35   // While we know that originally (Q+K) would not overflow
36   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
37   // shift amounts. so it may now overflow in smaller bitwidth.
38   // To ensure that does not happen, we need to ensure that the total maximal
39   // shift amount is still representable in that smaller bit width.
40   unsigned MaximalPossibleTotalShiftAmount =
41       (Sh0->getType()->getScalarSizeInBits() - 1) +
42       (Sh1->getType()->getScalarSizeInBits() - 1);
43   APInt MaximalRepresentableShiftAmount =
44       APInt::getAllOnes(ShAmt0->getType()->getScalarSizeInBits());
45   return MaximalRepresentableShiftAmount.uge(MaximalPossibleTotalShiftAmount);
46 }
47 
48 // Given pattern:
49 //   (x shiftopcode Q) shiftopcode K
50 // we should rewrite it as
51 //   x shiftopcode (Q+K)  iff (Q+K) u< bitwidth(x) and
52 //
53 // This is valid for any shift, but they must be identical, and we must be
54 // careful in case we have (zext(Q)+zext(K)) and look past extensions,
55 // (Q+K) must not overflow or else (Q+K) u< bitwidth(x) is bogus.
56 //
57 // AnalyzeForSignBitExtraction indicates that we will only analyze whether this
58 // pattern has any 2 right-shifts that sum to 1 less than original bit width.
59 Value *InstCombinerImpl::reassociateShiftAmtsOfTwoSameDirectionShifts(
60     BinaryOperator *Sh0, const SimplifyQuery &SQ,
61     bool AnalyzeForSignBitExtraction) {
62   // Look for a shift of some instruction, ignore zext of shift amount if any.
63   Instruction *Sh0Op0;
64   Value *ShAmt0;
65   if (!match(Sh0,
66              m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0)))))
67     return nullptr;
68 
69   // If there is a truncation between the two shifts, we must make note of it
70   // and look through it. The truncation imposes additional constraints on the
71   // transform.
72   Instruction *Sh1;
73   Value *Trunc = nullptr;
74   match(Sh0Op0,
75         m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)),
76                     m_Instruction(Sh1)));
77 
78   // Inner shift: (x shiftopcode ShAmt1)
79   // Like with other shift, ignore zext of shift amount if any.
80   Value *X, *ShAmt1;
81   if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1)))))
82     return nullptr;
83 
84   // Verify that it would be safe to try to add those two shift amounts.
85   if (!canTryToConstantAddTwoShiftAmounts(Sh0, ShAmt0, Sh1, ShAmt1))
86     return nullptr;
87 
88   // We are only looking for signbit extraction if we have two right shifts.
89   bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) &&
90                            match(Sh1, m_Shr(m_Value(), m_Value()));
91   // ... and if it's not two right-shifts, we know the answer already.
92   if (AnalyzeForSignBitExtraction && !HadTwoRightShifts)
93     return nullptr;
94 
95   // The shift opcodes must be identical, unless we are just checking whether
96   // this pattern can be interpreted as a sign-bit-extraction.
97   Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode();
98   bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode();
99   if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction)
100     return nullptr;
101 
102   // If we saw truncation, we'll need to produce extra instruction,
103   // and for that one of the operands of the shift must be one-use,
104   // unless of course we don't actually plan to produce any instructions here.
105   if (Trunc && !AnalyzeForSignBitExtraction &&
106       !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
107     return nullptr;
108 
109   // Can we fold (ShAmt0+ShAmt1) ?
110   auto *NewShAmt = dyn_cast_or_null<Constant>(
111       SimplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false,
112                       SQ.getWithInstruction(Sh0)));
113   if (!NewShAmt)
114     return nullptr; // Did not simplify.
115   unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits();
116   unsigned XBitWidth = X->getType()->getScalarSizeInBits();
117   // Is the new shift amount smaller than the bit width of inner/new shift?
118   if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
119                                           APInt(NewShAmtBitWidth, XBitWidth))))
120     return nullptr; // FIXME: could perform constant-folding.
121 
122   // If there was a truncation, and we have a right-shift, we can only fold if
123   // we are left with the original sign bit. Likewise, if we were just checking
124   // that this is a sighbit extraction, this is the place to check it.
125   // FIXME: zero shift amount is also legal here, but we can't *easily* check
126   // more than one predicate so it's not really worth it.
127   if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) {
128     // If it's not a sign bit extraction, then we're done.
129     if (!match(NewShAmt,
130                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
131                                   APInt(NewShAmtBitWidth, XBitWidth - 1))))
132       return nullptr;
133     // If it is, and that was the question, return the base value.
134     if (AnalyzeForSignBitExtraction)
135       return X;
136   }
137 
138   assert(IdenticalShOpcodes && "Should not get here with different shifts.");
139 
140   // All good, we can do this fold.
141   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, X->getType());
142 
143   BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt);
144 
145   // The flags can only be propagated if there wasn't a trunc.
146   if (!Trunc) {
147     // If the pattern did not involve trunc, and both of the original shifts
148     // had the same flag set, preserve the flag.
149     if (ShiftOpcode == Instruction::BinaryOps::Shl) {
150       NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() &&
151                                      Sh1->hasNoUnsignedWrap());
152       NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() &&
153                                    Sh1->hasNoSignedWrap());
154     } else {
155       NewShift->setIsExact(Sh0->isExact() && Sh1->isExact());
156     }
157   }
158 
159   Instruction *Ret = NewShift;
160   if (Trunc) {
161     Builder.Insert(NewShift);
162     Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType());
163   }
164 
165   return Ret;
166 }
167 
168 // If we have some pattern that leaves only some low bits set, and then performs
169 // left-shift of those bits, if none of the bits that are left after the final
170 // shift are modified by the mask, we can omit the mask.
171 //
172 // There are many variants to this pattern:
173 //   a)  (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt
174 //   b)  (x & (~(-1 << MaskShAmt))) << ShiftShAmt
175 //   c)  (x & (-1 l>> MaskShAmt)) << ShiftShAmt
176 //   d)  (x & ((-1 << MaskShAmt) l>> MaskShAmt)) << ShiftShAmt
177 //   e)  ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt
178 //   f)  ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt
179 // All these patterns can be simplified to just:
180 //   x << ShiftShAmt
181 // iff:
182 //   a,b)     (MaskShAmt+ShiftShAmt) u>= bitwidth(x)
183 //   c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt)
184 static Instruction *
185 dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift,
186                                      const SimplifyQuery &Q,
187                                      InstCombiner::BuilderTy &Builder) {
188   assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl &&
189          "The input must be 'shl'!");
190 
191   Value *Masked, *ShiftShAmt;
192   match(OuterShift,
193         m_Shift(m_Value(Masked), m_ZExtOrSelf(m_Value(ShiftShAmt))));
194 
195   // *If* there is a truncation between an outer shift and a possibly-mask,
196   // then said truncation *must* be one-use, else we can't perform the fold.
197   Value *Trunc;
198   if (match(Masked, m_CombineAnd(m_Trunc(m_Value(Masked)), m_Value(Trunc))) &&
199       !Trunc->hasOneUse())
200     return nullptr;
201 
202   Type *NarrowestTy = OuterShift->getType();
203   Type *WidestTy = Masked->getType();
204   bool HadTrunc = WidestTy != NarrowestTy;
205 
206   // The mask must be computed in a type twice as wide to ensure
207   // that no bits are lost if the sum-of-shifts is wider than the base type.
208   Type *ExtendedTy = WidestTy->getExtendedType();
209 
210   Value *MaskShAmt;
211 
212   // ((1 << MaskShAmt) - 1)
213   auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes());
214   // (~(-1 << maskNbits))
215   auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes());
216   // (-1 l>> MaskShAmt)
217   auto MaskC = m_LShr(m_AllOnes(), m_Value(MaskShAmt));
218   // ((-1 << MaskShAmt) l>> MaskShAmt)
219   auto MaskD =
220       m_LShr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt));
221 
222   Value *X;
223   Constant *NewMask;
224 
225   if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) {
226     // Peek through an optional zext of the shift amount.
227     match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
228 
229     // Verify that it would be safe to try to add those two shift amounts.
230     if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
231                                             MaskShAmt))
232       return nullptr;
233 
234     // Can we simplify (MaskShAmt+ShiftShAmt) ?
235     auto *SumOfShAmts = dyn_cast_or_null<Constant>(SimplifyAddInst(
236         MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
237     if (!SumOfShAmts)
238       return nullptr; // Did not simplify.
239     // In this pattern SumOfShAmts correlates with the number of low bits
240     // that shall remain in the root value (OuterShift).
241 
242     // An extend of an undef value becomes zero because the high bits are never
243     // completely unknown. Replace the `undef` shift amounts with final
244     // shift bitwidth to ensure that the value remains undef when creating the
245     // subsequent shift op.
246     SumOfShAmts = Constant::replaceUndefsWith(
247         SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(),
248                                       ExtendedTy->getScalarSizeInBits()));
249     auto *ExtendedSumOfShAmts = ConstantExpr::getZExt(SumOfShAmts, ExtendedTy);
250     // And compute the mask as usual: ~(-1 << (SumOfShAmts))
251     auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
252     auto *ExtendedInvertedMask =
253         ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts);
254     NewMask = ConstantExpr::getNot(ExtendedInvertedMask);
255   } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) ||
256              match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)),
257                                  m_Deferred(MaskShAmt)))) {
258     // Peek through an optional zext of the shift amount.
259     match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
260 
261     // Verify that it would be safe to try to add those two shift amounts.
262     if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
263                                             MaskShAmt))
264       return nullptr;
265 
266     // Can we simplify (ShiftShAmt-MaskShAmt) ?
267     auto *ShAmtsDiff = dyn_cast_or_null<Constant>(SimplifySubInst(
268         ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
269     if (!ShAmtsDiff)
270       return nullptr; // Did not simplify.
271     // In this pattern ShAmtsDiff correlates with the number of high bits that
272     // shall be unset in the root value (OuterShift).
273 
274     // An extend of an undef value becomes zero because the high bits are never
275     // completely unknown. Replace the `undef` shift amounts with negated
276     // bitwidth of innermost shift to ensure that the value remains undef when
277     // creating the subsequent shift op.
278     unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits();
279     ShAmtsDiff = Constant::replaceUndefsWith(
280         ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(),
281                                      -WidestTyBitWidth));
282     auto *ExtendedNumHighBitsToClear = ConstantExpr::getZExt(
283         ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(),
284                                               WidestTyBitWidth,
285                                               /*isSigned=*/false),
286                              ShAmtsDiff),
287         ExtendedTy);
288     // And compute the mask as usual: (-1 l>> (NumHighBitsToClear))
289     auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
290     NewMask =
291         ConstantExpr::getLShr(ExtendedAllOnes, ExtendedNumHighBitsToClear);
292   } else
293     return nullptr; // Don't know anything about this pattern.
294 
295   NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy);
296 
297   // Does this mask has any unset bits? If not then we can just not apply it.
298   bool NeedMask = !match(NewMask, m_AllOnes());
299 
300   // If we need to apply a mask, there are several more restrictions we have.
301   if (NeedMask) {
302     // The old masking instruction must go away.
303     if (!Masked->hasOneUse())
304       return nullptr;
305     // The original "masking" instruction must not have been`ashr`.
306     if (match(Masked, m_AShr(m_Value(), m_Value())))
307       return nullptr;
308   }
309 
310   // If we need to apply truncation, let's do it first, since we can.
311   // We have already ensured that the old truncation will go away.
312   if (HadTrunc)
313     X = Builder.CreateTrunc(X, NarrowestTy);
314 
315   // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits.
316   // We didn't change the Type of this outermost shift, so we can just do it.
317   auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X,
318                                           OuterShift->getOperand(1));
319   if (!NeedMask)
320     return NewShift;
321 
322   Builder.Insert(NewShift);
323   return BinaryOperator::Create(Instruction::And, NewShift, NewMask);
324 }
325 
326 /// If we have a shift-by-constant of a bitwise logic op that itself has a
327 /// shift-by-constant operand with identical opcode, we may be able to convert
328 /// that into 2 independent shifts followed by the logic op. This eliminates a
329 /// a use of an intermediate value (reduces dependency chain).
330 static Instruction *foldShiftOfShiftedLogic(BinaryOperator &I,
331                                             InstCombiner::BuilderTy &Builder) {
332   assert(I.isShift() && "Expected a shift as input");
333   auto *LogicInst = dyn_cast<BinaryOperator>(I.getOperand(0));
334   if (!LogicInst || !LogicInst->isBitwiseLogicOp() || !LogicInst->hasOneUse())
335     return nullptr;
336 
337   Constant *C0, *C1;
338   if (!match(I.getOperand(1), m_Constant(C1)))
339     return nullptr;
340 
341   Instruction::BinaryOps ShiftOpcode = I.getOpcode();
342   Type *Ty = I.getType();
343 
344   // Find a matching one-use shift by constant. The fold is not valid if the sum
345   // of the shift values equals or exceeds bitwidth.
346   // TODO: Remove the one-use check if the other logic operand (Y) is constant.
347   Value *X, *Y;
348   auto matchFirstShift = [&](Value *V) {
349     APInt Threshold(Ty->getScalarSizeInBits(), Ty->getScalarSizeInBits());
350     return match(V, m_BinOp(ShiftOpcode, m_Value(), m_Value())) &&
351            match(V, m_OneUse(m_Shift(m_Value(X), m_Constant(C0)))) &&
352            match(ConstantExpr::getAdd(C0, C1),
353                  m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold));
354   };
355 
356   // Logic ops are commutative, so check each operand for a match.
357   if (matchFirstShift(LogicInst->getOperand(0)))
358     Y = LogicInst->getOperand(1);
359   else if (matchFirstShift(LogicInst->getOperand(1)))
360     Y = LogicInst->getOperand(0);
361   else
362     return nullptr;
363 
364   // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
365   Constant *ShiftSumC = ConstantExpr::getAdd(C0, C1);
366   Value *NewShift1 = Builder.CreateBinOp(ShiftOpcode, X, ShiftSumC);
367   Value *NewShift2 = Builder.CreateBinOp(ShiftOpcode, Y, I.getOperand(1));
368   return BinaryOperator::Create(LogicInst->getOpcode(), NewShift1, NewShift2);
369 }
370 
371 Instruction *InstCombinerImpl::commonShiftTransforms(BinaryOperator &I) {
372   if (Instruction *Phi = foldBinopWithPhiOperands(I))
373     return Phi;
374 
375   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
376   assert(Op0->getType() == Op1->getType());
377 
378   // If the shift amount is a one-use `sext`, we can demote it to `zext`.
379   Value *Y;
380   if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) {
381     Value *NewExt = Builder.CreateZExt(Y, I.getType(), Op1->getName());
382     return BinaryOperator::Create(I.getOpcode(), Op0, NewExt);
383   }
384 
385   // See if we can fold away this shift.
386   if (SimplifyDemandedInstructionBits(I))
387     return &I;
388 
389   // Try to fold constant and into select arguments.
390   if (isa<Constant>(Op0))
391     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
392       if (Instruction *R = FoldOpIntoSelect(I, SI))
393         return R;
394 
395   if (Constant *CUI = dyn_cast<Constant>(Op1))
396     if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
397       return Res;
398 
399   if (auto *NewShift = cast_or_null<Instruction>(
400           reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ)))
401     return NewShift;
402 
403   // (C1 shift (A add C2)) -> (C1 shift C2) shift A)
404   // iff A and C2 are both positive.
405   Value *A;
406   Constant *C;
407   if (match(Op0, m_Constant()) && match(Op1, m_Add(m_Value(A), m_Constant(C))))
408     if (isKnownNonNegative(A, DL, 0, &AC, &I, &DT) &&
409         isKnownNonNegative(C, DL, 0, &AC, &I, &DT))
410       return BinaryOperator::Create(
411           I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), Op0, C), A);
412 
413   // X shift (A srem C) -> X shift (A and (C - 1)) iff C is a power of 2.
414   // Because shifts by negative values (which could occur if A were negative)
415   // are undefined.
416   if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Constant(C))) &&
417       match(C, m_Power2())) {
418     // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
419     // demand the sign bit (and many others) here??
420     Constant *Mask = ConstantExpr::getSub(C, ConstantInt::get(I.getType(), 1));
421     Value *Rem = Builder.CreateAnd(A, Mask, Op1->getName());
422     return replaceOperand(I, 1, Rem);
423   }
424 
425   if (Instruction *Logic = foldShiftOfShiftedLogic(I, Builder))
426     return Logic;
427 
428   return nullptr;
429 }
430 
431 /// Return true if we can simplify two logical (either left or right) shifts
432 /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
433 static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl,
434                                     Instruction *InnerShift,
435                                     InstCombinerImpl &IC, Instruction *CxtI) {
436   assert(InnerShift->isLogicalShift() && "Unexpected instruction type");
437 
438   // We need constant scalar or constant splat shifts.
439   const APInt *InnerShiftConst;
440   if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst)))
441     return false;
442 
443   // Two logical shifts in the same direction:
444   // shl (shl X, C1), C2 -->  shl X, C1 + C2
445   // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
446   bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
447   if (IsInnerShl == IsOuterShl)
448     return true;
449 
450   // Equal shift amounts in opposite directions become bitwise 'and':
451   // lshr (shl X, C), C --> and X, C'
452   // shl (lshr X, C), C --> and X, C'
453   if (*InnerShiftConst == OuterShAmt)
454     return true;
455 
456   // If the 2nd shift is bigger than the 1st, we can fold:
457   // lshr (shl X, C1), C2 -->  and (shl X, C1 - C2), C3
458   // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
459   // but it isn't profitable unless we know the and'd out bits are already zero.
460   // Also, check that the inner shift is valid (less than the type width) or
461   // we'll crash trying to produce the bit mask for the 'and'.
462   unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits();
463   if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) {
464     unsigned InnerShAmt = InnerShiftConst->getZExtValue();
465     unsigned MaskShift =
466         IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
467     APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift;
468     if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI))
469       return true;
470   }
471 
472   return false;
473 }
474 
475 /// See if we can compute the specified value, but shifted logically to the left
476 /// or right by some number of bits. This should return true if the expression
477 /// can be computed for the same cost as the current expression tree. This is
478 /// used to eliminate extraneous shifting from things like:
479 ///      %C = shl i128 %A, 64
480 ///      %D = shl i128 %B, 96
481 ///      %E = or i128 %C, %D
482 ///      %F = lshr i128 %E, 64
483 /// where the client will ask if E can be computed shifted right by 64-bits. If
484 /// this succeeds, getShiftedValue() will be called to produce the value.
485 static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift,
486                                InstCombinerImpl &IC, Instruction *CxtI) {
487   // We can always evaluate constants shifted.
488   if (isa<Constant>(V))
489     return true;
490 
491   Instruction *I = dyn_cast<Instruction>(V);
492   if (!I) return false;
493 
494   // We can't mutate something that has multiple uses: doing so would
495   // require duplicating the instruction in general, which isn't profitable.
496   if (!I->hasOneUse()) return false;
497 
498   switch (I->getOpcode()) {
499   default: return false;
500   case Instruction::And:
501   case Instruction::Or:
502   case Instruction::Xor:
503     // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
504     return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) &&
505            canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I);
506 
507   case Instruction::Shl:
508   case Instruction::LShr:
509     return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI);
510 
511   case Instruction::Select: {
512     SelectInst *SI = cast<SelectInst>(I);
513     Value *TrueVal = SI->getTrueValue();
514     Value *FalseVal = SI->getFalseValue();
515     return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) &&
516            canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI);
517   }
518   case Instruction::PHI: {
519     // We can change a phi if we can change all operands.  Note that we never
520     // get into trouble with cyclic PHIs here because we only consider
521     // instructions with a single use.
522     PHINode *PN = cast<PHINode>(I);
523     for (Value *IncValue : PN->incoming_values())
524       if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN))
525         return false;
526     return true;
527   }
528   }
529 }
530 
531 /// Fold OuterShift (InnerShift X, C1), C2.
532 /// See canEvaluateShiftedShift() for the constraints on these instructions.
533 static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt,
534                                bool IsOuterShl,
535                                InstCombiner::BuilderTy &Builder) {
536   bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
537   Type *ShType = InnerShift->getType();
538   unsigned TypeWidth = ShType->getScalarSizeInBits();
539 
540   // We only accept shifts-by-a-constant in canEvaluateShifted().
541   const APInt *C1;
542   match(InnerShift->getOperand(1), m_APInt(C1));
543   unsigned InnerShAmt = C1->getZExtValue();
544 
545   // Change the shift amount and clear the appropriate IR flags.
546   auto NewInnerShift = [&](unsigned ShAmt) {
547     InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt));
548     if (IsInnerShl) {
549       InnerShift->setHasNoUnsignedWrap(false);
550       InnerShift->setHasNoSignedWrap(false);
551     } else {
552       InnerShift->setIsExact(false);
553     }
554     return InnerShift;
555   };
556 
557   // Two logical shifts in the same direction:
558   // shl (shl X, C1), C2 -->  shl X, C1 + C2
559   // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
560   if (IsInnerShl == IsOuterShl) {
561     // If this is an oversized composite shift, then unsigned shifts get 0.
562     if (InnerShAmt + OuterShAmt >= TypeWidth)
563       return Constant::getNullValue(ShType);
564 
565     return NewInnerShift(InnerShAmt + OuterShAmt);
566   }
567 
568   // Equal shift amounts in opposite directions become bitwise 'and':
569   // lshr (shl X, C), C --> and X, C'
570   // shl (lshr X, C), C --> and X, C'
571   if (InnerShAmt == OuterShAmt) {
572     APInt Mask = IsInnerShl
573                      ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt)
574                      : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt);
575     Value *And = Builder.CreateAnd(InnerShift->getOperand(0),
576                                    ConstantInt::get(ShType, Mask));
577     if (auto *AndI = dyn_cast<Instruction>(And)) {
578       AndI->moveBefore(InnerShift);
579       AndI->takeName(InnerShift);
580     }
581     return And;
582   }
583 
584   assert(InnerShAmt > OuterShAmt &&
585          "Unexpected opposite direction logical shift pair");
586 
587   // In general, we would need an 'and' for this transform, but
588   // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
589   // lshr (shl X, C1), C2 -->  shl X, C1 - C2
590   // shl (lshr X, C1), C2 --> lshr X, C1 - C2
591   return NewInnerShift(InnerShAmt - OuterShAmt);
592 }
593 
594 /// When canEvaluateShifted() returns true for an expression, this function
595 /// inserts the new computation that produces the shifted value.
596 static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
597                               InstCombinerImpl &IC, const DataLayout &DL) {
598   // We can always evaluate constants shifted.
599   if (Constant *C = dyn_cast<Constant>(V)) {
600     if (isLeftShift)
601       return IC.Builder.CreateShl(C, NumBits);
602     else
603       return IC.Builder.CreateLShr(C, NumBits);
604   }
605 
606   Instruction *I = cast<Instruction>(V);
607   IC.addToWorklist(I);
608 
609   switch (I->getOpcode()) {
610   default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
611   case Instruction::And:
612   case Instruction::Or:
613   case Instruction::Xor:
614     // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
615     I->setOperand(
616         0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
617     I->setOperand(
618         1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
619     return I;
620 
621   case Instruction::Shl:
622   case Instruction::LShr:
623     return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift,
624                             IC.Builder);
625 
626   case Instruction::Select:
627     I->setOperand(
628         1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
629     I->setOperand(
630         2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
631     return I;
632   case Instruction::PHI: {
633     // We can change a phi if we can change all operands.  Note that we never
634     // get into trouble with cyclic PHIs here because we only consider
635     // instructions with a single use.
636     PHINode *PN = cast<PHINode>(I);
637     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
638       PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits,
639                                               isLeftShift, IC, DL));
640     return PN;
641   }
642   }
643 }
644 
645 // If this is a bitwise operator or add with a constant RHS we might be able
646 // to pull it through a shift.
647 static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift,
648                                          BinaryOperator *BO) {
649   switch (BO->getOpcode()) {
650   default:
651     return false; // Do not perform transform!
652   case Instruction::Add:
653     return Shift.getOpcode() == Instruction::Shl;
654   case Instruction::Or:
655   case Instruction::And:
656     return true;
657   case Instruction::Xor:
658     // Do not change a 'not' of logical shift because that would create a normal
659     // 'xor'. The 'not' is likely better for analysis, SCEV, and codegen.
660     return !(Shift.isLogicalShift() && match(BO, m_Not(m_Value())));
661   }
662 }
663 
664 Instruction *InstCombinerImpl::FoldShiftByConstant(Value *Op0, Constant *Op1,
665                                                    BinaryOperator &I) {
666   const APInt *Op1C;
667   if (!match(Op1, m_APInt(Op1C)))
668     return nullptr;
669 
670   // See if we can propagate this shift into the input, this covers the trivial
671   // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
672   bool IsLeftShift = I.getOpcode() == Instruction::Shl;
673   if (I.getOpcode() != Instruction::AShr &&
674       canEvaluateShifted(Op0, Op1C->getZExtValue(), IsLeftShift, *this, &I)) {
675     LLVM_DEBUG(
676         dbgs() << "ICE: GetShiftedValue propagating shift through expression"
677                   " to eliminate shift:\n  IN: "
678                << *Op0 << "\n  SH: " << I << "\n");
679 
680     return replaceInstUsesWith(
681         I, getShiftedValue(Op0, Op1C->getZExtValue(), IsLeftShift, *this, DL));
682   }
683 
684   // See if we can simplify any instructions used by the instruction whose sole
685   // purpose is to compute bits we don't care about.
686   Type *Ty = I.getType();
687   unsigned TypeBits = Ty->getScalarSizeInBits();
688   assert(!Op1C->uge(TypeBits) &&
689          "Shift over the type width should have been removed already");
690   (void)TypeBits;
691 
692   if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I))
693     return FoldedShift;
694 
695   if (!Op0->hasOneUse())
696     return nullptr;
697 
698   if (auto *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
699     // If the operand is a bitwise operator with a constant RHS, and the
700     // shift is the only use, we can pull it out of the shift.
701     const APInt *Op0C;
702     if (match(Op0BO->getOperand(1), m_APInt(Op0C))) {
703       if (canShiftBinOpWithConstantRHS(I, Op0BO)) {
704         Constant *NewRHS = ConstantExpr::get(
705             I.getOpcode(), cast<Constant>(Op0BO->getOperand(1)), Op1);
706 
707         Value *NewShift =
708             Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
709         NewShift->takeName(Op0BO);
710 
711         return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, NewRHS);
712       }
713     }
714   }
715 
716   // If we have a select that conditionally executes some binary operator,
717   // see if we can pull it the select and operator through the shift.
718   //
719   // For example, turning:
720   //   shl (select C, (add X, C1), X), C2
721   // Into:
722   //   Y = shl X, C2
723   //   select C, (add Y, C1 << C2), Y
724   Value *Cond;
725   BinaryOperator *TBO;
726   Value *FalseVal;
727   if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)),
728                           m_Value(FalseVal)))) {
729     const APInt *C;
730     if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal &&
731         match(TBO->getOperand(1), m_APInt(C)) &&
732         canShiftBinOpWithConstantRHS(I, TBO)) {
733       Constant *NewRHS = ConstantExpr::get(
734           I.getOpcode(), cast<Constant>(TBO->getOperand(1)), Op1);
735 
736       Value *NewShift = Builder.CreateBinOp(I.getOpcode(), FalseVal, Op1);
737       Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift, NewRHS);
738       return SelectInst::Create(Cond, NewOp, NewShift);
739     }
740   }
741 
742   BinaryOperator *FBO;
743   Value *TrueVal;
744   if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal),
745                           m_OneUse(m_BinOp(FBO))))) {
746     const APInt *C;
747     if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal &&
748         match(FBO->getOperand(1), m_APInt(C)) &&
749         canShiftBinOpWithConstantRHS(I, FBO)) {
750       Constant *NewRHS = ConstantExpr::get(
751           I.getOpcode(), cast<Constant>(FBO->getOperand(1)), Op1);
752 
753       Value *NewShift = Builder.CreateBinOp(I.getOpcode(), TrueVal, Op1);
754       Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift, NewRHS);
755       return SelectInst::Create(Cond, NewShift, NewOp);
756     }
757   }
758 
759   return nullptr;
760 }
761 
762 Instruction *InstCombinerImpl::visitShl(BinaryOperator &I) {
763   const SimplifyQuery Q = SQ.getWithInstruction(&I);
764 
765   if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
766                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q))
767     return replaceInstUsesWith(I, V);
768 
769   if (Instruction *X = foldVectorBinop(I))
770     return X;
771 
772   if (Instruction *V = commonShiftTransforms(I))
773     return V;
774 
775   if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder))
776     return V;
777 
778   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
779   Type *Ty = I.getType();
780   unsigned BitWidth = Ty->getScalarSizeInBits();
781 
782   const APInt *C;
783   if (match(Op1, m_APInt(C))) {
784     unsigned ShAmtC = C->getZExtValue();
785 
786     // shl (zext X), C --> zext (shl X, C)
787     // This is only valid if X would have zeros shifted out.
788     Value *X;
789     if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
790       unsigned SrcWidth = X->getType()->getScalarSizeInBits();
791       if (ShAmtC < SrcWidth &&
792           MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmtC), 0, &I))
793         return new ZExtInst(Builder.CreateShl(X, ShAmtC), Ty);
794     }
795 
796     // (X >> C) << C --> X & (-1 << C)
797     if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) {
798       APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
799       return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
800     }
801 
802     const APInt *C1;
803     if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(C1)))) &&
804         C1->ult(BitWidth)) {
805       unsigned ShrAmt = C1->getZExtValue();
806       if (ShrAmt < ShAmtC) {
807         // If C1 < C: (X >>?,exact C1) << C --> X << (C - C1)
808         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
809         auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
810         NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
811         NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
812         return NewShl;
813       }
814       if (ShrAmt > ShAmtC) {
815         // If C1 > C: (X >>?exact C1) << C --> X >>?exact (C1 - C)
816         Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
817         auto *NewShr = BinaryOperator::Create(
818             cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff);
819         NewShr->setIsExact(true);
820         return NewShr;
821       }
822     }
823 
824     if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_APInt(C1)))) &&
825         C1->ult(BitWidth)) {
826       unsigned ShrAmt = C1->getZExtValue();
827       if (ShrAmt < ShAmtC) {
828         // If C1 < C: (X >>? C1) << C --> (X << (C - C1)) & (-1 << C)
829         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
830         auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
831         NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
832         NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
833         Builder.Insert(NewShl);
834         APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
835         return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
836       }
837       if (ShrAmt > ShAmtC) {
838         // If C1 > C: (X >>? C1) << C --> (X >>? (C1 - C)) & (-1 << C)
839         Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
840         auto *OldShr = cast<BinaryOperator>(Op0);
841         auto *NewShr =
842             BinaryOperator::Create(OldShr->getOpcode(), X, ShiftDiff);
843         NewShr->setIsExact(OldShr->isExact());
844         Builder.Insert(NewShr);
845         APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
846         return BinaryOperator::CreateAnd(NewShr, ConstantInt::get(Ty, Mask));
847       }
848     }
849 
850     // Similar to above, but look through an intermediate trunc instruction.
851     BinaryOperator *Shr;
852     if (match(Op0, m_OneUse(m_Trunc(m_OneUse(m_BinOp(Shr))))) &&
853         match(Shr, m_Shr(m_Value(X), m_APInt(C1)))) {
854       // The larger shift direction survives through the transform.
855       unsigned ShrAmtC = C1->getZExtValue();
856       unsigned ShDiff = ShrAmtC > ShAmtC ? ShrAmtC - ShAmtC : ShAmtC - ShrAmtC;
857       Constant *ShiftDiffC = ConstantInt::get(X->getType(), ShDiff);
858       auto ShiftOpc = ShrAmtC > ShAmtC ? Shr->getOpcode() : Instruction::Shl;
859 
860       // If C1 > C:
861       // (trunc (X >> C1)) << C --> (trunc (X >> (C1 - C))) && (-1 << C)
862       // If C > C1:
863       // (trunc (X >> C1)) << C --> (trunc (X << (C - C1))) && (-1 << C)
864       Value *NewShift = Builder.CreateBinOp(ShiftOpc, X, ShiftDiffC, "sh.diff");
865       Value *Trunc = Builder.CreateTrunc(NewShift, Ty, "tr.sh.diff");
866       APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
867       return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, Mask));
868     }
869 
870     if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) {
871       unsigned AmtSum = ShAmtC + C1->getZExtValue();
872       // Oversized shifts are simplified to zero in InstSimplify.
873       if (AmtSum < BitWidth)
874         // (X << C1) << C2 --> X << (C1 + C2)
875         return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum));
876     }
877 
878     // If we have an opposite shift by the same amount, we may be able to
879     // reorder binops and shifts to eliminate math/logic.
880     auto isSuitableBinOpcode = [](Instruction::BinaryOps BinOpcode) {
881       switch (BinOpcode) {
882       default:
883         return false;
884       case Instruction::Add:
885       case Instruction::And:
886       case Instruction::Or:
887       case Instruction::Xor:
888       case Instruction::Sub:
889         // NOTE: Sub is not commutable and the tranforms below may not be valid
890         //       when the shift-right is operand 1 (RHS) of the sub.
891         return true;
892       }
893     };
894     BinaryOperator *Op0BO;
895     if (match(Op0, m_OneUse(m_BinOp(Op0BO))) &&
896         isSuitableBinOpcode(Op0BO->getOpcode())) {
897       // Commute so shift-right is on LHS of the binop.
898       // (Y bop (X >> C)) << C         ->  ((X >> C) bop Y) << C
899       // (Y bop ((X >> C) & CC)) << C  ->  (((X >> C) & CC) bop Y) << C
900       Value *Shr = Op0BO->getOperand(0);
901       Value *Y = Op0BO->getOperand(1);
902       Value *X;
903       const APInt *CC;
904       if (Op0BO->isCommutative() && Y->hasOneUse() &&
905           (match(Y, m_Shr(m_Value(), m_Specific(Op1))) ||
906            match(Y, m_And(m_OneUse(m_Shr(m_Value(), m_Specific(Op1))),
907                           m_APInt(CC)))))
908         std::swap(Shr, Y);
909 
910       // ((X >> C) bop Y) << C  ->  (X bop (Y << C)) & (~0 << C)
911       if (match(Shr, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
912         // Y << C
913         Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName());
914         // (X bop (Y << C))
915         Value *B =
916             Builder.CreateBinOp(Op0BO->getOpcode(), X, YS, Shr->getName());
917         unsigned Op1Val = C->getLimitedValue(BitWidth);
918         APInt Bits = APInt::getHighBitsSet(BitWidth, BitWidth - Op1Val);
919         Constant *Mask = ConstantInt::get(Ty, Bits);
920         return BinaryOperator::CreateAnd(B, Mask);
921       }
922 
923       // (((X >> C) & CC) bop Y) << C  ->  (X & (CC << C)) bop (Y << C)
924       if (match(Shr,
925                 m_OneUse(m_And(m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))),
926                                m_APInt(CC))))) {
927         // Y << C
928         Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName());
929         // X & (CC << C)
930         Value *M = Builder.CreateAnd(X, ConstantInt::get(Ty, CC->shl(*C)),
931                                      X->getName() + ".mask");
932         return BinaryOperator::Create(Op0BO->getOpcode(), M, YS);
933       }
934     }
935 
936     // (C1 - X) << C --> (C1 << C) - (X << C)
937     if (match(Op0, m_OneUse(m_Sub(m_APInt(C1), m_Value(X))))) {
938       Constant *NewLHS = ConstantInt::get(Ty, C1->shl(*C));
939       Value *NewShift = Builder.CreateShl(X, Op1);
940       return BinaryOperator::CreateSub(NewLHS, NewShift);
941     }
942 
943     // If the shifted-out value is known-zero, then this is a NUW shift.
944     if (!I.hasNoUnsignedWrap() &&
945         MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmtC), 0,
946                           &I)) {
947       I.setHasNoUnsignedWrap();
948       return &I;
949     }
950 
951     // If the shifted-out value is all signbits, then this is a NSW shift.
952     if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmtC) {
953       I.setHasNoSignedWrap();
954       return &I;
955     }
956   }
957 
958   // Transform  (x >> y) << y  to  x & (-1 << y)
959   // Valid for any type of right-shift.
960   Value *X;
961   if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
962     Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
963     Value *Mask = Builder.CreateShl(AllOnes, Op1);
964     return BinaryOperator::CreateAnd(Mask, X);
965   }
966 
967   Constant *C1;
968   if (match(Op1, m_Constant(C1))) {
969     Constant *C2;
970     Value *X;
971     // (C2 << X) << C1 --> (C2 << C1) << X
972     if (match(Op0, m_OneUse(m_Shl(m_Constant(C2), m_Value(X)))))
973       return BinaryOperator::CreateShl(ConstantExpr::getShl(C2, C1), X);
974 
975     // (X * C2) << C1 --> X * (C2 << C1)
976     if (match(Op0, m_Mul(m_Value(X), m_Constant(C2))))
977       return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1));
978 
979     // shl (zext i1 X), C1 --> select (X, 1 << C1, 0)
980     if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
981       auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1);
982       return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
983     }
984   }
985 
986   // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1
987   if (match(Op0, m_One()) &&
988       match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X))))
989     return BinaryOperator::CreateLShr(
990         ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X);
991 
992   return nullptr;
993 }
994 
995 Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) {
996   if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
997                                   SQ.getWithInstruction(&I)))
998     return replaceInstUsesWith(I, V);
999 
1000   if (Instruction *X = foldVectorBinop(I))
1001     return X;
1002 
1003   if (Instruction *R = commonShiftTransforms(I))
1004     return R;
1005 
1006   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1007   Type *Ty = I.getType();
1008   const APInt *C;
1009   if (match(Op1, m_APInt(C))) {
1010     unsigned ShAmtC = C->getZExtValue();
1011     unsigned BitWidth = Ty->getScalarSizeInBits();
1012     auto *II = dyn_cast<IntrinsicInst>(Op0);
1013     if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmtC &&
1014         (II->getIntrinsicID() == Intrinsic::ctlz ||
1015          II->getIntrinsicID() == Intrinsic::cttz ||
1016          II->getIntrinsicID() == Intrinsic::ctpop)) {
1017       // ctlz.i32(x)>>5  --> zext(x == 0)
1018       // cttz.i32(x)>>5  --> zext(x == 0)
1019       // ctpop.i32(x)>>5 --> zext(x == -1)
1020       bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
1021       Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0);
1022       Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS);
1023       return new ZExtInst(Cmp, Ty);
1024     }
1025 
1026     Value *X;
1027     const APInt *C1;
1028     if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) {
1029       if (C1->ult(ShAmtC)) {
1030         unsigned ShlAmtC = C1->getZExtValue();
1031         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShlAmtC);
1032         if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1033           // (X <<nuw C1) >>u C --> X >>u (C - C1)
1034           auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff);
1035           NewLShr->setIsExact(I.isExact());
1036           return NewLShr;
1037         }
1038         if (Op0->hasOneUse()) {
1039           // (X << C1) >>u C  --> (X >>u (C - C1)) & (-1 >> C)
1040           Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact());
1041           APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1042           return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
1043         }
1044       } else if (C1->ugt(ShAmtC)) {
1045         unsigned ShlAmtC = C1->getZExtValue();
1046         Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmtC - ShAmtC);
1047         if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1048           // (X <<nuw C1) >>u C --> X <<nuw (C1 - C)
1049           auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
1050           NewShl->setHasNoUnsignedWrap(true);
1051           return NewShl;
1052         }
1053         if (Op0->hasOneUse()) {
1054           // (X << C1) >>u C  --> X << (C1 - C) & (-1 >> C)
1055           Value *NewShl = Builder.CreateShl(X, ShiftDiff);
1056           APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1057           return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
1058         }
1059       } else {
1060         assert(*C1 == ShAmtC);
1061         // (X << C) >>u C --> X & (-1 >>u C)
1062         APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1063         return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
1064       }
1065     }
1066 
1067     // ((X << C) + Y) >>u C --> (X + (Y >>u C)) & (-1 >>u C)
1068     // TODO: Consolidate with the more general transform that starts from shl
1069     //       (the shifts are in the opposite order).
1070     Value *Y;
1071     if (match(Op0,
1072               m_OneUse(m_c_Add(m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))),
1073                                m_Value(Y))))) {
1074       Value *NewLshr = Builder.CreateLShr(Y, Op1);
1075       Value *NewAdd = Builder.CreateAdd(NewLshr, X);
1076       unsigned Op1Val = C->getLimitedValue(BitWidth);
1077       APInt Bits = APInt::getLowBitsSet(BitWidth, BitWidth - Op1Val);
1078       Constant *Mask = ConstantInt::get(Ty, Bits);
1079       return BinaryOperator::CreateAnd(NewAdd, Mask);
1080     }
1081 
1082     if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) &&
1083         (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
1084       assert(ShAmtC < X->getType()->getScalarSizeInBits() &&
1085              "Big shift not simplified to zero?");
1086       // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
1087       Value *NewLShr = Builder.CreateLShr(X, ShAmtC);
1088       return new ZExtInst(NewLShr, Ty);
1089     }
1090 
1091     if (match(Op0, m_SExt(m_Value(X)))) {
1092       unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits();
1093       // lshr (sext i1 X to iN), C --> select (X, -1 >> C, 0)
1094       if (SrcTyBitWidth == 1) {
1095         auto *NewC = ConstantInt::get(
1096             Ty, APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1097         return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
1098       }
1099 
1100       if ((!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType())) &&
1101           Op0->hasOneUse()) {
1102         // Are we moving the sign bit to the low bit and widening with high
1103         // zeros? lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
1104         if (ShAmtC == BitWidth - 1) {
1105           Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1);
1106           return new ZExtInst(NewLShr, Ty);
1107         }
1108 
1109         // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
1110         if (ShAmtC == BitWidth - SrcTyBitWidth) {
1111           // The new shift amount can't be more than the narrow source type.
1112           unsigned NewShAmt = std::min(ShAmtC, SrcTyBitWidth - 1);
1113           Value *AShr = Builder.CreateAShr(X, NewShAmt);
1114           return new ZExtInst(AShr, Ty);
1115         }
1116       }
1117     }
1118 
1119     if (ShAmtC == BitWidth - 1) {
1120       // lshr i32 or(X,-X), 31 --> zext (X != 0)
1121       if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X)))))
1122         return new ZExtInst(Builder.CreateIsNotNull(X), Ty);
1123 
1124       // lshr i32 (X -nsw Y), 31 --> zext (X < Y)
1125       if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
1126         return new ZExtInst(Builder.CreateICmpSLT(X, Y), Ty);
1127 
1128       // Check if a number is negative and odd:
1129       // lshr i32 (srem X, 2), 31 --> and (X >> 31), X
1130       if (match(Op0, m_OneUse(m_SRem(m_Value(X), m_SpecificInt(2))))) {
1131         Value *Signbit = Builder.CreateLShr(X, ShAmtC);
1132         return BinaryOperator::CreateAnd(Signbit, X);
1133       }
1134     }
1135 
1136     // (X >>u C1) >>u C --> X >>u (C1 + C)
1137     if (match(Op0, m_LShr(m_Value(X), m_APInt(C1)))) {
1138       // Oversized shifts are simplified to zero in InstSimplify.
1139       unsigned AmtSum = ShAmtC + C1->getZExtValue();
1140       if (AmtSum < BitWidth)
1141         return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
1142     }
1143 
1144     Instruction *TruncSrc;
1145     if (match(Op0, m_OneUse(m_Trunc(m_Instruction(TruncSrc)))) &&
1146         match(TruncSrc, m_LShr(m_Value(X), m_APInt(C1)))) {
1147       unsigned SrcWidth = X->getType()->getScalarSizeInBits();
1148       unsigned AmtSum = ShAmtC + C1->getZExtValue();
1149 
1150       // If the combined shift fits in the source width:
1151       // (trunc (X >>u C1)) >>u C --> and (trunc (X >>u (C1 + C)), MaskC
1152       //
1153       // If the first shift covers the number of bits truncated, then the
1154       // mask instruction is eliminated (and so the use check is relaxed).
1155       if (AmtSum < SrcWidth &&
1156           (TruncSrc->hasOneUse() || C1->uge(SrcWidth - BitWidth))) {
1157         Value *SumShift = Builder.CreateLShr(X, AmtSum, "sum.shift");
1158         Value *Trunc = Builder.CreateTrunc(SumShift, Ty, I.getName());
1159 
1160         // If the first shift does not cover the number of bits truncated, then
1161         // we require a mask to get rid of high bits in the result.
1162         APInt MaskC = APInt::getAllOnes(BitWidth).lshr(ShAmtC);
1163         return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, MaskC));
1164       }
1165     }
1166 
1167     // Look for a "splat" mul pattern - it replicates bits across each half of
1168     // a value, so a right shift is just a mask of the low bits:
1169     // lshr i32 (mul nuw X, Pow2+1), 16 --> and X, Pow2-1
1170     // TODO: Generalize to allow more than just half-width shifts?
1171     const APInt *MulC;
1172     if (match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC))) &&
1173         ShAmtC * 2 == BitWidth && (*MulC - 1).isPowerOf2() &&
1174         MulC->logBase2() == ShAmtC)
1175       return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *MulC - 2));
1176 
1177     // If the shifted-out value is known-zero, then this is an exact shift.
1178     if (!I.isExact() &&
1179         MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmtC), 0, &I)) {
1180       I.setIsExact();
1181       return &I;
1182     }
1183   }
1184 
1185   // Transform  (x << y) >> y  to  x & (-1 >> y)
1186   Value *X;
1187   if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) {
1188     Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
1189     Value *Mask = Builder.CreateLShr(AllOnes, Op1);
1190     return BinaryOperator::CreateAnd(Mask, X);
1191   }
1192 
1193   return nullptr;
1194 }
1195 
1196 Instruction *
1197 InstCombinerImpl::foldVariableSignZeroExtensionOfVariableHighBitExtract(
1198     BinaryOperator &OldAShr) {
1199   assert(OldAShr.getOpcode() == Instruction::AShr &&
1200          "Must be called with arithmetic right-shift instruction only.");
1201 
1202   // Check that constant C is a splat of the element-wise bitwidth of V.
1203   auto BitWidthSplat = [](Constant *C, Value *V) {
1204     return match(
1205         C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1206                               APInt(C->getType()->getScalarSizeInBits(),
1207                                     V->getType()->getScalarSizeInBits())));
1208   };
1209 
1210   // It should look like variable-length sign-extension on the outside:
1211   //   (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits)
1212   Value *NBits;
1213   Instruction *MaybeTrunc;
1214   Constant *C1, *C2;
1215   if (!match(&OldAShr,
1216              m_AShr(m_Shl(m_Instruction(MaybeTrunc),
1217                           m_ZExtOrSelf(m_Sub(m_Constant(C1),
1218                                              m_ZExtOrSelf(m_Value(NBits))))),
1219                     m_ZExtOrSelf(m_Sub(m_Constant(C2),
1220                                        m_ZExtOrSelf(m_Deferred(NBits)))))) ||
1221       !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr))
1222     return nullptr;
1223 
1224   // There may or may not be a truncation after outer two shifts.
1225   Instruction *HighBitExtract;
1226   match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract)));
1227   bool HadTrunc = MaybeTrunc != HighBitExtract;
1228 
1229   // And finally, the innermost part of the pattern must be a right-shift.
1230   Value *X, *NumLowBitsToSkip;
1231   if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip))))
1232     return nullptr;
1233 
1234   // Said right-shift must extract high NBits bits - C0 must be it's bitwidth.
1235   Constant *C0;
1236   if (!match(NumLowBitsToSkip,
1237              m_ZExtOrSelf(
1238                  m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) ||
1239       !BitWidthSplat(C0, HighBitExtract))
1240     return nullptr;
1241 
1242   // Since the NBits is identical for all shifts, if the outermost and
1243   // innermost shifts are identical, then outermost shifts are redundant.
1244   // If we had truncation, do keep it though.
1245   if (HighBitExtract->getOpcode() == OldAShr.getOpcode())
1246     return replaceInstUsesWith(OldAShr, MaybeTrunc);
1247 
1248   // Else, if there was a truncation, then we need to ensure that one
1249   // instruction will go away.
1250   if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1251     return nullptr;
1252 
1253   // Finally, bypass two innermost shifts, and perform the outermost shift on
1254   // the operands of the innermost shift.
1255   Instruction *NewAShr =
1256       BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip);
1257   NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness.
1258   if (!HadTrunc)
1259     return NewAShr;
1260 
1261   Builder.Insert(NewAShr);
1262   return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType());
1263 }
1264 
1265 Instruction *InstCombinerImpl::visitAShr(BinaryOperator &I) {
1266   if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1267                                   SQ.getWithInstruction(&I)))
1268     return replaceInstUsesWith(I, V);
1269 
1270   if (Instruction *X = foldVectorBinop(I))
1271     return X;
1272 
1273   if (Instruction *R = commonShiftTransforms(I))
1274     return R;
1275 
1276   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1277   Type *Ty = I.getType();
1278   unsigned BitWidth = Ty->getScalarSizeInBits();
1279   const APInt *ShAmtAPInt;
1280   if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) {
1281     unsigned ShAmt = ShAmtAPInt->getZExtValue();
1282 
1283     // If the shift amount equals the difference in width of the destination
1284     // and source scalar types:
1285     // ashr (shl (zext X), C), C --> sext X
1286     Value *X;
1287     if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) &&
1288         ShAmt == BitWidth - X->getType()->getScalarSizeInBits())
1289       return new SExtInst(X, Ty);
1290 
1291     // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
1292     // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
1293     const APInt *ShOp1;
1294     if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) &&
1295         ShOp1->ult(BitWidth)) {
1296       unsigned ShlAmt = ShOp1->getZExtValue();
1297       if (ShlAmt < ShAmt) {
1298         // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
1299         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
1300         auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff);
1301         NewAShr->setIsExact(I.isExact());
1302         return NewAShr;
1303       }
1304       if (ShlAmt > ShAmt) {
1305         // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
1306         Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
1307         auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff);
1308         NewShl->setHasNoSignedWrap(true);
1309         return NewShl;
1310       }
1311     }
1312 
1313     if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) &&
1314         ShOp1->ult(BitWidth)) {
1315       unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
1316       // Oversized arithmetic shifts replicate the sign bit.
1317       AmtSum = std::min(AmtSum, BitWidth - 1);
1318       // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
1319       return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
1320     }
1321 
1322     if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) &&
1323         (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) {
1324       // ashr (sext X), C --> sext (ashr X, C')
1325       Type *SrcTy = X->getType();
1326       ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1);
1327       Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt));
1328       return new SExtInst(NewSh, Ty);
1329     }
1330 
1331     if (ShAmt == BitWidth - 1) {
1332       // ashr i32 or(X,-X), 31 --> sext (X != 0)
1333       if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X)))))
1334         return new SExtInst(Builder.CreateIsNotNull(X), Ty);
1335 
1336       // ashr i32 (X -nsw Y), 31 --> sext (X < Y)
1337       Value *Y;
1338       if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
1339         return new SExtInst(Builder.CreateICmpSLT(X, Y), Ty);
1340     }
1341 
1342     // If the shifted-out value is known-zero, then this is an exact shift.
1343     if (!I.isExact() &&
1344         MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
1345       I.setIsExact();
1346       return &I;
1347     }
1348   }
1349 
1350   // Prefer `-(x & 1)` over `(x << (bitwidth(x)-1)) a>> (bitwidth(x)-1)`
1351   // as the pattern to splat the lowest bit.
1352   // FIXME: iff X is already masked, we don't need the one-use check.
1353   Value *X;
1354   if (match(Op1, m_SpecificIntAllowUndef(BitWidth - 1)) &&
1355       match(Op0, m_OneUse(m_Shl(m_Value(X),
1356                                 m_SpecificIntAllowUndef(BitWidth - 1))))) {
1357     Constant *Mask = ConstantInt::get(Ty, 1);
1358     // Retain the knowledge about the ignored lanes.
1359     Mask = Constant::mergeUndefsWith(
1360         Constant::mergeUndefsWith(Mask, cast<Constant>(Op1)),
1361         cast<Constant>(cast<Instruction>(Op0)->getOperand(1)));
1362     X = Builder.CreateAnd(X, Mask);
1363     return BinaryOperator::CreateNeg(X);
1364   }
1365 
1366   if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I))
1367     return R;
1368 
1369   // See if we can turn a signed shr into an unsigned shr.
1370   if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I))
1371     return BinaryOperator::CreateLShr(Op0, Op1);
1372 
1373   // ashr (xor %x, -1), %y  -->  xor (ashr %x, %y), -1
1374   if (match(Op0, m_OneUse(m_Not(m_Value(X))))) {
1375     // Note that we must drop 'exact'-ness of the shift!
1376     // Note that we can't keep undef's in -1 vector constant!
1377     auto *NewAShr = Builder.CreateAShr(X, Op1, Op0->getName() + ".not");
1378     return BinaryOperator::CreateNot(NewAShr);
1379   }
1380 
1381   return nullptr;
1382 }
1383