1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains logic for simplifying instructions based on information
10 // about how they are used.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/IR/GetElementPtrTypeIterator.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Support/KnownBits.h"
20 #include "llvm/Transforms/InstCombine/InstCombiner.h"
21 
22 using namespace llvm;
23 using namespace llvm::PatternMatch;
24 
25 #define DEBUG_TYPE "instcombine"
26 
27 static cl::opt<bool>
28     VerifyKnownBits("instcombine-verify-known-bits",
29                     cl::desc("Verify that computeKnownBits() and "
30                              "SimplifyDemandedBits() are consistent"),
31                     cl::Hidden, cl::init(false));
32 
33 /// Check to see if the specified operand of the specified instruction is a
34 /// constant integer. If so, check to see if there are any bits set in the
35 /// constant that are not demanded. If so, shrink the constant and return true.
36 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
37                                    const APInt &Demanded) {
38   assert(I && "No instruction?");
39   assert(OpNo < I->getNumOperands() && "Operand index too large");
40 
41   // The operand must be a constant integer or splat integer.
42   Value *Op = I->getOperand(OpNo);
43   const APInt *C;
44   if (!match(Op, m_APInt(C)))
45     return false;
46 
47   // If there are no bits set that aren't demanded, nothing to do.
48   if (C->isSubsetOf(Demanded))
49     return false;
50 
51   // This instruction is producing bits that are not demanded. Shrink the RHS.
52   I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
53 
54   return true;
55 }
56 
57 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
58 /// returns the element type's bitwidth.
59 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
60   if (unsigned BitWidth = Ty->getScalarSizeInBits())
61     return BitWidth;
62 
63   return DL.getPointerTypeSizeInBits(Ty);
64 }
65 
66 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
67 /// the instruction has any properties that allow us to simplify its operands.
68 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst,
69                                                        KnownBits &Known) {
70   APInt DemandedMask(APInt::getAllOnes(Known.getBitWidth()));
71   Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
72                                      0, &Inst);
73   if (!V) return false;
74   if (V == &Inst) return true;
75   replaceInstUsesWith(Inst, V);
76   return true;
77 }
78 
79 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
80 /// the instruction has any properties that allow us to simplify its operands.
81 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) {
82   KnownBits Known(getBitWidth(Inst.getType(), DL));
83   return SimplifyDemandedInstructionBits(Inst, Known);
84 }
85 
86 /// This form of SimplifyDemandedBits simplifies the specified instruction
87 /// operand if possible, updating it in place. It returns true if it made any
88 /// change and false otherwise.
89 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
90                                             const APInt &DemandedMask,
91                                             KnownBits &Known, unsigned Depth) {
92   Use &U = I->getOperandUse(OpNo);
93   Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
94                                           Depth, I);
95   if (!NewVal) return false;
96   if (Instruction* OpInst = dyn_cast<Instruction>(U))
97     salvageDebugInfo(*OpInst);
98 
99   replaceUse(U, NewVal);
100   return true;
101 }
102 
103 /// This function attempts to replace V with a simpler value based on the
104 /// demanded bits. When this function is called, it is known that only the bits
105 /// set in DemandedMask of the result of V are ever used downstream.
106 /// Consequently, depending on the mask and V, it may be possible to replace V
107 /// with a constant or one of its operands. In such cases, this function does
108 /// the replacement and returns true. In all other cases, it returns false after
109 /// analyzing the expression and setting KnownOne and known to be one in the
110 /// expression. Known.Zero contains all the bits that are known to be zero in
111 /// the expression. These are provided to potentially allow the caller (which
112 /// might recursively be SimplifyDemandedBits itself) to simplify the
113 /// expression.
114 /// Known.One and Known.Zero always follow the invariant that:
115 ///   Known.One & Known.Zero == 0.
116 /// That is, a bit can't be both 1 and 0. The bits in Known.One and Known.Zero
117 /// are accurate even for bits not in DemandedMask. Note
118 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
119 /// be the same.
120 ///
121 /// This returns null if it did not change anything and it permits no
122 /// simplification.  This returns V itself if it did some simplification of V's
123 /// operands based on the information about what bits are demanded. This returns
124 /// some other non-null value if it found out that V is equal to another value
125 /// in the context where the specified bits are demanded, but not for all users.
126 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
127                                                  KnownBits &Known,
128                                                  unsigned Depth,
129                                                  Instruction *CxtI) {
130   assert(V != nullptr && "Null pointer of Value???");
131   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
132   uint32_t BitWidth = DemandedMask.getBitWidth();
133   Type *VTy = V->getType();
134   assert(
135       (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
136       Known.getBitWidth() == BitWidth &&
137       "Value *V, DemandedMask and Known must have same BitWidth");
138 
139   if (isa<Constant>(V)) {
140     computeKnownBits(V, Known, Depth, CxtI);
141     return nullptr;
142   }
143 
144   Known.resetAll();
145   if (DemandedMask.isZero()) // Not demanding any bits from V.
146     return UndefValue::get(VTy);
147 
148   if (Depth == MaxAnalysisRecursionDepth)
149     return nullptr;
150 
151   Instruction *I = dyn_cast<Instruction>(V);
152   if (!I) {
153     computeKnownBits(V, Known, Depth, CxtI);
154     return nullptr;        // Only analyze instructions.
155   }
156 
157   // If there are multiple uses of this value and we aren't at the root, then
158   // we can't do any simplifications of the operands, because DemandedMask
159   // only reflects the bits demanded by *one* of the users.
160   if (Depth != 0 && !I->hasOneUse())
161     return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
162 
163   KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
164   // If this is the root being simplified, allow it to have multiple uses,
165   // just set the DemandedMask to all bits so that we can try to simplify the
166   // operands.  This allows visitTruncInst (for example) to simplify the
167   // operand of a trunc without duplicating all the logic below.
168   if (Depth == 0 && !V->hasOneUse())
169     DemandedMask.setAllBits();
170 
171   // Update flags after simplifying an operand based on the fact that some high
172   // order bits are not demanded.
173   auto disableWrapFlagsBasedOnUnusedHighBits = [](Instruction *I,
174                                                   unsigned NLZ) {
175     if (NLZ > 0) {
176       // Disable the nsw and nuw flags here: We can no longer guarantee that
177       // we won't wrap after simplification. Removing the nsw/nuw flags is
178       // legal here because the top bit is not demanded.
179       I->setHasNoSignedWrap(false);
180       I->setHasNoUnsignedWrap(false);
181     }
182     return I;
183   };
184 
185   // If the high-bits of an ADD/SUB/MUL are not demanded, then we do not care
186   // about the high bits of the operands.
187   auto simplifyOperandsBasedOnUnusedHighBits = [&](APInt &DemandedFromOps) {
188     unsigned NLZ = DemandedMask.countl_zero();
189     // Right fill the mask of bits for the operands to demand the most
190     // significant bit and all those below it.
191     DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
192     if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
193         SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
194         ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
195         SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
196       disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
197       return true;
198     }
199     return false;
200   };
201 
202   switch (I->getOpcode()) {
203   default:
204     computeKnownBits(I, Known, Depth, CxtI);
205     break;
206   case Instruction::And: {
207     // If either the LHS or the RHS are Zero, the result is zero.
208     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
209         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
210                              Depth + 1))
211       return I;
212     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
213     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
214 
215     Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown,
216                                          Depth, SQ.getWithInstruction(CxtI));
217 
218     // If the client is only demanding bits that we know, return the known
219     // constant.
220     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
221       return Constant::getIntegerValue(VTy, Known.One);
222 
223     // If all of the demanded bits are known 1 on one side, return the other.
224     // These bits cannot contribute to the result of the 'and'.
225     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
226       return I->getOperand(0);
227     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
228       return I->getOperand(1);
229 
230     // If the RHS is a constant, see if we can simplify it.
231     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
232       return I;
233 
234     break;
235   }
236   case Instruction::Or: {
237     // If either the LHS or the RHS are One, the result is One.
238     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
239         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
240                              Depth + 1)) {
241       // Disjoint flag may not longer hold.
242       I->dropPoisonGeneratingFlags();
243       return I;
244     }
245     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
246     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
247 
248     Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown,
249                                          Depth, SQ.getWithInstruction(CxtI));
250 
251     // If the client is only demanding bits that we know, return the known
252     // constant.
253     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
254       return Constant::getIntegerValue(VTy, Known.One);
255 
256     // If all of the demanded bits are known zero on one side, return the other.
257     // These bits cannot contribute to the result of the 'or'.
258     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
259       return I->getOperand(0);
260     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
261       return I->getOperand(1);
262 
263     // If the RHS is a constant, see if we can simplify it.
264     if (ShrinkDemandedConstant(I, 1, DemandedMask))
265       return I;
266 
267     // Infer disjoint flag if no common bits are set.
268     if (!cast<PossiblyDisjointInst>(I)->isDisjoint()) {
269       WithCache<const Value *> LHSCache(I->getOperand(0), LHSKnown),
270           RHSCache(I->getOperand(1), RHSKnown);
271       if (haveNoCommonBitsSet(LHSCache, RHSCache, SQ.getWithInstruction(I))) {
272         cast<PossiblyDisjointInst>(I)->setIsDisjoint(true);
273         return I;
274       }
275     }
276 
277     break;
278   }
279   case Instruction::Xor: {
280     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
281         SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
282       return I;
283     Value *LHS, *RHS;
284     if (DemandedMask == 1 &&
285         match(I->getOperand(0), m_Intrinsic<Intrinsic::ctpop>(m_Value(LHS))) &&
286         match(I->getOperand(1), m_Intrinsic<Intrinsic::ctpop>(m_Value(RHS)))) {
287       // (ctpop(X) ^ ctpop(Y)) & 1 --> ctpop(X^Y) & 1
288       IRBuilderBase::InsertPointGuard Guard(Builder);
289       Builder.SetInsertPoint(I);
290       auto *Xor = Builder.CreateXor(LHS, RHS);
291       return Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, Xor);
292     }
293 
294     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
295     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
296 
297     Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown,
298                                          Depth, SQ.getWithInstruction(CxtI));
299 
300     // If the client is only demanding bits that we know, return the known
301     // constant.
302     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
303       return Constant::getIntegerValue(VTy, Known.One);
304 
305     // If all of the demanded bits are known zero on one side, return the other.
306     // These bits cannot contribute to the result of the 'xor'.
307     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
308       return I->getOperand(0);
309     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
310       return I->getOperand(1);
311 
312     // If all of the demanded bits are known to be zero on one side or the
313     // other, turn this into an *inclusive* or.
314     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
315     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
316       Instruction *Or =
317           BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1));
318       if (DemandedMask.isAllOnes())
319         cast<PossiblyDisjointInst>(Or)->setIsDisjoint(true);
320       Or->takeName(I);
321       return InsertNewInstWith(Or, I->getIterator());
322     }
323 
324     // If all of the demanded bits on one side are known, and all of the set
325     // bits on that side are also known to be set on the other side, turn this
326     // into an AND, as we know the bits will be cleared.
327     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
328     if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
329         RHSKnown.One.isSubsetOf(LHSKnown.One)) {
330       Constant *AndC = Constant::getIntegerValue(VTy,
331                                                  ~RHSKnown.One & DemandedMask);
332       Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
333       return InsertNewInstWith(And, I->getIterator());
334     }
335 
336     // If the RHS is a constant, see if we can change it. Don't alter a -1
337     // constant because that's a canonical 'not' op, and that is better for
338     // combining, SCEV, and codegen.
339     const APInt *C;
340     if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnes()) {
341       if ((*C | ~DemandedMask).isAllOnes()) {
342         // Force bits to 1 to create a 'not' op.
343         I->setOperand(1, ConstantInt::getAllOnesValue(VTy));
344         return I;
345       }
346       // If we can't turn this into a 'not', try to shrink the constant.
347       if (ShrinkDemandedConstant(I, 1, DemandedMask))
348         return I;
349     }
350 
351     // If our LHS is an 'and' and if it has one use, and if any of the bits we
352     // are flipping are known to be set, then the xor is just resetting those
353     // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
354     // simplifying both of them.
355     if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) {
356       ConstantInt *AndRHS, *XorRHS;
357       if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
358           match(I->getOperand(1), m_ConstantInt(XorRHS)) &&
359           match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) &&
360           (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
361         APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
362 
363         Constant *AndC = ConstantInt::get(VTy, NewMask & AndRHS->getValue());
364         Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
365         InsertNewInstWith(NewAnd, I->getIterator());
366 
367         Constant *XorC = ConstantInt::get(VTy, NewMask & XorRHS->getValue());
368         Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
369         return InsertNewInstWith(NewXor, I->getIterator());
370       }
371     }
372     break;
373   }
374   case Instruction::Select: {
375     if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
376         SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
377       return I;
378     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
379     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
380 
381     // If the operands are constants, see if we can simplify them.
382     // This is similar to ShrinkDemandedConstant, but for a select we want to
383     // try to keep the selected constants the same as icmp value constants, if
384     // we can. This helps not break apart (or helps put back together)
385     // canonical patterns like min and max.
386     auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo,
387                                          const APInt &DemandedMask) {
388       const APInt *SelC;
389       if (!match(I->getOperand(OpNo), m_APInt(SelC)))
390         return false;
391 
392       // Get the constant out of the ICmp, if there is one.
393       // Only try this when exactly 1 operand is a constant (if both operands
394       // are constant, the icmp should eventually simplify). Otherwise, we may
395       // invert the transform that reduces set bits and infinite-loop.
396       Value *X;
397       const APInt *CmpC;
398       ICmpInst::Predicate Pred;
399       if (!match(I->getOperand(0), m_ICmp(Pred, m_Value(X), m_APInt(CmpC))) ||
400           isa<Constant>(X) || CmpC->getBitWidth() != SelC->getBitWidth())
401         return ShrinkDemandedConstant(I, OpNo, DemandedMask);
402 
403       // If the constant is already the same as the ICmp, leave it as-is.
404       if (*CmpC == *SelC)
405         return false;
406       // If the constants are not already the same, but can be with the demand
407       // mask, use the constant value from the ICmp.
408       if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) {
409         I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC));
410         return true;
411       }
412       return ShrinkDemandedConstant(I, OpNo, DemandedMask);
413     };
414     if (CanonicalizeSelectConstant(I, 1, DemandedMask) ||
415         CanonicalizeSelectConstant(I, 2, DemandedMask))
416       return I;
417 
418     // Only known if known in both the LHS and RHS.
419     Known = LHSKnown.intersectWith(RHSKnown);
420     break;
421   }
422   case Instruction::Trunc: {
423     // If we do not demand the high bits of a right-shifted and truncated value,
424     // then we may be able to truncate it before the shift.
425     Value *X;
426     const APInt *C;
427     if (match(I->getOperand(0), m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) {
428       // The shift amount must be valid (not poison) in the narrow type, and
429       // it must not be greater than the high bits demanded of the result.
430       if (C->ult(VTy->getScalarSizeInBits()) &&
431           C->ule(DemandedMask.countl_zero())) {
432         // trunc (lshr X, C) --> lshr (trunc X), C
433         IRBuilderBase::InsertPointGuard Guard(Builder);
434         Builder.SetInsertPoint(I);
435         Value *Trunc = Builder.CreateTrunc(X, VTy);
436         return Builder.CreateLShr(Trunc, C->getZExtValue());
437       }
438     }
439   }
440     [[fallthrough]];
441   case Instruction::ZExt: {
442     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
443 
444     APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
445     KnownBits InputKnown(SrcBitWidth);
446     if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) {
447       // For zext nneg, we may have dropped the instruction which made the
448       // input non-negative.
449       I->dropPoisonGeneratingFlags();
450       return I;
451     }
452     assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?");
453     if (I->getOpcode() == Instruction::ZExt && I->hasNonNeg() &&
454         !InputKnown.isNegative())
455       InputKnown.makeNonNegative();
456     Known = InputKnown.zextOrTrunc(BitWidth);
457 
458     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
459     break;
460   }
461   case Instruction::SExt: {
462     // Compute the bits in the result that are not present in the input.
463     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
464 
465     APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
466 
467     // If any of the sign extended bits are demanded, we know that the sign
468     // bit is demanded.
469     if (DemandedMask.getActiveBits() > SrcBitWidth)
470       InputDemandedBits.setBit(SrcBitWidth-1);
471 
472     KnownBits InputKnown(SrcBitWidth);
473     if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
474       return I;
475 
476     // If the input sign bit is known zero, or if the NewBits are not demanded
477     // convert this into a zero extension.
478     if (InputKnown.isNonNegative() ||
479         DemandedMask.getActiveBits() <= SrcBitWidth) {
480       // Convert to ZExt cast.
481       CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy);
482       NewCast->takeName(I);
483       return InsertNewInstWith(NewCast, I->getIterator());
484      }
485 
486     // If the sign bit of the input is known set or clear, then we know the
487     // top bits of the result.
488     Known = InputKnown.sext(BitWidth);
489     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
490     break;
491   }
492   case Instruction::Add: {
493     if ((DemandedMask & 1) == 0) {
494       // If we do not need the low bit, try to convert bool math to logic:
495       // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN
496       Value *X, *Y;
497       if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))),
498                            m_OneUse(m_SExt(m_Value(Y))))) &&
499           X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
500         // Truth table for inputs and output signbits:
501         //       X:0 | X:1
502         //      ----------
503         // Y:0  |  0 | 0 |
504         // Y:1  | -1 | 0 |
505         //      ----------
506         IRBuilderBase::InsertPointGuard Guard(Builder);
507         Builder.SetInsertPoint(I);
508         Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y);
509         return Builder.CreateSExt(AndNot, VTy);
510       }
511 
512       // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN
513       // TODO: Relax the one-use checks because we are removing an instruction?
514       if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))),
515                          m_OneUse(m_SExt(m_Value(Y))))) &&
516           X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
517         // Truth table for inputs and output signbits:
518         //       X:0 | X:1
519         //      -----------
520         // Y:0  | -1 | -1 |
521         // Y:1  | -1 |  0 |
522         //      -----------
523         IRBuilderBase::InsertPointGuard Guard(Builder);
524         Builder.SetInsertPoint(I);
525         Value *Or = Builder.CreateOr(X, Y);
526         return Builder.CreateSExt(Or, VTy);
527       }
528     }
529 
530     // Right fill the mask of bits for the operands to demand the most
531     // significant bit and all those below it.
532     unsigned NLZ = DemandedMask.countl_zero();
533     APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
534     if (ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
535         SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1))
536       return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
537 
538     // If low order bits are not demanded and known to be zero in one operand,
539     // then we don't need to demand them from the other operand, since they
540     // can't cause overflow into any bits that are demanded in the result.
541     unsigned NTZ = (~DemandedMask & RHSKnown.Zero).countr_one();
542     APInt DemandedFromLHS = DemandedFromOps;
543     DemandedFromLHS.clearLowBits(NTZ);
544     if (ShrinkDemandedConstant(I, 0, DemandedFromLHS) ||
545         SimplifyDemandedBits(I, 0, DemandedFromLHS, LHSKnown, Depth + 1))
546       return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
547 
548     // If we are known to be adding zeros to every bit below
549     // the highest demanded bit, we just return the other side.
550     if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
551       return I->getOperand(0);
552     if (DemandedFromOps.isSubsetOf(LHSKnown.Zero))
553       return I->getOperand(1);
554 
555     // (add X, C) --> (xor X, C) IFF C is equal to the top bit of the DemandMask
556     {
557       const APInt *C;
558       if (match(I->getOperand(1), m_APInt(C)) &&
559           C->isOneBitSet(DemandedMask.getActiveBits() - 1)) {
560         IRBuilderBase::InsertPointGuard Guard(Builder);
561         Builder.SetInsertPoint(I);
562         return Builder.CreateXor(I->getOperand(0), ConstantInt::get(VTy, *C));
563       }
564     }
565 
566     // Otherwise just compute the known bits of the result.
567     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
568     Known = KnownBits::computeForAddSub(true, NSW, LHSKnown, RHSKnown);
569     break;
570   }
571   case Instruction::Sub: {
572     // Right fill the mask of bits for the operands to demand the most
573     // significant bit and all those below it.
574     unsigned NLZ = DemandedMask.countl_zero();
575     APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
576     if (ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
577         SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1))
578       return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
579 
580     // If low order bits are not demanded and are known to be zero in RHS,
581     // then we don't need to demand them from LHS, since they can't cause a
582     // borrow from any bits that are demanded in the result.
583     unsigned NTZ = (~DemandedMask & RHSKnown.Zero).countr_one();
584     APInt DemandedFromLHS = DemandedFromOps;
585     DemandedFromLHS.clearLowBits(NTZ);
586     if (ShrinkDemandedConstant(I, 0, DemandedFromLHS) ||
587         SimplifyDemandedBits(I, 0, DemandedFromLHS, LHSKnown, Depth + 1))
588       return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
589 
590     // If we are known to be subtracting zeros from every bit below
591     // the highest demanded bit, we just return the other side.
592     if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
593       return I->getOperand(0);
594     // We can't do this with the LHS for subtraction, unless we are only
595     // demanding the LSB.
596     if (DemandedFromOps.isOne() && DemandedFromOps.isSubsetOf(LHSKnown.Zero))
597       return I->getOperand(1);
598 
599     // Otherwise just compute the known bits of the result.
600     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
601     Known = KnownBits::computeForAddSub(false, NSW, LHSKnown, RHSKnown);
602     break;
603   }
604   case Instruction::Mul: {
605     APInt DemandedFromOps;
606     if (simplifyOperandsBasedOnUnusedHighBits(DemandedFromOps))
607       return I;
608 
609     if (DemandedMask.isPowerOf2()) {
610       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
611       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
612       // odd (has LSB set), then the left-shifted low bit of X is the answer.
613       unsigned CTZ = DemandedMask.countr_zero();
614       const APInt *C;
615       if (match(I->getOperand(1), m_APInt(C)) && C->countr_zero() == CTZ) {
616         Constant *ShiftC = ConstantInt::get(VTy, CTZ);
617         Instruction *Shl = BinaryOperator::CreateShl(I->getOperand(0), ShiftC);
618         return InsertNewInstWith(Shl, I->getIterator());
619       }
620     }
621     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
622     // X * X is odd iff X is odd.
623     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
624     if (I->getOperand(0) == I->getOperand(1) && DemandedMask.ult(4)) {
625       Constant *One = ConstantInt::get(VTy, 1);
626       Instruction *And1 = BinaryOperator::CreateAnd(I->getOperand(0), One);
627       return InsertNewInstWith(And1, I->getIterator());
628     }
629 
630     computeKnownBits(I, Known, Depth, CxtI);
631     break;
632   }
633   case Instruction::Shl: {
634     const APInt *SA;
635     if (match(I->getOperand(1), m_APInt(SA))) {
636       const APInt *ShrAmt;
637       if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
638         if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
639           if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
640                                                     DemandedMask, Known))
641             return R;
642 
643       // TODO: If we only want bits that already match the signbit then we don't
644       // need to shift.
645 
646       // If we can pre-shift a right-shifted constant to the left without
647       // losing any high bits amd we don't demand the low bits, then eliminate
648       // the left-shift:
649       // (C >> X) << LeftShiftAmtC --> (C << RightShiftAmtC) >> X
650       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
651       Value *X;
652       Constant *C;
653       if (DemandedMask.countr_zero() >= ShiftAmt &&
654           match(I->getOperand(0), m_LShr(m_ImmConstant(C), m_Value(X)))) {
655         Constant *LeftShiftAmtC = ConstantInt::get(VTy, ShiftAmt);
656         Constant *NewC = ConstantFoldBinaryOpOperands(Instruction::Shl, C,
657                                                       LeftShiftAmtC, DL);
658         if (ConstantFoldBinaryOpOperands(Instruction::LShr, NewC, LeftShiftAmtC,
659                                          DL) == C) {
660           Instruction *Lshr = BinaryOperator::CreateLShr(NewC, X);
661           return InsertNewInstWith(Lshr, I->getIterator());
662         }
663       }
664 
665       APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
666 
667       // If the shift is NUW/NSW, then it does demand the high bits.
668       ShlOperator *IOp = cast<ShlOperator>(I);
669       if (IOp->hasNoSignedWrap())
670         DemandedMaskIn.setHighBits(ShiftAmt+1);
671       else if (IOp->hasNoUnsignedWrap())
672         DemandedMaskIn.setHighBits(ShiftAmt);
673 
674       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
675         return I;
676       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
677 
678       Known = KnownBits::shl(Known,
679                              KnownBits::makeConstant(APInt(BitWidth, ShiftAmt)),
680                              /* NUW */ IOp->hasNoUnsignedWrap(),
681                              /* NSW */ IOp->hasNoSignedWrap());
682     } else {
683       // This is a variable shift, so we can't shift the demand mask by a known
684       // amount. But if we are not demanding high bits, then we are not
685       // demanding those bits from the pre-shifted operand either.
686       if (unsigned CTLZ = DemandedMask.countl_zero()) {
687         APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
688         if (SimplifyDemandedBits(I, 0, DemandedFromOp, Known, Depth + 1)) {
689           // We can't guarantee that nsw/nuw hold after simplifying the operand.
690           I->dropPoisonGeneratingFlags();
691           return I;
692         }
693       }
694       computeKnownBits(I, Known, Depth, CxtI);
695     }
696     break;
697   }
698   case Instruction::LShr: {
699     const APInt *SA;
700     if (match(I->getOperand(1), m_APInt(SA))) {
701       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
702 
703       // If we are just demanding the shifted sign bit and below, then this can
704       // be treated as an ASHR in disguise.
705       if (DemandedMask.countl_zero() >= ShiftAmt) {
706         // If we only want bits that already match the signbit then we don't
707         // need to shift.
708         unsigned NumHiDemandedBits = BitWidth - DemandedMask.countr_zero();
709         unsigned SignBits =
710             ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
711         if (SignBits >= NumHiDemandedBits)
712           return I->getOperand(0);
713 
714         // If we can pre-shift a left-shifted constant to the right without
715         // losing any low bits (we already know we don't demand the high bits),
716         // then eliminate the right-shift:
717         // (C << X) >> RightShiftAmtC --> (C >> RightShiftAmtC) << X
718         Value *X;
719         Constant *C;
720         if (match(I->getOperand(0), m_Shl(m_ImmConstant(C), m_Value(X)))) {
721           Constant *RightShiftAmtC = ConstantInt::get(VTy, ShiftAmt);
722           Constant *NewC = ConstantFoldBinaryOpOperands(Instruction::LShr, C,
723                                                         RightShiftAmtC, DL);
724           if (ConstantFoldBinaryOpOperands(Instruction::Shl, NewC,
725                                            RightShiftAmtC, DL) == C) {
726             Instruction *Shl = BinaryOperator::CreateShl(NewC, X);
727             return InsertNewInstWith(Shl, I->getIterator());
728           }
729         }
730       }
731 
732       // Unsigned shift right.
733       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
734       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) {
735         // exact flag may not longer hold.
736         I->dropPoisonGeneratingFlags();
737         return I;
738       }
739       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
740       Known.Zero.lshrInPlace(ShiftAmt);
741       Known.One.lshrInPlace(ShiftAmt);
742       if (ShiftAmt)
743         Known.Zero.setHighBits(ShiftAmt);  // high bits known zero.
744     } else {
745       computeKnownBits(I, Known, Depth, CxtI);
746     }
747     break;
748   }
749   case Instruction::AShr: {
750     unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
751 
752     // If we only want bits that already match the signbit then we don't need
753     // to shift.
754     unsigned NumHiDemandedBits = BitWidth - DemandedMask.countr_zero();
755     if (SignBits >= NumHiDemandedBits)
756       return I->getOperand(0);
757 
758     // If this is an arithmetic shift right and only the low-bit is set, we can
759     // always convert this into a logical shr, even if the shift amount is
760     // variable.  The low bit of the shift cannot be an input sign bit unless
761     // the shift amount is >= the size of the datatype, which is undefined.
762     if (DemandedMask.isOne()) {
763       // Perform the logical shift right.
764       Instruction *NewVal = BinaryOperator::CreateLShr(
765                         I->getOperand(0), I->getOperand(1), I->getName());
766       return InsertNewInstWith(NewVal, I->getIterator());
767     }
768 
769     const APInt *SA;
770     if (match(I->getOperand(1), m_APInt(SA))) {
771       uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
772 
773       // Signed shift right.
774       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
775       // If any of the high bits are demanded, we should set the sign bit as
776       // demanded.
777       if (DemandedMask.countl_zero() <= ShiftAmt)
778         DemandedMaskIn.setSignBit();
779 
780       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) {
781         // exact flag may not longer hold.
782         I->dropPoisonGeneratingFlags();
783         return I;
784       }
785 
786       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
787       // Compute the new bits that are at the top now plus sign bits.
788       APInt HighBits(APInt::getHighBitsSet(
789           BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
790       Known.Zero.lshrInPlace(ShiftAmt);
791       Known.One.lshrInPlace(ShiftAmt);
792 
793       // If the input sign bit is known to be zero, or if none of the top bits
794       // are demanded, turn this into an unsigned shift right.
795       assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
796       if (Known.Zero[BitWidth-ShiftAmt-1] ||
797           !DemandedMask.intersects(HighBits)) {
798         BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
799                                                           I->getOperand(1));
800         LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
801         LShr->takeName(I);
802         return InsertNewInstWith(LShr, I->getIterator());
803       } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
804         Known.One |= HighBits;
805         // SignBits may be out-of-sync with Known.countMinSignBits(). Mask out
806         // high bits of Known.Zero to avoid conflicts.
807         Known.Zero &= ~HighBits;
808       }
809     } else {
810       computeKnownBits(I, Known, Depth, CxtI);
811     }
812     break;
813   }
814   case Instruction::UDiv: {
815     // UDiv doesn't demand low bits that are zero in the divisor.
816     const APInt *SA;
817     if (match(I->getOperand(1), m_APInt(SA))) {
818       // TODO: Take the demanded mask of the result into account.
819       unsigned RHSTrailingZeros = SA->countr_zero();
820       APInt DemandedMaskIn =
821           APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
822       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) {
823         // We can't guarantee that "exact" is still true after changing the
824         // the dividend.
825         I->dropPoisonGeneratingFlags();
826         return I;
827       }
828 
829       Known = KnownBits::udiv(LHSKnown, KnownBits::makeConstant(*SA),
830                               cast<BinaryOperator>(I)->isExact());
831     } else {
832       computeKnownBits(I, Known, Depth, CxtI);
833     }
834     break;
835   }
836   case Instruction::SRem: {
837     const APInt *Rem;
838     if (match(I->getOperand(1), m_APInt(Rem))) {
839       // X % -1 demands all the bits because we don't want to introduce
840       // INT_MIN % -1 (== undef) by accident.
841       if (Rem->isAllOnes())
842         break;
843       APInt RA = Rem->abs();
844       if (RA.isPowerOf2()) {
845         if (DemandedMask.ult(RA))    // srem won't affect demanded bits
846           return I->getOperand(0);
847 
848         APInt LowBits = RA - 1;
849         APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
850         if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
851           return I;
852 
853         // The low bits of LHS are unchanged by the srem.
854         Known.Zero = LHSKnown.Zero & LowBits;
855         Known.One = LHSKnown.One & LowBits;
856 
857         // If LHS is non-negative or has all low bits zero, then the upper bits
858         // are all zero.
859         if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
860           Known.Zero |= ~LowBits;
861 
862         // If LHS is negative and not all low bits are zero, then the upper bits
863         // are all one.
864         if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
865           Known.One |= ~LowBits;
866 
867         assert(!Known.hasConflict() && "Bits known to be one AND zero?");
868         break;
869       }
870     }
871 
872     computeKnownBits(I, Known, Depth, CxtI);
873     break;
874   }
875   case Instruction::URem: {
876     APInt AllOnes = APInt::getAllOnes(BitWidth);
877     if (SimplifyDemandedBits(I, 0, AllOnes, LHSKnown, Depth + 1) ||
878         SimplifyDemandedBits(I, 1, AllOnes, RHSKnown, Depth + 1))
879       return I;
880 
881     Known = KnownBits::urem(LHSKnown, RHSKnown);
882     break;
883   }
884   case Instruction::Call: {
885     bool KnownBitsComputed = false;
886     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
887       switch (II->getIntrinsicID()) {
888       case Intrinsic::abs: {
889         if (DemandedMask == 1)
890           return II->getArgOperand(0);
891         break;
892       }
893       case Intrinsic::ctpop: {
894         // Checking if the number of clear bits is odd (parity)? If the type has
895         // an even number of bits, that's the same as checking if the number of
896         // set bits is odd, so we can eliminate the 'not' op.
897         Value *X;
898         if (DemandedMask == 1 && VTy->getScalarSizeInBits() % 2 == 0 &&
899             match(II->getArgOperand(0), m_Not(m_Value(X)))) {
900           Function *Ctpop = Intrinsic::getDeclaration(
901               II->getModule(), Intrinsic::ctpop, VTy);
902           return InsertNewInstWith(CallInst::Create(Ctpop, {X}), I->getIterator());
903         }
904         break;
905       }
906       case Intrinsic::bswap: {
907         // If the only bits demanded come from one byte of the bswap result,
908         // just shift the input byte into position to eliminate the bswap.
909         unsigned NLZ = DemandedMask.countl_zero();
910         unsigned NTZ = DemandedMask.countr_zero();
911 
912         // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
913         // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
914         // have 14 leading zeros, round to 8.
915         NLZ = alignDown(NLZ, 8);
916         NTZ = alignDown(NTZ, 8);
917         // If we need exactly one byte, we can do this transformation.
918         if (BitWidth - NLZ - NTZ == 8) {
919           // Replace this with either a left or right shift to get the byte into
920           // the right place.
921           Instruction *NewVal;
922           if (NLZ > NTZ)
923             NewVal = BinaryOperator::CreateLShr(
924                 II->getArgOperand(0), ConstantInt::get(VTy, NLZ - NTZ));
925           else
926             NewVal = BinaryOperator::CreateShl(
927                 II->getArgOperand(0), ConstantInt::get(VTy, NTZ - NLZ));
928           NewVal->takeName(I);
929           return InsertNewInstWith(NewVal, I->getIterator());
930         }
931         break;
932       }
933       case Intrinsic::ptrmask: {
934         unsigned MaskWidth = I->getOperand(1)->getType()->getScalarSizeInBits();
935         RHSKnown = KnownBits(MaskWidth);
936         // If either the LHS or the RHS are Zero, the result is zero.
937         if (SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1) ||
938             SimplifyDemandedBits(
939                 I, 1, (DemandedMask & ~LHSKnown.Zero).zextOrTrunc(MaskWidth),
940                 RHSKnown, Depth + 1))
941           return I;
942 
943         // TODO: Should be 1-extend
944         RHSKnown = RHSKnown.anyextOrTrunc(BitWidth);
945         assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
946         assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
947 
948         Known = LHSKnown & RHSKnown;
949         KnownBitsComputed = true;
950 
951         // If the client is only demanding bits we know to be zero, return
952         // `llvm.ptrmask(p, 0)`. We can't return `null` here due to pointer
953         // provenance, but making the mask zero will be easily optimizable in
954         // the backend.
955         if (DemandedMask.isSubsetOf(Known.Zero) &&
956             !match(I->getOperand(1), m_Zero()))
957           return replaceOperand(
958               *I, 1, Constant::getNullValue(I->getOperand(1)->getType()));
959 
960         // Mask in demanded space does nothing.
961         // NOTE: We may have attributes associated with the return value of the
962         // llvm.ptrmask intrinsic that will be lost when we just return the
963         // operand. We should try to preserve them.
964         if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
965           return I->getOperand(0);
966 
967         // If the RHS is a constant, see if we can simplify it.
968         if (ShrinkDemandedConstant(
969                 I, 1, (DemandedMask & ~LHSKnown.Zero).zextOrTrunc(MaskWidth)))
970           return I;
971 
972         break;
973       }
974 
975       case Intrinsic::fshr:
976       case Intrinsic::fshl: {
977         const APInt *SA;
978         if (!match(I->getOperand(2), m_APInt(SA)))
979           break;
980 
981         // Normalize to funnel shift left. APInt shifts of BitWidth are well-
982         // defined, so no need to special-case zero shifts here.
983         uint64_t ShiftAmt = SA->urem(BitWidth);
984         if (II->getIntrinsicID() == Intrinsic::fshr)
985           ShiftAmt = BitWidth - ShiftAmt;
986 
987         APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt));
988         APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt));
989         if (I->getOperand(0) != I->getOperand(1)) {
990           if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown,
991                                    Depth + 1) ||
992               SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1))
993             return I;
994         } else { // fshl is a rotate
995           // Avoid converting rotate into funnel shift.
996           // Only simplify if one operand is constant.
997           LHSKnown = computeKnownBits(I->getOperand(0), Depth + 1, I);
998           if (DemandedMaskLHS.isSubsetOf(LHSKnown.Zero | LHSKnown.One) &&
999               !match(I->getOperand(0), m_SpecificInt(LHSKnown.One))) {
1000             replaceOperand(*I, 0, Constant::getIntegerValue(VTy, LHSKnown.One));
1001             return I;
1002           }
1003 
1004           RHSKnown = computeKnownBits(I->getOperand(1), Depth + 1, I);
1005           if (DemandedMaskRHS.isSubsetOf(RHSKnown.Zero | RHSKnown.One) &&
1006               !match(I->getOperand(1), m_SpecificInt(RHSKnown.One))) {
1007             replaceOperand(*I, 1, Constant::getIntegerValue(VTy, RHSKnown.One));
1008             return I;
1009           }
1010         }
1011 
1012         Known.Zero = LHSKnown.Zero.shl(ShiftAmt) |
1013                      RHSKnown.Zero.lshr(BitWidth - ShiftAmt);
1014         Known.One = LHSKnown.One.shl(ShiftAmt) |
1015                     RHSKnown.One.lshr(BitWidth - ShiftAmt);
1016         KnownBitsComputed = true;
1017         break;
1018       }
1019       case Intrinsic::umax: {
1020         // UMax(A, C) == A if ...
1021         // The lowest non-zero bit of DemandMask is higher than the highest
1022         // non-zero bit of C.
1023         const APInt *C;
1024         unsigned CTZ = DemandedMask.countr_zero();
1025         if (match(II->getArgOperand(1), m_APInt(C)) &&
1026             CTZ >= C->getActiveBits())
1027           return II->getArgOperand(0);
1028         break;
1029       }
1030       case Intrinsic::umin: {
1031         // UMin(A, C) == A if ...
1032         // The lowest non-zero bit of DemandMask is higher than the highest
1033         // non-one bit of C.
1034         // This comes from using DeMorgans on the above umax example.
1035         const APInt *C;
1036         unsigned CTZ = DemandedMask.countr_zero();
1037         if (match(II->getArgOperand(1), m_APInt(C)) &&
1038             CTZ >= C->getBitWidth() - C->countl_one())
1039           return II->getArgOperand(0);
1040         break;
1041       }
1042       default: {
1043         // Handle target specific intrinsics
1044         std::optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic(
1045             *II, DemandedMask, Known, KnownBitsComputed);
1046         if (V)
1047           return *V;
1048         break;
1049       }
1050       }
1051     }
1052 
1053     if (!KnownBitsComputed)
1054       computeKnownBits(V, Known, Depth, CxtI);
1055     break;
1056   }
1057   }
1058 
1059   if (V->getType()->isPointerTy()) {
1060     Align Alignment = V->getPointerAlignment(DL);
1061     Known.Zero.setLowBits(Log2(Alignment));
1062   }
1063 
1064   // If the client is only demanding bits that we know, return the known
1065   // constant. We can't directly simplify pointers as a constant because of
1066   // pointer provenance.
1067   // TODO: We could return `(inttoptr const)` for pointers.
1068   if (!V->getType()->isPointerTy() && DemandedMask.isSubsetOf(Known.Zero | Known.One))
1069     return Constant::getIntegerValue(VTy, Known.One);
1070 
1071   if (VerifyKnownBits) {
1072     KnownBits ReferenceKnown = computeKnownBits(V, Depth, CxtI);
1073     if (Known != ReferenceKnown) {
1074       errs() << "Mismatched known bits for " << *V << " in "
1075              << I->getFunction()->getName() << "\n";
1076       errs() << "computeKnownBits(): " << ReferenceKnown << "\n";
1077       errs() << "SimplifyDemandedBits(): " << Known << "\n";
1078       std::abort();
1079     }
1080   }
1081 
1082   return nullptr;
1083 }
1084 
1085 /// Helper routine of SimplifyDemandedUseBits. It computes Known
1086 /// bits. It also tries to handle simplifications that can be done based on
1087 /// DemandedMask, but without modifying the Instruction.
1088 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits(
1089     Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth,
1090     Instruction *CxtI) {
1091   unsigned BitWidth = DemandedMask.getBitWidth();
1092   Type *ITy = I->getType();
1093 
1094   KnownBits LHSKnown(BitWidth);
1095   KnownBits RHSKnown(BitWidth);
1096 
1097   // Despite the fact that we can't simplify this instruction in all User's
1098   // context, we can at least compute the known bits, and we can
1099   // do simplifications that apply to *just* the one user if we know that
1100   // this instruction has a simpler value in that context.
1101   switch (I->getOpcode()) {
1102   case Instruction::And: {
1103     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
1104     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
1105     Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown,
1106                                          Depth, SQ.getWithInstruction(CxtI));
1107     computeKnownBitsFromContext(I, Known, Depth, SQ.getWithInstruction(CxtI));
1108 
1109     // If the client is only demanding bits that we know, return the known
1110     // constant.
1111     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
1112       return Constant::getIntegerValue(ITy, Known.One);
1113 
1114     // If all of the demanded bits are known 1 on one side, return the other.
1115     // These bits cannot contribute to the result of the 'and' in this context.
1116     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
1117       return I->getOperand(0);
1118     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
1119       return I->getOperand(1);
1120 
1121     break;
1122   }
1123   case Instruction::Or: {
1124     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
1125     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
1126     Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown,
1127                                          Depth, SQ.getWithInstruction(CxtI));
1128     computeKnownBitsFromContext(I, Known, Depth, SQ.getWithInstruction(CxtI));
1129 
1130     // If the client is only demanding bits that we know, return the known
1131     // constant.
1132     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
1133       return Constant::getIntegerValue(ITy, Known.One);
1134 
1135     // We can simplify (X|Y) -> X or Y in the user's context if we know that
1136     // only bits from X or Y are demanded.
1137     // If all of the demanded bits are known zero on one side, return the other.
1138     // These bits cannot contribute to the result of the 'or' in this context.
1139     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
1140       return I->getOperand(0);
1141     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
1142       return I->getOperand(1);
1143 
1144     break;
1145   }
1146   case Instruction::Xor: {
1147     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
1148     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
1149     Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown,
1150                                          Depth, SQ.getWithInstruction(CxtI));
1151     computeKnownBitsFromContext(I, Known, Depth, SQ.getWithInstruction(CxtI));
1152 
1153     // If the client is only demanding bits that we know, return the known
1154     // constant.
1155     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
1156       return Constant::getIntegerValue(ITy, Known.One);
1157 
1158     // We can simplify (X^Y) -> X or Y in the user's context if we know that
1159     // only bits from X or Y are demanded.
1160     // If all of the demanded bits are known zero on one side, return the other.
1161     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
1162       return I->getOperand(0);
1163     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
1164       return I->getOperand(1);
1165 
1166     break;
1167   }
1168   case Instruction::Add: {
1169     unsigned NLZ = DemandedMask.countl_zero();
1170     APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
1171 
1172     // If an operand adds zeros to every bit below the highest demanded bit,
1173     // that operand doesn't change the result. Return the other side.
1174     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
1175     if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
1176       return I->getOperand(0);
1177 
1178     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
1179     if (DemandedFromOps.isSubsetOf(LHSKnown.Zero))
1180       return I->getOperand(1);
1181 
1182     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1183     Known = KnownBits::computeForAddSub(/*Add*/ true, NSW, LHSKnown, RHSKnown);
1184     computeKnownBitsFromContext(I, Known, Depth, SQ.getWithInstruction(CxtI));
1185     break;
1186   }
1187   case Instruction::Sub: {
1188     unsigned NLZ = DemandedMask.countl_zero();
1189     APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
1190 
1191     // If an operand subtracts zeros from every bit below the highest demanded
1192     // bit, that operand doesn't change the result. Return the other side.
1193     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
1194     if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
1195       return I->getOperand(0);
1196 
1197     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1198     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
1199     Known = KnownBits::computeForAddSub(/*Add*/ false, NSW, LHSKnown, RHSKnown);
1200     computeKnownBitsFromContext(I, Known, Depth, SQ.getWithInstruction(CxtI));
1201     break;
1202   }
1203   case Instruction::AShr: {
1204     // Compute the Known bits to simplify things downstream.
1205     computeKnownBits(I, Known, Depth, CxtI);
1206 
1207     // If this user is only demanding bits that we know, return the known
1208     // constant.
1209     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
1210       return Constant::getIntegerValue(ITy, Known.One);
1211 
1212     // If the right shift operand 0 is a result of a left shift by the same
1213     // amount, this is probably a zero/sign extension, which may be unnecessary,
1214     // if we do not demand any of the new sign bits. So, return the original
1215     // operand instead.
1216     const APInt *ShiftRC;
1217     const APInt *ShiftLC;
1218     Value *X;
1219     unsigned BitWidth = DemandedMask.getBitWidth();
1220     if (match(I,
1221               m_AShr(m_Shl(m_Value(X), m_APInt(ShiftLC)), m_APInt(ShiftRC))) &&
1222         ShiftLC == ShiftRC && ShiftLC->ult(BitWidth) &&
1223         DemandedMask.isSubsetOf(APInt::getLowBitsSet(
1224             BitWidth, BitWidth - ShiftRC->getZExtValue()))) {
1225       return X;
1226     }
1227 
1228     break;
1229   }
1230   default:
1231     // Compute the Known bits to simplify things downstream.
1232     computeKnownBits(I, Known, Depth, CxtI);
1233 
1234     // If this user is only demanding bits that we know, return the known
1235     // constant.
1236     if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
1237       return Constant::getIntegerValue(ITy, Known.One);
1238 
1239     break;
1240   }
1241 
1242   return nullptr;
1243 }
1244 
1245 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
1246 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
1247 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
1248 /// of "C2-C1".
1249 ///
1250 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
1251 /// ..., bn}, without considering the specific value X is holding.
1252 /// This transformation is legal iff one of following conditions is hold:
1253 ///  1) All the bit in S are 0, in this case E1 == E2.
1254 ///  2) We don't care those bits in S, per the input DemandedMask.
1255 ///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
1256 ///     rest bits.
1257 ///
1258 /// Currently we only test condition 2).
1259 ///
1260 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
1261 /// not successful.
1262 Value *InstCombinerImpl::simplifyShrShlDemandedBits(
1263     Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
1264     const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) {
1265   if (!ShlOp1 || !ShrOp1)
1266     return nullptr; // No-op.
1267 
1268   Value *VarX = Shr->getOperand(0);
1269   Type *Ty = VarX->getType();
1270   unsigned BitWidth = Ty->getScalarSizeInBits();
1271   if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
1272     return nullptr; // Undef.
1273 
1274   unsigned ShlAmt = ShlOp1.getZExtValue();
1275   unsigned ShrAmt = ShrOp1.getZExtValue();
1276 
1277   Known.One.clearAllBits();
1278   Known.Zero.setLowBits(ShlAmt - 1);
1279   Known.Zero &= DemandedMask;
1280 
1281   APInt BitMask1(APInt::getAllOnes(BitWidth));
1282   APInt BitMask2(APInt::getAllOnes(BitWidth));
1283 
1284   bool isLshr = (Shr->getOpcode() == Instruction::LShr);
1285   BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
1286                       (BitMask1.ashr(ShrAmt) << ShlAmt);
1287 
1288   if (ShrAmt <= ShlAmt) {
1289     BitMask2 <<= (ShlAmt - ShrAmt);
1290   } else {
1291     BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
1292                         BitMask2.ashr(ShrAmt - ShlAmt);
1293   }
1294 
1295   // Check if condition-2 (see the comment to this function) is satified.
1296   if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
1297     if (ShrAmt == ShlAmt)
1298       return VarX;
1299 
1300     if (!Shr->hasOneUse())
1301       return nullptr;
1302 
1303     BinaryOperator *New;
1304     if (ShrAmt < ShlAmt) {
1305       Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
1306       New = BinaryOperator::CreateShl(VarX, Amt);
1307       BinaryOperator *Orig = cast<BinaryOperator>(Shl);
1308       New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
1309       New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
1310     } else {
1311       Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
1312       New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
1313                      BinaryOperator::CreateAShr(VarX, Amt);
1314       if (cast<BinaryOperator>(Shr)->isExact())
1315         New->setIsExact(true);
1316     }
1317 
1318     return InsertNewInstWith(New, Shl->getIterator());
1319   }
1320 
1321   return nullptr;
1322 }
1323 
1324 /// The specified value produces a vector with any number of elements.
1325 /// This method analyzes which elements of the operand are poison and
1326 /// returns that information in PoisonElts.
1327 ///
1328 /// DemandedElts contains the set of elements that are actually used by the
1329 /// caller, and by default (AllowMultipleUsers equals false) the value is
1330 /// simplified only if it has a single caller. If AllowMultipleUsers is set
1331 /// to true, DemandedElts refers to the union of sets of elements that are
1332 /// used by all callers.
1333 ///
1334 /// If the information about demanded elements can be used to simplify the
1335 /// operation, the operation is simplified, then the resultant value is
1336 /// returned.  This returns null if no change was made.
1337 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V,
1338                                                     APInt DemandedElts,
1339                                                     APInt &PoisonElts,
1340                                                     unsigned Depth,
1341                                                     bool AllowMultipleUsers) {
1342   // Cannot analyze scalable type. The number of vector elements is not a
1343   // compile-time constant.
1344   if (isa<ScalableVectorType>(V->getType()))
1345     return nullptr;
1346 
1347   unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
1348   APInt EltMask(APInt::getAllOnes(VWidth));
1349   assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
1350 
1351   if (match(V, m_Poison())) {
1352     // If the entire vector is poison, just return this info.
1353     PoisonElts = EltMask;
1354     return nullptr;
1355   }
1356 
1357   if (DemandedElts.isZero()) { // If nothing is demanded, provide poison.
1358     PoisonElts = EltMask;
1359     return PoisonValue::get(V->getType());
1360   }
1361 
1362   PoisonElts = 0;
1363 
1364   if (auto *C = dyn_cast<Constant>(V)) {
1365     // Check if this is identity. If so, return 0 since we are not simplifying
1366     // anything.
1367     if (DemandedElts.isAllOnes())
1368       return nullptr;
1369 
1370     Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1371     Constant *Poison = PoisonValue::get(EltTy);
1372     SmallVector<Constant*, 16> Elts;
1373     for (unsigned i = 0; i != VWidth; ++i) {
1374       if (!DemandedElts[i]) {   // If not demanded, set to poison.
1375         Elts.push_back(Poison);
1376         PoisonElts.setBit(i);
1377         continue;
1378       }
1379 
1380       Constant *Elt = C->getAggregateElement(i);
1381       if (!Elt) return nullptr;
1382 
1383       Elts.push_back(Elt);
1384       if (isa<PoisonValue>(Elt)) // Already poison.
1385         PoisonElts.setBit(i);
1386     }
1387 
1388     // If we changed the constant, return it.
1389     Constant *NewCV = ConstantVector::get(Elts);
1390     return NewCV != C ? NewCV : nullptr;
1391   }
1392 
1393   // Limit search depth.
1394   if (Depth == 10)
1395     return nullptr;
1396 
1397   if (!AllowMultipleUsers) {
1398     // If multiple users are using the root value, proceed with
1399     // simplification conservatively assuming that all elements
1400     // are needed.
1401     if (!V->hasOneUse()) {
1402       // Quit if we find multiple users of a non-root value though.
1403       // They'll be handled when it's their turn to be visited by
1404       // the main instcombine process.
1405       if (Depth != 0)
1406         // TODO: Just compute the PoisonElts information recursively.
1407         return nullptr;
1408 
1409       // Conservatively assume that all elements are needed.
1410       DemandedElts = EltMask;
1411     }
1412   }
1413 
1414   Instruction *I = dyn_cast<Instruction>(V);
1415   if (!I) return nullptr;        // Only analyze instructions.
1416 
1417   bool MadeChange = false;
1418   auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
1419                               APInt Demanded, APInt &Undef) {
1420     auto *II = dyn_cast<IntrinsicInst>(Inst);
1421     Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
1422     if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
1423       replaceOperand(*Inst, OpNum, V);
1424       MadeChange = true;
1425     }
1426   };
1427 
1428   APInt PoisonElts2(VWidth, 0);
1429   APInt PoisonElts3(VWidth, 0);
1430   switch (I->getOpcode()) {
1431   default: break;
1432 
1433   case Instruction::GetElementPtr: {
1434     // The LangRef requires that struct geps have all constant indices.  As
1435     // such, we can't convert any operand to partial undef.
1436     auto mayIndexStructType = [](GetElementPtrInst &GEP) {
1437       for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP);
1438            I != E; I++)
1439         if (I.isStruct())
1440           return true;
1441       return false;
1442     };
1443     if (mayIndexStructType(cast<GetElementPtrInst>(*I)))
1444       break;
1445 
1446     // Conservatively track the demanded elements back through any vector
1447     // operands we may have.  We know there must be at least one, or we
1448     // wouldn't have a vector result to get here. Note that we intentionally
1449     // merge the undef bits here since gepping with either an poison base or
1450     // index results in poison.
1451     for (unsigned i = 0; i < I->getNumOperands(); i++) {
1452       if (i == 0 ? match(I->getOperand(i), m_Undef())
1453                  : match(I->getOperand(i), m_Poison())) {
1454         // If the entire vector is undefined, just return this info.
1455         PoisonElts = EltMask;
1456         return nullptr;
1457       }
1458       if (I->getOperand(i)->getType()->isVectorTy()) {
1459         APInt PoisonEltsOp(VWidth, 0);
1460         simplifyAndSetOp(I, i, DemandedElts, PoisonEltsOp);
1461         // gep(x, undef) is not undef, so skip considering idx ops here
1462         // Note that we could propagate poison, but we can't distinguish between
1463         // undef & poison bits ATM
1464         if (i == 0)
1465           PoisonElts |= PoisonEltsOp;
1466       }
1467     }
1468 
1469     break;
1470   }
1471   case Instruction::InsertElement: {
1472     // If this is a variable index, we don't know which element it overwrites.
1473     // demand exactly the same input as we produce.
1474     ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1475     if (!Idx) {
1476       // Note that we can't propagate undef elt info, because we don't know
1477       // which elt is getting updated.
1478       simplifyAndSetOp(I, 0, DemandedElts, PoisonElts2);
1479       break;
1480     }
1481 
1482     // The element inserted overwrites whatever was there, so the input demanded
1483     // set is simpler than the output set.
1484     unsigned IdxNo = Idx->getZExtValue();
1485     APInt PreInsertDemandedElts = DemandedElts;
1486     if (IdxNo < VWidth)
1487       PreInsertDemandedElts.clearBit(IdxNo);
1488 
1489     // If we only demand the element that is being inserted and that element
1490     // was extracted from the same index in another vector with the same type,
1491     // replace this insert with that other vector.
1492     // Note: This is attempted before the call to simplifyAndSetOp because that
1493     //       may change PoisonElts to a value that does not match with Vec.
1494     Value *Vec;
1495     if (PreInsertDemandedElts == 0 &&
1496         match(I->getOperand(1),
1497               m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) &&
1498         Vec->getType() == I->getType()) {
1499       return Vec;
1500     }
1501 
1502     simplifyAndSetOp(I, 0, PreInsertDemandedElts, PoisonElts);
1503 
1504     // If this is inserting an element that isn't demanded, remove this
1505     // insertelement.
1506     if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1507       Worklist.push(I);
1508       return I->getOperand(0);
1509     }
1510 
1511     // The inserted element is defined.
1512     PoisonElts.clearBit(IdxNo);
1513     break;
1514   }
1515   case Instruction::ShuffleVector: {
1516     auto *Shuffle = cast<ShuffleVectorInst>(I);
1517     assert(Shuffle->getOperand(0)->getType() ==
1518            Shuffle->getOperand(1)->getType() &&
1519            "Expected shuffle operands to have same type");
1520     unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType())
1521                            ->getNumElements();
1522     // Handle trivial case of a splat. Only check the first element of LHS
1523     // operand.
1524     if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) &&
1525         DemandedElts.isAllOnes()) {
1526       if (!isa<PoisonValue>(I->getOperand(1))) {
1527         I->setOperand(1, PoisonValue::get(I->getOperand(1)->getType()));
1528         MadeChange = true;
1529       }
1530       APInt LeftDemanded(OpWidth, 1);
1531       APInt LHSPoisonElts(OpWidth, 0);
1532       simplifyAndSetOp(I, 0, LeftDemanded, LHSPoisonElts);
1533       if (LHSPoisonElts[0])
1534         PoisonElts = EltMask;
1535       else
1536         PoisonElts.clearAllBits();
1537       break;
1538     }
1539 
1540     APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0);
1541     for (unsigned i = 0; i < VWidth; i++) {
1542       if (DemandedElts[i]) {
1543         unsigned MaskVal = Shuffle->getMaskValue(i);
1544         if (MaskVal != -1u) {
1545           assert(MaskVal < OpWidth * 2 &&
1546                  "shufflevector mask index out of range!");
1547           if (MaskVal < OpWidth)
1548             LeftDemanded.setBit(MaskVal);
1549           else
1550             RightDemanded.setBit(MaskVal - OpWidth);
1551         }
1552       }
1553     }
1554 
1555     APInt LHSPoisonElts(OpWidth, 0);
1556     simplifyAndSetOp(I, 0, LeftDemanded, LHSPoisonElts);
1557 
1558     APInt RHSPoisonElts(OpWidth, 0);
1559     simplifyAndSetOp(I, 1, RightDemanded, RHSPoisonElts);
1560 
1561     // If this shuffle does not change the vector length and the elements
1562     // demanded by this shuffle are an identity mask, then this shuffle is
1563     // unnecessary.
1564     //
1565     // We are assuming canonical form for the mask, so the source vector is
1566     // operand 0 and operand 1 is not used.
1567     //
1568     // Note that if an element is demanded and this shuffle mask is undefined
1569     // for that element, then the shuffle is not considered an identity
1570     // operation. The shuffle prevents poison from the operand vector from
1571     // leaking to the result by replacing poison with an undefined value.
1572     if (VWidth == OpWidth) {
1573       bool IsIdentityShuffle = true;
1574       for (unsigned i = 0; i < VWidth; i++) {
1575         unsigned MaskVal = Shuffle->getMaskValue(i);
1576         if (DemandedElts[i] && i != MaskVal) {
1577           IsIdentityShuffle = false;
1578           break;
1579         }
1580       }
1581       if (IsIdentityShuffle)
1582         return Shuffle->getOperand(0);
1583     }
1584 
1585     bool NewPoisonElts = false;
1586     unsigned LHSIdx = -1u, LHSValIdx = -1u;
1587     unsigned RHSIdx = -1u, RHSValIdx = -1u;
1588     bool LHSUniform = true;
1589     bool RHSUniform = true;
1590     for (unsigned i = 0; i < VWidth; i++) {
1591       unsigned MaskVal = Shuffle->getMaskValue(i);
1592       if (MaskVal == -1u) {
1593         PoisonElts.setBit(i);
1594       } else if (!DemandedElts[i]) {
1595         NewPoisonElts = true;
1596         PoisonElts.setBit(i);
1597       } else if (MaskVal < OpWidth) {
1598         if (LHSPoisonElts[MaskVal]) {
1599           NewPoisonElts = true;
1600           PoisonElts.setBit(i);
1601         } else {
1602           LHSIdx = LHSIdx == -1u ? i : OpWidth;
1603           LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth;
1604           LHSUniform = LHSUniform && (MaskVal == i);
1605         }
1606       } else {
1607         if (RHSPoisonElts[MaskVal - OpWidth]) {
1608           NewPoisonElts = true;
1609           PoisonElts.setBit(i);
1610         } else {
1611           RHSIdx = RHSIdx == -1u ? i : OpWidth;
1612           RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth;
1613           RHSUniform = RHSUniform && (MaskVal - OpWidth == i);
1614         }
1615       }
1616     }
1617 
1618     // Try to transform shuffle with constant vector and single element from
1619     // this constant vector to single insertelement instruction.
1620     // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1621     // insertelement V, C[ci], ci-n
1622     if (OpWidth ==
1623         cast<FixedVectorType>(Shuffle->getType())->getNumElements()) {
1624       Value *Op = nullptr;
1625       Constant *Value = nullptr;
1626       unsigned Idx = -1u;
1627 
1628       // Find constant vector with the single element in shuffle (LHS or RHS).
1629       if (LHSIdx < OpWidth && RHSUniform) {
1630         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1631           Op = Shuffle->getOperand(1);
1632           Value = CV->getOperand(LHSValIdx);
1633           Idx = LHSIdx;
1634         }
1635       }
1636       if (RHSIdx < OpWidth && LHSUniform) {
1637         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1638           Op = Shuffle->getOperand(0);
1639           Value = CV->getOperand(RHSValIdx);
1640           Idx = RHSIdx;
1641         }
1642       }
1643       // Found constant vector with single element - convert to insertelement.
1644       if (Op && Value) {
1645         Instruction *New = InsertElementInst::Create(
1646             Op, Value, ConstantInt::get(Type::getInt64Ty(I->getContext()), Idx),
1647             Shuffle->getName());
1648         InsertNewInstWith(New, Shuffle->getIterator());
1649         return New;
1650       }
1651     }
1652     if (NewPoisonElts) {
1653       // Add additional discovered undefs.
1654       SmallVector<int, 16> Elts;
1655       for (unsigned i = 0; i < VWidth; ++i) {
1656         if (PoisonElts[i])
1657           Elts.push_back(PoisonMaskElem);
1658         else
1659           Elts.push_back(Shuffle->getMaskValue(i));
1660       }
1661       Shuffle->setShuffleMask(Elts);
1662       MadeChange = true;
1663     }
1664     break;
1665   }
1666   case Instruction::Select: {
1667     // If this is a vector select, try to transform the select condition based
1668     // on the current demanded elements.
1669     SelectInst *Sel = cast<SelectInst>(I);
1670     if (Sel->getCondition()->getType()->isVectorTy()) {
1671       // TODO: We are not doing anything with PoisonElts based on this call.
1672       // It is overwritten below based on the other select operands. If an
1673       // element of the select condition is known undef, then we are free to
1674       // choose the output value from either arm of the select. If we know that
1675       // one of those values is undef, then the output can be undef.
1676       simplifyAndSetOp(I, 0, DemandedElts, PoisonElts);
1677     }
1678 
1679     // Next, see if we can transform the arms of the select.
1680     APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
1681     if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
1682       for (unsigned i = 0; i < VWidth; i++) {
1683         // isNullValue() always returns false when called on a ConstantExpr.
1684         // Skip constant expressions to avoid propagating incorrect information.
1685         Constant *CElt = CV->getAggregateElement(i);
1686         if (isa<ConstantExpr>(CElt))
1687           continue;
1688         // TODO: If a select condition element is undef, we can demand from
1689         // either side. If one side is known undef, choosing that side would
1690         // propagate undef.
1691         if (CElt->isNullValue())
1692           DemandedLHS.clearBit(i);
1693         else
1694           DemandedRHS.clearBit(i);
1695       }
1696     }
1697 
1698     simplifyAndSetOp(I, 1, DemandedLHS, PoisonElts2);
1699     simplifyAndSetOp(I, 2, DemandedRHS, PoisonElts3);
1700 
1701     // Output elements are undefined if the element from each arm is undefined.
1702     // TODO: This can be improved. See comment in select condition handling.
1703     PoisonElts = PoisonElts2 & PoisonElts3;
1704     break;
1705   }
1706   case Instruction::BitCast: {
1707     // Vector->vector casts only.
1708     VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1709     if (!VTy) break;
1710     unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements();
1711     APInt InputDemandedElts(InVWidth, 0);
1712     PoisonElts2 = APInt(InVWidth, 0);
1713     unsigned Ratio;
1714 
1715     if (VWidth == InVWidth) {
1716       // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1717       // elements as are demanded of us.
1718       Ratio = 1;
1719       InputDemandedElts = DemandedElts;
1720     } else if ((VWidth % InVWidth) == 0) {
1721       // If the number of elements in the output is a multiple of the number of
1722       // elements in the input then an input element is live if any of the
1723       // corresponding output elements are live.
1724       Ratio = VWidth / InVWidth;
1725       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1726         if (DemandedElts[OutIdx])
1727           InputDemandedElts.setBit(OutIdx / Ratio);
1728     } else if ((InVWidth % VWidth) == 0) {
1729       // If the number of elements in the input is a multiple of the number of
1730       // elements in the output then an input element is live if the
1731       // corresponding output element is live.
1732       Ratio = InVWidth / VWidth;
1733       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1734         if (DemandedElts[InIdx / Ratio])
1735           InputDemandedElts.setBit(InIdx);
1736     } else {
1737       // Unsupported so far.
1738       break;
1739     }
1740 
1741     simplifyAndSetOp(I, 0, InputDemandedElts, PoisonElts2);
1742 
1743     if (VWidth == InVWidth) {
1744       PoisonElts = PoisonElts2;
1745     } else if ((VWidth % InVWidth) == 0) {
1746       // If the number of elements in the output is a multiple of the number of
1747       // elements in the input then an output element is undef if the
1748       // corresponding input element is undef.
1749       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1750         if (PoisonElts2[OutIdx / Ratio])
1751           PoisonElts.setBit(OutIdx);
1752     } else if ((InVWidth % VWidth) == 0) {
1753       // If the number of elements in the input is a multiple of the number of
1754       // elements in the output then an output element is undef if all of the
1755       // corresponding input elements are undef.
1756       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1757         APInt SubUndef = PoisonElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1758         if (SubUndef.popcount() == Ratio)
1759           PoisonElts.setBit(OutIdx);
1760       }
1761     } else {
1762       llvm_unreachable("Unimp");
1763     }
1764     break;
1765   }
1766   case Instruction::FPTrunc:
1767   case Instruction::FPExt:
1768     simplifyAndSetOp(I, 0, DemandedElts, PoisonElts);
1769     break;
1770 
1771   case Instruction::Call: {
1772     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1773     if (!II) break;
1774     switch (II->getIntrinsicID()) {
1775     case Intrinsic::masked_gather: // fallthrough
1776     case Intrinsic::masked_load: {
1777       // Subtlety: If we load from a pointer, the pointer must be valid
1778       // regardless of whether the element is demanded.  Doing otherwise risks
1779       // segfaults which didn't exist in the original program.
1780       APInt DemandedPtrs(APInt::getAllOnes(VWidth)),
1781           DemandedPassThrough(DemandedElts);
1782       if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2)))
1783         for (unsigned i = 0; i < VWidth; i++) {
1784           Constant *CElt = CV->getAggregateElement(i);
1785           if (CElt->isNullValue())
1786             DemandedPtrs.clearBit(i);
1787           else if (CElt->isAllOnesValue())
1788             DemandedPassThrough.clearBit(i);
1789         }
1790       if (II->getIntrinsicID() == Intrinsic::masked_gather)
1791         simplifyAndSetOp(II, 0, DemandedPtrs, PoisonElts2);
1792       simplifyAndSetOp(II, 3, DemandedPassThrough, PoisonElts3);
1793 
1794       // Output elements are undefined if the element from both sources are.
1795       // TODO: can strengthen via mask as well.
1796       PoisonElts = PoisonElts2 & PoisonElts3;
1797       break;
1798     }
1799     default: {
1800       // Handle target specific intrinsics
1801       std::optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic(
1802           *II, DemandedElts, PoisonElts, PoisonElts2, PoisonElts3,
1803           simplifyAndSetOp);
1804       if (V)
1805         return *V;
1806       break;
1807     }
1808     } // switch on IntrinsicID
1809     break;
1810   } // case Call
1811   } // switch on Opcode
1812 
1813   // TODO: We bail completely on integer div/rem and shifts because they have
1814   // UB/poison potential, but that should be refined.
1815   BinaryOperator *BO;
1816   if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
1817     Value *X = BO->getOperand(0);
1818     Value *Y = BO->getOperand(1);
1819 
1820     // Look for an equivalent binop except that one operand has been shuffled.
1821     // If the demand for this binop only includes elements that are the same as
1822     // the other binop, then we may be able to replace this binop with a use of
1823     // the earlier one.
1824     //
1825     // Example:
1826     // %other_bo = bo (shuf X, {0}), Y
1827     // %this_extracted_bo = extelt (bo X, Y), 0
1828     // -->
1829     // %other_bo = bo (shuf X, {0}), Y
1830     // %this_extracted_bo = extelt %other_bo, 0
1831     //
1832     // TODO: Handle demand of an arbitrary single element or more than one
1833     //       element instead of just element 0.
1834     // TODO: Unlike general demanded elements transforms, this should be safe
1835     //       for any (div/rem/shift) opcode too.
1836     if (DemandedElts == 1 && !X->hasOneUse() && !Y->hasOneUse() &&
1837         BO->hasOneUse() ) {
1838 
1839       auto findShufBO = [&](bool MatchShufAsOp0) -> User * {
1840         // Try to use shuffle-of-operand in place of an operand:
1841         // bo X, Y --> bo (shuf X), Y
1842         // bo X, Y --> bo X, (shuf Y)
1843         BinaryOperator::BinaryOps Opcode = BO->getOpcode();
1844         Value *ShufOp = MatchShufAsOp0 ? X : Y;
1845         Value *OtherOp = MatchShufAsOp0 ? Y : X;
1846         for (User *U : OtherOp->users()) {
1847           auto Shuf = m_Shuffle(m_Specific(ShufOp), m_Value(), m_ZeroMask());
1848           if (BO->isCommutative()
1849                   ? match(U, m_c_BinOp(Opcode, Shuf, m_Specific(OtherOp)))
1850                   : MatchShufAsOp0
1851                         ? match(U, m_BinOp(Opcode, Shuf, m_Specific(OtherOp)))
1852                         : match(U, m_BinOp(Opcode, m_Specific(OtherOp), Shuf)))
1853             if (DT.dominates(U, I))
1854               return U;
1855         }
1856         return nullptr;
1857       };
1858 
1859       if (User *ShufBO = findShufBO(/* MatchShufAsOp0 */ true))
1860         return ShufBO;
1861       if (User *ShufBO = findShufBO(/* MatchShufAsOp0 */ false))
1862         return ShufBO;
1863     }
1864 
1865     simplifyAndSetOp(I, 0, DemandedElts, PoisonElts);
1866     simplifyAndSetOp(I, 1, DemandedElts, PoisonElts2);
1867 
1868     // Output elements are undefined if both are undefined. Consider things
1869     // like undef & 0. The result is known zero, not undef.
1870     PoisonElts &= PoisonElts2;
1871   }
1872 
1873   // If we've proven all of the lanes poison, return a poison value.
1874   // TODO: Intersect w/demanded lanes
1875   if (PoisonElts.isAllOnes())
1876     return PoisonValue::get(I->getType());
1877 
1878   return MadeChange ? I : nullptr;
1879 }
1880