1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains logic for simplifying instructions based on information
10 // about how they are used.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/IR/GetElementPtrTypeIterator.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Support/KnownBits.h"
20 #include "llvm/Transforms/InstCombine/InstCombiner.h"
21 
22 using namespace llvm;
23 using namespace llvm::PatternMatch;
24 
25 #define DEBUG_TYPE "instcombine"
26 
27 static cl::opt<bool>
28     VerifyKnownBits("instcombine-verify-known-bits",
29                     cl::desc("Verify that computeKnownBits() and "
30                              "SimplifyDemandedBits() are consistent"),
31                     cl::Hidden, cl::init(false));
32 
33 /// Check to see if the specified operand of the specified instruction is a
34 /// constant integer. If so, check to see if there are any bits set in the
35 /// constant that are not demanded. If so, shrink the constant and return true.
36 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
37                                    const APInt &Demanded) {
38   assert(I && "No instruction?");
39   assert(OpNo < I->getNumOperands() && "Operand index too large");
40 
41   // The operand must be a constant integer or splat integer.
42   Value *Op = I->getOperand(OpNo);
43   const APInt *C;
44   if (!match(Op, m_APInt(C)))
45     return false;
46 
47   // If there are no bits set that aren't demanded, nothing to do.
48   if (C->isSubsetOf(Demanded))
49     return false;
50 
51   // This instruction is producing bits that are not demanded. Shrink the RHS.
52   I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
53 
54   return true;
55 }
56 
57 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
58 /// returns the element type's bitwidth.
59 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
60   if (unsigned BitWidth = Ty->getScalarSizeInBits())
61     return BitWidth;
62 
63   return DL.getPointerTypeSizeInBits(Ty);
64 }
65 
66 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
67 /// the instruction has any properties that allow us to simplify its operands.
68 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst,
69                                                        KnownBits &Known) {
70   APInt DemandedMask(APInt::getAllOnes(Known.getBitWidth()));
71   Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
72                                      0, &Inst);
73   if (!V) return false;
74   if (V == &Inst) return true;
75   replaceInstUsesWith(Inst, V);
76   return true;
77 }
78 
79 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
80 /// the instruction has any properties that allow us to simplify its operands.
81 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) {
82   KnownBits Known(getBitWidth(Inst.getType(), DL));
83   return SimplifyDemandedInstructionBits(Inst, Known);
84 }
85 
86 /// This form of SimplifyDemandedBits simplifies the specified instruction
87 /// operand if possible, updating it in place. It returns true if it made any
88 /// change and false otherwise.
89 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
90                                             const APInt &DemandedMask,
91                                             KnownBits &Known, unsigned Depth) {
92   Use &U = I->getOperandUse(OpNo);
93   Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
94                                           Depth, I);
95   if (!NewVal) return false;
96   if (Instruction* OpInst = dyn_cast<Instruction>(U))
97     salvageDebugInfo(*OpInst);
98 
99   replaceUse(U, NewVal);
100   return true;
101 }
102 
103 /// This function attempts to replace V with a simpler value based on the
104 /// demanded bits. When this function is called, it is known that only the bits
105 /// set in DemandedMask of the result of V are ever used downstream.
106 /// Consequently, depending on the mask and V, it may be possible to replace V
107 /// with a constant or one of its operands. In such cases, this function does
108 /// the replacement and returns true. In all other cases, it returns false after
109 /// analyzing the expression and setting KnownOne and known to be one in the
110 /// expression. Known.Zero contains all the bits that are known to be zero in
111 /// the expression. These are provided to potentially allow the caller (which
112 /// might recursively be SimplifyDemandedBits itself) to simplify the
113 /// expression.
114 /// Known.One and Known.Zero always follow the invariant that:
115 ///   Known.One & Known.Zero == 0.
116 /// That is, a bit can't be both 1 and 0. The bits in Known.One and Known.Zero
117 /// are accurate even for bits not in DemandedMask. Note
118 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
119 /// be the same.
120 ///
121 /// This returns null if it did not change anything and it permits no
122 /// simplification.  This returns V itself if it did some simplification of V's
123 /// operands based on the information about what bits are demanded. This returns
124 /// some other non-null value if it found out that V is equal to another value
125 /// in the context where the specified bits are demanded, but not for all users.
126 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
127                                                  KnownBits &Known,
128                                                  unsigned Depth,
129                                                  Instruction *CxtI) {
130   assert(V != nullptr && "Null pointer of Value???");
131   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
132   uint32_t BitWidth = DemandedMask.getBitWidth();
133   Type *VTy = V->getType();
134   assert(
135       (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
136       Known.getBitWidth() == BitWidth &&
137       "Value *V, DemandedMask and Known must have same BitWidth");
138 
139   if (isa<Constant>(V)) {
140     computeKnownBits(V, Known, Depth, CxtI);
141     return nullptr;
142   }
143 
144   Known.resetAll();
145   if (DemandedMask.isZero()) // Not demanding any bits from V.
146     return UndefValue::get(VTy);
147 
148   if (Depth == MaxAnalysisRecursionDepth)
149     return nullptr;
150 
151   Instruction *I = dyn_cast<Instruction>(V);
152   if (!I) {
153     computeKnownBits(V, Known, Depth, CxtI);
154     return nullptr;        // Only analyze instructions.
155   }
156 
157   // If there are multiple uses of this value and we aren't at the root, then
158   // we can't do any simplifications of the operands, because DemandedMask
159   // only reflects the bits demanded by *one* of the users.
160   if (Depth != 0 && !I->hasOneUse())
161     return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
162 
163   KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
164   // If this is the root being simplified, allow it to have multiple uses,
165   // just set the DemandedMask to all bits so that we can try to simplify the
166   // operands.  This allows visitTruncInst (for example) to simplify the
167   // operand of a trunc without duplicating all the logic below.
168   if (Depth == 0 && !V->hasOneUse())
169     DemandedMask.setAllBits();
170 
171   // Update flags after simplifying an operand based on the fact that some high
172   // order bits are not demanded.
173   auto disableWrapFlagsBasedOnUnusedHighBits = [](Instruction *I,
174                                                   unsigned NLZ) {
175     if (NLZ > 0) {
176       // Disable the nsw and nuw flags here: We can no longer guarantee that
177       // we won't wrap after simplification. Removing the nsw/nuw flags is
178       // legal here because the top bit is not demanded.
179       I->setHasNoSignedWrap(false);
180       I->setHasNoUnsignedWrap(false);
181     }
182     return I;
183   };
184 
185   // If the high-bits of an ADD/SUB/MUL are not demanded, then we do not care
186   // about the high bits of the operands.
187   auto simplifyOperandsBasedOnUnusedHighBits = [&](APInt &DemandedFromOps) {
188     unsigned NLZ = DemandedMask.countl_zero();
189     // Right fill the mask of bits for the operands to demand the most
190     // significant bit and all those below it.
191     DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
192     if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
193         SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
194         ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
195         SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
196       disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
197       return true;
198     }
199     return false;
200   };
201 
202   switch (I->getOpcode()) {
203   default:
204     computeKnownBits(I, Known, Depth, CxtI);
205     break;
206   case Instruction::And: {
207     // If either the LHS or the RHS are Zero, the result is zero.
208     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
209         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
210                              Depth + 1))
211       return I;
212     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
213     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
214 
215     Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown,
216                                          Depth, SQ.getWithInstruction(CxtI));
217 
218     // If the client is only demanding bits that we know, return the known
219     // constant.
220     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
221       return Constant::getIntegerValue(VTy, Known.One);
222 
223     // If all of the demanded bits are known 1 on one side, return the other.
224     // These bits cannot contribute to the result of the 'and'.
225     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
226       return I->getOperand(0);
227     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
228       return I->getOperand(1);
229 
230     // If the RHS is a constant, see if we can simplify it.
231     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
232       return I;
233 
234     break;
235   }
236   case Instruction::Or: {
237     // If either the LHS or the RHS are One, the result is One.
238     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
239         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
240                              Depth + 1)) {
241       // Disjoint flag may not longer hold.
242       I->dropPoisonGeneratingFlags();
243       return I;
244     }
245     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
246     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
247 
248     Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown,
249                                          Depth, SQ.getWithInstruction(CxtI));
250 
251     // If the client is only demanding bits that we know, return the known
252     // constant.
253     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
254       return Constant::getIntegerValue(VTy, Known.One);
255 
256     // If all of the demanded bits are known zero on one side, return the other.
257     // These bits cannot contribute to the result of the 'or'.
258     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
259       return I->getOperand(0);
260     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
261       return I->getOperand(1);
262 
263     // If the RHS is a constant, see if we can simplify it.
264     if (ShrinkDemandedConstant(I, 1, DemandedMask))
265       return I;
266 
267     // Infer disjoint flag if no common bits are set.
268     if (!cast<PossiblyDisjointInst>(I)->isDisjoint()) {
269       WithCache<const Value *> LHSCache(I->getOperand(0), LHSKnown),
270           RHSCache(I->getOperand(1), RHSKnown);
271       if (haveNoCommonBitsSet(LHSCache, RHSCache, SQ.getWithInstruction(I))) {
272         cast<PossiblyDisjointInst>(I)->setIsDisjoint(true);
273         return I;
274       }
275     }
276 
277     break;
278   }
279   case Instruction::Xor: {
280     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
281         SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
282       return I;
283     Value *LHS, *RHS;
284     if (DemandedMask == 1 &&
285         match(I->getOperand(0), m_Intrinsic<Intrinsic::ctpop>(m_Value(LHS))) &&
286         match(I->getOperand(1), m_Intrinsic<Intrinsic::ctpop>(m_Value(RHS)))) {
287       // (ctpop(X) ^ ctpop(Y)) & 1 --> ctpop(X^Y) & 1
288       IRBuilderBase::InsertPointGuard Guard(Builder);
289       Builder.SetInsertPoint(I);
290       auto *Xor = Builder.CreateXor(LHS, RHS);
291       return Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, Xor);
292     }
293 
294     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
295     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
296 
297     Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown,
298                                          Depth, SQ.getWithInstruction(CxtI));
299 
300     // If the client is only demanding bits that we know, return the known
301     // constant.
302     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
303       return Constant::getIntegerValue(VTy, Known.One);
304 
305     // If all of the demanded bits are known zero on one side, return the other.
306     // These bits cannot contribute to the result of the 'xor'.
307     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
308       return I->getOperand(0);
309     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
310       return I->getOperand(1);
311 
312     // If all of the demanded bits are known to be zero on one side or the
313     // other, turn this into an *inclusive* or.
314     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
315     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
316       Instruction *Or =
317           BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1));
318       if (DemandedMask.isAllOnes())
319         cast<PossiblyDisjointInst>(Or)->setIsDisjoint(true);
320       Or->takeName(I);
321       return InsertNewInstWith(Or, I->getIterator());
322     }
323 
324     // If all of the demanded bits on one side are known, and all of the set
325     // bits on that side are also known to be set on the other side, turn this
326     // into an AND, as we know the bits will be cleared.
327     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
328     if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
329         RHSKnown.One.isSubsetOf(LHSKnown.One)) {
330       Constant *AndC = Constant::getIntegerValue(VTy,
331                                                  ~RHSKnown.One & DemandedMask);
332       Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
333       return InsertNewInstWith(And, I->getIterator());
334     }
335 
336     // If the RHS is a constant, see if we can change it. Don't alter a -1
337     // constant because that's a canonical 'not' op, and that is better for
338     // combining, SCEV, and codegen.
339     const APInt *C;
340     if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnes()) {
341       if ((*C | ~DemandedMask).isAllOnes()) {
342         // Force bits to 1 to create a 'not' op.
343         I->setOperand(1, ConstantInt::getAllOnesValue(VTy));
344         return I;
345       }
346       // If we can't turn this into a 'not', try to shrink the constant.
347       if (ShrinkDemandedConstant(I, 1, DemandedMask))
348         return I;
349     }
350 
351     // If our LHS is an 'and' and if it has one use, and if any of the bits we
352     // are flipping are known to be set, then the xor is just resetting those
353     // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
354     // simplifying both of them.
355     if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) {
356       ConstantInt *AndRHS, *XorRHS;
357       if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
358           match(I->getOperand(1), m_ConstantInt(XorRHS)) &&
359           match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) &&
360           (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
361         APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
362 
363         Constant *AndC = ConstantInt::get(VTy, NewMask & AndRHS->getValue());
364         Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
365         InsertNewInstWith(NewAnd, I->getIterator());
366 
367         Constant *XorC = ConstantInt::get(VTy, NewMask & XorRHS->getValue());
368         Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
369         return InsertNewInstWith(NewXor, I->getIterator());
370       }
371     }
372     break;
373   }
374   case Instruction::Select: {
375     if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
376         SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
377       return I;
378     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
379     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
380 
381     // If the operands are constants, see if we can simplify them.
382     // This is similar to ShrinkDemandedConstant, but for a select we want to
383     // try to keep the selected constants the same as icmp value constants, if
384     // we can. This helps not break apart (or helps put back together)
385     // canonical patterns like min and max.
386     auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo,
387                                          const APInt &DemandedMask) {
388       const APInt *SelC;
389       if (!match(I->getOperand(OpNo), m_APInt(SelC)))
390         return false;
391 
392       // Get the constant out of the ICmp, if there is one.
393       // Only try this when exactly 1 operand is a constant (if both operands
394       // are constant, the icmp should eventually simplify). Otherwise, we may
395       // invert the transform that reduces set bits and infinite-loop.
396       Value *X;
397       const APInt *CmpC;
398       ICmpInst::Predicate Pred;
399       if (!match(I->getOperand(0), m_ICmp(Pred, m_Value(X), m_APInt(CmpC))) ||
400           isa<Constant>(X) || CmpC->getBitWidth() != SelC->getBitWidth())
401         return ShrinkDemandedConstant(I, OpNo, DemandedMask);
402 
403       // If the constant is already the same as the ICmp, leave it as-is.
404       if (*CmpC == *SelC)
405         return false;
406       // If the constants are not already the same, but can be with the demand
407       // mask, use the constant value from the ICmp.
408       if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) {
409         I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC));
410         return true;
411       }
412       return ShrinkDemandedConstant(I, OpNo, DemandedMask);
413     };
414     if (CanonicalizeSelectConstant(I, 1, DemandedMask) ||
415         CanonicalizeSelectConstant(I, 2, DemandedMask))
416       return I;
417 
418     // Only known if known in both the LHS and RHS.
419     Known = LHSKnown.intersectWith(RHSKnown);
420     break;
421   }
422   case Instruction::Trunc: {
423     // If we do not demand the high bits of a right-shifted and truncated value,
424     // then we may be able to truncate it before the shift.
425     Value *X;
426     const APInt *C;
427     if (match(I->getOperand(0), m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) {
428       // The shift amount must be valid (not poison) in the narrow type, and
429       // it must not be greater than the high bits demanded of the result.
430       if (C->ult(VTy->getScalarSizeInBits()) &&
431           C->ule(DemandedMask.countl_zero())) {
432         // trunc (lshr X, C) --> lshr (trunc X), C
433         IRBuilderBase::InsertPointGuard Guard(Builder);
434         Builder.SetInsertPoint(I);
435         Value *Trunc = Builder.CreateTrunc(X, VTy);
436         return Builder.CreateLShr(Trunc, C->getZExtValue());
437       }
438     }
439   }
440     [[fallthrough]];
441   case Instruction::ZExt: {
442     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
443 
444     APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
445     KnownBits InputKnown(SrcBitWidth);
446     if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) {
447       // For zext nneg, we may have dropped the instruction which made the
448       // input non-negative.
449       I->dropPoisonGeneratingFlags();
450       return I;
451     }
452     assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?");
453     if (I->getOpcode() == Instruction::ZExt && I->hasNonNeg() &&
454         !InputKnown.isNegative())
455       InputKnown.makeNonNegative();
456     Known = InputKnown.zextOrTrunc(BitWidth);
457 
458     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
459     break;
460   }
461   case Instruction::SExt: {
462     // Compute the bits in the result that are not present in the input.
463     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
464 
465     APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
466 
467     // If any of the sign extended bits are demanded, we know that the sign
468     // bit is demanded.
469     if (DemandedMask.getActiveBits() > SrcBitWidth)
470       InputDemandedBits.setBit(SrcBitWidth-1);
471 
472     KnownBits InputKnown(SrcBitWidth);
473     if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
474       return I;
475 
476     // If the input sign bit is known zero, or if the NewBits are not demanded
477     // convert this into a zero extension.
478     if (InputKnown.isNonNegative() ||
479         DemandedMask.getActiveBits() <= SrcBitWidth) {
480       // Convert to ZExt cast.
481       CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy);
482       NewCast->takeName(I);
483       return InsertNewInstWith(NewCast, I->getIterator());
484      }
485 
486     // If the sign bit of the input is known set or clear, then we know the
487     // top bits of the result.
488     Known = InputKnown.sext(BitWidth);
489     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
490     break;
491   }
492   case Instruction::Add: {
493     if ((DemandedMask & 1) == 0) {
494       // If we do not need the low bit, try to convert bool math to logic:
495       // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN
496       Value *X, *Y;
497       if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))),
498                            m_OneUse(m_SExt(m_Value(Y))))) &&
499           X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
500         // Truth table for inputs and output signbits:
501         //       X:0 | X:1
502         //      ----------
503         // Y:0  |  0 | 0 |
504         // Y:1  | -1 | 0 |
505         //      ----------
506         IRBuilderBase::InsertPointGuard Guard(Builder);
507         Builder.SetInsertPoint(I);
508         Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y);
509         return Builder.CreateSExt(AndNot, VTy);
510       }
511 
512       // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN
513       // TODO: Relax the one-use checks because we are removing an instruction?
514       if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))),
515                          m_OneUse(m_SExt(m_Value(Y))))) &&
516           X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
517         // Truth table for inputs and output signbits:
518         //       X:0 | X:1
519         //      -----------
520         // Y:0  | -1 | -1 |
521         // Y:1  | -1 |  0 |
522         //      -----------
523         IRBuilderBase::InsertPointGuard Guard(Builder);
524         Builder.SetInsertPoint(I);
525         Value *Or = Builder.CreateOr(X, Y);
526         return Builder.CreateSExt(Or, VTy);
527       }
528     }
529 
530     // Right fill the mask of bits for the operands to demand the most
531     // significant bit and all those below it.
532     unsigned NLZ = DemandedMask.countl_zero();
533     APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
534     if (ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
535         SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1))
536       return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
537 
538     // If low order bits are not demanded and known to be zero in one operand,
539     // then we don't need to demand them from the other operand, since they
540     // can't cause overflow into any bits that are demanded in the result.
541     unsigned NTZ = (~DemandedMask & RHSKnown.Zero).countr_one();
542     APInt DemandedFromLHS = DemandedFromOps;
543     DemandedFromLHS.clearLowBits(NTZ);
544     if (ShrinkDemandedConstant(I, 0, DemandedFromLHS) ||
545         SimplifyDemandedBits(I, 0, DemandedFromLHS, LHSKnown, Depth + 1))
546       return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
547 
548     // If we are known to be adding zeros to every bit below
549     // the highest demanded bit, we just return the other side.
550     if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
551       return I->getOperand(0);
552     if (DemandedFromOps.isSubsetOf(LHSKnown.Zero))
553       return I->getOperand(1);
554 
555     // (add X, C) --> (xor X, C) IFF C is equal to the top bit of the DemandMask
556     {
557       const APInt *C;
558       if (match(I->getOperand(1), m_APInt(C)) &&
559           C->isOneBitSet(DemandedMask.getActiveBits() - 1)) {
560         IRBuilderBase::InsertPointGuard Guard(Builder);
561         Builder.SetInsertPoint(I);
562         return Builder.CreateXor(I->getOperand(0), ConstantInt::get(VTy, *C));
563       }
564     }
565 
566     // Otherwise just compute the known bits of the result.
567     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
568     Known = KnownBits::computeForAddSub(true, NSW, LHSKnown, RHSKnown);
569     break;
570   }
571   case Instruction::Sub: {
572     // Right fill the mask of bits for the operands to demand the most
573     // significant bit and all those below it.
574     unsigned NLZ = DemandedMask.countl_zero();
575     APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
576     if (ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
577         SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1))
578       return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
579 
580     // If low order bits are not demanded and are known to be zero in RHS,
581     // then we don't need to demand them from LHS, since they can't cause a
582     // borrow from any bits that are demanded in the result.
583     unsigned NTZ = (~DemandedMask & RHSKnown.Zero).countr_one();
584     APInt DemandedFromLHS = DemandedFromOps;
585     DemandedFromLHS.clearLowBits(NTZ);
586     if (ShrinkDemandedConstant(I, 0, DemandedFromLHS) ||
587         SimplifyDemandedBits(I, 0, DemandedFromLHS, LHSKnown, Depth + 1))
588       return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
589 
590     // If we are known to be subtracting zeros from every bit below
591     // the highest demanded bit, we just return the other side.
592     if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
593       return I->getOperand(0);
594     // We can't do this with the LHS for subtraction, unless we are only
595     // demanding the LSB.
596     if (DemandedFromOps.isOne() && DemandedFromOps.isSubsetOf(LHSKnown.Zero))
597       return I->getOperand(1);
598 
599     // Otherwise just compute the known bits of the result.
600     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
601     Known = KnownBits::computeForAddSub(false, NSW, LHSKnown, RHSKnown);
602     break;
603   }
604   case Instruction::Mul: {
605     APInt DemandedFromOps;
606     if (simplifyOperandsBasedOnUnusedHighBits(DemandedFromOps))
607       return I;
608 
609     if (DemandedMask.isPowerOf2()) {
610       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
611       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
612       // odd (has LSB set), then the left-shifted low bit of X is the answer.
613       unsigned CTZ = DemandedMask.countr_zero();
614       const APInt *C;
615       if (match(I->getOperand(1), m_APInt(C)) && C->countr_zero() == CTZ) {
616         Constant *ShiftC = ConstantInt::get(VTy, CTZ);
617         Instruction *Shl = BinaryOperator::CreateShl(I->getOperand(0), ShiftC);
618         return InsertNewInstWith(Shl, I->getIterator());
619       }
620     }
621     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
622     // X * X is odd iff X is odd.
623     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
624     if (I->getOperand(0) == I->getOperand(1) && DemandedMask.ult(4)) {
625       Constant *One = ConstantInt::get(VTy, 1);
626       Instruction *And1 = BinaryOperator::CreateAnd(I->getOperand(0), One);
627       return InsertNewInstWith(And1, I->getIterator());
628     }
629 
630     computeKnownBits(I, Known, Depth, CxtI);
631     break;
632   }
633   case Instruction::Shl: {
634     const APInt *SA;
635     if (match(I->getOperand(1), m_APInt(SA))) {
636       const APInt *ShrAmt;
637       if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
638         if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
639           if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
640                                                     DemandedMask, Known))
641             return R;
642 
643       // TODO: If we only want bits that already match the signbit then we don't
644       // need to shift.
645 
646       // If we can pre-shift a right-shifted constant to the left without
647       // losing any high bits amd we don't demand the low bits, then eliminate
648       // the left-shift:
649       // (C >> X) << LeftShiftAmtC --> (C << RightShiftAmtC) >> X
650       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
651       Value *X;
652       Constant *C;
653       if (DemandedMask.countr_zero() >= ShiftAmt &&
654           match(I->getOperand(0), m_LShr(m_ImmConstant(C), m_Value(X)))) {
655         Constant *LeftShiftAmtC = ConstantInt::get(VTy, ShiftAmt);
656         Constant *NewC = ConstantFoldBinaryOpOperands(Instruction::Shl, C,
657                                                       LeftShiftAmtC, DL);
658         if (ConstantFoldBinaryOpOperands(Instruction::LShr, NewC, LeftShiftAmtC,
659                                          DL) == C) {
660           Instruction *Lshr = BinaryOperator::CreateLShr(NewC, X);
661           return InsertNewInstWith(Lshr, I->getIterator());
662         }
663       }
664 
665       APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
666 
667       // If the shift is NUW/NSW, then it does demand the high bits.
668       ShlOperator *IOp = cast<ShlOperator>(I);
669       if (IOp->hasNoSignedWrap())
670         DemandedMaskIn.setHighBits(ShiftAmt+1);
671       else if (IOp->hasNoUnsignedWrap())
672         DemandedMaskIn.setHighBits(ShiftAmt);
673 
674       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
675         return I;
676       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
677 
678       Known = KnownBits::shl(Known,
679                              KnownBits::makeConstant(APInt(BitWidth, ShiftAmt)),
680                              /* NUW */ IOp->hasNoUnsignedWrap(),
681                              /* NSW */ IOp->hasNoSignedWrap());
682     } else {
683       // This is a variable shift, so we can't shift the demand mask by a known
684       // amount. But if we are not demanding high bits, then we are not
685       // demanding those bits from the pre-shifted operand either.
686       if (unsigned CTLZ = DemandedMask.countl_zero()) {
687         APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
688         if (SimplifyDemandedBits(I, 0, DemandedFromOp, Known, Depth + 1)) {
689           // We can't guarantee that nsw/nuw hold after simplifying the operand.
690           I->dropPoisonGeneratingFlags();
691           return I;
692         }
693       }
694       computeKnownBits(I, Known, Depth, CxtI);
695     }
696     break;
697   }
698   case Instruction::LShr: {
699     const APInt *SA;
700     if (match(I->getOperand(1), m_APInt(SA))) {
701       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
702 
703       // If we are just demanding the shifted sign bit and below, then this can
704       // be treated as an ASHR in disguise.
705       if (DemandedMask.countl_zero() >= ShiftAmt) {
706         // If we only want bits that already match the signbit then we don't
707         // need to shift.
708         unsigned NumHiDemandedBits = BitWidth - DemandedMask.countr_zero();
709         unsigned SignBits =
710             ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
711         if (SignBits >= NumHiDemandedBits)
712           return I->getOperand(0);
713 
714         // If we can pre-shift a left-shifted constant to the right without
715         // losing any low bits (we already know we don't demand the high bits),
716         // then eliminate the right-shift:
717         // (C << X) >> RightShiftAmtC --> (C >> RightShiftAmtC) << X
718         Value *X;
719         Constant *C;
720         if (match(I->getOperand(0), m_Shl(m_ImmConstant(C), m_Value(X)))) {
721           Constant *RightShiftAmtC = ConstantInt::get(VTy, ShiftAmt);
722           Constant *NewC = ConstantFoldBinaryOpOperands(Instruction::LShr, C,
723                                                         RightShiftAmtC, DL);
724           if (ConstantFoldBinaryOpOperands(Instruction::Shl, NewC,
725                                            RightShiftAmtC, DL) == C) {
726             Instruction *Shl = BinaryOperator::CreateShl(NewC, X);
727             return InsertNewInstWith(Shl, I->getIterator());
728           }
729         }
730       }
731 
732       // Unsigned shift right.
733       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
734       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) {
735         // exact flag may not longer hold.
736         I->dropPoisonGeneratingFlags();
737         return I;
738       }
739       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
740       Known.Zero.lshrInPlace(ShiftAmt);
741       Known.One.lshrInPlace(ShiftAmt);
742       if (ShiftAmt)
743         Known.Zero.setHighBits(ShiftAmt);  // high bits known zero.
744     } else {
745       computeKnownBits(I, Known, Depth, CxtI);
746     }
747     break;
748   }
749   case Instruction::AShr: {
750     unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
751 
752     // If we only want bits that already match the signbit then we don't need
753     // to shift.
754     unsigned NumHiDemandedBits = BitWidth - DemandedMask.countr_zero();
755     if (SignBits >= NumHiDemandedBits)
756       return I->getOperand(0);
757 
758     // If this is an arithmetic shift right and only the low-bit is set, we can
759     // always convert this into a logical shr, even if the shift amount is
760     // variable.  The low bit of the shift cannot be an input sign bit unless
761     // the shift amount is >= the size of the datatype, which is undefined.
762     if (DemandedMask.isOne()) {
763       // Perform the logical shift right.
764       Instruction *NewVal = BinaryOperator::CreateLShr(
765                         I->getOperand(0), I->getOperand(1), I->getName());
766       return InsertNewInstWith(NewVal, I->getIterator());
767     }
768 
769     const APInt *SA;
770     if (match(I->getOperand(1), m_APInt(SA))) {
771       uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
772 
773       // Signed shift right.
774       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
775       // If any of the high bits are demanded, we should set the sign bit as
776       // demanded.
777       if (DemandedMask.countl_zero() <= ShiftAmt)
778         DemandedMaskIn.setSignBit();
779 
780       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) {
781         // exact flag may not longer hold.
782         I->dropPoisonGeneratingFlags();
783         return I;
784       }
785 
786       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
787       // Compute the new bits that are at the top now plus sign bits.
788       APInt HighBits(APInt::getHighBitsSet(
789           BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
790       Known.Zero.lshrInPlace(ShiftAmt);
791       Known.One.lshrInPlace(ShiftAmt);
792 
793       // If the input sign bit is known to be zero, or if none of the top bits
794       // are demanded, turn this into an unsigned shift right.
795       assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
796       if (Known.Zero[BitWidth-ShiftAmt-1] ||
797           !DemandedMask.intersects(HighBits)) {
798         BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
799                                                           I->getOperand(1));
800         LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
801         LShr->takeName(I);
802         return InsertNewInstWith(LShr, I->getIterator());
803       } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
804         Known.One |= HighBits;
805       }
806     } else {
807       computeKnownBits(I, Known, Depth, CxtI);
808     }
809     break;
810   }
811   case Instruction::UDiv: {
812     // UDiv doesn't demand low bits that are zero in the divisor.
813     const APInt *SA;
814     if (match(I->getOperand(1), m_APInt(SA))) {
815       // TODO: Take the demanded mask of the result into account.
816       unsigned RHSTrailingZeros = SA->countr_zero();
817       APInt DemandedMaskIn =
818           APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
819       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) {
820         // We can't guarantee that "exact" is still true after changing the
821         // the dividend.
822         I->dropPoisonGeneratingFlags();
823         return I;
824       }
825 
826       Known = KnownBits::udiv(LHSKnown, KnownBits::makeConstant(*SA),
827                               cast<BinaryOperator>(I)->isExact());
828     } else {
829       computeKnownBits(I, Known, Depth, CxtI);
830     }
831     break;
832   }
833   case Instruction::SRem: {
834     const APInt *Rem;
835     if (match(I->getOperand(1), m_APInt(Rem))) {
836       // X % -1 demands all the bits because we don't want to introduce
837       // INT_MIN % -1 (== undef) by accident.
838       if (Rem->isAllOnes())
839         break;
840       APInt RA = Rem->abs();
841       if (RA.isPowerOf2()) {
842         if (DemandedMask.ult(RA))    // srem won't affect demanded bits
843           return I->getOperand(0);
844 
845         APInt LowBits = RA - 1;
846         APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
847         if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
848           return I;
849 
850         // The low bits of LHS are unchanged by the srem.
851         Known.Zero = LHSKnown.Zero & LowBits;
852         Known.One = LHSKnown.One & LowBits;
853 
854         // If LHS is non-negative or has all low bits zero, then the upper bits
855         // are all zero.
856         if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
857           Known.Zero |= ~LowBits;
858 
859         // If LHS is negative and not all low bits are zero, then the upper bits
860         // are all one.
861         if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
862           Known.One |= ~LowBits;
863 
864         assert(!Known.hasConflict() && "Bits known to be one AND zero?");
865         break;
866       }
867     }
868 
869     computeKnownBits(I, Known, Depth, CxtI);
870     break;
871   }
872   case Instruction::URem: {
873     APInt AllOnes = APInt::getAllOnes(BitWidth);
874     if (SimplifyDemandedBits(I, 0, AllOnes, LHSKnown, Depth + 1) ||
875         SimplifyDemandedBits(I, 1, AllOnes, RHSKnown, Depth + 1))
876       return I;
877 
878     Known = KnownBits::urem(LHSKnown, RHSKnown);
879     break;
880   }
881   case Instruction::Call: {
882     bool KnownBitsComputed = false;
883     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
884       switch (II->getIntrinsicID()) {
885       case Intrinsic::abs: {
886         if (DemandedMask == 1)
887           return II->getArgOperand(0);
888         break;
889       }
890       case Intrinsic::ctpop: {
891         // Checking if the number of clear bits is odd (parity)? If the type has
892         // an even number of bits, that's the same as checking if the number of
893         // set bits is odd, so we can eliminate the 'not' op.
894         Value *X;
895         if (DemandedMask == 1 && VTy->getScalarSizeInBits() % 2 == 0 &&
896             match(II->getArgOperand(0), m_Not(m_Value(X)))) {
897           Function *Ctpop = Intrinsic::getDeclaration(
898               II->getModule(), Intrinsic::ctpop, VTy);
899           return InsertNewInstWith(CallInst::Create(Ctpop, {X}), I->getIterator());
900         }
901         break;
902       }
903       case Intrinsic::bswap: {
904         // If the only bits demanded come from one byte of the bswap result,
905         // just shift the input byte into position to eliminate the bswap.
906         unsigned NLZ = DemandedMask.countl_zero();
907         unsigned NTZ = DemandedMask.countr_zero();
908 
909         // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
910         // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
911         // have 14 leading zeros, round to 8.
912         NLZ = alignDown(NLZ, 8);
913         NTZ = alignDown(NTZ, 8);
914         // If we need exactly one byte, we can do this transformation.
915         if (BitWidth - NLZ - NTZ == 8) {
916           // Replace this with either a left or right shift to get the byte into
917           // the right place.
918           Instruction *NewVal;
919           if (NLZ > NTZ)
920             NewVal = BinaryOperator::CreateLShr(
921                 II->getArgOperand(0), ConstantInt::get(VTy, NLZ - NTZ));
922           else
923             NewVal = BinaryOperator::CreateShl(
924                 II->getArgOperand(0), ConstantInt::get(VTy, NTZ - NLZ));
925           NewVal->takeName(I);
926           return InsertNewInstWith(NewVal, I->getIterator());
927         }
928         break;
929       }
930       case Intrinsic::ptrmask: {
931         unsigned MaskWidth = I->getOperand(1)->getType()->getScalarSizeInBits();
932         RHSKnown = KnownBits(MaskWidth);
933         // If either the LHS or the RHS are Zero, the result is zero.
934         if (SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1) ||
935             SimplifyDemandedBits(
936                 I, 1, (DemandedMask & ~LHSKnown.Zero).zextOrTrunc(MaskWidth),
937                 RHSKnown, Depth + 1))
938           return I;
939 
940         // TODO: Should be 1-extend
941         RHSKnown = RHSKnown.anyextOrTrunc(BitWidth);
942         assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
943         assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
944 
945         Known = LHSKnown & RHSKnown;
946         KnownBitsComputed = true;
947 
948         // If the client is only demanding bits we know to be zero, return
949         // `llvm.ptrmask(p, 0)`. We can't return `null` here due to pointer
950         // provenance, but making the mask zero will be easily optimizable in
951         // the backend.
952         if (DemandedMask.isSubsetOf(Known.Zero) &&
953             !match(I->getOperand(1), m_Zero()))
954           return replaceOperand(
955               *I, 1, Constant::getNullValue(I->getOperand(1)->getType()));
956 
957         // Mask in demanded space does nothing.
958         // NOTE: We may have attributes associated with the return value of the
959         // llvm.ptrmask intrinsic that will be lost when we just return the
960         // operand. We should try to preserve them.
961         if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
962           return I->getOperand(0);
963 
964         // If the RHS is a constant, see if we can simplify it.
965         if (ShrinkDemandedConstant(
966                 I, 1, (DemandedMask & ~LHSKnown.Zero).zextOrTrunc(MaskWidth)))
967           return I;
968 
969         break;
970       }
971 
972       case Intrinsic::fshr:
973       case Intrinsic::fshl: {
974         const APInt *SA;
975         if (!match(I->getOperand(2), m_APInt(SA)))
976           break;
977 
978         // Normalize to funnel shift left. APInt shifts of BitWidth are well-
979         // defined, so no need to special-case zero shifts here.
980         uint64_t ShiftAmt = SA->urem(BitWidth);
981         if (II->getIntrinsicID() == Intrinsic::fshr)
982           ShiftAmt = BitWidth - ShiftAmt;
983 
984         APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt));
985         APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt));
986         if (I->getOperand(0) != I->getOperand(1)) {
987           if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown,
988                                    Depth + 1) ||
989               SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1))
990             return I;
991         } else { // fshl is a rotate
992           // Avoid converting rotate into funnel shift.
993           // Only simplify if one operand is constant.
994           LHSKnown = computeKnownBits(I->getOperand(0), Depth + 1, I);
995           if (DemandedMaskLHS.isSubsetOf(LHSKnown.Zero | LHSKnown.One) &&
996               !match(I->getOperand(0), m_SpecificInt(LHSKnown.One))) {
997             replaceOperand(*I, 0, Constant::getIntegerValue(VTy, LHSKnown.One));
998             return I;
999           }
1000 
1001           RHSKnown = computeKnownBits(I->getOperand(1), Depth + 1, I);
1002           if (DemandedMaskRHS.isSubsetOf(RHSKnown.Zero | RHSKnown.One) &&
1003               !match(I->getOperand(1), m_SpecificInt(RHSKnown.One))) {
1004             replaceOperand(*I, 1, Constant::getIntegerValue(VTy, RHSKnown.One));
1005             return I;
1006           }
1007         }
1008 
1009         Known.Zero = LHSKnown.Zero.shl(ShiftAmt) |
1010                      RHSKnown.Zero.lshr(BitWidth - ShiftAmt);
1011         Known.One = LHSKnown.One.shl(ShiftAmt) |
1012                     RHSKnown.One.lshr(BitWidth - ShiftAmt);
1013         KnownBitsComputed = true;
1014         break;
1015       }
1016       case Intrinsic::umax: {
1017         // UMax(A, C) == A if ...
1018         // The lowest non-zero bit of DemandMask is higher than the highest
1019         // non-zero bit of C.
1020         const APInt *C;
1021         unsigned CTZ = DemandedMask.countr_zero();
1022         if (match(II->getArgOperand(1), m_APInt(C)) &&
1023             CTZ >= C->getActiveBits())
1024           return II->getArgOperand(0);
1025         break;
1026       }
1027       case Intrinsic::umin: {
1028         // UMin(A, C) == A if ...
1029         // The lowest non-zero bit of DemandMask is higher than the highest
1030         // non-one bit of C.
1031         // This comes from using DeMorgans on the above umax example.
1032         const APInt *C;
1033         unsigned CTZ = DemandedMask.countr_zero();
1034         if (match(II->getArgOperand(1), m_APInt(C)) &&
1035             CTZ >= C->getBitWidth() - C->countl_one())
1036           return II->getArgOperand(0);
1037         break;
1038       }
1039       default: {
1040         // Handle target specific intrinsics
1041         std::optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic(
1042             *II, DemandedMask, Known, KnownBitsComputed);
1043         if (V)
1044           return *V;
1045         break;
1046       }
1047       }
1048     }
1049 
1050     if (!KnownBitsComputed)
1051       computeKnownBits(V, Known, Depth, CxtI);
1052     break;
1053   }
1054   }
1055 
1056   if (V->getType()->isPointerTy()) {
1057     Align Alignment = V->getPointerAlignment(DL);
1058     Known.Zero.setLowBits(Log2(Alignment));
1059   }
1060 
1061   // If the client is only demanding bits that we know, return the known
1062   // constant. We can't directly simplify pointers as a constant because of
1063   // pointer provenance.
1064   // TODO: We could return `(inttoptr const)` for pointers.
1065   if (!V->getType()->isPointerTy() && DemandedMask.isSubsetOf(Known.Zero | Known.One))
1066     return Constant::getIntegerValue(VTy, Known.One);
1067 
1068   if (VerifyKnownBits) {
1069     KnownBits ReferenceKnown = computeKnownBits(V, Depth, CxtI);
1070     if (Known != ReferenceKnown) {
1071       errs() << "Mismatched known bits for " << *V << " in "
1072              << I->getFunction()->getName() << "\n";
1073       errs() << "computeKnownBits(): " << ReferenceKnown << "\n";
1074       errs() << "SimplifyDemandedBits(): " << Known << "\n";
1075       std::abort();
1076     }
1077   }
1078 
1079   return nullptr;
1080 }
1081 
1082 /// Helper routine of SimplifyDemandedUseBits. It computes Known
1083 /// bits. It also tries to handle simplifications that can be done based on
1084 /// DemandedMask, but without modifying the Instruction.
1085 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits(
1086     Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth,
1087     Instruction *CxtI) {
1088   unsigned BitWidth = DemandedMask.getBitWidth();
1089   Type *ITy = I->getType();
1090 
1091   KnownBits LHSKnown(BitWidth);
1092   KnownBits RHSKnown(BitWidth);
1093 
1094   // Despite the fact that we can't simplify this instruction in all User's
1095   // context, we can at least compute the known bits, and we can
1096   // do simplifications that apply to *just* the one user if we know that
1097   // this instruction has a simpler value in that context.
1098   switch (I->getOpcode()) {
1099   case Instruction::And: {
1100     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
1101     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
1102     Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown,
1103                                          Depth, SQ.getWithInstruction(CxtI));
1104     computeKnownBitsFromContext(I, Known, Depth, SQ.getWithInstruction(CxtI));
1105 
1106     // If the client is only demanding bits that we know, return the known
1107     // constant.
1108     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
1109       return Constant::getIntegerValue(ITy, Known.One);
1110 
1111     // If all of the demanded bits are known 1 on one side, return the other.
1112     // These bits cannot contribute to the result of the 'and' in this context.
1113     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
1114       return I->getOperand(0);
1115     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
1116       return I->getOperand(1);
1117 
1118     break;
1119   }
1120   case Instruction::Or: {
1121     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
1122     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
1123     Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown,
1124                                          Depth, SQ.getWithInstruction(CxtI));
1125     computeKnownBitsFromContext(I, Known, Depth, SQ.getWithInstruction(CxtI));
1126 
1127     // If the client is only demanding bits that we know, return the known
1128     // constant.
1129     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
1130       return Constant::getIntegerValue(ITy, Known.One);
1131 
1132     // We can simplify (X|Y) -> X or Y in the user's context if we know that
1133     // only bits from X or Y are demanded.
1134     // If all of the demanded bits are known zero on one side, return the other.
1135     // These bits cannot contribute to the result of the 'or' in this context.
1136     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
1137       return I->getOperand(0);
1138     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
1139       return I->getOperand(1);
1140 
1141     break;
1142   }
1143   case Instruction::Xor: {
1144     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
1145     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
1146     Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown,
1147                                          Depth, SQ.getWithInstruction(CxtI));
1148     computeKnownBitsFromContext(I, Known, Depth, SQ.getWithInstruction(CxtI));
1149 
1150     // If the client is only demanding bits that we know, return the known
1151     // constant.
1152     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
1153       return Constant::getIntegerValue(ITy, Known.One);
1154 
1155     // We can simplify (X^Y) -> X or Y in the user's context if we know that
1156     // only bits from X or Y are demanded.
1157     // If all of the demanded bits are known zero on one side, return the other.
1158     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
1159       return I->getOperand(0);
1160     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
1161       return I->getOperand(1);
1162 
1163     break;
1164   }
1165   case Instruction::Add: {
1166     unsigned NLZ = DemandedMask.countl_zero();
1167     APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
1168 
1169     // If an operand adds zeros to every bit below the highest demanded bit,
1170     // that operand doesn't change the result. Return the other side.
1171     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
1172     if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
1173       return I->getOperand(0);
1174 
1175     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
1176     if (DemandedFromOps.isSubsetOf(LHSKnown.Zero))
1177       return I->getOperand(1);
1178 
1179     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1180     Known = KnownBits::computeForAddSub(/*Add*/ true, NSW, LHSKnown, RHSKnown);
1181     computeKnownBitsFromContext(I, Known, Depth, SQ.getWithInstruction(CxtI));
1182     break;
1183   }
1184   case Instruction::Sub: {
1185     unsigned NLZ = DemandedMask.countl_zero();
1186     APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
1187 
1188     // If an operand subtracts zeros from every bit below the highest demanded
1189     // bit, that operand doesn't change the result. Return the other side.
1190     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
1191     if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
1192       return I->getOperand(0);
1193 
1194     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1195     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
1196     Known = KnownBits::computeForAddSub(/*Add*/ false, NSW, LHSKnown, RHSKnown);
1197     computeKnownBitsFromContext(I, Known, Depth, SQ.getWithInstruction(CxtI));
1198     break;
1199   }
1200   case Instruction::AShr: {
1201     // Compute the Known bits to simplify things downstream.
1202     computeKnownBits(I, Known, Depth, CxtI);
1203 
1204     // If this user is only demanding bits that we know, return the known
1205     // constant.
1206     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
1207       return Constant::getIntegerValue(ITy, Known.One);
1208 
1209     // If the right shift operand 0 is a result of a left shift by the same
1210     // amount, this is probably a zero/sign extension, which may be unnecessary,
1211     // if we do not demand any of the new sign bits. So, return the original
1212     // operand instead.
1213     const APInt *ShiftRC;
1214     const APInt *ShiftLC;
1215     Value *X;
1216     unsigned BitWidth = DemandedMask.getBitWidth();
1217     if (match(I,
1218               m_AShr(m_Shl(m_Value(X), m_APInt(ShiftLC)), m_APInt(ShiftRC))) &&
1219         ShiftLC == ShiftRC && ShiftLC->ult(BitWidth) &&
1220         DemandedMask.isSubsetOf(APInt::getLowBitsSet(
1221             BitWidth, BitWidth - ShiftRC->getZExtValue()))) {
1222       return X;
1223     }
1224 
1225     break;
1226   }
1227   default:
1228     // Compute the Known bits to simplify things downstream.
1229     computeKnownBits(I, Known, Depth, CxtI);
1230 
1231     // If this user is only demanding bits that we know, return the known
1232     // constant.
1233     if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
1234       return Constant::getIntegerValue(ITy, Known.One);
1235 
1236     break;
1237   }
1238 
1239   return nullptr;
1240 }
1241 
1242 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
1243 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
1244 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
1245 /// of "C2-C1".
1246 ///
1247 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
1248 /// ..., bn}, without considering the specific value X is holding.
1249 /// This transformation is legal iff one of following conditions is hold:
1250 ///  1) All the bit in S are 0, in this case E1 == E2.
1251 ///  2) We don't care those bits in S, per the input DemandedMask.
1252 ///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
1253 ///     rest bits.
1254 ///
1255 /// Currently we only test condition 2).
1256 ///
1257 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
1258 /// not successful.
1259 Value *InstCombinerImpl::simplifyShrShlDemandedBits(
1260     Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
1261     const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) {
1262   if (!ShlOp1 || !ShrOp1)
1263     return nullptr; // No-op.
1264 
1265   Value *VarX = Shr->getOperand(0);
1266   Type *Ty = VarX->getType();
1267   unsigned BitWidth = Ty->getScalarSizeInBits();
1268   if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
1269     return nullptr; // Undef.
1270 
1271   unsigned ShlAmt = ShlOp1.getZExtValue();
1272   unsigned ShrAmt = ShrOp1.getZExtValue();
1273 
1274   Known.One.clearAllBits();
1275   Known.Zero.setLowBits(ShlAmt - 1);
1276   Known.Zero &= DemandedMask;
1277 
1278   APInt BitMask1(APInt::getAllOnes(BitWidth));
1279   APInt BitMask2(APInt::getAllOnes(BitWidth));
1280 
1281   bool isLshr = (Shr->getOpcode() == Instruction::LShr);
1282   BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
1283                       (BitMask1.ashr(ShrAmt) << ShlAmt);
1284 
1285   if (ShrAmt <= ShlAmt) {
1286     BitMask2 <<= (ShlAmt - ShrAmt);
1287   } else {
1288     BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
1289                         BitMask2.ashr(ShrAmt - ShlAmt);
1290   }
1291 
1292   // Check if condition-2 (see the comment to this function) is satified.
1293   if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
1294     if (ShrAmt == ShlAmt)
1295       return VarX;
1296 
1297     if (!Shr->hasOneUse())
1298       return nullptr;
1299 
1300     BinaryOperator *New;
1301     if (ShrAmt < ShlAmt) {
1302       Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
1303       New = BinaryOperator::CreateShl(VarX, Amt);
1304       BinaryOperator *Orig = cast<BinaryOperator>(Shl);
1305       New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
1306       New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
1307     } else {
1308       Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
1309       New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
1310                      BinaryOperator::CreateAShr(VarX, Amt);
1311       if (cast<BinaryOperator>(Shr)->isExact())
1312         New->setIsExact(true);
1313     }
1314 
1315     return InsertNewInstWith(New, Shl->getIterator());
1316   }
1317 
1318   return nullptr;
1319 }
1320 
1321 /// The specified value produces a vector with any number of elements.
1322 /// This method analyzes which elements of the operand are undef or poison and
1323 /// returns that information in UndefElts.
1324 ///
1325 /// DemandedElts contains the set of elements that are actually used by the
1326 /// caller, and by default (AllowMultipleUsers equals false) the value is
1327 /// simplified only if it has a single caller. If AllowMultipleUsers is set
1328 /// to true, DemandedElts refers to the union of sets of elements that are
1329 /// used by all callers.
1330 ///
1331 /// If the information about demanded elements can be used to simplify the
1332 /// operation, the operation is simplified, then the resultant value is
1333 /// returned.  This returns null if no change was made.
1334 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V,
1335                                                     APInt DemandedElts,
1336                                                     APInt &UndefElts,
1337                                                     unsigned Depth,
1338                                                     bool AllowMultipleUsers) {
1339   // Cannot analyze scalable type. The number of vector elements is not a
1340   // compile-time constant.
1341   if (isa<ScalableVectorType>(V->getType()))
1342     return nullptr;
1343 
1344   unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
1345   APInt EltMask(APInt::getAllOnes(VWidth));
1346   assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
1347 
1348   if (match(V, m_Undef())) {
1349     // If the entire vector is undef or poison, just return this info.
1350     UndefElts = EltMask;
1351     return nullptr;
1352   }
1353 
1354   if (DemandedElts.isZero()) { // If nothing is demanded, provide poison.
1355     UndefElts = EltMask;
1356     return PoisonValue::get(V->getType());
1357   }
1358 
1359   UndefElts = 0;
1360 
1361   if (auto *C = dyn_cast<Constant>(V)) {
1362     // Check if this is identity. If so, return 0 since we are not simplifying
1363     // anything.
1364     if (DemandedElts.isAllOnes())
1365       return nullptr;
1366 
1367     Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1368     Constant *Poison = PoisonValue::get(EltTy);
1369     SmallVector<Constant*, 16> Elts;
1370     for (unsigned i = 0; i != VWidth; ++i) {
1371       if (!DemandedElts[i]) {   // If not demanded, set to poison.
1372         Elts.push_back(Poison);
1373         UndefElts.setBit(i);
1374         continue;
1375       }
1376 
1377       Constant *Elt = C->getAggregateElement(i);
1378       if (!Elt) return nullptr;
1379 
1380       Elts.push_back(Elt);
1381       if (isa<UndefValue>(Elt))   // Already undef or poison.
1382         UndefElts.setBit(i);
1383     }
1384 
1385     // If we changed the constant, return it.
1386     Constant *NewCV = ConstantVector::get(Elts);
1387     return NewCV != C ? NewCV : nullptr;
1388   }
1389 
1390   // Limit search depth.
1391   if (Depth == 10)
1392     return nullptr;
1393 
1394   if (!AllowMultipleUsers) {
1395     // If multiple users are using the root value, proceed with
1396     // simplification conservatively assuming that all elements
1397     // are needed.
1398     if (!V->hasOneUse()) {
1399       // Quit if we find multiple users of a non-root value though.
1400       // They'll be handled when it's their turn to be visited by
1401       // the main instcombine process.
1402       if (Depth != 0)
1403         // TODO: Just compute the UndefElts information recursively.
1404         return nullptr;
1405 
1406       // Conservatively assume that all elements are needed.
1407       DemandedElts = EltMask;
1408     }
1409   }
1410 
1411   Instruction *I = dyn_cast<Instruction>(V);
1412   if (!I) return nullptr;        // Only analyze instructions.
1413 
1414   bool MadeChange = false;
1415   auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
1416                               APInt Demanded, APInt &Undef) {
1417     auto *II = dyn_cast<IntrinsicInst>(Inst);
1418     Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
1419     if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
1420       replaceOperand(*Inst, OpNum, V);
1421       MadeChange = true;
1422     }
1423   };
1424 
1425   APInt UndefElts2(VWidth, 0);
1426   APInt UndefElts3(VWidth, 0);
1427   switch (I->getOpcode()) {
1428   default: break;
1429 
1430   case Instruction::GetElementPtr: {
1431     // The LangRef requires that struct geps have all constant indices.  As
1432     // such, we can't convert any operand to partial undef.
1433     auto mayIndexStructType = [](GetElementPtrInst &GEP) {
1434       for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP);
1435            I != E; I++)
1436         if (I.isStruct())
1437           return true;
1438       return false;
1439     };
1440     if (mayIndexStructType(cast<GetElementPtrInst>(*I)))
1441       break;
1442 
1443     // Conservatively track the demanded elements back through any vector
1444     // operands we may have.  We know there must be at least one, or we
1445     // wouldn't have a vector result to get here. Note that we intentionally
1446     // merge the undef bits here since gepping with either an poison base or
1447     // index results in poison.
1448     for (unsigned i = 0; i < I->getNumOperands(); i++) {
1449       if (i == 0 ? match(I->getOperand(i), m_Undef())
1450                  : match(I->getOperand(i), m_Poison())) {
1451         // If the entire vector is undefined, just return this info.
1452         UndefElts = EltMask;
1453         return nullptr;
1454       }
1455       if (I->getOperand(i)->getType()->isVectorTy()) {
1456         APInt UndefEltsOp(VWidth, 0);
1457         simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp);
1458         // gep(x, undef) is not undef, so skip considering idx ops here
1459         // Note that we could propagate poison, but we can't distinguish between
1460         // undef & poison bits ATM
1461         if (i == 0)
1462           UndefElts |= UndefEltsOp;
1463       }
1464     }
1465 
1466     break;
1467   }
1468   case Instruction::InsertElement: {
1469     // If this is a variable index, we don't know which element it overwrites.
1470     // demand exactly the same input as we produce.
1471     ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1472     if (!Idx) {
1473       // Note that we can't propagate undef elt info, because we don't know
1474       // which elt is getting updated.
1475       simplifyAndSetOp(I, 0, DemandedElts, UndefElts2);
1476       break;
1477     }
1478 
1479     // The element inserted overwrites whatever was there, so the input demanded
1480     // set is simpler than the output set.
1481     unsigned IdxNo = Idx->getZExtValue();
1482     APInt PreInsertDemandedElts = DemandedElts;
1483     if (IdxNo < VWidth)
1484       PreInsertDemandedElts.clearBit(IdxNo);
1485 
1486     // If we only demand the element that is being inserted and that element
1487     // was extracted from the same index in another vector with the same type,
1488     // replace this insert with that other vector.
1489     // Note: This is attempted before the call to simplifyAndSetOp because that
1490     //       may change UndefElts to a value that does not match with Vec.
1491     Value *Vec;
1492     if (PreInsertDemandedElts == 0 &&
1493         match(I->getOperand(1),
1494               m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) &&
1495         Vec->getType() == I->getType()) {
1496       return Vec;
1497     }
1498 
1499     simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts);
1500 
1501     // If this is inserting an element that isn't demanded, remove this
1502     // insertelement.
1503     if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1504       Worklist.push(I);
1505       return I->getOperand(0);
1506     }
1507 
1508     // The inserted element is defined.
1509     UndefElts.clearBit(IdxNo);
1510     break;
1511   }
1512   case Instruction::ShuffleVector: {
1513     auto *Shuffle = cast<ShuffleVectorInst>(I);
1514     assert(Shuffle->getOperand(0)->getType() ==
1515            Shuffle->getOperand(1)->getType() &&
1516            "Expected shuffle operands to have same type");
1517     unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType())
1518                            ->getNumElements();
1519     // Handle trivial case of a splat. Only check the first element of LHS
1520     // operand.
1521     if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) &&
1522         DemandedElts.isAllOnes()) {
1523       if (!match(I->getOperand(1), m_Undef())) {
1524         I->setOperand(1, PoisonValue::get(I->getOperand(1)->getType()));
1525         MadeChange = true;
1526       }
1527       APInt LeftDemanded(OpWidth, 1);
1528       APInt LHSUndefElts(OpWidth, 0);
1529       simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1530       if (LHSUndefElts[0])
1531         UndefElts = EltMask;
1532       else
1533         UndefElts.clearAllBits();
1534       break;
1535     }
1536 
1537     APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0);
1538     for (unsigned i = 0; i < VWidth; i++) {
1539       if (DemandedElts[i]) {
1540         unsigned MaskVal = Shuffle->getMaskValue(i);
1541         if (MaskVal != -1u) {
1542           assert(MaskVal < OpWidth * 2 &&
1543                  "shufflevector mask index out of range!");
1544           if (MaskVal < OpWidth)
1545             LeftDemanded.setBit(MaskVal);
1546           else
1547             RightDemanded.setBit(MaskVal - OpWidth);
1548         }
1549       }
1550     }
1551 
1552     APInt LHSUndefElts(OpWidth, 0);
1553     simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1554 
1555     APInt RHSUndefElts(OpWidth, 0);
1556     simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts);
1557 
1558     // If this shuffle does not change the vector length and the elements
1559     // demanded by this shuffle are an identity mask, then this shuffle is
1560     // unnecessary.
1561     //
1562     // We are assuming canonical form for the mask, so the source vector is
1563     // operand 0 and operand 1 is not used.
1564     //
1565     // Note that if an element is demanded and this shuffle mask is undefined
1566     // for that element, then the shuffle is not considered an identity
1567     // operation. The shuffle prevents poison from the operand vector from
1568     // leaking to the result by replacing poison with an undefined value.
1569     if (VWidth == OpWidth) {
1570       bool IsIdentityShuffle = true;
1571       for (unsigned i = 0; i < VWidth; i++) {
1572         unsigned MaskVal = Shuffle->getMaskValue(i);
1573         if (DemandedElts[i] && i != MaskVal) {
1574           IsIdentityShuffle = false;
1575           break;
1576         }
1577       }
1578       if (IsIdentityShuffle)
1579         return Shuffle->getOperand(0);
1580     }
1581 
1582     bool NewUndefElts = false;
1583     unsigned LHSIdx = -1u, LHSValIdx = -1u;
1584     unsigned RHSIdx = -1u, RHSValIdx = -1u;
1585     bool LHSUniform = true;
1586     bool RHSUniform = true;
1587     for (unsigned i = 0; i < VWidth; i++) {
1588       unsigned MaskVal = Shuffle->getMaskValue(i);
1589       if (MaskVal == -1u) {
1590         UndefElts.setBit(i);
1591       } else if (!DemandedElts[i]) {
1592         NewUndefElts = true;
1593         UndefElts.setBit(i);
1594       } else if (MaskVal < OpWidth) {
1595         if (LHSUndefElts[MaskVal]) {
1596           NewUndefElts = true;
1597           UndefElts.setBit(i);
1598         } else {
1599           LHSIdx = LHSIdx == -1u ? i : OpWidth;
1600           LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth;
1601           LHSUniform = LHSUniform && (MaskVal == i);
1602         }
1603       } else {
1604         if (RHSUndefElts[MaskVal - OpWidth]) {
1605           NewUndefElts = true;
1606           UndefElts.setBit(i);
1607         } else {
1608           RHSIdx = RHSIdx == -1u ? i : OpWidth;
1609           RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth;
1610           RHSUniform = RHSUniform && (MaskVal - OpWidth == i);
1611         }
1612       }
1613     }
1614 
1615     // Try to transform shuffle with constant vector and single element from
1616     // this constant vector to single insertelement instruction.
1617     // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1618     // insertelement V, C[ci], ci-n
1619     if (OpWidth ==
1620         cast<FixedVectorType>(Shuffle->getType())->getNumElements()) {
1621       Value *Op = nullptr;
1622       Constant *Value = nullptr;
1623       unsigned Idx = -1u;
1624 
1625       // Find constant vector with the single element in shuffle (LHS or RHS).
1626       if (LHSIdx < OpWidth && RHSUniform) {
1627         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1628           Op = Shuffle->getOperand(1);
1629           Value = CV->getOperand(LHSValIdx);
1630           Idx = LHSIdx;
1631         }
1632       }
1633       if (RHSIdx < OpWidth && LHSUniform) {
1634         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1635           Op = Shuffle->getOperand(0);
1636           Value = CV->getOperand(RHSValIdx);
1637           Idx = RHSIdx;
1638         }
1639       }
1640       // Found constant vector with single element - convert to insertelement.
1641       if (Op && Value) {
1642         Instruction *New = InsertElementInst::Create(
1643             Op, Value, ConstantInt::get(Type::getInt64Ty(I->getContext()), Idx),
1644             Shuffle->getName());
1645         InsertNewInstWith(New, Shuffle->getIterator());
1646         return New;
1647       }
1648     }
1649     if (NewUndefElts) {
1650       // Add additional discovered undefs.
1651       SmallVector<int, 16> Elts;
1652       for (unsigned i = 0; i < VWidth; ++i) {
1653         if (UndefElts[i])
1654           Elts.push_back(PoisonMaskElem);
1655         else
1656           Elts.push_back(Shuffle->getMaskValue(i));
1657       }
1658       Shuffle->setShuffleMask(Elts);
1659       MadeChange = true;
1660     }
1661     break;
1662   }
1663   case Instruction::Select: {
1664     // If this is a vector select, try to transform the select condition based
1665     // on the current demanded elements.
1666     SelectInst *Sel = cast<SelectInst>(I);
1667     if (Sel->getCondition()->getType()->isVectorTy()) {
1668       // TODO: We are not doing anything with UndefElts based on this call.
1669       // It is overwritten below based on the other select operands. If an
1670       // element of the select condition is known undef, then we are free to
1671       // choose the output value from either arm of the select. If we know that
1672       // one of those values is undef, then the output can be undef.
1673       simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1674     }
1675 
1676     // Next, see if we can transform the arms of the select.
1677     APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
1678     if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
1679       for (unsigned i = 0; i < VWidth; i++) {
1680         // isNullValue() always returns false when called on a ConstantExpr.
1681         // Skip constant expressions to avoid propagating incorrect information.
1682         Constant *CElt = CV->getAggregateElement(i);
1683         if (isa<ConstantExpr>(CElt))
1684           continue;
1685         // TODO: If a select condition element is undef, we can demand from
1686         // either side. If one side is known undef, choosing that side would
1687         // propagate undef.
1688         if (CElt->isNullValue())
1689           DemandedLHS.clearBit(i);
1690         else
1691           DemandedRHS.clearBit(i);
1692       }
1693     }
1694 
1695     simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2);
1696     simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3);
1697 
1698     // Output elements are undefined if the element from each arm is undefined.
1699     // TODO: This can be improved. See comment in select condition handling.
1700     UndefElts = UndefElts2 & UndefElts3;
1701     break;
1702   }
1703   case Instruction::BitCast: {
1704     // Vector->vector casts only.
1705     VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1706     if (!VTy) break;
1707     unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements();
1708     APInt InputDemandedElts(InVWidth, 0);
1709     UndefElts2 = APInt(InVWidth, 0);
1710     unsigned Ratio;
1711 
1712     if (VWidth == InVWidth) {
1713       // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1714       // elements as are demanded of us.
1715       Ratio = 1;
1716       InputDemandedElts = DemandedElts;
1717     } else if ((VWidth % InVWidth) == 0) {
1718       // If the number of elements in the output is a multiple of the number of
1719       // elements in the input then an input element is live if any of the
1720       // corresponding output elements are live.
1721       Ratio = VWidth / InVWidth;
1722       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1723         if (DemandedElts[OutIdx])
1724           InputDemandedElts.setBit(OutIdx / Ratio);
1725     } else if ((InVWidth % VWidth) == 0) {
1726       // If the number of elements in the input is a multiple of the number of
1727       // elements in the output then an input element is live if the
1728       // corresponding output element is live.
1729       Ratio = InVWidth / VWidth;
1730       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1731         if (DemandedElts[InIdx / Ratio])
1732           InputDemandedElts.setBit(InIdx);
1733     } else {
1734       // Unsupported so far.
1735       break;
1736     }
1737 
1738     simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2);
1739 
1740     if (VWidth == InVWidth) {
1741       UndefElts = UndefElts2;
1742     } else if ((VWidth % InVWidth) == 0) {
1743       // If the number of elements in the output is a multiple of the number of
1744       // elements in the input then an output element is undef if the
1745       // corresponding input element is undef.
1746       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1747         if (UndefElts2[OutIdx / Ratio])
1748           UndefElts.setBit(OutIdx);
1749     } else if ((InVWidth % VWidth) == 0) {
1750       // If the number of elements in the input is a multiple of the number of
1751       // elements in the output then an output element is undef if all of the
1752       // corresponding input elements are undef.
1753       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1754         APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1755         if (SubUndef.popcount() == Ratio)
1756           UndefElts.setBit(OutIdx);
1757       }
1758     } else {
1759       llvm_unreachable("Unimp");
1760     }
1761     break;
1762   }
1763   case Instruction::FPTrunc:
1764   case Instruction::FPExt:
1765     simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1766     break;
1767 
1768   case Instruction::Call: {
1769     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1770     if (!II) break;
1771     switch (II->getIntrinsicID()) {
1772     case Intrinsic::masked_gather: // fallthrough
1773     case Intrinsic::masked_load: {
1774       // Subtlety: If we load from a pointer, the pointer must be valid
1775       // regardless of whether the element is demanded.  Doing otherwise risks
1776       // segfaults which didn't exist in the original program.
1777       APInt DemandedPtrs(APInt::getAllOnes(VWidth)),
1778           DemandedPassThrough(DemandedElts);
1779       if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2)))
1780         for (unsigned i = 0; i < VWidth; i++) {
1781           Constant *CElt = CV->getAggregateElement(i);
1782           if (CElt->isNullValue())
1783             DemandedPtrs.clearBit(i);
1784           else if (CElt->isAllOnesValue())
1785             DemandedPassThrough.clearBit(i);
1786         }
1787       if (II->getIntrinsicID() == Intrinsic::masked_gather)
1788         simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2);
1789       simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3);
1790 
1791       // Output elements are undefined if the element from both sources are.
1792       // TODO: can strengthen via mask as well.
1793       UndefElts = UndefElts2 & UndefElts3;
1794       break;
1795     }
1796     default: {
1797       // Handle target specific intrinsics
1798       std::optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic(
1799           *II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
1800           simplifyAndSetOp);
1801       if (V)
1802         return *V;
1803       break;
1804     }
1805     } // switch on IntrinsicID
1806     break;
1807   } // case Call
1808   } // switch on Opcode
1809 
1810   // TODO: We bail completely on integer div/rem and shifts because they have
1811   // UB/poison potential, but that should be refined.
1812   BinaryOperator *BO;
1813   if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
1814     Value *X = BO->getOperand(0);
1815     Value *Y = BO->getOperand(1);
1816 
1817     // Look for an equivalent binop except that one operand has been shuffled.
1818     // If the demand for this binop only includes elements that are the same as
1819     // the other binop, then we may be able to replace this binop with a use of
1820     // the earlier one.
1821     //
1822     // Example:
1823     // %other_bo = bo (shuf X, {0}), Y
1824     // %this_extracted_bo = extelt (bo X, Y), 0
1825     // -->
1826     // %other_bo = bo (shuf X, {0}), Y
1827     // %this_extracted_bo = extelt %other_bo, 0
1828     //
1829     // TODO: Handle demand of an arbitrary single element or more than one
1830     //       element instead of just element 0.
1831     // TODO: Unlike general demanded elements transforms, this should be safe
1832     //       for any (div/rem/shift) opcode too.
1833     if (DemandedElts == 1 && !X->hasOneUse() && !Y->hasOneUse() &&
1834         BO->hasOneUse() ) {
1835 
1836       auto findShufBO = [&](bool MatchShufAsOp0) -> User * {
1837         // Try to use shuffle-of-operand in place of an operand:
1838         // bo X, Y --> bo (shuf X), Y
1839         // bo X, Y --> bo X, (shuf Y)
1840         BinaryOperator::BinaryOps Opcode = BO->getOpcode();
1841         Value *ShufOp = MatchShufAsOp0 ? X : Y;
1842         Value *OtherOp = MatchShufAsOp0 ? Y : X;
1843         for (User *U : OtherOp->users()) {
1844           auto Shuf = m_Shuffle(m_Specific(ShufOp), m_Value(), m_ZeroMask());
1845           if (BO->isCommutative()
1846                   ? match(U, m_c_BinOp(Opcode, Shuf, m_Specific(OtherOp)))
1847                   : MatchShufAsOp0
1848                         ? match(U, m_BinOp(Opcode, Shuf, m_Specific(OtherOp)))
1849                         : match(U, m_BinOp(Opcode, m_Specific(OtherOp), Shuf)))
1850             if (DT.dominates(U, I))
1851               return U;
1852         }
1853         return nullptr;
1854       };
1855 
1856       if (User *ShufBO = findShufBO(/* MatchShufAsOp0 */ true))
1857         return ShufBO;
1858       if (User *ShufBO = findShufBO(/* MatchShufAsOp0 */ false))
1859         return ShufBO;
1860     }
1861 
1862     simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1863     simplifyAndSetOp(I, 1, DemandedElts, UndefElts2);
1864 
1865     // Output elements are undefined if both are undefined. Consider things
1866     // like undef & 0. The result is known zero, not undef.
1867     UndefElts &= UndefElts2;
1868   }
1869 
1870   // If we've proven all of the lanes undef, return an undef value.
1871   // TODO: Intersect w/demanded lanes
1872   if (UndefElts.isAllOnes())
1873     return UndefValue::get(I->getType());
1874 
1875   return MadeChange ? I : nullptr;
1876 }
1877