1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements instcombine for ExtractElement, InsertElement and
10 // ShuffleVector.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallBitVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Transforms/InstCombine/InstCombiner.h"
39 #include <cassert>
40 #include <cstdint>
41 #include <iterator>
42 #include <utility>
43 
44 #define DEBUG_TYPE "instcombine"
45 
46 using namespace llvm;
47 using namespace PatternMatch;
48 
49 STATISTIC(NumAggregateReconstructionsSimplified,
50           "Number of aggregate reconstructions turned into reuse of the "
51           "original aggregate");
52 
53 /// Return true if the value is cheaper to scalarize than it is to leave as a
54 /// vector operation. If the extract index \p EI is a constant integer then
55 /// some operations may be cheap to scalarize.
56 ///
57 /// FIXME: It's possible to create more instructions than previously existed.
58 static bool cheapToScalarize(Value *V, Value *EI) {
59   ConstantInt *CEI = dyn_cast<ConstantInt>(EI);
60 
61   // If we can pick a scalar constant value out of a vector, that is free.
62   if (auto *C = dyn_cast<Constant>(V))
63     return CEI || C->getSplatValue();
64 
65   if (CEI && match(V, m_Intrinsic<Intrinsic::experimental_stepvector>())) {
66     ElementCount EC = cast<VectorType>(V->getType())->getElementCount();
67     // Index needs to be lower than the minimum size of the vector, because
68     // for scalable vector, the vector size is known at run time.
69     return CEI->getValue().ult(EC.getKnownMinValue());
70   }
71 
72   // An insertelement to the same constant index as our extract will simplify
73   // to the scalar inserted element. An insertelement to a different constant
74   // index is irrelevant to our extract.
75   if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt())))
76     return CEI;
77 
78   if (match(V, m_OneUse(m_Load(m_Value()))))
79     return true;
80 
81   if (match(V, m_OneUse(m_UnOp())))
82     return true;
83 
84   Value *V0, *V1;
85   if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
86     if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI))
87       return true;
88 
89   CmpInst::Predicate UnusedPred;
90   if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
91     if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI))
92       return true;
93 
94   return false;
95 }
96 
97 // If we have a PHI node with a vector type that is only used to feed
98 // itself and be an operand of extractelement at a constant location,
99 // try to replace the PHI of the vector type with a PHI of a scalar type.
100 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI,
101                                             PHINode *PN) {
102   SmallVector<Instruction *, 2> Extracts;
103   // The users we want the PHI to have are:
104   // 1) The EI ExtractElement (we already know this)
105   // 2) Possibly more ExtractElements with the same index.
106   // 3) Another operand, which will feed back into the PHI.
107   Instruction *PHIUser = nullptr;
108   for (auto *U : PN->users()) {
109     if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
110       if (EI.getIndexOperand() == EU->getIndexOperand())
111         Extracts.push_back(EU);
112       else
113         return nullptr;
114     } else if (!PHIUser) {
115       PHIUser = cast<Instruction>(U);
116     } else {
117       return nullptr;
118     }
119   }
120 
121   if (!PHIUser)
122     return nullptr;
123 
124   // Verify that this PHI user has one use, which is the PHI itself,
125   // and that it is a binary operation which is cheap to scalarize.
126   // otherwise return nullptr.
127   if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
128       !(isa<BinaryOperator>(PHIUser)) ||
129       !cheapToScalarize(PHIUser, EI.getIndexOperand()))
130     return nullptr;
131 
132   // Create a scalar PHI node that will replace the vector PHI node
133   // just before the current PHI node.
134   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
135       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
136   // Scalarize each PHI operand.
137   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
138     Value *PHIInVal = PN->getIncomingValue(i);
139     BasicBlock *inBB = PN->getIncomingBlock(i);
140     Value *Elt = EI.getIndexOperand();
141     // If the operand is the PHI induction variable:
142     if (PHIInVal == PHIUser) {
143       // Scalarize the binary operation. Its first operand is the
144       // scalar PHI, and the second operand is extracted from the other
145       // vector operand.
146       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
147       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
148       Value *Op = InsertNewInstWith(
149           ExtractElementInst::Create(B0->getOperand(opId), Elt,
150                                      B0->getOperand(opId)->getName() + ".Elt"),
151           *B0);
152       Value *newPHIUser = InsertNewInstWith(
153           BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
154                                                 scalarPHI, Op, B0), *B0);
155       scalarPHI->addIncoming(newPHIUser, inBB);
156     } else {
157       // Scalarize PHI input:
158       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
159       // Insert the new instruction into the predecessor basic block.
160       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
161       BasicBlock::iterator InsertPos;
162       if (pos && !isa<PHINode>(pos)) {
163         InsertPos = ++pos->getIterator();
164       } else {
165         InsertPos = inBB->getFirstInsertionPt();
166       }
167 
168       InsertNewInstWith(newEI, *InsertPos);
169 
170       scalarPHI->addIncoming(newEI, inBB);
171     }
172   }
173 
174   for (auto *E : Extracts)
175     replaceInstUsesWith(*E, scalarPHI);
176 
177   return &EI;
178 }
179 
180 Instruction *InstCombinerImpl::foldBitcastExtElt(ExtractElementInst &Ext) {
181   Value *X;
182   uint64_t ExtIndexC;
183   if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
184       !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
185     return nullptr;
186 
187   ElementCount NumElts =
188       cast<VectorType>(Ext.getVectorOperandType())->getElementCount();
189   Type *DestTy = Ext.getType();
190   unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
191   bool IsBigEndian = DL.isBigEndian();
192 
193   // If we are casting an integer to vector and extracting a portion, that is
194   // a shift-right and truncate.
195   if (X->getType()->isIntegerTy()) {
196     assert(isa<FixedVectorType>(Ext.getVectorOperand()->getType()) &&
197            "Expected fixed vector type for bitcast from scalar integer");
198 
199     // Big endian requires adjusting the extract index since MSB is at index 0.
200     // LittleEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 X to i8
201     // BigEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 (X >> 24) to i8
202     if (IsBigEndian)
203       ExtIndexC = NumElts.getKnownMinValue() - 1 - ExtIndexC;
204     unsigned ShiftAmountC = ExtIndexC * DestWidth;
205     if (!ShiftAmountC ||
206         (isDesirableIntType(X->getType()->getPrimitiveSizeInBits()) &&
207         Ext.getVectorOperand()->hasOneUse())) {
208       if (ShiftAmountC)
209         X = Builder.CreateLShr(X, ShiftAmountC, "extelt.offset");
210       if (DestTy->isFloatingPointTy()) {
211         Type *DstIntTy = IntegerType::getIntNTy(X->getContext(), DestWidth);
212         Value *Trunc = Builder.CreateTrunc(X, DstIntTy);
213         return new BitCastInst(Trunc, DestTy);
214       }
215       return new TruncInst(X, DestTy);
216     }
217   }
218 
219   if (!X->getType()->isVectorTy())
220     return nullptr;
221 
222   // If this extractelement is using a bitcast from a vector of the same number
223   // of elements, see if we can find the source element from the source vector:
224   // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
225   auto *SrcTy = cast<VectorType>(X->getType());
226   ElementCount NumSrcElts = SrcTy->getElementCount();
227   if (NumSrcElts == NumElts)
228     if (Value *Elt = findScalarElement(X, ExtIndexC))
229       return new BitCastInst(Elt, DestTy);
230 
231   assert(NumSrcElts.isScalable() == NumElts.isScalable() &&
232          "Src and Dst must be the same sort of vector type");
233 
234   // If the source elements are wider than the destination, try to shift and
235   // truncate a subset of scalar bits of an insert op.
236   if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) {
237     Value *Scalar;
238     Value *Vec;
239     uint64_t InsIndexC;
240     if (!match(X, m_InsertElt(m_Value(Vec), m_Value(Scalar),
241                               m_ConstantInt(InsIndexC))))
242       return nullptr;
243 
244     // The extract must be from the subset of vector elements that we inserted
245     // into. Example: if we inserted element 1 of a <2 x i64> and we are
246     // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
247     // of elements 4-7 of the bitcasted vector.
248     unsigned NarrowingRatio =
249         NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue();
250 
251     if (ExtIndexC / NarrowingRatio != InsIndexC) {
252       // Remove insertelement, if we don't use the inserted element.
253       // extractelement (bitcast (insertelement (Vec, b)), a) ->
254       // extractelement (bitcast (Vec), a)
255       // FIXME: this should be removed to SimplifyDemandedVectorElts,
256       // once scale vectors are supported.
257       if (X->hasOneUse() && Ext.getVectorOperand()->hasOneUse()) {
258         Value *NewBC = Builder.CreateBitCast(Vec, Ext.getVectorOperandType());
259         return ExtractElementInst::Create(NewBC, Ext.getIndexOperand());
260       }
261       return nullptr;
262     }
263 
264     // We are extracting part of the original scalar. How that scalar is
265     // inserted into the vector depends on the endian-ness. Example:
266     //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
267     //                                       +--+--+--+--+--+--+--+--+
268     // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
269     // extelt <4 x i16> V', 3:               |                 |S2|S3|
270     //                                       +--+--+--+--+--+--+--+--+
271     // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
272     // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
273     // In this example, we must right-shift little-endian. Big-endian is just a
274     // truncate.
275     unsigned Chunk = ExtIndexC % NarrowingRatio;
276     if (IsBigEndian)
277       Chunk = NarrowingRatio - 1 - Chunk;
278 
279     // Bail out if this is an FP vector to FP vector sequence. That would take
280     // more instructions than we started with unless there is no shift, and it
281     // may not be handled as well in the backend.
282     bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
283     bool NeedDestBitcast = DestTy->isFloatingPointTy();
284     if (NeedSrcBitcast && NeedDestBitcast)
285       return nullptr;
286 
287     unsigned SrcWidth = SrcTy->getScalarSizeInBits();
288     unsigned ShAmt = Chunk * DestWidth;
289 
290     // TODO: This limitation is more strict than necessary. We could sum the
291     // number of new instructions and subtract the number eliminated to know if
292     // we can proceed.
293     if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
294       if (NeedSrcBitcast || NeedDestBitcast)
295         return nullptr;
296 
297     if (NeedSrcBitcast) {
298       Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
299       Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
300     }
301 
302     if (ShAmt) {
303       // Bail out if we could end with more instructions than we started with.
304       if (!Ext.getVectorOperand()->hasOneUse())
305         return nullptr;
306       Scalar = Builder.CreateLShr(Scalar, ShAmt);
307     }
308 
309     if (NeedDestBitcast) {
310       Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
311       return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
312     }
313     return new TruncInst(Scalar, DestTy);
314   }
315 
316   return nullptr;
317 }
318 
319 /// Find elements of V demanded by UserInstr.
320 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
321   unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
322 
323   // Conservatively assume that all elements are needed.
324   APInt UsedElts(APInt::getAllOnes(VWidth));
325 
326   switch (UserInstr->getOpcode()) {
327   case Instruction::ExtractElement: {
328     ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
329     assert(EEI->getVectorOperand() == V);
330     ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
331     if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
332       UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
333     }
334     break;
335   }
336   case Instruction::ShuffleVector: {
337     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
338     unsigned MaskNumElts =
339         cast<FixedVectorType>(UserInstr->getType())->getNumElements();
340 
341     UsedElts = APInt(VWidth, 0);
342     for (unsigned i = 0; i < MaskNumElts; i++) {
343       unsigned MaskVal = Shuffle->getMaskValue(i);
344       if (MaskVal == -1u || MaskVal >= 2 * VWidth)
345         continue;
346       if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
347         UsedElts.setBit(MaskVal);
348       if (Shuffle->getOperand(1) == V &&
349           ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
350         UsedElts.setBit(MaskVal - VWidth);
351     }
352     break;
353   }
354   default:
355     break;
356   }
357   return UsedElts;
358 }
359 
360 /// Find union of elements of V demanded by all its users.
361 /// If it is known by querying findDemandedEltsBySingleUser that
362 /// no user demands an element of V, then the corresponding bit
363 /// remains unset in the returned value.
364 static APInt findDemandedEltsByAllUsers(Value *V) {
365   unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
366 
367   APInt UnionUsedElts(VWidth, 0);
368   for (const Use &U : V->uses()) {
369     if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
370       UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
371     } else {
372       UnionUsedElts = APInt::getAllOnes(VWidth);
373       break;
374     }
375 
376     if (UnionUsedElts.isAllOnes())
377       break;
378   }
379 
380   return UnionUsedElts;
381 }
382 
383 /// Given a constant index for a extractelement or insertelement instruction,
384 /// return it with the canonical type if it isn't already canonical.  We
385 /// arbitrarily pick 64 bit as our canonical type.  The actual bitwidth doesn't
386 /// matter, we just want a consistent type to simplify CSE.
387 ConstantInt *getPreferredVectorIndex(ConstantInt *IndexC) {
388   const unsigned IndexBW = IndexC->getType()->getBitWidth();
389   if (IndexBW == 64 || IndexC->getValue().getActiveBits() > 64)
390     return nullptr;
391   return ConstantInt::get(IndexC->getContext(),
392                           IndexC->getValue().zextOrTrunc(64));
393 }
394 
395 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) {
396   Value *SrcVec = EI.getVectorOperand();
397   Value *Index = EI.getIndexOperand();
398   if (Value *V = simplifyExtractElementInst(SrcVec, Index,
399                                             SQ.getWithInstruction(&EI)))
400     return replaceInstUsesWith(EI, V);
401 
402   // extractelt (select %x, %vec1, %vec2), %const ->
403   // select %x, %vec1[%const], %vec2[%const]
404   // TODO: Support constant folding of multiple select operands:
405   // extractelt (select %x, %vec1, %vec2), (select %x, %c1, %c2)
406   // If the extractelement will for instance try to do out of bounds accesses
407   // because of the values of %c1 and/or %c2, the sequence could be optimized
408   // early. This is currently not possible because constant folding will reach
409   // an unreachable assertion if it doesn't find a constant operand.
410   if (SelectInst *SI = dyn_cast<SelectInst>(EI.getVectorOperand()))
411     if (SI->getCondition()->getType()->isIntegerTy() &&
412         isa<Constant>(EI.getIndexOperand()))
413       if (Instruction *R = FoldOpIntoSelect(EI, SI))
414         return R;
415 
416   // If extracting a specified index from the vector, see if we can recursively
417   // find a previously computed scalar that was inserted into the vector.
418   auto *IndexC = dyn_cast<ConstantInt>(Index);
419   if (IndexC) {
420     // Canonicalize type of constant indices to i64 to simplify CSE
421     if (auto *NewIdx = getPreferredVectorIndex(IndexC))
422       return replaceOperand(EI, 1, NewIdx);
423 
424     ElementCount EC = EI.getVectorOperandType()->getElementCount();
425     unsigned NumElts = EC.getKnownMinValue();
426 
427     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) {
428       Intrinsic::ID IID = II->getIntrinsicID();
429       // Index needs to be lower than the minimum size of the vector, because
430       // for scalable vector, the vector size is known at run time.
431       if (IID == Intrinsic::experimental_stepvector &&
432           IndexC->getValue().ult(NumElts)) {
433         Type *Ty = EI.getType();
434         unsigned BitWidth = Ty->getIntegerBitWidth();
435         Value *Idx;
436         // Return index when its value does not exceed the allowed limit
437         // for the element type of the vector, otherwise return undefined.
438         if (IndexC->getValue().getActiveBits() <= BitWidth)
439           Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth));
440         else
441           Idx = UndefValue::get(Ty);
442         return replaceInstUsesWith(EI, Idx);
443       }
444     }
445 
446     // InstSimplify should handle cases where the index is invalid.
447     // For fixed-length vector, it's invalid to extract out-of-range element.
448     if (!EC.isScalable() && IndexC->getValue().uge(NumElts))
449       return nullptr;
450 
451     if (Instruction *I = foldBitcastExtElt(EI))
452       return I;
453 
454     // If there's a vector PHI feeding a scalar use through this extractelement
455     // instruction, try to scalarize the PHI.
456     if (auto *Phi = dyn_cast<PHINode>(SrcVec))
457       if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
458         return ScalarPHI;
459   }
460 
461   // TODO come up with a n-ary matcher that subsumes both unary and
462   // binary matchers.
463   UnaryOperator *UO;
464   if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, Index)) {
465     // extelt (unop X), Index --> unop (extelt X, Index)
466     Value *X = UO->getOperand(0);
467     Value *E = Builder.CreateExtractElement(X, Index);
468     return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO);
469   }
470 
471   BinaryOperator *BO;
472   if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, Index)) {
473     // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
474     Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
475     Value *E0 = Builder.CreateExtractElement(X, Index);
476     Value *E1 = Builder.CreateExtractElement(Y, Index);
477     return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
478   }
479 
480   Value *X, *Y;
481   CmpInst::Predicate Pred;
482   if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
483       cheapToScalarize(SrcVec, Index)) {
484     // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
485     Value *E0 = Builder.CreateExtractElement(X, Index);
486     Value *E1 = Builder.CreateExtractElement(Y, Index);
487     return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
488   }
489 
490   if (auto *I = dyn_cast<Instruction>(SrcVec)) {
491     if (auto *IE = dyn_cast<InsertElementInst>(I)) {
492       // instsimplify already handled the case where the indices are constants
493       // and equal by value, if both are constants, they must not be the same
494       // value, extract from the pre-inserted value instead.
495       if (isa<Constant>(IE->getOperand(2)) && IndexC)
496         return replaceOperand(EI, 0, IE->getOperand(0));
497     } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
498       auto *VecType = cast<VectorType>(GEP->getType());
499       ElementCount EC = VecType->getElementCount();
500       uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0;
501       if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) {
502         // Find out why we have a vector result - these are a few examples:
503         //  1. We have a scalar pointer and a vector of indices, or
504         //  2. We have a vector of pointers and a scalar index, or
505         //  3. We have a vector of pointers and a vector of indices, etc.
506         // Here we only consider combining when there is exactly one vector
507         // operand, since the optimization is less obviously a win due to
508         // needing more than one extractelements.
509 
510         unsigned VectorOps =
511             llvm::count_if(GEP->operands(), [](const Value *V) {
512               return isa<VectorType>(V->getType());
513             });
514         if (VectorOps == 1) {
515           Value *NewPtr = GEP->getPointerOperand();
516           if (isa<VectorType>(NewPtr->getType()))
517             NewPtr = Builder.CreateExtractElement(NewPtr, IndexC);
518 
519           SmallVector<Value *> NewOps;
520           for (unsigned I = 1; I != GEP->getNumOperands(); ++I) {
521             Value *Op = GEP->getOperand(I);
522             if (isa<VectorType>(Op->getType()))
523               NewOps.push_back(Builder.CreateExtractElement(Op, IndexC));
524             else
525               NewOps.push_back(Op);
526           }
527 
528           GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
529               GEP->getSourceElementType(), NewPtr, NewOps);
530           NewGEP->setIsInBounds(GEP->isInBounds());
531           return NewGEP;
532         }
533       }
534     } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
535       // If this is extracting an element from a shufflevector, figure out where
536       // it came from and extract from the appropriate input element instead.
537       // Restrict the following transformation to fixed-length vector.
538       if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) {
539         int SrcIdx =
540             SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue());
541         Value *Src;
542         unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType())
543                                 ->getNumElements();
544 
545         if (SrcIdx < 0)
546           return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
547         if (SrcIdx < (int)LHSWidth)
548           Src = SVI->getOperand(0);
549         else {
550           SrcIdx -= LHSWidth;
551           Src = SVI->getOperand(1);
552         }
553         Type *Int32Ty = Type::getInt32Ty(EI.getContext());
554         return ExtractElementInst::Create(
555             Src, ConstantInt::get(Int32Ty, SrcIdx, false));
556       }
557     } else if (auto *CI = dyn_cast<CastInst>(I)) {
558       // Canonicalize extractelement(cast) -> cast(extractelement).
559       // Bitcasts can change the number of vector elements, and they cost
560       // nothing.
561       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
562         Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
563         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
564       }
565     }
566   }
567 
568   // Run demanded elements after other transforms as this can drop flags on
569   // binops.  If there's two paths to the same final result, we prefer the
570   // one which doesn't force us to drop flags.
571   if (IndexC) {
572     ElementCount EC = EI.getVectorOperandType()->getElementCount();
573     unsigned NumElts = EC.getKnownMinValue();
574     // This instruction only demands the single element from the input vector.
575     // Skip for scalable type, the number of elements is unknown at
576     // compile-time.
577     if (!EC.isScalable() && NumElts != 1) {
578       // If the input vector has a single use, simplify it based on this use
579       // property.
580       if (SrcVec->hasOneUse()) {
581         APInt UndefElts(NumElts, 0);
582         APInt DemandedElts(NumElts, 0);
583         DemandedElts.setBit(IndexC->getZExtValue());
584         if (Value *V =
585                 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts))
586           return replaceOperand(EI, 0, V);
587       } else {
588         // If the input vector has multiple uses, simplify it based on a union
589         // of all elements used.
590         APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
591         if (!DemandedElts.isAllOnes()) {
592           APInt UndefElts(NumElts, 0);
593           if (Value *V = SimplifyDemandedVectorElts(
594                   SrcVec, DemandedElts, UndefElts, 0 /* Depth */,
595                   true /* AllowMultipleUsers */)) {
596             if (V != SrcVec) {
597               SrcVec->replaceAllUsesWith(V);
598               return &EI;
599             }
600           }
601         }
602       }
603     }
604   }
605   return nullptr;
606 }
607 
608 /// If V is a shuffle of values that ONLY returns elements from either LHS or
609 /// RHS, return the shuffle mask and true. Otherwise, return false.
610 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
611                                          SmallVectorImpl<int> &Mask) {
612   assert(LHS->getType() == RHS->getType() &&
613          "Invalid CollectSingleShuffleElements");
614   unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
615 
616   if (match(V, m_Undef())) {
617     Mask.assign(NumElts, -1);
618     return true;
619   }
620 
621   if (V == LHS) {
622     for (unsigned i = 0; i != NumElts; ++i)
623       Mask.push_back(i);
624     return true;
625   }
626 
627   if (V == RHS) {
628     for (unsigned i = 0; i != NumElts; ++i)
629       Mask.push_back(i + NumElts);
630     return true;
631   }
632 
633   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
634     // If this is an insert of an extract from some other vector, include it.
635     Value *VecOp    = IEI->getOperand(0);
636     Value *ScalarOp = IEI->getOperand(1);
637     Value *IdxOp    = IEI->getOperand(2);
638 
639     if (!isa<ConstantInt>(IdxOp))
640       return false;
641     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
642 
643     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
644       // We can handle this if the vector we are inserting into is
645       // transitively ok.
646       if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
647         // If so, update the mask to reflect the inserted undef.
648         Mask[InsertedIdx] = -1;
649         return true;
650       }
651     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
652       if (isa<ConstantInt>(EI->getOperand(1))) {
653         unsigned ExtractedIdx =
654         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
655         unsigned NumLHSElts =
656             cast<FixedVectorType>(LHS->getType())->getNumElements();
657 
658         // This must be extracting from either LHS or RHS.
659         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
660           // We can handle this if the vector we are inserting into is
661           // transitively ok.
662           if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
663             // If so, update the mask to reflect the inserted value.
664             if (EI->getOperand(0) == LHS) {
665               Mask[InsertedIdx % NumElts] = ExtractedIdx;
666             } else {
667               assert(EI->getOperand(0) == RHS);
668               Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts;
669             }
670             return true;
671           }
672         }
673       }
674     }
675   }
676 
677   return false;
678 }
679 
680 /// If we have insertion into a vector that is wider than the vector that we
681 /// are extracting from, try to widen the source vector to allow a single
682 /// shufflevector to replace one or more insert/extract pairs.
683 static void replaceExtractElements(InsertElementInst *InsElt,
684                                    ExtractElementInst *ExtElt,
685                                    InstCombinerImpl &IC) {
686   auto *InsVecType = cast<FixedVectorType>(InsElt->getType());
687   auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType());
688   unsigned NumInsElts = InsVecType->getNumElements();
689   unsigned NumExtElts = ExtVecType->getNumElements();
690 
691   // The inserted-to vector must be wider than the extracted-from vector.
692   if (InsVecType->getElementType() != ExtVecType->getElementType() ||
693       NumExtElts >= NumInsElts)
694     return;
695 
696   // Create a shuffle mask to widen the extended-from vector using poison
697   // values. The mask selects all of the values of the original vector followed
698   // by as many poison values as needed to create a vector of the same length
699   // as the inserted-to vector.
700   SmallVector<int, 16> ExtendMask;
701   for (unsigned i = 0; i < NumExtElts; ++i)
702     ExtendMask.push_back(i);
703   for (unsigned i = NumExtElts; i < NumInsElts; ++i)
704     ExtendMask.push_back(-1);
705 
706   Value *ExtVecOp = ExtElt->getVectorOperand();
707   auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
708   BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
709                                    ? ExtVecOpInst->getParent()
710                                    : ExtElt->getParent();
711 
712   // TODO: This restriction matches the basic block check below when creating
713   // new extractelement instructions. If that limitation is removed, this one
714   // could also be removed. But for now, we just bail out to ensure that we
715   // will replace the extractelement instruction that is feeding our
716   // insertelement instruction. This allows the insertelement to then be
717   // replaced by a shufflevector. If the insertelement is not replaced, we can
718   // induce infinite looping because there's an optimization for extractelement
719   // that will delete our widening shuffle. This would trigger another attempt
720   // here to create that shuffle, and we spin forever.
721   if (InsertionBlock != InsElt->getParent())
722     return;
723 
724   // TODO: This restriction matches the check in visitInsertElementInst() and
725   // prevents an infinite loop caused by not turning the extract/insert pair
726   // into a shuffle. We really should not need either check, but we're lacking
727   // folds for shufflevectors because we're afraid to generate shuffle masks
728   // that the backend can't handle.
729   if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
730     return;
731 
732   auto *WideVec = new ShuffleVectorInst(ExtVecOp, ExtendMask);
733 
734   // Insert the new shuffle after the vector operand of the extract is defined
735   // (as long as it's not a PHI) or at the start of the basic block of the
736   // extract, so any subsequent extracts in the same basic block can use it.
737   // TODO: Insert before the earliest ExtractElementInst that is replaced.
738   if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
739     WideVec->insertAfter(ExtVecOpInst);
740   else
741     IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
742 
743   // Replace extracts from the original narrow vector with extracts from the new
744   // wide vector.
745   for (User *U : ExtVecOp->users()) {
746     ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
747     if (!OldExt || OldExt->getParent() != WideVec->getParent())
748       continue;
749     auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
750     NewExt->insertAfter(OldExt);
751     IC.replaceInstUsesWith(*OldExt, NewExt);
752   }
753 }
754 
755 /// We are building a shuffle to create V, which is a sequence of insertelement,
756 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
757 /// not rely on the second vector source. Return a std::pair containing the
758 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
759 /// parameter as required.
760 ///
761 /// Note: we intentionally don't try to fold earlier shuffles since they have
762 /// often been chosen carefully to be efficiently implementable on the target.
763 using ShuffleOps = std::pair<Value *, Value *>;
764 
765 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask,
766                                          Value *PermittedRHS,
767                                          InstCombinerImpl &IC) {
768   assert(V->getType()->isVectorTy() && "Invalid shuffle!");
769   unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
770 
771   if (match(V, m_Undef())) {
772     Mask.assign(NumElts, -1);
773     return std::make_pair(
774         PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
775   }
776 
777   if (isa<ConstantAggregateZero>(V)) {
778     Mask.assign(NumElts, 0);
779     return std::make_pair(V, nullptr);
780   }
781 
782   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
783     // If this is an insert of an extract from some other vector, include it.
784     Value *VecOp    = IEI->getOperand(0);
785     Value *ScalarOp = IEI->getOperand(1);
786     Value *IdxOp    = IEI->getOperand(2);
787 
788     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
789       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
790         unsigned ExtractedIdx =
791           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
792         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
793 
794         // Either the extracted from or inserted into vector must be RHSVec,
795         // otherwise we'd end up with a shuffle of three inputs.
796         if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
797           Value *RHS = EI->getOperand(0);
798           ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
799           assert(LR.second == nullptr || LR.second == RHS);
800 
801           if (LR.first->getType() != RHS->getType()) {
802             // Although we are giving up for now, see if we can create extracts
803             // that match the inserts for another round of combining.
804             replaceExtractElements(IEI, EI, IC);
805 
806             // We tried our best, but we can't find anything compatible with RHS
807             // further up the chain. Return a trivial shuffle.
808             for (unsigned i = 0; i < NumElts; ++i)
809               Mask[i] = i;
810             return std::make_pair(V, nullptr);
811           }
812 
813           unsigned NumLHSElts =
814               cast<FixedVectorType>(RHS->getType())->getNumElements();
815           Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx;
816           return std::make_pair(LR.first, RHS);
817         }
818 
819         if (VecOp == PermittedRHS) {
820           // We've gone as far as we can: anything on the other side of the
821           // extractelement will already have been converted into a shuffle.
822           unsigned NumLHSElts =
823               cast<FixedVectorType>(EI->getOperand(0)->getType())
824                   ->getNumElements();
825           for (unsigned i = 0; i != NumElts; ++i)
826             Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i);
827           return std::make_pair(EI->getOperand(0), PermittedRHS);
828         }
829 
830         // If this insertelement is a chain that comes from exactly these two
831         // vectors, return the vector and the effective shuffle.
832         if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
833             collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
834                                          Mask))
835           return std::make_pair(EI->getOperand(0), PermittedRHS);
836       }
837     }
838   }
839 
840   // Otherwise, we can't do anything fancy. Return an identity vector.
841   for (unsigned i = 0; i != NumElts; ++i)
842     Mask.push_back(i);
843   return std::make_pair(V, nullptr);
844 }
845 
846 /// Look for chain of insertvalue's that fully define an aggregate, and trace
847 /// back the values inserted, see if they are all were extractvalue'd from
848 /// the same source aggregate from the exact same element indexes.
849 /// If they were, just reuse the source aggregate.
850 /// This potentially deals with PHI indirections.
851 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse(
852     InsertValueInst &OrigIVI) {
853   Type *AggTy = OrigIVI.getType();
854   unsigned NumAggElts;
855   switch (AggTy->getTypeID()) {
856   case Type::StructTyID:
857     NumAggElts = AggTy->getStructNumElements();
858     break;
859   case Type::ArrayTyID:
860     NumAggElts = AggTy->getArrayNumElements();
861     break;
862   default:
863     llvm_unreachable("Unhandled aggregate type?");
864   }
865 
866   // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able
867   // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}),
868   // FIXME: any interesting patterns to be caught with larger limit?
869   assert(NumAggElts > 0 && "Aggregate should have elements.");
870   if (NumAggElts > 2)
871     return nullptr;
872 
873   static constexpr auto NotFound = std::nullopt;
874   static constexpr auto FoundMismatch = nullptr;
875 
876   // Try to find a value of each element of an aggregate.
877   // FIXME: deal with more complex, not one-dimensional, aggregate types
878   SmallVector<std::optional<Instruction *>, 2> AggElts(NumAggElts, NotFound);
879 
880   // Do we know values for each element of the aggregate?
881   auto KnowAllElts = [&AggElts]() {
882     return !llvm::is_contained(AggElts, NotFound);
883   };
884 
885   int Depth = 0;
886 
887   // Arbitrary `insertvalue` visitation depth limit. Let's be okay with
888   // every element being overwritten twice, which should never happen.
889   static const int DepthLimit = 2 * NumAggElts;
890 
891   // Recurse up the chain of `insertvalue` aggregate operands until either we've
892   // reconstructed full initializer or can't visit any more `insertvalue`'s.
893   for (InsertValueInst *CurrIVI = &OrigIVI;
894        Depth < DepthLimit && CurrIVI && !KnowAllElts();
895        CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()),
896                        ++Depth) {
897     auto *InsertedValue =
898         dyn_cast<Instruction>(CurrIVI->getInsertedValueOperand());
899     if (!InsertedValue)
900       return nullptr; // Inserted value must be produced by an instruction.
901 
902     ArrayRef<unsigned int> Indices = CurrIVI->getIndices();
903 
904     // Don't bother with more than single-level aggregates.
905     if (Indices.size() != 1)
906       return nullptr; // FIXME: deal with more complex aggregates?
907 
908     // Now, we may have already previously recorded the value for this element
909     // of an aggregate. If we did, that means the CurrIVI will later be
910     // overwritten with the already-recorded value. But if not, let's record it!
911     std::optional<Instruction *> &Elt = AggElts[Indices.front()];
912     Elt = Elt.value_or(InsertedValue);
913 
914     // FIXME: should we handle chain-terminating undef base operand?
915   }
916 
917   // Was that sufficient to deduce the full initializer for the aggregate?
918   if (!KnowAllElts())
919     return nullptr; // Give up then.
920 
921   // We now want to find the source[s] of the aggregate elements we've found.
922   // And with "source" we mean the original aggregate[s] from which
923   // the inserted elements were extracted. This may require PHI translation.
924 
925   enum class AggregateDescription {
926     /// When analyzing the value that was inserted into an aggregate, we did
927     /// not manage to find defining `extractvalue` instruction to analyze.
928     NotFound,
929     /// When analyzing the value that was inserted into an aggregate, we did
930     /// manage to find defining `extractvalue` instruction[s], and everything
931     /// matched perfectly - aggregate type, element insertion/extraction index.
932     Found,
933     /// When analyzing the value that was inserted into an aggregate, we did
934     /// manage to find defining `extractvalue` instruction, but there was
935     /// a mismatch: either the source type from which the extraction was didn't
936     /// match the aggregate type into which the insertion was,
937     /// or the extraction/insertion channels mismatched,
938     /// or different elements had different source aggregates.
939     FoundMismatch
940   };
941   auto Describe = [](std::optional<Value *> SourceAggregate) {
942     if (SourceAggregate == NotFound)
943       return AggregateDescription::NotFound;
944     if (*SourceAggregate == FoundMismatch)
945       return AggregateDescription::FoundMismatch;
946     return AggregateDescription::Found;
947   };
948 
949   // Given the value \p Elt that was being inserted into element \p EltIdx of an
950   // aggregate AggTy, see if \p Elt was originally defined by an
951   // appropriate extractvalue (same element index, same aggregate type).
952   // If found, return the source aggregate from which the extraction was.
953   // If \p PredBB is provided, does PHI translation of an \p Elt first.
954   auto FindSourceAggregate =
955       [&](Instruction *Elt, unsigned EltIdx, std::optional<BasicBlock *> UseBB,
956           std::optional<BasicBlock *> PredBB) -> std::optional<Value *> {
957     // For now(?), only deal with, at most, a single level of PHI indirection.
958     if (UseBB && PredBB)
959       Elt = dyn_cast<Instruction>(Elt->DoPHITranslation(*UseBB, *PredBB));
960     // FIXME: deal with multiple levels of PHI indirection?
961 
962     // Did we find an extraction?
963     auto *EVI = dyn_cast_or_null<ExtractValueInst>(Elt);
964     if (!EVI)
965       return NotFound;
966 
967     Value *SourceAggregate = EVI->getAggregateOperand();
968 
969     // Is the extraction from the same type into which the insertion was?
970     if (SourceAggregate->getType() != AggTy)
971       return FoundMismatch;
972     // And the element index doesn't change between extraction and insertion?
973     if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front())
974       return FoundMismatch;
975 
976     return SourceAggregate; // AggregateDescription::Found
977   };
978 
979   // Given elements AggElts that were constructing an aggregate OrigIVI,
980   // see if we can find appropriate source aggregate for each of the elements,
981   // and see it's the same aggregate for each element. If so, return it.
982   auto FindCommonSourceAggregate =
983       [&](std::optional<BasicBlock *> UseBB,
984           std::optional<BasicBlock *> PredBB) -> std::optional<Value *> {
985     std::optional<Value *> SourceAggregate;
986 
987     for (auto I : enumerate(AggElts)) {
988       assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch &&
989              "We don't store nullptr in SourceAggregate!");
990       assert((Describe(SourceAggregate) == AggregateDescription::Found) ==
991                  (I.index() != 0) &&
992              "SourceAggregate should be valid after the first element,");
993 
994       // For this element, is there a plausible source aggregate?
995       // FIXME: we could special-case undef element, IFF we know that in the
996       //        source aggregate said element isn't poison.
997       std::optional<Value *> SourceAggregateForElement =
998           FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB);
999 
1000       // Okay, what have we found? Does that correlate with previous findings?
1001 
1002       // Regardless of whether or not we have previously found source
1003       // aggregate for previous elements (if any), if we didn't find one for
1004       // this element, passthrough whatever we have just found.
1005       if (Describe(SourceAggregateForElement) != AggregateDescription::Found)
1006         return SourceAggregateForElement;
1007 
1008       // Okay, we have found source aggregate for this element.
1009       // Let's see what we already know from previous elements, if any.
1010       switch (Describe(SourceAggregate)) {
1011       case AggregateDescription::NotFound:
1012         // This is apparently the first element that we have examined.
1013         SourceAggregate = SourceAggregateForElement; // Record the aggregate!
1014         continue; // Great, now look at next element.
1015       case AggregateDescription::Found:
1016         // We have previously already successfully examined other elements.
1017         // Is this the same source aggregate we've found for other elements?
1018         if (*SourceAggregateForElement != *SourceAggregate)
1019           return FoundMismatch;
1020         continue; // Still the same aggregate, look at next element.
1021       case AggregateDescription::FoundMismatch:
1022         llvm_unreachable("Can't happen. We would have early-exited then.");
1023       };
1024     }
1025 
1026     assert(Describe(SourceAggregate) == AggregateDescription::Found &&
1027            "Must be a valid Value");
1028     return *SourceAggregate;
1029   };
1030 
1031   std::optional<Value *> SourceAggregate;
1032 
1033   // Can we find the source aggregate without looking at predecessors?
1034   SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/std::nullopt,
1035                                               /*PredBB=*/std::nullopt);
1036   if (Describe(SourceAggregate) != AggregateDescription::NotFound) {
1037     if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch)
1038       return nullptr; // Conflicting source aggregates!
1039     ++NumAggregateReconstructionsSimplified;
1040     return replaceInstUsesWith(OrigIVI, *SourceAggregate);
1041   }
1042 
1043   // Okay, apparently we need to look at predecessors.
1044 
1045   // We should be smart about picking the "use" basic block, which will be the
1046   // merge point for aggregate, where we'll insert the final PHI that will be
1047   // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice.
1048   // We should look in which blocks each of the AggElts is being defined,
1049   // they all should be defined in the same basic block.
1050   BasicBlock *UseBB = nullptr;
1051 
1052   for (const std::optional<Instruction *> &I : AggElts) {
1053     BasicBlock *BB = (*I)->getParent();
1054     // If it's the first instruction we've encountered, record the basic block.
1055     if (!UseBB) {
1056       UseBB = BB;
1057       continue;
1058     }
1059     // Otherwise, this must be the same basic block we've seen previously.
1060     if (UseBB != BB)
1061       return nullptr;
1062   }
1063 
1064   // If *all* of the elements are basic-block-independent, meaning they are
1065   // either function arguments, or constant expressions, then if we didn't
1066   // handle them without predecessor-aware handling, we won't handle them now.
1067   if (!UseBB)
1068     return nullptr;
1069 
1070   // If we didn't manage to find source aggregate without looking at
1071   // predecessors, and there are no predecessors to look at, then we're done.
1072   if (pred_empty(UseBB))
1073     return nullptr;
1074 
1075   // Arbitrary predecessor count limit.
1076   static const int PredCountLimit = 64;
1077 
1078   // Cache the (non-uniqified!) list of predecessors in a vector,
1079   // checking the limit at the same time for efficiency.
1080   SmallVector<BasicBlock *, 4> Preds; // May have duplicates!
1081   for (BasicBlock *Pred : predecessors(UseBB)) {
1082     // Don't bother if there are too many predecessors.
1083     if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once?
1084       return nullptr;
1085     Preds.emplace_back(Pred);
1086   }
1087 
1088   // For each predecessor, what is the source aggregate,
1089   // from which all the elements were originally extracted from?
1090   // Note that we want for the map to have stable iteration order!
1091   SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates;
1092   for (BasicBlock *Pred : Preds) {
1093     std::pair<decltype(SourceAggregates)::iterator, bool> IV =
1094         SourceAggregates.insert({Pred, nullptr});
1095     // Did we already evaluate this predecessor?
1096     if (!IV.second)
1097       continue;
1098 
1099     // Let's hope that when coming from predecessor Pred, all elements of the
1100     // aggregate produced by OrigIVI must have been originally extracted from
1101     // the same aggregate. Is that so? Can we find said original aggregate?
1102     SourceAggregate = FindCommonSourceAggregate(UseBB, Pred);
1103     if (Describe(SourceAggregate) != AggregateDescription::Found)
1104       return nullptr; // Give up.
1105     IV.first->second = *SourceAggregate;
1106   }
1107 
1108   // All good! Now we just need to thread the source aggregates here.
1109   // Note that we have to insert the new PHI here, ourselves, because we can't
1110   // rely on InstCombinerImpl::run() inserting it into the right basic block.
1111   // Note that the same block can be a predecessor more than once,
1112   // and we need to preserve that invariant for the PHI node.
1113   BuilderTy::InsertPointGuard Guard(Builder);
1114   Builder.SetInsertPoint(UseBB->getFirstNonPHI());
1115   auto *PHI =
1116       Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged");
1117   for (BasicBlock *Pred : Preds)
1118     PHI->addIncoming(SourceAggregates[Pred], Pred);
1119 
1120   ++NumAggregateReconstructionsSimplified;
1121   return replaceInstUsesWith(OrigIVI, PHI);
1122 }
1123 
1124 /// Try to find redundant insertvalue instructions, like the following ones:
1125 ///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
1126 ///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
1127 /// Here the second instruction inserts values at the same indices, as the
1128 /// first one, making the first one redundant.
1129 /// It should be transformed to:
1130 ///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
1131 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) {
1132   bool IsRedundant = false;
1133   ArrayRef<unsigned int> FirstIndices = I.getIndices();
1134 
1135   // If there is a chain of insertvalue instructions (each of them except the
1136   // last one has only one use and it's another insertvalue insn from this
1137   // chain), check if any of the 'children' uses the same indices as the first
1138   // instruction. In this case, the first one is redundant.
1139   Value *V = &I;
1140   unsigned Depth = 0;
1141   while (V->hasOneUse() && Depth < 10) {
1142     User *U = V->user_back();
1143     auto UserInsInst = dyn_cast<InsertValueInst>(U);
1144     if (!UserInsInst || U->getOperand(0) != V)
1145       break;
1146     if (UserInsInst->getIndices() == FirstIndices) {
1147       IsRedundant = true;
1148       break;
1149     }
1150     V = UserInsInst;
1151     Depth++;
1152   }
1153 
1154   if (IsRedundant)
1155     return replaceInstUsesWith(I, I.getOperand(0));
1156 
1157   if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I))
1158     return NewI;
1159 
1160   return nullptr;
1161 }
1162 
1163 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
1164   // Can not analyze scalable type, the number of elements is not a compile-time
1165   // constant.
1166   if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType()))
1167     return false;
1168 
1169   int MaskSize = Shuf.getShuffleMask().size();
1170   int VecSize =
1171       cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements();
1172 
1173   // A vector select does not change the size of the operands.
1174   if (MaskSize != VecSize)
1175     return false;
1176 
1177   // Each mask element must be undefined or choose a vector element from one of
1178   // the source operands without crossing vector lanes.
1179   for (int i = 0; i != MaskSize; ++i) {
1180     int Elt = Shuf.getMaskValue(i);
1181     if (Elt != -1 && Elt != i && Elt != i + VecSize)
1182       return false;
1183   }
1184 
1185   return true;
1186 }
1187 
1188 /// Turn a chain of inserts that splats a value into an insert + shuffle:
1189 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
1190 /// shufflevector(insertelt(X, %k, 0), poison, zero)
1191 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
1192   // We are interested in the last insert in a chain. So if this insert has a
1193   // single user and that user is an insert, bail.
1194   if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
1195     return nullptr;
1196 
1197   VectorType *VecTy = InsElt.getType();
1198   // Can not handle scalable type, the number of elements is not a compile-time
1199   // constant.
1200   if (isa<ScalableVectorType>(VecTy))
1201     return nullptr;
1202   unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1203 
1204   // Do not try to do this for a one-element vector, since that's a nop,
1205   // and will cause an inf-loop.
1206   if (NumElements == 1)
1207     return nullptr;
1208 
1209   Value *SplatVal = InsElt.getOperand(1);
1210   InsertElementInst *CurrIE = &InsElt;
1211   SmallBitVector ElementPresent(NumElements, false);
1212   InsertElementInst *FirstIE = nullptr;
1213 
1214   // Walk the chain backwards, keeping track of which indices we inserted into,
1215   // until we hit something that isn't an insert of the splatted value.
1216   while (CurrIE) {
1217     auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
1218     if (!Idx || CurrIE->getOperand(1) != SplatVal)
1219       return nullptr;
1220 
1221     auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
1222     // Check none of the intermediate steps have any additional uses, except
1223     // for the root insertelement instruction, which can be re-used, if it
1224     // inserts at position 0.
1225     if (CurrIE != &InsElt &&
1226         (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
1227       return nullptr;
1228 
1229     ElementPresent[Idx->getZExtValue()] = true;
1230     FirstIE = CurrIE;
1231     CurrIE = NextIE;
1232   }
1233 
1234   // If this is just a single insertelement (not a sequence), we are done.
1235   if (FirstIE == &InsElt)
1236     return nullptr;
1237 
1238   // If we are not inserting into an undef vector, make sure we've seen an
1239   // insert into every element.
1240   // TODO: If the base vector is not undef, it might be better to create a splat
1241   //       and then a select-shuffle (blend) with the base vector.
1242   if (!match(FirstIE->getOperand(0), m_Undef()))
1243     if (!ElementPresent.all())
1244       return nullptr;
1245 
1246   // Create the insert + shuffle.
1247   Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
1248   PoisonValue *PoisonVec = PoisonValue::get(VecTy);
1249   Constant *Zero = ConstantInt::get(Int32Ty, 0);
1250   if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
1251     FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "", &InsElt);
1252 
1253   // Splat from element 0, but replace absent elements with undef in the mask.
1254   SmallVector<int, 16> Mask(NumElements, 0);
1255   for (unsigned i = 0; i != NumElements; ++i)
1256     if (!ElementPresent[i])
1257       Mask[i] = -1;
1258 
1259   return new ShuffleVectorInst(FirstIE, Mask);
1260 }
1261 
1262 /// Try to fold an insert element into an existing splat shuffle by changing
1263 /// the shuffle's mask to include the index of this insert element.
1264 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
1265   // Check if the vector operand of this insert is a canonical splat shuffle.
1266   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
1267   if (!Shuf || !Shuf->isZeroEltSplat())
1268     return nullptr;
1269 
1270   // Bail out early if shuffle is scalable type. The number of elements in
1271   // shuffle mask is unknown at compile-time.
1272   if (isa<ScalableVectorType>(Shuf->getType()))
1273     return nullptr;
1274 
1275   // Check for a constant insertion index.
1276   uint64_t IdxC;
1277   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
1278     return nullptr;
1279 
1280   // Check if the splat shuffle's input is the same as this insert's scalar op.
1281   Value *X = InsElt.getOperand(1);
1282   Value *Op0 = Shuf->getOperand(0);
1283   if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt())))
1284     return nullptr;
1285 
1286   // Replace the shuffle mask element at the index of this insert with a zero.
1287   // For example:
1288   // inselt (shuf (inselt undef, X, 0), _, <0,undef,0,undef>), X, 1
1289   //   --> shuf (inselt undef, X, 0), poison, <0,0,0,undef>
1290   unsigned NumMaskElts =
1291       cast<FixedVectorType>(Shuf->getType())->getNumElements();
1292   SmallVector<int, 16> NewMask(NumMaskElts);
1293   for (unsigned i = 0; i != NumMaskElts; ++i)
1294     NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i);
1295 
1296   return new ShuffleVectorInst(Op0, NewMask);
1297 }
1298 
1299 /// Try to fold an extract+insert element into an existing identity shuffle by
1300 /// changing the shuffle's mask to include the index of this insert element.
1301 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
1302   // Check if the vector operand of this insert is an identity shuffle.
1303   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
1304   if (!Shuf || !match(Shuf->getOperand(1), m_Undef()) ||
1305       !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
1306     return nullptr;
1307 
1308   // Bail out early if shuffle is scalable type. The number of elements in
1309   // shuffle mask is unknown at compile-time.
1310   if (isa<ScalableVectorType>(Shuf->getType()))
1311     return nullptr;
1312 
1313   // Check for a constant insertion index.
1314   uint64_t IdxC;
1315   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
1316     return nullptr;
1317 
1318   // Check if this insert's scalar op is extracted from the identity shuffle's
1319   // input vector.
1320   Value *Scalar = InsElt.getOperand(1);
1321   Value *X = Shuf->getOperand(0);
1322   if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC))))
1323     return nullptr;
1324 
1325   // Replace the shuffle mask element at the index of this extract+insert with
1326   // that same index value.
1327   // For example:
1328   // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
1329   unsigned NumMaskElts =
1330       cast<FixedVectorType>(Shuf->getType())->getNumElements();
1331   SmallVector<int, 16> NewMask(NumMaskElts);
1332   ArrayRef<int> OldMask = Shuf->getShuffleMask();
1333   for (unsigned i = 0; i != NumMaskElts; ++i) {
1334     if (i != IdxC) {
1335       // All mask elements besides the inserted element remain the same.
1336       NewMask[i] = OldMask[i];
1337     } else if (OldMask[i] == (int)IdxC) {
1338       // If the mask element was already set, there's nothing to do
1339       // (demanded elements analysis may unset it later).
1340       return nullptr;
1341     } else {
1342       assert(OldMask[i] == UndefMaskElem &&
1343              "Unexpected shuffle mask element for identity shuffle");
1344       NewMask[i] = IdxC;
1345     }
1346   }
1347 
1348   return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
1349 }
1350 
1351 /// If we have an insertelement instruction feeding into another insertelement
1352 /// and the 2nd is inserting a constant into the vector, canonicalize that
1353 /// constant insertion before the insertion of a variable:
1354 ///
1355 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
1356 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
1357 ///
1358 /// This has the potential of eliminating the 2nd insertelement instruction
1359 /// via constant folding of the scalar constant into a vector constant.
1360 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
1361                                      InstCombiner::BuilderTy &Builder) {
1362   auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
1363   if (!InsElt1 || !InsElt1->hasOneUse())
1364     return nullptr;
1365 
1366   Value *X, *Y;
1367   Constant *ScalarC;
1368   ConstantInt *IdxC1, *IdxC2;
1369   if (match(InsElt1->getOperand(0), m_Value(X)) &&
1370       match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
1371       match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
1372       match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
1373       match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
1374     Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
1375     return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
1376   }
1377 
1378   return nullptr;
1379 }
1380 
1381 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
1382 /// --> shufflevector X, CVec', Mask'
1383 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
1384   auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
1385   // Bail out if the parent has more than one use. In that case, we'd be
1386   // replacing the insertelt with a shuffle, and that's not a clear win.
1387   if (!Inst || !Inst->hasOneUse())
1388     return nullptr;
1389   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
1390     // The shuffle must have a constant vector operand. The insertelt must have
1391     // a constant scalar being inserted at a constant position in the vector.
1392     Constant *ShufConstVec, *InsEltScalar;
1393     uint64_t InsEltIndex;
1394     if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
1395         !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
1396         !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
1397       return nullptr;
1398 
1399     // Adding an element to an arbitrary shuffle could be expensive, but a
1400     // shuffle that selects elements from vectors without crossing lanes is
1401     // assumed cheap.
1402     // If we're just adding a constant into that shuffle, it will still be
1403     // cheap.
1404     if (!isShuffleEquivalentToSelect(*Shuf))
1405       return nullptr;
1406 
1407     // From the above 'select' check, we know that the mask has the same number
1408     // of elements as the vector input operands. We also know that each constant
1409     // input element is used in its lane and can not be used more than once by
1410     // the shuffle. Therefore, replace the constant in the shuffle's constant
1411     // vector with the insertelt constant. Replace the constant in the shuffle's
1412     // mask vector with the insertelt index plus the length of the vector
1413     // (because the constant vector operand of a shuffle is always the 2nd
1414     // operand).
1415     ArrayRef<int> Mask = Shuf->getShuffleMask();
1416     unsigned NumElts = Mask.size();
1417     SmallVector<Constant *, 16> NewShufElts(NumElts);
1418     SmallVector<int, 16> NewMaskElts(NumElts);
1419     for (unsigned I = 0; I != NumElts; ++I) {
1420       if (I == InsEltIndex) {
1421         NewShufElts[I] = InsEltScalar;
1422         NewMaskElts[I] = InsEltIndex + NumElts;
1423       } else {
1424         // Copy over the existing values.
1425         NewShufElts[I] = ShufConstVec->getAggregateElement(I);
1426         NewMaskElts[I] = Mask[I];
1427       }
1428 
1429       // Bail if we failed to find an element.
1430       if (!NewShufElts[I])
1431         return nullptr;
1432     }
1433 
1434     // Create new operands for a shuffle that includes the constant of the
1435     // original insertelt. The old shuffle will be dead now.
1436     return new ShuffleVectorInst(Shuf->getOperand(0),
1437                                  ConstantVector::get(NewShufElts), NewMaskElts);
1438   } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
1439     // Transform sequences of insertelements ops with constant data/indexes into
1440     // a single shuffle op.
1441     // Can not handle scalable type, the number of elements needed to create
1442     // shuffle mask is not a compile-time constant.
1443     if (isa<ScalableVectorType>(InsElt.getType()))
1444       return nullptr;
1445     unsigned NumElts =
1446         cast<FixedVectorType>(InsElt.getType())->getNumElements();
1447 
1448     uint64_t InsertIdx[2];
1449     Constant *Val[2];
1450     if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
1451         !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
1452         !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
1453         !match(IEI->getOperand(1), m_Constant(Val[1])))
1454       return nullptr;
1455     SmallVector<Constant *, 16> Values(NumElts);
1456     SmallVector<int, 16> Mask(NumElts);
1457     auto ValI = std::begin(Val);
1458     // Generate new constant vector and mask.
1459     // We have 2 values/masks from the insertelements instructions. Insert them
1460     // into new value/mask vectors.
1461     for (uint64_t I : InsertIdx) {
1462       if (!Values[I]) {
1463         Values[I] = *ValI;
1464         Mask[I] = NumElts + I;
1465       }
1466       ++ValI;
1467     }
1468     // Remaining values are filled with 'undef' values.
1469     for (unsigned I = 0; I < NumElts; ++I) {
1470       if (!Values[I]) {
1471         Values[I] = UndefValue::get(InsElt.getType()->getElementType());
1472         Mask[I] = I;
1473       }
1474     }
1475     // Create new operands for a shuffle that includes the constant of the
1476     // original insertelt.
1477     return new ShuffleVectorInst(IEI->getOperand(0),
1478                                  ConstantVector::get(Values), Mask);
1479   }
1480   return nullptr;
1481 }
1482 
1483 /// If both the base vector and the inserted element are extended from the same
1484 /// type, do the insert element in the narrow source type followed by extend.
1485 /// TODO: This can be extended to include other cast opcodes, but particularly
1486 ///       if we create a wider insertelement, make sure codegen is not harmed.
1487 static Instruction *narrowInsElt(InsertElementInst &InsElt,
1488                                  InstCombiner::BuilderTy &Builder) {
1489   // We are creating a vector extend. If the original vector extend has another
1490   // use, that would mean we end up with 2 vector extends, so avoid that.
1491   // TODO: We could ease the use-clause to "if at least one op has one use"
1492   //       (assuming that the source types match - see next TODO comment).
1493   Value *Vec = InsElt.getOperand(0);
1494   if (!Vec->hasOneUse())
1495     return nullptr;
1496 
1497   Value *Scalar = InsElt.getOperand(1);
1498   Value *X, *Y;
1499   CastInst::CastOps CastOpcode;
1500   if (match(Vec, m_FPExt(m_Value(X))) && match(Scalar, m_FPExt(m_Value(Y))))
1501     CastOpcode = Instruction::FPExt;
1502   else if (match(Vec, m_SExt(m_Value(X))) && match(Scalar, m_SExt(m_Value(Y))))
1503     CastOpcode = Instruction::SExt;
1504   else if (match(Vec, m_ZExt(m_Value(X))) && match(Scalar, m_ZExt(m_Value(Y))))
1505     CastOpcode = Instruction::ZExt;
1506   else
1507     return nullptr;
1508 
1509   // TODO: We can allow mismatched types by creating an intermediate cast.
1510   if (X->getType()->getScalarType() != Y->getType())
1511     return nullptr;
1512 
1513   // inselt (ext X), (ext Y), Index --> ext (inselt X, Y, Index)
1514   Value *NewInsElt = Builder.CreateInsertElement(X, Y, InsElt.getOperand(2));
1515   return CastInst::Create(CastOpcode, NewInsElt, InsElt.getType());
1516 }
1517 
1518 /// If we are inserting 2 halves of a value into adjacent elements of a vector,
1519 /// try to convert to a single insert with appropriate bitcasts.
1520 static Instruction *foldTruncInsEltPair(InsertElementInst &InsElt,
1521                                         bool IsBigEndian,
1522                                         InstCombiner::BuilderTy &Builder) {
1523   Value *VecOp    = InsElt.getOperand(0);
1524   Value *ScalarOp = InsElt.getOperand(1);
1525   Value *IndexOp  = InsElt.getOperand(2);
1526 
1527   // Pattern depends on endian because we expect lower index is inserted first.
1528   // Big endian:
1529   // inselt (inselt BaseVec, (trunc (lshr X, BW/2), Index0), (trunc X), Index1
1530   // Little endian:
1531   // inselt (inselt BaseVec, (trunc X), Index0), (trunc (lshr X, BW/2)), Index1
1532   // Note: It is not safe to do this transform with an arbitrary base vector
1533   //       because the bitcast of that vector to fewer/larger elements could
1534   //       allow poison to spill into an element that was not poison before.
1535   // TODO: Detect smaller fractions of the scalar.
1536   // TODO: One-use checks are conservative.
1537   auto *VTy = dyn_cast<FixedVectorType>(InsElt.getType());
1538   Value *Scalar0, *BaseVec;
1539   uint64_t Index0, Index1;
1540   if (!VTy || (VTy->getNumElements() & 1) ||
1541       !match(IndexOp, m_ConstantInt(Index1)) ||
1542       !match(VecOp, m_InsertElt(m_Value(BaseVec), m_Value(Scalar0),
1543                                 m_ConstantInt(Index0))) ||
1544       !match(BaseVec, m_Undef()))
1545     return nullptr;
1546 
1547   // The first insert must be to the index one less than this one, and
1548   // the first insert must be to an even index.
1549   if (Index0 + 1 != Index1 || Index0 & 1)
1550     return nullptr;
1551 
1552   // For big endian, the high half of the value should be inserted first.
1553   // For little endian, the low half of the value should be inserted first.
1554   Value *X;
1555   uint64_t ShAmt;
1556   if (IsBigEndian) {
1557     if (!match(ScalarOp, m_Trunc(m_Value(X))) ||
1558         !match(Scalar0, m_Trunc(m_LShr(m_Specific(X), m_ConstantInt(ShAmt)))))
1559       return nullptr;
1560   } else {
1561     if (!match(Scalar0, m_Trunc(m_Value(X))) ||
1562         !match(ScalarOp, m_Trunc(m_LShr(m_Specific(X), m_ConstantInt(ShAmt)))))
1563       return nullptr;
1564   }
1565 
1566   Type *SrcTy = X->getType();
1567   unsigned ScalarWidth = SrcTy->getScalarSizeInBits();
1568   unsigned VecEltWidth = VTy->getScalarSizeInBits();
1569   if (ScalarWidth != VecEltWidth * 2 || ShAmt != VecEltWidth)
1570     return nullptr;
1571 
1572   // Bitcast the base vector to a vector type with the source element type.
1573   Type *CastTy = FixedVectorType::get(SrcTy, VTy->getNumElements() / 2);
1574   Value *CastBaseVec = Builder.CreateBitCast(BaseVec, CastTy);
1575 
1576   // Scale the insert index for a vector with half as many elements.
1577   // bitcast (inselt (bitcast BaseVec), X, NewIndex)
1578   uint64_t NewIndex = IsBigEndian ? Index1 / 2 : Index0 / 2;
1579   Value *NewInsert = Builder.CreateInsertElement(CastBaseVec, X, NewIndex);
1580   return new BitCastInst(NewInsert, VTy);
1581 }
1582 
1583 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) {
1584   Value *VecOp    = IE.getOperand(0);
1585   Value *ScalarOp = IE.getOperand(1);
1586   Value *IdxOp    = IE.getOperand(2);
1587 
1588   if (auto *V = simplifyInsertElementInst(
1589           VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
1590     return replaceInstUsesWith(IE, V);
1591 
1592   // Canonicalize type of constant indices to i64 to simplify CSE
1593   if (auto *IndexC = dyn_cast<ConstantInt>(IdxOp)) {
1594     if (auto *NewIdx = getPreferredVectorIndex(IndexC))
1595       return replaceOperand(IE, 2, NewIdx);
1596 
1597     Value *BaseVec, *OtherScalar;
1598     uint64_t OtherIndexVal;
1599     if (match(VecOp, m_OneUse(m_InsertElt(m_Value(BaseVec),
1600                                           m_Value(OtherScalar),
1601                                           m_ConstantInt(OtherIndexVal)))) &&
1602         !isa<Constant>(OtherScalar) && OtherIndexVal > IndexC->getZExtValue()) {
1603       Value *NewIns = Builder.CreateInsertElement(BaseVec, ScalarOp, IdxOp);
1604       return InsertElementInst::Create(NewIns, OtherScalar,
1605                                        Builder.getInt64(OtherIndexVal));
1606     }
1607   }
1608 
1609   // If the scalar is bitcast and inserted into undef, do the insert in the
1610   // source type followed by bitcast.
1611   // TODO: Generalize for insert into any constant, not just undef?
1612   Value *ScalarSrc;
1613   if (match(VecOp, m_Undef()) &&
1614       match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) &&
1615       (ScalarSrc->getType()->isIntegerTy() ||
1616        ScalarSrc->getType()->isFloatingPointTy())) {
1617     // inselt undef, (bitcast ScalarSrc), IdxOp -->
1618     //   bitcast (inselt undef, ScalarSrc, IdxOp)
1619     Type *ScalarTy = ScalarSrc->getType();
1620     Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount());
1621     UndefValue *NewUndef = UndefValue::get(VecTy);
1622     Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp);
1623     return new BitCastInst(NewInsElt, IE.getType());
1624   }
1625 
1626   // If the vector and scalar are both bitcast from the same element type, do
1627   // the insert in that source type followed by bitcast.
1628   Value *VecSrc;
1629   if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
1630       match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
1631       (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
1632       VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
1633       cast<VectorType>(VecSrc->getType())->getElementType() ==
1634           ScalarSrc->getType()) {
1635     // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
1636     //   bitcast (inselt VecSrc, ScalarSrc, IdxOp)
1637     Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
1638     return new BitCastInst(NewInsElt, IE.getType());
1639   }
1640 
1641   // If the inserted element was extracted from some other fixed-length vector
1642   // and both indexes are valid constants, try to turn this into a shuffle.
1643   // Can not handle scalable vector type, the number of elements needed to
1644   // create shuffle mask is not a compile-time constant.
1645   uint64_t InsertedIdx, ExtractedIdx;
1646   Value *ExtVecOp;
1647   if (isa<FixedVectorType>(IE.getType()) &&
1648       match(IdxOp, m_ConstantInt(InsertedIdx)) &&
1649       match(ScalarOp,
1650             m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) &&
1651       isa<FixedVectorType>(ExtVecOp->getType()) &&
1652       ExtractedIdx <
1653           cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) {
1654     // TODO: Looking at the user(s) to determine if this insert is a
1655     // fold-to-shuffle opportunity does not match the usual instcombine
1656     // constraints. We should decide if the transform is worthy based only
1657     // on this instruction and its operands, but that may not work currently.
1658     //
1659     // Here, we are trying to avoid creating shuffles before reaching
1660     // the end of a chain of extract-insert pairs. This is complicated because
1661     // we do not generally form arbitrary shuffle masks in instcombine
1662     // (because those may codegen poorly), but collectShuffleElements() does
1663     // exactly that.
1664     //
1665     // The rules for determining what is an acceptable target-independent
1666     // shuffle mask are fuzzy because they evolve based on the backend's
1667     // capabilities and real-world impact.
1668     auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
1669       if (!Insert.hasOneUse())
1670         return true;
1671       auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
1672       if (!InsertUser)
1673         return true;
1674       return false;
1675     };
1676 
1677     // Try to form a shuffle from a chain of extract-insert ops.
1678     if (isShuffleRootCandidate(IE)) {
1679       SmallVector<int, 16> Mask;
1680       ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
1681 
1682       // The proposed shuffle may be trivial, in which case we shouldn't
1683       // perform the combine.
1684       if (LR.first != &IE && LR.second != &IE) {
1685         // We now have a shuffle of LHS, RHS, Mask.
1686         if (LR.second == nullptr)
1687           LR.second = UndefValue::get(LR.first->getType());
1688         return new ShuffleVectorInst(LR.first, LR.second, Mask);
1689       }
1690     }
1691   }
1692 
1693   if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) {
1694     unsigned VWidth = VecTy->getNumElements();
1695     APInt UndefElts(VWidth, 0);
1696     APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
1697     if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
1698       if (V != &IE)
1699         return replaceInstUsesWith(IE, V);
1700       return &IE;
1701     }
1702   }
1703 
1704   if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
1705     return Shuf;
1706 
1707   if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
1708     return NewInsElt;
1709 
1710   if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
1711     return Broadcast;
1712 
1713   if (Instruction *Splat = foldInsEltIntoSplat(IE))
1714     return Splat;
1715 
1716   if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
1717     return IdentityShuf;
1718 
1719   if (Instruction *Ext = narrowInsElt(IE, Builder))
1720     return Ext;
1721 
1722   if (Instruction *Ext = foldTruncInsEltPair(IE, DL.isBigEndian(), Builder))
1723     return Ext;
1724 
1725   return nullptr;
1726 }
1727 
1728 /// Return true if we can evaluate the specified expression tree if the vector
1729 /// elements were shuffled in a different order.
1730 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
1731                                 unsigned Depth = 5) {
1732   // We can always reorder the elements of a constant.
1733   if (isa<Constant>(V))
1734     return true;
1735 
1736   // We won't reorder vector arguments. No IPO here.
1737   Instruction *I = dyn_cast<Instruction>(V);
1738   if (!I) return false;
1739 
1740   // Two users may expect different orders of the elements. Don't try it.
1741   if (!I->hasOneUse())
1742     return false;
1743 
1744   if (Depth == 0) return false;
1745 
1746   switch (I->getOpcode()) {
1747     case Instruction::UDiv:
1748     case Instruction::SDiv:
1749     case Instruction::URem:
1750     case Instruction::SRem:
1751       // Propagating an undefined shuffle mask element to integer div/rem is not
1752       // allowed because those opcodes can create immediate undefined behavior
1753       // from an undefined element in an operand.
1754       if (llvm::is_contained(Mask, -1))
1755         return false;
1756       [[fallthrough]];
1757     case Instruction::Add:
1758     case Instruction::FAdd:
1759     case Instruction::Sub:
1760     case Instruction::FSub:
1761     case Instruction::Mul:
1762     case Instruction::FMul:
1763     case Instruction::FDiv:
1764     case Instruction::FRem:
1765     case Instruction::Shl:
1766     case Instruction::LShr:
1767     case Instruction::AShr:
1768     case Instruction::And:
1769     case Instruction::Or:
1770     case Instruction::Xor:
1771     case Instruction::ICmp:
1772     case Instruction::FCmp:
1773     case Instruction::Trunc:
1774     case Instruction::ZExt:
1775     case Instruction::SExt:
1776     case Instruction::FPToUI:
1777     case Instruction::FPToSI:
1778     case Instruction::UIToFP:
1779     case Instruction::SIToFP:
1780     case Instruction::FPTrunc:
1781     case Instruction::FPExt:
1782     case Instruction::GetElementPtr: {
1783       // Bail out if we would create longer vector ops. We could allow creating
1784       // longer vector ops, but that may result in more expensive codegen.
1785       Type *ITy = I->getType();
1786       if (ITy->isVectorTy() &&
1787           Mask.size() > cast<FixedVectorType>(ITy)->getNumElements())
1788         return false;
1789       for (Value *Operand : I->operands()) {
1790         if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1791           return false;
1792       }
1793       return true;
1794     }
1795     case Instruction::InsertElement: {
1796       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1797       if (!CI) return false;
1798       int ElementNumber = CI->getLimitedValue();
1799 
1800       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1801       // can't put an element into multiple indices.
1802       bool SeenOnce = false;
1803       for (int I : Mask) {
1804         if (I == ElementNumber) {
1805           if (SeenOnce)
1806             return false;
1807           SeenOnce = true;
1808         }
1809       }
1810       return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1811     }
1812   }
1813   return false;
1814 }
1815 
1816 /// Rebuild a new instruction just like 'I' but with the new operands given.
1817 /// In the event of type mismatch, the type of the operands is correct.
1818 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
1819   // We don't want to use the IRBuilder here because we want the replacement
1820   // instructions to appear next to 'I', not the builder's insertion point.
1821   switch (I->getOpcode()) {
1822     case Instruction::Add:
1823     case Instruction::FAdd:
1824     case Instruction::Sub:
1825     case Instruction::FSub:
1826     case Instruction::Mul:
1827     case Instruction::FMul:
1828     case Instruction::UDiv:
1829     case Instruction::SDiv:
1830     case Instruction::FDiv:
1831     case Instruction::URem:
1832     case Instruction::SRem:
1833     case Instruction::FRem:
1834     case Instruction::Shl:
1835     case Instruction::LShr:
1836     case Instruction::AShr:
1837     case Instruction::And:
1838     case Instruction::Or:
1839     case Instruction::Xor: {
1840       BinaryOperator *BO = cast<BinaryOperator>(I);
1841       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1842       BinaryOperator *New =
1843           BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
1844                                  NewOps[0], NewOps[1], "", BO);
1845       if (isa<OverflowingBinaryOperator>(BO)) {
1846         New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1847         New->setHasNoSignedWrap(BO->hasNoSignedWrap());
1848       }
1849       if (isa<PossiblyExactOperator>(BO)) {
1850         New->setIsExact(BO->isExact());
1851       }
1852       if (isa<FPMathOperator>(BO))
1853         New->copyFastMathFlags(I);
1854       return New;
1855     }
1856     case Instruction::ICmp:
1857       assert(NewOps.size() == 2 && "icmp with #ops != 2");
1858       return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
1859                           NewOps[0], NewOps[1]);
1860     case Instruction::FCmp:
1861       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1862       return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
1863                           NewOps[0], NewOps[1]);
1864     case Instruction::Trunc:
1865     case Instruction::ZExt:
1866     case Instruction::SExt:
1867     case Instruction::FPToUI:
1868     case Instruction::FPToSI:
1869     case Instruction::UIToFP:
1870     case Instruction::SIToFP:
1871     case Instruction::FPTrunc:
1872     case Instruction::FPExt: {
1873       // It's possible that the mask has a different number of elements from
1874       // the original cast. We recompute the destination type to match the mask.
1875       Type *DestTy = VectorType::get(
1876           I->getType()->getScalarType(),
1877           cast<VectorType>(NewOps[0]->getType())->getElementCount());
1878       assert(NewOps.size() == 1 && "cast with #ops != 1");
1879       return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
1880                               "", I);
1881     }
1882     case Instruction::GetElementPtr: {
1883       Value *Ptr = NewOps[0];
1884       ArrayRef<Value*> Idx = NewOps.slice(1);
1885       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1886           cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
1887       GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
1888       return GEP;
1889     }
1890   }
1891   llvm_unreachable("failed to rebuild vector instructions");
1892 }
1893 
1894 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
1895   // Mask.size() does not need to be equal to the number of vector elements.
1896 
1897   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1898   Type *EltTy = V->getType()->getScalarType();
1899   Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
1900   if (match(V, m_Undef()))
1901     return UndefValue::get(FixedVectorType::get(EltTy, Mask.size()));
1902 
1903   if (isa<ConstantAggregateZero>(V))
1904     return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size()));
1905 
1906   if (Constant *C = dyn_cast<Constant>(V))
1907     return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()),
1908                                           Mask);
1909 
1910   Instruction *I = cast<Instruction>(V);
1911   switch (I->getOpcode()) {
1912     case Instruction::Add:
1913     case Instruction::FAdd:
1914     case Instruction::Sub:
1915     case Instruction::FSub:
1916     case Instruction::Mul:
1917     case Instruction::FMul:
1918     case Instruction::UDiv:
1919     case Instruction::SDiv:
1920     case Instruction::FDiv:
1921     case Instruction::URem:
1922     case Instruction::SRem:
1923     case Instruction::FRem:
1924     case Instruction::Shl:
1925     case Instruction::LShr:
1926     case Instruction::AShr:
1927     case Instruction::And:
1928     case Instruction::Or:
1929     case Instruction::Xor:
1930     case Instruction::ICmp:
1931     case Instruction::FCmp:
1932     case Instruction::Trunc:
1933     case Instruction::ZExt:
1934     case Instruction::SExt:
1935     case Instruction::FPToUI:
1936     case Instruction::FPToSI:
1937     case Instruction::UIToFP:
1938     case Instruction::SIToFP:
1939     case Instruction::FPTrunc:
1940     case Instruction::FPExt:
1941     case Instruction::Select:
1942     case Instruction::GetElementPtr: {
1943       SmallVector<Value*, 8> NewOps;
1944       bool NeedsRebuild =
1945           (Mask.size() !=
1946            cast<FixedVectorType>(I->getType())->getNumElements());
1947       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1948         Value *V;
1949         // Recursively call evaluateInDifferentElementOrder on vector arguments
1950         // as well. E.g. GetElementPtr may have scalar operands even if the
1951         // return value is a vector, so we need to examine the operand type.
1952         if (I->getOperand(i)->getType()->isVectorTy())
1953           V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
1954         else
1955           V = I->getOperand(i);
1956         NewOps.push_back(V);
1957         NeedsRebuild |= (V != I->getOperand(i));
1958       }
1959       if (NeedsRebuild) {
1960         return buildNew(I, NewOps);
1961       }
1962       return I;
1963     }
1964     case Instruction::InsertElement: {
1965       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1966 
1967       // The insertelement was inserting at Element. Figure out which element
1968       // that becomes after shuffling. The answer is guaranteed to be unique
1969       // by CanEvaluateShuffled.
1970       bool Found = false;
1971       int Index = 0;
1972       for (int e = Mask.size(); Index != e; ++Index) {
1973         if (Mask[Index] == Element) {
1974           Found = true;
1975           break;
1976         }
1977       }
1978 
1979       // If element is not in Mask, no need to handle the operand 1 (element to
1980       // be inserted). Just evaluate values in operand 0 according to Mask.
1981       if (!Found)
1982         return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1983 
1984       Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1985       return InsertElementInst::Create(V, I->getOperand(1),
1986                                        ConstantInt::get(I32Ty, Index), "", I);
1987     }
1988   }
1989   llvm_unreachable("failed to reorder elements of vector instruction!");
1990 }
1991 
1992 // Returns true if the shuffle is extracting a contiguous range of values from
1993 // LHS, for example:
1994 //                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1995 //   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1996 //   Shuffles to:  |EE|FF|GG|HH|
1997 //                 +--+--+--+--+
1998 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1999                                        ArrayRef<int> Mask) {
2000   unsigned LHSElems =
2001       cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements();
2002   unsigned MaskElems = Mask.size();
2003   unsigned BegIdx = Mask.front();
2004   unsigned EndIdx = Mask.back();
2005   if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
2006     return false;
2007   for (unsigned I = 0; I != MaskElems; ++I)
2008     if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
2009       return false;
2010   return true;
2011 }
2012 
2013 /// These are the ingredients in an alternate form binary operator as described
2014 /// below.
2015 struct BinopElts {
2016   BinaryOperator::BinaryOps Opcode;
2017   Value *Op0;
2018   Value *Op1;
2019   BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
2020             Value *V0 = nullptr, Value *V1 = nullptr) :
2021       Opcode(Opc), Op0(V0), Op1(V1) {}
2022   operator bool() const { return Opcode != 0; }
2023 };
2024 
2025 /// Binops may be transformed into binops with different opcodes and operands.
2026 /// Reverse the usual canonicalization to enable folds with the non-canonical
2027 /// form of the binop. If a transform is possible, return the elements of the
2028 /// new binop. If not, return invalid elements.
2029 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
2030   Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
2031   Type *Ty = BO->getType();
2032   switch (BO->getOpcode()) {
2033   case Instruction::Shl: {
2034     // shl X, C --> mul X, (1 << C)
2035     Constant *C;
2036     if (match(BO1, m_Constant(C))) {
2037       Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
2038       return {Instruction::Mul, BO0, ShlOne};
2039     }
2040     break;
2041   }
2042   case Instruction::Or: {
2043     // or X, C --> add X, C (when X and C have no common bits set)
2044     const APInt *C;
2045     if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
2046       return {Instruction::Add, BO0, BO1};
2047     break;
2048   }
2049   case Instruction::Sub:
2050     // sub 0, X --> mul X, -1
2051     if (match(BO0, m_ZeroInt()))
2052       return {Instruction::Mul, BO1, ConstantInt::getAllOnesValue(Ty)};
2053     break;
2054   default:
2055     break;
2056   }
2057   return {};
2058 }
2059 
2060 /// A select shuffle of a select shuffle with a shared operand can be reduced
2061 /// to a single select shuffle. This is an obvious improvement in IR, and the
2062 /// backend is expected to lower select shuffles efficiently.
2063 static Instruction *foldSelectShuffleOfSelectShuffle(ShuffleVectorInst &Shuf) {
2064   assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
2065 
2066   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2067   SmallVector<int, 16> Mask;
2068   Shuf.getShuffleMask(Mask);
2069   unsigned NumElts = Mask.size();
2070 
2071   // Canonicalize a select shuffle with common operand as Op1.
2072   auto *ShufOp = dyn_cast<ShuffleVectorInst>(Op0);
2073   if (ShufOp && ShufOp->isSelect() &&
2074       (ShufOp->getOperand(0) == Op1 || ShufOp->getOperand(1) == Op1)) {
2075     std::swap(Op0, Op1);
2076     ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
2077   }
2078 
2079   ShufOp = dyn_cast<ShuffleVectorInst>(Op1);
2080   if (!ShufOp || !ShufOp->isSelect() ||
2081       (ShufOp->getOperand(0) != Op0 && ShufOp->getOperand(1) != Op0))
2082     return nullptr;
2083 
2084   Value *X = ShufOp->getOperand(0), *Y = ShufOp->getOperand(1);
2085   SmallVector<int, 16> Mask1;
2086   ShufOp->getShuffleMask(Mask1);
2087   assert(Mask1.size() == NumElts && "Vector size changed with select shuffle");
2088 
2089   // Canonicalize common operand (Op0) as X (first operand of first shuffle).
2090   if (Y == Op0) {
2091     std::swap(X, Y);
2092     ShuffleVectorInst::commuteShuffleMask(Mask1, NumElts);
2093   }
2094 
2095   // If the mask chooses from X (operand 0), it stays the same.
2096   // If the mask chooses from the earlier shuffle, the other mask value is
2097   // transferred to the combined select shuffle:
2098   // shuf X, (shuf X, Y, M1), M --> shuf X, Y, M'
2099   SmallVector<int, 16> NewMask(NumElts);
2100   for (unsigned i = 0; i != NumElts; ++i)
2101     NewMask[i] = Mask[i] < (signed)NumElts ? Mask[i] : Mask1[i];
2102 
2103   // A select mask with undef elements might look like an identity mask.
2104   assert((ShuffleVectorInst::isSelectMask(NewMask) ||
2105           ShuffleVectorInst::isIdentityMask(NewMask)) &&
2106          "Unexpected shuffle mask");
2107   return new ShuffleVectorInst(X, Y, NewMask);
2108 }
2109 
2110 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
2111   assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
2112 
2113   // Are we shuffling together some value and that same value after it has been
2114   // modified by a binop with a constant?
2115   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2116   Constant *C;
2117   bool Op0IsBinop;
2118   if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
2119     Op0IsBinop = true;
2120   else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
2121     Op0IsBinop = false;
2122   else
2123     return nullptr;
2124 
2125   // The identity constant for a binop leaves a variable operand unchanged. For
2126   // a vector, this is a splat of something like 0, -1, or 1.
2127   // If there's no identity constant for this binop, we're done.
2128   auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
2129   BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
2130   Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
2131   if (!IdC)
2132     return nullptr;
2133 
2134   // Shuffle identity constants into the lanes that return the original value.
2135   // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
2136   // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
2137   // The existing binop constant vector remains in the same operand position.
2138   ArrayRef<int> Mask = Shuf.getShuffleMask();
2139   Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
2140                                 ConstantExpr::getShuffleVector(IdC, C, Mask);
2141 
2142   bool MightCreatePoisonOrUB =
2143       is_contained(Mask, UndefMaskElem) &&
2144       (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
2145   if (MightCreatePoisonOrUB)
2146     NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true);
2147 
2148   // shuf (bop X, C), X, M --> bop X, C'
2149   // shuf X, (bop X, C), M --> bop X, C'
2150   Value *X = Op0IsBinop ? Op1 : Op0;
2151   Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
2152   NewBO->copyIRFlags(BO);
2153 
2154   // An undef shuffle mask element may propagate as an undef constant element in
2155   // the new binop. That would produce poison where the original code might not.
2156   // If we already made a safe constant, then there's no danger.
2157   if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
2158     NewBO->dropPoisonGeneratingFlags();
2159   return NewBO;
2160 }
2161 
2162 /// If we have an insert of a scalar to a non-zero element of an undefined
2163 /// vector and then shuffle that value, that's the same as inserting to the zero
2164 /// element and shuffling. Splatting from the zero element is recognized as the
2165 /// canonical form of splat.
2166 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
2167                                             InstCombiner::BuilderTy &Builder) {
2168   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2169   ArrayRef<int> Mask = Shuf.getShuffleMask();
2170   Value *X;
2171   uint64_t IndexC;
2172 
2173   // Match a shuffle that is a splat to a non-zero element.
2174   if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X),
2175                                        m_ConstantInt(IndexC)))) ||
2176       !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0)
2177     return nullptr;
2178 
2179   // Insert into element 0 of an undef vector.
2180   UndefValue *UndefVec = UndefValue::get(Shuf.getType());
2181   Constant *Zero = Builder.getInt32(0);
2182   Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);
2183 
2184   // Splat from element 0. Any mask element that is undefined remains undefined.
2185   // For example:
2186   // shuf (inselt undef, X, 2), _, <2,2,undef>
2187   //   --> shuf (inselt undef, X, 0), poison, <0,0,undef>
2188   unsigned NumMaskElts =
2189       cast<FixedVectorType>(Shuf.getType())->getNumElements();
2190   SmallVector<int, 16> NewMask(NumMaskElts, 0);
2191   for (unsigned i = 0; i != NumMaskElts; ++i)
2192     if (Mask[i] == UndefMaskElem)
2193       NewMask[i] = Mask[i];
2194 
2195   return new ShuffleVectorInst(NewIns, NewMask);
2196 }
2197 
2198 /// Try to fold shuffles that are the equivalent of a vector select.
2199 Instruction *InstCombinerImpl::foldSelectShuffle(ShuffleVectorInst &Shuf) {
2200   if (!Shuf.isSelect())
2201     return nullptr;
2202 
2203   // Canonicalize to choose from operand 0 first unless operand 1 is undefined.
2204   // Commuting undef to operand 0 conflicts with another canonicalization.
2205   unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
2206   if (!match(Shuf.getOperand(1), m_Undef()) &&
2207       Shuf.getMaskValue(0) >= (int)NumElts) {
2208     // TODO: Can we assert that both operands of a shuffle-select are not undef
2209     // (otherwise, it would have been folded by instsimplify?
2210     Shuf.commute();
2211     return &Shuf;
2212   }
2213 
2214   if (Instruction *I = foldSelectShuffleOfSelectShuffle(Shuf))
2215     return I;
2216 
2217   if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
2218     return I;
2219 
2220   BinaryOperator *B0, *B1;
2221   if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
2222       !match(Shuf.getOperand(1), m_BinOp(B1)))
2223     return nullptr;
2224 
2225   // If one operand is "0 - X", allow that to be viewed as "X * -1"
2226   // (ConstantsAreOp1) by getAlternateBinop below. If the neg is not paired
2227   // with a multiply, we will exit because C0/C1 will not be set.
2228   Value *X, *Y;
2229   Constant *C0 = nullptr, *C1 = nullptr;
2230   bool ConstantsAreOp1;
2231   if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
2232       match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
2233     ConstantsAreOp1 = false;
2234   else if (match(B0, m_CombineOr(m_BinOp(m_Value(X), m_Constant(C0)),
2235                                  m_Neg(m_Value(X)))) &&
2236            match(B1, m_CombineOr(m_BinOp(m_Value(Y), m_Constant(C1)),
2237                                  m_Neg(m_Value(Y)))))
2238     ConstantsAreOp1 = true;
2239   else
2240     return nullptr;
2241 
2242   // We need matching binops to fold the lanes together.
2243   BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
2244   BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
2245   bool DropNSW = false;
2246   if (ConstantsAreOp1 && Opc0 != Opc1) {
2247     // TODO: We drop "nsw" if shift is converted into multiply because it may
2248     // not be correct when the shift amount is BitWidth - 1. We could examine
2249     // each vector element to determine if it is safe to keep that flag.
2250     if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
2251       DropNSW = true;
2252     if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
2253       assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
2254       Opc0 = AltB0.Opcode;
2255       C0 = cast<Constant>(AltB0.Op1);
2256     } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
2257       assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
2258       Opc1 = AltB1.Opcode;
2259       C1 = cast<Constant>(AltB1.Op1);
2260     }
2261   }
2262 
2263   if (Opc0 != Opc1 || !C0 || !C1)
2264     return nullptr;
2265 
2266   // The opcodes must be the same. Use a new name to make that clear.
2267   BinaryOperator::BinaryOps BOpc = Opc0;
2268 
2269   // Select the constant elements needed for the single binop.
2270   ArrayRef<int> Mask = Shuf.getShuffleMask();
2271   Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
2272 
2273   // We are moving a binop after a shuffle. When a shuffle has an undefined
2274   // mask element, the result is undefined, but it is not poison or undefined
2275   // behavior. That is not necessarily true for div/rem/shift.
2276   bool MightCreatePoisonOrUB =
2277       is_contained(Mask, UndefMaskElem) &&
2278       (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
2279   if (MightCreatePoisonOrUB)
2280     NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC,
2281                                                        ConstantsAreOp1);
2282 
2283   Value *V;
2284   if (X == Y) {
2285     // Remove a binop and the shuffle by rearranging the constant:
2286     // shuffle (op V, C0), (op V, C1), M --> op V, C'
2287     // shuffle (op C0, V), (op C1, V), M --> op C', V
2288     V = X;
2289   } else {
2290     // If there are 2 different variable operands, we must create a new shuffle
2291     // (select) first, so check uses to ensure that we don't end up with more
2292     // instructions than we started with.
2293     if (!B0->hasOneUse() && !B1->hasOneUse())
2294       return nullptr;
2295 
2296     // If we use the original shuffle mask and op1 is *variable*, we would be
2297     // putting an undef into operand 1 of div/rem/shift. This is either UB or
2298     // poison. We do not have to guard against UB when *constants* are op1
2299     // because safe constants guarantee that we do not overflow sdiv/srem (and
2300     // there's no danger for other opcodes).
2301     // TODO: To allow this case, create a new shuffle mask with no undefs.
2302     if (MightCreatePoisonOrUB && !ConstantsAreOp1)
2303       return nullptr;
2304 
2305     // Note: In general, we do not create new shuffles in InstCombine because we
2306     // do not know if a target can lower an arbitrary shuffle optimally. In this
2307     // case, the shuffle uses the existing mask, so there is no additional risk.
2308 
2309     // Select the variable vectors first, then perform the binop:
2310     // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
2311     // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
2312     V = Builder.CreateShuffleVector(X, Y, Mask);
2313   }
2314 
2315   Value *NewBO = ConstantsAreOp1 ? Builder.CreateBinOp(BOpc, V, NewC) :
2316                                    Builder.CreateBinOp(BOpc, NewC, V);
2317 
2318   // Flags are intersected from the 2 source binops. But there are 2 exceptions:
2319   // 1. If we changed an opcode, poison conditions might have changed.
2320   // 2. If the shuffle had undef mask elements, the new binop might have undefs
2321   //    where the original code did not. But if we already made a safe constant,
2322   //    then there's no danger.
2323   if (auto *NewI = dyn_cast<Instruction>(NewBO)) {
2324     NewI->copyIRFlags(B0);
2325     NewI->andIRFlags(B1);
2326     if (DropNSW)
2327       NewI->setHasNoSignedWrap(false);
2328     if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
2329       NewI->dropPoisonGeneratingFlags();
2330   }
2331   return replaceInstUsesWith(Shuf, NewBO);
2332 }
2333 
2334 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate.
2335 /// Example (little endian):
2336 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8>
2337 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf,
2338                                      bool IsBigEndian) {
2339   // This must be a bitcasted shuffle of 1 vector integer operand.
2340   Type *DestType = Shuf.getType();
2341   Value *X;
2342   if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) ||
2343       !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy())
2344     return nullptr;
2345 
2346   // The source type must have the same number of elements as the shuffle,
2347   // and the source element type must be larger than the shuffle element type.
2348   Type *SrcType = X->getType();
2349   if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() ||
2350       cast<FixedVectorType>(SrcType)->getNumElements() !=
2351           cast<FixedVectorType>(DestType)->getNumElements() ||
2352       SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0)
2353     return nullptr;
2354 
2355   assert(Shuf.changesLength() && !Shuf.increasesLength() &&
2356          "Expected a shuffle that decreases length");
2357 
2358   // Last, check that the mask chooses the correct low bits for each narrow
2359   // element in the result.
2360   uint64_t TruncRatio =
2361       SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits();
2362   ArrayRef<int> Mask = Shuf.getShuffleMask();
2363   for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
2364     if (Mask[i] == UndefMaskElem)
2365       continue;
2366     uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio;
2367     assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits");
2368     if (Mask[i] != (int)LSBIndex)
2369       return nullptr;
2370   }
2371 
2372   return new TruncInst(X, DestType);
2373 }
2374 
2375 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
2376 /// narrowing (concatenating with undef and extracting back to the original
2377 /// length). This allows replacing the wide select with a narrow select.
2378 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
2379                                        InstCombiner::BuilderTy &Builder) {
2380   // This must be a narrowing identity shuffle. It extracts the 1st N elements
2381   // of the 1st vector operand of a shuffle.
2382   if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
2383     return nullptr;
2384 
2385   // The vector being shuffled must be a vector select that we can eliminate.
2386   // TODO: The one-use requirement could be eased if X and/or Y are constants.
2387   Value *Cond, *X, *Y;
2388   if (!match(Shuf.getOperand(0),
2389              m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
2390     return nullptr;
2391 
2392   // We need a narrow condition value. It must be extended with undef elements
2393   // and have the same number of elements as this shuffle.
2394   unsigned NarrowNumElts =
2395       cast<FixedVectorType>(Shuf.getType())->getNumElements();
2396   Value *NarrowCond;
2397   if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) ||
2398       cast<FixedVectorType>(NarrowCond->getType())->getNumElements() !=
2399           NarrowNumElts ||
2400       !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
2401     return nullptr;
2402 
2403   // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
2404   // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
2405   Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask());
2406   Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask());
2407   return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
2408 }
2409 
2410 /// Canonicalize FP negate after shuffle.
2411 static Instruction *foldFNegShuffle(ShuffleVectorInst &Shuf,
2412                                     InstCombiner::BuilderTy &Builder) {
2413   Instruction *FNeg0;
2414   Value *X;
2415   if (!match(Shuf.getOperand(0), m_CombineAnd(m_Instruction(FNeg0),
2416                                               m_FNeg(m_Value(X)))))
2417     return nullptr;
2418 
2419   // shuffle (fneg X), Mask --> fneg (shuffle X, Mask)
2420   if (FNeg0->hasOneUse() && match(Shuf.getOperand(1), m_Undef())) {
2421     Value *NewShuf = Builder.CreateShuffleVector(X, Shuf.getShuffleMask());
2422     return UnaryOperator::CreateFNegFMF(NewShuf, FNeg0);
2423   }
2424 
2425   Instruction *FNeg1;
2426   Value *Y;
2427   if (!match(Shuf.getOperand(1), m_CombineAnd(m_Instruction(FNeg1),
2428                                               m_FNeg(m_Value(Y)))))
2429     return nullptr;
2430 
2431   // shuffle (fneg X), (fneg Y), Mask --> fneg (shuffle X, Y, Mask)
2432   if (FNeg0->hasOneUse() || FNeg1->hasOneUse()) {
2433     Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask());
2434     Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewShuf);
2435     NewFNeg->copyIRFlags(FNeg0);
2436     NewFNeg->andIRFlags(FNeg1);
2437     return NewFNeg;
2438   }
2439 
2440   return nullptr;
2441 }
2442 
2443 /// Canonicalize casts after shuffle.
2444 static Instruction *foldCastShuffle(ShuffleVectorInst &Shuf,
2445                                     InstCombiner::BuilderTy &Builder) {
2446   // Do we have 2 matching cast operands?
2447   auto *Cast0 = dyn_cast<CastInst>(Shuf.getOperand(0));
2448   auto *Cast1 = dyn_cast<CastInst>(Shuf.getOperand(1));
2449   if (!Cast0 || !Cast1 || Cast0->getOpcode() != Cast1->getOpcode() ||
2450       Cast0->getSrcTy() != Cast1->getSrcTy())
2451     return nullptr;
2452 
2453   // TODO: Allow other opcodes? That would require easing the type restrictions
2454   //       below here.
2455   CastInst::CastOps CastOpcode = Cast0->getOpcode();
2456   switch (CastOpcode) {
2457   case Instruction::FPToSI:
2458   case Instruction::FPToUI:
2459   case Instruction::SIToFP:
2460   case Instruction::UIToFP:
2461     break;
2462   default:
2463     return nullptr;
2464   }
2465 
2466   VectorType *ShufTy = Shuf.getType();
2467   VectorType *ShufOpTy = cast<VectorType>(Shuf.getOperand(0)->getType());
2468   VectorType *CastSrcTy = cast<VectorType>(Cast0->getSrcTy());
2469 
2470   // TODO: Allow length-increasing shuffles?
2471   if (ShufTy->getElementCount().getKnownMinValue() >
2472       ShufOpTy->getElementCount().getKnownMinValue())
2473     return nullptr;
2474 
2475   // TODO: Allow element-size-decreasing casts (ex: fptosi float to i8)?
2476   assert(isa<FixedVectorType>(CastSrcTy) && isa<FixedVectorType>(ShufOpTy) &&
2477          "Expected fixed vector operands for casts and binary shuffle");
2478   if (CastSrcTy->getPrimitiveSizeInBits() > ShufOpTy->getPrimitiveSizeInBits())
2479     return nullptr;
2480 
2481   // At least one of the operands must have only one use (the shuffle).
2482   if (!Cast0->hasOneUse() && !Cast1->hasOneUse())
2483     return nullptr;
2484 
2485   // shuffle (cast X), (cast Y), Mask --> cast (shuffle X, Y, Mask)
2486   Value *X = Cast0->getOperand(0);
2487   Value *Y = Cast1->getOperand(0);
2488   Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask());
2489   return CastInst::Create(CastOpcode, NewShuf, ShufTy);
2490 }
2491 
2492 /// Try to fold an extract subvector operation.
2493 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
2494   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2495   if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Undef()))
2496     return nullptr;
2497 
2498   // Check if we are extracting all bits of an inserted scalar:
2499   // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type
2500   Value *X;
2501   if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) &&
2502       X->getType()->getPrimitiveSizeInBits() ==
2503           Shuf.getType()->getPrimitiveSizeInBits())
2504     return new BitCastInst(X, Shuf.getType());
2505 
2506   // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
2507   Value *Y;
2508   ArrayRef<int> Mask;
2509   if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask))))
2510     return nullptr;
2511 
2512   // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
2513   // then combining may result in worse codegen.
2514   if (!Op0->hasOneUse())
2515     return nullptr;
2516 
2517   // We are extracting a subvector from a shuffle. Remove excess elements from
2518   // the 1st shuffle mask to eliminate the extract.
2519   //
2520   // This transform is conservatively limited to identity extracts because we do
2521   // not allow arbitrary shuffle mask creation as a target-independent transform
2522   // (because we can't guarantee that will lower efficiently).
2523   //
2524   // If the extracting shuffle has an undef mask element, it transfers to the
2525   // new shuffle mask. Otherwise, copy the original mask element. Example:
2526   //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
2527   //   shuf X, Y, <C0, undef, C2, undef>
2528   unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
2529   SmallVector<int, 16> NewMask(NumElts);
2530   assert(NumElts < Mask.size() &&
2531          "Identity with extract must have less elements than its inputs");
2532 
2533   for (unsigned i = 0; i != NumElts; ++i) {
2534     int ExtractMaskElt = Shuf.getMaskValue(i);
2535     int MaskElt = Mask[i];
2536     NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt;
2537   }
2538   return new ShuffleVectorInst(X, Y, NewMask);
2539 }
2540 
2541 /// Try to replace a shuffle with an insertelement or try to replace a shuffle
2542 /// operand with the operand of an insertelement.
2543 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf,
2544                                           InstCombinerImpl &IC) {
2545   Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
2546   SmallVector<int, 16> Mask;
2547   Shuf.getShuffleMask(Mask);
2548 
2549   int NumElts = Mask.size();
2550   int InpNumElts = cast<FixedVectorType>(V0->getType())->getNumElements();
2551 
2552   // This is a specialization of a fold in SimplifyDemandedVectorElts. We may
2553   // not be able to handle it there if the insertelement has >1 use.
2554   // If the shuffle has an insertelement operand but does not choose the
2555   // inserted scalar element from that value, then we can replace that shuffle
2556   // operand with the source vector of the insertelement.
2557   Value *X;
2558   uint64_t IdxC;
2559   if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
2560     // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask
2561     if (!is_contained(Mask, (int)IdxC))
2562       return IC.replaceOperand(Shuf, 0, X);
2563   }
2564   if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
2565     // Offset the index constant by the vector width because we are checking for
2566     // accesses to the 2nd vector input of the shuffle.
2567     IdxC += InpNumElts;
2568     // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask
2569     if (!is_contained(Mask, (int)IdxC))
2570       return IC.replaceOperand(Shuf, 1, X);
2571   }
2572   // For the rest of the transform, the shuffle must not change vector sizes.
2573   // TODO: This restriction could be removed if the insert has only one use
2574   //       (because the transform would require a new length-changing shuffle).
2575   if (NumElts != InpNumElts)
2576     return nullptr;
2577 
2578   // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
2579   auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
2580     // We need an insertelement with a constant index.
2581     if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar),
2582                                m_ConstantInt(IndexC))))
2583       return false;
2584 
2585     // Test the shuffle mask to see if it splices the inserted scalar into the
2586     // operand 1 vector of the shuffle.
2587     int NewInsIndex = -1;
2588     for (int i = 0; i != NumElts; ++i) {
2589       // Ignore undef mask elements.
2590       if (Mask[i] == -1)
2591         continue;
2592 
2593       // The shuffle takes elements of operand 1 without lane changes.
2594       if (Mask[i] == NumElts + i)
2595         continue;
2596 
2597       // The shuffle must choose the inserted scalar exactly once.
2598       if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
2599         return false;
2600 
2601       // The shuffle is placing the inserted scalar into element i.
2602       NewInsIndex = i;
2603     }
2604 
2605     assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
2606 
2607     // Index is updated to the potentially translated insertion lane.
2608     IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
2609     return true;
2610   };
2611 
2612   // If the shuffle is unnecessary, insert the scalar operand directly into
2613   // operand 1 of the shuffle. Example:
2614   // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
2615   Value *Scalar;
2616   ConstantInt *IndexC;
2617   if (isShufflingScalarIntoOp1(Scalar, IndexC))
2618     return InsertElementInst::Create(V1, Scalar, IndexC);
2619 
2620   // Try again after commuting shuffle. Example:
2621   // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
2622   // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
2623   std::swap(V0, V1);
2624   ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
2625   if (isShufflingScalarIntoOp1(Scalar, IndexC))
2626     return InsertElementInst::Create(V1, Scalar, IndexC);
2627 
2628   return nullptr;
2629 }
2630 
2631 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
2632   // Match the operands as identity with padding (also known as concatenation
2633   // with undef) shuffles of the same source type. The backend is expected to
2634   // recreate these concatenations from a shuffle of narrow operands.
2635   auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
2636   auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
2637   if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
2638       !Shuffle1 || !Shuffle1->isIdentityWithPadding())
2639     return nullptr;
2640 
2641   // We limit this transform to power-of-2 types because we expect that the
2642   // backend can convert the simplified IR patterns to identical nodes as the
2643   // original IR.
2644   // TODO: If we can verify the same behavior for arbitrary types, the
2645   //       power-of-2 checks can be removed.
2646   Value *X = Shuffle0->getOperand(0);
2647   Value *Y = Shuffle1->getOperand(0);
2648   if (X->getType() != Y->getType() ||
2649       !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) ||
2650       !isPowerOf2_32(
2651           cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) ||
2652       !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) ||
2653       match(X, m_Undef()) || match(Y, m_Undef()))
2654     return nullptr;
2655   assert(match(Shuffle0->getOperand(1), m_Undef()) &&
2656          match(Shuffle1->getOperand(1), m_Undef()) &&
2657          "Unexpected operand for identity shuffle");
2658 
2659   // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
2660   // operands directly by adjusting the shuffle mask to account for the narrower
2661   // types:
2662   // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
2663   int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements();
2664   int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements();
2665   assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
2666 
2667   ArrayRef<int> Mask = Shuf.getShuffleMask();
2668   SmallVector<int, 16> NewMask(Mask.size(), -1);
2669   for (int i = 0, e = Mask.size(); i != e; ++i) {
2670     if (Mask[i] == -1)
2671       continue;
2672 
2673     // If this shuffle is choosing an undef element from 1 of the sources, that
2674     // element is undef.
2675     if (Mask[i] < WideElts) {
2676       if (Shuffle0->getMaskValue(Mask[i]) == -1)
2677         continue;
2678     } else {
2679       if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
2680         continue;
2681     }
2682 
2683     // If this shuffle is choosing from the 1st narrow op, the mask element is
2684     // the same. If this shuffle is choosing from the 2nd narrow op, the mask
2685     // element is offset down to adjust for the narrow vector widths.
2686     if (Mask[i] < WideElts) {
2687       assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
2688       NewMask[i] = Mask[i];
2689     } else {
2690       assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
2691       NewMask[i] = Mask[i] - (WideElts - NarrowElts);
2692     }
2693   }
2694   return new ShuffleVectorInst(X, Y, NewMask);
2695 }
2696 
2697 // Splatting the first element of the result of a BinOp, where any of the
2698 // BinOp's operands are the result of a first element splat can be simplified to
2699 // splatting the first element of the result of the BinOp
2700 Instruction *InstCombinerImpl::simplifyBinOpSplats(ShuffleVectorInst &SVI) {
2701   if (!match(SVI.getOperand(1), m_Undef()) ||
2702       !match(SVI.getShuffleMask(), m_ZeroMask()))
2703     return nullptr;
2704 
2705   Value *Op0 = SVI.getOperand(0);
2706   Value *X, *Y;
2707   if (!match(Op0, m_BinOp(m_Shuffle(m_Value(X), m_Undef(), m_ZeroMask()),
2708                           m_Value(Y))) &&
2709       !match(Op0, m_BinOp(m_Value(X),
2710                           m_Shuffle(m_Value(Y), m_Undef(), m_ZeroMask()))))
2711     return nullptr;
2712   if (X->getType() != Y->getType())
2713     return nullptr;
2714 
2715   auto *BinOp = cast<BinaryOperator>(Op0);
2716   if (!isSafeToSpeculativelyExecute(BinOp))
2717     return nullptr;
2718 
2719   Value *NewBO = Builder.CreateBinOp(BinOp->getOpcode(), X, Y);
2720   if (auto NewBOI = dyn_cast<Instruction>(NewBO))
2721     NewBOI->copyIRFlags(BinOp);
2722 
2723   return new ShuffleVectorInst(NewBO, SVI.getShuffleMask());
2724 }
2725 
2726 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
2727   Value *LHS = SVI.getOperand(0);
2728   Value *RHS = SVI.getOperand(1);
2729   SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI);
2730   if (auto *V = simplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(),
2731                                           SVI.getType(), ShufQuery))
2732     return replaceInstUsesWith(SVI, V);
2733 
2734   if (Instruction *I = simplifyBinOpSplats(SVI))
2735     return I;
2736 
2737   if (isa<ScalableVectorType>(LHS->getType()))
2738     return nullptr;
2739 
2740   unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements();
2741   unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements();
2742 
2743   // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask)
2744   //
2745   // if X and Y are of the same (vector) type, and the element size is not
2746   // changed by the bitcasts, we can distribute the bitcasts through the
2747   // shuffle, hopefully reducing the number of instructions. We make sure that
2748   // at least one bitcast only has one use, so we don't *increase* the number of
2749   // instructions here.
2750   Value *X, *Y;
2751   if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) &&
2752       X->getType()->isVectorTy() && X->getType() == Y->getType() &&
2753       X->getType()->getScalarSizeInBits() ==
2754           SVI.getType()->getScalarSizeInBits() &&
2755       (LHS->hasOneUse() || RHS->hasOneUse())) {
2756     Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(),
2757                                            SVI.getName() + ".uncasted");
2758     return new BitCastInst(V, SVI.getType());
2759   }
2760 
2761   ArrayRef<int> Mask = SVI.getShuffleMask();
2762   Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
2763 
2764   // Peek through a bitcasted shuffle operand by scaling the mask. If the
2765   // simulated shuffle can simplify, then this shuffle is unnecessary:
2766   // shuf (bitcast X), undef, Mask --> bitcast X'
2767   // TODO: This could be extended to allow length-changing shuffles.
2768   //       The transform might also be obsoleted if we allowed canonicalization
2769   //       of bitcasted shuffles.
2770   if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) &&
2771       X->getType()->isVectorTy() && VWidth == LHSWidth) {
2772     // Try to create a scaled mask constant.
2773     auto *XType = cast<FixedVectorType>(X->getType());
2774     unsigned XNumElts = XType->getNumElements();
2775     SmallVector<int, 16> ScaledMask;
2776     if (XNumElts >= VWidth) {
2777       assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast");
2778       narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask);
2779     } else {
2780       assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast");
2781       if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask))
2782         ScaledMask.clear();
2783     }
2784     if (!ScaledMask.empty()) {
2785       // If the shuffled source vector simplifies, cast that value to this
2786       // shuffle's type.
2787       if (auto *V = simplifyShuffleVectorInst(X, UndefValue::get(XType),
2788                                               ScaledMask, XType, ShufQuery))
2789         return BitCastInst::Create(Instruction::BitCast, V, SVI.getType());
2790     }
2791   }
2792 
2793   // shuffle x, x, mask --> shuffle x, undef, mask'
2794   if (LHS == RHS) {
2795     assert(!match(RHS, m_Undef()) &&
2796            "Shuffle with 2 undef ops not simplified?");
2797     return new ShuffleVectorInst(LHS, createUnaryMask(Mask, LHSWidth));
2798   }
2799 
2800   // shuffle undef, x, mask --> shuffle x, undef, mask'
2801   if (match(LHS, m_Undef())) {
2802     SVI.commute();
2803     return &SVI;
2804   }
2805 
2806   if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
2807     return I;
2808 
2809   if (Instruction *I = foldSelectShuffle(SVI))
2810     return I;
2811 
2812   if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian()))
2813     return I;
2814 
2815   if (Instruction *I = narrowVectorSelect(SVI, Builder))
2816     return I;
2817 
2818   if (Instruction *I = foldFNegShuffle(SVI, Builder))
2819     return I;
2820 
2821   if (Instruction *I = foldCastShuffle(SVI, Builder))
2822     return I;
2823 
2824   APInt UndefElts(VWidth, 0);
2825   APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
2826   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
2827     if (V != &SVI)
2828       return replaceInstUsesWith(SVI, V);
2829     return &SVI;
2830   }
2831 
2832   if (Instruction *I = foldIdentityExtractShuffle(SVI))
2833     return I;
2834 
2835   // These transforms have the potential to lose undef knowledge, so they are
2836   // intentionally placed after SimplifyDemandedVectorElts().
2837   if (Instruction *I = foldShuffleWithInsert(SVI, *this))
2838     return I;
2839   if (Instruction *I = foldIdentityPaddedShuffles(SVI))
2840     return I;
2841 
2842   if (match(RHS, m_Undef()) && canEvaluateShuffled(LHS, Mask)) {
2843     Value *V = evaluateInDifferentElementOrder(LHS, Mask);
2844     return replaceInstUsesWith(SVI, V);
2845   }
2846 
2847   // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
2848   // a non-vector type. We can instead bitcast the original vector followed by
2849   // an extract of the desired element:
2850   //
2851   //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
2852   //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
2853   //   %1 = bitcast <4 x i8> %sroa to i32
2854   // Becomes:
2855   //   %bc = bitcast <16 x i8> %in to <4 x i32>
2856   //   %ext = extractelement <4 x i32> %bc, i32 0
2857   //
2858   // If the shuffle is extracting a contiguous range of values from the input
2859   // vector then each use which is a bitcast of the extracted size can be
2860   // replaced. This will work if the vector types are compatible, and the begin
2861   // index is aligned to a value in the casted vector type. If the begin index
2862   // isn't aligned then we can shuffle the original vector (keeping the same
2863   // vector type) before extracting.
2864   //
2865   // This code will bail out if the target type is fundamentally incompatible
2866   // with vectors of the source type.
2867   //
2868   // Example of <16 x i8>, target type i32:
2869   // Index range [4,8):         v-----------v Will work.
2870   //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
2871   //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
2872   //     <4 x i32>: |           |           |           |           |
2873   //                +-----------+-----------+-----------+-----------+
2874   // Index range [6,10):              ^-----------^ Needs an extra shuffle.
2875   // Target type i40:           ^--------------^ Won't work, bail.
2876   bool MadeChange = false;
2877   if (isShuffleExtractingFromLHS(SVI, Mask)) {
2878     Value *V = LHS;
2879     unsigned MaskElems = Mask.size();
2880     auto *SrcTy = cast<FixedVectorType>(V->getType());
2881     unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedValue();
2882     unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
2883     assert(SrcElemBitWidth && "vector elements must have a bitwidth");
2884     unsigned SrcNumElems = SrcTy->getNumElements();
2885     SmallVector<BitCastInst *, 8> BCs;
2886     DenseMap<Type *, Value *> NewBCs;
2887     for (User *U : SVI.users())
2888       if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
2889         if (!BC->use_empty())
2890           // Only visit bitcasts that weren't previously handled.
2891           BCs.push_back(BC);
2892     for (BitCastInst *BC : BCs) {
2893       unsigned BegIdx = Mask.front();
2894       Type *TgtTy = BC->getDestTy();
2895       unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
2896       if (!TgtElemBitWidth)
2897         continue;
2898       unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
2899       bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
2900       bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
2901       if (!VecBitWidthsEqual)
2902         continue;
2903       if (!VectorType::isValidElementType(TgtTy))
2904         continue;
2905       auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems);
2906       if (!BegIsAligned) {
2907         // Shuffle the input so [0,NumElements) contains the output, and
2908         // [NumElems,SrcNumElems) is undef.
2909         SmallVector<int, 16> ShuffleMask(SrcNumElems, -1);
2910         for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
2911           ShuffleMask[I] = Idx;
2912         V = Builder.CreateShuffleVector(V, ShuffleMask,
2913                                         SVI.getName() + ".extract");
2914         BegIdx = 0;
2915       }
2916       unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
2917       assert(SrcElemsPerTgtElem);
2918       BegIdx /= SrcElemsPerTgtElem;
2919       bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
2920       auto *NewBC =
2921           BCAlreadyExists
2922               ? NewBCs[CastSrcTy]
2923               : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
2924       if (!BCAlreadyExists)
2925         NewBCs[CastSrcTy] = NewBC;
2926       auto *Ext = Builder.CreateExtractElement(
2927           NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
2928       // The shufflevector isn't being replaced: the bitcast that used it
2929       // is. InstCombine will visit the newly-created instructions.
2930       replaceInstUsesWith(*BC, Ext);
2931       MadeChange = true;
2932     }
2933   }
2934 
2935   // If the LHS is a shufflevector itself, see if we can combine it with this
2936   // one without producing an unusual shuffle.
2937   // Cases that might be simplified:
2938   // 1.
2939   // x1=shuffle(v1,v2,mask1)
2940   //  x=shuffle(x1,undef,mask)
2941   //        ==>
2942   //  x=shuffle(v1,undef,newMask)
2943   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
2944   // 2.
2945   // x1=shuffle(v1,undef,mask1)
2946   //  x=shuffle(x1,x2,mask)
2947   // where v1.size() == mask1.size()
2948   //        ==>
2949   //  x=shuffle(v1,x2,newMask)
2950   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
2951   // 3.
2952   // x2=shuffle(v2,undef,mask2)
2953   //  x=shuffle(x1,x2,mask)
2954   // where v2.size() == mask2.size()
2955   //        ==>
2956   //  x=shuffle(x1,v2,newMask)
2957   // newMask[i] = (mask[i] < x1.size())
2958   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
2959   // 4.
2960   // x1=shuffle(v1,undef,mask1)
2961   // x2=shuffle(v2,undef,mask2)
2962   //  x=shuffle(x1,x2,mask)
2963   // where v1.size() == v2.size()
2964   //        ==>
2965   //  x=shuffle(v1,v2,newMask)
2966   // newMask[i] = (mask[i] < x1.size())
2967   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
2968   //
2969   // Here we are really conservative:
2970   // we are absolutely afraid of producing a shuffle mask not in the input
2971   // program, because the code gen may not be smart enough to turn a merged
2972   // shuffle into two specific shuffles: it may produce worse code.  As such,
2973   // we only merge two shuffles if the result is either a splat or one of the
2974   // input shuffle masks.  In this case, merging the shuffles just removes
2975   // one instruction, which we know is safe.  This is good for things like
2976   // turning: (splat(splat)) -> splat, or
2977   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
2978   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
2979   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
2980   if (LHSShuffle)
2981     if (!match(LHSShuffle->getOperand(1), m_Undef()) && !match(RHS, m_Undef()))
2982       LHSShuffle = nullptr;
2983   if (RHSShuffle)
2984     if (!match(RHSShuffle->getOperand(1), m_Undef()))
2985       RHSShuffle = nullptr;
2986   if (!LHSShuffle && !RHSShuffle)
2987     return MadeChange ? &SVI : nullptr;
2988 
2989   Value* LHSOp0 = nullptr;
2990   Value* LHSOp1 = nullptr;
2991   Value* RHSOp0 = nullptr;
2992   unsigned LHSOp0Width = 0;
2993   unsigned RHSOp0Width = 0;
2994   if (LHSShuffle) {
2995     LHSOp0 = LHSShuffle->getOperand(0);
2996     LHSOp1 = LHSShuffle->getOperand(1);
2997     LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements();
2998   }
2999   if (RHSShuffle) {
3000     RHSOp0 = RHSShuffle->getOperand(0);
3001     RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements();
3002   }
3003   Value* newLHS = LHS;
3004   Value* newRHS = RHS;
3005   if (LHSShuffle) {
3006     // case 1
3007     if (match(RHS, m_Undef())) {
3008       newLHS = LHSOp0;
3009       newRHS = LHSOp1;
3010     }
3011     // case 2 or 4
3012     else if (LHSOp0Width == LHSWidth) {
3013       newLHS = LHSOp0;
3014     }
3015   }
3016   // case 3 or 4
3017   if (RHSShuffle && RHSOp0Width == LHSWidth) {
3018     newRHS = RHSOp0;
3019   }
3020   // case 4
3021   if (LHSOp0 == RHSOp0) {
3022     newLHS = LHSOp0;
3023     newRHS = nullptr;
3024   }
3025 
3026   if (newLHS == LHS && newRHS == RHS)
3027     return MadeChange ? &SVI : nullptr;
3028 
3029   ArrayRef<int> LHSMask;
3030   ArrayRef<int> RHSMask;
3031   if (newLHS != LHS)
3032     LHSMask = LHSShuffle->getShuffleMask();
3033   if (RHSShuffle && newRHS != RHS)
3034     RHSMask = RHSShuffle->getShuffleMask();
3035 
3036   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
3037   SmallVector<int, 16> newMask;
3038   bool isSplat = true;
3039   int SplatElt = -1;
3040   // Create a new mask for the new ShuffleVectorInst so that the new
3041   // ShuffleVectorInst is equivalent to the original one.
3042   for (unsigned i = 0; i < VWidth; ++i) {
3043     int eltMask;
3044     if (Mask[i] < 0) {
3045       // This element is an undef value.
3046       eltMask = -1;
3047     } else if (Mask[i] < (int)LHSWidth) {
3048       // This element is from left hand side vector operand.
3049       //
3050       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
3051       // new mask value for the element.
3052       if (newLHS != LHS) {
3053         eltMask = LHSMask[Mask[i]];
3054         // If the value selected is an undef value, explicitly specify it
3055         // with a -1 mask value.
3056         if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
3057           eltMask = -1;
3058       } else
3059         eltMask = Mask[i];
3060     } else {
3061       // This element is from right hand side vector operand
3062       //
3063       // If the value selected is an undef value, explicitly specify it
3064       // with a -1 mask value. (case 1)
3065       if (match(RHS, m_Undef()))
3066         eltMask = -1;
3067       // If RHS is going to be replaced (case 3 or 4), calculate the
3068       // new mask value for the element.
3069       else if (newRHS != RHS) {
3070         eltMask = RHSMask[Mask[i]-LHSWidth];
3071         // If the value selected is an undef value, explicitly specify it
3072         // with a -1 mask value.
3073         if (eltMask >= (int)RHSOp0Width) {
3074           assert(match(RHSShuffle->getOperand(1), m_Undef()) &&
3075                  "should have been check above");
3076           eltMask = -1;
3077         }
3078       } else
3079         eltMask = Mask[i]-LHSWidth;
3080 
3081       // If LHS's width is changed, shift the mask value accordingly.
3082       // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
3083       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
3084       // If newRHS == newLHS, we want to remap any references from newRHS to
3085       // newLHS so that we can properly identify splats that may occur due to
3086       // obfuscation across the two vectors.
3087       if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
3088         eltMask += newLHSWidth;
3089     }
3090 
3091     // Check if this could still be a splat.
3092     if (eltMask >= 0) {
3093       if (SplatElt >= 0 && SplatElt != eltMask)
3094         isSplat = false;
3095       SplatElt = eltMask;
3096     }
3097 
3098     newMask.push_back(eltMask);
3099   }
3100 
3101   // If the result mask is equal to one of the original shuffle masks,
3102   // or is a splat, do the replacement.
3103   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
3104     if (!newRHS)
3105       newRHS = UndefValue::get(newLHS->getType());
3106     return new ShuffleVectorInst(newLHS, newRHS, newMask);
3107   }
3108 
3109   return MadeChange ? &SVI : nullptr;
3110 }
3111