1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions.  This pass does not modify the CFG.  This pass is where
11 // algebraic simplification happens.
12 //
13 // This pass combines things like:
14 //    %Y = add i32 %X, 1
15 //    %Z = add i32 %Y, 1
16 // into:
17 //    %Z = add i32 %X, 2
18 //
19 // This is a simple worklist driven algorithm.
20 //
21 // This pass guarantees that the following canonicalizations are performed on
22 // the program:
23 //    1. If a binary operator has a constant operand, it is moved to the RHS
24 //    2. Bitwise operators with constant operands are always grouped so that
25 //       shifts are performed first, then or's, then and's, then xor's.
26 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 //    4. All cmp instructions on boolean values are replaced with logical ops
28 //    5. add X, X is represented as (X*2) => (X << 1)
29 //    6. Multiplies with a power-of-two constant argument are transformed into
30 //       shifts.
31 //   ... etc.
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "InstCombineInternal.h"
36 #include "llvm/ADT/APInt.h"
37 #include "llvm/ADT/ArrayRef.h"
38 #include "llvm/ADT/DenseMap.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/Analysis/AliasAnalysis.h"
43 #include "llvm/Analysis/AssumptionCache.h"
44 #include "llvm/Analysis/BasicAliasAnalysis.h"
45 #include "llvm/Analysis/BlockFrequencyInfo.h"
46 #include "llvm/Analysis/CFG.h"
47 #include "llvm/Analysis/ConstantFolding.h"
48 #include "llvm/Analysis/GlobalsModRef.h"
49 #include "llvm/Analysis/InstructionSimplify.h"
50 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
51 #include "llvm/Analysis/LoopInfo.h"
52 #include "llvm/Analysis/MemoryBuiltins.h"
53 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
54 #include "llvm/Analysis/ProfileSummaryInfo.h"
55 #include "llvm/Analysis/TargetFolder.h"
56 #include "llvm/Analysis/TargetLibraryInfo.h"
57 #include "llvm/Analysis/TargetTransformInfo.h"
58 #include "llvm/Analysis/Utils/Local.h"
59 #include "llvm/Analysis/ValueTracking.h"
60 #include "llvm/Analysis/VectorUtils.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/CFG.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DIBuilder.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfo.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/Dominators.h"
70 #include "llvm/IR/EHPersonalities.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GetElementPtrTypeIterator.h"
73 #include "llvm/IR/IRBuilder.h"
74 #include "llvm/IR/InstrTypes.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/Metadata.h"
80 #include "llvm/IR/Operator.h"
81 #include "llvm/IR/PassManager.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/Use.h"
85 #include "llvm/IR/User.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/IR/ValueHandle.h"
88 #include "llvm/InitializePasses.h"
89 #include "llvm/Support/Casting.h"
90 #include "llvm/Support/CommandLine.h"
91 #include "llvm/Support/Compiler.h"
92 #include "llvm/Support/Debug.h"
93 #include "llvm/Support/DebugCounter.h"
94 #include "llvm/Support/ErrorHandling.h"
95 #include "llvm/Support/KnownBits.h"
96 #include "llvm/Support/raw_ostream.h"
97 #include "llvm/Transforms/InstCombine/InstCombine.h"
98 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
99 #include "llvm/Transforms/Utils/Local.h"
100 #include <algorithm>
101 #include <cassert>
102 #include <cstdint>
103 #include <memory>
104 #include <optional>
105 #include <string>
106 #include <utility>
107 
108 #define DEBUG_TYPE "instcombine"
109 #include "llvm/Transforms/Utils/InstructionWorklist.h"
110 #include <optional>
111 
112 using namespace llvm;
113 using namespace llvm::PatternMatch;
114 
115 STATISTIC(NumWorklistIterations,
116           "Number of instruction combining iterations performed");
117 STATISTIC(NumOneIteration, "Number of functions with one iteration");
118 STATISTIC(NumTwoIterations, "Number of functions with two iterations");
119 STATISTIC(NumThreeIterations, "Number of functions with three iterations");
120 STATISTIC(NumFourOrMoreIterations,
121           "Number of functions with four or more iterations");
122 
123 STATISTIC(NumCombined , "Number of insts combined");
124 STATISTIC(NumConstProp, "Number of constant folds");
125 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
126 STATISTIC(NumSunkInst , "Number of instructions sunk");
127 STATISTIC(NumExpand,    "Number of expansions");
128 STATISTIC(NumFactor   , "Number of factorizations");
129 STATISTIC(NumReassoc  , "Number of reassociations");
130 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
131               "Controls which instructions are visited");
132 
133 static cl::opt<bool>
134 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
135                                               cl::init(true));
136 
137 static cl::opt<unsigned> MaxSinkNumUsers(
138     "instcombine-max-sink-users", cl::init(32),
139     cl::desc("Maximum number of undroppable users for instruction sinking"));
140 
141 static cl::opt<unsigned>
142 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
143              cl::desc("Maximum array size considered when doing a combine"));
144 
145 // FIXME: Remove this flag when it is no longer necessary to convert
146 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
147 // increases variable availability at the cost of accuracy. Variables that
148 // cannot be promoted by mem2reg or SROA will be described as living in memory
149 // for their entire lifetime. However, passes like DSE and instcombine can
150 // delete stores to the alloca, leading to misleading and inaccurate debug
151 // information. This flag can be removed when those passes are fixed.
152 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
153                                                cl::Hidden, cl::init(true));
154 
155 std::optional<Instruction *>
156 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) {
157   // Handle target specific intrinsics
158   if (II.getCalledFunction()->isTargetIntrinsic()) {
159     return TTI.instCombineIntrinsic(*this, II);
160   }
161   return std::nullopt;
162 }
163 
164 std::optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic(
165     IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
166     bool &KnownBitsComputed) {
167   // Handle target specific intrinsics
168   if (II.getCalledFunction()->isTargetIntrinsic()) {
169     return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known,
170                                                 KnownBitsComputed);
171   }
172   return std::nullopt;
173 }
174 
175 std::optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic(
176     IntrinsicInst &II, APInt DemandedElts, APInt &PoisonElts,
177     APInt &PoisonElts2, APInt &PoisonElts3,
178     std::function<void(Instruction *, unsigned, APInt, APInt &)>
179         SimplifyAndSetOp) {
180   // Handle target specific intrinsics
181   if (II.getCalledFunction()->isTargetIntrinsic()) {
182     return TTI.simplifyDemandedVectorEltsIntrinsic(
183         *this, II, DemandedElts, PoisonElts, PoisonElts2, PoisonElts3,
184         SimplifyAndSetOp);
185   }
186   return std::nullopt;
187 }
188 
189 bool InstCombiner::isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const {
190   return TTI.isValidAddrSpaceCast(FromAS, ToAS);
191 }
192 
193 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) {
194   return llvm::emitGEPOffset(&Builder, DL, GEP);
195 }
196 
197 /// Legal integers and common types are considered desirable. This is used to
198 /// avoid creating instructions with types that may not be supported well by the
199 /// the backend.
200 /// NOTE: This treats i8, i16 and i32 specially because they are common
201 ///       types in frontend languages.
202 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const {
203   switch (BitWidth) {
204   case 8:
205   case 16:
206   case 32:
207     return true;
208   default:
209     return DL.isLegalInteger(BitWidth);
210   }
211 }
212 
213 /// Return true if it is desirable to convert an integer computation from a
214 /// given bit width to a new bit width.
215 /// We don't want to convert from a legal or desirable type (like i8) to an
216 /// illegal type or from a smaller to a larger illegal type. A width of '1'
217 /// is always treated as a desirable type because i1 is a fundamental type in
218 /// IR, and there are many specialized optimizations for i1 types.
219 /// Common/desirable widths are equally treated as legal to convert to, in
220 /// order to open up more combining opportunities.
221 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
222                                         unsigned ToWidth) const {
223   bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
224   bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
225 
226   // Convert to desirable widths even if they are not legal types.
227   // Only shrink types, to prevent infinite loops.
228   if (ToWidth < FromWidth && isDesirableIntType(ToWidth))
229     return true;
230 
231   // If this is a legal or desiable integer from type, and the result would be
232   // an illegal type, don't do the transformation.
233   if ((FromLegal || isDesirableIntType(FromWidth)) && !ToLegal)
234     return false;
235 
236   // Otherwise, if both are illegal, do not increase the size of the result. We
237   // do allow things like i160 -> i64, but not i64 -> i160.
238   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
239     return false;
240 
241   return true;
242 }
243 
244 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
245 /// We don't want to convert from a legal to an illegal type or from a smaller
246 /// to a larger illegal type. i1 is always treated as a legal type because it is
247 /// a fundamental type in IR, and there are many specialized optimizations for
248 /// i1 types.
249 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
250   // TODO: This could be extended to allow vectors. Datalayout changes might be
251   // needed to properly support that.
252   if (!From->isIntegerTy() || !To->isIntegerTy())
253     return false;
254 
255   unsigned FromWidth = From->getPrimitiveSizeInBits();
256   unsigned ToWidth = To->getPrimitiveSizeInBits();
257   return shouldChangeType(FromWidth, ToWidth);
258 }
259 
260 // Return true, if No Signed Wrap should be maintained for I.
261 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
262 // where both B and C should be ConstantInts, results in a constant that does
263 // not overflow. This function only handles the Add and Sub opcodes. For
264 // all other opcodes, the function conservatively returns false.
265 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
266   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
267   if (!OBO || !OBO->hasNoSignedWrap())
268     return false;
269 
270   // We reason about Add and Sub Only.
271   Instruction::BinaryOps Opcode = I.getOpcode();
272   if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
273     return false;
274 
275   const APInt *BVal, *CVal;
276   if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
277     return false;
278 
279   bool Overflow = false;
280   if (Opcode == Instruction::Add)
281     (void)BVal->sadd_ov(*CVal, Overflow);
282   else
283     (void)BVal->ssub_ov(*CVal, Overflow);
284 
285   return !Overflow;
286 }
287 
288 static bool hasNoUnsignedWrap(BinaryOperator &I) {
289   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
290   return OBO && OBO->hasNoUnsignedWrap();
291 }
292 
293 static bool hasNoSignedWrap(BinaryOperator &I) {
294   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
295   return OBO && OBO->hasNoSignedWrap();
296 }
297 
298 /// Conservatively clears subclassOptionalData after a reassociation or
299 /// commutation. We preserve fast-math flags when applicable as they can be
300 /// preserved.
301 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
302   FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
303   if (!FPMO) {
304     I.clearSubclassOptionalData();
305     return;
306   }
307 
308   FastMathFlags FMF = I.getFastMathFlags();
309   I.clearSubclassOptionalData();
310   I.setFastMathFlags(FMF);
311 }
312 
313 /// Combine constant operands of associative operations either before or after a
314 /// cast to eliminate one of the associative operations:
315 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
316 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
317 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1,
318                                    InstCombinerImpl &IC) {
319   auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
320   if (!Cast || !Cast->hasOneUse())
321     return false;
322 
323   // TODO: Enhance logic for other casts and remove this check.
324   auto CastOpcode = Cast->getOpcode();
325   if (CastOpcode != Instruction::ZExt)
326     return false;
327 
328   // TODO: Enhance logic for other BinOps and remove this check.
329   if (!BinOp1->isBitwiseLogicOp())
330     return false;
331 
332   auto AssocOpcode = BinOp1->getOpcode();
333   auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
334   if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
335     return false;
336 
337   Constant *C1, *C2;
338   if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
339       !match(BinOp2->getOperand(1), m_Constant(C2)))
340     return false;
341 
342   // TODO: This assumes a zext cast.
343   // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
344   // to the destination type might lose bits.
345 
346   // Fold the constants together in the destination type:
347   // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
348   const DataLayout &DL = IC.getDataLayout();
349   Type *DestTy = C1->getType();
350   Constant *CastC2 = ConstantFoldCastOperand(CastOpcode, C2, DestTy, DL);
351   if (!CastC2)
352     return false;
353   Constant *FoldedC = ConstantFoldBinaryOpOperands(AssocOpcode, C1, CastC2, DL);
354   if (!FoldedC)
355     return false;
356 
357   IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
358   IC.replaceOperand(*BinOp1, 1, FoldedC);
359   BinOp1->dropPoisonGeneratingFlags();
360   Cast->dropPoisonGeneratingFlags();
361   return true;
362 }
363 
364 // Simplifies IntToPtr/PtrToInt RoundTrip Cast.
365 // inttoptr ( ptrtoint (x) ) --> x
366 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) {
367   auto *IntToPtr = dyn_cast<IntToPtrInst>(Val);
368   if (IntToPtr && DL.getTypeSizeInBits(IntToPtr->getDestTy()) ==
369                       DL.getTypeSizeInBits(IntToPtr->getSrcTy())) {
370     auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0));
371     Type *CastTy = IntToPtr->getDestTy();
372     if (PtrToInt &&
373         CastTy->getPointerAddressSpace() ==
374             PtrToInt->getSrcTy()->getPointerAddressSpace() &&
375         DL.getTypeSizeInBits(PtrToInt->getSrcTy()) ==
376             DL.getTypeSizeInBits(PtrToInt->getDestTy()))
377       return PtrToInt->getOperand(0);
378   }
379   return nullptr;
380 }
381 
382 /// This performs a few simplifications for operators that are associative or
383 /// commutative:
384 ///
385 ///  Commutative operators:
386 ///
387 ///  1. Order operands such that they are listed from right (least complex) to
388 ///     left (most complex).  This puts constants before unary operators before
389 ///     binary operators.
390 ///
391 ///  Associative operators:
392 ///
393 ///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
394 ///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
395 ///
396 ///  Associative and commutative operators:
397 ///
398 ///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
399 ///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
400 ///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
401 ///     if C1 and C2 are constants.
402 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
403   Instruction::BinaryOps Opcode = I.getOpcode();
404   bool Changed = false;
405 
406   do {
407     // Order operands such that they are listed from right (least complex) to
408     // left (most complex).  This puts constants before unary operators before
409     // binary operators.
410     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
411         getComplexity(I.getOperand(1)))
412       Changed = !I.swapOperands();
413 
414     if (I.isCommutative()) {
415       if (auto Pair = matchSymmetricPair(I.getOperand(0), I.getOperand(1))) {
416         replaceOperand(I, 0, Pair->first);
417         replaceOperand(I, 1, Pair->second);
418         Changed = true;
419       }
420     }
421 
422     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
423     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
424 
425     if (I.isAssociative()) {
426       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
427       if (Op0 && Op0->getOpcode() == Opcode) {
428         Value *A = Op0->getOperand(0);
429         Value *B = Op0->getOperand(1);
430         Value *C = I.getOperand(1);
431 
432         // Does "B op C" simplify?
433         if (Value *V = simplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
434           // It simplifies to V.  Form "A op V".
435           replaceOperand(I, 0, A);
436           replaceOperand(I, 1, V);
437           bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
438           bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
439 
440           // Conservatively clear all optional flags since they may not be
441           // preserved by the reassociation. Reset nsw/nuw based on the above
442           // analysis.
443           ClearSubclassDataAfterReassociation(I);
444 
445           // Note: this is only valid because SimplifyBinOp doesn't look at
446           // the operands to Op0.
447           if (IsNUW)
448             I.setHasNoUnsignedWrap(true);
449 
450           if (IsNSW)
451             I.setHasNoSignedWrap(true);
452 
453           Changed = true;
454           ++NumReassoc;
455           continue;
456         }
457       }
458 
459       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
460       if (Op1 && Op1->getOpcode() == Opcode) {
461         Value *A = I.getOperand(0);
462         Value *B = Op1->getOperand(0);
463         Value *C = Op1->getOperand(1);
464 
465         // Does "A op B" simplify?
466         if (Value *V = simplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
467           // It simplifies to V.  Form "V op C".
468           replaceOperand(I, 0, V);
469           replaceOperand(I, 1, C);
470           // Conservatively clear the optional flags, since they may not be
471           // preserved by the reassociation.
472           ClearSubclassDataAfterReassociation(I);
473           Changed = true;
474           ++NumReassoc;
475           continue;
476         }
477       }
478     }
479 
480     if (I.isAssociative() && I.isCommutative()) {
481       if (simplifyAssocCastAssoc(&I, *this)) {
482         Changed = true;
483         ++NumReassoc;
484         continue;
485       }
486 
487       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
488       if (Op0 && Op0->getOpcode() == Opcode) {
489         Value *A = Op0->getOperand(0);
490         Value *B = Op0->getOperand(1);
491         Value *C = I.getOperand(1);
492 
493         // Does "C op A" simplify?
494         if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
495           // It simplifies to V.  Form "V op B".
496           replaceOperand(I, 0, V);
497           replaceOperand(I, 1, B);
498           // Conservatively clear the optional flags, since they may not be
499           // preserved by the reassociation.
500           ClearSubclassDataAfterReassociation(I);
501           Changed = true;
502           ++NumReassoc;
503           continue;
504         }
505       }
506 
507       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
508       if (Op1 && Op1->getOpcode() == Opcode) {
509         Value *A = I.getOperand(0);
510         Value *B = Op1->getOperand(0);
511         Value *C = Op1->getOperand(1);
512 
513         // Does "C op A" simplify?
514         if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
515           // It simplifies to V.  Form "B op V".
516           replaceOperand(I, 0, B);
517           replaceOperand(I, 1, V);
518           // Conservatively clear the optional flags, since they may not be
519           // preserved by the reassociation.
520           ClearSubclassDataAfterReassociation(I);
521           Changed = true;
522           ++NumReassoc;
523           continue;
524         }
525       }
526 
527       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
528       // if C1 and C2 are constants.
529       Value *A, *B;
530       Constant *C1, *C2, *CRes;
531       if (Op0 && Op1 &&
532           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
533           match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
534           match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2)))) &&
535           (CRes = ConstantFoldBinaryOpOperands(Opcode, C1, C2, DL))) {
536         bool IsNUW = hasNoUnsignedWrap(I) &&
537            hasNoUnsignedWrap(*Op0) &&
538            hasNoUnsignedWrap(*Op1);
539          BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
540            BinaryOperator::CreateNUW(Opcode, A, B) :
541            BinaryOperator::Create(Opcode, A, B);
542 
543          if (isa<FPMathOperator>(NewBO)) {
544            FastMathFlags Flags = I.getFastMathFlags() &
545                                  Op0->getFastMathFlags() &
546                                  Op1->getFastMathFlags();
547            NewBO->setFastMathFlags(Flags);
548         }
549         InsertNewInstWith(NewBO, I.getIterator());
550         NewBO->takeName(Op1);
551         replaceOperand(I, 0, NewBO);
552         replaceOperand(I, 1, CRes);
553         // Conservatively clear the optional flags, since they may not be
554         // preserved by the reassociation.
555         ClearSubclassDataAfterReassociation(I);
556         if (IsNUW)
557           I.setHasNoUnsignedWrap(true);
558 
559         Changed = true;
560         continue;
561       }
562     }
563 
564     // No further simplifications.
565     return Changed;
566   } while (true);
567 }
568 
569 /// Return whether "X LOp (Y ROp Z)" is always equal to
570 /// "(X LOp Y) ROp (X LOp Z)".
571 static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
572                                      Instruction::BinaryOps ROp) {
573   // X & (Y | Z) <--> (X & Y) | (X & Z)
574   // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
575   if (LOp == Instruction::And)
576     return ROp == Instruction::Or || ROp == Instruction::Xor;
577 
578   // X | (Y & Z) <--> (X | Y) & (X | Z)
579   if (LOp == Instruction::Or)
580     return ROp == Instruction::And;
581 
582   // X * (Y + Z) <--> (X * Y) + (X * Z)
583   // X * (Y - Z) <--> (X * Y) - (X * Z)
584   if (LOp == Instruction::Mul)
585     return ROp == Instruction::Add || ROp == Instruction::Sub;
586 
587   return false;
588 }
589 
590 /// Return whether "(X LOp Y) ROp Z" is always equal to
591 /// "(X ROp Z) LOp (Y ROp Z)".
592 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
593                                      Instruction::BinaryOps ROp) {
594   if (Instruction::isCommutative(ROp))
595     return leftDistributesOverRight(ROp, LOp);
596 
597   // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
598   return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
599 
600   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
601   // but this requires knowing that the addition does not overflow and other
602   // such subtleties.
603 }
604 
605 /// This function returns identity value for given opcode, which can be used to
606 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
607 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
608   if (isa<Constant>(V))
609     return nullptr;
610 
611   return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
612 }
613 
614 /// This function predicates factorization using distributive laws. By default,
615 /// it just returns the 'Op' inputs. But for special-cases like
616 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
617 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
618 /// allow more factorization opportunities.
619 static Instruction::BinaryOps
620 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
621                           Value *&LHS, Value *&RHS, BinaryOperator *OtherOp) {
622   assert(Op && "Expected a binary operator");
623   LHS = Op->getOperand(0);
624   RHS = Op->getOperand(1);
625   if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
626     Constant *C;
627     if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
628       // X << C --> X * (1 << C)
629       RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
630       return Instruction::Mul;
631     }
632     // TODO: We can add other conversions e.g. shr => div etc.
633   }
634   if (Instruction::isBitwiseLogicOp(TopOpcode)) {
635     if (OtherOp && OtherOp->getOpcode() == Instruction::AShr &&
636         match(Op, m_LShr(m_NonNegative(), m_Value()))) {
637       // lshr nneg C, X --> ashr nneg C, X
638       return Instruction::AShr;
639     }
640   }
641   return Op->getOpcode();
642 }
643 
644 /// This tries to simplify binary operations by factorizing out common terms
645 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
646 static Value *tryFactorization(BinaryOperator &I, const SimplifyQuery &SQ,
647                                InstCombiner::BuilderTy &Builder,
648                                Instruction::BinaryOps InnerOpcode, Value *A,
649                                Value *B, Value *C, Value *D) {
650   assert(A && B && C && D && "All values must be provided");
651 
652   Value *V = nullptr;
653   Value *RetVal = nullptr;
654   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
655   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
656 
657   // Does "X op' Y" always equal "Y op' X"?
658   bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
659 
660   // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
661   if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) {
662     // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
663     // commutative case, "(A op' B) op (C op' A)"?
664     if (A == C || (InnerCommutative && A == D)) {
665       if (A != C)
666         std::swap(C, D);
667       // Consider forming "A op' (B op D)".
668       // If "B op D" simplifies then it can be formed with no cost.
669       V = simplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
670 
671       // If "B op D" doesn't simplify then only go on if one of the existing
672       // operations "A op' B" and "C op' D" will be zapped as no longer used.
673       if (!V && (LHS->hasOneUse() || RHS->hasOneUse()))
674         V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
675       if (V)
676         RetVal = Builder.CreateBinOp(InnerOpcode, A, V);
677     }
678   }
679 
680   // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
681   if (!RetVal && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) {
682     // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
683     // commutative case, "(A op' B) op (B op' D)"?
684     if (B == D || (InnerCommutative && B == C)) {
685       if (B != D)
686         std::swap(C, D);
687       // Consider forming "(A op C) op' B".
688       // If "A op C" simplifies then it can be formed with no cost.
689       V = simplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
690 
691       // If "A op C" doesn't simplify then only go on if one of the existing
692       // operations "A op' B" and "C op' D" will be zapped as no longer used.
693       if (!V && (LHS->hasOneUse() || RHS->hasOneUse()))
694         V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
695       if (V)
696         RetVal = Builder.CreateBinOp(InnerOpcode, V, B);
697     }
698   }
699 
700   if (!RetVal)
701     return nullptr;
702 
703   ++NumFactor;
704   RetVal->takeName(&I);
705 
706   // Try to add no-overflow flags to the final value.
707   if (isa<OverflowingBinaryOperator>(RetVal)) {
708     bool HasNSW = false;
709     bool HasNUW = false;
710     if (isa<OverflowingBinaryOperator>(&I)) {
711       HasNSW = I.hasNoSignedWrap();
712       HasNUW = I.hasNoUnsignedWrap();
713     }
714     if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
715       HasNSW &= LOBO->hasNoSignedWrap();
716       HasNUW &= LOBO->hasNoUnsignedWrap();
717     }
718 
719     if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
720       HasNSW &= ROBO->hasNoSignedWrap();
721       HasNUW &= ROBO->hasNoUnsignedWrap();
722     }
723 
724     if (TopLevelOpcode == Instruction::Add && InnerOpcode == Instruction::Mul) {
725       // We can propagate 'nsw' if we know that
726       //  %Y = mul nsw i16 %X, C
727       //  %Z = add nsw i16 %Y, %X
728       // =>
729       //  %Z = mul nsw i16 %X, C+1
730       //
731       // iff C+1 isn't INT_MIN
732       const APInt *CInt;
733       if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
734         cast<Instruction>(RetVal)->setHasNoSignedWrap(HasNSW);
735 
736       // nuw can be propagated with any constant or nuw value.
737       cast<Instruction>(RetVal)->setHasNoUnsignedWrap(HasNUW);
738     }
739   }
740   return RetVal;
741 }
742 
743 // If `I` has one Const operand and the other matches `(ctpop (not x))`,
744 // replace `(ctpop (not x))` with `(sub nuw nsw BitWidth(x), (ctpop x))`.
745 // This is only useful is the new subtract can fold so we only handle the
746 // following cases:
747 //    1) (add/sub/disjoint_or C, (ctpop (not x))
748 //        -> (add/sub/disjoint_or C', (ctpop x))
749 //    1) (cmp pred C, (ctpop (not x))
750 //        -> (cmp pred C', (ctpop x))
751 Instruction *InstCombinerImpl::tryFoldInstWithCtpopWithNot(Instruction *I) {
752   unsigned Opc = I->getOpcode();
753   unsigned ConstIdx = 1;
754   switch (Opc) {
755   default:
756     return nullptr;
757     // (ctpop (not x)) <-> (sub nuw nsw BitWidth(x) - (ctpop x))
758     // We can fold the BitWidth(x) with add/sub/icmp as long the other operand
759     // is constant.
760   case Instruction::Sub:
761     ConstIdx = 0;
762     break;
763   case Instruction::ICmp:
764     // Signed predicates aren't correct in some edge cases like for i2 types, as
765     // well since (ctpop x) is known [0, log2(BitWidth(x))] almost all signed
766     // comparisons against it are simplfied to unsigned.
767     if (cast<ICmpInst>(I)->isSigned())
768       return nullptr;
769     break;
770   case Instruction::Or:
771     if (!match(I, m_DisjointOr(m_Value(), m_Value())))
772       return nullptr;
773     [[fallthrough]];
774   case Instruction::Add:
775     break;
776   }
777 
778   Value *Op;
779   // Find ctpop.
780   if (!match(I->getOperand(1 - ConstIdx),
781              m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(Op)))))
782     return nullptr;
783 
784   Constant *C;
785   // Check other operand is ImmConstant.
786   if (!match(I->getOperand(ConstIdx), m_ImmConstant(C)))
787     return nullptr;
788 
789   Type *Ty = Op->getType();
790   Constant *BitWidthC = ConstantInt::get(Ty, Ty->getScalarSizeInBits());
791   // Need extra check for icmp. Note if this check is true, it generally means
792   // the icmp will simplify to true/false.
793   if (Opc == Instruction::ICmp && !cast<ICmpInst>(I)->isEquality() &&
794       !ConstantExpr::getICmp(ICmpInst::ICMP_UGT, C, BitWidthC)->isZeroValue())
795     return nullptr;
796 
797   // Check we can invert `(not x)` for free.
798   bool Consumes = false;
799   if (!isFreeToInvert(Op, Op->hasOneUse(), Consumes) || !Consumes)
800     return nullptr;
801   Value *NotOp = getFreelyInverted(Op, Op->hasOneUse(), &Builder);
802   assert(NotOp != nullptr &&
803          "Desync between isFreeToInvert and getFreelyInverted");
804 
805   Value *CtpopOfNotOp = Builder.CreateIntrinsic(Ty, Intrinsic::ctpop, NotOp);
806 
807   Value *R = nullptr;
808 
809   // Do the transformation here to avoid potentially introducing an infinite
810   // loop.
811   switch (Opc) {
812   case Instruction::Sub:
813     R = Builder.CreateAdd(CtpopOfNotOp, ConstantExpr::getSub(C, BitWidthC));
814     break;
815   case Instruction::Or:
816   case Instruction::Add:
817     R = Builder.CreateSub(ConstantExpr::getAdd(C, BitWidthC), CtpopOfNotOp);
818     break;
819   case Instruction::ICmp:
820     R = Builder.CreateICmp(cast<ICmpInst>(I)->getSwappedPredicate(),
821                            CtpopOfNotOp, ConstantExpr::getSub(BitWidthC, C));
822     break;
823   default:
824     llvm_unreachable("Unhandled Opcode");
825   }
826   assert(R != nullptr);
827   return replaceInstUsesWith(*I, R);
828 }
829 
830 // (Binop1 (Binop2 (logic_shift X, C), C1), (logic_shift Y, C))
831 //   IFF
832 //    1) the logic_shifts match
833 //    2) either both binops are binops and one is `and` or
834 //       BinOp1 is `and`
835 //       (logic_shift (inv_logic_shift C1, C), C) == C1 or
836 //
837 //    -> (logic_shift (Binop1 (Binop2 X, inv_logic_shift(C1, C)), Y), C)
838 //
839 // (Binop1 (Binop2 (logic_shift X, Amt), Mask), (logic_shift Y, Amt))
840 //   IFF
841 //    1) the logic_shifts match
842 //    2) BinOp1 == BinOp2 (if BinOp ==  `add`, then also requires `shl`).
843 //
844 //    -> (BinOp (logic_shift (BinOp X, Y)), Mask)
845 //
846 // (Binop1 (Binop2 (arithmetic_shift X, Amt), Mask), (arithmetic_shift Y, Amt))
847 //   IFF
848 //   1) Binop1 is bitwise logical operator `and`, `or` or `xor`
849 //   2) Binop2 is `not`
850 //
851 //   -> (arithmetic_shift Binop1((not X), Y), Amt)
852 
853 Instruction *InstCombinerImpl::foldBinOpShiftWithShift(BinaryOperator &I) {
854   const DataLayout &DL = I.getModule()->getDataLayout();
855   auto IsValidBinOpc = [](unsigned Opc) {
856     switch (Opc) {
857     default:
858       return false;
859     case Instruction::And:
860     case Instruction::Or:
861     case Instruction::Xor:
862     case Instruction::Add:
863       // Skip Sub as we only match constant masks which will canonicalize to use
864       // add.
865       return true;
866     }
867   };
868 
869   // Check if we can distribute binop arbitrarily. `add` + `lshr` has extra
870   // constraints.
871   auto IsCompletelyDistributable = [](unsigned BinOpc1, unsigned BinOpc2,
872                                       unsigned ShOpc) {
873     assert(ShOpc != Instruction::AShr);
874     return (BinOpc1 != Instruction::Add && BinOpc2 != Instruction::Add) ||
875            ShOpc == Instruction::Shl;
876   };
877 
878   auto GetInvShift = [](unsigned ShOpc) {
879     assert(ShOpc != Instruction::AShr);
880     return ShOpc == Instruction::LShr ? Instruction::Shl : Instruction::LShr;
881   };
882 
883   auto CanDistributeBinops = [&](unsigned BinOpc1, unsigned BinOpc2,
884                                  unsigned ShOpc, Constant *CMask,
885                                  Constant *CShift) {
886     // If the BinOp1 is `and` we don't need to check the mask.
887     if (BinOpc1 == Instruction::And)
888       return true;
889 
890     // For all other possible transfers we need complete distributable
891     // binop/shift (anything but `add` + `lshr`).
892     if (!IsCompletelyDistributable(BinOpc1, BinOpc2, ShOpc))
893       return false;
894 
895     // If BinOp2 is `and`, any mask works (this only really helps for non-splat
896     // vecs, otherwise the mask will be simplified and the following check will
897     // handle it).
898     if (BinOpc2 == Instruction::And)
899       return true;
900 
901     // Otherwise, need mask that meets the below requirement.
902     // (logic_shift (inv_logic_shift Mask, ShAmt), ShAmt) == Mask
903     Constant *MaskInvShift =
904         ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL);
905     return ConstantFoldBinaryOpOperands(ShOpc, MaskInvShift, CShift, DL) ==
906            CMask;
907   };
908 
909   auto MatchBinOp = [&](unsigned ShOpnum) -> Instruction * {
910     Constant *CMask, *CShift;
911     Value *X, *Y, *ShiftedX, *Mask, *Shift;
912     if (!match(I.getOperand(ShOpnum),
913                m_OneUse(m_Shift(m_Value(Y), m_Value(Shift)))))
914       return nullptr;
915     if (!match(I.getOperand(1 - ShOpnum),
916                m_BinOp(m_Value(ShiftedX), m_Value(Mask))))
917       return nullptr;
918 
919     if (!match(ShiftedX, m_OneUse(m_Shift(m_Value(X), m_Specific(Shift)))))
920       return nullptr;
921 
922     // Make sure we are matching instruction shifts and not ConstantExpr
923     auto *IY = dyn_cast<Instruction>(I.getOperand(ShOpnum));
924     auto *IX = dyn_cast<Instruction>(ShiftedX);
925     if (!IY || !IX)
926       return nullptr;
927 
928     // LHS and RHS need same shift opcode
929     unsigned ShOpc = IY->getOpcode();
930     if (ShOpc != IX->getOpcode())
931       return nullptr;
932 
933     // Make sure binop is real instruction and not ConstantExpr
934     auto *BO2 = dyn_cast<Instruction>(I.getOperand(1 - ShOpnum));
935     if (!BO2)
936       return nullptr;
937 
938     unsigned BinOpc = BO2->getOpcode();
939     // Make sure we have valid binops.
940     if (!IsValidBinOpc(I.getOpcode()) || !IsValidBinOpc(BinOpc))
941       return nullptr;
942 
943     if (ShOpc == Instruction::AShr) {
944       if (Instruction::isBitwiseLogicOp(I.getOpcode()) &&
945           BinOpc == Instruction::Xor && match(Mask, m_AllOnes())) {
946         Value *NotX = Builder.CreateNot(X);
947         Value *NewBinOp = Builder.CreateBinOp(I.getOpcode(), Y, NotX);
948         return BinaryOperator::Create(
949             static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp, Shift);
950       }
951 
952       return nullptr;
953     }
954 
955     // If BinOp1 == BinOp2 and it's bitwise or shl with add, then just
956     // distribute to drop the shift irrelevant of constants.
957     if (BinOpc == I.getOpcode() &&
958         IsCompletelyDistributable(I.getOpcode(), BinOpc, ShOpc)) {
959       Value *NewBinOp2 = Builder.CreateBinOp(I.getOpcode(), X, Y);
960       Value *NewBinOp1 = Builder.CreateBinOp(
961           static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp2, Shift);
962       return BinaryOperator::Create(I.getOpcode(), NewBinOp1, Mask);
963     }
964 
965     // Otherwise we can only distribute by constant shifting the mask, so
966     // ensure we have constants.
967     if (!match(Shift, m_ImmConstant(CShift)))
968       return nullptr;
969     if (!match(Mask, m_ImmConstant(CMask)))
970       return nullptr;
971 
972     // Check if we can distribute the binops.
973     if (!CanDistributeBinops(I.getOpcode(), BinOpc, ShOpc, CMask, CShift))
974       return nullptr;
975 
976     Constant *NewCMask =
977         ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL);
978     Value *NewBinOp2 = Builder.CreateBinOp(
979         static_cast<Instruction::BinaryOps>(BinOpc), X, NewCMask);
980     Value *NewBinOp1 = Builder.CreateBinOp(I.getOpcode(), Y, NewBinOp2);
981     return BinaryOperator::Create(static_cast<Instruction::BinaryOps>(ShOpc),
982                                   NewBinOp1, CShift);
983   };
984 
985   if (Instruction *R = MatchBinOp(0))
986     return R;
987   return MatchBinOp(1);
988 }
989 
990 // (Binop (zext C), (select C, T, F))
991 //    -> (select C, (binop 1, T), (binop 0, F))
992 //
993 // (Binop (sext C), (select C, T, F))
994 //    -> (select C, (binop -1, T), (binop 0, F))
995 //
996 // Attempt to simplify binary operations into a select with folded args, when
997 // one operand of the binop is a select instruction and the other operand is a
998 // zext/sext extension, whose value is the select condition.
999 Instruction *
1000 InstCombinerImpl::foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I) {
1001   // TODO: this simplification may be extended to any speculatable instruction,
1002   // not just binops, and would possibly be handled better in FoldOpIntoSelect.
1003   Instruction::BinaryOps Opc = I.getOpcode();
1004   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1005   Value *A, *CondVal, *TrueVal, *FalseVal;
1006   Value *CastOp;
1007 
1008   auto MatchSelectAndCast = [&](Value *CastOp, Value *SelectOp) {
1009     return match(CastOp, m_ZExtOrSExt(m_Value(A))) &&
1010            A->getType()->getScalarSizeInBits() == 1 &&
1011            match(SelectOp, m_Select(m_Value(CondVal), m_Value(TrueVal),
1012                                     m_Value(FalseVal)));
1013   };
1014 
1015   // Make sure one side of the binop is a select instruction, and the other is a
1016   // zero/sign extension operating on a i1.
1017   if (MatchSelectAndCast(LHS, RHS))
1018     CastOp = LHS;
1019   else if (MatchSelectAndCast(RHS, LHS))
1020     CastOp = RHS;
1021   else
1022     return nullptr;
1023 
1024   auto NewFoldedConst = [&](bool IsTrueArm, Value *V) {
1025     bool IsCastOpRHS = (CastOp == RHS);
1026     bool IsZExt = isa<ZExtInst>(CastOp);
1027     Constant *C;
1028 
1029     if (IsTrueArm) {
1030       C = Constant::getNullValue(V->getType());
1031     } else if (IsZExt) {
1032       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1033       C = Constant::getIntegerValue(V->getType(), APInt(BitWidth, 1));
1034     } else {
1035       C = Constant::getAllOnesValue(V->getType());
1036     }
1037 
1038     return IsCastOpRHS ? Builder.CreateBinOp(Opc, V, C)
1039                        : Builder.CreateBinOp(Opc, C, V);
1040   };
1041 
1042   // If the value used in the zext/sext is the select condition, or the negated
1043   // of the select condition, the binop can be simplified.
1044   if (CondVal == A) {
1045     Value *NewTrueVal = NewFoldedConst(false, TrueVal);
1046     return SelectInst::Create(CondVal, NewTrueVal,
1047                               NewFoldedConst(true, FalseVal));
1048   }
1049 
1050   if (match(A, m_Not(m_Specific(CondVal)))) {
1051     Value *NewTrueVal = NewFoldedConst(true, TrueVal);
1052     return SelectInst::Create(CondVal, NewTrueVal,
1053                               NewFoldedConst(false, FalseVal));
1054   }
1055 
1056   return nullptr;
1057 }
1058 
1059 Value *InstCombinerImpl::tryFactorizationFolds(BinaryOperator &I) {
1060   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1061   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
1062   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
1063   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
1064   Value *A, *B, *C, *D;
1065   Instruction::BinaryOps LHSOpcode, RHSOpcode;
1066 
1067   if (Op0)
1068     LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B, Op1);
1069   if (Op1)
1070     RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D, Op0);
1071 
1072   // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
1073   // a common term.
1074   if (Op0 && Op1 && LHSOpcode == RHSOpcode)
1075     if (Value *V = tryFactorization(I, SQ, Builder, LHSOpcode, A, B, C, D))
1076       return V;
1077 
1078   // The instruction has the form "(A op' B) op (C)".  Try to factorize common
1079   // term.
1080   if (Op0)
1081     if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
1082       if (Value *V =
1083               tryFactorization(I, SQ, Builder, LHSOpcode, A, B, RHS, Ident))
1084         return V;
1085 
1086   // The instruction has the form "(B) op (C op' D)".  Try to factorize common
1087   // term.
1088   if (Op1)
1089     if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
1090       if (Value *V =
1091               tryFactorization(I, SQ, Builder, RHSOpcode, LHS, Ident, C, D))
1092         return V;
1093 
1094   return nullptr;
1095 }
1096 
1097 /// This tries to simplify binary operations which some other binary operation
1098 /// distributes over either by factorizing out common terms
1099 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
1100 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
1101 /// Returns the simplified value, or null if it didn't simplify.
1102 Value *InstCombinerImpl::foldUsingDistributiveLaws(BinaryOperator &I) {
1103   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1104   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
1105   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
1106   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
1107 
1108   // Factorization.
1109   if (Value *R = tryFactorizationFolds(I))
1110     return R;
1111 
1112   // Expansion.
1113   if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
1114     // The instruction has the form "(A op' B) op C".  See if expanding it out
1115     // to "(A op C) op' (B op C)" results in simplifications.
1116     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
1117     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
1118 
1119     // Disable the use of undef because it's not safe to distribute undef.
1120     auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
1121     Value *L = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
1122     Value *R = simplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
1123 
1124     // Do "A op C" and "B op C" both simplify?
1125     if (L && R) {
1126       // They do! Return "L op' R".
1127       ++NumExpand;
1128       C = Builder.CreateBinOp(InnerOpcode, L, R);
1129       C->takeName(&I);
1130       return C;
1131     }
1132 
1133     // Does "A op C" simplify to the identity value for the inner opcode?
1134     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
1135       // They do! Return "B op C".
1136       ++NumExpand;
1137       C = Builder.CreateBinOp(TopLevelOpcode, B, C);
1138       C->takeName(&I);
1139       return C;
1140     }
1141 
1142     // Does "B op C" simplify to the identity value for the inner opcode?
1143     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
1144       // They do! Return "A op C".
1145       ++NumExpand;
1146       C = Builder.CreateBinOp(TopLevelOpcode, A, C);
1147       C->takeName(&I);
1148       return C;
1149     }
1150   }
1151 
1152   if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
1153     // The instruction has the form "A op (B op' C)".  See if expanding it out
1154     // to "(A op B) op' (A op C)" results in simplifications.
1155     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
1156     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
1157 
1158     // Disable the use of undef because it's not safe to distribute undef.
1159     auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
1160     Value *L = simplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
1161     Value *R = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
1162 
1163     // Do "A op B" and "A op C" both simplify?
1164     if (L && R) {
1165       // They do! Return "L op' R".
1166       ++NumExpand;
1167       A = Builder.CreateBinOp(InnerOpcode, L, R);
1168       A->takeName(&I);
1169       return A;
1170     }
1171 
1172     // Does "A op B" simplify to the identity value for the inner opcode?
1173     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
1174       // They do! Return "A op C".
1175       ++NumExpand;
1176       A = Builder.CreateBinOp(TopLevelOpcode, A, C);
1177       A->takeName(&I);
1178       return A;
1179     }
1180 
1181     // Does "A op C" simplify to the identity value for the inner opcode?
1182     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
1183       // They do! Return "A op B".
1184       ++NumExpand;
1185       A = Builder.CreateBinOp(TopLevelOpcode, A, B);
1186       A->takeName(&I);
1187       return A;
1188     }
1189   }
1190 
1191   return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
1192 }
1193 
1194 static std::optional<std::pair<Value *, Value *>>
1195 matchSymmetricPhiNodesPair(PHINode *LHS, PHINode *RHS) {
1196   if (LHS->getParent() != RHS->getParent())
1197     return std::nullopt;
1198 
1199   if (LHS->getNumIncomingValues() < 2)
1200     return std::nullopt;
1201 
1202   if (!equal(LHS->blocks(), RHS->blocks()))
1203     return std::nullopt;
1204 
1205   Value *L0 = LHS->getIncomingValue(0);
1206   Value *R0 = RHS->getIncomingValue(0);
1207 
1208   for (unsigned I = 1, E = LHS->getNumIncomingValues(); I != E; ++I) {
1209     Value *L1 = LHS->getIncomingValue(I);
1210     Value *R1 = RHS->getIncomingValue(I);
1211 
1212     if ((L0 == L1 && R0 == R1) || (L0 == R1 && R0 == L1))
1213       continue;
1214 
1215     return std::nullopt;
1216   }
1217 
1218   return std::optional(std::pair(L0, R0));
1219 }
1220 
1221 std::optional<std::pair<Value *, Value *>>
1222 InstCombinerImpl::matchSymmetricPair(Value *LHS, Value *RHS) {
1223   Instruction *LHSInst = dyn_cast<Instruction>(LHS);
1224   Instruction *RHSInst = dyn_cast<Instruction>(RHS);
1225   if (!LHSInst || !RHSInst || LHSInst->getOpcode() != RHSInst->getOpcode())
1226     return std::nullopt;
1227   switch (LHSInst->getOpcode()) {
1228   case Instruction::PHI:
1229     return matchSymmetricPhiNodesPair(cast<PHINode>(LHS), cast<PHINode>(RHS));
1230   case Instruction::Select: {
1231     Value *Cond = LHSInst->getOperand(0);
1232     Value *TrueVal = LHSInst->getOperand(1);
1233     Value *FalseVal = LHSInst->getOperand(2);
1234     if (Cond == RHSInst->getOperand(0) && TrueVal == RHSInst->getOperand(2) &&
1235         FalseVal == RHSInst->getOperand(1))
1236       return std::pair(TrueVal, FalseVal);
1237     return std::nullopt;
1238   }
1239   case Instruction::Call: {
1240     // Match min(a, b) and max(a, b)
1241     MinMaxIntrinsic *LHSMinMax = dyn_cast<MinMaxIntrinsic>(LHSInst);
1242     MinMaxIntrinsic *RHSMinMax = dyn_cast<MinMaxIntrinsic>(RHSInst);
1243     if (LHSMinMax && RHSMinMax &&
1244         LHSMinMax->getPredicate() ==
1245             ICmpInst::getSwappedPredicate(RHSMinMax->getPredicate()) &&
1246         ((LHSMinMax->getLHS() == RHSMinMax->getLHS() &&
1247           LHSMinMax->getRHS() == RHSMinMax->getRHS()) ||
1248          (LHSMinMax->getLHS() == RHSMinMax->getRHS() &&
1249           LHSMinMax->getRHS() == RHSMinMax->getLHS())))
1250       return std::pair(LHSMinMax->getLHS(), LHSMinMax->getRHS());
1251     return std::nullopt;
1252   }
1253   default:
1254     return std::nullopt;
1255   }
1256 }
1257 
1258 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
1259                                                         Value *LHS,
1260                                                         Value *RHS) {
1261   Value *A, *B, *C, *D, *E, *F;
1262   bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
1263   bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
1264   if (!LHSIsSelect && !RHSIsSelect)
1265     return nullptr;
1266 
1267   FastMathFlags FMF;
1268   BuilderTy::FastMathFlagGuard Guard(Builder);
1269   if (isa<FPMathOperator>(&I)) {
1270     FMF = I.getFastMathFlags();
1271     Builder.setFastMathFlags(FMF);
1272   }
1273 
1274   Instruction::BinaryOps Opcode = I.getOpcode();
1275   SimplifyQuery Q = SQ.getWithInstruction(&I);
1276 
1277   Value *Cond, *True = nullptr, *False = nullptr;
1278 
1279   // Special-case for add/negate combination. Replace the zero in the negation
1280   // with the trailing add operand:
1281   // (Cond ? TVal : -N) + Z --> Cond ? True : (Z - N)
1282   // (Cond ? -N : FVal) + Z --> Cond ? (Z - N) : False
1283   auto foldAddNegate = [&](Value *TVal, Value *FVal, Value *Z) -> Value * {
1284     // We need an 'add' and exactly 1 arm of the select to have been simplified.
1285     if (Opcode != Instruction::Add || (!True && !False) || (True && False))
1286       return nullptr;
1287 
1288     Value *N;
1289     if (True && match(FVal, m_Neg(m_Value(N)))) {
1290       Value *Sub = Builder.CreateSub(Z, N);
1291       return Builder.CreateSelect(Cond, True, Sub, I.getName());
1292     }
1293     if (False && match(TVal, m_Neg(m_Value(N)))) {
1294       Value *Sub = Builder.CreateSub(Z, N);
1295       return Builder.CreateSelect(Cond, Sub, False, I.getName());
1296     }
1297     return nullptr;
1298   };
1299 
1300   if (LHSIsSelect && RHSIsSelect && A == D) {
1301     // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
1302     Cond = A;
1303     True = simplifyBinOp(Opcode, B, E, FMF, Q);
1304     False = simplifyBinOp(Opcode, C, F, FMF, Q);
1305 
1306     if (LHS->hasOneUse() && RHS->hasOneUse()) {
1307       if (False && !True)
1308         True = Builder.CreateBinOp(Opcode, B, E);
1309       else if (True && !False)
1310         False = Builder.CreateBinOp(Opcode, C, F);
1311     }
1312   } else if (LHSIsSelect && LHS->hasOneUse()) {
1313     // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
1314     Cond = A;
1315     True = simplifyBinOp(Opcode, B, RHS, FMF, Q);
1316     False = simplifyBinOp(Opcode, C, RHS, FMF, Q);
1317     if (Value *NewSel = foldAddNegate(B, C, RHS))
1318       return NewSel;
1319   } else if (RHSIsSelect && RHS->hasOneUse()) {
1320     // X op (D ? E : F) -> D ? (X op E) : (X op F)
1321     Cond = D;
1322     True = simplifyBinOp(Opcode, LHS, E, FMF, Q);
1323     False = simplifyBinOp(Opcode, LHS, F, FMF, Q);
1324     if (Value *NewSel = foldAddNegate(E, F, LHS))
1325       return NewSel;
1326   }
1327 
1328   if (!True || !False)
1329     return nullptr;
1330 
1331   Value *SI = Builder.CreateSelect(Cond, True, False);
1332   SI->takeName(&I);
1333   return SI;
1334 }
1335 
1336 /// Freely adapt every user of V as-if V was changed to !V.
1337 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done.
1338 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I, Value *IgnoredUser) {
1339   assert(!isa<Constant>(I) && "Shouldn't invert users of constant");
1340   for (User *U : make_early_inc_range(I->users())) {
1341     if (U == IgnoredUser)
1342       continue; // Don't consider this user.
1343     switch (cast<Instruction>(U)->getOpcode()) {
1344     case Instruction::Select: {
1345       auto *SI = cast<SelectInst>(U);
1346       SI->swapValues();
1347       SI->swapProfMetadata();
1348       break;
1349     }
1350     case Instruction::Br:
1351       cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too
1352       break;
1353     case Instruction::Xor:
1354       replaceInstUsesWith(cast<Instruction>(*U), I);
1355       // Add to worklist for DCE.
1356       addToWorklist(cast<Instruction>(U));
1357       break;
1358     default:
1359       llvm_unreachable("Got unexpected user - out of sync with "
1360                        "canFreelyInvertAllUsersOf() ?");
1361     }
1362   }
1363 }
1364 
1365 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
1366 /// constant zero (which is the 'negate' form).
1367 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
1368   Value *NegV;
1369   if (match(V, m_Neg(m_Value(NegV))))
1370     return NegV;
1371 
1372   // Constants can be considered to be negated values if they can be folded.
1373   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
1374     return ConstantExpr::getNeg(C);
1375 
1376   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
1377     if (C->getType()->getElementType()->isIntegerTy())
1378       return ConstantExpr::getNeg(C);
1379 
1380   if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
1381     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1382       Constant *Elt = CV->getAggregateElement(i);
1383       if (!Elt)
1384         return nullptr;
1385 
1386       if (isa<UndefValue>(Elt))
1387         continue;
1388 
1389       if (!isa<ConstantInt>(Elt))
1390         return nullptr;
1391     }
1392     return ConstantExpr::getNeg(CV);
1393   }
1394 
1395   // Negate integer vector splats.
1396   if (auto *CV = dyn_cast<Constant>(V))
1397     if (CV->getType()->isVectorTy() &&
1398         CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue())
1399       return ConstantExpr::getNeg(CV);
1400 
1401   return nullptr;
1402 }
1403 
1404 /// A binop with a constant operand and a sign-extended boolean operand may be
1405 /// converted into a select of constants by applying the binary operation to
1406 /// the constant with the two possible values of the extended boolean (0 or -1).
1407 Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) {
1408   // TODO: Handle non-commutative binop (constant is operand 0).
1409   // TODO: Handle zext.
1410   // TODO: Peek through 'not' of cast.
1411   Value *BO0 = BO.getOperand(0);
1412   Value *BO1 = BO.getOperand(1);
1413   Value *X;
1414   Constant *C;
1415   if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) ||
1416       !X->getType()->isIntOrIntVectorTy(1))
1417     return nullptr;
1418 
1419   // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C)
1420   Constant *Ones = ConstantInt::getAllOnesValue(BO.getType());
1421   Constant *Zero = ConstantInt::getNullValue(BO.getType());
1422   Value *TVal = Builder.CreateBinOp(BO.getOpcode(), Ones, C);
1423   Value *FVal = Builder.CreateBinOp(BO.getOpcode(), Zero, C);
1424   return SelectInst::Create(X, TVal, FVal);
1425 }
1426 
1427 static Constant *constantFoldOperationIntoSelectOperand(Instruction &I,
1428                                                         SelectInst *SI,
1429                                                         bool IsTrueArm) {
1430   SmallVector<Constant *> ConstOps;
1431   for (Value *Op : I.operands()) {
1432     CmpInst::Predicate Pred;
1433     Constant *C = nullptr;
1434     if (Op == SI) {
1435       C = dyn_cast<Constant>(IsTrueArm ? SI->getTrueValue()
1436                                        : SI->getFalseValue());
1437     } else if (match(SI->getCondition(),
1438                      m_ICmp(Pred, m_Specific(Op), m_Constant(C))) &&
1439                Pred == (IsTrueArm ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
1440                isGuaranteedNotToBeUndefOrPoison(C)) {
1441       // Pass
1442     } else {
1443       C = dyn_cast<Constant>(Op);
1444     }
1445     if (C == nullptr)
1446       return nullptr;
1447 
1448     ConstOps.push_back(C);
1449   }
1450 
1451   return ConstantFoldInstOperands(&I, ConstOps, I.getModule()->getDataLayout());
1452 }
1453 
1454 static Value *foldOperationIntoSelectOperand(Instruction &I, SelectInst *SI,
1455                                              Value *NewOp, InstCombiner &IC) {
1456   Instruction *Clone = I.clone();
1457   Clone->replaceUsesOfWith(SI, NewOp);
1458   Clone->dropUBImplyingAttrsAndMetadata();
1459   IC.InsertNewInstBefore(Clone, SI->getIterator());
1460   return Clone;
1461 }
1462 
1463 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1464                                                 bool FoldWithMultiUse) {
1465   // Don't modify shared select instructions unless set FoldWithMultiUse
1466   if (!SI->hasOneUse() && !FoldWithMultiUse)
1467     return nullptr;
1468 
1469   Value *TV = SI->getTrueValue();
1470   Value *FV = SI->getFalseValue();
1471   if (!(isa<Constant>(TV) || isa<Constant>(FV)))
1472     return nullptr;
1473 
1474   // Bool selects with constant operands can be folded to logical ops.
1475   if (SI->getType()->isIntOrIntVectorTy(1))
1476     return nullptr;
1477 
1478   // If it's a bitcast involving vectors, make sure it has the same number of
1479   // elements on both sides.
1480   if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
1481     VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
1482     VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
1483 
1484     // Verify that either both or neither are vectors.
1485     if ((SrcTy == nullptr) != (DestTy == nullptr))
1486       return nullptr;
1487 
1488     // If vectors, verify that they have the same number of elements.
1489     if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount())
1490       return nullptr;
1491   }
1492 
1493   // Test if a FCmpInst instruction is used exclusively by a select as
1494   // part of a minimum or maximum operation. If so, refrain from doing
1495   // any other folding. This helps out other analyses which understand
1496   // non-obfuscated minimum and maximum idioms. And in this case, at
1497   // least one of the comparison operands has at least one user besides
1498   // the compare (the select), which would often largely negate the
1499   // benefit of folding anyway.
1500   if (auto *CI = dyn_cast<FCmpInst>(SI->getCondition())) {
1501     if (CI->hasOneUse()) {
1502       Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1503       if ((TV == Op0 && FV == Op1) || (FV == Op0 && TV == Op1))
1504         return nullptr;
1505     }
1506   }
1507 
1508   // Make sure that one of the select arms constant folds successfully.
1509   Value *NewTV = constantFoldOperationIntoSelectOperand(Op, SI, /*IsTrueArm*/ true);
1510   Value *NewFV = constantFoldOperationIntoSelectOperand(Op, SI, /*IsTrueArm*/ false);
1511   if (!NewTV && !NewFV)
1512     return nullptr;
1513 
1514   // Create an instruction for the arm that did not fold.
1515   if (!NewTV)
1516     NewTV = foldOperationIntoSelectOperand(Op, SI, TV, *this);
1517   if (!NewFV)
1518     NewFV = foldOperationIntoSelectOperand(Op, SI, FV, *this);
1519   return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
1520 }
1521 
1522 static Value *simplifyInstructionWithPHI(Instruction &I, PHINode *PN,
1523                                          Value *InValue, BasicBlock *InBB,
1524                                          const DataLayout &DL,
1525                                          const SimplifyQuery SQ) {
1526   // NB: It is a precondition of this transform that the operands be
1527   // phi translatable! This is usually trivially satisfied by limiting it
1528   // to constant ops, and for selects we do a more sophisticated check.
1529   SmallVector<Value *> Ops;
1530   for (Value *Op : I.operands()) {
1531     if (Op == PN)
1532       Ops.push_back(InValue);
1533     else
1534       Ops.push_back(Op->DoPHITranslation(PN->getParent(), InBB));
1535   }
1536 
1537   // Don't consider the simplification successful if we get back a constant
1538   // expression. That's just an instruction in hiding.
1539   // Also reject the case where we simplify back to the phi node. We wouldn't
1540   // be able to remove it in that case.
1541   Value *NewVal = simplifyInstructionWithOperands(
1542       &I, Ops, SQ.getWithInstruction(InBB->getTerminator()));
1543   if (NewVal && NewVal != PN && !match(NewVal, m_ConstantExpr()))
1544     return NewVal;
1545 
1546   // Check if incoming PHI value can be replaced with constant
1547   // based on implied condition.
1548   BranchInst *TerminatorBI = dyn_cast<BranchInst>(InBB->getTerminator());
1549   const ICmpInst *ICmp = dyn_cast<ICmpInst>(&I);
1550   if (TerminatorBI && TerminatorBI->isConditional() &&
1551       TerminatorBI->getSuccessor(0) != TerminatorBI->getSuccessor(1) && ICmp) {
1552     bool LHSIsTrue = TerminatorBI->getSuccessor(0) == PN->getParent();
1553     std::optional<bool> ImpliedCond =
1554         isImpliedCondition(TerminatorBI->getCondition(), ICmp->getPredicate(),
1555                            Ops[0], Ops[1], DL, LHSIsTrue);
1556     if (ImpliedCond)
1557       return ConstantInt::getBool(I.getType(), ImpliedCond.value());
1558   }
1559 
1560   return nullptr;
1561 }
1562 
1563 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) {
1564   unsigned NumPHIValues = PN->getNumIncomingValues();
1565   if (NumPHIValues == 0)
1566     return nullptr;
1567 
1568   // We normally only transform phis with a single use.  However, if a PHI has
1569   // multiple uses and they are all the same operation, we can fold *all* of the
1570   // uses into the PHI.
1571   if (!PN->hasOneUse()) {
1572     // Walk the use list for the instruction, comparing them to I.
1573     for (User *U : PN->users()) {
1574       Instruction *UI = cast<Instruction>(U);
1575       if (UI != &I && !I.isIdenticalTo(UI))
1576         return nullptr;
1577     }
1578     // Otherwise, we can replace *all* users with the new PHI we form.
1579   }
1580 
1581   // Check to see whether the instruction can be folded into each phi operand.
1582   // If there is one operand that does not fold, remember the BB it is in.
1583   // If there is more than one or if *it* is a PHI, bail out.
1584   SmallVector<Value *> NewPhiValues;
1585   BasicBlock *NonSimplifiedBB = nullptr;
1586   Value *NonSimplifiedInVal = nullptr;
1587   for (unsigned i = 0; i != NumPHIValues; ++i) {
1588     Value *InVal = PN->getIncomingValue(i);
1589     BasicBlock *InBB = PN->getIncomingBlock(i);
1590 
1591     if (auto *NewVal = simplifyInstructionWithPHI(I, PN, InVal, InBB, DL, SQ)) {
1592       NewPhiValues.push_back(NewVal);
1593       continue;
1594     }
1595 
1596     if (NonSimplifiedBB) return nullptr;  // More than one non-simplified value.
1597 
1598     NonSimplifiedBB = InBB;
1599     NonSimplifiedInVal = InVal;
1600     NewPhiValues.push_back(nullptr);
1601 
1602     // If the InVal is an invoke at the end of the pred block, then we can't
1603     // insert a computation after it without breaking the edge.
1604     if (isa<InvokeInst>(InVal))
1605       if (cast<Instruction>(InVal)->getParent() == NonSimplifiedBB)
1606         return nullptr;
1607 
1608     // If the incoming non-constant value is reachable from the phis block,
1609     // we'll push the operation across a loop backedge. This could result in
1610     // an infinite combine loop, and is generally non-profitable (especially
1611     // if the operation was originally outside the loop).
1612     if (isPotentiallyReachable(PN->getParent(), NonSimplifiedBB, nullptr, &DT,
1613                                LI))
1614       return nullptr;
1615   }
1616 
1617   // If there is exactly one non-simplified value, we can insert a copy of the
1618   // operation in that block.  However, if this is a critical edge, we would be
1619   // inserting the computation on some other paths (e.g. inside a loop).  Only
1620   // do this if the pred block is unconditionally branching into the phi block.
1621   // Also, make sure that the pred block is not dead code.
1622   if (NonSimplifiedBB != nullptr) {
1623     BranchInst *BI = dyn_cast<BranchInst>(NonSimplifiedBB->getTerminator());
1624     if (!BI || !BI->isUnconditional() ||
1625         !DT.isReachableFromEntry(NonSimplifiedBB))
1626       return nullptr;
1627   }
1628 
1629   // Okay, we can do the transformation: create the new PHI node.
1630   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1631   InsertNewInstBefore(NewPN, PN->getIterator());
1632   NewPN->takeName(PN);
1633   NewPN->setDebugLoc(PN->getDebugLoc());
1634 
1635   // If we are going to have to insert a new computation, do so right before the
1636   // predecessor's terminator.
1637   Instruction *Clone = nullptr;
1638   if (NonSimplifiedBB) {
1639     Clone = I.clone();
1640     for (Use &U : Clone->operands()) {
1641       if (U == PN)
1642         U = NonSimplifiedInVal;
1643       else
1644         U = U->DoPHITranslation(PN->getParent(), NonSimplifiedBB);
1645     }
1646     InsertNewInstBefore(Clone, NonSimplifiedBB->getTerminator()->getIterator());
1647   }
1648 
1649   for (unsigned i = 0; i != NumPHIValues; ++i) {
1650     if (NewPhiValues[i])
1651       NewPN->addIncoming(NewPhiValues[i], PN->getIncomingBlock(i));
1652     else
1653       NewPN->addIncoming(Clone, PN->getIncomingBlock(i));
1654   }
1655 
1656   for (User *U : make_early_inc_range(PN->users())) {
1657     Instruction *User = cast<Instruction>(U);
1658     if (User == &I) continue;
1659     replaceInstUsesWith(*User, NewPN);
1660     eraseInstFromFunction(*User);
1661   }
1662 
1663   replaceAllDbgUsesWith(const_cast<PHINode &>(*PN),
1664                         const_cast<PHINode &>(*NewPN),
1665                         const_cast<PHINode &>(*PN), DT);
1666   return replaceInstUsesWith(I, NewPN);
1667 }
1668 
1669 Instruction *InstCombinerImpl::foldBinopWithPhiOperands(BinaryOperator &BO) {
1670   // TODO: This should be similar to the incoming values check in foldOpIntoPhi:
1671   //       we are guarding against replicating the binop in >1 predecessor.
1672   //       This could miss matching a phi with 2 constant incoming values.
1673   auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0));
1674   auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1));
1675   if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() ||
1676       Phi0->getNumOperands() != Phi1->getNumOperands())
1677     return nullptr;
1678 
1679   // TODO: Remove the restriction for binop being in the same block as the phis.
1680   if (BO.getParent() != Phi0->getParent() ||
1681       BO.getParent() != Phi1->getParent())
1682     return nullptr;
1683 
1684   // Fold if there is at least one specific constant value in phi0 or phi1's
1685   // incoming values that comes from the same block and this specific constant
1686   // value can be used to do optimization for specific binary operator.
1687   // For example:
1688   // %phi0 = phi i32 [0, %bb0], [%i, %bb1]
1689   // %phi1 = phi i32 [%j, %bb0], [0, %bb1]
1690   // %add = add i32 %phi0, %phi1
1691   // ==>
1692   // %add = phi i32 [%j, %bb0], [%i, %bb1]
1693   Constant *C = ConstantExpr::getBinOpIdentity(BO.getOpcode(), BO.getType(),
1694                                                /*AllowRHSConstant*/ false);
1695   if (C) {
1696     SmallVector<Value *, 4> NewIncomingValues;
1697     auto CanFoldIncomingValuePair = [&](std::tuple<Use &, Use &> T) {
1698       auto &Phi0Use = std::get<0>(T);
1699       auto &Phi1Use = std::get<1>(T);
1700       if (Phi0->getIncomingBlock(Phi0Use) != Phi1->getIncomingBlock(Phi1Use))
1701         return false;
1702       Value *Phi0UseV = Phi0Use.get();
1703       Value *Phi1UseV = Phi1Use.get();
1704       if (Phi0UseV == C)
1705         NewIncomingValues.push_back(Phi1UseV);
1706       else if (Phi1UseV == C)
1707         NewIncomingValues.push_back(Phi0UseV);
1708       else
1709         return false;
1710       return true;
1711     };
1712 
1713     if (all_of(zip(Phi0->operands(), Phi1->operands()),
1714                CanFoldIncomingValuePair)) {
1715       PHINode *NewPhi =
1716           PHINode::Create(Phi0->getType(), Phi0->getNumOperands());
1717       assert(NewIncomingValues.size() == Phi0->getNumOperands() &&
1718              "The number of collected incoming values should equal the number "
1719              "of the original PHINode operands!");
1720       for (unsigned I = 0; I < Phi0->getNumOperands(); I++)
1721         NewPhi->addIncoming(NewIncomingValues[I], Phi0->getIncomingBlock(I));
1722       return NewPhi;
1723     }
1724   }
1725 
1726   if (Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2)
1727     return nullptr;
1728 
1729   // Match a pair of incoming constants for one of the predecessor blocks.
1730   BasicBlock *ConstBB, *OtherBB;
1731   Constant *C0, *C1;
1732   if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) {
1733     ConstBB = Phi0->getIncomingBlock(0);
1734     OtherBB = Phi0->getIncomingBlock(1);
1735   } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) {
1736     ConstBB = Phi0->getIncomingBlock(1);
1737     OtherBB = Phi0->getIncomingBlock(0);
1738   } else {
1739     return nullptr;
1740   }
1741   if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1)))
1742     return nullptr;
1743 
1744   // The block that we are hoisting to must reach here unconditionally.
1745   // Otherwise, we could be speculatively executing an expensive or
1746   // non-speculative op.
1747   auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator());
1748   if (!PredBlockBranch || PredBlockBranch->isConditional() ||
1749       !DT.isReachableFromEntry(OtherBB))
1750     return nullptr;
1751 
1752   // TODO: This check could be tightened to only apply to binops (div/rem) that
1753   //       are not safe to speculatively execute. But that could allow hoisting
1754   //       potentially expensive instructions (fdiv for example).
1755   for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter)
1756     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBIter))
1757       return nullptr;
1758 
1759   // Fold constants for the predecessor block with constant incoming values.
1760   Constant *NewC = ConstantFoldBinaryOpOperands(BO.getOpcode(), C0, C1, DL);
1761   if (!NewC)
1762     return nullptr;
1763 
1764   // Make a new binop in the predecessor block with the non-constant incoming
1765   // values.
1766   Builder.SetInsertPoint(PredBlockBranch);
1767   Value *NewBO = Builder.CreateBinOp(BO.getOpcode(),
1768                                      Phi0->getIncomingValueForBlock(OtherBB),
1769                                      Phi1->getIncomingValueForBlock(OtherBB));
1770   if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO))
1771     NotFoldedNewBO->copyIRFlags(&BO);
1772 
1773   // Replace the binop with a phi of the new values. The old phis are dead.
1774   PHINode *NewPhi = PHINode::Create(BO.getType(), 2);
1775   NewPhi->addIncoming(NewBO, OtherBB);
1776   NewPhi->addIncoming(NewC, ConstBB);
1777   return NewPhi;
1778 }
1779 
1780 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1781   if (!isa<Constant>(I.getOperand(1)))
1782     return nullptr;
1783 
1784   if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1785     if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1786       return NewSel;
1787   } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1788     if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1789       return NewPhi;
1790   }
1791   return nullptr;
1792 }
1793 
1794 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1795   // If this GEP has only 0 indices, it is the same pointer as
1796   // Src. If Src is not a trivial GEP too, don't combine
1797   // the indices.
1798   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1799       !Src.hasOneUse())
1800     return false;
1801   return true;
1802 }
1803 
1804 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) {
1805   if (!isa<VectorType>(Inst.getType()))
1806     return nullptr;
1807 
1808   BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1809   Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1810   assert(cast<VectorType>(LHS->getType())->getElementCount() ==
1811          cast<VectorType>(Inst.getType())->getElementCount());
1812   assert(cast<VectorType>(RHS->getType())->getElementCount() ==
1813          cast<VectorType>(Inst.getType())->getElementCount());
1814 
1815   // If both operands of the binop are vector concatenations, then perform the
1816   // narrow binop on each pair of the source operands followed by concatenation
1817   // of the results.
1818   Value *L0, *L1, *R0, *R1;
1819   ArrayRef<int> Mask;
1820   if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
1821       match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
1822       LHS->hasOneUse() && RHS->hasOneUse() &&
1823       cast<ShuffleVectorInst>(LHS)->isConcat() &&
1824       cast<ShuffleVectorInst>(RHS)->isConcat()) {
1825     // This transform does not have the speculative execution constraint as
1826     // below because the shuffle is a concatenation. The new binops are
1827     // operating on exactly the same elements as the existing binop.
1828     // TODO: We could ease the mask requirement to allow different undef lanes,
1829     //       but that requires an analysis of the binop-with-undef output value.
1830     Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1831     if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1832       BO->copyIRFlags(&Inst);
1833     Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1834     if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1835       BO->copyIRFlags(&Inst);
1836     return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1837   }
1838 
1839   auto createBinOpReverse = [&](Value *X, Value *Y) {
1840     Value *V = Builder.CreateBinOp(Opcode, X, Y, Inst.getName());
1841     if (auto *BO = dyn_cast<BinaryOperator>(V))
1842       BO->copyIRFlags(&Inst);
1843     Module *M = Inst.getModule();
1844     Function *F = Intrinsic::getDeclaration(
1845         M, Intrinsic::experimental_vector_reverse, V->getType());
1846     return CallInst::Create(F, V);
1847   };
1848 
1849   // NOTE: Reverse shuffles don't require the speculative execution protection
1850   // below because they don't affect which lanes take part in the computation.
1851 
1852   Value *V1, *V2;
1853   if (match(LHS, m_VecReverse(m_Value(V1)))) {
1854     // Op(rev(V1), rev(V2)) -> rev(Op(V1, V2))
1855     if (match(RHS, m_VecReverse(m_Value(V2))) &&
1856         (LHS->hasOneUse() || RHS->hasOneUse() ||
1857          (LHS == RHS && LHS->hasNUses(2))))
1858       return createBinOpReverse(V1, V2);
1859 
1860     // Op(rev(V1), RHSSplat)) -> rev(Op(V1, RHSSplat))
1861     if (LHS->hasOneUse() && isSplatValue(RHS))
1862       return createBinOpReverse(V1, RHS);
1863   }
1864   // Op(LHSSplat, rev(V2)) -> rev(Op(LHSSplat, V2))
1865   else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2)))))
1866     return createBinOpReverse(LHS, V2);
1867 
1868   // It may not be safe to reorder shuffles and things like div, urem, etc.
1869   // because we may trap when executing those ops on unknown vector elements.
1870   // See PR20059.
1871   if (!isSafeToSpeculativelyExecute(&Inst))
1872     return nullptr;
1873 
1874   auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
1875     Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1876     if (auto *BO = dyn_cast<BinaryOperator>(XY))
1877       BO->copyIRFlags(&Inst);
1878     return new ShuffleVectorInst(XY, M);
1879   };
1880 
1881   // If both arguments of the binary operation are shuffles that use the same
1882   // mask and shuffle within a single vector, move the shuffle after the binop.
1883   if (match(LHS, m_Shuffle(m_Value(V1), m_Poison(), m_Mask(Mask))) &&
1884       match(RHS, m_Shuffle(m_Value(V2), m_Poison(), m_SpecificMask(Mask))) &&
1885       V1->getType() == V2->getType() &&
1886       (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1887     // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1888     return createBinOpShuffle(V1, V2, Mask);
1889   }
1890 
1891   // If both arguments of a commutative binop are select-shuffles that use the
1892   // same mask with commuted operands, the shuffles are unnecessary.
1893   if (Inst.isCommutative() &&
1894       match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
1895       match(RHS,
1896             m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
1897     auto *LShuf = cast<ShuffleVectorInst>(LHS);
1898     auto *RShuf = cast<ShuffleVectorInst>(RHS);
1899     // TODO: Allow shuffles that contain undefs in the mask?
1900     //       That is legal, but it reduces undef knowledge.
1901     // TODO: Allow arbitrary shuffles by shuffling after binop?
1902     //       That might be legal, but we have to deal with poison.
1903     if (LShuf->isSelect() &&
1904         !is_contained(LShuf->getShuffleMask(), PoisonMaskElem) &&
1905         RShuf->isSelect() &&
1906         !is_contained(RShuf->getShuffleMask(), PoisonMaskElem)) {
1907       // Example:
1908       // LHS = shuffle V1, V2, <0, 5, 6, 3>
1909       // RHS = shuffle V2, V1, <0, 5, 6, 3>
1910       // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1911       Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
1912       NewBO->copyIRFlags(&Inst);
1913       return NewBO;
1914     }
1915   }
1916 
1917   // If one argument is a shuffle within one vector and the other is a constant,
1918   // try moving the shuffle after the binary operation. This canonicalization
1919   // intends to move shuffles closer to other shuffles and binops closer to
1920   // other binops, so they can be folded. It may also enable demanded elements
1921   // transforms.
1922   Constant *C;
1923   auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType());
1924   if (InstVTy &&
1925       match(&Inst, m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Poison(),
1926                                                 m_Mask(Mask))),
1927                              m_ImmConstant(C))) &&
1928       cast<FixedVectorType>(V1->getType())->getNumElements() <=
1929           InstVTy->getNumElements()) {
1930     assert(InstVTy->getScalarType() == V1->getType()->getScalarType() &&
1931            "Shuffle should not change scalar type");
1932 
1933     // Find constant NewC that has property:
1934     //   shuffle(NewC, ShMask) = C
1935     // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1936     // reorder is not possible. A 1-to-1 mapping is not required. Example:
1937     // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1938     bool ConstOp1 = isa<Constant>(RHS);
1939     ArrayRef<int> ShMask = Mask;
1940     unsigned SrcVecNumElts =
1941         cast<FixedVectorType>(V1->getType())->getNumElements();
1942     PoisonValue *PoisonScalar = PoisonValue::get(C->getType()->getScalarType());
1943     SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, PoisonScalar);
1944     bool MayChange = true;
1945     unsigned NumElts = InstVTy->getNumElements();
1946     for (unsigned I = 0; I < NumElts; ++I) {
1947       Constant *CElt = C->getAggregateElement(I);
1948       if (ShMask[I] >= 0) {
1949         assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1950         Constant *NewCElt = NewVecC[ShMask[I]];
1951         // Bail out if:
1952         // 1. The constant vector contains a constant expression.
1953         // 2. The shuffle needs an element of the constant vector that can't
1954         //    be mapped to a new constant vector.
1955         // 3. This is a widening shuffle that copies elements of V1 into the
1956         //    extended elements (extending with poison is allowed).
1957         if (!CElt || (!isa<PoisonValue>(NewCElt) && NewCElt != CElt) ||
1958             I >= SrcVecNumElts) {
1959           MayChange = false;
1960           break;
1961         }
1962         NewVecC[ShMask[I]] = CElt;
1963       }
1964       // If this is a widening shuffle, we must be able to extend with poison
1965       // elements. If the original binop does not produce a poison in the high
1966       // lanes, then this transform is not safe.
1967       // Similarly for poison lanes due to the shuffle mask, we can only
1968       // transform binops that preserve poison.
1969       // TODO: We could shuffle those non-poison constant values into the
1970       //       result by using a constant vector (rather than an poison vector)
1971       //       as operand 1 of the new binop, but that might be too aggressive
1972       //       for target-independent shuffle creation.
1973       if (I >= SrcVecNumElts || ShMask[I] < 0) {
1974         Constant *MaybePoison =
1975             ConstOp1
1976                 ? ConstantFoldBinaryOpOperands(Opcode, PoisonScalar, CElt, DL)
1977                 : ConstantFoldBinaryOpOperands(Opcode, CElt, PoisonScalar, DL);
1978         if (!MaybePoison || !isa<PoisonValue>(MaybePoison)) {
1979           MayChange = false;
1980           break;
1981         }
1982       }
1983     }
1984     if (MayChange) {
1985       Constant *NewC = ConstantVector::get(NewVecC);
1986       // It may not be safe to execute a binop on a vector with poison elements
1987       // because the entire instruction can be folded to undef or create poison
1988       // that did not exist in the original code.
1989       // TODO: The shift case should not be necessary.
1990       if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1991         NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1992 
1993       // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1994       // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1995       Value *NewLHS = ConstOp1 ? V1 : NewC;
1996       Value *NewRHS = ConstOp1 ? NewC : V1;
1997       return createBinOpShuffle(NewLHS, NewRHS, Mask);
1998     }
1999   }
2000 
2001   // Try to reassociate to sink a splat shuffle after a binary operation.
2002   if (Inst.isAssociative() && Inst.isCommutative()) {
2003     // Canonicalize shuffle operand as LHS.
2004     if (isa<ShuffleVectorInst>(RHS))
2005       std::swap(LHS, RHS);
2006 
2007     Value *X;
2008     ArrayRef<int> MaskC;
2009     int SplatIndex;
2010     Value *Y, *OtherOp;
2011     if (!match(LHS,
2012                m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
2013         !match(MaskC, m_SplatOrUndefMask(SplatIndex)) ||
2014         X->getType() != Inst.getType() ||
2015         !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp)))))
2016       return nullptr;
2017 
2018     // FIXME: This may not be safe if the analysis allows undef elements. By
2019     //        moving 'Y' before the splat shuffle, we are implicitly assuming
2020     //        that it is not undef/poison at the splat index.
2021     if (isSplatValue(OtherOp, SplatIndex)) {
2022       std::swap(Y, OtherOp);
2023     } else if (!isSplatValue(Y, SplatIndex)) {
2024       return nullptr;
2025     }
2026 
2027     // X and Y are splatted values, so perform the binary operation on those
2028     // values followed by a splat followed by the 2nd binary operation:
2029     // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
2030     Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
2031     SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
2032     Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
2033     Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
2034 
2035     // Intersect FMF on both new binops. Other (poison-generating) flags are
2036     // dropped to be safe.
2037     if (isa<FPMathOperator>(R)) {
2038       R->copyFastMathFlags(&Inst);
2039       R->andIRFlags(RHS);
2040     }
2041     if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
2042       NewInstBO->copyIRFlags(R);
2043     return R;
2044   }
2045 
2046   return nullptr;
2047 }
2048 
2049 /// Try to narrow the width of a binop if at least 1 operand is an extend of
2050 /// of a value. This requires a potentially expensive known bits check to make
2051 /// sure the narrow op does not overflow.
2052 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
2053   // We need at least one extended operand.
2054   Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
2055 
2056   // If this is a sub, we swap the operands since we always want an extension
2057   // on the RHS. The LHS can be an extension or a constant.
2058   if (BO.getOpcode() == Instruction::Sub)
2059     std::swap(Op0, Op1);
2060 
2061   Value *X;
2062   bool IsSext = match(Op0, m_SExt(m_Value(X)));
2063   if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
2064     return nullptr;
2065 
2066   // If both operands are the same extension from the same source type and we
2067   // can eliminate at least one (hasOneUse), this might work.
2068   CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
2069   Value *Y;
2070   if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
2071         cast<Operator>(Op1)->getOpcode() == CastOpc &&
2072         (Op0->hasOneUse() || Op1->hasOneUse()))) {
2073     // If that did not match, see if we have a suitable constant operand.
2074     // Truncating and extending must produce the same constant.
2075     Constant *WideC;
2076     if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
2077       return nullptr;
2078     Constant *NarrowC = getLosslessTrunc(WideC, X->getType(), CastOpc);
2079     if (!NarrowC)
2080       return nullptr;
2081     Y = NarrowC;
2082   }
2083 
2084   // Swap back now that we found our operands.
2085   if (BO.getOpcode() == Instruction::Sub)
2086     std::swap(X, Y);
2087 
2088   // Both operands have narrow versions. Last step: the math must not overflow
2089   // in the narrow width.
2090   if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
2091     return nullptr;
2092 
2093   // bo (ext X), (ext Y) --> ext (bo X, Y)
2094   // bo (ext X), C       --> ext (bo X, C')
2095   Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
2096   if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
2097     if (IsSext)
2098       NewBinOp->setHasNoSignedWrap();
2099     else
2100       NewBinOp->setHasNoUnsignedWrap();
2101   }
2102   return CastInst::Create(CastOpc, NarrowBO, BO.getType());
2103 }
2104 
2105 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
2106   // At least one GEP must be inbounds.
2107   if (!GEP1.isInBounds() && !GEP2.isInBounds())
2108     return false;
2109 
2110   return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
2111          (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
2112 }
2113 
2114 /// Thread a GEP operation with constant indices through the constant true/false
2115 /// arms of a select.
2116 static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
2117                                   InstCombiner::BuilderTy &Builder) {
2118   if (!GEP.hasAllConstantIndices())
2119     return nullptr;
2120 
2121   Instruction *Sel;
2122   Value *Cond;
2123   Constant *TrueC, *FalseC;
2124   if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
2125       !match(Sel,
2126              m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
2127     return nullptr;
2128 
2129   // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
2130   // Propagate 'inbounds' and metadata from existing instructions.
2131   // Note: using IRBuilder to create the constants for efficiency.
2132   SmallVector<Value *, 4> IndexC(GEP.indices());
2133   bool IsInBounds = GEP.isInBounds();
2134   Type *Ty = GEP.getSourceElementType();
2135   Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC, "", IsInBounds);
2136   Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC, "", IsInBounds);
2137   return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
2138 }
2139 
2140 Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP,
2141                                              GEPOperator *Src) {
2142   // Combine Indices - If the source pointer to this getelementptr instruction
2143   // is a getelementptr instruction with matching element type, combine the
2144   // indices of the two getelementptr instructions into a single instruction.
2145   if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
2146     return nullptr;
2147 
2148   // For constant GEPs, use a more general offset-based folding approach.
2149   Type *PtrTy = Src->getType()->getScalarType();
2150   if (GEP.hasAllConstantIndices() &&
2151       (Src->hasOneUse() || Src->hasAllConstantIndices())) {
2152     // Split Src into a variable part and a constant suffix.
2153     gep_type_iterator GTI = gep_type_begin(*Src);
2154     Type *BaseType = GTI.getIndexedType();
2155     bool IsFirstType = true;
2156     unsigned NumVarIndices = 0;
2157     for (auto Pair : enumerate(Src->indices())) {
2158       if (!isa<ConstantInt>(Pair.value())) {
2159         BaseType = GTI.getIndexedType();
2160         IsFirstType = false;
2161         NumVarIndices = Pair.index() + 1;
2162       }
2163       ++GTI;
2164     }
2165 
2166     // Determine the offset for the constant suffix of Src.
2167     APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), 0);
2168     if (NumVarIndices != Src->getNumIndices()) {
2169       // FIXME: getIndexedOffsetInType() does not handled scalable vectors.
2170       if (BaseType->isScalableTy())
2171         return nullptr;
2172 
2173       SmallVector<Value *> ConstantIndices;
2174       if (!IsFirstType)
2175         ConstantIndices.push_back(
2176             Constant::getNullValue(Type::getInt32Ty(GEP.getContext())));
2177       append_range(ConstantIndices, drop_begin(Src->indices(), NumVarIndices));
2178       Offset += DL.getIndexedOffsetInType(BaseType, ConstantIndices);
2179     }
2180 
2181     // Add the offset for GEP (which is fully constant).
2182     if (!GEP.accumulateConstantOffset(DL, Offset))
2183       return nullptr;
2184 
2185     APInt OffsetOld = Offset;
2186     // Convert the total offset back into indices.
2187     SmallVector<APInt> ConstIndices =
2188         DL.getGEPIndicesForOffset(BaseType, Offset);
2189     if (!Offset.isZero() || (!IsFirstType && !ConstIndices[0].isZero())) {
2190       // If both GEP are constant-indexed, and cannot be merged in either way,
2191       // convert them to a GEP of i8.
2192       if (Src->hasAllConstantIndices())
2193         return replaceInstUsesWith(
2194             GEP, Builder.CreateGEP(
2195                      Builder.getInt8Ty(), Src->getOperand(0),
2196                      Builder.getInt(OffsetOld), "",
2197                      isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))));
2198       return nullptr;
2199     }
2200 
2201     bool IsInBounds = isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP));
2202     SmallVector<Value *> Indices;
2203     append_range(Indices, drop_end(Src->indices(),
2204                                    Src->getNumIndices() - NumVarIndices));
2205     for (const APInt &Idx : drop_begin(ConstIndices, !IsFirstType)) {
2206       Indices.push_back(ConstantInt::get(GEP.getContext(), Idx));
2207       // Even if the total offset is inbounds, we may end up representing it
2208       // by first performing a larger negative offset, and then a smaller
2209       // positive one. The large negative offset might go out of bounds. Only
2210       // preserve inbounds if all signs are the same.
2211       IsInBounds &= Idx.isNonNegative() == ConstIndices[0].isNonNegative();
2212     }
2213 
2214     return replaceInstUsesWith(
2215         GEP, Builder.CreateGEP(Src->getSourceElementType(), Src->getOperand(0),
2216                                Indices, "", IsInBounds));
2217   }
2218 
2219   if (Src->getResultElementType() != GEP.getSourceElementType())
2220     return nullptr;
2221 
2222   SmallVector<Value*, 8> Indices;
2223 
2224   // Find out whether the last index in the source GEP is a sequential idx.
2225   bool EndsWithSequential = false;
2226   for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2227        I != E; ++I)
2228     EndsWithSequential = I.isSequential();
2229 
2230   // Can we combine the two pointer arithmetics offsets?
2231   if (EndsWithSequential) {
2232     // Replace: gep (gep %P, long B), long A, ...
2233     // With:    T = long A+B; gep %P, T, ...
2234     Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2235     Value *GO1 = GEP.getOperand(1);
2236 
2237     // If they aren't the same type, then the input hasn't been processed
2238     // by the loop above yet (which canonicalizes sequential index types to
2239     // intptr_t).  Just avoid transforming this until the input has been
2240     // normalized.
2241     if (SO1->getType() != GO1->getType())
2242       return nullptr;
2243 
2244     Value *Sum =
2245         simplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2246     // Only do the combine when we are sure the cost after the
2247     // merge is never more than that before the merge.
2248     if (Sum == nullptr)
2249       return nullptr;
2250 
2251     // Update the GEP in place if possible.
2252     if (Src->getNumOperands() == 2) {
2253       GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
2254       replaceOperand(GEP, 0, Src->getOperand(0));
2255       replaceOperand(GEP, 1, Sum);
2256       return &GEP;
2257     }
2258     Indices.append(Src->op_begin()+1, Src->op_end()-1);
2259     Indices.push_back(Sum);
2260     Indices.append(GEP.op_begin()+2, GEP.op_end());
2261   } else if (isa<Constant>(*GEP.idx_begin()) &&
2262              cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2263              Src->getNumOperands() != 1) {
2264     // Otherwise we can do the fold if the first index of the GEP is a zero
2265     Indices.append(Src->op_begin()+1, Src->op_end());
2266     Indices.append(GEP.idx_begin()+1, GEP.idx_end());
2267   }
2268 
2269   if (!Indices.empty())
2270     return replaceInstUsesWith(
2271         GEP, Builder.CreateGEP(
2272                  Src->getSourceElementType(), Src->getOperand(0), Indices, "",
2273                  isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))));
2274 
2275   return nullptr;
2276 }
2277 
2278 Value *InstCombiner::getFreelyInvertedImpl(Value *V, bool WillInvertAllUses,
2279                                            BuilderTy *Builder,
2280                                            bool &DoesConsume, unsigned Depth) {
2281   static Value *const NonNull = reinterpret_cast<Value *>(uintptr_t(1));
2282   // ~(~(X)) -> X.
2283   Value *A, *B;
2284   if (match(V, m_Not(m_Value(A)))) {
2285     DoesConsume = true;
2286     return A;
2287   }
2288 
2289   Constant *C;
2290   // Constants can be considered to be not'ed values.
2291   if (match(V, m_ImmConstant(C)))
2292     return ConstantExpr::getNot(C);
2293 
2294   if (Depth++ >= MaxAnalysisRecursionDepth)
2295     return nullptr;
2296 
2297   // The rest of the cases require that we invert all uses so don't bother
2298   // doing the analysis if we know we can't use the result.
2299   if (!WillInvertAllUses)
2300     return nullptr;
2301 
2302   // Compares can be inverted if all of their uses are being modified to use
2303   // the ~V.
2304   if (auto *I = dyn_cast<CmpInst>(V)) {
2305     if (Builder != nullptr)
2306       return Builder->CreateCmp(I->getInversePredicate(), I->getOperand(0),
2307                                 I->getOperand(1));
2308     return NonNull;
2309   }
2310 
2311   // If `V` is of the form `A + B` then `-1 - V` can be folded into
2312   // `(-1 - B) - A` if we are willing to invert all of the uses.
2313   if (match(V, m_Add(m_Value(A), m_Value(B)))) {
2314     if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2315                                          DoesConsume, Depth))
2316       return Builder ? Builder->CreateSub(BV, A) : NonNull;
2317     if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2318                                          DoesConsume, Depth))
2319       return Builder ? Builder->CreateSub(AV, B) : NonNull;
2320     return nullptr;
2321   }
2322 
2323   // If `V` is of the form `A ^ ~B` then `~(A ^ ~B)` can be folded
2324   // into `A ^ B` if we are willing to invert all of the uses.
2325   if (match(V, m_Xor(m_Value(A), m_Value(B)))) {
2326     if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2327                                          DoesConsume, Depth))
2328       return Builder ? Builder->CreateXor(A, BV) : NonNull;
2329     if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2330                                          DoesConsume, Depth))
2331       return Builder ? Builder->CreateXor(AV, B) : NonNull;
2332     return nullptr;
2333   }
2334 
2335   // If `V` is of the form `B - A` then `-1 - V` can be folded into
2336   // `A + (-1 - B)` if we are willing to invert all of the uses.
2337   if (match(V, m_Sub(m_Value(A), m_Value(B)))) {
2338     if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2339                                          DoesConsume, Depth))
2340       return Builder ? Builder->CreateAdd(AV, B) : NonNull;
2341     return nullptr;
2342   }
2343 
2344   // If `V` is of the form `(~A) s>> B` then `~((~A) s>> B)` can be folded
2345   // into `A s>> B` if we are willing to invert all of the uses.
2346   if (match(V, m_AShr(m_Value(A), m_Value(B)))) {
2347     if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2348                                          DoesConsume, Depth))
2349       return Builder ? Builder->CreateAShr(AV, B) : NonNull;
2350     return nullptr;
2351   }
2352 
2353   Value *Cond;
2354   // LogicOps are special in that we canonicalize them at the cost of an
2355   // instruction.
2356   bool IsSelect = match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))) &&
2357                   !shouldAvoidAbsorbingNotIntoSelect(*cast<SelectInst>(V));
2358   // Selects/min/max with invertible operands are freely invertible
2359   if (IsSelect || match(V, m_MaxOrMin(m_Value(A), m_Value(B)))) {
2360     if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder*/ nullptr,
2361                                DoesConsume, Depth))
2362       return nullptr;
2363     if (Value *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2364                                             DoesConsume, Depth)) {
2365       if (Builder != nullptr) {
2366         Value *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2367                                             DoesConsume, Depth);
2368         assert(NotB != nullptr &&
2369                "Unable to build inverted value for known freely invertable op");
2370         if (auto *II = dyn_cast<IntrinsicInst>(V))
2371           return Builder->CreateBinaryIntrinsic(
2372               getInverseMinMaxIntrinsic(II->getIntrinsicID()), NotA, NotB);
2373         return Builder->CreateSelect(Cond, NotA, NotB);
2374       }
2375       return NonNull;
2376     }
2377   }
2378 
2379   return nullptr;
2380 }
2381 
2382 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2383   Value *PtrOp = GEP.getOperand(0);
2384   SmallVector<Value *, 8> Indices(GEP.indices());
2385   Type *GEPType = GEP.getType();
2386   Type *GEPEltType = GEP.getSourceElementType();
2387   bool IsGEPSrcEleScalable = GEPEltType->isScalableTy();
2388   if (Value *V = simplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.isInBounds(),
2389                                  SQ.getWithInstruction(&GEP)))
2390     return replaceInstUsesWith(GEP, V);
2391 
2392   // For vector geps, use the generic demanded vector support.
2393   // Skip if GEP return type is scalable. The number of elements is unknown at
2394   // compile-time.
2395   if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
2396     auto VWidth = GEPFVTy->getNumElements();
2397     APInt PoisonElts(VWidth, 0);
2398     APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
2399     if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
2400                                               PoisonElts)) {
2401       if (V != &GEP)
2402         return replaceInstUsesWith(GEP, V);
2403       return &GEP;
2404     }
2405 
2406     // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
2407     // possible (decide on canonical form for pointer broadcast), 3) exploit
2408     // undef elements to decrease demanded bits
2409   }
2410 
2411   // Eliminate unneeded casts for indices, and replace indices which displace
2412   // by multiples of a zero size type with zero.
2413   bool MadeChange = false;
2414 
2415   // Index width may not be the same width as pointer width.
2416   // Data layout chooses the right type based on supported integer types.
2417   Type *NewScalarIndexTy =
2418       DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
2419 
2420   gep_type_iterator GTI = gep_type_begin(GEP);
2421   for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
2422        ++I, ++GTI) {
2423     // Skip indices into struct types.
2424     if (GTI.isStruct())
2425       continue;
2426 
2427     Type *IndexTy = (*I)->getType();
2428     Type *NewIndexType =
2429         IndexTy->isVectorTy()
2430             ? VectorType::get(NewScalarIndexTy,
2431                               cast<VectorType>(IndexTy)->getElementCount())
2432             : NewScalarIndexTy;
2433 
2434     // If the element type has zero size then any index over it is equivalent
2435     // to an index of zero, so replace it with zero if it is not zero already.
2436     Type *EltTy = GTI.getIndexedType();
2437     if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
2438       if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
2439         *I = Constant::getNullValue(NewIndexType);
2440         MadeChange = true;
2441       }
2442 
2443     if (IndexTy != NewIndexType) {
2444       // If we are using a wider index than needed for this platform, shrink
2445       // it to what we need.  If narrower, sign-extend it to what we need.
2446       // This explicit cast can make subsequent optimizations more obvious.
2447       *I = Builder.CreateIntCast(*I, NewIndexType, true);
2448       MadeChange = true;
2449     }
2450   }
2451   if (MadeChange)
2452     return &GEP;
2453 
2454   // Check to see if the inputs to the PHI node are getelementptr instructions.
2455   if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
2456     auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
2457     if (!Op1)
2458       return nullptr;
2459 
2460     // Don't fold a GEP into itself through a PHI node. This can only happen
2461     // through the back-edge of a loop. Folding a GEP into itself means that
2462     // the value of the previous iteration needs to be stored in the meantime,
2463     // thus requiring an additional register variable to be live, but not
2464     // actually achieving anything (the GEP still needs to be executed once per
2465     // loop iteration).
2466     if (Op1 == &GEP)
2467       return nullptr;
2468 
2469     int DI = -1;
2470 
2471     for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
2472       auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
2473       if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() ||
2474           Op1->getSourceElementType() != Op2->getSourceElementType())
2475         return nullptr;
2476 
2477       // As for Op1 above, don't try to fold a GEP into itself.
2478       if (Op2 == &GEP)
2479         return nullptr;
2480 
2481       // Keep track of the type as we walk the GEP.
2482       Type *CurTy = nullptr;
2483 
2484       for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
2485         if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
2486           return nullptr;
2487 
2488         if (Op1->getOperand(J) != Op2->getOperand(J)) {
2489           if (DI == -1) {
2490             // We have not seen any differences yet in the GEPs feeding the
2491             // PHI yet, so we record this one if it is allowed to be a
2492             // variable.
2493 
2494             // The first two arguments can vary for any GEP, the rest have to be
2495             // static for struct slots
2496             if (J > 1) {
2497               assert(CurTy && "No current type?");
2498               if (CurTy->isStructTy())
2499                 return nullptr;
2500             }
2501 
2502             DI = J;
2503           } else {
2504             // The GEP is different by more than one input. While this could be
2505             // extended to support GEPs that vary by more than one variable it
2506             // doesn't make sense since it greatly increases the complexity and
2507             // would result in an R+R+R addressing mode which no backend
2508             // directly supports and would need to be broken into several
2509             // simpler instructions anyway.
2510             return nullptr;
2511           }
2512         }
2513 
2514         // Sink down a layer of the type for the next iteration.
2515         if (J > 0) {
2516           if (J == 1) {
2517             CurTy = Op1->getSourceElementType();
2518           } else {
2519             CurTy =
2520                 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
2521           }
2522         }
2523       }
2524     }
2525 
2526     // If not all GEPs are identical we'll have to create a new PHI node.
2527     // Check that the old PHI node has only one use so that it will get
2528     // removed.
2529     if (DI != -1 && !PN->hasOneUse())
2530       return nullptr;
2531 
2532     auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
2533     if (DI == -1) {
2534       // All the GEPs feeding the PHI are identical. Clone one down into our
2535       // BB so that it can be merged with the current GEP.
2536     } else {
2537       // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
2538       // into the current block so it can be merged, and create a new PHI to
2539       // set that index.
2540       PHINode *NewPN;
2541       {
2542         IRBuilderBase::InsertPointGuard Guard(Builder);
2543         Builder.SetInsertPoint(PN);
2544         NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
2545                                   PN->getNumOperands());
2546       }
2547 
2548       for (auto &I : PN->operands())
2549         NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
2550                            PN->getIncomingBlock(I));
2551 
2552       NewGEP->setOperand(DI, NewPN);
2553     }
2554 
2555     NewGEP->insertBefore(*GEP.getParent(), GEP.getParent()->getFirstInsertionPt());
2556     return replaceOperand(GEP, 0, NewGEP);
2557   }
2558 
2559   if (auto *Src = dyn_cast<GEPOperator>(PtrOp))
2560     if (Instruction *I = visitGEPOfGEP(GEP, Src))
2561       return I;
2562 
2563   // Skip if GEP source element type is scalable. The type alloc size is unknown
2564   // at compile-time.
2565   if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) {
2566     unsigned AS = GEP.getPointerAddressSpace();
2567     if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
2568         DL.getIndexSizeInBits(AS)) {
2569       uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedValue();
2570 
2571       if (TyAllocSize == 1) {
2572         // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y),
2573         // but only if the result pointer is only used as if it were an integer,
2574         // or both point to the same underlying object (otherwise provenance is
2575         // not necessarily retained).
2576         Value *X = GEP.getPointerOperand();
2577         Value *Y;
2578         if (match(GEP.getOperand(1),
2579                   m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) &&
2580             GEPType == Y->getType()) {
2581           bool HasSameUnderlyingObject =
2582               getUnderlyingObject(X) == getUnderlyingObject(Y);
2583           bool Changed = false;
2584           GEP.replaceUsesWithIf(Y, [&](Use &U) {
2585             bool ShouldReplace = HasSameUnderlyingObject ||
2586                                  isa<ICmpInst>(U.getUser()) ||
2587                                  isa<PtrToIntInst>(U.getUser());
2588             Changed |= ShouldReplace;
2589             return ShouldReplace;
2590           });
2591           return Changed ? &GEP : nullptr;
2592         }
2593       } else {
2594         // Canonicalize (gep T* X, V / sizeof(T)) to (gep i8* X, V)
2595         Value *V;
2596         if ((has_single_bit(TyAllocSize) &&
2597              match(GEP.getOperand(1),
2598                    m_Exact(m_Shr(m_Value(V),
2599                                  m_SpecificInt(countr_zero(TyAllocSize)))))) ||
2600             match(GEP.getOperand(1),
2601                   m_Exact(m_IDiv(m_Value(V), m_SpecificInt(TyAllocSize))))) {
2602           GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
2603               Builder.getInt8Ty(), GEP.getPointerOperand(), V);
2604           NewGEP->setIsInBounds(GEP.isInBounds());
2605           return NewGEP;
2606         }
2607       }
2608     }
2609   }
2610   // We do not handle pointer-vector geps here.
2611   if (GEPType->isVectorTy())
2612     return nullptr;
2613 
2614   if (GEP.getNumIndices() == 1) {
2615     // Try to replace ADD + GEP with GEP + GEP.
2616     Value *Idx1, *Idx2;
2617     if (match(GEP.getOperand(1),
2618               m_OneUse(m_Add(m_Value(Idx1), m_Value(Idx2))))) {
2619       //   %idx = add i64 %idx1, %idx2
2620       //   %gep = getelementptr i32, ptr %ptr, i64 %idx
2621       // as:
2622       //   %newptr = getelementptr i32, ptr %ptr, i64 %idx1
2623       //   %newgep = getelementptr i32, ptr %newptr, i64 %idx2
2624       auto *NewPtr = Builder.CreateGEP(GEP.getResultElementType(),
2625                                        GEP.getPointerOperand(), Idx1);
2626       return GetElementPtrInst::Create(GEP.getResultElementType(), NewPtr,
2627                                        Idx2);
2628     }
2629     ConstantInt *C;
2630     if (match(GEP.getOperand(1), m_OneUse(m_SExtLike(m_OneUse(m_NSWAdd(
2631                                      m_Value(Idx1), m_ConstantInt(C))))))) {
2632       // %add = add nsw i32 %idx1, idx2
2633       // %sidx = sext i32 %add to i64
2634       // %gep = getelementptr i32, ptr %ptr, i64 %sidx
2635       // as:
2636       // %newptr = getelementptr i32, ptr %ptr, i32 %idx1
2637       // %newgep = getelementptr i32, ptr %newptr, i32 idx2
2638       auto *NewPtr = Builder.CreateGEP(
2639           GEP.getResultElementType(), GEP.getPointerOperand(),
2640           Builder.CreateSExt(Idx1, GEP.getOperand(1)->getType()));
2641       return GetElementPtrInst::Create(
2642           GEP.getResultElementType(), NewPtr,
2643           Builder.CreateSExt(C, GEP.getOperand(1)->getType()));
2644     }
2645   }
2646 
2647   if (!GEP.isInBounds()) {
2648     unsigned IdxWidth =
2649         DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2650     APInt BasePtrOffset(IdxWidth, 0);
2651     Value *UnderlyingPtrOp =
2652             PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2653                                                              BasePtrOffset);
2654     bool CanBeNull, CanBeFreed;
2655     uint64_t DerefBytes = UnderlyingPtrOp->getPointerDereferenceableBytes(
2656         DL, CanBeNull, CanBeFreed);
2657     if (!CanBeNull && !CanBeFreed && DerefBytes != 0) {
2658       if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2659           BasePtrOffset.isNonNegative()) {
2660         APInt AllocSize(IdxWidth, DerefBytes);
2661         if (BasePtrOffset.ule(AllocSize)) {
2662           return GetElementPtrInst::CreateInBounds(
2663               GEP.getSourceElementType(), PtrOp, Indices, GEP.getName());
2664         }
2665       }
2666     }
2667   }
2668 
2669   if (Instruction *R = foldSelectGEP(GEP, Builder))
2670     return R;
2671 
2672   return nullptr;
2673 }
2674 
2675 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI,
2676                                          Instruction *AI) {
2677   if (isa<ConstantPointerNull>(V))
2678     return true;
2679   if (auto *LI = dyn_cast<LoadInst>(V))
2680     return isa<GlobalVariable>(LI->getPointerOperand());
2681   // Two distinct allocations will never be equal.
2682   return isAllocLikeFn(V, &TLI) && V != AI;
2683 }
2684 
2685 /// Given a call CB which uses an address UsedV, return true if we can prove the
2686 /// call's only possible effect is storing to V.
2687 static bool isRemovableWrite(CallBase &CB, Value *UsedV,
2688                              const TargetLibraryInfo &TLI) {
2689   if (!CB.use_empty())
2690     // TODO: add recursion if returned attribute is present
2691     return false;
2692 
2693   if (CB.isTerminator())
2694     // TODO: remove implementation restriction
2695     return false;
2696 
2697   if (!CB.willReturn() || !CB.doesNotThrow())
2698     return false;
2699 
2700   // If the only possible side effect of the call is writing to the alloca,
2701   // and the result isn't used, we can safely remove any reads implied by the
2702   // call including those which might read the alloca itself.
2703   std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI);
2704   return Dest && Dest->Ptr == UsedV;
2705 }
2706 
2707 static bool isAllocSiteRemovable(Instruction *AI,
2708                                  SmallVectorImpl<WeakTrackingVH> &Users,
2709                                  const TargetLibraryInfo &TLI) {
2710   SmallVector<Instruction*, 4> Worklist;
2711   const std::optional<StringRef> Family = getAllocationFamily(AI, &TLI);
2712   Worklist.push_back(AI);
2713 
2714   do {
2715     Instruction *PI = Worklist.pop_back_val();
2716     for (User *U : PI->users()) {
2717       Instruction *I = cast<Instruction>(U);
2718       switch (I->getOpcode()) {
2719       default:
2720         // Give up the moment we see something we can't handle.
2721         return false;
2722 
2723       case Instruction::AddrSpaceCast:
2724       case Instruction::BitCast:
2725       case Instruction::GetElementPtr:
2726         Users.emplace_back(I);
2727         Worklist.push_back(I);
2728         continue;
2729 
2730       case Instruction::ICmp: {
2731         ICmpInst *ICI = cast<ICmpInst>(I);
2732         // We can fold eq/ne comparisons with null to false/true, respectively.
2733         // We also fold comparisons in some conditions provided the alloc has
2734         // not escaped (see isNeverEqualToUnescapedAlloc).
2735         if (!ICI->isEquality())
2736           return false;
2737         unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2738         if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2739           return false;
2740 
2741         // Do not fold compares to aligned_alloc calls, as they may have to
2742         // return null in case the required alignment cannot be satisfied,
2743         // unless we can prove that both alignment and size are valid.
2744         auto AlignmentAndSizeKnownValid = [](CallBase *CB) {
2745           // Check if alignment and size of a call to aligned_alloc is valid,
2746           // that is alignment is a power-of-2 and the size is a multiple of the
2747           // alignment.
2748           const APInt *Alignment;
2749           const APInt *Size;
2750           return match(CB->getArgOperand(0), m_APInt(Alignment)) &&
2751                  match(CB->getArgOperand(1), m_APInt(Size)) &&
2752                  Alignment->isPowerOf2() && Size->urem(*Alignment).isZero();
2753         };
2754         auto *CB = dyn_cast<CallBase>(AI);
2755         LibFunc TheLibFunc;
2756         if (CB && TLI.getLibFunc(*CB->getCalledFunction(), TheLibFunc) &&
2757             TLI.has(TheLibFunc) && TheLibFunc == LibFunc_aligned_alloc &&
2758             !AlignmentAndSizeKnownValid(CB))
2759           return false;
2760         Users.emplace_back(I);
2761         continue;
2762       }
2763 
2764       case Instruction::Call:
2765         // Ignore no-op and store intrinsics.
2766         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2767           switch (II->getIntrinsicID()) {
2768           default:
2769             return false;
2770 
2771           case Intrinsic::memmove:
2772           case Intrinsic::memcpy:
2773           case Intrinsic::memset: {
2774             MemIntrinsic *MI = cast<MemIntrinsic>(II);
2775             if (MI->isVolatile() || MI->getRawDest() != PI)
2776               return false;
2777             [[fallthrough]];
2778           }
2779           case Intrinsic::assume:
2780           case Intrinsic::invariant_start:
2781           case Intrinsic::invariant_end:
2782           case Intrinsic::lifetime_start:
2783           case Intrinsic::lifetime_end:
2784           case Intrinsic::objectsize:
2785             Users.emplace_back(I);
2786             continue;
2787           case Intrinsic::launder_invariant_group:
2788           case Intrinsic::strip_invariant_group:
2789             Users.emplace_back(I);
2790             Worklist.push_back(I);
2791             continue;
2792           }
2793         }
2794 
2795         if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) {
2796           Users.emplace_back(I);
2797           continue;
2798         }
2799 
2800         if (getFreedOperand(cast<CallBase>(I), &TLI) == PI &&
2801             getAllocationFamily(I, &TLI) == Family) {
2802           assert(Family);
2803           Users.emplace_back(I);
2804           continue;
2805         }
2806 
2807         if (getReallocatedOperand(cast<CallBase>(I)) == PI &&
2808             getAllocationFamily(I, &TLI) == Family) {
2809           assert(Family);
2810           Users.emplace_back(I);
2811           Worklist.push_back(I);
2812           continue;
2813         }
2814 
2815         return false;
2816 
2817       case Instruction::Store: {
2818         StoreInst *SI = cast<StoreInst>(I);
2819         if (SI->isVolatile() || SI->getPointerOperand() != PI)
2820           return false;
2821         Users.emplace_back(I);
2822         continue;
2823       }
2824       }
2825       llvm_unreachable("missing a return?");
2826     }
2827   } while (!Worklist.empty());
2828   return true;
2829 }
2830 
2831 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) {
2832   assert(isa<AllocaInst>(MI) || isRemovableAlloc(&cast<CallBase>(MI), &TLI));
2833 
2834   // If we have a malloc call which is only used in any amount of comparisons to
2835   // null and free calls, delete the calls and replace the comparisons with true
2836   // or false as appropriate.
2837 
2838   // This is based on the principle that we can substitute our own allocation
2839   // function (which will never return null) rather than knowledge of the
2840   // specific function being called. In some sense this can change the permitted
2841   // outputs of a program (when we convert a malloc to an alloca, the fact that
2842   // the allocation is now on the stack is potentially visible, for example),
2843   // but we believe in a permissible manner.
2844   SmallVector<WeakTrackingVH, 64> Users;
2845 
2846   // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2847   // before each store.
2848   SmallVector<DbgVariableIntrinsic *, 8> DVIs;
2849   SmallVector<DPValue *, 8> DPVs;
2850   std::unique_ptr<DIBuilder> DIB;
2851   if (isa<AllocaInst>(MI)) {
2852     findDbgUsers(DVIs, &MI, &DPVs);
2853     DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2854   }
2855 
2856   if (isAllocSiteRemovable(&MI, Users, TLI)) {
2857     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2858       // Lowering all @llvm.objectsize calls first because they may
2859       // use a bitcast/GEP of the alloca we are removing.
2860       if (!Users[i])
2861        continue;
2862 
2863       Instruction *I = cast<Instruction>(&*Users[i]);
2864 
2865       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2866         if (II->getIntrinsicID() == Intrinsic::objectsize) {
2867           SmallVector<Instruction *> InsertedInstructions;
2868           Value *Result = lowerObjectSizeCall(
2869               II, DL, &TLI, AA, /*MustSucceed=*/true, &InsertedInstructions);
2870           for (Instruction *Inserted : InsertedInstructions)
2871             Worklist.add(Inserted);
2872           replaceInstUsesWith(*I, Result);
2873           eraseInstFromFunction(*I);
2874           Users[i] = nullptr; // Skip examining in the next loop.
2875         }
2876       }
2877     }
2878     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2879       if (!Users[i])
2880         continue;
2881 
2882       Instruction *I = cast<Instruction>(&*Users[i]);
2883 
2884       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2885         replaceInstUsesWith(*C,
2886                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
2887                                              C->isFalseWhenEqual()));
2888       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2889         for (auto *DVI : DVIs)
2890           if (DVI->isAddressOfVariable())
2891             ConvertDebugDeclareToDebugValue(DVI, SI, *DIB);
2892         for (auto *DPV : DPVs)
2893           if (DPV->isAddressOfVariable())
2894             ConvertDebugDeclareToDebugValue(DPV, SI, *DIB);
2895       } else {
2896         // Casts, GEP, or anything else: we're about to delete this instruction,
2897         // so it can not have any valid uses.
2898         replaceInstUsesWith(*I, PoisonValue::get(I->getType()));
2899       }
2900       eraseInstFromFunction(*I);
2901     }
2902 
2903     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2904       // Replace invoke with a NOP intrinsic to maintain the original CFG
2905       Module *M = II->getModule();
2906       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2907       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2908                          std::nullopt, "", II->getParent());
2909     }
2910 
2911     // Remove debug intrinsics which describe the value contained within the
2912     // alloca. In addition to removing dbg.{declare,addr} which simply point to
2913     // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
2914     //
2915     // ```
2916     //   define void @foo(i32 %0) {
2917     //     %a = alloca i32                              ; Deleted.
2918     //     store i32 %0, i32* %a
2919     //     dbg.value(i32 %0, "arg0")                    ; Not deleted.
2920     //     dbg.value(i32* %a, "arg0", DW_OP_deref)      ; Deleted.
2921     //     call void @trivially_inlinable_no_op(i32* %a)
2922     //     ret void
2923     //  }
2924     // ```
2925     //
2926     // This may not be required if we stop describing the contents of allocas
2927     // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
2928     // the LowerDbgDeclare utility.
2929     //
2930     // If there is a dead store to `%a` in @trivially_inlinable_no_op, the
2931     // "arg0" dbg.value may be stale after the call. However, failing to remove
2932     // the DW_OP_deref dbg.value causes large gaps in location coverage.
2933     //
2934     // FIXME: the Assignment Tracking project has now likely made this
2935     // redundant (and it's sometimes harmful).
2936     for (auto *DVI : DVIs)
2937       if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref())
2938         DVI->eraseFromParent();
2939     for (auto *DPV : DPVs)
2940       if (DPV->isAddressOfVariable() || DPV->getExpression()->startsWithDeref())
2941         DPV->eraseFromParent();
2942 
2943     return eraseInstFromFunction(MI);
2944   }
2945   return nullptr;
2946 }
2947 
2948 /// Move the call to free before a NULL test.
2949 ///
2950 /// Check if this free is accessed after its argument has been test
2951 /// against NULL (property 0).
2952 /// If yes, it is legal to move this call in its predecessor block.
2953 ///
2954 /// The move is performed only if the block containing the call to free
2955 /// will be removed, i.e.:
2956 /// 1. it has only one predecessor P, and P has two successors
2957 /// 2. it contains the call, noops, and an unconditional branch
2958 /// 3. its successor is the same as its predecessor's successor
2959 ///
2960 /// The profitability is out-of concern here and this function should
2961 /// be called only if the caller knows this transformation would be
2962 /// profitable (e.g., for code size).
2963 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2964                                                 const DataLayout &DL) {
2965   Value *Op = FI.getArgOperand(0);
2966   BasicBlock *FreeInstrBB = FI.getParent();
2967   BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2968 
2969   // Validate part of constraint #1: Only one predecessor
2970   // FIXME: We can extend the number of predecessor, but in that case, we
2971   //        would duplicate the call to free in each predecessor and it may
2972   //        not be profitable even for code size.
2973   if (!PredBB)
2974     return nullptr;
2975 
2976   // Validate constraint #2: Does this block contains only the call to
2977   //                         free, noops, and an unconditional branch?
2978   BasicBlock *SuccBB;
2979   Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2980   if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2981     return nullptr;
2982 
2983   // If there are only 2 instructions in the block, at this point,
2984   // this is the call to free and unconditional.
2985   // If there are more than 2 instructions, check that they are noops
2986   // i.e., they won't hurt the performance of the generated code.
2987   if (FreeInstrBB->size() != 2) {
2988     for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
2989       if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2990         continue;
2991       auto *Cast = dyn_cast<CastInst>(&Inst);
2992       if (!Cast || !Cast->isNoopCast(DL))
2993         return nullptr;
2994     }
2995   }
2996   // Validate the rest of constraint #1 by matching on the pred branch.
2997   Instruction *TI = PredBB->getTerminator();
2998   BasicBlock *TrueBB, *FalseBB;
2999   ICmpInst::Predicate Pred;
3000   if (!match(TI, m_Br(m_ICmp(Pred,
3001                              m_CombineOr(m_Specific(Op),
3002                                          m_Specific(Op->stripPointerCasts())),
3003                              m_Zero()),
3004                       TrueBB, FalseBB)))
3005     return nullptr;
3006   if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
3007     return nullptr;
3008 
3009   // Validate constraint #3: Ensure the null case just falls through.
3010   if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
3011     return nullptr;
3012   assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
3013          "Broken CFG: missing edge from predecessor to successor");
3014 
3015   // At this point, we know that everything in FreeInstrBB can be moved
3016   // before TI.
3017   for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) {
3018     if (&Instr == FreeInstrBBTerminator)
3019       break;
3020     Instr.moveBeforePreserving(TI);
3021   }
3022   assert(FreeInstrBB->size() == 1 &&
3023          "Only the branch instruction should remain");
3024 
3025   // Now that we've moved the call to free before the NULL check, we have to
3026   // remove any attributes on its parameter that imply it's non-null, because
3027   // those attributes might have only been valid because of the NULL check, and
3028   // we can get miscompiles if we keep them. This is conservative if non-null is
3029   // also implied by something other than the NULL check, but it's guaranteed to
3030   // be correct, and the conservativeness won't matter in practice, since the
3031   // attributes are irrelevant for the call to free itself and the pointer
3032   // shouldn't be used after the call.
3033   AttributeList Attrs = FI.getAttributes();
3034   Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull);
3035   Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable);
3036   if (Dereferenceable.isValid()) {
3037     uint64_t Bytes = Dereferenceable.getDereferenceableBytes();
3038     Attrs = Attrs.removeParamAttribute(FI.getContext(), 0,
3039                                        Attribute::Dereferenceable);
3040     Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes);
3041   }
3042   FI.setAttributes(Attrs);
3043 
3044   return &FI;
3045 }
3046 
3047 Instruction *InstCombinerImpl::visitFree(CallInst &FI, Value *Op) {
3048   // free undef -> unreachable.
3049   if (isa<UndefValue>(Op)) {
3050     // Leave a marker since we can't modify the CFG here.
3051     CreateNonTerminatorUnreachable(&FI);
3052     return eraseInstFromFunction(FI);
3053   }
3054 
3055   // If we have 'free null' delete the instruction.  This can happen in stl code
3056   // when lots of inlining happens.
3057   if (isa<ConstantPointerNull>(Op))
3058     return eraseInstFromFunction(FI);
3059 
3060   // If we had free(realloc(...)) with no intervening uses, then eliminate the
3061   // realloc() entirely.
3062   CallInst *CI = dyn_cast<CallInst>(Op);
3063   if (CI && CI->hasOneUse())
3064     if (Value *ReallocatedOp = getReallocatedOperand(CI))
3065       return eraseInstFromFunction(*replaceInstUsesWith(*CI, ReallocatedOp));
3066 
3067   // If we optimize for code size, try to move the call to free before the null
3068   // test so that simplify cfg can remove the empty block and dead code
3069   // elimination the branch. I.e., helps to turn something like:
3070   // if (foo) free(foo);
3071   // into
3072   // free(foo);
3073   //
3074   // Note that we can only do this for 'free' and not for any flavor of
3075   // 'operator delete'; there is no 'operator delete' symbol for which we are
3076   // permitted to invent a call, even if we're passing in a null pointer.
3077   if (MinimizeSize) {
3078     LibFunc Func;
3079     if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
3080       if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
3081         return I;
3082   }
3083 
3084   return nullptr;
3085 }
3086 
3087 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) {
3088   // Nothing for now.
3089   return nullptr;
3090 }
3091 
3092 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()!
3093 bool InstCombinerImpl::removeInstructionsBeforeUnreachable(Instruction &I) {
3094   // Try to remove the previous instruction if it must lead to unreachable.
3095   // This includes instructions like stores and "llvm.assume" that may not get
3096   // removed by simple dead code elimination.
3097   bool Changed = false;
3098   while (Instruction *Prev = I.getPrevNonDebugInstruction()) {
3099     // While we theoretically can erase EH, that would result in a block that
3100     // used to start with an EH no longer starting with EH, which is invalid.
3101     // To make it valid, we'd need to fixup predecessors to no longer refer to
3102     // this block, but that changes CFG, which is not allowed in InstCombine.
3103     if (Prev->isEHPad())
3104       break; // Can not drop any more instructions. We're done here.
3105 
3106     if (!isGuaranteedToTransferExecutionToSuccessor(Prev))
3107       break; // Can not drop any more instructions. We're done here.
3108     // Otherwise, this instruction can be freely erased,
3109     // even if it is not side-effect free.
3110 
3111     // A value may still have uses before we process it here (for example, in
3112     // another unreachable block), so convert those to poison.
3113     replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType()));
3114     eraseInstFromFunction(*Prev);
3115     Changed = true;
3116   }
3117   return Changed;
3118 }
3119 
3120 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) {
3121   removeInstructionsBeforeUnreachable(I);
3122   return nullptr;
3123 }
3124 
3125 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) {
3126   assert(BI.isUnconditional() && "Only for unconditional branches.");
3127 
3128   // If this store is the second-to-last instruction in the basic block
3129   // (excluding debug info and bitcasts of pointers) and if the block ends with
3130   // an unconditional branch, try to move the store to the successor block.
3131 
3132   auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
3133     auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) {
3134       return BBI->isDebugOrPseudoInst() ||
3135              (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
3136     };
3137 
3138     BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
3139     do {
3140       if (BBI != FirstInstr)
3141         --BBI;
3142     } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
3143 
3144     return dyn_cast<StoreInst>(BBI);
3145   };
3146 
3147   if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
3148     if (mergeStoreIntoSuccessor(*SI))
3149       return &BI;
3150 
3151   return nullptr;
3152 }
3153 
3154 void InstCombinerImpl::addDeadEdge(BasicBlock *From, BasicBlock *To,
3155                                    SmallVectorImpl<BasicBlock *> &Worklist) {
3156   if (!DeadEdges.insert({From, To}).second)
3157     return;
3158 
3159   // Replace phi node operands in successor with poison.
3160   for (PHINode &PN : To->phis())
3161     for (Use &U : PN.incoming_values())
3162       if (PN.getIncomingBlock(U) == From && !isa<PoisonValue>(U)) {
3163         replaceUse(U, PoisonValue::get(PN.getType()));
3164         addToWorklist(&PN);
3165         MadeIRChange = true;
3166       }
3167 
3168   Worklist.push_back(To);
3169 }
3170 
3171 // Under the assumption that I is unreachable, remove it and following
3172 // instructions. Changes are reported directly to MadeIRChange.
3173 void InstCombinerImpl::handleUnreachableFrom(
3174     Instruction *I, SmallVectorImpl<BasicBlock *> &Worklist) {
3175   BasicBlock *BB = I->getParent();
3176   for (Instruction &Inst : make_early_inc_range(
3177            make_range(std::next(BB->getTerminator()->getReverseIterator()),
3178                       std::next(I->getReverseIterator())))) {
3179     if (!Inst.use_empty() && !Inst.getType()->isTokenTy()) {
3180       replaceInstUsesWith(Inst, PoisonValue::get(Inst.getType()));
3181       MadeIRChange = true;
3182     }
3183     if (Inst.isEHPad() || Inst.getType()->isTokenTy())
3184       continue;
3185     // RemoveDIs: erase debug-info on this instruction manually.
3186     Inst.dropDbgValues();
3187     eraseInstFromFunction(Inst);
3188     MadeIRChange = true;
3189   }
3190 
3191   // RemoveDIs: to match behaviour in dbg.value mode, drop debug-info on
3192   // terminator too.
3193   BB->getTerminator()->dropDbgValues();
3194 
3195   // Handle potentially dead successors.
3196   for (BasicBlock *Succ : successors(BB))
3197     addDeadEdge(BB, Succ, Worklist);
3198 }
3199 
3200 void InstCombinerImpl::handlePotentiallyDeadBlocks(
3201     SmallVectorImpl<BasicBlock *> &Worklist) {
3202   while (!Worklist.empty()) {
3203     BasicBlock *BB = Worklist.pop_back_val();
3204     if (!all_of(predecessors(BB), [&](BasicBlock *Pred) {
3205           return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred);
3206         }))
3207       continue;
3208 
3209     handleUnreachableFrom(&BB->front(), Worklist);
3210   }
3211 }
3212 
3213 void InstCombinerImpl::handlePotentiallyDeadSuccessors(BasicBlock *BB,
3214                                                        BasicBlock *LiveSucc) {
3215   SmallVector<BasicBlock *> Worklist;
3216   for (BasicBlock *Succ : successors(BB)) {
3217     // The live successor isn't dead.
3218     if (Succ == LiveSucc)
3219       continue;
3220 
3221     addDeadEdge(BB, Succ, Worklist);
3222   }
3223 
3224   handlePotentiallyDeadBlocks(Worklist);
3225 }
3226 
3227 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) {
3228   if (BI.isUnconditional())
3229     return visitUnconditionalBranchInst(BI);
3230 
3231   // Change br (not X), label True, label False to: br X, label False, True
3232   Value *Cond = BI.getCondition();
3233   Value *X;
3234   if (match(Cond, m_Not(m_Value(X))) && !isa<Constant>(X)) {
3235     // Swap Destinations and condition...
3236     BI.swapSuccessors();
3237     return replaceOperand(BI, 0, X);
3238   }
3239 
3240   // Canonicalize logical-and-with-invert as logical-or-with-invert.
3241   // This is done by inverting the condition and swapping successors:
3242   // br (X && !Y), T, F --> br !(X && !Y), F, T --> br (!X || Y), F, T
3243   Value *Y;
3244   if (isa<SelectInst>(Cond) &&
3245       match(Cond,
3246             m_OneUse(m_LogicalAnd(m_Value(X), m_OneUse(m_Not(m_Value(Y))))))) {
3247     Value *NotX = Builder.CreateNot(X, "not." + X->getName());
3248     Value *Or = Builder.CreateLogicalOr(NotX, Y);
3249     BI.swapSuccessors();
3250     return replaceOperand(BI, 0, Or);
3251   }
3252 
3253   // If the condition is irrelevant, remove the use so that other
3254   // transforms on the condition become more effective.
3255   if (!isa<ConstantInt>(Cond) && BI.getSuccessor(0) == BI.getSuccessor(1))
3256     return replaceOperand(BI, 0, ConstantInt::getFalse(Cond->getType()));
3257 
3258   // Canonicalize, for example, fcmp_one -> fcmp_oeq.
3259   CmpInst::Predicate Pred;
3260   if (match(Cond, m_OneUse(m_FCmp(Pred, m_Value(), m_Value()))) &&
3261       !isCanonicalPredicate(Pred)) {
3262     // Swap destinations and condition.
3263     auto *Cmp = cast<CmpInst>(Cond);
3264     Cmp->setPredicate(CmpInst::getInversePredicate(Pred));
3265     BI.swapSuccessors();
3266     Worklist.push(Cmp);
3267     return &BI;
3268   }
3269 
3270   if (isa<UndefValue>(Cond)) {
3271     handlePotentiallyDeadSuccessors(BI.getParent(), /*LiveSucc*/ nullptr);
3272     return nullptr;
3273   }
3274   if (auto *CI = dyn_cast<ConstantInt>(Cond)) {
3275     handlePotentiallyDeadSuccessors(BI.getParent(),
3276                                     BI.getSuccessor(!CI->getZExtValue()));
3277     return nullptr;
3278   }
3279 
3280   DC.registerBranch(&BI);
3281   return nullptr;
3282 }
3283 
3284 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) {
3285   Value *Cond = SI.getCondition();
3286   Value *Op0;
3287   ConstantInt *AddRHS;
3288   if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
3289     // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
3290     for (auto Case : SI.cases()) {
3291       Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
3292       assert(isa<ConstantInt>(NewCase) &&
3293              "Result of expression should be constant");
3294       Case.setValue(cast<ConstantInt>(NewCase));
3295     }
3296     return replaceOperand(SI, 0, Op0);
3297   }
3298 
3299   ConstantInt *SubLHS;
3300   if (match(Cond, m_Sub(m_ConstantInt(SubLHS), m_Value(Op0)))) {
3301     // Change 'switch (1-X) case 1:' into 'switch (X) case 0'.
3302     for (auto Case : SI.cases()) {
3303       Constant *NewCase = ConstantExpr::getSub(SubLHS, Case.getCaseValue());
3304       assert(isa<ConstantInt>(NewCase) &&
3305              "Result of expression should be constant");
3306       Case.setValue(cast<ConstantInt>(NewCase));
3307     }
3308     return replaceOperand(SI, 0, Op0);
3309   }
3310 
3311   uint64_t ShiftAmt;
3312   if (match(Cond, m_Shl(m_Value(Op0), m_ConstantInt(ShiftAmt))) &&
3313       ShiftAmt < Op0->getType()->getScalarSizeInBits() &&
3314       all_of(SI.cases(), [&](const auto &Case) {
3315         return Case.getCaseValue()->getValue().countr_zero() >= ShiftAmt;
3316       })) {
3317     // Change 'switch (X << 2) case 4:' into 'switch (X) case 1:'.
3318     OverflowingBinaryOperator *Shl = cast<OverflowingBinaryOperator>(Cond);
3319     if (Shl->hasNoUnsignedWrap() || Shl->hasNoSignedWrap() ||
3320         Shl->hasOneUse()) {
3321       Value *NewCond = Op0;
3322       if (!Shl->hasNoUnsignedWrap() && !Shl->hasNoSignedWrap()) {
3323         // If the shift may wrap, we need to mask off the shifted bits.
3324         unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
3325         NewCond = Builder.CreateAnd(
3326             Op0, APInt::getLowBitsSet(BitWidth, BitWidth - ShiftAmt));
3327       }
3328       for (auto Case : SI.cases()) {
3329         const APInt &CaseVal = Case.getCaseValue()->getValue();
3330         APInt ShiftedCase = Shl->hasNoSignedWrap() ? CaseVal.ashr(ShiftAmt)
3331                                                    : CaseVal.lshr(ShiftAmt);
3332         Case.setValue(ConstantInt::get(SI.getContext(), ShiftedCase));
3333       }
3334       return replaceOperand(SI, 0, NewCond);
3335     }
3336   }
3337 
3338   // Fold switch(zext/sext(X)) into switch(X) if possible.
3339   if (match(Cond, m_ZExtOrSExt(m_Value(Op0)))) {
3340     bool IsZExt = isa<ZExtInst>(Cond);
3341     Type *SrcTy = Op0->getType();
3342     unsigned NewWidth = SrcTy->getScalarSizeInBits();
3343 
3344     if (all_of(SI.cases(), [&](const auto &Case) {
3345           const APInt &CaseVal = Case.getCaseValue()->getValue();
3346           return IsZExt ? CaseVal.isIntN(NewWidth)
3347                         : CaseVal.isSignedIntN(NewWidth);
3348         })) {
3349       for (auto &Case : SI.cases()) {
3350         APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
3351         Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
3352       }
3353       return replaceOperand(SI, 0, Op0);
3354     }
3355   }
3356 
3357   KnownBits Known = computeKnownBits(Cond, 0, &SI);
3358   unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
3359   unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
3360 
3361   // Compute the number of leading bits we can ignore.
3362   // TODO: A better way to determine this would use ComputeNumSignBits().
3363   for (const auto &C : SI.cases()) {
3364     LeadingKnownZeros =
3365         std::min(LeadingKnownZeros, C.getCaseValue()->getValue().countl_zero());
3366     LeadingKnownOnes =
3367         std::min(LeadingKnownOnes, C.getCaseValue()->getValue().countl_one());
3368   }
3369 
3370   unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
3371 
3372   // Shrink the condition operand if the new type is smaller than the old type.
3373   // But do not shrink to a non-standard type, because backend can't generate
3374   // good code for that yet.
3375   // TODO: We can make it aggressive again after fixing PR39569.
3376   if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
3377       shouldChangeType(Known.getBitWidth(), NewWidth)) {
3378     IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
3379     Builder.SetInsertPoint(&SI);
3380     Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
3381 
3382     for (auto Case : SI.cases()) {
3383       APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
3384       Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
3385     }
3386     return replaceOperand(SI, 0, NewCond);
3387   }
3388 
3389   if (isa<UndefValue>(Cond)) {
3390     handlePotentiallyDeadSuccessors(SI.getParent(), /*LiveSucc*/ nullptr);
3391     return nullptr;
3392   }
3393   if (auto *CI = dyn_cast<ConstantInt>(Cond)) {
3394     handlePotentiallyDeadSuccessors(SI.getParent(),
3395                                     SI.findCaseValue(CI)->getCaseSuccessor());
3396     return nullptr;
3397   }
3398 
3399   return nullptr;
3400 }
3401 
3402 Instruction *
3403 InstCombinerImpl::foldExtractOfOverflowIntrinsic(ExtractValueInst &EV) {
3404   auto *WO = dyn_cast<WithOverflowInst>(EV.getAggregateOperand());
3405   if (!WO)
3406     return nullptr;
3407 
3408   Intrinsic::ID OvID = WO->getIntrinsicID();
3409   const APInt *C = nullptr;
3410   if (match(WO->getRHS(), m_APIntAllowUndef(C))) {
3411     if (*EV.idx_begin() == 0 && (OvID == Intrinsic::smul_with_overflow ||
3412                                  OvID == Intrinsic::umul_with_overflow)) {
3413       // extractvalue (any_mul_with_overflow X, -1), 0 --> -X
3414       if (C->isAllOnes())
3415         return BinaryOperator::CreateNeg(WO->getLHS());
3416       // extractvalue (any_mul_with_overflow X, 2^n), 0 --> X << n
3417       if (C->isPowerOf2()) {
3418         return BinaryOperator::CreateShl(
3419             WO->getLHS(),
3420             ConstantInt::get(WO->getLHS()->getType(), C->logBase2()));
3421       }
3422     }
3423   }
3424 
3425   // We're extracting from an overflow intrinsic. See if we're the only user.
3426   // That allows us to simplify multiple result intrinsics to simpler things
3427   // that just get one value.
3428   if (!WO->hasOneUse())
3429     return nullptr;
3430 
3431   // Check if we're grabbing only the result of a 'with overflow' intrinsic
3432   // and replace it with a traditional binary instruction.
3433   if (*EV.idx_begin() == 0) {
3434     Instruction::BinaryOps BinOp = WO->getBinaryOp();
3435     Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
3436     // Replace the old instruction's uses with poison.
3437     replaceInstUsesWith(*WO, PoisonValue::get(WO->getType()));
3438     eraseInstFromFunction(*WO);
3439     return BinaryOperator::Create(BinOp, LHS, RHS);
3440   }
3441 
3442   assert(*EV.idx_begin() == 1 && "Unexpected extract index for overflow inst");
3443 
3444   // (usub LHS, RHS) overflows when LHS is unsigned-less-than RHS.
3445   if (OvID == Intrinsic::usub_with_overflow)
3446     return new ICmpInst(ICmpInst::ICMP_ULT, WO->getLHS(), WO->getRHS());
3447 
3448   // smul with i1 types overflows when both sides are set: -1 * -1 == +1, but
3449   // +1 is not possible because we assume signed values.
3450   if (OvID == Intrinsic::smul_with_overflow &&
3451       WO->getLHS()->getType()->isIntOrIntVectorTy(1))
3452     return BinaryOperator::CreateAnd(WO->getLHS(), WO->getRHS());
3453 
3454   // If only the overflow result is used, and the right hand side is a
3455   // constant (or constant splat), we can remove the intrinsic by directly
3456   // checking for overflow.
3457   if (C) {
3458     // Compute the no-wrap range for LHS given RHS=C, then construct an
3459     // equivalent icmp, potentially using an offset.
3460     ConstantRange NWR = ConstantRange::makeExactNoWrapRegion(
3461         WO->getBinaryOp(), *C, WO->getNoWrapKind());
3462 
3463     CmpInst::Predicate Pred;
3464     APInt NewRHSC, Offset;
3465     NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
3466     auto *OpTy = WO->getRHS()->getType();
3467     auto *NewLHS = WO->getLHS();
3468     if (Offset != 0)
3469       NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset));
3470     return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS,
3471                         ConstantInt::get(OpTy, NewRHSC));
3472   }
3473 
3474   return nullptr;
3475 }
3476 
3477 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) {
3478   Value *Agg = EV.getAggregateOperand();
3479 
3480   if (!EV.hasIndices())
3481     return replaceInstUsesWith(EV, Agg);
3482 
3483   if (Value *V = simplifyExtractValueInst(Agg, EV.getIndices(),
3484                                           SQ.getWithInstruction(&EV)))
3485     return replaceInstUsesWith(EV, V);
3486 
3487   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
3488     // We're extracting from an insertvalue instruction, compare the indices
3489     const unsigned *exti, *exte, *insi, *inse;
3490     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
3491          exte = EV.idx_end(), inse = IV->idx_end();
3492          exti != exte && insi != inse;
3493          ++exti, ++insi) {
3494       if (*insi != *exti)
3495         // The insert and extract both reference distinctly different elements.
3496         // This means the extract is not influenced by the insert, and we can
3497         // replace the aggregate operand of the extract with the aggregate
3498         // operand of the insert. i.e., replace
3499         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3500         // %E = extractvalue { i32, { i32 } } %I, 0
3501         // with
3502         // %E = extractvalue { i32, { i32 } } %A, 0
3503         return ExtractValueInst::Create(IV->getAggregateOperand(),
3504                                         EV.getIndices());
3505     }
3506     if (exti == exte && insi == inse)
3507       // Both iterators are at the end: Index lists are identical. Replace
3508       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3509       // %C = extractvalue { i32, { i32 } } %B, 1, 0
3510       // with "i32 42"
3511       return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
3512     if (exti == exte) {
3513       // The extract list is a prefix of the insert list. i.e. replace
3514       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3515       // %E = extractvalue { i32, { i32 } } %I, 1
3516       // with
3517       // %X = extractvalue { i32, { i32 } } %A, 1
3518       // %E = insertvalue { i32 } %X, i32 42, 0
3519       // by switching the order of the insert and extract (though the
3520       // insertvalue should be left in, since it may have other uses).
3521       Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
3522                                                 EV.getIndices());
3523       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
3524                                      ArrayRef(insi, inse));
3525     }
3526     if (insi == inse)
3527       // The insert list is a prefix of the extract list
3528       // We can simply remove the common indices from the extract and make it
3529       // operate on the inserted value instead of the insertvalue result.
3530       // i.e., replace
3531       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3532       // %E = extractvalue { i32, { i32 } } %I, 1, 0
3533       // with
3534       // %E extractvalue { i32 } { i32 42 }, 0
3535       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
3536                                       ArrayRef(exti, exte));
3537   }
3538 
3539   if (Instruction *R = foldExtractOfOverflowIntrinsic(EV))
3540     return R;
3541 
3542   if (LoadInst *L = dyn_cast<LoadInst>(Agg)) {
3543     // Bail out if the aggregate contains scalable vector type
3544     if (auto *STy = dyn_cast<StructType>(Agg->getType());
3545         STy && STy->containsScalableVectorType())
3546       return nullptr;
3547 
3548     // If the (non-volatile) load only has one use, we can rewrite this to a
3549     // load from a GEP. This reduces the size of the load. If a load is used
3550     // only by extractvalue instructions then this either must have been
3551     // optimized before, or it is a struct with padding, in which case we
3552     // don't want to do the transformation as it loses padding knowledge.
3553     if (L->isSimple() && L->hasOneUse()) {
3554       // extractvalue has integer indices, getelementptr has Value*s. Convert.
3555       SmallVector<Value*, 4> Indices;
3556       // Prefix an i32 0 since we need the first element.
3557       Indices.push_back(Builder.getInt32(0));
3558       for (unsigned Idx : EV.indices())
3559         Indices.push_back(Builder.getInt32(Idx));
3560 
3561       // We need to insert these at the location of the old load, not at that of
3562       // the extractvalue.
3563       Builder.SetInsertPoint(L);
3564       Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
3565                                              L->getPointerOperand(), Indices);
3566       Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
3567       // Whatever aliasing information we had for the orignal load must also
3568       // hold for the smaller load, so propagate the annotations.
3569       NL->setAAMetadata(L->getAAMetadata());
3570       // Returning the load directly will cause the main loop to insert it in
3571       // the wrong spot, so use replaceInstUsesWith().
3572       return replaceInstUsesWith(EV, NL);
3573     }
3574   }
3575 
3576   if (auto *PN = dyn_cast<PHINode>(Agg))
3577     if (Instruction *Res = foldOpIntoPhi(EV, PN))
3578       return Res;
3579 
3580   // We could simplify extracts from other values. Note that nested extracts may
3581   // already be simplified implicitly by the above: extract (extract (insert) )
3582   // will be translated into extract ( insert ( extract ) ) first and then just
3583   // the value inserted, if appropriate. Similarly for extracts from single-use
3584   // loads: extract (extract (load)) will be translated to extract (load (gep))
3585   // and if again single-use then via load (gep (gep)) to load (gep).
3586   // However, double extracts from e.g. function arguments or return values
3587   // aren't handled yet.
3588   return nullptr;
3589 }
3590 
3591 /// Return 'true' if the given typeinfo will match anything.
3592 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
3593   switch (Personality) {
3594   case EHPersonality::GNU_C:
3595   case EHPersonality::GNU_C_SjLj:
3596   case EHPersonality::Rust:
3597     // The GCC C EH and Rust personality only exists to support cleanups, so
3598     // it's not clear what the semantics of catch clauses are.
3599     return false;
3600   case EHPersonality::Unknown:
3601     return false;
3602   case EHPersonality::GNU_Ada:
3603     // While __gnat_all_others_value will match any Ada exception, it doesn't
3604     // match foreign exceptions (or didn't, before gcc-4.7).
3605     return false;
3606   case EHPersonality::GNU_CXX:
3607   case EHPersonality::GNU_CXX_SjLj:
3608   case EHPersonality::GNU_ObjC:
3609   case EHPersonality::MSVC_X86SEH:
3610   case EHPersonality::MSVC_TableSEH:
3611   case EHPersonality::MSVC_CXX:
3612   case EHPersonality::CoreCLR:
3613   case EHPersonality::Wasm_CXX:
3614   case EHPersonality::XL_CXX:
3615     return TypeInfo->isNullValue();
3616   }
3617   llvm_unreachable("invalid enum");
3618 }
3619 
3620 static bool shorter_filter(const Value *LHS, const Value *RHS) {
3621   return
3622     cast<ArrayType>(LHS->getType())->getNumElements()
3623   <
3624     cast<ArrayType>(RHS->getType())->getNumElements();
3625 }
3626 
3627 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) {
3628   // The logic here should be correct for any real-world personality function.
3629   // However if that turns out not to be true, the offending logic can always
3630   // be conditioned on the personality function, like the catch-all logic is.
3631   EHPersonality Personality =
3632       classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
3633 
3634   // Simplify the list of clauses, eg by removing repeated catch clauses
3635   // (these are often created by inlining).
3636   bool MakeNewInstruction = false; // If true, recreate using the following:
3637   SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
3638   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
3639 
3640   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
3641   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
3642     bool isLastClause = i + 1 == e;
3643     if (LI.isCatch(i)) {
3644       // A catch clause.
3645       Constant *CatchClause = LI.getClause(i);
3646       Constant *TypeInfo = CatchClause->stripPointerCasts();
3647 
3648       // If we already saw this clause, there is no point in having a second
3649       // copy of it.
3650       if (AlreadyCaught.insert(TypeInfo).second) {
3651         // This catch clause was not already seen.
3652         NewClauses.push_back(CatchClause);
3653       } else {
3654         // Repeated catch clause - drop the redundant copy.
3655         MakeNewInstruction = true;
3656       }
3657 
3658       // If this is a catch-all then there is no point in keeping any following
3659       // clauses or marking the landingpad as having a cleanup.
3660       if (isCatchAll(Personality, TypeInfo)) {
3661         if (!isLastClause)
3662           MakeNewInstruction = true;
3663         CleanupFlag = false;
3664         break;
3665       }
3666     } else {
3667       // A filter clause.  If any of the filter elements were already caught
3668       // then they can be dropped from the filter.  It is tempting to try to
3669       // exploit the filter further by saying that any typeinfo that does not
3670       // occur in the filter can't be caught later (and thus can be dropped).
3671       // However this would be wrong, since typeinfos can match without being
3672       // equal (for example if one represents a C++ class, and the other some
3673       // class derived from it).
3674       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
3675       Constant *FilterClause = LI.getClause(i);
3676       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
3677       unsigned NumTypeInfos = FilterType->getNumElements();
3678 
3679       // An empty filter catches everything, so there is no point in keeping any
3680       // following clauses or marking the landingpad as having a cleanup.  By
3681       // dealing with this case here the following code is made a bit simpler.
3682       if (!NumTypeInfos) {
3683         NewClauses.push_back(FilterClause);
3684         if (!isLastClause)
3685           MakeNewInstruction = true;
3686         CleanupFlag = false;
3687         break;
3688       }
3689 
3690       bool MakeNewFilter = false; // If true, make a new filter.
3691       SmallVector<Constant *, 16> NewFilterElts; // New elements.
3692       if (isa<ConstantAggregateZero>(FilterClause)) {
3693         // Not an empty filter - it contains at least one null typeinfo.
3694         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
3695         Constant *TypeInfo =
3696           Constant::getNullValue(FilterType->getElementType());
3697         // If this typeinfo is a catch-all then the filter can never match.
3698         if (isCatchAll(Personality, TypeInfo)) {
3699           // Throw the filter away.
3700           MakeNewInstruction = true;
3701           continue;
3702         }
3703 
3704         // There is no point in having multiple copies of this typeinfo, so
3705         // discard all but the first copy if there is more than one.
3706         NewFilterElts.push_back(TypeInfo);
3707         if (NumTypeInfos > 1)
3708           MakeNewFilter = true;
3709       } else {
3710         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
3711         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
3712         NewFilterElts.reserve(NumTypeInfos);
3713 
3714         // Remove any filter elements that were already caught or that already
3715         // occurred in the filter.  While there, see if any of the elements are
3716         // catch-alls.  If so, the filter can be discarded.
3717         bool SawCatchAll = false;
3718         for (unsigned j = 0; j != NumTypeInfos; ++j) {
3719           Constant *Elt = Filter->getOperand(j);
3720           Constant *TypeInfo = Elt->stripPointerCasts();
3721           if (isCatchAll(Personality, TypeInfo)) {
3722             // This element is a catch-all.  Bail out, noting this fact.
3723             SawCatchAll = true;
3724             break;
3725           }
3726 
3727           // Even if we've seen a type in a catch clause, we don't want to
3728           // remove it from the filter.  An unexpected type handler may be
3729           // set up for a call site which throws an exception of the same
3730           // type caught.  In order for the exception thrown by the unexpected
3731           // handler to propagate correctly, the filter must be correctly
3732           // described for the call site.
3733           //
3734           // Example:
3735           //
3736           // void unexpected() { throw 1;}
3737           // void foo() throw (int) {
3738           //   std::set_unexpected(unexpected);
3739           //   try {
3740           //     throw 2.0;
3741           //   } catch (int i) {}
3742           // }
3743 
3744           // There is no point in having multiple copies of the same typeinfo in
3745           // a filter, so only add it if we didn't already.
3746           if (SeenInFilter.insert(TypeInfo).second)
3747             NewFilterElts.push_back(cast<Constant>(Elt));
3748         }
3749         // A filter containing a catch-all cannot match anything by definition.
3750         if (SawCatchAll) {
3751           // Throw the filter away.
3752           MakeNewInstruction = true;
3753           continue;
3754         }
3755 
3756         // If we dropped something from the filter, make a new one.
3757         if (NewFilterElts.size() < NumTypeInfos)
3758           MakeNewFilter = true;
3759       }
3760       if (MakeNewFilter) {
3761         FilterType = ArrayType::get(FilterType->getElementType(),
3762                                     NewFilterElts.size());
3763         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
3764         MakeNewInstruction = true;
3765       }
3766 
3767       NewClauses.push_back(FilterClause);
3768 
3769       // If the new filter is empty then it will catch everything so there is
3770       // no point in keeping any following clauses or marking the landingpad
3771       // as having a cleanup.  The case of the original filter being empty was
3772       // already handled above.
3773       if (MakeNewFilter && !NewFilterElts.size()) {
3774         assert(MakeNewInstruction && "New filter but not a new instruction!");
3775         CleanupFlag = false;
3776         break;
3777       }
3778     }
3779   }
3780 
3781   // If several filters occur in a row then reorder them so that the shortest
3782   // filters come first (those with the smallest number of elements).  This is
3783   // advantageous because shorter filters are more likely to match, speeding up
3784   // unwinding, but mostly because it increases the effectiveness of the other
3785   // filter optimizations below.
3786   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
3787     unsigned j;
3788     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
3789     for (j = i; j != e; ++j)
3790       if (!isa<ArrayType>(NewClauses[j]->getType()))
3791         break;
3792 
3793     // Check whether the filters are already sorted by length.  We need to know
3794     // if sorting them is actually going to do anything so that we only make a
3795     // new landingpad instruction if it does.
3796     for (unsigned k = i; k + 1 < j; ++k)
3797       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
3798         // Not sorted, so sort the filters now.  Doing an unstable sort would be
3799         // correct too but reordering filters pointlessly might confuse users.
3800         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
3801                          shorter_filter);
3802         MakeNewInstruction = true;
3803         break;
3804       }
3805 
3806     // Look for the next batch of filters.
3807     i = j + 1;
3808   }
3809 
3810   // If typeinfos matched if and only if equal, then the elements of a filter L
3811   // that occurs later than a filter F could be replaced by the intersection of
3812   // the elements of F and L.  In reality two typeinfos can match without being
3813   // equal (for example if one represents a C++ class, and the other some class
3814   // derived from it) so it would be wrong to perform this transform in general.
3815   // However the transform is correct and useful if F is a subset of L.  In that
3816   // case L can be replaced by F, and thus removed altogether since repeating a
3817   // filter is pointless.  So here we look at all pairs of filters F and L where
3818   // L follows F in the list of clauses, and remove L if every element of F is
3819   // an element of L.  This can occur when inlining C++ functions with exception
3820   // specifications.
3821   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
3822     // Examine each filter in turn.
3823     Value *Filter = NewClauses[i];
3824     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
3825     if (!FTy)
3826       // Not a filter - skip it.
3827       continue;
3828     unsigned FElts = FTy->getNumElements();
3829     // Examine each filter following this one.  Doing this backwards means that
3830     // we don't have to worry about filters disappearing under us when removed.
3831     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
3832       Value *LFilter = NewClauses[j];
3833       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
3834       if (!LTy)
3835         // Not a filter - skip it.
3836         continue;
3837       // If Filter is a subset of LFilter, i.e. every element of Filter is also
3838       // an element of LFilter, then discard LFilter.
3839       SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
3840       // If Filter is empty then it is a subset of LFilter.
3841       if (!FElts) {
3842         // Discard LFilter.
3843         NewClauses.erase(J);
3844         MakeNewInstruction = true;
3845         // Move on to the next filter.
3846         continue;
3847       }
3848       unsigned LElts = LTy->getNumElements();
3849       // If Filter is longer than LFilter then it cannot be a subset of it.
3850       if (FElts > LElts)
3851         // Move on to the next filter.
3852         continue;
3853       // At this point we know that LFilter has at least one element.
3854       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
3855         // Filter is a subset of LFilter iff Filter contains only zeros (as we
3856         // already know that Filter is not longer than LFilter).
3857         if (isa<ConstantAggregateZero>(Filter)) {
3858           assert(FElts <= LElts && "Should have handled this case earlier!");
3859           // Discard LFilter.
3860           NewClauses.erase(J);
3861           MakeNewInstruction = true;
3862         }
3863         // Move on to the next filter.
3864         continue;
3865       }
3866       ConstantArray *LArray = cast<ConstantArray>(LFilter);
3867       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
3868         // Since Filter is non-empty and contains only zeros, it is a subset of
3869         // LFilter iff LFilter contains a zero.
3870         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
3871         for (unsigned l = 0; l != LElts; ++l)
3872           if (LArray->getOperand(l)->isNullValue()) {
3873             // LFilter contains a zero - discard it.
3874             NewClauses.erase(J);
3875             MakeNewInstruction = true;
3876             break;
3877           }
3878         // Move on to the next filter.
3879         continue;
3880       }
3881       // At this point we know that both filters are ConstantArrays.  Loop over
3882       // operands to see whether every element of Filter is also an element of
3883       // LFilter.  Since filters tend to be short this is probably faster than
3884       // using a method that scales nicely.
3885       ConstantArray *FArray = cast<ConstantArray>(Filter);
3886       bool AllFound = true;
3887       for (unsigned f = 0; f != FElts; ++f) {
3888         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3889         AllFound = false;
3890         for (unsigned l = 0; l != LElts; ++l) {
3891           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3892           if (LTypeInfo == FTypeInfo) {
3893             AllFound = true;
3894             break;
3895           }
3896         }
3897         if (!AllFound)
3898           break;
3899       }
3900       if (AllFound) {
3901         // Discard LFilter.
3902         NewClauses.erase(J);
3903         MakeNewInstruction = true;
3904       }
3905       // Move on to the next filter.
3906     }
3907   }
3908 
3909   // If we changed any of the clauses, replace the old landingpad instruction
3910   // with a new one.
3911   if (MakeNewInstruction) {
3912     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3913                                                  NewClauses.size());
3914     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3915       NLI->addClause(NewClauses[i]);
3916     // A landing pad with no clauses must have the cleanup flag set.  It is
3917     // theoretically possible, though highly unlikely, that we eliminated all
3918     // clauses.  If so, force the cleanup flag to true.
3919     if (NewClauses.empty())
3920       CleanupFlag = true;
3921     NLI->setCleanup(CleanupFlag);
3922     return NLI;
3923   }
3924 
3925   // Even if none of the clauses changed, we may nonetheless have understood
3926   // that the cleanup flag is pointless.  Clear it if so.
3927   if (LI.isCleanup() != CleanupFlag) {
3928     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3929     LI.setCleanup(CleanupFlag);
3930     return &LI;
3931   }
3932 
3933   return nullptr;
3934 }
3935 
3936 Value *
3937 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) {
3938   // Try to push freeze through instructions that propagate but don't produce
3939   // poison as far as possible.  If an operand of freeze follows three
3940   // conditions 1) one-use, 2) does not produce poison, and 3) has all but one
3941   // guaranteed-non-poison operands then push the freeze through to the one
3942   // operand that is not guaranteed non-poison.  The actual transform is as
3943   // follows.
3944   //   Op1 = ...                        ; Op1 can be posion
3945   //   Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have
3946   //                                    ; single guaranteed-non-poison operands
3947   //   ... = Freeze(Op0)
3948   // =>
3949   //   Op1 = ...
3950   //   Op1.fr = Freeze(Op1)
3951   //   ... = Inst(Op1.fr, NonPoisonOps...)
3952   auto *OrigOp = OrigFI.getOperand(0);
3953   auto *OrigOpInst = dyn_cast<Instruction>(OrigOp);
3954 
3955   // While we could change the other users of OrigOp to use freeze(OrigOp), that
3956   // potentially reduces their optimization potential, so let's only do this iff
3957   // the OrigOp is only used by the freeze.
3958   if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp))
3959     return nullptr;
3960 
3961   // We can't push the freeze through an instruction which can itself create
3962   // poison.  If the only source of new poison is flags, we can simply
3963   // strip them (since we know the only use is the freeze and nothing can
3964   // benefit from them.)
3965   if (canCreateUndefOrPoison(cast<Operator>(OrigOp),
3966                              /*ConsiderFlagsAndMetadata*/ false))
3967     return nullptr;
3968 
3969   // If operand is guaranteed not to be poison, there is no need to add freeze
3970   // to the operand. So we first find the operand that is not guaranteed to be
3971   // poison.
3972   Use *MaybePoisonOperand = nullptr;
3973   for (Use &U : OrigOpInst->operands()) {
3974     if (isa<MetadataAsValue>(U.get()) ||
3975         isGuaranteedNotToBeUndefOrPoison(U.get()))
3976       continue;
3977     if (!MaybePoisonOperand)
3978       MaybePoisonOperand = &U;
3979     else
3980       return nullptr;
3981   }
3982 
3983   OrigOpInst->dropPoisonGeneratingFlagsAndMetadata();
3984 
3985   // If all operands are guaranteed to be non-poison, we can drop freeze.
3986   if (!MaybePoisonOperand)
3987     return OrigOp;
3988 
3989   Builder.SetInsertPoint(OrigOpInst);
3990   auto *FrozenMaybePoisonOperand = Builder.CreateFreeze(
3991       MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr");
3992 
3993   replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand);
3994   return OrigOp;
3995 }
3996 
3997 Instruction *InstCombinerImpl::foldFreezeIntoRecurrence(FreezeInst &FI,
3998                                                         PHINode *PN) {
3999   // Detect whether this is a recurrence with a start value and some number of
4000   // backedge values. We'll check whether we can push the freeze through the
4001   // backedge values (possibly dropping poison flags along the way) until we
4002   // reach the phi again. In that case, we can move the freeze to the start
4003   // value.
4004   Use *StartU = nullptr;
4005   SmallVector<Value *> Worklist;
4006   for (Use &U : PN->incoming_values()) {
4007     if (DT.dominates(PN->getParent(), PN->getIncomingBlock(U))) {
4008       // Add backedge value to worklist.
4009       Worklist.push_back(U.get());
4010       continue;
4011     }
4012 
4013     // Don't bother handling multiple start values.
4014     if (StartU)
4015       return nullptr;
4016     StartU = &U;
4017   }
4018 
4019   if (!StartU || Worklist.empty())
4020     return nullptr; // Not a recurrence.
4021 
4022   Value *StartV = StartU->get();
4023   BasicBlock *StartBB = PN->getIncomingBlock(*StartU);
4024   bool StartNeedsFreeze = !isGuaranteedNotToBeUndefOrPoison(StartV);
4025   // We can't insert freeze if the start value is the result of the
4026   // terminator (e.g. an invoke).
4027   if (StartNeedsFreeze && StartBB->getTerminator() == StartV)
4028     return nullptr;
4029 
4030   SmallPtrSet<Value *, 32> Visited;
4031   SmallVector<Instruction *> DropFlags;
4032   while (!Worklist.empty()) {
4033     Value *V = Worklist.pop_back_val();
4034     if (!Visited.insert(V).second)
4035       continue;
4036 
4037     if (Visited.size() > 32)
4038       return nullptr; // Limit the total number of values we inspect.
4039 
4040     // Assume that PN is non-poison, because it will be after the transform.
4041     if (V == PN || isGuaranteedNotToBeUndefOrPoison(V))
4042       continue;
4043 
4044     Instruction *I = dyn_cast<Instruction>(V);
4045     if (!I || canCreateUndefOrPoison(cast<Operator>(I),
4046                                      /*ConsiderFlagsAndMetadata*/ false))
4047       return nullptr;
4048 
4049     DropFlags.push_back(I);
4050     append_range(Worklist, I->operands());
4051   }
4052 
4053   for (Instruction *I : DropFlags)
4054     I->dropPoisonGeneratingFlagsAndMetadata();
4055 
4056   if (StartNeedsFreeze) {
4057     Builder.SetInsertPoint(StartBB->getTerminator());
4058     Value *FrozenStartV = Builder.CreateFreeze(StartV,
4059                                                StartV->getName() + ".fr");
4060     replaceUse(*StartU, FrozenStartV);
4061   }
4062   return replaceInstUsesWith(FI, PN);
4063 }
4064 
4065 bool InstCombinerImpl::freezeOtherUses(FreezeInst &FI) {
4066   Value *Op = FI.getOperand(0);
4067 
4068   if (isa<Constant>(Op) || Op->hasOneUse())
4069     return false;
4070 
4071   // Move the freeze directly after the definition of its operand, so that
4072   // it dominates the maximum number of uses. Note that it may not dominate
4073   // *all* uses if the operand is an invoke/callbr and the use is in a phi on
4074   // the normal/default destination. This is why the domination check in the
4075   // replacement below is still necessary.
4076   BasicBlock::iterator MoveBefore;
4077   if (isa<Argument>(Op)) {
4078     MoveBefore =
4079         FI.getFunction()->getEntryBlock().getFirstNonPHIOrDbgOrAlloca();
4080   } else {
4081     auto MoveBeforeOpt = cast<Instruction>(Op)->getInsertionPointAfterDef();
4082     if (!MoveBeforeOpt)
4083       return false;
4084     MoveBefore = *MoveBeforeOpt;
4085   }
4086 
4087   // Don't move to the position of a debug intrinsic.
4088   if (isa<DbgInfoIntrinsic>(MoveBefore))
4089     MoveBefore = MoveBefore->getNextNonDebugInstruction()->getIterator();
4090   // Re-point iterator to come after any debug-info records, if we're
4091   // running in "RemoveDIs" mode
4092   MoveBefore.setHeadBit(false);
4093 
4094   bool Changed = false;
4095   if (&FI != &*MoveBefore) {
4096     FI.moveBefore(*MoveBefore->getParent(), MoveBefore);
4097     Changed = true;
4098   }
4099 
4100   Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool {
4101     bool Dominates = DT.dominates(&FI, U);
4102     Changed |= Dominates;
4103     return Dominates;
4104   });
4105 
4106   return Changed;
4107 }
4108 
4109 // Check if any direct or bitcast user of this value is a shuffle instruction.
4110 static bool isUsedWithinShuffleVector(Value *V) {
4111   for (auto *U : V->users()) {
4112     if (isa<ShuffleVectorInst>(U))
4113       return true;
4114     else if (match(U, m_BitCast(m_Specific(V))) && isUsedWithinShuffleVector(U))
4115       return true;
4116   }
4117   return false;
4118 }
4119 
4120 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) {
4121   Value *Op0 = I.getOperand(0);
4122 
4123   if (Value *V = simplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
4124     return replaceInstUsesWith(I, V);
4125 
4126   // freeze (phi const, x) --> phi const, (freeze x)
4127   if (auto *PN = dyn_cast<PHINode>(Op0)) {
4128     if (Instruction *NV = foldOpIntoPhi(I, PN))
4129       return NV;
4130     if (Instruction *NV = foldFreezeIntoRecurrence(I, PN))
4131       return NV;
4132   }
4133 
4134   if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I))
4135     return replaceInstUsesWith(I, NI);
4136 
4137   // If I is freeze(undef), check its uses and fold it to a fixed constant.
4138   // - or: pick -1
4139   // - select's condition: if the true value is constant, choose it by making
4140   //                       the condition true.
4141   // - default: pick 0
4142   //
4143   // Note that this transform is intentionally done here rather than
4144   // via an analysis in InstSimplify or at individual user sites. That is
4145   // because we must produce the same value for all uses of the freeze -
4146   // it's the reason "freeze" exists!
4147   //
4148   // TODO: This could use getBinopAbsorber() / getBinopIdentity() to avoid
4149   //       duplicating logic for binops at least.
4150   auto getUndefReplacement = [&I](Type *Ty) {
4151     Constant *BestValue = nullptr;
4152     Constant *NullValue = Constant::getNullValue(Ty);
4153     for (const auto *U : I.users()) {
4154       Constant *C = NullValue;
4155       if (match(U, m_Or(m_Value(), m_Value())))
4156         C = ConstantInt::getAllOnesValue(Ty);
4157       else if (match(U, m_Select(m_Specific(&I), m_Constant(), m_Value())))
4158         C = ConstantInt::getTrue(Ty);
4159 
4160       if (!BestValue)
4161         BestValue = C;
4162       else if (BestValue != C)
4163         BestValue = NullValue;
4164     }
4165     assert(BestValue && "Must have at least one use");
4166     return BestValue;
4167   };
4168 
4169   if (match(Op0, m_Undef())) {
4170     // Don't fold freeze(undef/poison) if it's used as a vector operand in
4171     // a shuffle. This may improve codegen for shuffles that allow
4172     // unspecified inputs.
4173     if (isUsedWithinShuffleVector(&I))
4174       return nullptr;
4175     return replaceInstUsesWith(I, getUndefReplacement(I.getType()));
4176   }
4177 
4178   Constant *C;
4179   if (match(Op0, m_Constant(C)) && C->containsUndefOrPoisonElement()) {
4180     Constant *ReplaceC = getUndefReplacement(I.getType()->getScalarType());
4181     return replaceInstUsesWith(I, Constant::replaceUndefsWith(C, ReplaceC));
4182   }
4183 
4184   // Replace uses of Op with freeze(Op).
4185   if (freezeOtherUses(I))
4186     return &I;
4187 
4188   return nullptr;
4189 }
4190 
4191 /// Check for case where the call writes to an otherwise dead alloca.  This
4192 /// shows up for unused out-params in idiomatic C/C++ code.   Note that this
4193 /// helper *only* analyzes the write; doesn't check any other legality aspect.
4194 static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) {
4195   auto *CB = dyn_cast<CallBase>(I);
4196   if (!CB)
4197     // TODO: handle e.g. store to alloca here - only worth doing if we extend
4198     // to allow reload along used path as described below.  Otherwise, this
4199     // is simply a store to a dead allocation which will be removed.
4200     return false;
4201   std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI);
4202   if (!Dest)
4203     return false;
4204   auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr));
4205   if (!AI)
4206     // TODO: allow malloc?
4207     return false;
4208   // TODO: allow memory access dominated by move point?  Note that since AI
4209   // could have a reference to itself captured by the call, we would need to
4210   // account for cycles in doing so.
4211   SmallVector<const User *> AllocaUsers;
4212   SmallPtrSet<const User *, 4> Visited;
4213   auto pushUsers = [&](const Instruction &I) {
4214     for (const User *U : I.users()) {
4215       if (Visited.insert(U).second)
4216         AllocaUsers.push_back(U);
4217     }
4218   };
4219   pushUsers(*AI);
4220   while (!AllocaUsers.empty()) {
4221     auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val());
4222     if (isa<BitCastInst>(UserI) || isa<GetElementPtrInst>(UserI) ||
4223         isa<AddrSpaceCastInst>(UserI)) {
4224       pushUsers(*UserI);
4225       continue;
4226     }
4227     if (UserI == CB)
4228       continue;
4229     // TODO: support lifetime.start/end here
4230     return false;
4231   }
4232   return true;
4233 }
4234 
4235 /// Try to move the specified instruction from its current block into the
4236 /// beginning of DestBlock, which can only happen if it's safe to move the
4237 /// instruction past all of the instructions between it and the end of its
4238 /// block.
4239 bool InstCombinerImpl::tryToSinkInstruction(Instruction *I,
4240                                             BasicBlock *DestBlock) {
4241   BasicBlock *SrcBlock = I->getParent();
4242 
4243   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
4244   if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() ||
4245       I->isTerminator())
4246     return false;
4247 
4248   // Do not sink static or dynamic alloca instructions. Static allocas must
4249   // remain in the entry block, and dynamic allocas must not be sunk in between
4250   // a stacksave / stackrestore pair, which would incorrectly shorten its
4251   // lifetime.
4252   if (isa<AllocaInst>(I))
4253     return false;
4254 
4255   // Do not sink into catchswitch blocks.
4256   if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
4257     return false;
4258 
4259   // Do not sink convergent call instructions.
4260   if (auto *CI = dyn_cast<CallInst>(I)) {
4261     if (CI->isConvergent())
4262       return false;
4263   }
4264 
4265   // Unless we can prove that the memory write isn't visibile except on the
4266   // path we're sinking to, we must bail.
4267   if (I->mayWriteToMemory()) {
4268     if (!SoleWriteToDeadLocal(I, TLI))
4269       return false;
4270   }
4271 
4272   // We can only sink load instructions if there is nothing between the load and
4273   // the end of block that could change the value.
4274   if (I->mayReadFromMemory()) {
4275     // We don't want to do any sophisticated alias analysis, so we only check
4276     // the instructions after I in I's parent block if we try to sink to its
4277     // successor block.
4278     if (DestBlock->getUniquePredecessor() != I->getParent())
4279       return false;
4280     for (BasicBlock::iterator Scan = std::next(I->getIterator()),
4281                               E = I->getParent()->end();
4282          Scan != E; ++Scan)
4283       if (Scan->mayWriteToMemory())
4284         return false;
4285   }
4286 
4287   I->dropDroppableUses([&](const Use *U) {
4288     auto *I = dyn_cast<Instruction>(U->getUser());
4289     if (I && I->getParent() != DestBlock) {
4290       Worklist.add(I);
4291       return true;
4292     }
4293     return false;
4294   });
4295   /// FIXME: We could remove droppable uses that are not dominated by
4296   /// the new position.
4297 
4298   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
4299   I->moveBefore(*DestBlock, InsertPos);
4300   ++NumSunkInst;
4301 
4302   // Also sink all related debug uses from the source basic block. Otherwise we
4303   // get debug use before the def. Attempt to salvage debug uses first, to
4304   // maximise the range variables have location for. If we cannot salvage, then
4305   // mark the location undef: we know it was supposed to receive a new location
4306   // here, but that computation has been sunk.
4307   SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
4308   findDbgUsers(DbgUsers, I);
4309 
4310   // For all debug values in the destination block, the sunk instruction
4311   // will still be available, so they do not need to be dropped.
4312   SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSalvage;
4313   SmallVector<DPValue *, 2> DPValuesToSalvage;
4314   for (auto &DbgUser : DbgUsers)
4315     if (DbgUser->getParent() != DestBlock)
4316       DbgUsersToSalvage.push_back(DbgUser);
4317 
4318   // Process the sinking DbgUsersToSalvage in reverse order, as we only want
4319   // to clone the last appearing debug intrinsic for each given variable.
4320   SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink;
4321   for (DbgVariableIntrinsic *DVI : DbgUsersToSalvage)
4322     if (DVI->getParent() == SrcBlock)
4323       DbgUsersToSink.push_back(DVI);
4324   llvm::sort(DbgUsersToSink,
4325              [](auto *A, auto *B) { return B->comesBefore(A); });
4326 
4327   SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
4328   SmallSet<DebugVariable, 4> SunkVariables;
4329   for (auto *User : DbgUsersToSink) {
4330     // A dbg.declare instruction should not be cloned, since there can only be
4331     // one per variable fragment. It should be left in the original place
4332     // because the sunk instruction is not an alloca (otherwise we could not be
4333     // here).
4334     if (isa<DbgDeclareInst>(User))
4335       continue;
4336 
4337     DebugVariable DbgUserVariable =
4338         DebugVariable(User->getVariable(), User->getExpression(),
4339                       User->getDebugLoc()->getInlinedAt());
4340 
4341     if (!SunkVariables.insert(DbgUserVariable).second)
4342       continue;
4343 
4344     // Leave dbg.assign intrinsics in their original positions and there should
4345     // be no need to insert a clone.
4346     if (isa<DbgAssignIntrinsic>(User))
4347       continue;
4348 
4349     DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
4350     if (isa<DbgDeclareInst>(User) && isa<CastInst>(I))
4351       DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0));
4352     LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
4353   }
4354 
4355   // Perform salvaging without the clones, then sink the clones.
4356   if (!DIIClones.empty()) {
4357     // RemoveDIs: pass in empty vector of DPValues until we get to instrumenting
4358     // this pass.
4359     SmallVector<DPValue *, 1> DummyDPValues;
4360     salvageDebugInfoForDbgValues(*I, DbgUsersToSalvage, DummyDPValues);
4361     // The clones are in reverse order of original appearance, reverse again to
4362     // maintain the original order.
4363     for (auto &DIIClone : llvm::reverse(DIIClones)) {
4364       DIIClone->insertBefore(&*InsertPos);
4365       LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
4366     }
4367   }
4368 
4369   return true;
4370 }
4371 
4372 bool InstCombinerImpl::run() {
4373   while (!Worklist.isEmpty()) {
4374     // Walk deferred instructions in reverse order, and push them to the
4375     // worklist, which means they'll end up popped from the worklist in-order.
4376     while (Instruction *I = Worklist.popDeferred()) {
4377       // Check to see if we can DCE the instruction. We do this already here to
4378       // reduce the number of uses and thus allow other folds to trigger.
4379       // Note that eraseInstFromFunction() may push additional instructions on
4380       // the deferred worklist, so this will DCE whole instruction chains.
4381       if (isInstructionTriviallyDead(I, &TLI)) {
4382         eraseInstFromFunction(*I);
4383         ++NumDeadInst;
4384         continue;
4385       }
4386 
4387       Worklist.push(I);
4388     }
4389 
4390     Instruction *I = Worklist.removeOne();
4391     if (I == nullptr) continue;  // skip null values.
4392 
4393     // Check to see if we can DCE the instruction.
4394     if (isInstructionTriviallyDead(I, &TLI)) {
4395       eraseInstFromFunction(*I);
4396       ++NumDeadInst;
4397       continue;
4398     }
4399 
4400     if (!DebugCounter::shouldExecute(VisitCounter))
4401       continue;
4402 
4403     // See if we can trivially sink this instruction to its user if we can
4404     // prove that the successor is not executed more frequently than our block.
4405     // Return the UserBlock if successful.
4406     auto getOptionalSinkBlockForInst =
4407         [this](Instruction *I) -> std::optional<BasicBlock *> {
4408       if (!EnableCodeSinking)
4409         return std::nullopt;
4410 
4411       BasicBlock *BB = I->getParent();
4412       BasicBlock *UserParent = nullptr;
4413       unsigned NumUsers = 0;
4414 
4415       for (auto *U : I->users()) {
4416         if (U->isDroppable())
4417           continue;
4418         if (NumUsers > MaxSinkNumUsers)
4419           return std::nullopt;
4420 
4421         Instruction *UserInst = cast<Instruction>(U);
4422         // Special handling for Phi nodes - get the block the use occurs in.
4423         if (PHINode *PN = dyn_cast<PHINode>(UserInst)) {
4424           for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
4425             if (PN->getIncomingValue(i) == I) {
4426               // Bail out if we have uses in different blocks. We don't do any
4427               // sophisticated analysis (i.e finding NearestCommonDominator of
4428               // these use blocks).
4429               if (UserParent && UserParent != PN->getIncomingBlock(i))
4430                 return std::nullopt;
4431               UserParent = PN->getIncomingBlock(i);
4432             }
4433           }
4434           assert(UserParent && "expected to find user block!");
4435         } else {
4436           if (UserParent && UserParent != UserInst->getParent())
4437             return std::nullopt;
4438           UserParent = UserInst->getParent();
4439         }
4440 
4441         // Make sure these checks are done only once, naturally we do the checks
4442         // the first time we get the userparent, this will save compile time.
4443         if (NumUsers == 0) {
4444           // Try sinking to another block. If that block is unreachable, then do
4445           // not bother. SimplifyCFG should handle it.
4446           if (UserParent == BB || !DT.isReachableFromEntry(UserParent))
4447             return std::nullopt;
4448 
4449           auto *Term = UserParent->getTerminator();
4450           // See if the user is one of our successors that has only one
4451           // predecessor, so that we don't have to split the critical edge.
4452           // Another option where we can sink is a block that ends with a
4453           // terminator that does not pass control to other block (such as
4454           // return or unreachable or resume). In this case:
4455           //   - I dominates the User (by SSA form);
4456           //   - the User will be executed at most once.
4457           // So sinking I down to User is always profitable or neutral.
4458           if (UserParent->getUniquePredecessor() != BB && !succ_empty(Term))
4459             return std::nullopt;
4460 
4461           assert(DT.dominates(BB, UserParent) && "Dominance relation broken?");
4462         }
4463 
4464         NumUsers++;
4465       }
4466 
4467       // No user or only has droppable users.
4468       if (!UserParent)
4469         return std::nullopt;
4470 
4471       return UserParent;
4472     };
4473 
4474     auto OptBB = getOptionalSinkBlockForInst(I);
4475     if (OptBB) {
4476       auto *UserParent = *OptBB;
4477       // Okay, the CFG is simple enough, try to sink this instruction.
4478       if (tryToSinkInstruction(I, UserParent)) {
4479         LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
4480         MadeIRChange = true;
4481         // We'll add uses of the sunk instruction below, but since
4482         // sinking can expose opportunities for it's *operands* add
4483         // them to the worklist
4484         for (Use &U : I->operands())
4485           if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
4486             Worklist.push(OpI);
4487       }
4488     }
4489 
4490     // Now that we have an instruction, try combining it to simplify it.
4491     Builder.SetInsertPoint(I);
4492     Builder.CollectMetadataToCopy(
4493         I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
4494 
4495 #ifndef NDEBUG
4496     std::string OrigI;
4497 #endif
4498     LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
4499     LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
4500 
4501     if (Instruction *Result = visit(*I)) {
4502       ++NumCombined;
4503       // Should we replace the old instruction with a new one?
4504       if (Result != I) {
4505         LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
4506                           << "    New = " << *Result << '\n');
4507 
4508         Result->copyMetadata(*I,
4509                              {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
4510         // Everything uses the new instruction now.
4511         I->replaceAllUsesWith(Result);
4512 
4513         // Move the name to the new instruction first.
4514         Result->takeName(I);
4515 
4516         // Insert the new instruction into the basic block...
4517         BasicBlock *InstParent = I->getParent();
4518         BasicBlock::iterator InsertPos = I->getIterator();
4519 
4520         // Are we replace a PHI with something that isn't a PHI, or vice versa?
4521         if (isa<PHINode>(Result) != isa<PHINode>(I)) {
4522           // We need to fix up the insertion point.
4523           if (isa<PHINode>(I)) // PHI -> Non-PHI
4524             InsertPos = InstParent->getFirstInsertionPt();
4525           else // Non-PHI -> PHI
4526             InsertPos = InstParent->getFirstNonPHIIt();
4527         }
4528 
4529         Result->insertInto(InstParent, InsertPos);
4530 
4531         // Push the new instruction and any users onto the worklist.
4532         Worklist.pushUsersToWorkList(*Result);
4533         Worklist.push(Result);
4534 
4535         eraseInstFromFunction(*I);
4536       } else {
4537         LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
4538                           << "    New = " << *I << '\n');
4539 
4540         // If the instruction was modified, it's possible that it is now dead.
4541         // if so, remove it.
4542         if (isInstructionTriviallyDead(I, &TLI)) {
4543           eraseInstFromFunction(*I);
4544         } else {
4545           Worklist.pushUsersToWorkList(*I);
4546           Worklist.push(I);
4547         }
4548       }
4549       MadeIRChange = true;
4550     }
4551   }
4552 
4553   Worklist.zap();
4554   return MadeIRChange;
4555 }
4556 
4557 // Track the scopes used by !alias.scope and !noalias. In a function, a
4558 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used
4559 // by both sets. If not, the declaration of the scope can be safely omitted.
4560 // The MDNode of the scope can be omitted as well for the instructions that are
4561 // part of this function. We do not do that at this point, as this might become
4562 // too time consuming to do.
4563 class AliasScopeTracker {
4564   SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists;
4565   SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists;
4566 
4567 public:
4568   void analyse(Instruction *I) {
4569     // This seems to be faster than checking 'mayReadOrWriteMemory()'.
4570     if (!I->hasMetadataOtherThanDebugLoc())
4571       return;
4572 
4573     auto Track = [](Metadata *ScopeList, auto &Container) {
4574       const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
4575       if (!MDScopeList || !Container.insert(MDScopeList).second)
4576         return;
4577       for (const auto &MDOperand : MDScopeList->operands())
4578         if (auto *MDScope = dyn_cast<MDNode>(MDOperand))
4579           Container.insert(MDScope);
4580     };
4581 
4582     Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
4583     Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
4584   }
4585 
4586   bool isNoAliasScopeDeclDead(Instruction *Inst) {
4587     NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst);
4588     if (!Decl)
4589       return false;
4590 
4591     assert(Decl->use_empty() &&
4592            "llvm.experimental.noalias.scope.decl in use ?");
4593     const MDNode *MDSL = Decl->getScopeList();
4594     assert(MDSL->getNumOperands() == 1 &&
4595            "llvm.experimental.noalias.scope should refer to a single scope");
4596     auto &MDOperand = MDSL->getOperand(0);
4597     if (auto *MD = dyn_cast<MDNode>(MDOperand))
4598       return !UsedAliasScopesAndLists.contains(MD) ||
4599              !UsedNoAliasScopesAndLists.contains(MD);
4600 
4601     // Not an MDNode ? throw away.
4602     return true;
4603   }
4604 };
4605 
4606 /// Populate the IC worklist from a function, by walking it in reverse
4607 /// post-order and adding all reachable code to the worklist.
4608 ///
4609 /// This has a couple of tricks to make the code faster and more powerful.  In
4610 /// particular, we constant fold and DCE instructions as we go, to avoid adding
4611 /// them to the worklist (this significantly speeds up instcombine on code where
4612 /// many instructions are dead or constant).  Additionally, if we find a branch
4613 /// whose condition is a known constant, we only visit the reachable successors.
4614 bool InstCombinerImpl::prepareWorklist(
4615     Function &F, ReversePostOrderTraversal<BasicBlock *> &RPOT) {
4616   bool MadeIRChange = false;
4617   SmallPtrSet<BasicBlock *, 32> LiveBlocks;
4618   SmallVector<Instruction *, 128> InstrsForInstructionWorklist;
4619   DenseMap<Constant *, Constant *> FoldedConstants;
4620   AliasScopeTracker SeenAliasScopes;
4621 
4622   auto HandleOnlyLiveSuccessor = [&](BasicBlock *BB, BasicBlock *LiveSucc) {
4623     for (BasicBlock *Succ : successors(BB))
4624       if (Succ != LiveSucc && DeadEdges.insert({BB, Succ}).second)
4625         for (PHINode &PN : Succ->phis())
4626           for (Use &U : PN.incoming_values())
4627             if (PN.getIncomingBlock(U) == BB && !isa<PoisonValue>(U)) {
4628               U.set(PoisonValue::get(PN.getType()));
4629               MadeIRChange = true;
4630             }
4631   };
4632 
4633   for (BasicBlock *BB : RPOT) {
4634     if (!BB->isEntryBlock() && all_of(predecessors(BB), [&](BasicBlock *Pred) {
4635           return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred);
4636         })) {
4637       HandleOnlyLiveSuccessor(BB, nullptr);
4638       continue;
4639     }
4640     LiveBlocks.insert(BB);
4641 
4642     for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
4643       // ConstantProp instruction if trivially constant.
4644       if (!Inst.use_empty() &&
4645           (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0))))
4646         if (Constant *C = ConstantFoldInstruction(&Inst, DL, &TLI)) {
4647           LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst
4648                             << '\n');
4649           Inst.replaceAllUsesWith(C);
4650           ++NumConstProp;
4651           if (isInstructionTriviallyDead(&Inst, &TLI))
4652             Inst.eraseFromParent();
4653           MadeIRChange = true;
4654           continue;
4655         }
4656 
4657       // See if we can constant fold its operands.
4658       for (Use &U : Inst.operands()) {
4659         if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
4660           continue;
4661 
4662         auto *C = cast<Constant>(U);
4663         Constant *&FoldRes = FoldedConstants[C];
4664         if (!FoldRes)
4665           FoldRes = ConstantFoldConstant(C, DL, &TLI);
4666 
4667         if (FoldRes != C) {
4668           LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst
4669                             << "\n    Old = " << *C
4670                             << "\n    New = " << *FoldRes << '\n');
4671           U = FoldRes;
4672           MadeIRChange = true;
4673         }
4674       }
4675 
4676       // Skip processing debug and pseudo intrinsics in InstCombine. Processing
4677       // these call instructions consumes non-trivial amount of time and
4678       // provides no value for the optimization.
4679       if (!Inst.isDebugOrPseudoInst()) {
4680         InstrsForInstructionWorklist.push_back(&Inst);
4681         SeenAliasScopes.analyse(&Inst);
4682       }
4683     }
4684 
4685     // If this is a branch or switch on a constant, mark only the single
4686     // live successor. Otherwise assume all successors are live.
4687     Instruction *TI = BB->getTerminator();
4688     if (BranchInst *BI = dyn_cast<BranchInst>(TI); BI && BI->isConditional()) {
4689       if (isa<UndefValue>(BI->getCondition())) {
4690         // Branch on undef is UB.
4691         HandleOnlyLiveSuccessor(BB, nullptr);
4692         continue;
4693       }
4694       if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
4695         bool CondVal = Cond->getZExtValue();
4696         HandleOnlyLiveSuccessor(BB, BI->getSuccessor(!CondVal));
4697         continue;
4698       }
4699     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
4700       if (isa<UndefValue>(SI->getCondition())) {
4701         // Switch on undef is UB.
4702         HandleOnlyLiveSuccessor(BB, nullptr);
4703         continue;
4704       }
4705       if (auto *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
4706         HandleOnlyLiveSuccessor(BB,
4707                                 SI->findCaseValue(Cond)->getCaseSuccessor());
4708         continue;
4709       }
4710     }
4711   }
4712 
4713   // Remove instructions inside unreachable blocks. This prevents the
4714   // instcombine code from having to deal with some bad special cases, and
4715   // reduces use counts of instructions.
4716   for (BasicBlock &BB : F) {
4717     if (LiveBlocks.count(&BB))
4718       continue;
4719 
4720     unsigned NumDeadInstInBB;
4721     unsigned NumDeadDbgInstInBB;
4722     std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) =
4723         removeAllNonTerminatorAndEHPadInstructions(&BB);
4724 
4725     MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0;
4726     NumDeadInst += NumDeadInstInBB;
4727   }
4728 
4729   // Once we've found all of the instructions to add to instcombine's worklist,
4730   // add them in reverse order.  This way instcombine will visit from the top
4731   // of the function down.  This jives well with the way that it adds all uses
4732   // of instructions to the worklist after doing a transformation, thus avoiding
4733   // some N^2 behavior in pathological cases.
4734   Worklist.reserve(InstrsForInstructionWorklist.size());
4735   for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) {
4736     // DCE instruction if trivially dead. As we iterate in reverse program
4737     // order here, we will clean up whole chains of dead instructions.
4738     if (isInstructionTriviallyDead(Inst, &TLI) ||
4739         SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) {
4740       ++NumDeadInst;
4741       LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
4742       salvageDebugInfo(*Inst);
4743       Inst->eraseFromParent();
4744       MadeIRChange = true;
4745       continue;
4746     }
4747 
4748     Worklist.push(Inst);
4749   }
4750 
4751   return MadeIRChange;
4752 }
4753 
4754 static bool combineInstructionsOverFunction(
4755     Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA,
4756     AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
4757     DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
4758     ProfileSummaryInfo *PSI, LoopInfo *LI, const InstCombineOptions &Opts) {
4759   auto &DL = F.getParent()->getDataLayout();
4760 
4761   /// Builder - This is an IRBuilder that automatically inserts new
4762   /// instructions into the worklist when they are created.
4763   IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
4764       F.getContext(), TargetFolder(DL),
4765       IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
4766         Worklist.add(I);
4767         if (auto *Assume = dyn_cast<AssumeInst>(I))
4768           AC.registerAssumption(Assume);
4769       }));
4770 
4771   ReversePostOrderTraversal<BasicBlock *> RPOT(&F.front());
4772 
4773   // Lower dbg.declare intrinsics otherwise their value may be clobbered
4774   // by instcombiner.
4775   bool MadeIRChange = false;
4776   if (ShouldLowerDbgDeclare)
4777     MadeIRChange = LowerDbgDeclare(F);
4778 
4779   // Iterate while there is work to do.
4780   unsigned Iteration = 0;
4781   while (true) {
4782     ++Iteration;
4783 
4784     if (Iteration > Opts.MaxIterations && !Opts.VerifyFixpoint) {
4785       LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << Opts.MaxIterations
4786                         << " on " << F.getName()
4787                         << " reached; stopping without verifying fixpoint\n");
4788       break;
4789     }
4790 
4791     ++NumWorklistIterations;
4792     LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
4793                       << F.getName() << "\n");
4794 
4795     InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT,
4796                         ORE, BFI, PSI, DL, LI);
4797     IC.MaxArraySizeForCombine = MaxArraySize;
4798     bool MadeChangeInThisIteration = IC.prepareWorklist(F, RPOT);
4799     MadeChangeInThisIteration |= IC.run();
4800     if (!MadeChangeInThisIteration)
4801       break;
4802 
4803     MadeIRChange = true;
4804     if (Iteration > Opts.MaxIterations) {
4805       report_fatal_error(
4806           "Instruction Combining did not reach a fixpoint after " +
4807           Twine(Opts.MaxIterations) + " iterations");
4808     }
4809   }
4810 
4811   if (Iteration == 1)
4812     ++NumOneIteration;
4813   else if (Iteration == 2)
4814     ++NumTwoIterations;
4815   else if (Iteration == 3)
4816     ++NumThreeIterations;
4817   else
4818     ++NumFourOrMoreIterations;
4819 
4820   return MadeIRChange;
4821 }
4822 
4823 InstCombinePass::InstCombinePass(InstCombineOptions Opts) : Options(Opts) {}
4824 
4825 void InstCombinePass::printPipeline(
4826     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
4827   static_cast<PassInfoMixin<InstCombinePass> *>(this)->printPipeline(
4828       OS, MapClassName2PassName);
4829   OS << '<';
4830   OS << "max-iterations=" << Options.MaxIterations << ";";
4831   OS << (Options.UseLoopInfo ? "" : "no-") << "use-loop-info;";
4832   OS << (Options.VerifyFixpoint ? "" : "no-") << "verify-fixpoint";
4833   OS << '>';
4834 }
4835 
4836 PreservedAnalyses InstCombinePass::run(Function &F,
4837                                        FunctionAnalysisManager &AM) {
4838   auto &AC = AM.getResult<AssumptionAnalysis>(F);
4839   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4840   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4841   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
4842   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
4843 
4844   // TODO: Only use LoopInfo when the option is set. This requires that the
4845   //       callers in the pass pipeline explicitly set the option.
4846   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
4847   if (!LI && Options.UseLoopInfo)
4848     LI = &AM.getResult<LoopAnalysis>(F);
4849 
4850   auto *AA = &AM.getResult<AAManager>(F);
4851   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
4852   ProfileSummaryInfo *PSI =
4853       MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
4854   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
4855       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
4856 
4857   if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4858                                        BFI, PSI, LI, Options))
4859     // No changes, all analyses are preserved.
4860     return PreservedAnalyses::all();
4861 
4862   // Mark all the analyses that instcombine updates as preserved.
4863   PreservedAnalyses PA;
4864   PA.preserveSet<CFGAnalyses>();
4865   return PA;
4866 }
4867 
4868 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
4869   AU.setPreservesCFG();
4870   AU.addRequired<AAResultsWrapperPass>();
4871   AU.addRequired<AssumptionCacheTracker>();
4872   AU.addRequired<TargetLibraryInfoWrapperPass>();
4873   AU.addRequired<TargetTransformInfoWrapperPass>();
4874   AU.addRequired<DominatorTreeWrapperPass>();
4875   AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
4876   AU.addPreserved<DominatorTreeWrapperPass>();
4877   AU.addPreserved<AAResultsWrapperPass>();
4878   AU.addPreserved<BasicAAWrapperPass>();
4879   AU.addPreserved<GlobalsAAWrapperPass>();
4880   AU.addRequired<ProfileSummaryInfoWrapperPass>();
4881   LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
4882 }
4883 
4884 bool InstructionCombiningPass::runOnFunction(Function &F) {
4885   if (skipFunction(F))
4886     return false;
4887 
4888   // Required analyses.
4889   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4890   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
4891   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
4892   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
4893   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
4894   auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
4895 
4896   // Optional analyses.
4897   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
4898   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
4899   ProfileSummaryInfo *PSI =
4900       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
4901   BlockFrequencyInfo *BFI =
4902       (PSI && PSI->hasProfileSummary()) ?
4903       &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
4904       nullptr;
4905 
4906   return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4907                                          BFI, PSI, LI, InstCombineOptions());
4908 }
4909 
4910 char InstructionCombiningPass::ID = 0;
4911 
4912 InstructionCombiningPass::InstructionCombiningPass() : FunctionPass(ID) {
4913   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4914 }
4915 
4916 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
4917                       "Combine redundant instructions", false, false)
4918 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4919 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4920 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4921 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4922 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4923 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4924 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
4925 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
4926 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
4927 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
4928                     "Combine redundant instructions", false, false)
4929 
4930 // Initialization Routines
4931 void llvm::initializeInstCombine(PassRegistry &Registry) {
4932   initializeInstructionCombiningPassPass(Registry);
4933 }
4934 
4935 FunctionPass *llvm::createInstructionCombiningPass() {
4936   return new InstructionCombiningPass();
4937 }
4938