1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions.  This pass does not modify the CFG.  This pass is where
11 // algebraic simplification happens.
12 //
13 // This pass combines things like:
14 //    %Y = add i32 %X, 1
15 //    %Z = add i32 %Y, 1
16 // into:
17 //    %Z = add i32 %X, 2
18 //
19 // This is a simple worklist driven algorithm.
20 //
21 // This pass guarantees that the following canonicalizations are performed on
22 // the program:
23 //    1. If a binary operator has a constant operand, it is moved to the RHS
24 //    2. Bitwise operators with constant operands are always grouped so that
25 //       shifts are performed first, then or's, then and's, then xor's.
26 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 //    4. All cmp instructions on boolean values are replaced with logical ops
28 //    5. add X, X is represented as (X*2) => (X << 1)
29 //    6. Multiplies with a power-of-two constant argument are transformed into
30 //       shifts.
31 //   ... etc.
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "InstCombineInternal.h"
36 #include "llvm-c/Initialization.h"
37 #include "llvm-c/Transforms/InstCombine.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/TinyPtrVector.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/BlockFrequencyInfo.h"
50 #include "llvm/Analysis/CFG.h"
51 #include "llvm/Analysis/ConstantFolding.h"
52 #include "llvm/Analysis/EHPersonalities.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/MemoryBuiltins.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/ProfileSummaryInfo.h"
60 #include "llvm/Analysis/TargetFolder.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/Analysis/VectorUtils.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/Constant.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DIBuilder.h"
70 #include "llvm/IR/DataLayout.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Dominators.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GetElementPtrTypeIterator.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InstrTypes.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/LegacyPassManager.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Operator.h"
84 #include "llvm/IR/PassManager.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Type.h"
87 #include "llvm/IR/Use.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/IR/ValueHandle.h"
91 #include "llvm/InitializePasses.h"
92 #include "llvm/Pass.h"
93 #include "llvm/Support/CBindingWrapping.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/DebugCounter.h"
99 #include "llvm/Support/ErrorHandling.h"
100 #include "llvm/Support/KnownBits.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Transforms/InstCombine/InstCombine.h"
103 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
104 #include "llvm/Transforms/Utils/Local.h"
105 #include <algorithm>
106 #include <cassert>
107 #include <cstdint>
108 #include <memory>
109 #include <string>
110 #include <utility>
111 
112 using namespace llvm;
113 using namespace llvm::PatternMatch;
114 
115 #define DEBUG_TYPE "instcombine"
116 
117 STATISTIC(NumWorklistIterations,
118           "Number of instruction combining iterations performed");
119 
120 STATISTIC(NumCombined , "Number of insts combined");
121 STATISTIC(NumConstProp, "Number of constant folds");
122 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
123 STATISTIC(NumSunkInst , "Number of instructions sunk");
124 STATISTIC(NumExpand,    "Number of expansions");
125 STATISTIC(NumFactor   , "Number of factorizations");
126 STATISTIC(NumReassoc  , "Number of reassociations");
127 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
128               "Controls which instructions are visited");
129 
130 // FIXME: these limits eventually should be as low as 2.
131 static constexpr unsigned InstCombineDefaultMaxIterations = 1000;
132 #ifndef NDEBUG
133 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100;
134 #else
135 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000;
136 #endif
137 
138 static cl::opt<bool>
139 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
140                                               cl::init(true));
141 
142 static cl::opt<unsigned> LimitMaxIterations(
143     "instcombine-max-iterations",
144     cl::desc("Limit the maximum number of instruction combining iterations"),
145     cl::init(InstCombineDefaultMaxIterations));
146 
147 static cl::opt<unsigned> InfiniteLoopDetectionThreshold(
148     "instcombine-infinite-loop-threshold",
149     cl::desc("Number of instruction combining iterations considered an "
150              "infinite loop"),
151     cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden);
152 
153 static cl::opt<unsigned>
154 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
155              cl::desc("Maximum array size considered when doing a combine"));
156 
157 // FIXME: Remove this flag when it is no longer necessary to convert
158 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
159 // increases variable availability at the cost of accuracy. Variables that
160 // cannot be promoted by mem2reg or SROA will be described as living in memory
161 // for their entire lifetime. However, passes like DSE and instcombine can
162 // delete stores to the alloca, leading to misleading and inaccurate debug
163 // information. This flag can be removed when those passes are fixed.
164 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
165                                                cl::Hidden, cl::init(true));
166 
167 Optional<Instruction *>
168 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) {
169   // Handle target specific intrinsics
170   if (II.getCalledFunction()->isTargetIntrinsic()) {
171     return TTI.instCombineIntrinsic(*this, II);
172   }
173   return None;
174 }
175 
176 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic(
177     IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
178     bool &KnownBitsComputed) {
179   // Handle target specific intrinsics
180   if (II.getCalledFunction()->isTargetIntrinsic()) {
181     return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known,
182                                                 KnownBitsComputed);
183   }
184   return None;
185 }
186 
187 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic(
188     IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2,
189     APInt &UndefElts3,
190     std::function<void(Instruction *, unsigned, APInt, APInt &)>
191         SimplifyAndSetOp) {
192   // Handle target specific intrinsics
193   if (II.getCalledFunction()->isTargetIntrinsic()) {
194     return TTI.simplifyDemandedVectorEltsIntrinsic(
195         *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
196         SimplifyAndSetOp);
197   }
198   return None;
199 }
200 
201 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) {
202   return llvm::EmitGEPOffset(&Builder, DL, GEP);
203 }
204 
205 /// Return true if it is desirable to convert an integer computation from a
206 /// given bit width to a new bit width.
207 /// We don't want to convert from a legal to an illegal type or from a smaller
208 /// to a larger illegal type. A width of '1' is always treated as a legal type
209 /// because i1 is a fundamental type in IR, and there are many specialized
210 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
211 /// legal to convert to, in order to open up more combining opportunities.
212 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common
213 /// from frontend languages.
214 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
215                                         unsigned ToWidth) const {
216   bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
217   bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
218 
219   // Convert to widths of 8, 16 or 32 even if they are not legal types. Only
220   // shrink types, to prevent infinite loops.
221   if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32))
222     return true;
223 
224   // If this is a legal integer from type, and the result would be an illegal
225   // type, don't do the transformation.
226   if (FromLegal && !ToLegal)
227     return false;
228 
229   // Otherwise, if both are illegal, do not increase the size of the result. We
230   // do allow things like i160 -> i64, but not i64 -> i160.
231   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
232     return false;
233 
234   return true;
235 }
236 
237 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
238 /// We don't want to convert from a legal to an illegal type or from a smaller
239 /// to a larger illegal type. i1 is always treated as a legal type because it is
240 /// a fundamental type in IR, and there are many specialized optimizations for
241 /// i1 types.
242 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
243   // TODO: This could be extended to allow vectors. Datalayout changes might be
244   // needed to properly support that.
245   if (!From->isIntegerTy() || !To->isIntegerTy())
246     return false;
247 
248   unsigned FromWidth = From->getPrimitiveSizeInBits();
249   unsigned ToWidth = To->getPrimitiveSizeInBits();
250   return shouldChangeType(FromWidth, ToWidth);
251 }
252 
253 // Return true, if No Signed Wrap should be maintained for I.
254 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
255 // where both B and C should be ConstantInts, results in a constant that does
256 // not overflow. This function only handles the Add and Sub opcodes. For
257 // all other opcodes, the function conservatively returns false.
258 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
259   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
260   if (!OBO || !OBO->hasNoSignedWrap())
261     return false;
262 
263   // We reason about Add and Sub Only.
264   Instruction::BinaryOps Opcode = I.getOpcode();
265   if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
266     return false;
267 
268   const APInt *BVal, *CVal;
269   if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
270     return false;
271 
272   bool Overflow = false;
273   if (Opcode == Instruction::Add)
274     (void)BVal->sadd_ov(*CVal, Overflow);
275   else
276     (void)BVal->ssub_ov(*CVal, Overflow);
277 
278   return !Overflow;
279 }
280 
281 static bool hasNoUnsignedWrap(BinaryOperator &I) {
282   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
283   return OBO && OBO->hasNoUnsignedWrap();
284 }
285 
286 static bool hasNoSignedWrap(BinaryOperator &I) {
287   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
288   return OBO && OBO->hasNoSignedWrap();
289 }
290 
291 /// Conservatively clears subclassOptionalData after a reassociation or
292 /// commutation. We preserve fast-math flags when applicable as they can be
293 /// preserved.
294 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
295   FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
296   if (!FPMO) {
297     I.clearSubclassOptionalData();
298     return;
299   }
300 
301   FastMathFlags FMF = I.getFastMathFlags();
302   I.clearSubclassOptionalData();
303   I.setFastMathFlags(FMF);
304 }
305 
306 /// Combine constant operands of associative operations either before or after a
307 /// cast to eliminate one of the associative operations:
308 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
309 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
310 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1,
311                                    InstCombinerImpl &IC) {
312   auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
313   if (!Cast || !Cast->hasOneUse())
314     return false;
315 
316   // TODO: Enhance logic for other casts and remove this check.
317   auto CastOpcode = Cast->getOpcode();
318   if (CastOpcode != Instruction::ZExt)
319     return false;
320 
321   // TODO: Enhance logic for other BinOps and remove this check.
322   if (!BinOp1->isBitwiseLogicOp())
323     return false;
324 
325   auto AssocOpcode = BinOp1->getOpcode();
326   auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
327   if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
328     return false;
329 
330   Constant *C1, *C2;
331   if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
332       !match(BinOp2->getOperand(1), m_Constant(C2)))
333     return false;
334 
335   // TODO: This assumes a zext cast.
336   // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
337   // to the destination type might lose bits.
338 
339   // Fold the constants together in the destination type:
340   // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
341   Type *DestTy = C1->getType();
342   Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
343   Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
344   IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
345   IC.replaceOperand(*BinOp1, 1, FoldedC);
346   return true;
347 }
348 
349 // Simplifies IntToPtr/PtrToInt RoundTrip Cast To BitCast.
350 // inttoptr ( ptrtoint (x) ) --> x
351 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) {
352   auto *IntToPtr = dyn_cast<IntToPtrInst>(Val);
353   if (IntToPtr && DL.getPointerTypeSizeInBits(IntToPtr->getDestTy()) ==
354                       DL.getTypeSizeInBits(IntToPtr->getSrcTy())) {
355     auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0));
356     Type *CastTy = IntToPtr->getDestTy();
357     if (PtrToInt &&
358         CastTy->getPointerAddressSpace() ==
359             PtrToInt->getSrcTy()->getPointerAddressSpace() &&
360         DL.getPointerTypeSizeInBits(PtrToInt->getSrcTy()) ==
361             DL.getTypeSizeInBits(PtrToInt->getDestTy())) {
362       return Builder.CreateBitCast(PtrToInt->getOperand(0), CastTy);
363     }
364   }
365   return nullptr;
366 }
367 
368 /// This performs a few simplifications for operators that are associative or
369 /// commutative:
370 ///
371 ///  Commutative operators:
372 ///
373 ///  1. Order operands such that they are listed from right (least complex) to
374 ///     left (most complex).  This puts constants before unary operators before
375 ///     binary operators.
376 ///
377 ///  Associative operators:
378 ///
379 ///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
380 ///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
381 ///
382 ///  Associative and commutative operators:
383 ///
384 ///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
385 ///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
386 ///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
387 ///     if C1 and C2 are constants.
388 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
389   Instruction::BinaryOps Opcode = I.getOpcode();
390   bool Changed = false;
391 
392   do {
393     // Order operands such that they are listed from right (least complex) to
394     // left (most complex).  This puts constants before unary operators before
395     // binary operators.
396     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
397         getComplexity(I.getOperand(1)))
398       Changed = !I.swapOperands();
399 
400     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
401     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
402 
403     if (I.isAssociative()) {
404       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
405       if (Op0 && Op0->getOpcode() == Opcode) {
406         Value *A = Op0->getOperand(0);
407         Value *B = Op0->getOperand(1);
408         Value *C = I.getOperand(1);
409 
410         // Does "B op C" simplify?
411         if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
412           // It simplifies to V.  Form "A op V".
413           replaceOperand(I, 0, A);
414           replaceOperand(I, 1, V);
415           bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
416           bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
417 
418           // Conservatively clear all optional flags since they may not be
419           // preserved by the reassociation. Reset nsw/nuw based on the above
420           // analysis.
421           ClearSubclassDataAfterReassociation(I);
422 
423           // Note: this is only valid because SimplifyBinOp doesn't look at
424           // the operands to Op0.
425           if (IsNUW)
426             I.setHasNoUnsignedWrap(true);
427 
428           if (IsNSW)
429             I.setHasNoSignedWrap(true);
430 
431           Changed = true;
432           ++NumReassoc;
433           continue;
434         }
435       }
436 
437       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
438       if (Op1 && Op1->getOpcode() == Opcode) {
439         Value *A = I.getOperand(0);
440         Value *B = Op1->getOperand(0);
441         Value *C = Op1->getOperand(1);
442 
443         // Does "A op B" simplify?
444         if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
445           // It simplifies to V.  Form "V op C".
446           replaceOperand(I, 0, V);
447           replaceOperand(I, 1, C);
448           // Conservatively clear the optional flags, since they may not be
449           // preserved by the reassociation.
450           ClearSubclassDataAfterReassociation(I);
451           Changed = true;
452           ++NumReassoc;
453           continue;
454         }
455       }
456     }
457 
458     if (I.isAssociative() && I.isCommutative()) {
459       if (simplifyAssocCastAssoc(&I, *this)) {
460         Changed = true;
461         ++NumReassoc;
462         continue;
463       }
464 
465       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
466       if (Op0 && Op0->getOpcode() == Opcode) {
467         Value *A = Op0->getOperand(0);
468         Value *B = Op0->getOperand(1);
469         Value *C = I.getOperand(1);
470 
471         // Does "C op A" simplify?
472         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
473           // It simplifies to V.  Form "V op B".
474           replaceOperand(I, 0, V);
475           replaceOperand(I, 1, B);
476           // Conservatively clear the optional flags, since they may not be
477           // preserved by the reassociation.
478           ClearSubclassDataAfterReassociation(I);
479           Changed = true;
480           ++NumReassoc;
481           continue;
482         }
483       }
484 
485       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
486       if (Op1 && Op1->getOpcode() == Opcode) {
487         Value *A = I.getOperand(0);
488         Value *B = Op1->getOperand(0);
489         Value *C = Op1->getOperand(1);
490 
491         // Does "C op A" simplify?
492         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
493           // It simplifies to V.  Form "B op V".
494           replaceOperand(I, 0, B);
495           replaceOperand(I, 1, V);
496           // Conservatively clear the optional flags, since they may not be
497           // preserved by the reassociation.
498           ClearSubclassDataAfterReassociation(I);
499           Changed = true;
500           ++NumReassoc;
501           continue;
502         }
503       }
504 
505       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
506       // if C1 and C2 are constants.
507       Value *A, *B;
508       Constant *C1, *C2;
509       if (Op0 && Op1 &&
510           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
511           match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
512           match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
513         bool IsNUW = hasNoUnsignedWrap(I) &&
514            hasNoUnsignedWrap(*Op0) &&
515            hasNoUnsignedWrap(*Op1);
516          BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
517            BinaryOperator::CreateNUW(Opcode, A, B) :
518            BinaryOperator::Create(Opcode, A, B);
519 
520          if (isa<FPMathOperator>(NewBO)) {
521           FastMathFlags Flags = I.getFastMathFlags();
522           Flags &= Op0->getFastMathFlags();
523           Flags &= Op1->getFastMathFlags();
524           NewBO->setFastMathFlags(Flags);
525         }
526         InsertNewInstWith(NewBO, I);
527         NewBO->takeName(Op1);
528         replaceOperand(I, 0, NewBO);
529         replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2));
530         // Conservatively clear the optional flags, since they may not be
531         // preserved by the reassociation.
532         ClearSubclassDataAfterReassociation(I);
533         if (IsNUW)
534           I.setHasNoUnsignedWrap(true);
535 
536         Changed = true;
537         continue;
538       }
539     }
540 
541     // No further simplifications.
542     return Changed;
543   } while (true);
544 }
545 
546 /// Return whether "X LOp (Y ROp Z)" is always equal to
547 /// "(X LOp Y) ROp (X LOp Z)".
548 static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
549                                      Instruction::BinaryOps ROp) {
550   // X & (Y | Z) <--> (X & Y) | (X & Z)
551   // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
552   if (LOp == Instruction::And)
553     return ROp == Instruction::Or || ROp == Instruction::Xor;
554 
555   // X | (Y & Z) <--> (X | Y) & (X | Z)
556   if (LOp == Instruction::Or)
557     return ROp == Instruction::And;
558 
559   // X * (Y + Z) <--> (X * Y) + (X * Z)
560   // X * (Y - Z) <--> (X * Y) - (X * Z)
561   if (LOp == Instruction::Mul)
562     return ROp == Instruction::Add || ROp == Instruction::Sub;
563 
564   return false;
565 }
566 
567 /// Return whether "(X LOp Y) ROp Z" is always equal to
568 /// "(X ROp Z) LOp (Y ROp Z)".
569 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
570                                      Instruction::BinaryOps ROp) {
571   if (Instruction::isCommutative(ROp))
572     return leftDistributesOverRight(ROp, LOp);
573 
574   // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
575   return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
576 
577   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
578   // but this requires knowing that the addition does not overflow and other
579   // such subtleties.
580 }
581 
582 /// This function returns identity value for given opcode, which can be used to
583 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
584 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
585   if (isa<Constant>(V))
586     return nullptr;
587 
588   return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
589 }
590 
591 /// This function predicates factorization using distributive laws. By default,
592 /// it just returns the 'Op' inputs. But for special-cases like
593 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
594 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
595 /// allow more factorization opportunities.
596 static Instruction::BinaryOps
597 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
598                           Value *&LHS, Value *&RHS) {
599   assert(Op && "Expected a binary operator");
600   LHS = Op->getOperand(0);
601   RHS = Op->getOperand(1);
602   if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
603     Constant *C;
604     if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
605       // X << C --> X * (1 << C)
606       RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
607       return Instruction::Mul;
608     }
609     // TODO: We can add other conversions e.g. shr => div etc.
610   }
611   return Op->getOpcode();
612 }
613 
614 /// This tries to simplify binary operations by factorizing out common terms
615 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
616 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I,
617                                           Instruction::BinaryOps InnerOpcode,
618                                           Value *A, Value *B, Value *C,
619                                           Value *D) {
620   assert(A && B && C && D && "All values must be provided");
621 
622   Value *V = nullptr;
623   Value *SimplifiedInst = nullptr;
624   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
625   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
626 
627   // Does "X op' Y" always equal "Y op' X"?
628   bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
629 
630   // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
631   if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
632     // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
633     // commutative case, "(A op' B) op (C op' A)"?
634     if (A == C || (InnerCommutative && A == D)) {
635       if (A != C)
636         std::swap(C, D);
637       // Consider forming "A op' (B op D)".
638       // If "B op D" simplifies then it can be formed with no cost.
639       V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
640       // If "B op D" doesn't simplify then only go on if both of the existing
641       // operations "A op' B" and "C op' D" will be zapped as no longer used.
642       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
643         V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
644       if (V) {
645         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
646       }
647     }
648 
649   // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
650   if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
651     // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
652     // commutative case, "(A op' B) op (B op' D)"?
653     if (B == D || (InnerCommutative && B == C)) {
654       if (B != D)
655         std::swap(C, D);
656       // Consider forming "(A op C) op' B".
657       // If "A op C" simplifies then it can be formed with no cost.
658       V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
659 
660       // If "A op C" doesn't simplify then only go on if both of the existing
661       // operations "A op' B" and "C op' D" will be zapped as no longer used.
662       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
663         V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
664       if (V) {
665         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
666       }
667     }
668 
669   if (SimplifiedInst) {
670     ++NumFactor;
671     SimplifiedInst->takeName(&I);
672 
673     // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them.
674     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
675       if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
676         bool HasNSW = false;
677         bool HasNUW = false;
678         if (isa<OverflowingBinaryOperator>(&I)) {
679           HasNSW = I.hasNoSignedWrap();
680           HasNUW = I.hasNoUnsignedWrap();
681         }
682 
683         if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
684           HasNSW &= LOBO->hasNoSignedWrap();
685           HasNUW &= LOBO->hasNoUnsignedWrap();
686         }
687 
688         if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
689           HasNSW &= ROBO->hasNoSignedWrap();
690           HasNUW &= ROBO->hasNoUnsignedWrap();
691         }
692 
693         if (TopLevelOpcode == Instruction::Add &&
694             InnerOpcode == Instruction::Mul) {
695           // We can propagate 'nsw' if we know that
696           //  %Y = mul nsw i16 %X, C
697           //  %Z = add nsw i16 %Y, %X
698           // =>
699           //  %Z = mul nsw i16 %X, C+1
700           //
701           // iff C+1 isn't INT_MIN
702           const APInt *CInt;
703           if (match(V, m_APInt(CInt))) {
704             if (!CInt->isMinSignedValue())
705               BO->setHasNoSignedWrap(HasNSW);
706           }
707 
708           // nuw can be propagated with any constant or nuw value.
709           BO->setHasNoUnsignedWrap(HasNUW);
710         }
711       }
712     }
713   }
714   return SimplifiedInst;
715 }
716 
717 /// This tries to simplify binary operations which some other binary operation
718 /// distributes over either by factorizing out common terms
719 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
720 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
721 /// Returns the simplified value, or null if it didn't simplify.
722 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
723   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
724   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
725   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
726   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
727 
728   {
729     // Factorization.
730     Value *A, *B, *C, *D;
731     Instruction::BinaryOps LHSOpcode, RHSOpcode;
732     if (Op0)
733       LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
734     if (Op1)
735       RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
736 
737     // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
738     // a common term.
739     if (Op0 && Op1 && LHSOpcode == RHSOpcode)
740       if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
741         return V;
742 
743     // The instruction has the form "(A op' B) op (C)".  Try to factorize common
744     // term.
745     if (Op0)
746       if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
747         if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
748           return V;
749 
750     // The instruction has the form "(B) op (C op' D)".  Try to factorize common
751     // term.
752     if (Op1)
753       if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
754         if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
755           return V;
756   }
757 
758   // Expansion.
759   if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
760     // The instruction has the form "(A op' B) op C".  See if expanding it out
761     // to "(A op C) op' (B op C)" results in simplifications.
762     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
763     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
764 
765     // Disable the use of undef because it's not safe to distribute undef.
766     auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
767     Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
768     Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
769 
770     // Do "A op C" and "B op C" both simplify?
771     if (L && R) {
772       // They do! Return "L op' R".
773       ++NumExpand;
774       C = Builder.CreateBinOp(InnerOpcode, L, R);
775       C->takeName(&I);
776       return C;
777     }
778 
779     // Does "A op C" simplify to the identity value for the inner opcode?
780     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
781       // They do! Return "B op C".
782       ++NumExpand;
783       C = Builder.CreateBinOp(TopLevelOpcode, B, C);
784       C->takeName(&I);
785       return C;
786     }
787 
788     // Does "B op C" simplify to the identity value for the inner opcode?
789     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
790       // They do! Return "A op C".
791       ++NumExpand;
792       C = Builder.CreateBinOp(TopLevelOpcode, A, C);
793       C->takeName(&I);
794       return C;
795     }
796   }
797 
798   if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
799     // The instruction has the form "A op (B op' C)".  See if expanding it out
800     // to "(A op B) op' (A op C)" results in simplifications.
801     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
802     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
803 
804     // Disable the use of undef because it's not safe to distribute undef.
805     auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
806     Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
807     Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
808 
809     // Do "A op B" and "A op C" both simplify?
810     if (L && R) {
811       // They do! Return "L op' R".
812       ++NumExpand;
813       A = Builder.CreateBinOp(InnerOpcode, L, R);
814       A->takeName(&I);
815       return A;
816     }
817 
818     // Does "A op B" simplify to the identity value for the inner opcode?
819     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
820       // They do! Return "A op C".
821       ++NumExpand;
822       A = Builder.CreateBinOp(TopLevelOpcode, A, C);
823       A->takeName(&I);
824       return A;
825     }
826 
827     // Does "A op C" simplify to the identity value for the inner opcode?
828     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
829       // They do! Return "A op B".
830       ++NumExpand;
831       A = Builder.CreateBinOp(TopLevelOpcode, A, B);
832       A->takeName(&I);
833       return A;
834     }
835   }
836 
837   return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
838 }
839 
840 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
841                                                         Value *LHS,
842                                                         Value *RHS) {
843   Value *A, *B, *C, *D, *E, *F;
844   bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
845   bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
846   if (!LHSIsSelect && !RHSIsSelect)
847     return nullptr;
848 
849   FastMathFlags FMF;
850   BuilderTy::FastMathFlagGuard Guard(Builder);
851   if (isa<FPMathOperator>(&I)) {
852     FMF = I.getFastMathFlags();
853     Builder.setFastMathFlags(FMF);
854   }
855 
856   Instruction::BinaryOps Opcode = I.getOpcode();
857   SimplifyQuery Q = SQ.getWithInstruction(&I);
858 
859   Value *Cond, *True = nullptr, *False = nullptr;
860   if (LHSIsSelect && RHSIsSelect && A == D) {
861     // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
862     Cond = A;
863     True = SimplifyBinOp(Opcode, B, E, FMF, Q);
864     False = SimplifyBinOp(Opcode, C, F, FMF, Q);
865 
866     if (LHS->hasOneUse() && RHS->hasOneUse()) {
867       if (False && !True)
868         True = Builder.CreateBinOp(Opcode, B, E);
869       else if (True && !False)
870         False = Builder.CreateBinOp(Opcode, C, F);
871     }
872   } else if (LHSIsSelect && LHS->hasOneUse()) {
873     // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
874     Cond = A;
875     True = SimplifyBinOp(Opcode, B, RHS, FMF, Q);
876     False = SimplifyBinOp(Opcode, C, RHS, FMF, Q);
877   } else if (RHSIsSelect && RHS->hasOneUse()) {
878     // X op (D ? E : F) -> D ? (X op E) : (X op F)
879     Cond = D;
880     True = SimplifyBinOp(Opcode, LHS, E, FMF, Q);
881     False = SimplifyBinOp(Opcode, LHS, F, FMF, Q);
882   }
883 
884   if (!True || !False)
885     return nullptr;
886 
887   Value *SI = Builder.CreateSelect(Cond, True, False);
888   SI->takeName(&I);
889   return SI;
890 }
891 
892 /// Freely adapt every user of V as-if V was changed to !V.
893 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done.
894 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) {
895   for (User *U : I->users()) {
896     switch (cast<Instruction>(U)->getOpcode()) {
897     case Instruction::Select: {
898       auto *SI = cast<SelectInst>(U);
899       SI->swapValues();
900       SI->swapProfMetadata();
901       break;
902     }
903     case Instruction::Br:
904       cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too
905       break;
906     case Instruction::Xor:
907       replaceInstUsesWith(cast<Instruction>(*U), I);
908       break;
909     default:
910       llvm_unreachable("Got unexpected user - out of sync with "
911                        "canFreelyInvertAllUsersOf() ?");
912     }
913   }
914 }
915 
916 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
917 /// constant zero (which is the 'negate' form).
918 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
919   Value *NegV;
920   if (match(V, m_Neg(m_Value(NegV))))
921     return NegV;
922 
923   // Constants can be considered to be negated values if they can be folded.
924   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
925     return ConstantExpr::getNeg(C);
926 
927   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
928     if (C->getType()->getElementType()->isIntegerTy())
929       return ConstantExpr::getNeg(C);
930 
931   if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
932     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
933       Constant *Elt = CV->getAggregateElement(i);
934       if (!Elt)
935         return nullptr;
936 
937       if (isa<UndefValue>(Elt))
938         continue;
939 
940       if (!isa<ConstantInt>(Elt))
941         return nullptr;
942     }
943     return ConstantExpr::getNeg(CV);
944   }
945 
946   // Negate integer vector splats.
947   if (auto *CV = dyn_cast<Constant>(V))
948     if (CV->getType()->isVectorTy() &&
949         CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue())
950       return ConstantExpr::getNeg(CV);
951 
952   return nullptr;
953 }
954 
955 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
956                                              InstCombiner::BuilderTy &Builder) {
957   if (auto *Cast = dyn_cast<CastInst>(&I))
958     return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
959 
960   if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
961     assert(canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) &&
962            "Expected constant-foldable intrinsic");
963     Intrinsic::ID IID = II->getIntrinsicID();
964     if (II->getNumArgOperands() == 1)
965       return Builder.CreateUnaryIntrinsic(IID, SO);
966 
967     // This works for real binary ops like min/max (where we always expect the
968     // constant operand to be canonicalized as op1) and unary ops with a bonus
969     // constant argument like ctlz/cttz.
970     // TODO: Handle non-commutative binary intrinsics as below for binops.
971     assert(II->getNumArgOperands() == 2 && "Expected binary intrinsic");
972     assert(isa<Constant>(II->getArgOperand(1)) && "Expected constant operand");
973     return Builder.CreateBinaryIntrinsic(IID, SO, II->getArgOperand(1));
974   }
975 
976   assert(I.isBinaryOp() && "Unexpected opcode for select folding");
977 
978   // Figure out if the constant is the left or the right argument.
979   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
980   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
981 
982   if (auto *SOC = dyn_cast<Constant>(SO)) {
983     if (ConstIsRHS)
984       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
985     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
986   }
987 
988   Value *Op0 = SO, *Op1 = ConstOperand;
989   if (!ConstIsRHS)
990     std::swap(Op0, Op1);
991 
992   auto *BO = cast<BinaryOperator>(&I);
993   Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
994                                   SO->getName() + ".op");
995   auto *FPInst = dyn_cast<Instruction>(RI);
996   if (FPInst && isa<FPMathOperator>(FPInst))
997     FPInst->copyFastMathFlags(BO);
998   return RI;
999 }
1000 
1001 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op,
1002                                                 SelectInst *SI) {
1003   // Don't modify shared select instructions.
1004   if (!SI->hasOneUse())
1005     return nullptr;
1006 
1007   Value *TV = SI->getTrueValue();
1008   Value *FV = SI->getFalseValue();
1009   if (!(isa<Constant>(TV) || isa<Constant>(FV)))
1010     return nullptr;
1011 
1012   // Bool selects with constant operands can be folded to logical ops.
1013   if (SI->getType()->isIntOrIntVectorTy(1))
1014     return nullptr;
1015 
1016   // If it's a bitcast involving vectors, make sure it has the same number of
1017   // elements on both sides.
1018   if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
1019     VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
1020     VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
1021 
1022     // Verify that either both or neither are vectors.
1023     if ((SrcTy == nullptr) != (DestTy == nullptr))
1024       return nullptr;
1025 
1026     // If vectors, verify that they have the same number of elements.
1027     if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount())
1028       return nullptr;
1029   }
1030 
1031   // Test if a CmpInst instruction is used exclusively by a select as
1032   // part of a minimum or maximum operation. If so, refrain from doing
1033   // any other folding. This helps out other analyses which understand
1034   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
1035   // and CodeGen. And in this case, at least one of the comparison
1036   // operands has at least one user besides the compare (the select),
1037   // which would often largely negate the benefit of folding anyway.
1038   if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
1039     if (CI->hasOneUse()) {
1040       Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1041 
1042       // FIXME: This is a hack to avoid infinite looping with min/max patterns.
1043       //        We have to ensure that vector constants that only differ with
1044       //        undef elements are treated as equivalent.
1045       auto areLooselyEqual = [](Value *A, Value *B) {
1046         if (A == B)
1047           return true;
1048 
1049         // Test for vector constants.
1050         Constant *ConstA, *ConstB;
1051         if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB)))
1052           return false;
1053 
1054         // TODO: Deal with FP constants?
1055         if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType())
1056           return false;
1057 
1058         // Compare for equality including undefs as equal.
1059         auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB);
1060         const APInt *C;
1061         return match(Cmp, m_APIntAllowUndef(C)) && C->isOneValue();
1062       };
1063 
1064       if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) ||
1065           (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1)))
1066         return nullptr;
1067     }
1068   }
1069 
1070   Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
1071   Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
1072   return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
1073 }
1074 
1075 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
1076                                         InstCombiner::BuilderTy &Builder) {
1077   bool ConstIsRHS = isa<Constant>(I->getOperand(1));
1078   Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
1079 
1080   if (auto *InC = dyn_cast<Constant>(InV)) {
1081     if (ConstIsRHS)
1082       return ConstantExpr::get(I->getOpcode(), InC, C);
1083     return ConstantExpr::get(I->getOpcode(), C, InC);
1084   }
1085 
1086   Value *Op0 = InV, *Op1 = C;
1087   if (!ConstIsRHS)
1088     std::swap(Op0, Op1);
1089 
1090   Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo");
1091   auto *FPInst = dyn_cast<Instruction>(RI);
1092   if (FPInst && isa<FPMathOperator>(FPInst))
1093     FPInst->copyFastMathFlags(I);
1094   return RI;
1095 }
1096 
1097 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) {
1098   unsigned NumPHIValues = PN->getNumIncomingValues();
1099   if (NumPHIValues == 0)
1100     return nullptr;
1101 
1102   // We normally only transform phis with a single use.  However, if a PHI has
1103   // multiple uses and they are all the same operation, we can fold *all* of the
1104   // uses into the PHI.
1105   if (!PN->hasOneUse()) {
1106     // Walk the use list for the instruction, comparing them to I.
1107     for (User *U : PN->users()) {
1108       Instruction *UI = cast<Instruction>(U);
1109       if (UI != &I && !I.isIdenticalTo(UI))
1110         return nullptr;
1111     }
1112     // Otherwise, we can replace *all* users with the new PHI we form.
1113   }
1114 
1115   // Check to see if all of the operands of the PHI are simple constants
1116   // (constantint/constantfp/undef).  If there is one non-constant value,
1117   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
1118   // bail out.  We don't do arbitrary constant expressions here because moving
1119   // their computation can be expensive without a cost model.
1120   BasicBlock *NonConstBB = nullptr;
1121   for (unsigned i = 0; i != NumPHIValues; ++i) {
1122     Value *InVal = PN->getIncomingValue(i);
1123     // If I is a freeze instruction, count undef as a non-constant.
1124     if (match(InVal, m_ImmConstant()) &&
1125         (!isa<FreezeInst>(I) || isGuaranteedNotToBeUndefOrPoison(InVal)))
1126       continue;
1127 
1128     if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
1129     if (NonConstBB) return nullptr;  // More than one non-const value.
1130 
1131     NonConstBB = PN->getIncomingBlock(i);
1132 
1133     // If the InVal is an invoke at the end of the pred block, then we can't
1134     // insert a computation after it without breaking the edge.
1135     if (isa<InvokeInst>(InVal))
1136       if (cast<Instruction>(InVal)->getParent() == NonConstBB)
1137         return nullptr;
1138 
1139     // If the incoming non-constant value is in I's block, we will remove one
1140     // instruction, but insert another equivalent one, leading to infinite
1141     // instcombine.
1142     if (isPotentiallyReachable(I.getParent(), NonConstBB, nullptr, &DT, LI))
1143       return nullptr;
1144   }
1145 
1146   // If there is exactly one non-constant value, we can insert a copy of the
1147   // operation in that block.  However, if this is a critical edge, we would be
1148   // inserting the computation on some other paths (e.g. inside a loop).  Only
1149   // do this if the pred block is unconditionally branching into the phi block.
1150   // Also, make sure that the pred block is not dead code.
1151   if (NonConstBB != nullptr) {
1152     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1153     if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB))
1154       return nullptr;
1155   }
1156 
1157   // Okay, we can do the transformation: create the new PHI node.
1158   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1159   InsertNewInstBefore(NewPN, *PN);
1160   NewPN->takeName(PN);
1161 
1162   // If we are going to have to insert a new computation, do so right before the
1163   // predecessor's terminator.
1164   if (NonConstBB)
1165     Builder.SetInsertPoint(NonConstBB->getTerminator());
1166 
1167   // Next, add all of the operands to the PHI.
1168   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
1169     // We only currently try to fold the condition of a select when it is a phi,
1170     // not the true/false values.
1171     Value *TrueV = SI->getTrueValue();
1172     Value *FalseV = SI->getFalseValue();
1173     BasicBlock *PhiTransBB = PN->getParent();
1174     for (unsigned i = 0; i != NumPHIValues; ++i) {
1175       BasicBlock *ThisBB = PN->getIncomingBlock(i);
1176       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
1177       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
1178       Value *InV = nullptr;
1179       // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
1180       // even if currently isNullValue gives false.
1181       Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
1182       // For vector constants, we cannot use isNullValue to fold into
1183       // FalseVInPred versus TrueVInPred. When we have individual nonzero
1184       // elements in the vector, we will incorrectly fold InC to
1185       // `TrueVInPred`.
1186       if (InC && isa<ConstantInt>(InC))
1187         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
1188       else {
1189         // Generate the select in the same block as PN's current incoming block.
1190         // Note: ThisBB need not be the NonConstBB because vector constants
1191         // which are constants by definition are handled here.
1192         // FIXME: This can lead to an increase in IR generation because we might
1193         // generate selects for vector constant phi operand, that could not be
1194         // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
1195         // non-vector phis, this transformation was always profitable because
1196         // the select would be generated exactly once in the NonConstBB.
1197         Builder.SetInsertPoint(ThisBB->getTerminator());
1198         InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
1199                                    FalseVInPred, "phi.sel");
1200       }
1201       NewPN->addIncoming(InV, ThisBB);
1202     }
1203   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
1204     Constant *C = cast<Constant>(I.getOperand(1));
1205     for (unsigned i = 0; i != NumPHIValues; ++i) {
1206       Value *InV = nullptr;
1207       if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1208         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1209       else
1210         InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i),
1211                                 C, "phi.cmp");
1212       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1213     }
1214   } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
1215     for (unsigned i = 0; i != NumPHIValues; ++i) {
1216       Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
1217                                              Builder);
1218       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1219     }
1220   } else if (isa<FreezeInst>(&I)) {
1221     for (unsigned i = 0; i != NumPHIValues; ++i) {
1222       Value *InV;
1223       if (NonConstBB == PN->getIncomingBlock(i))
1224         InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr");
1225       else
1226         InV = PN->getIncomingValue(i);
1227       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1228     }
1229   } else {
1230     CastInst *CI = cast<CastInst>(&I);
1231     Type *RetTy = CI->getType();
1232     for (unsigned i = 0; i != NumPHIValues; ++i) {
1233       Value *InV;
1234       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1235         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1236       else
1237         InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
1238                                  I.getType(), "phi.cast");
1239       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1240     }
1241   }
1242 
1243   for (User *U : make_early_inc_range(PN->users())) {
1244     Instruction *User = cast<Instruction>(U);
1245     if (User == &I) continue;
1246     replaceInstUsesWith(*User, NewPN);
1247     eraseInstFromFunction(*User);
1248   }
1249   return replaceInstUsesWith(I, NewPN);
1250 }
1251 
1252 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1253   if (!isa<Constant>(I.getOperand(1)))
1254     return nullptr;
1255 
1256   if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1257     if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1258       return NewSel;
1259   } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1260     if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1261       return NewPhi;
1262   }
1263   return nullptr;
1264 }
1265 
1266 /// Given a pointer type and a constant offset, determine whether or not there
1267 /// is a sequence of GEP indices into the pointed type that will land us at the
1268 /// specified offset. If so, fill them into NewIndices and return the resultant
1269 /// element type, otherwise return null.
1270 Type *
1271 InstCombinerImpl::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
1272                                       SmallVectorImpl<Value *> &NewIndices) {
1273   Type *Ty = PtrTy->getElementType();
1274   if (!Ty->isSized())
1275     return nullptr;
1276 
1277   // Start with the index over the outer type.  Note that the type size
1278   // might be zero (even if the offset isn't zero) if the indexed type
1279   // is something like [0 x {int, int}]
1280   Type *IndexTy = DL.getIndexType(PtrTy);
1281   int64_t FirstIdx = 0;
1282   if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
1283     FirstIdx = Offset/TySize;
1284     Offset -= FirstIdx*TySize;
1285 
1286     // Handle hosts where % returns negative instead of values [0..TySize).
1287     if (Offset < 0) {
1288       --FirstIdx;
1289       Offset += TySize;
1290       assert(Offset >= 0);
1291     }
1292     assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
1293   }
1294 
1295   NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx));
1296 
1297   // Index into the types.  If we fail, set OrigBase to null.
1298   while (Offset) {
1299     // Indexing into tail padding between struct/array elements.
1300     if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
1301       return nullptr;
1302 
1303     if (StructType *STy = dyn_cast<StructType>(Ty)) {
1304       const StructLayout *SL = DL.getStructLayout(STy);
1305       assert(Offset < (int64_t)SL->getSizeInBytes() &&
1306              "Offset must stay within the indexed type");
1307 
1308       unsigned Elt = SL->getElementContainingOffset(Offset);
1309       NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
1310                                             Elt));
1311 
1312       Offset -= SL->getElementOffset(Elt);
1313       Ty = STy->getElementType(Elt);
1314     } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
1315       uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
1316       assert(EltSize && "Cannot index into a zero-sized array");
1317       NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize));
1318       Offset %= EltSize;
1319       Ty = AT->getElementType();
1320     } else {
1321       // Otherwise, we can't index into the middle of this atomic type, bail.
1322       return nullptr;
1323     }
1324   }
1325 
1326   return Ty;
1327 }
1328 
1329 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1330   // If this GEP has only 0 indices, it is the same pointer as
1331   // Src. If Src is not a trivial GEP too, don't combine
1332   // the indices.
1333   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1334       !Src.hasOneUse())
1335     return false;
1336   return true;
1337 }
1338 
1339 /// Return a value X such that Val = X * Scale, or null if none.
1340 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
1341 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1342   assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1343   assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1344          Scale.getBitWidth() && "Scale not compatible with value!");
1345 
1346   // If Val is zero or Scale is one then Val = Val * Scale.
1347   if (match(Val, m_Zero()) || Scale == 1) {
1348     NoSignedWrap = true;
1349     return Val;
1350   }
1351 
1352   // If Scale is zero then it does not divide Val.
1353   if (Scale.isMinValue())
1354     return nullptr;
1355 
1356   // Look through chains of multiplications, searching for a constant that is
1357   // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
1358   // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
1359   // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
1360   // down from Val:
1361   //
1362   //     Val = M1 * X          ||   Analysis starts here and works down
1363   //      M1 = M2 * Y          ||   Doesn't descend into terms with more
1364   //      M2 =  Z * 4          \/   than one use
1365   //
1366   // Then to modify a term at the bottom:
1367   //
1368   //     Val = M1 * X
1369   //      M1 =  Z * Y          ||   Replaced M2 with Z
1370   //
1371   // Then to work back up correcting nsw flags.
1372 
1373   // Op - the term we are currently analyzing.  Starts at Val then drills down.
1374   // Replaced with its descaled value before exiting from the drill down loop.
1375   Value *Op = Val;
1376 
1377   // Parent - initially null, but after drilling down notes where Op came from.
1378   // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1379   // 0'th operand of Val.
1380   std::pair<Instruction *, unsigned> Parent;
1381 
1382   // Set if the transform requires a descaling at deeper levels that doesn't
1383   // overflow.
1384   bool RequireNoSignedWrap = false;
1385 
1386   // Log base 2 of the scale. Negative if not a power of 2.
1387   int32_t logScale = Scale.exactLogBase2();
1388 
1389   for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1390     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1391       // If Op is a constant divisible by Scale then descale to the quotient.
1392       APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1393       APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1394       if (!Remainder.isMinValue())
1395         // Not divisible by Scale.
1396         return nullptr;
1397       // Replace with the quotient in the parent.
1398       Op = ConstantInt::get(CI->getType(), Quotient);
1399       NoSignedWrap = true;
1400       break;
1401     }
1402 
1403     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1404       if (BO->getOpcode() == Instruction::Mul) {
1405         // Multiplication.
1406         NoSignedWrap = BO->hasNoSignedWrap();
1407         if (RequireNoSignedWrap && !NoSignedWrap)
1408           return nullptr;
1409 
1410         // There are three cases for multiplication: multiplication by exactly
1411         // the scale, multiplication by a constant different to the scale, and
1412         // multiplication by something else.
1413         Value *LHS = BO->getOperand(0);
1414         Value *RHS = BO->getOperand(1);
1415 
1416         if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1417           // Multiplication by a constant.
1418           if (CI->getValue() == Scale) {
1419             // Multiplication by exactly the scale, replace the multiplication
1420             // by its left-hand side in the parent.
1421             Op = LHS;
1422             break;
1423           }
1424 
1425           // Otherwise drill down into the constant.
1426           if (!Op->hasOneUse())
1427             return nullptr;
1428 
1429           Parent = std::make_pair(BO, 1);
1430           continue;
1431         }
1432 
1433         // Multiplication by something else. Drill down into the left-hand side
1434         // since that's where the reassociate pass puts the good stuff.
1435         if (!Op->hasOneUse())
1436           return nullptr;
1437 
1438         Parent = std::make_pair(BO, 0);
1439         continue;
1440       }
1441 
1442       if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1443           isa<ConstantInt>(BO->getOperand(1))) {
1444         // Multiplication by a power of 2.
1445         NoSignedWrap = BO->hasNoSignedWrap();
1446         if (RequireNoSignedWrap && !NoSignedWrap)
1447           return nullptr;
1448 
1449         Value *LHS = BO->getOperand(0);
1450         int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1451           getLimitedValue(Scale.getBitWidth());
1452         // Op = LHS << Amt.
1453 
1454         if (Amt == logScale) {
1455           // Multiplication by exactly the scale, replace the multiplication
1456           // by its left-hand side in the parent.
1457           Op = LHS;
1458           break;
1459         }
1460         if (Amt < logScale || !Op->hasOneUse())
1461           return nullptr;
1462 
1463         // Multiplication by more than the scale.  Reduce the multiplying amount
1464         // by the scale in the parent.
1465         Parent = std::make_pair(BO, 1);
1466         Op = ConstantInt::get(BO->getType(), Amt - logScale);
1467         break;
1468       }
1469     }
1470 
1471     if (!Op->hasOneUse())
1472       return nullptr;
1473 
1474     if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1475       if (Cast->getOpcode() == Instruction::SExt) {
1476         // Op is sign-extended from a smaller type, descale in the smaller type.
1477         unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1478         APInt SmallScale = Scale.trunc(SmallSize);
1479         // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
1480         // descale Op as (sext Y) * Scale.  In order to have
1481         //   sext (Y * SmallScale) = (sext Y) * Scale
1482         // some conditions need to hold however: SmallScale must sign-extend to
1483         // Scale and the multiplication Y * SmallScale should not overflow.
1484         if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1485           // SmallScale does not sign-extend to Scale.
1486           return nullptr;
1487         assert(SmallScale.exactLogBase2() == logScale);
1488         // Require that Y * SmallScale must not overflow.
1489         RequireNoSignedWrap = true;
1490 
1491         // Drill down through the cast.
1492         Parent = std::make_pair(Cast, 0);
1493         Scale = SmallScale;
1494         continue;
1495       }
1496 
1497       if (Cast->getOpcode() == Instruction::Trunc) {
1498         // Op is truncated from a larger type, descale in the larger type.
1499         // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
1500         //   trunc (Y * sext Scale) = (trunc Y) * Scale
1501         // always holds.  However (trunc Y) * Scale may overflow even if
1502         // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1503         // from this point up in the expression (see later).
1504         if (RequireNoSignedWrap)
1505           return nullptr;
1506 
1507         // Drill down through the cast.
1508         unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1509         Parent = std::make_pair(Cast, 0);
1510         Scale = Scale.sext(LargeSize);
1511         if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1512           logScale = -1;
1513         assert(Scale.exactLogBase2() == logScale);
1514         continue;
1515       }
1516     }
1517 
1518     // Unsupported expression, bail out.
1519     return nullptr;
1520   }
1521 
1522   // If Op is zero then Val = Op * Scale.
1523   if (match(Op, m_Zero())) {
1524     NoSignedWrap = true;
1525     return Op;
1526   }
1527 
1528   // We know that we can successfully descale, so from here on we can safely
1529   // modify the IR.  Op holds the descaled version of the deepest term in the
1530   // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
1531   // not to overflow.
1532 
1533   if (!Parent.first)
1534     // The expression only had one term.
1535     return Op;
1536 
1537   // Rewrite the parent using the descaled version of its operand.
1538   assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1539   assert(Op != Parent.first->getOperand(Parent.second) &&
1540          "Descaling was a no-op?");
1541   replaceOperand(*Parent.first, Parent.second, Op);
1542   Worklist.push(Parent.first);
1543 
1544   // Now work back up the expression correcting nsw flags.  The logic is based
1545   // on the following observation: if X * Y is known not to overflow as a signed
1546   // multiplication, and Y is replaced by a value Z with smaller absolute value,
1547   // then X * Z will not overflow as a signed multiplication either.  As we work
1548   // our way up, having NoSignedWrap 'true' means that the descaled value at the
1549   // current level has strictly smaller absolute value than the original.
1550   Instruction *Ancestor = Parent.first;
1551   do {
1552     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1553       // If the multiplication wasn't nsw then we can't say anything about the
1554       // value of the descaled multiplication, and we have to clear nsw flags
1555       // from this point on up.
1556       bool OpNoSignedWrap = BO->hasNoSignedWrap();
1557       NoSignedWrap &= OpNoSignedWrap;
1558       if (NoSignedWrap != OpNoSignedWrap) {
1559         BO->setHasNoSignedWrap(NoSignedWrap);
1560         Worklist.push(Ancestor);
1561       }
1562     } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1563       // The fact that the descaled input to the trunc has smaller absolute
1564       // value than the original input doesn't tell us anything useful about
1565       // the absolute values of the truncations.
1566       NoSignedWrap = false;
1567     }
1568     assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1569            "Failed to keep proper track of nsw flags while drilling down?");
1570 
1571     if (Ancestor == Val)
1572       // Got to the top, all done!
1573       return Val;
1574 
1575     // Move up one level in the expression.
1576     assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1577     Ancestor = Ancestor->user_back();
1578   } while (true);
1579 }
1580 
1581 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) {
1582   if (!isa<VectorType>(Inst.getType()))
1583     return nullptr;
1584 
1585   BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1586   Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1587   assert(cast<VectorType>(LHS->getType())->getElementCount() ==
1588          cast<VectorType>(Inst.getType())->getElementCount());
1589   assert(cast<VectorType>(RHS->getType())->getElementCount() ==
1590          cast<VectorType>(Inst.getType())->getElementCount());
1591 
1592   // If both operands of the binop are vector concatenations, then perform the
1593   // narrow binop on each pair of the source operands followed by concatenation
1594   // of the results.
1595   Value *L0, *L1, *R0, *R1;
1596   ArrayRef<int> Mask;
1597   if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
1598       match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
1599       LHS->hasOneUse() && RHS->hasOneUse() &&
1600       cast<ShuffleVectorInst>(LHS)->isConcat() &&
1601       cast<ShuffleVectorInst>(RHS)->isConcat()) {
1602     // This transform does not have the speculative execution constraint as
1603     // below because the shuffle is a concatenation. The new binops are
1604     // operating on exactly the same elements as the existing binop.
1605     // TODO: We could ease the mask requirement to allow different undef lanes,
1606     //       but that requires an analysis of the binop-with-undef output value.
1607     Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1608     if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1609       BO->copyIRFlags(&Inst);
1610     Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1611     if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1612       BO->copyIRFlags(&Inst);
1613     return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1614   }
1615 
1616   // It may not be safe to reorder shuffles and things like div, urem, etc.
1617   // because we may trap when executing those ops on unknown vector elements.
1618   // See PR20059.
1619   if (!isSafeToSpeculativelyExecute(&Inst))
1620     return nullptr;
1621 
1622   auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
1623     Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1624     if (auto *BO = dyn_cast<BinaryOperator>(XY))
1625       BO->copyIRFlags(&Inst);
1626     return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M);
1627   };
1628 
1629   // If both arguments of the binary operation are shuffles that use the same
1630   // mask and shuffle within a single vector, move the shuffle after the binop.
1631   Value *V1, *V2;
1632   if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) &&
1633       match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) &&
1634       V1->getType() == V2->getType() &&
1635       (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1636     // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1637     return createBinOpShuffle(V1, V2, Mask);
1638   }
1639 
1640   // If both arguments of a commutative binop are select-shuffles that use the
1641   // same mask with commuted operands, the shuffles are unnecessary.
1642   if (Inst.isCommutative() &&
1643       match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
1644       match(RHS,
1645             m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
1646     auto *LShuf = cast<ShuffleVectorInst>(LHS);
1647     auto *RShuf = cast<ShuffleVectorInst>(RHS);
1648     // TODO: Allow shuffles that contain undefs in the mask?
1649     //       That is legal, but it reduces undef knowledge.
1650     // TODO: Allow arbitrary shuffles by shuffling after binop?
1651     //       That might be legal, but we have to deal with poison.
1652     if (LShuf->isSelect() &&
1653         !is_contained(LShuf->getShuffleMask(), UndefMaskElem) &&
1654         RShuf->isSelect() &&
1655         !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) {
1656       // Example:
1657       // LHS = shuffle V1, V2, <0, 5, 6, 3>
1658       // RHS = shuffle V2, V1, <0, 5, 6, 3>
1659       // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1660       Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
1661       NewBO->copyIRFlags(&Inst);
1662       return NewBO;
1663     }
1664   }
1665 
1666   // If one argument is a shuffle within one vector and the other is a constant,
1667   // try moving the shuffle after the binary operation. This canonicalization
1668   // intends to move shuffles closer to other shuffles and binops closer to
1669   // other binops, so they can be folded. It may also enable demanded elements
1670   // transforms.
1671   Constant *C;
1672   auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType());
1673   if (InstVTy &&
1674       match(&Inst,
1675             m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))),
1676                       m_ImmConstant(C))) &&
1677       cast<FixedVectorType>(V1->getType())->getNumElements() <=
1678           InstVTy->getNumElements()) {
1679     assert(InstVTy->getScalarType() == V1->getType()->getScalarType() &&
1680            "Shuffle should not change scalar type");
1681 
1682     // Find constant NewC that has property:
1683     //   shuffle(NewC, ShMask) = C
1684     // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1685     // reorder is not possible. A 1-to-1 mapping is not required. Example:
1686     // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1687     bool ConstOp1 = isa<Constant>(RHS);
1688     ArrayRef<int> ShMask = Mask;
1689     unsigned SrcVecNumElts =
1690         cast<FixedVectorType>(V1->getType())->getNumElements();
1691     UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
1692     SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
1693     bool MayChange = true;
1694     unsigned NumElts = InstVTy->getNumElements();
1695     for (unsigned I = 0; I < NumElts; ++I) {
1696       Constant *CElt = C->getAggregateElement(I);
1697       if (ShMask[I] >= 0) {
1698         assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1699         Constant *NewCElt = NewVecC[ShMask[I]];
1700         // Bail out if:
1701         // 1. The constant vector contains a constant expression.
1702         // 2. The shuffle needs an element of the constant vector that can't
1703         //    be mapped to a new constant vector.
1704         // 3. This is a widening shuffle that copies elements of V1 into the
1705         //    extended elements (extending with undef is allowed).
1706         if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
1707             I >= SrcVecNumElts) {
1708           MayChange = false;
1709           break;
1710         }
1711         NewVecC[ShMask[I]] = CElt;
1712       }
1713       // If this is a widening shuffle, we must be able to extend with undef
1714       // elements. If the original binop does not produce an undef in the high
1715       // lanes, then this transform is not safe.
1716       // Similarly for undef lanes due to the shuffle mask, we can only
1717       // transform binops that preserve undef.
1718       // TODO: We could shuffle those non-undef constant values into the
1719       //       result by using a constant vector (rather than an undef vector)
1720       //       as operand 1 of the new binop, but that might be too aggressive
1721       //       for target-independent shuffle creation.
1722       if (I >= SrcVecNumElts || ShMask[I] < 0) {
1723         Constant *MaybeUndef =
1724             ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
1725                      : ConstantExpr::get(Opcode, CElt, UndefScalar);
1726         if (!match(MaybeUndef, m_Undef())) {
1727           MayChange = false;
1728           break;
1729         }
1730       }
1731     }
1732     if (MayChange) {
1733       Constant *NewC = ConstantVector::get(NewVecC);
1734       // It may not be safe to execute a binop on a vector with undef elements
1735       // because the entire instruction can be folded to undef or create poison
1736       // that did not exist in the original code.
1737       if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1738         NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1739 
1740       // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1741       // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1742       Value *NewLHS = ConstOp1 ? V1 : NewC;
1743       Value *NewRHS = ConstOp1 ? NewC : V1;
1744       return createBinOpShuffle(NewLHS, NewRHS, Mask);
1745     }
1746   }
1747 
1748   // Try to reassociate to sink a splat shuffle after a binary operation.
1749   if (Inst.isAssociative() && Inst.isCommutative()) {
1750     // Canonicalize shuffle operand as LHS.
1751     if (isa<ShuffleVectorInst>(RHS))
1752       std::swap(LHS, RHS);
1753 
1754     Value *X;
1755     ArrayRef<int> MaskC;
1756     int SplatIndex;
1757     BinaryOperator *BO;
1758     if (!match(LHS,
1759                m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
1760         !match(MaskC, m_SplatOrUndefMask(SplatIndex)) ||
1761         X->getType() != Inst.getType() || !match(RHS, m_OneUse(m_BinOp(BO))) ||
1762         BO->getOpcode() != Opcode)
1763       return nullptr;
1764 
1765     // FIXME: This may not be safe if the analysis allows undef elements. By
1766     //        moving 'Y' before the splat shuffle, we are implicitly assuming
1767     //        that it is not undef/poison at the splat index.
1768     Value *Y, *OtherOp;
1769     if (isSplatValue(BO->getOperand(0), SplatIndex)) {
1770       Y = BO->getOperand(0);
1771       OtherOp = BO->getOperand(1);
1772     } else if (isSplatValue(BO->getOperand(1), SplatIndex)) {
1773       Y = BO->getOperand(1);
1774       OtherOp = BO->getOperand(0);
1775     } else {
1776       return nullptr;
1777     }
1778 
1779     // X and Y are splatted values, so perform the binary operation on those
1780     // values followed by a splat followed by the 2nd binary operation:
1781     // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
1782     Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
1783     SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
1784     Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
1785     Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
1786 
1787     // Intersect FMF on both new binops. Other (poison-generating) flags are
1788     // dropped to be safe.
1789     if (isa<FPMathOperator>(R)) {
1790       R->copyFastMathFlags(&Inst);
1791       R->andIRFlags(BO);
1792     }
1793     if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
1794       NewInstBO->copyIRFlags(R);
1795     return R;
1796   }
1797 
1798   return nullptr;
1799 }
1800 
1801 /// Try to narrow the width of a binop if at least 1 operand is an extend of
1802 /// of a value. This requires a potentially expensive known bits check to make
1803 /// sure the narrow op does not overflow.
1804 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
1805   // We need at least one extended operand.
1806   Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
1807 
1808   // If this is a sub, we swap the operands since we always want an extension
1809   // on the RHS. The LHS can be an extension or a constant.
1810   if (BO.getOpcode() == Instruction::Sub)
1811     std::swap(Op0, Op1);
1812 
1813   Value *X;
1814   bool IsSext = match(Op0, m_SExt(m_Value(X)));
1815   if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
1816     return nullptr;
1817 
1818   // If both operands are the same extension from the same source type and we
1819   // can eliminate at least one (hasOneUse), this might work.
1820   CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
1821   Value *Y;
1822   if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
1823         cast<Operator>(Op1)->getOpcode() == CastOpc &&
1824         (Op0->hasOneUse() || Op1->hasOneUse()))) {
1825     // If that did not match, see if we have a suitable constant operand.
1826     // Truncating and extending must produce the same constant.
1827     Constant *WideC;
1828     if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
1829       return nullptr;
1830     Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
1831     if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
1832       return nullptr;
1833     Y = NarrowC;
1834   }
1835 
1836   // Swap back now that we found our operands.
1837   if (BO.getOpcode() == Instruction::Sub)
1838     std::swap(X, Y);
1839 
1840   // Both operands have narrow versions. Last step: the math must not overflow
1841   // in the narrow width.
1842   if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
1843     return nullptr;
1844 
1845   // bo (ext X), (ext Y) --> ext (bo X, Y)
1846   // bo (ext X), C       --> ext (bo X, C')
1847   Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
1848   if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
1849     if (IsSext)
1850       NewBinOp->setHasNoSignedWrap();
1851     else
1852       NewBinOp->setHasNoUnsignedWrap();
1853   }
1854   return CastInst::Create(CastOpc, NarrowBO, BO.getType());
1855 }
1856 
1857 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
1858   // At least one GEP must be inbounds.
1859   if (!GEP1.isInBounds() && !GEP2.isInBounds())
1860     return false;
1861 
1862   return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
1863          (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
1864 }
1865 
1866 /// Thread a GEP operation with constant indices through the constant true/false
1867 /// arms of a select.
1868 static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
1869                                   InstCombiner::BuilderTy &Builder) {
1870   if (!GEP.hasAllConstantIndices())
1871     return nullptr;
1872 
1873   Instruction *Sel;
1874   Value *Cond;
1875   Constant *TrueC, *FalseC;
1876   if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
1877       !match(Sel,
1878              m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
1879     return nullptr;
1880 
1881   // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
1882   // Propagate 'inbounds' and metadata from existing instructions.
1883   // Note: using IRBuilder to create the constants for efficiency.
1884   SmallVector<Value *, 4> IndexC(GEP.indices());
1885   bool IsInBounds = GEP.isInBounds();
1886   Type *Ty = GEP.getSourceElementType();
1887   Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, TrueC, IndexC)
1888                                : Builder.CreateGEP(Ty, TrueC, IndexC);
1889   Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, FalseC, IndexC)
1890                                 : Builder.CreateGEP(Ty, FalseC, IndexC);
1891   return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
1892 }
1893 
1894 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1895   SmallVector<Value *, 8> Ops(GEP.operands());
1896   Type *GEPType = GEP.getType();
1897   Type *GEPEltType = GEP.getSourceElementType();
1898   bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType);
1899   if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP)))
1900     return replaceInstUsesWith(GEP, V);
1901 
1902   // For vector geps, use the generic demanded vector support.
1903   // Skip if GEP return type is scalable. The number of elements is unknown at
1904   // compile-time.
1905   if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
1906     auto VWidth = GEPFVTy->getNumElements();
1907     APInt UndefElts(VWidth, 0);
1908     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1909     if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
1910                                               UndefElts)) {
1911       if (V != &GEP)
1912         return replaceInstUsesWith(GEP, V);
1913       return &GEP;
1914     }
1915 
1916     // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
1917     // possible (decide on canonical form for pointer broadcast), 3) exploit
1918     // undef elements to decrease demanded bits
1919   }
1920 
1921   Value *PtrOp = GEP.getOperand(0);
1922 
1923   // Eliminate unneeded casts for indices, and replace indices which displace
1924   // by multiples of a zero size type with zero.
1925   bool MadeChange = false;
1926 
1927   // Index width may not be the same width as pointer width.
1928   // Data layout chooses the right type based on supported integer types.
1929   Type *NewScalarIndexTy =
1930       DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
1931 
1932   gep_type_iterator GTI = gep_type_begin(GEP);
1933   for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1934        ++I, ++GTI) {
1935     // Skip indices into struct types.
1936     if (GTI.isStruct())
1937       continue;
1938 
1939     Type *IndexTy = (*I)->getType();
1940     Type *NewIndexType =
1941         IndexTy->isVectorTy()
1942             ? VectorType::get(NewScalarIndexTy,
1943                               cast<VectorType>(IndexTy)->getElementCount())
1944             : NewScalarIndexTy;
1945 
1946     // If the element type has zero size then any index over it is equivalent
1947     // to an index of zero, so replace it with zero if it is not zero already.
1948     Type *EltTy = GTI.getIndexedType();
1949     if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
1950       if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
1951         *I = Constant::getNullValue(NewIndexType);
1952         MadeChange = true;
1953       }
1954 
1955     if (IndexTy != NewIndexType) {
1956       // If we are using a wider index than needed for this platform, shrink
1957       // it to what we need.  If narrower, sign-extend it to what we need.
1958       // This explicit cast can make subsequent optimizations more obvious.
1959       *I = Builder.CreateIntCast(*I, NewIndexType, true);
1960       MadeChange = true;
1961     }
1962   }
1963   if (MadeChange)
1964     return &GEP;
1965 
1966   // Check to see if the inputs to the PHI node are getelementptr instructions.
1967   if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
1968     auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1969     if (!Op1)
1970       return nullptr;
1971 
1972     // Don't fold a GEP into itself through a PHI node. This can only happen
1973     // through the back-edge of a loop. Folding a GEP into itself means that
1974     // the value of the previous iteration needs to be stored in the meantime,
1975     // thus requiring an additional register variable to be live, but not
1976     // actually achieving anything (the GEP still needs to be executed once per
1977     // loop iteration).
1978     if (Op1 == &GEP)
1979       return nullptr;
1980 
1981     int DI = -1;
1982 
1983     for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1984       auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
1985       if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1986         return nullptr;
1987 
1988       // As for Op1 above, don't try to fold a GEP into itself.
1989       if (Op2 == &GEP)
1990         return nullptr;
1991 
1992       // Keep track of the type as we walk the GEP.
1993       Type *CurTy = nullptr;
1994 
1995       for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1996         if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1997           return nullptr;
1998 
1999         if (Op1->getOperand(J) != Op2->getOperand(J)) {
2000           if (DI == -1) {
2001             // We have not seen any differences yet in the GEPs feeding the
2002             // PHI yet, so we record this one if it is allowed to be a
2003             // variable.
2004 
2005             // The first two arguments can vary for any GEP, the rest have to be
2006             // static for struct slots
2007             if (J > 1) {
2008               assert(CurTy && "No current type?");
2009               if (CurTy->isStructTy())
2010                 return nullptr;
2011             }
2012 
2013             DI = J;
2014           } else {
2015             // The GEP is different by more than one input. While this could be
2016             // extended to support GEPs that vary by more than one variable it
2017             // doesn't make sense since it greatly increases the complexity and
2018             // would result in an R+R+R addressing mode which no backend
2019             // directly supports and would need to be broken into several
2020             // simpler instructions anyway.
2021             return nullptr;
2022           }
2023         }
2024 
2025         // Sink down a layer of the type for the next iteration.
2026         if (J > 0) {
2027           if (J == 1) {
2028             CurTy = Op1->getSourceElementType();
2029           } else {
2030             CurTy =
2031                 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
2032           }
2033         }
2034       }
2035     }
2036 
2037     // If not all GEPs are identical we'll have to create a new PHI node.
2038     // Check that the old PHI node has only one use so that it will get
2039     // removed.
2040     if (DI != -1 && !PN->hasOneUse())
2041       return nullptr;
2042 
2043     auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
2044     if (DI == -1) {
2045       // All the GEPs feeding the PHI are identical. Clone one down into our
2046       // BB so that it can be merged with the current GEP.
2047     } else {
2048       // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
2049       // into the current block so it can be merged, and create a new PHI to
2050       // set that index.
2051       PHINode *NewPN;
2052       {
2053         IRBuilderBase::InsertPointGuard Guard(Builder);
2054         Builder.SetInsertPoint(PN);
2055         NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
2056                                   PN->getNumOperands());
2057       }
2058 
2059       for (auto &I : PN->operands())
2060         NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
2061                            PN->getIncomingBlock(I));
2062 
2063       NewGEP->setOperand(DI, NewPN);
2064     }
2065 
2066     GEP.getParent()->getInstList().insert(
2067         GEP.getParent()->getFirstInsertionPt(), NewGEP);
2068     replaceOperand(GEP, 0, NewGEP);
2069     PtrOp = NewGEP;
2070   }
2071 
2072   // Combine Indices - If the source pointer to this getelementptr instruction
2073   // is a getelementptr instruction, combine the indices of the two
2074   // getelementptr instructions into a single instruction.
2075   if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
2076     if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
2077       return nullptr;
2078 
2079     if (Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
2080         Src->hasOneUse()) {
2081       Value *GO1 = GEP.getOperand(1);
2082       Value *SO1 = Src->getOperand(1);
2083 
2084       if (LI) {
2085         // Try to reassociate loop invariant GEP chains to enable LICM.
2086         if (Loop *L = LI->getLoopFor(GEP.getParent())) {
2087           // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
2088           // invariant: this breaks the dependence between GEPs and allows LICM
2089           // to hoist the invariant part out of the loop.
2090           if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
2091             // We have to be careful here.
2092             // We have something like:
2093             //  %src = getelementptr <ty>, <ty>* %base, <ty> %idx
2094             //  %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
2095             // If we just swap idx & idx2 then we could inadvertantly
2096             // change %src from a vector to a scalar, or vice versa.
2097             // Cases:
2098             //  1) %base a scalar & idx a scalar & idx2 a vector
2099             //      => Swapping idx & idx2 turns %src into a vector type.
2100             //  2) %base a scalar & idx a vector & idx2 a scalar
2101             //      => Swapping idx & idx2 turns %src in a scalar type
2102             //  3) %base, %idx, and %idx2 are scalars
2103             //      => %src & %gep are scalars
2104             //      => swapping idx & idx2 is safe
2105             //  4) %base a vector
2106             //      => %src is a vector
2107             //      => swapping idx & idx2 is safe.
2108             auto *SO0 = Src->getOperand(0);
2109             auto *SO0Ty = SO0->getType();
2110             if (!isa<VectorType>(GEPType) || // case 3
2111                 isa<VectorType>(SO0Ty)) {    // case 4
2112               Src->setOperand(1, GO1);
2113               GEP.setOperand(1, SO1);
2114               return &GEP;
2115             } else {
2116               // Case 1 or 2
2117               // -- have to recreate %src & %gep
2118               // put NewSrc at same location as %src
2119               Builder.SetInsertPoint(cast<Instruction>(PtrOp));
2120               auto *NewSrc = cast<GetElementPtrInst>(
2121                   Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName()));
2122               NewSrc->setIsInBounds(Src->isInBounds());
2123               auto *NewGEP =
2124                   GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1});
2125               NewGEP->setIsInBounds(GEP.isInBounds());
2126               return NewGEP;
2127             }
2128           }
2129         }
2130       }
2131 
2132       // Fold (gep(gep(Ptr,Idx0),Idx1) -> gep(Ptr,add(Idx0,Idx1))
2133       if (GO1->getType() == SO1->getType()) {
2134         bool NewInBounds = GEP.isInBounds() && Src->isInBounds();
2135         auto *NewIdx =
2136             Builder.CreateAdd(GO1, SO1, GEP.getName() + ".idx",
2137                               /*HasNUW*/ false, /*HasNSW*/ NewInBounds);
2138         auto *NewGEP = GetElementPtrInst::Create(
2139             GEPEltType, Src->getPointerOperand(), {NewIdx});
2140         NewGEP->setIsInBounds(NewInBounds);
2141         return NewGEP;
2142       }
2143     }
2144 
2145     // Note that if our source is a gep chain itself then we wait for that
2146     // chain to be resolved before we perform this transformation.  This
2147     // avoids us creating a TON of code in some cases.
2148     if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
2149       if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
2150         return nullptr;   // Wait until our source is folded to completion.
2151 
2152     SmallVector<Value*, 8> Indices;
2153 
2154     // Find out whether the last index in the source GEP is a sequential idx.
2155     bool EndsWithSequential = false;
2156     for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2157          I != E; ++I)
2158       EndsWithSequential = I.isSequential();
2159 
2160     // Can we combine the two pointer arithmetics offsets?
2161     if (EndsWithSequential) {
2162       // Replace: gep (gep %P, long B), long A, ...
2163       // With:    T = long A+B; gep %P, T, ...
2164       Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2165       Value *GO1 = GEP.getOperand(1);
2166 
2167       // If they aren't the same type, then the input hasn't been processed
2168       // by the loop above yet (which canonicalizes sequential index types to
2169       // intptr_t).  Just avoid transforming this until the input has been
2170       // normalized.
2171       if (SO1->getType() != GO1->getType())
2172         return nullptr;
2173 
2174       Value *Sum =
2175           SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2176       // Only do the combine when we are sure the cost after the
2177       // merge is never more than that before the merge.
2178       if (Sum == nullptr)
2179         return nullptr;
2180 
2181       // Update the GEP in place if possible.
2182       if (Src->getNumOperands() == 2) {
2183         GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
2184         replaceOperand(GEP, 0, Src->getOperand(0));
2185         replaceOperand(GEP, 1, Sum);
2186         return &GEP;
2187       }
2188       Indices.append(Src->op_begin()+1, Src->op_end()-1);
2189       Indices.push_back(Sum);
2190       Indices.append(GEP.op_begin()+2, GEP.op_end());
2191     } else if (isa<Constant>(*GEP.idx_begin()) &&
2192                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2193                Src->getNumOperands() != 1) {
2194       // Otherwise we can do the fold if the first index of the GEP is a zero
2195       Indices.append(Src->op_begin()+1, Src->op_end());
2196       Indices.append(GEP.idx_begin()+1, GEP.idx_end());
2197     }
2198 
2199     if (!Indices.empty())
2200       return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))
2201                  ? GetElementPtrInst::CreateInBounds(
2202                        Src->getSourceElementType(), Src->getOperand(0), Indices,
2203                        GEP.getName())
2204                  : GetElementPtrInst::Create(Src->getSourceElementType(),
2205                                              Src->getOperand(0), Indices,
2206                                              GEP.getName());
2207   }
2208 
2209   // Skip if GEP source element type is scalable. The type alloc size is unknown
2210   // at compile-time.
2211   if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) {
2212     unsigned AS = GEP.getPointerAddressSpace();
2213     if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
2214         DL.getIndexSizeInBits(AS)) {
2215       uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2216 
2217       bool Matched = false;
2218       uint64_t C;
2219       Value *V = nullptr;
2220       if (TyAllocSize == 1) {
2221         V = GEP.getOperand(1);
2222         Matched = true;
2223       } else if (match(GEP.getOperand(1),
2224                        m_AShr(m_Value(V), m_ConstantInt(C)))) {
2225         if (TyAllocSize == 1ULL << C)
2226           Matched = true;
2227       } else if (match(GEP.getOperand(1),
2228                        m_SDiv(m_Value(V), m_ConstantInt(C)))) {
2229         if (TyAllocSize == C)
2230           Matched = true;
2231       }
2232 
2233       // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but
2234       // only if both point to the same underlying object (otherwise provenance
2235       // is not necessarily retained).
2236       Value *Y;
2237       Value *X = GEP.getOperand(0);
2238       if (Matched &&
2239           match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) &&
2240           getUnderlyingObject(X) == getUnderlyingObject(Y))
2241         return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
2242     }
2243   }
2244 
2245   // We do not handle pointer-vector geps here.
2246   if (GEPType->isVectorTy())
2247     return nullptr;
2248 
2249   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
2250   Value *StrippedPtr = PtrOp->stripPointerCasts();
2251   PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
2252 
2253   if (StrippedPtr != PtrOp) {
2254     bool HasZeroPointerIndex = false;
2255     Type *StrippedPtrEltTy = StrippedPtrTy->getElementType();
2256 
2257     if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
2258       HasZeroPointerIndex = C->isZero();
2259 
2260     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
2261     // into     : GEP [10 x i8]* X, i32 0, ...
2262     //
2263     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
2264     //           into     : GEP i8* X, ...
2265     //
2266     // This occurs when the program declares an array extern like "int X[];"
2267     if (HasZeroPointerIndex) {
2268       if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
2269         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
2270         if (CATy->getElementType() == StrippedPtrEltTy) {
2271           // -> GEP i8* X, ...
2272           SmallVector<Value *, 8> Idx(drop_begin(GEP.indices()));
2273           GetElementPtrInst *Res = GetElementPtrInst::Create(
2274               StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
2275           Res->setIsInBounds(GEP.isInBounds());
2276           if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
2277             return Res;
2278           // Insert Res, and create an addrspacecast.
2279           // e.g.,
2280           // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
2281           // ->
2282           // %0 = GEP i8 addrspace(1)* X, ...
2283           // addrspacecast i8 addrspace(1)* %0 to i8*
2284           return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
2285         }
2286 
2287         if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
2288           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
2289           if (CATy->getElementType() == XATy->getElementType()) {
2290             // -> GEP [10 x i8]* X, i32 0, ...
2291             // At this point, we know that the cast source type is a pointer
2292             // to an array of the same type as the destination pointer
2293             // array.  Because the array type is never stepped over (there
2294             // is a leading zero) we can fold the cast into this GEP.
2295             if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
2296               GEP.setSourceElementType(XATy);
2297               return replaceOperand(GEP, 0, StrippedPtr);
2298             }
2299             // Cannot replace the base pointer directly because StrippedPtr's
2300             // address space is different. Instead, create a new GEP followed by
2301             // an addrspacecast.
2302             // e.g.,
2303             // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
2304             //   i32 0, ...
2305             // ->
2306             // %0 = GEP [10 x i8] addrspace(1)* X, ...
2307             // addrspacecast i8 addrspace(1)* %0 to i8*
2308             SmallVector<Value *, 8> Idx(GEP.indices());
2309             Value *NewGEP =
2310                 GEP.isInBounds()
2311                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2312                                                 Idx, GEP.getName())
2313                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2314                                         GEP.getName());
2315             return new AddrSpaceCastInst(NewGEP, GEPType);
2316           }
2317         }
2318       }
2319     } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) {
2320       // Skip if GEP source element type is scalable. The type alloc size is
2321       // unknown at compile-time.
2322       // Transform things like: %t = getelementptr i32*
2323       // bitcast ([2 x i32]* %str to i32*), i32 %V into:  %t1 = getelementptr [2
2324       // x i32]* %str, i32 0, i32 %V; bitcast
2325       if (StrippedPtrEltTy->isArrayTy() &&
2326           DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
2327               DL.getTypeAllocSize(GEPEltType)) {
2328         Type *IdxType = DL.getIndexType(GEPType);
2329         Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
2330         Value *NewGEP =
2331             GEP.isInBounds()
2332                 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2333                                             GEP.getName())
2334                 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2335                                     GEP.getName());
2336 
2337         // V and GEP are both pointer types --> BitCast
2338         return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
2339       }
2340 
2341       // Transform things like:
2342       // %V = mul i64 %N, 4
2343       // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
2344       // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
2345       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
2346         // Check that changing the type amounts to dividing the index by a scale
2347         // factor.
2348         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2349         uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize();
2350         if (ResSize && SrcSize % ResSize == 0) {
2351           Value *Idx = GEP.getOperand(1);
2352           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2353           uint64_t Scale = SrcSize / ResSize;
2354 
2355           // Earlier transforms ensure that the index has the right type
2356           // according to Data Layout, which considerably simplifies the
2357           // logic by eliminating implicit casts.
2358           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2359                  "Index type does not match the Data Layout preferences");
2360 
2361           bool NSW;
2362           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2363             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2364             // If the multiplication NewIdx * Scale may overflow then the new
2365             // GEP may not be "inbounds".
2366             Value *NewGEP =
2367                 GEP.isInBounds() && NSW
2368                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2369                                                 NewIdx, GEP.getName())
2370                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
2371                                         GEP.getName());
2372 
2373             // The NewGEP must be pointer typed, so must the old one -> BitCast
2374             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2375                                                                  GEPType);
2376           }
2377         }
2378       }
2379 
2380       // Similarly, transform things like:
2381       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2382       //   (where tmp = 8*tmp2) into:
2383       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2384       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
2385           StrippedPtrEltTy->isArrayTy()) {
2386         // Check that changing to the array element type amounts to dividing the
2387         // index by a scale factor.
2388         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2389         uint64_t ArrayEltSize =
2390             DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType())
2391                 .getFixedSize();
2392         if (ResSize && ArrayEltSize % ResSize == 0) {
2393           Value *Idx = GEP.getOperand(1);
2394           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2395           uint64_t Scale = ArrayEltSize / ResSize;
2396 
2397           // Earlier transforms ensure that the index has the right type
2398           // according to the Data Layout, which considerably simplifies
2399           // the logic by eliminating implicit casts.
2400           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2401                  "Index type does not match the Data Layout preferences");
2402 
2403           bool NSW;
2404           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2405             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2406             // If the multiplication NewIdx * Scale may overflow then the new
2407             // GEP may not be "inbounds".
2408             Type *IndTy = DL.getIndexType(GEPType);
2409             Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
2410 
2411             Value *NewGEP =
2412                 GEP.isInBounds() && NSW
2413                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2414                                                 Off, GEP.getName())
2415                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
2416                                         GEP.getName());
2417             // The NewGEP must be pointer typed, so must the old one -> BitCast
2418             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2419                                                                  GEPType);
2420           }
2421         }
2422       }
2423     }
2424   }
2425 
2426   // addrspacecast between types is canonicalized as a bitcast, then an
2427   // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2428   // through the addrspacecast.
2429   Value *ASCStrippedPtrOp = PtrOp;
2430   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
2431     //   X = bitcast A addrspace(1)* to B addrspace(1)*
2432     //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2433     //   Z = gep Y, <...constant indices...>
2434     // Into an addrspacecasted GEP of the struct.
2435     if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
2436       ASCStrippedPtrOp = BC;
2437   }
2438 
2439   if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
2440     Value *SrcOp = BCI->getOperand(0);
2441     PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
2442     Type *SrcEltType = SrcType->getElementType();
2443 
2444     // GEP directly using the source operand if this GEP is accessing an element
2445     // of a bitcasted pointer to vector or array of the same dimensions:
2446     // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2447     // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2448     auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy,
2449                                           const DataLayout &DL) {
2450       auto *VecVTy = cast<FixedVectorType>(VecTy);
2451       return ArrTy->getArrayElementType() == VecVTy->getElementType() &&
2452              ArrTy->getArrayNumElements() == VecVTy->getNumElements() &&
2453              DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy);
2454     };
2455     if (GEP.getNumOperands() == 3 &&
2456         ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) &&
2457           areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) ||
2458          (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() &&
2459           areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) {
2460 
2461       // Create a new GEP here, as using `setOperand()` followed by
2462       // `setSourceElementType()` won't actually update the type of the
2463       // existing GEP Value. Causing issues if this Value is accessed when
2464       // constructing an AddrSpaceCastInst
2465       Value *NGEP =
2466           GEP.isInBounds()
2467               ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]})
2468               : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]});
2469       NGEP->takeName(&GEP);
2470 
2471       // Preserve GEP address space to satisfy users
2472       if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2473         return new AddrSpaceCastInst(NGEP, GEPType);
2474 
2475       return replaceInstUsesWith(GEP, NGEP);
2476     }
2477 
2478     // See if we can simplify:
2479     //   X = bitcast A* to B*
2480     //   Y = gep X, <...constant indices...>
2481     // into a gep of the original struct. This is important for SROA and alias
2482     // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2483     unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
2484     APInt Offset(OffsetBits, 0);
2485 
2486     // If the bitcast argument is an allocation, The bitcast is for convertion
2487     // to actual type of allocation. Removing such bitcasts, results in having
2488     // GEPs with i8* base and pure byte offsets. That means GEP is not aware of
2489     // struct or array hierarchy.
2490     // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have
2491     // a better chance to succeed.
2492     if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) &&
2493         !isAllocationFn(SrcOp, &TLI)) {
2494       // If this GEP instruction doesn't move the pointer, just replace the GEP
2495       // with a bitcast of the real input to the dest type.
2496       if (!Offset) {
2497         // If the bitcast is of an allocation, and the allocation will be
2498         // converted to match the type of the cast, don't touch this.
2499         if (isa<AllocaInst>(SrcOp)) {
2500           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2501           if (Instruction *I = visitBitCast(*BCI)) {
2502             if (I != BCI) {
2503               I->takeName(BCI);
2504               BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
2505               replaceInstUsesWith(*BCI, I);
2506             }
2507             return &GEP;
2508           }
2509         }
2510 
2511         if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
2512           return new AddrSpaceCastInst(SrcOp, GEPType);
2513         return new BitCastInst(SrcOp, GEPType);
2514       }
2515 
2516       // Otherwise, if the offset is non-zero, we need to find out if there is a
2517       // field at Offset in 'A's type.  If so, we can pull the cast through the
2518       // GEP.
2519       SmallVector<Value*, 8> NewIndices;
2520       if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
2521         Value *NGEP =
2522             GEP.isInBounds()
2523                 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
2524                 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);
2525 
2526         if (NGEP->getType() == GEPType)
2527           return replaceInstUsesWith(GEP, NGEP);
2528         NGEP->takeName(&GEP);
2529 
2530         if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2531           return new AddrSpaceCastInst(NGEP, GEPType);
2532         return new BitCastInst(NGEP, GEPType);
2533       }
2534     }
2535   }
2536 
2537   if (!GEP.isInBounds()) {
2538     unsigned IdxWidth =
2539         DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2540     APInt BasePtrOffset(IdxWidth, 0);
2541     Value *UnderlyingPtrOp =
2542             PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2543                                                              BasePtrOffset);
2544     if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
2545       if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2546           BasePtrOffset.isNonNegative()) {
2547         APInt AllocSize(
2548             IdxWidth,
2549             DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize());
2550         if (BasePtrOffset.ule(AllocSize)) {
2551           return GetElementPtrInst::CreateInBounds(
2552               GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1),
2553               GEP.getName());
2554         }
2555       }
2556     }
2557   }
2558 
2559   if (Instruction *R = foldSelectGEP(GEP, Builder))
2560     return R;
2561 
2562   return nullptr;
2563 }
2564 
2565 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
2566                                          Instruction *AI) {
2567   if (isa<ConstantPointerNull>(V))
2568     return true;
2569   if (auto *LI = dyn_cast<LoadInst>(V))
2570     return isa<GlobalVariable>(LI->getPointerOperand());
2571   // Two distinct allocations will never be equal.
2572   // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
2573   // through bitcasts of V can cause
2574   // the result statement below to be true, even when AI and V (ex:
2575   // i8* ->i32* ->i8* of AI) are the same allocations.
2576   return isAllocLikeFn(V, TLI) && V != AI;
2577 }
2578 
2579 static bool isAllocSiteRemovable(Instruction *AI,
2580                                  SmallVectorImpl<WeakTrackingVH> &Users,
2581                                  const TargetLibraryInfo *TLI) {
2582   SmallVector<Instruction*, 4> Worklist;
2583   Worklist.push_back(AI);
2584 
2585   do {
2586     Instruction *PI = Worklist.pop_back_val();
2587     for (User *U : PI->users()) {
2588       Instruction *I = cast<Instruction>(U);
2589       switch (I->getOpcode()) {
2590       default:
2591         // Give up the moment we see something we can't handle.
2592         return false;
2593 
2594       case Instruction::AddrSpaceCast:
2595       case Instruction::BitCast:
2596       case Instruction::GetElementPtr:
2597         Users.emplace_back(I);
2598         Worklist.push_back(I);
2599         continue;
2600 
2601       case Instruction::ICmp: {
2602         ICmpInst *ICI = cast<ICmpInst>(I);
2603         // We can fold eq/ne comparisons with null to false/true, respectively.
2604         // We also fold comparisons in some conditions provided the alloc has
2605         // not escaped (see isNeverEqualToUnescapedAlloc).
2606         if (!ICI->isEquality())
2607           return false;
2608         unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2609         if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2610           return false;
2611         Users.emplace_back(I);
2612         continue;
2613       }
2614 
2615       case Instruction::Call:
2616         // Ignore no-op and store intrinsics.
2617         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2618           switch (II->getIntrinsicID()) {
2619           default:
2620             return false;
2621 
2622           case Intrinsic::memmove:
2623           case Intrinsic::memcpy:
2624           case Intrinsic::memset: {
2625             MemIntrinsic *MI = cast<MemIntrinsic>(II);
2626             if (MI->isVolatile() || MI->getRawDest() != PI)
2627               return false;
2628             LLVM_FALLTHROUGH;
2629           }
2630           case Intrinsic::assume:
2631           case Intrinsic::invariant_start:
2632           case Intrinsic::invariant_end:
2633           case Intrinsic::lifetime_start:
2634           case Intrinsic::lifetime_end:
2635           case Intrinsic::objectsize:
2636             Users.emplace_back(I);
2637             continue;
2638           case Intrinsic::launder_invariant_group:
2639           case Intrinsic::strip_invariant_group:
2640             Users.emplace_back(I);
2641             Worklist.push_back(I);
2642             continue;
2643           }
2644         }
2645 
2646         if (isFreeCall(I, TLI)) {
2647           Users.emplace_back(I);
2648           continue;
2649         }
2650         return false;
2651 
2652       case Instruction::Store: {
2653         StoreInst *SI = cast<StoreInst>(I);
2654         if (SI->isVolatile() || SI->getPointerOperand() != PI)
2655           return false;
2656         Users.emplace_back(I);
2657         continue;
2658       }
2659       }
2660       llvm_unreachable("missing a return?");
2661     }
2662   } while (!Worklist.empty());
2663   return true;
2664 }
2665 
2666 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) {
2667   // If we have a malloc call which is only used in any amount of comparisons to
2668   // null and free calls, delete the calls and replace the comparisons with true
2669   // or false as appropriate.
2670 
2671   // This is based on the principle that we can substitute our own allocation
2672   // function (which will never return null) rather than knowledge of the
2673   // specific function being called. In some sense this can change the permitted
2674   // outputs of a program (when we convert a malloc to an alloca, the fact that
2675   // the allocation is now on the stack is potentially visible, for example),
2676   // but we believe in a permissible manner.
2677   SmallVector<WeakTrackingVH, 64> Users;
2678 
2679   // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2680   // before each store.
2681   SmallVector<DbgVariableIntrinsic *, 8> DVIs;
2682   std::unique_ptr<DIBuilder> DIB;
2683   if (isa<AllocaInst>(MI)) {
2684     findDbgUsers(DVIs, &MI);
2685     DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2686   }
2687 
2688   if (isAllocSiteRemovable(&MI, Users, &TLI)) {
2689     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2690       // Lowering all @llvm.objectsize calls first because they may
2691       // use a bitcast/GEP of the alloca we are removing.
2692       if (!Users[i])
2693        continue;
2694 
2695       Instruction *I = cast<Instruction>(&*Users[i]);
2696 
2697       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2698         if (II->getIntrinsicID() == Intrinsic::objectsize) {
2699           Value *Result =
2700               lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
2701           replaceInstUsesWith(*I, Result);
2702           eraseInstFromFunction(*I);
2703           Users[i] = nullptr; // Skip examining in the next loop.
2704         }
2705       }
2706     }
2707     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2708       if (!Users[i])
2709         continue;
2710 
2711       Instruction *I = cast<Instruction>(&*Users[i]);
2712 
2713       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2714         replaceInstUsesWith(*C,
2715                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
2716                                              C->isFalseWhenEqual()));
2717       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2718         for (auto *DVI : DVIs)
2719           if (DVI->isAddressOfVariable())
2720             ConvertDebugDeclareToDebugValue(DVI, SI, *DIB);
2721       } else {
2722         // Casts, GEP, or anything else: we're about to delete this instruction,
2723         // so it can not have any valid uses.
2724         replaceInstUsesWith(*I, PoisonValue::get(I->getType()));
2725       }
2726       eraseInstFromFunction(*I);
2727     }
2728 
2729     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2730       // Replace invoke with a NOP intrinsic to maintain the original CFG
2731       Module *M = II->getModule();
2732       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2733       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2734                          None, "", II->getParent());
2735     }
2736 
2737     // Remove debug intrinsics which describe the value contained within the
2738     // alloca. In addition to removing dbg.{declare,addr} which simply point to
2739     // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
2740     //
2741     // ```
2742     //   define void @foo(i32 %0) {
2743     //     %a = alloca i32                              ; Deleted.
2744     //     store i32 %0, i32* %a
2745     //     dbg.value(i32 %0, "arg0")                    ; Not deleted.
2746     //     dbg.value(i32* %a, "arg0", DW_OP_deref)      ; Deleted.
2747     //     call void @trivially_inlinable_no_op(i32* %a)
2748     //     ret void
2749     //  }
2750     // ```
2751     //
2752     // This may not be required if we stop describing the contents of allocas
2753     // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
2754     // the LowerDbgDeclare utility.
2755     //
2756     // If there is a dead store to `%a` in @trivially_inlinable_no_op, the
2757     // "arg0" dbg.value may be stale after the call. However, failing to remove
2758     // the DW_OP_deref dbg.value causes large gaps in location coverage.
2759     for (auto *DVI : DVIs)
2760       if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref())
2761         DVI->eraseFromParent();
2762 
2763     return eraseInstFromFunction(MI);
2764   }
2765   return nullptr;
2766 }
2767 
2768 /// Move the call to free before a NULL test.
2769 ///
2770 /// Check if this free is accessed after its argument has been test
2771 /// against NULL (property 0).
2772 /// If yes, it is legal to move this call in its predecessor block.
2773 ///
2774 /// The move is performed only if the block containing the call to free
2775 /// will be removed, i.e.:
2776 /// 1. it has only one predecessor P, and P has two successors
2777 /// 2. it contains the call, noops, and an unconditional branch
2778 /// 3. its successor is the same as its predecessor's successor
2779 ///
2780 /// The profitability is out-of concern here and this function should
2781 /// be called only if the caller knows this transformation would be
2782 /// profitable (e.g., for code size).
2783 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2784                                                 const DataLayout &DL) {
2785   Value *Op = FI.getArgOperand(0);
2786   BasicBlock *FreeInstrBB = FI.getParent();
2787   BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2788 
2789   // Validate part of constraint #1: Only one predecessor
2790   // FIXME: We can extend the number of predecessor, but in that case, we
2791   //        would duplicate the call to free in each predecessor and it may
2792   //        not be profitable even for code size.
2793   if (!PredBB)
2794     return nullptr;
2795 
2796   // Validate constraint #2: Does this block contains only the call to
2797   //                         free, noops, and an unconditional branch?
2798   BasicBlock *SuccBB;
2799   Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2800   if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2801     return nullptr;
2802 
2803   // If there are only 2 instructions in the block, at this point,
2804   // this is the call to free and unconditional.
2805   // If there are more than 2 instructions, check that they are noops
2806   // i.e., they won't hurt the performance of the generated code.
2807   if (FreeInstrBB->size() != 2) {
2808     for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
2809       if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2810         continue;
2811       auto *Cast = dyn_cast<CastInst>(&Inst);
2812       if (!Cast || !Cast->isNoopCast(DL))
2813         return nullptr;
2814     }
2815   }
2816   // Validate the rest of constraint #1 by matching on the pred branch.
2817   Instruction *TI = PredBB->getTerminator();
2818   BasicBlock *TrueBB, *FalseBB;
2819   ICmpInst::Predicate Pred;
2820   if (!match(TI, m_Br(m_ICmp(Pred,
2821                              m_CombineOr(m_Specific(Op),
2822                                          m_Specific(Op->stripPointerCasts())),
2823                              m_Zero()),
2824                       TrueBB, FalseBB)))
2825     return nullptr;
2826   if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2827     return nullptr;
2828 
2829   // Validate constraint #3: Ensure the null case just falls through.
2830   if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2831     return nullptr;
2832   assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2833          "Broken CFG: missing edge from predecessor to successor");
2834 
2835   // At this point, we know that everything in FreeInstrBB can be moved
2836   // before TI.
2837   for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end();
2838        It != End;) {
2839     Instruction &Instr = *It++;
2840     if (&Instr == FreeInstrBBTerminator)
2841       break;
2842     Instr.moveBefore(TI);
2843   }
2844   assert(FreeInstrBB->size() == 1 &&
2845          "Only the branch instruction should remain");
2846   return &FI;
2847 }
2848 
2849 Instruction *InstCombinerImpl::visitFree(CallInst &FI) {
2850   Value *Op = FI.getArgOperand(0);
2851 
2852   // free undef -> unreachable.
2853   if (isa<UndefValue>(Op)) {
2854     // Leave a marker since we can't modify the CFG here.
2855     CreateNonTerminatorUnreachable(&FI);
2856     return eraseInstFromFunction(FI);
2857   }
2858 
2859   // If we have 'free null' delete the instruction.  This can happen in stl code
2860   // when lots of inlining happens.
2861   if (isa<ConstantPointerNull>(Op))
2862     return eraseInstFromFunction(FI);
2863 
2864   // If we optimize for code size, try to move the call to free before the null
2865   // test so that simplify cfg can remove the empty block and dead code
2866   // elimination the branch. I.e., helps to turn something like:
2867   // if (foo) free(foo);
2868   // into
2869   // free(foo);
2870   //
2871   // Note that we can only do this for 'free' and not for any flavor of
2872   // 'operator delete'; there is no 'operator delete' symbol for which we are
2873   // permitted to invent a call, even if we're passing in a null pointer.
2874   if (MinimizeSize) {
2875     LibFunc Func;
2876     if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
2877       if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
2878         return I;
2879   }
2880 
2881   return nullptr;
2882 }
2883 
2884 static bool isMustTailCall(Value *V) {
2885   if (auto *CI = dyn_cast<CallInst>(V))
2886     return CI->isMustTailCall();
2887   return false;
2888 }
2889 
2890 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) {
2891   if (RI.getNumOperands() == 0) // ret void
2892     return nullptr;
2893 
2894   Value *ResultOp = RI.getOperand(0);
2895   Type *VTy = ResultOp->getType();
2896   if (!VTy->isIntegerTy() || isa<Constant>(ResultOp))
2897     return nullptr;
2898 
2899   // Don't replace result of musttail calls.
2900   if (isMustTailCall(ResultOp))
2901     return nullptr;
2902 
2903   // There might be assume intrinsics dominating this return that completely
2904   // determine the value. If so, constant fold it.
2905   KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
2906   if (Known.isConstant())
2907     return replaceOperand(RI, 0,
2908         Constant::getIntegerValue(VTy, Known.getConstant()));
2909 
2910   return nullptr;
2911 }
2912 
2913 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()!
2914 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) {
2915   // Try to remove the previous instruction if it must lead to unreachable.
2916   // This includes instructions like stores and "llvm.assume" that may not get
2917   // removed by simple dead code elimination.
2918   while (Instruction *Prev = I.getPrevNonDebugInstruction()) {
2919     // While we theoretically can erase EH, that would result in a block that
2920     // used to start with an EH no longer starting with EH, which is invalid.
2921     // To make it valid, we'd need to fixup predecessors to no longer refer to
2922     // this block, but that changes CFG, which is not allowed in InstCombine.
2923     if (Prev->isEHPad())
2924       return nullptr; // Can not drop any more instructions. We're done here.
2925 
2926     if (!isGuaranteedToTransferExecutionToSuccessor(Prev))
2927       return nullptr; // Can not drop any more instructions. We're done here.
2928     // Otherwise, this instruction can be freely erased,
2929     // even if it is not side-effect free.
2930 
2931     // A value may still have uses before we process it here (for example, in
2932     // another unreachable block), so convert those to poison.
2933     replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType()));
2934     eraseInstFromFunction(*Prev);
2935   }
2936   assert(I.getParent()->sizeWithoutDebug() == 1 && "The block is now empty.");
2937   // FIXME: recurse into unconditional predecessors?
2938   return nullptr;
2939 }
2940 
2941 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) {
2942   assert(BI.isUnconditional() && "Only for unconditional branches.");
2943 
2944   // If this store is the second-to-last instruction in the basic block
2945   // (excluding debug info and bitcasts of pointers) and if the block ends with
2946   // an unconditional branch, try to move the store to the successor block.
2947 
2948   auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
2949     auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) {
2950       return isa<DbgInfoIntrinsic>(BBI) ||
2951              (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
2952     };
2953 
2954     BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
2955     do {
2956       if (BBI != FirstInstr)
2957         --BBI;
2958     } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
2959 
2960     return dyn_cast<StoreInst>(BBI);
2961   };
2962 
2963   if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
2964     if (mergeStoreIntoSuccessor(*SI))
2965       return &BI;
2966 
2967   return nullptr;
2968 }
2969 
2970 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) {
2971   if (BI.isUnconditional())
2972     return visitUnconditionalBranchInst(BI);
2973 
2974   // Change br (not X), label True, label False to: br X, label False, True
2975   Value *X = nullptr;
2976   if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) &&
2977       !isa<Constant>(X)) {
2978     // Swap Destinations and condition...
2979     BI.swapSuccessors();
2980     return replaceOperand(BI, 0, X);
2981   }
2982 
2983   // If the condition is irrelevant, remove the use so that other
2984   // transforms on the condition become more effective.
2985   if (!isa<ConstantInt>(BI.getCondition()) &&
2986       BI.getSuccessor(0) == BI.getSuccessor(1))
2987     return replaceOperand(
2988         BI, 0, ConstantInt::getFalse(BI.getCondition()->getType()));
2989 
2990   // Canonicalize, for example, fcmp_one -> fcmp_oeq.
2991   CmpInst::Predicate Pred;
2992   if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())),
2993                       m_BasicBlock(), m_BasicBlock())) &&
2994       !isCanonicalPredicate(Pred)) {
2995     // Swap destinations and condition.
2996     CmpInst *Cond = cast<CmpInst>(BI.getCondition());
2997     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
2998     BI.swapSuccessors();
2999     Worklist.push(Cond);
3000     return &BI;
3001   }
3002 
3003   return nullptr;
3004 }
3005 
3006 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) {
3007   Value *Cond = SI.getCondition();
3008   Value *Op0;
3009   ConstantInt *AddRHS;
3010   if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
3011     // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
3012     for (auto Case : SI.cases()) {
3013       Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
3014       assert(isa<ConstantInt>(NewCase) &&
3015              "Result of expression should be constant");
3016       Case.setValue(cast<ConstantInt>(NewCase));
3017     }
3018     return replaceOperand(SI, 0, Op0);
3019   }
3020 
3021   KnownBits Known = computeKnownBits(Cond, 0, &SI);
3022   unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
3023   unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
3024 
3025   // Compute the number of leading bits we can ignore.
3026   // TODO: A better way to determine this would use ComputeNumSignBits().
3027   for (auto &C : SI.cases()) {
3028     LeadingKnownZeros = std::min(
3029         LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
3030     LeadingKnownOnes = std::min(
3031         LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
3032   }
3033 
3034   unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
3035 
3036   // Shrink the condition operand if the new type is smaller than the old type.
3037   // But do not shrink to a non-standard type, because backend can't generate
3038   // good code for that yet.
3039   // TODO: We can make it aggressive again after fixing PR39569.
3040   if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
3041       shouldChangeType(Known.getBitWidth(), NewWidth)) {
3042     IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
3043     Builder.SetInsertPoint(&SI);
3044     Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
3045 
3046     for (auto Case : SI.cases()) {
3047       APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
3048       Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
3049     }
3050     return replaceOperand(SI, 0, NewCond);
3051   }
3052 
3053   return nullptr;
3054 }
3055 
3056 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) {
3057   Value *Agg = EV.getAggregateOperand();
3058 
3059   if (!EV.hasIndices())
3060     return replaceInstUsesWith(EV, Agg);
3061 
3062   if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
3063                                           SQ.getWithInstruction(&EV)))
3064     return replaceInstUsesWith(EV, V);
3065 
3066   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
3067     // We're extracting from an insertvalue instruction, compare the indices
3068     const unsigned *exti, *exte, *insi, *inse;
3069     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
3070          exte = EV.idx_end(), inse = IV->idx_end();
3071          exti != exte && insi != inse;
3072          ++exti, ++insi) {
3073       if (*insi != *exti)
3074         // The insert and extract both reference distinctly different elements.
3075         // This means the extract is not influenced by the insert, and we can
3076         // replace the aggregate operand of the extract with the aggregate
3077         // operand of the insert. i.e., replace
3078         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3079         // %E = extractvalue { i32, { i32 } } %I, 0
3080         // with
3081         // %E = extractvalue { i32, { i32 } } %A, 0
3082         return ExtractValueInst::Create(IV->getAggregateOperand(),
3083                                         EV.getIndices());
3084     }
3085     if (exti == exte && insi == inse)
3086       // Both iterators are at the end: Index lists are identical. Replace
3087       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3088       // %C = extractvalue { i32, { i32 } } %B, 1, 0
3089       // with "i32 42"
3090       return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
3091     if (exti == exte) {
3092       // The extract list is a prefix of the insert list. i.e. replace
3093       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3094       // %E = extractvalue { i32, { i32 } } %I, 1
3095       // with
3096       // %X = extractvalue { i32, { i32 } } %A, 1
3097       // %E = insertvalue { i32 } %X, i32 42, 0
3098       // by switching the order of the insert and extract (though the
3099       // insertvalue should be left in, since it may have other uses).
3100       Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
3101                                                 EV.getIndices());
3102       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
3103                                      makeArrayRef(insi, inse));
3104     }
3105     if (insi == inse)
3106       // The insert list is a prefix of the extract list
3107       // We can simply remove the common indices from the extract and make it
3108       // operate on the inserted value instead of the insertvalue result.
3109       // i.e., replace
3110       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3111       // %E = extractvalue { i32, { i32 } } %I, 1, 0
3112       // with
3113       // %E extractvalue { i32 } { i32 42 }, 0
3114       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
3115                                       makeArrayRef(exti, exte));
3116   }
3117   if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) {
3118     // We're extracting from an overflow intrinsic, see if we're the only user,
3119     // which allows us to simplify multiple result intrinsics to simpler
3120     // things that just get one value.
3121     if (WO->hasOneUse()) {
3122       // Check if we're grabbing only the result of a 'with overflow' intrinsic
3123       // and replace it with a traditional binary instruction.
3124       if (*EV.idx_begin() == 0) {
3125         Instruction::BinaryOps BinOp = WO->getBinaryOp();
3126         Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
3127         // Replace the old instruction's uses with poison.
3128         replaceInstUsesWith(*WO, PoisonValue::get(WO->getType()));
3129         eraseInstFromFunction(*WO);
3130         return BinaryOperator::Create(BinOp, LHS, RHS);
3131       }
3132 
3133       assert(*EV.idx_begin() == 1 &&
3134              "unexpected extract index for overflow inst");
3135 
3136       // If only the overflow result is used, and the right hand side is a
3137       // constant (or constant splat), we can remove the intrinsic by directly
3138       // checking for overflow.
3139       const APInt *C;
3140       if (match(WO->getRHS(), m_APInt(C))) {
3141         // Compute the no-wrap range [X,Y) for LHS given RHS=C, then
3142         // check for the inverted range using range offset trick (i.e.
3143         // use a subtract to shift the range to bottom of either the
3144         // signed or unsigned domain and then use a single compare to
3145         // check range membership).
3146         ConstantRange NWR =
3147           ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C,
3148                                                WO->getNoWrapKind());
3149         APInt Min = WO->isSigned() ? NWR.getSignedMin() : NWR.getUnsignedMin();
3150         NWR = NWR.subtract(Min);
3151 
3152         CmpInst::Predicate Pred;
3153         APInt NewRHSC;
3154         if (NWR.getEquivalentICmp(Pred, NewRHSC)) {
3155           auto *OpTy = WO->getRHS()->getType();
3156           auto *NewLHS = Builder.CreateSub(WO->getLHS(),
3157                                            ConstantInt::get(OpTy, Min));
3158           return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS,
3159                               ConstantInt::get(OpTy, NewRHSC));
3160         }
3161       }
3162     }
3163   }
3164   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
3165     // If the (non-volatile) load only has one use, we can rewrite this to a
3166     // load from a GEP. This reduces the size of the load. If a load is used
3167     // only by extractvalue instructions then this either must have been
3168     // optimized before, or it is a struct with padding, in which case we
3169     // don't want to do the transformation as it loses padding knowledge.
3170     if (L->isSimple() && L->hasOneUse()) {
3171       // extractvalue has integer indices, getelementptr has Value*s. Convert.
3172       SmallVector<Value*, 4> Indices;
3173       // Prefix an i32 0 since we need the first element.
3174       Indices.push_back(Builder.getInt32(0));
3175       for (unsigned Idx : EV.indices())
3176         Indices.push_back(Builder.getInt32(Idx));
3177 
3178       // We need to insert these at the location of the old load, not at that of
3179       // the extractvalue.
3180       Builder.SetInsertPoint(L);
3181       Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
3182                                              L->getPointerOperand(), Indices);
3183       Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
3184       // Whatever aliasing information we had for the orignal load must also
3185       // hold for the smaller load, so propagate the annotations.
3186       AAMDNodes Nodes;
3187       L->getAAMetadata(Nodes);
3188       NL->setAAMetadata(Nodes);
3189       // Returning the load directly will cause the main loop to insert it in
3190       // the wrong spot, so use replaceInstUsesWith().
3191       return replaceInstUsesWith(EV, NL);
3192     }
3193   // We could simplify extracts from other values. Note that nested extracts may
3194   // already be simplified implicitly by the above: extract (extract (insert) )
3195   // will be translated into extract ( insert ( extract ) ) first and then just
3196   // the value inserted, if appropriate. Similarly for extracts from single-use
3197   // loads: extract (extract (load)) will be translated to extract (load (gep))
3198   // and if again single-use then via load (gep (gep)) to load (gep).
3199   // However, double extracts from e.g. function arguments or return values
3200   // aren't handled yet.
3201   return nullptr;
3202 }
3203 
3204 /// Return 'true' if the given typeinfo will match anything.
3205 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
3206   switch (Personality) {
3207   case EHPersonality::GNU_C:
3208   case EHPersonality::GNU_C_SjLj:
3209   case EHPersonality::Rust:
3210     // The GCC C EH and Rust personality only exists to support cleanups, so
3211     // it's not clear what the semantics of catch clauses are.
3212     return false;
3213   case EHPersonality::Unknown:
3214     return false;
3215   case EHPersonality::GNU_Ada:
3216     // While __gnat_all_others_value will match any Ada exception, it doesn't
3217     // match foreign exceptions (or didn't, before gcc-4.7).
3218     return false;
3219   case EHPersonality::GNU_CXX:
3220   case EHPersonality::GNU_CXX_SjLj:
3221   case EHPersonality::GNU_ObjC:
3222   case EHPersonality::MSVC_X86SEH:
3223   case EHPersonality::MSVC_TableSEH:
3224   case EHPersonality::MSVC_CXX:
3225   case EHPersonality::CoreCLR:
3226   case EHPersonality::Wasm_CXX:
3227   case EHPersonality::XL_CXX:
3228     return TypeInfo->isNullValue();
3229   }
3230   llvm_unreachable("invalid enum");
3231 }
3232 
3233 static bool shorter_filter(const Value *LHS, const Value *RHS) {
3234   return
3235     cast<ArrayType>(LHS->getType())->getNumElements()
3236   <
3237     cast<ArrayType>(RHS->getType())->getNumElements();
3238 }
3239 
3240 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) {
3241   // The logic here should be correct for any real-world personality function.
3242   // However if that turns out not to be true, the offending logic can always
3243   // be conditioned on the personality function, like the catch-all logic is.
3244   EHPersonality Personality =
3245       classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
3246 
3247   // Simplify the list of clauses, eg by removing repeated catch clauses
3248   // (these are often created by inlining).
3249   bool MakeNewInstruction = false; // If true, recreate using the following:
3250   SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
3251   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
3252 
3253   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
3254   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
3255     bool isLastClause = i + 1 == e;
3256     if (LI.isCatch(i)) {
3257       // A catch clause.
3258       Constant *CatchClause = LI.getClause(i);
3259       Constant *TypeInfo = CatchClause->stripPointerCasts();
3260 
3261       // If we already saw this clause, there is no point in having a second
3262       // copy of it.
3263       if (AlreadyCaught.insert(TypeInfo).second) {
3264         // This catch clause was not already seen.
3265         NewClauses.push_back(CatchClause);
3266       } else {
3267         // Repeated catch clause - drop the redundant copy.
3268         MakeNewInstruction = true;
3269       }
3270 
3271       // If this is a catch-all then there is no point in keeping any following
3272       // clauses or marking the landingpad as having a cleanup.
3273       if (isCatchAll(Personality, TypeInfo)) {
3274         if (!isLastClause)
3275           MakeNewInstruction = true;
3276         CleanupFlag = false;
3277         break;
3278       }
3279     } else {
3280       // A filter clause.  If any of the filter elements were already caught
3281       // then they can be dropped from the filter.  It is tempting to try to
3282       // exploit the filter further by saying that any typeinfo that does not
3283       // occur in the filter can't be caught later (and thus can be dropped).
3284       // However this would be wrong, since typeinfos can match without being
3285       // equal (for example if one represents a C++ class, and the other some
3286       // class derived from it).
3287       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
3288       Constant *FilterClause = LI.getClause(i);
3289       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
3290       unsigned NumTypeInfos = FilterType->getNumElements();
3291 
3292       // An empty filter catches everything, so there is no point in keeping any
3293       // following clauses or marking the landingpad as having a cleanup.  By
3294       // dealing with this case here the following code is made a bit simpler.
3295       if (!NumTypeInfos) {
3296         NewClauses.push_back(FilterClause);
3297         if (!isLastClause)
3298           MakeNewInstruction = true;
3299         CleanupFlag = false;
3300         break;
3301       }
3302 
3303       bool MakeNewFilter = false; // If true, make a new filter.
3304       SmallVector<Constant *, 16> NewFilterElts; // New elements.
3305       if (isa<ConstantAggregateZero>(FilterClause)) {
3306         // Not an empty filter - it contains at least one null typeinfo.
3307         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
3308         Constant *TypeInfo =
3309           Constant::getNullValue(FilterType->getElementType());
3310         // If this typeinfo is a catch-all then the filter can never match.
3311         if (isCatchAll(Personality, TypeInfo)) {
3312           // Throw the filter away.
3313           MakeNewInstruction = true;
3314           continue;
3315         }
3316 
3317         // There is no point in having multiple copies of this typeinfo, so
3318         // discard all but the first copy if there is more than one.
3319         NewFilterElts.push_back(TypeInfo);
3320         if (NumTypeInfos > 1)
3321           MakeNewFilter = true;
3322       } else {
3323         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
3324         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
3325         NewFilterElts.reserve(NumTypeInfos);
3326 
3327         // Remove any filter elements that were already caught or that already
3328         // occurred in the filter.  While there, see if any of the elements are
3329         // catch-alls.  If so, the filter can be discarded.
3330         bool SawCatchAll = false;
3331         for (unsigned j = 0; j != NumTypeInfos; ++j) {
3332           Constant *Elt = Filter->getOperand(j);
3333           Constant *TypeInfo = Elt->stripPointerCasts();
3334           if (isCatchAll(Personality, TypeInfo)) {
3335             // This element is a catch-all.  Bail out, noting this fact.
3336             SawCatchAll = true;
3337             break;
3338           }
3339 
3340           // Even if we've seen a type in a catch clause, we don't want to
3341           // remove it from the filter.  An unexpected type handler may be
3342           // set up for a call site which throws an exception of the same
3343           // type caught.  In order for the exception thrown by the unexpected
3344           // handler to propagate correctly, the filter must be correctly
3345           // described for the call site.
3346           //
3347           // Example:
3348           //
3349           // void unexpected() { throw 1;}
3350           // void foo() throw (int) {
3351           //   std::set_unexpected(unexpected);
3352           //   try {
3353           //     throw 2.0;
3354           //   } catch (int i) {}
3355           // }
3356 
3357           // There is no point in having multiple copies of the same typeinfo in
3358           // a filter, so only add it if we didn't already.
3359           if (SeenInFilter.insert(TypeInfo).second)
3360             NewFilterElts.push_back(cast<Constant>(Elt));
3361         }
3362         // A filter containing a catch-all cannot match anything by definition.
3363         if (SawCatchAll) {
3364           // Throw the filter away.
3365           MakeNewInstruction = true;
3366           continue;
3367         }
3368 
3369         // If we dropped something from the filter, make a new one.
3370         if (NewFilterElts.size() < NumTypeInfos)
3371           MakeNewFilter = true;
3372       }
3373       if (MakeNewFilter) {
3374         FilterType = ArrayType::get(FilterType->getElementType(),
3375                                     NewFilterElts.size());
3376         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
3377         MakeNewInstruction = true;
3378       }
3379 
3380       NewClauses.push_back(FilterClause);
3381 
3382       // If the new filter is empty then it will catch everything so there is
3383       // no point in keeping any following clauses or marking the landingpad
3384       // as having a cleanup.  The case of the original filter being empty was
3385       // already handled above.
3386       if (MakeNewFilter && !NewFilterElts.size()) {
3387         assert(MakeNewInstruction && "New filter but not a new instruction!");
3388         CleanupFlag = false;
3389         break;
3390       }
3391     }
3392   }
3393 
3394   // If several filters occur in a row then reorder them so that the shortest
3395   // filters come first (those with the smallest number of elements).  This is
3396   // advantageous because shorter filters are more likely to match, speeding up
3397   // unwinding, but mostly because it increases the effectiveness of the other
3398   // filter optimizations below.
3399   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
3400     unsigned j;
3401     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
3402     for (j = i; j != e; ++j)
3403       if (!isa<ArrayType>(NewClauses[j]->getType()))
3404         break;
3405 
3406     // Check whether the filters are already sorted by length.  We need to know
3407     // if sorting them is actually going to do anything so that we only make a
3408     // new landingpad instruction if it does.
3409     for (unsigned k = i; k + 1 < j; ++k)
3410       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
3411         // Not sorted, so sort the filters now.  Doing an unstable sort would be
3412         // correct too but reordering filters pointlessly might confuse users.
3413         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
3414                          shorter_filter);
3415         MakeNewInstruction = true;
3416         break;
3417       }
3418 
3419     // Look for the next batch of filters.
3420     i = j + 1;
3421   }
3422 
3423   // If typeinfos matched if and only if equal, then the elements of a filter L
3424   // that occurs later than a filter F could be replaced by the intersection of
3425   // the elements of F and L.  In reality two typeinfos can match without being
3426   // equal (for example if one represents a C++ class, and the other some class
3427   // derived from it) so it would be wrong to perform this transform in general.
3428   // However the transform is correct and useful if F is a subset of L.  In that
3429   // case L can be replaced by F, and thus removed altogether since repeating a
3430   // filter is pointless.  So here we look at all pairs of filters F and L where
3431   // L follows F in the list of clauses, and remove L if every element of F is
3432   // an element of L.  This can occur when inlining C++ functions with exception
3433   // specifications.
3434   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
3435     // Examine each filter in turn.
3436     Value *Filter = NewClauses[i];
3437     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
3438     if (!FTy)
3439       // Not a filter - skip it.
3440       continue;
3441     unsigned FElts = FTy->getNumElements();
3442     // Examine each filter following this one.  Doing this backwards means that
3443     // we don't have to worry about filters disappearing under us when removed.
3444     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
3445       Value *LFilter = NewClauses[j];
3446       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
3447       if (!LTy)
3448         // Not a filter - skip it.
3449         continue;
3450       // If Filter is a subset of LFilter, i.e. every element of Filter is also
3451       // an element of LFilter, then discard LFilter.
3452       SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
3453       // If Filter is empty then it is a subset of LFilter.
3454       if (!FElts) {
3455         // Discard LFilter.
3456         NewClauses.erase(J);
3457         MakeNewInstruction = true;
3458         // Move on to the next filter.
3459         continue;
3460       }
3461       unsigned LElts = LTy->getNumElements();
3462       // If Filter is longer than LFilter then it cannot be a subset of it.
3463       if (FElts > LElts)
3464         // Move on to the next filter.
3465         continue;
3466       // At this point we know that LFilter has at least one element.
3467       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
3468         // Filter is a subset of LFilter iff Filter contains only zeros (as we
3469         // already know that Filter is not longer than LFilter).
3470         if (isa<ConstantAggregateZero>(Filter)) {
3471           assert(FElts <= LElts && "Should have handled this case earlier!");
3472           // Discard LFilter.
3473           NewClauses.erase(J);
3474           MakeNewInstruction = true;
3475         }
3476         // Move on to the next filter.
3477         continue;
3478       }
3479       ConstantArray *LArray = cast<ConstantArray>(LFilter);
3480       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
3481         // Since Filter is non-empty and contains only zeros, it is a subset of
3482         // LFilter iff LFilter contains a zero.
3483         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
3484         for (unsigned l = 0; l != LElts; ++l)
3485           if (LArray->getOperand(l)->isNullValue()) {
3486             // LFilter contains a zero - discard it.
3487             NewClauses.erase(J);
3488             MakeNewInstruction = true;
3489             break;
3490           }
3491         // Move on to the next filter.
3492         continue;
3493       }
3494       // At this point we know that both filters are ConstantArrays.  Loop over
3495       // operands to see whether every element of Filter is also an element of
3496       // LFilter.  Since filters tend to be short this is probably faster than
3497       // using a method that scales nicely.
3498       ConstantArray *FArray = cast<ConstantArray>(Filter);
3499       bool AllFound = true;
3500       for (unsigned f = 0; f != FElts; ++f) {
3501         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3502         AllFound = false;
3503         for (unsigned l = 0; l != LElts; ++l) {
3504           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3505           if (LTypeInfo == FTypeInfo) {
3506             AllFound = true;
3507             break;
3508           }
3509         }
3510         if (!AllFound)
3511           break;
3512       }
3513       if (AllFound) {
3514         // Discard LFilter.
3515         NewClauses.erase(J);
3516         MakeNewInstruction = true;
3517       }
3518       // Move on to the next filter.
3519     }
3520   }
3521 
3522   // If we changed any of the clauses, replace the old landingpad instruction
3523   // with a new one.
3524   if (MakeNewInstruction) {
3525     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3526                                                  NewClauses.size());
3527     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3528       NLI->addClause(NewClauses[i]);
3529     // A landing pad with no clauses must have the cleanup flag set.  It is
3530     // theoretically possible, though highly unlikely, that we eliminated all
3531     // clauses.  If so, force the cleanup flag to true.
3532     if (NewClauses.empty())
3533       CleanupFlag = true;
3534     NLI->setCleanup(CleanupFlag);
3535     return NLI;
3536   }
3537 
3538   // Even if none of the clauses changed, we may nonetheless have understood
3539   // that the cleanup flag is pointless.  Clear it if so.
3540   if (LI.isCleanup() != CleanupFlag) {
3541     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3542     LI.setCleanup(CleanupFlag);
3543     return &LI;
3544   }
3545 
3546   return nullptr;
3547 }
3548 
3549 Value *
3550 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) {
3551   // Try to push freeze through instructions that propagate but don't produce
3552   // poison as far as possible.  If an operand of freeze follows three
3553   // conditions 1) one-use, 2) does not produce poison, and 3) has all but one
3554   // guaranteed-non-poison operands then push the freeze through to the one
3555   // operand that is not guaranteed non-poison.  The actual transform is as
3556   // follows.
3557   //   Op1 = ...                        ; Op1 can be posion
3558   //   Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have
3559   //                                    ; single guaranteed-non-poison operands
3560   //   ... = Freeze(Op0)
3561   // =>
3562   //   Op1 = ...
3563   //   Op1.fr = Freeze(Op1)
3564   //   ... = Inst(Op1.fr, NonPoisonOps...)
3565   auto *OrigOp = OrigFI.getOperand(0);
3566   auto *OrigOpInst = dyn_cast<Instruction>(OrigOp);
3567 
3568   // While we could change the other users of OrigOp to use freeze(OrigOp), that
3569   // potentially reduces their optimization potential, so let's only do this iff
3570   // the OrigOp is only used by the freeze.
3571   if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp) ||
3572       canCreateUndefOrPoison(dyn_cast<Operator>(OrigOp)))
3573     return nullptr;
3574 
3575   // If operand is guaranteed not to be poison, there is no need to add freeze
3576   // to the operand. So we first find the operand that is not guaranteed to be
3577   // poison.
3578   Use *MaybePoisonOperand = nullptr;
3579   for (Use &U : OrigOpInst->operands()) {
3580     if (isGuaranteedNotToBeUndefOrPoison(U.get()))
3581       continue;
3582     if (!MaybePoisonOperand)
3583       MaybePoisonOperand = &U;
3584     else
3585       return nullptr;
3586   }
3587 
3588   // If all operands are guaranteed to be non-poison, we can drop freeze.
3589   if (!MaybePoisonOperand)
3590     return OrigOp;
3591 
3592   auto *FrozenMaybePoisonOperand = new FreezeInst(
3593       MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr");
3594 
3595   replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand);
3596   FrozenMaybePoisonOperand->insertBefore(OrigOpInst);
3597   return OrigOp;
3598 }
3599 
3600 bool InstCombinerImpl::freezeDominatedUses(FreezeInst &FI) {
3601   Value *Op = FI.getOperand(0);
3602 
3603   if (isa<Constant>(Op))
3604     return false;
3605 
3606   bool Changed = false;
3607   Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool {
3608     bool Dominates = DT.dominates(&FI, U);
3609     Changed |= Dominates;
3610     return Dominates;
3611   });
3612 
3613   return Changed;
3614 }
3615 
3616 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) {
3617   Value *Op0 = I.getOperand(0);
3618 
3619   if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
3620     return replaceInstUsesWith(I, V);
3621 
3622   // freeze (phi const, x) --> phi const, (freeze x)
3623   if (auto *PN = dyn_cast<PHINode>(Op0)) {
3624     if (Instruction *NV = foldOpIntoPhi(I, PN))
3625       return NV;
3626   }
3627 
3628   if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I))
3629     return replaceInstUsesWith(I, NI);
3630 
3631   if (match(Op0, m_Undef())) {
3632     // If I is freeze(undef), see its uses and fold it to the best constant.
3633     // - or: pick -1
3634     // - select's condition: pick the value that leads to choosing a constant
3635     // - other ops: pick 0
3636     Constant *BestValue = nullptr;
3637     Constant *NullValue = Constant::getNullValue(I.getType());
3638     for (const auto *U : I.users()) {
3639       Constant *C = NullValue;
3640 
3641       if (match(U, m_Or(m_Value(), m_Value())))
3642         C = Constant::getAllOnesValue(I.getType());
3643       else if (const auto *SI = dyn_cast<SelectInst>(U)) {
3644         if (SI->getCondition() == &I) {
3645           APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1);
3646           C = Constant::getIntegerValue(I.getType(), CondVal);
3647         }
3648       }
3649 
3650       if (!BestValue)
3651         BestValue = C;
3652       else if (BestValue != C)
3653         BestValue = NullValue;
3654     }
3655 
3656     return replaceInstUsesWith(I, BestValue);
3657   }
3658 
3659   // Replace all dominated uses of Op to freeze(Op).
3660   if (freezeDominatedUses(I))
3661     return &I;
3662 
3663   return nullptr;
3664 }
3665 
3666 /// Try to move the specified instruction from its current block into the
3667 /// beginning of DestBlock, which can only happen if it's safe to move the
3668 /// instruction past all of the instructions between it and the end of its
3669 /// block.
3670 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
3671   assert(I->getSingleUndroppableUse() && "Invariants didn't hold!");
3672   BasicBlock *SrcBlock = I->getParent();
3673 
3674   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
3675   if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
3676       I->isTerminator())
3677     return false;
3678 
3679   // Do not sink static or dynamic alloca instructions. Static allocas must
3680   // remain in the entry block, and dynamic allocas must not be sunk in between
3681   // a stacksave / stackrestore pair, which would incorrectly shorten its
3682   // lifetime.
3683   if (isa<AllocaInst>(I))
3684     return false;
3685 
3686   // Do not sink into catchswitch blocks.
3687   if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
3688     return false;
3689 
3690   // Do not sink convergent call instructions.
3691   if (auto *CI = dyn_cast<CallInst>(I)) {
3692     if (CI->isConvergent())
3693       return false;
3694   }
3695   // We can only sink load instructions if there is nothing between the load and
3696   // the end of block that could change the value.
3697   if (I->mayReadFromMemory()) {
3698     // We don't want to do any sophisticated alias analysis, so we only check
3699     // the instructions after I in I's parent block if we try to sink to its
3700     // successor block.
3701     if (DestBlock->getUniquePredecessor() != I->getParent())
3702       return false;
3703     for (BasicBlock::iterator Scan = I->getIterator(),
3704                               E = I->getParent()->end();
3705          Scan != E; ++Scan)
3706       if (Scan->mayWriteToMemory())
3707         return false;
3708   }
3709 
3710   I->dropDroppableUses([DestBlock](const Use *U) {
3711     if (auto *I = dyn_cast<Instruction>(U->getUser()))
3712       return I->getParent() != DestBlock;
3713     return true;
3714   });
3715   /// FIXME: We could remove droppable uses that are not dominated by
3716   /// the new position.
3717 
3718   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
3719   I->moveBefore(&*InsertPos);
3720   ++NumSunkInst;
3721 
3722   // Also sink all related debug uses from the source basic block. Otherwise we
3723   // get debug use before the def. Attempt to salvage debug uses first, to
3724   // maximise the range variables have location for. If we cannot salvage, then
3725   // mark the location undef: we know it was supposed to receive a new location
3726   // here, but that computation has been sunk.
3727   SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
3728   findDbgUsers(DbgUsers, I);
3729   // Process the sinking DbgUsers in reverse order, as we only want to clone the
3730   // last appearing debug intrinsic for each given variable.
3731   SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink;
3732   for (DbgVariableIntrinsic *DVI : DbgUsers)
3733     if (DVI->getParent() == SrcBlock)
3734       DbgUsersToSink.push_back(DVI);
3735   llvm::sort(DbgUsersToSink,
3736              [](auto *A, auto *B) { return B->comesBefore(A); });
3737 
3738   SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
3739   SmallSet<DebugVariable, 4> SunkVariables;
3740   for (auto User : DbgUsersToSink) {
3741     // A dbg.declare instruction should not be cloned, since there can only be
3742     // one per variable fragment. It should be left in the original place
3743     // because the sunk instruction is not an alloca (otherwise we could not be
3744     // here).
3745     if (isa<DbgDeclareInst>(User))
3746       continue;
3747 
3748     DebugVariable DbgUserVariable =
3749         DebugVariable(User->getVariable(), User->getExpression(),
3750                       User->getDebugLoc()->getInlinedAt());
3751 
3752     if (!SunkVariables.insert(DbgUserVariable).second)
3753       continue;
3754 
3755     DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
3756     if (isa<DbgDeclareInst>(User) && isa<CastInst>(I))
3757       DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0));
3758     LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
3759   }
3760 
3761   // Perform salvaging without the clones, then sink the clones.
3762   if (!DIIClones.empty()) {
3763     salvageDebugInfoForDbgValues(*I, DbgUsers);
3764     // The clones are in reverse order of original appearance, reverse again to
3765     // maintain the original order.
3766     for (auto &DIIClone : llvm::reverse(DIIClones)) {
3767       DIIClone->insertBefore(&*InsertPos);
3768       LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
3769     }
3770   }
3771 
3772   return true;
3773 }
3774 
3775 bool InstCombinerImpl::run() {
3776   while (!Worklist.isEmpty()) {
3777     // Walk deferred instructions in reverse order, and push them to the
3778     // worklist, which means they'll end up popped from the worklist in-order.
3779     while (Instruction *I = Worklist.popDeferred()) {
3780       // Check to see if we can DCE the instruction. We do this already here to
3781       // reduce the number of uses and thus allow other folds to trigger.
3782       // Note that eraseInstFromFunction() may push additional instructions on
3783       // the deferred worklist, so this will DCE whole instruction chains.
3784       if (isInstructionTriviallyDead(I, &TLI)) {
3785         eraseInstFromFunction(*I);
3786         ++NumDeadInst;
3787         continue;
3788       }
3789 
3790       Worklist.push(I);
3791     }
3792 
3793     Instruction *I = Worklist.removeOne();
3794     if (I == nullptr) continue;  // skip null values.
3795 
3796     // Check to see if we can DCE the instruction.
3797     if (isInstructionTriviallyDead(I, &TLI)) {
3798       eraseInstFromFunction(*I);
3799       ++NumDeadInst;
3800       continue;
3801     }
3802 
3803     if (!DebugCounter::shouldExecute(VisitCounter))
3804       continue;
3805 
3806     // Instruction isn't dead, see if we can constant propagate it.
3807     if (!I->use_empty() &&
3808         (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
3809       if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
3810         LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
3811                           << '\n');
3812 
3813         // Add operands to the worklist.
3814         replaceInstUsesWith(*I, C);
3815         ++NumConstProp;
3816         if (isInstructionTriviallyDead(I, &TLI))
3817           eraseInstFromFunction(*I);
3818         MadeIRChange = true;
3819         continue;
3820       }
3821     }
3822 
3823     // See if we can trivially sink this instruction to its user if we can
3824     // prove that the successor is not executed more frequently than our block.
3825     if (EnableCodeSinking)
3826       if (Use *SingleUse = I->getSingleUndroppableUse()) {
3827         BasicBlock *BB = I->getParent();
3828         Instruction *UserInst = cast<Instruction>(SingleUse->getUser());
3829         BasicBlock *UserParent;
3830 
3831         // Get the block the use occurs in.
3832         if (PHINode *PN = dyn_cast<PHINode>(UserInst))
3833           UserParent = PN->getIncomingBlock(*SingleUse);
3834         else
3835           UserParent = UserInst->getParent();
3836 
3837         // Try sinking to another block. If that block is unreachable, then do
3838         // not bother. SimplifyCFG should handle it.
3839         if (UserParent != BB && DT.isReachableFromEntry(UserParent)) {
3840           // See if the user is one of our successors that has only one
3841           // predecessor, so that we don't have to split the critical edge.
3842           bool ShouldSink = UserParent->getUniquePredecessor() == BB;
3843           // Another option where we can sink is a block that ends with a
3844           // terminator that does not pass control to other block (such as
3845           // return or unreachable). In this case:
3846           //   - I dominates the User (by SSA form);
3847           //   - the User will be executed at most once.
3848           // So sinking I down to User is always profitable or neutral.
3849           if (!ShouldSink) {
3850             auto *Term = UserParent->getTerminator();
3851             ShouldSink = isa<ReturnInst>(Term) || isa<UnreachableInst>(Term);
3852           }
3853           if (ShouldSink) {
3854             assert(DT.dominates(BB, UserParent) &&
3855                    "Dominance relation broken?");
3856             // Okay, the CFG is simple enough, try to sink this instruction.
3857             if (TryToSinkInstruction(I, UserParent)) {
3858               LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
3859               MadeIRChange = true;
3860               // We'll add uses of the sunk instruction below, but since sinking
3861               // can expose opportunities for it's *operands* add them to the
3862               // worklist
3863               for (Use &U : I->operands())
3864                 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
3865                   Worklist.push(OpI);
3866             }
3867           }
3868         }
3869       }
3870 
3871     // Now that we have an instruction, try combining it to simplify it.
3872     Builder.SetInsertPoint(I);
3873     Builder.CollectMetadataToCopy(
3874         I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
3875 
3876 #ifndef NDEBUG
3877     std::string OrigI;
3878 #endif
3879     LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
3880     LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
3881 
3882     if (Instruction *Result = visit(*I)) {
3883       ++NumCombined;
3884       // Should we replace the old instruction with a new one?
3885       if (Result != I) {
3886         LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
3887                           << "    New = " << *Result << '\n');
3888 
3889         Result->copyMetadata(*I,
3890                              {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
3891         // Everything uses the new instruction now.
3892         I->replaceAllUsesWith(Result);
3893 
3894         // Move the name to the new instruction first.
3895         Result->takeName(I);
3896 
3897         // Insert the new instruction into the basic block...
3898         BasicBlock *InstParent = I->getParent();
3899         BasicBlock::iterator InsertPos = I->getIterator();
3900 
3901         // Are we replace a PHI with something that isn't a PHI, or vice versa?
3902         if (isa<PHINode>(Result) != isa<PHINode>(I)) {
3903           // We need to fix up the insertion point.
3904           if (isa<PHINode>(I)) // PHI -> Non-PHI
3905             InsertPos = InstParent->getFirstInsertionPt();
3906           else // Non-PHI -> PHI
3907             InsertPos = InstParent->getFirstNonPHI()->getIterator();
3908         }
3909 
3910         InstParent->getInstList().insert(InsertPos, Result);
3911 
3912         // Push the new instruction and any users onto the worklist.
3913         Worklist.pushUsersToWorkList(*Result);
3914         Worklist.push(Result);
3915 
3916         eraseInstFromFunction(*I);
3917       } else {
3918         LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
3919                           << "    New = " << *I << '\n');
3920 
3921         // If the instruction was modified, it's possible that it is now dead.
3922         // if so, remove it.
3923         if (isInstructionTriviallyDead(I, &TLI)) {
3924           eraseInstFromFunction(*I);
3925         } else {
3926           Worklist.pushUsersToWorkList(*I);
3927           Worklist.push(I);
3928         }
3929       }
3930       MadeIRChange = true;
3931     }
3932   }
3933 
3934   Worklist.zap();
3935   return MadeIRChange;
3936 }
3937 
3938 // Track the scopes used by !alias.scope and !noalias. In a function, a
3939 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used
3940 // by both sets. If not, the declaration of the scope can be safely omitted.
3941 // The MDNode of the scope can be omitted as well for the instructions that are
3942 // part of this function. We do not do that at this point, as this might become
3943 // too time consuming to do.
3944 class AliasScopeTracker {
3945   SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists;
3946   SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists;
3947 
3948 public:
3949   void analyse(Instruction *I) {
3950     // This seems to be faster than checking 'mayReadOrWriteMemory()'.
3951     if (!I->hasMetadataOtherThanDebugLoc())
3952       return;
3953 
3954     auto Track = [](Metadata *ScopeList, auto &Container) {
3955       const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
3956       if (!MDScopeList || !Container.insert(MDScopeList).second)
3957         return;
3958       for (auto &MDOperand : MDScopeList->operands())
3959         if (auto *MDScope = dyn_cast<MDNode>(MDOperand))
3960           Container.insert(MDScope);
3961     };
3962 
3963     Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
3964     Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
3965   }
3966 
3967   bool isNoAliasScopeDeclDead(Instruction *Inst) {
3968     NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst);
3969     if (!Decl)
3970       return false;
3971 
3972     assert(Decl->use_empty() &&
3973            "llvm.experimental.noalias.scope.decl in use ?");
3974     const MDNode *MDSL = Decl->getScopeList();
3975     assert(MDSL->getNumOperands() == 1 &&
3976            "llvm.experimental.noalias.scope should refer to a single scope");
3977     auto &MDOperand = MDSL->getOperand(0);
3978     if (auto *MD = dyn_cast<MDNode>(MDOperand))
3979       return !UsedAliasScopesAndLists.contains(MD) ||
3980              !UsedNoAliasScopesAndLists.contains(MD);
3981 
3982     // Not an MDNode ? throw away.
3983     return true;
3984   }
3985 };
3986 
3987 /// Populate the IC worklist from a function, by walking it in depth-first
3988 /// order and adding all reachable code to the worklist.
3989 ///
3990 /// This has a couple of tricks to make the code faster and more powerful.  In
3991 /// particular, we constant fold and DCE instructions as we go, to avoid adding
3992 /// them to the worklist (this significantly speeds up instcombine on code where
3993 /// many instructions are dead or constant).  Additionally, if we find a branch
3994 /// whose condition is a known constant, we only visit the reachable successors.
3995 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
3996                                           const TargetLibraryInfo *TLI,
3997                                           InstCombineWorklist &ICWorklist) {
3998   bool MadeIRChange = false;
3999   SmallPtrSet<BasicBlock *, 32> Visited;
4000   SmallVector<BasicBlock*, 256> Worklist;
4001   Worklist.push_back(&F.front());
4002 
4003   SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
4004   DenseMap<Constant *, Constant *> FoldedConstants;
4005   AliasScopeTracker SeenAliasScopes;
4006 
4007   do {
4008     BasicBlock *BB = Worklist.pop_back_val();
4009 
4010     // We have now visited this block!  If we've already been here, ignore it.
4011     if (!Visited.insert(BB).second)
4012       continue;
4013 
4014     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
4015       Instruction *Inst = &*BBI++;
4016 
4017       // ConstantProp instruction if trivially constant.
4018       if (!Inst->use_empty() &&
4019           (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
4020         if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
4021           LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst
4022                             << '\n');
4023           Inst->replaceAllUsesWith(C);
4024           ++NumConstProp;
4025           if (isInstructionTriviallyDead(Inst, TLI))
4026             Inst->eraseFromParent();
4027           MadeIRChange = true;
4028           continue;
4029         }
4030 
4031       // See if we can constant fold its operands.
4032       for (Use &U : Inst->operands()) {
4033         if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
4034           continue;
4035 
4036         auto *C = cast<Constant>(U);
4037         Constant *&FoldRes = FoldedConstants[C];
4038         if (!FoldRes)
4039           FoldRes = ConstantFoldConstant(C, DL, TLI);
4040 
4041         if (FoldRes != C) {
4042           LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
4043                             << "\n    Old = " << *C
4044                             << "\n    New = " << *FoldRes << '\n');
4045           U = FoldRes;
4046           MadeIRChange = true;
4047         }
4048       }
4049 
4050       // Skip processing debug and pseudo intrinsics in InstCombine. Processing
4051       // these call instructions consumes non-trivial amount of time and
4052       // provides no value for the optimization.
4053       if (!Inst->isDebugOrPseudoInst()) {
4054         InstrsForInstCombineWorklist.push_back(Inst);
4055         SeenAliasScopes.analyse(Inst);
4056       }
4057     }
4058 
4059     // Recursively visit successors.  If this is a branch or switch on a
4060     // constant, only visit the reachable successor.
4061     Instruction *TI = BB->getTerminator();
4062     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
4063       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
4064         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
4065         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
4066         Worklist.push_back(ReachableBB);
4067         continue;
4068       }
4069     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
4070       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
4071         Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
4072         continue;
4073       }
4074     }
4075 
4076     append_range(Worklist, successors(TI));
4077   } while (!Worklist.empty());
4078 
4079   // Remove instructions inside unreachable blocks. This prevents the
4080   // instcombine code from having to deal with some bad special cases, and
4081   // reduces use counts of instructions.
4082   for (BasicBlock &BB : F) {
4083     if (Visited.count(&BB))
4084       continue;
4085 
4086     unsigned NumDeadInstInBB;
4087     unsigned NumDeadDbgInstInBB;
4088     std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) =
4089         removeAllNonTerminatorAndEHPadInstructions(&BB);
4090 
4091     MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0;
4092     NumDeadInst += NumDeadInstInBB;
4093   }
4094 
4095   // Once we've found all of the instructions to add to instcombine's worklist,
4096   // add them in reverse order.  This way instcombine will visit from the top
4097   // of the function down.  This jives well with the way that it adds all uses
4098   // of instructions to the worklist after doing a transformation, thus avoiding
4099   // some N^2 behavior in pathological cases.
4100   ICWorklist.reserve(InstrsForInstCombineWorklist.size());
4101   for (Instruction *Inst : reverse(InstrsForInstCombineWorklist)) {
4102     // DCE instruction if trivially dead. As we iterate in reverse program
4103     // order here, we will clean up whole chains of dead instructions.
4104     if (isInstructionTriviallyDead(Inst, TLI) ||
4105         SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) {
4106       ++NumDeadInst;
4107       LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
4108       salvageDebugInfo(*Inst);
4109       Inst->eraseFromParent();
4110       MadeIRChange = true;
4111       continue;
4112     }
4113 
4114     ICWorklist.push(Inst);
4115   }
4116 
4117   return MadeIRChange;
4118 }
4119 
4120 static bool combineInstructionsOverFunction(
4121     Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA,
4122     AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
4123     DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
4124     ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) {
4125   auto &DL = F.getParent()->getDataLayout();
4126   MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue());
4127 
4128   /// Builder - This is an IRBuilder that automatically inserts new
4129   /// instructions into the worklist when they are created.
4130   IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
4131       F.getContext(), TargetFolder(DL),
4132       IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
4133         Worklist.add(I);
4134         if (auto *Assume = dyn_cast<AssumeInst>(I))
4135           AC.registerAssumption(Assume);
4136       }));
4137 
4138   // Lower dbg.declare intrinsics otherwise their value may be clobbered
4139   // by instcombiner.
4140   bool MadeIRChange = false;
4141   if (ShouldLowerDbgDeclare)
4142     MadeIRChange = LowerDbgDeclare(F);
4143 
4144   // Iterate while there is work to do.
4145   unsigned Iteration = 0;
4146   while (true) {
4147     ++NumWorklistIterations;
4148     ++Iteration;
4149 
4150     if (Iteration > InfiniteLoopDetectionThreshold) {
4151       report_fatal_error(
4152           "Instruction Combining seems stuck in an infinite loop after " +
4153           Twine(InfiniteLoopDetectionThreshold) + " iterations.");
4154     }
4155 
4156     if (Iteration > MaxIterations) {
4157       LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations
4158                         << " on " << F.getName()
4159                         << " reached; stopping before reaching a fixpoint\n");
4160       break;
4161     }
4162 
4163     LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
4164                       << F.getName() << "\n");
4165 
4166     MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
4167 
4168     InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT,
4169                         ORE, BFI, PSI, DL, LI);
4170     IC.MaxArraySizeForCombine = MaxArraySize;
4171 
4172     if (!IC.run())
4173       break;
4174 
4175     MadeIRChange = true;
4176   }
4177 
4178   return MadeIRChange;
4179 }
4180 
4181 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {}
4182 
4183 InstCombinePass::InstCombinePass(unsigned MaxIterations)
4184     : MaxIterations(MaxIterations) {}
4185 
4186 PreservedAnalyses InstCombinePass::run(Function &F,
4187                                        FunctionAnalysisManager &AM) {
4188   auto &AC = AM.getResult<AssumptionAnalysis>(F);
4189   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4190   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4191   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
4192   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
4193 
4194   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
4195 
4196   auto *AA = &AM.getResult<AAManager>(F);
4197   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
4198   ProfileSummaryInfo *PSI =
4199       MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
4200   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
4201       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
4202 
4203   if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4204                                        BFI, PSI, MaxIterations, LI))
4205     // No changes, all analyses are preserved.
4206     return PreservedAnalyses::all();
4207 
4208   // Mark all the analyses that instcombine updates as preserved.
4209   PreservedAnalyses PA;
4210   PA.preserveSet<CFGAnalyses>();
4211   return PA;
4212 }
4213 
4214 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
4215   AU.setPreservesCFG();
4216   AU.addRequired<AAResultsWrapperPass>();
4217   AU.addRequired<AssumptionCacheTracker>();
4218   AU.addRequired<TargetLibraryInfoWrapperPass>();
4219   AU.addRequired<TargetTransformInfoWrapperPass>();
4220   AU.addRequired<DominatorTreeWrapperPass>();
4221   AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
4222   AU.addPreserved<DominatorTreeWrapperPass>();
4223   AU.addPreserved<AAResultsWrapperPass>();
4224   AU.addPreserved<BasicAAWrapperPass>();
4225   AU.addPreserved<GlobalsAAWrapperPass>();
4226   AU.addRequired<ProfileSummaryInfoWrapperPass>();
4227   LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
4228 }
4229 
4230 bool InstructionCombiningPass::runOnFunction(Function &F) {
4231   if (skipFunction(F))
4232     return false;
4233 
4234   // Required analyses.
4235   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4236   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
4237   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
4238   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
4239   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
4240   auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
4241 
4242   // Optional analyses.
4243   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
4244   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
4245   ProfileSummaryInfo *PSI =
4246       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
4247   BlockFrequencyInfo *BFI =
4248       (PSI && PSI->hasProfileSummary()) ?
4249       &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
4250       nullptr;
4251 
4252   return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4253                                          BFI, PSI, MaxIterations, LI);
4254 }
4255 
4256 char InstructionCombiningPass::ID = 0;
4257 
4258 InstructionCombiningPass::InstructionCombiningPass()
4259     : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) {
4260   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4261 }
4262 
4263 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations)
4264     : FunctionPass(ID), MaxIterations(MaxIterations) {
4265   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4266 }
4267 
4268 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
4269                       "Combine redundant instructions", false, false)
4270 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4271 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4272 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4273 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4274 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4275 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4276 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
4277 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
4278 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
4279 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
4280                     "Combine redundant instructions", false, false)
4281 
4282 // Initialization Routines
4283 void llvm::initializeInstCombine(PassRegistry &Registry) {
4284   initializeInstructionCombiningPassPass(Registry);
4285 }
4286 
4287 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
4288   initializeInstructionCombiningPassPass(*unwrap(R));
4289 }
4290 
4291 FunctionPass *llvm::createInstructionCombiningPass() {
4292   return new InstructionCombiningPass();
4293 }
4294 
4295 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) {
4296   return new InstructionCombiningPass(MaxIterations);
4297 }
4298 
4299 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
4300   unwrap(PM)->add(createInstructionCombiningPass());
4301 }
4302