1 //===- AddressSanitizer.cpp - memory error detector -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of AddressSanitizer, an address sanity checker.
10 // Details of the algorithm:
11 //  https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
12 //
13 // FIXME: This sanitizer does not yet handle scalable vectors
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DepthFirstIterator.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/BinaryFormat/MachO.h"
32 #include "llvm/IR/Argument.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/Comdat.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DIBuilder.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugInfoMetadata.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalAlias.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InlineAsm.h"
50 #include "llvm/IR/InstVisitor.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/MDBuilder.h"
58 #include "llvm/IR/Metadata.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Use.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/InitializePasses.h"
64 #include "llvm/MC/MCSectionMachO.h"
65 #include "llvm/Pass.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/ScopedPrinter.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Instrumentation.h"
74 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h"
75 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h"
76 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
77 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
78 #include "llvm/Transforms/Utils/Local.h"
79 #include "llvm/Transforms/Utils/ModuleUtils.h"
80 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
81 #include <algorithm>
82 #include <cassert>
83 #include <cstddef>
84 #include <cstdint>
85 #include <iomanip>
86 #include <limits>
87 #include <memory>
88 #include <sstream>
89 #include <string>
90 #include <tuple>
91 
92 using namespace llvm;
93 
94 #define DEBUG_TYPE "asan"
95 
96 static const uint64_t kDefaultShadowScale = 3;
97 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
98 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
99 static const uint64_t kDynamicShadowSentinel =
100     std::numeric_limits<uint64_t>::max();
101 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF;  // < 2G.
102 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL;
103 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
104 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44;
105 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
106 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
107 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
108 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
109 static const uint64_t kRISCV64_ShadowOffset64 = 0xd55550000;
110 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
111 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
112 static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000;
113 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30;
114 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46;
115 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000;
116 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40;
117 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
118 static const uint64_t kEmscriptenShadowOffset = 0;
119 
120 // The shadow memory space is dynamically allocated.
121 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;
122 
123 static const size_t kMinStackMallocSize = 1 << 6;   // 64B
124 static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
125 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
126 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
127 
128 const char kAsanModuleCtorName[] = "asan.module_ctor";
129 const char kAsanModuleDtorName[] = "asan.module_dtor";
130 static const uint64_t kAsanCtorAndDtorPriority = 1;
131 // On Emscripten, the system needs more than one priorities for constructors.
132 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50;
133 const char kAsanReportErrorTemplate[] = "__asan_report_";
134 const char kAsanRegisterGlobalsName[] = "__asan_register_globals";
135 const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals";
136 const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals";
137 const char kAsanUnregisterImageGlobalsName[] =
138     "__asan_unregister_image_globals";
139 const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals";
140 const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals";
141 const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init";
142 const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init";
143 const char kAsanInitName[] = "__asan_init";
144 const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v";
145 const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp";
146 const char kAsanPtrSub[] = "__sanitizer_ptr_sub";
147 const char kAsanHandleNoReturnName[] = "__asan_handle_no_return";
148 static const int kMaxAsanStackMallocSizeClass = 10;
149 const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_";
150 const char kAsanStackMallocAlwaysNameTemplate[] =
151     "__asan_stack_malloc_always_";
152 const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_";
153 const char kAsanGenPrefix[] = "___asan_gen_";
154 const char kODRGenPrefix[] = "__odr_asan_gen_";
155 const char kSanCovGenPrefix[] = "__sancov_gen_";
156 const char kAsanSetShadowPrefix[] = "__asan_set_shadow_";
157 const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory";
158 const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory";
159 
160 // ASan version script has __asan_* wildcard. Triple underscore prevents a
161 // linker (gold) warning about attempting to export a local symbol.
162 const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered";
163 
164 const char kAsanOptionDetectUseAfterReturn[] =
165     "__asan_option_detect_stack_use_after_return";
166 
167 const char kAsanShadowMemoryDynamicAddress[] =
168     "__asan_shadow_memory_dynamic_address";
169 
170 const char kAsanAllocaPoison[] = "__asan_alloca_poison";
171 const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison";
172 
173 const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared";
174 const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private";
175 
176 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
177 static const size_t kNumberOfAccessSizes = 5;
178 
179 static const unsigned kAllocaRzSize = 32;
180 
181 // Command-line flags.
182 
183 static cl::opt<bool> ClEnableKasan(
184     "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
185     cl::Hidden, cl::init(false));
186 
187 static cl::opt<bool> ClRecover(
188     "asan-recover",
189     cl::desc("Enable recovery mode (continue-after-error)."),
190     cl::Hidden, cl::init(false));
191 
192 static cl::opt<bool> ClInsertVersionCheck(
193     "asan-guard-against-version-mismatch",
194     cl::desc("Guard against compiler/runtime version mismatch."),
195     cl::Hidden, cl::init(true));
196 
197 // This flag may need to be replaced with -f[no-]asan-reads.
198 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
199                                        cl::desc("instrument read instructions"),
200                                        cl::Hidden, cl::init(true));
201 
202 static cl::opt<bool> ClInstrumentWrites(
203     "asan-instrument-writes", cl::desc("instrument write instructions"),
204     cl::Hidden, cl::init(true));
205 
206 static cl::opt<bool> ClInstrumentAtomics(
207     "asan-instrument-atomics",
208     cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
209     cl::init(true));
210 
211 static cl::opt<bool>
212     ClInstrumentByval("asan-instrument-byval",
213                       cl::desc("instrument byval call arguments"), cl::Hidden,
214                       cl::init(true));
215 
216 static cl::opt<bool> ClAlwaysSlowPath(
217     "asan-always-slow-path",
218     cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
219     cl::init(false));
220 
221 static cl::opt<bool> ClForceDynamicShadow(
222     "asan-force-dynamic-shadow",
223     cl::desc("Load shadow address into a local variable for each function"),
224     cl::Hidden, cl::init(false));
225 
226 static cl::opt<bool>
227     ClWithIfunc("asan-with-ifunc",
228                 cl::desc("Access dynamic shadow through an ifunc global on "
229                          "platforms that support this"),
230                 cl::Hidden, cl::init(true));
231 
232 static cl::opt<bool> ClWithIfuncSuppressRemat(
233     "asan-with-ifunc-suppress-remat",
234     cl::desc("Suppress rematerialization of dynamic shadow address by passing "
235              "it through inline asm in prologue."),
236     cl::Hidden, cl::init(true));
237 
238 // This flag limits the number of instructions to be instrumented
239 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
240 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
241 // set it to 10000.
242 static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
243     "asan-max-ins-per-bb", cl::init(10000),
244     cl::desc("maximal number of instructions to instrument in any given BB"),
245     cl::Hidden);
246 
247 // This flag may need to be replaced with -f[no]asan-stack.
248 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
249                              cl::Hidden, cl::init(true));
250 static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
251     "asan-max-inline-poisoning-size",
252     cl::desc(
253         "Inline shadow poisoning for blocks up to the given size in bytes."),
254     cl::Hidden, cl::init(64));
255 
256 static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn(
257     "asan-use-after-return",
258     cl::desc("Sets the mode of detection for stack-use-after-return."),
259     cl::values(
260         clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never",
261                    "Never detect stack use after return."),
262         clEnumValN(
263             AsanDetectStackUseAfterReturnMode::Runtime, "runtime",
264             "Detect stack use after return if "
265             "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."),
266         clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always",
267                    "Always detect stack use after return.")),
268     cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime));
269 
270 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
271                                         cl::desc("Create redzones for byval "
272                                                  "arguments (extra copy "
273                                                  "required)"), cl::Hidden,
274                                         cl::init(true));
275 
276 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
277                                      cl::desc("Check stack-use-after-scope"),
278                                      cl::Hidden, cl::init(false));
279 
280 // This flag may need to be replaced with -f[no]asan-globals.
281 static cl::opt<bool> ClGlobals("asan-globals",
282                                cl::desc("Handle global objects"), cl::Hidden,
283                                cl::init(true));
284 
285 static cl::opt<bool> ClInitializers("asan-initialization-order",
286                                     cl::desc("Handle C++ initializer order"),
287                                     cl::Hidden, cl::init(true));
288 
289 static cl::opt<bool> ClInvalidPointerPairs(
290     "asan-detect-invalid-pointer-pair",
291     cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
292     cl::init(false));
293 
294 static cl::opt<bool> ClInvalidPointerCmp(
295     "asan-detect-invalid-pointer-cmp",
296     cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden,
297     cl::init(false));
298 
299 static cl::opt<bool> ClInvalidPointerSub(
300     "asan-detect-invalid-pointer-sub",
301     cl::desc("Instrument - operations with pointer operands"), cl::Hidden,
302     cl::init(false));
303 
304 static cl::opt<unsigned> ClRealignStack(
305     "asan-realign-stack",
306     cl::desc("Realign stack to the value of this flag (power of two)"),
307     cl::Hidden, cl::init(32));
308 
309 static cl::opt<int> ClInstrumentationWithCallsThreshold(
310     "asan-instrumentation-with-call-threshold",
311     cl::desc(
312         "If the function being instrumented contains more than "
313         "this number of memory accesses, use callbacks instead of "
314         "inline checks (-1 means never use callbacks)."),
315     cl::Hidden, cl::init(7000));
316 
317 static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
318     "asan-memory-access-callback-prefix",
319     cl::desc("Prefix for memory access callbacks"), cl::Hidden,
320     cl::init("__asan_"));
321 
322 static cl::opt<bool>
323     ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
324                                cl::desc("instrument dynamic allocas"),
325                                cl::Hidden, cl::init(true));
326 
327 static cl::opt<bool> ClSkipPromotableAllocas(
328     "asan-skip-promotable-allocas",
329     cl::desc("Do not instrument promotable allocas"), cl::Hidden,
330     cl::init(true));
331 
332 // These flags allow to change the shadow mapping.
333 // The shadow mapping looks like
334 //    Shadow = (Mem >> scale) + offset
335 
336 static cl::opt<int> ClMappingScale("asan-mapping-scale",
337                                    cl::desc("scale of asan shadow mapping"),
338                                    cl::Hidden, cl::init(0));
339 
340 static cl::opt<uint64_t>
341     ClMappingOffset("asan-mapping-offset",
342                     cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"),
343                     cl::Hidden, cl::init(0));
344 
345 // Optimization flags. Not user visible, used mostly for testing
346 // and benchmarking the tool.
347 
348 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
349                            cl::Hidden, cl::init(true));
350 
351 static cl::opt<bool> ClOptSameTemp(
352     "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
353     cl::Hidden, cl::init(true));
354 
355 static cl::opt<bool> ClOptGlobals("asan-opt-globals",
356                                   cl::desc("Don't instrument scalar globals"),
357                                   cl::Hidden, cl::init(true));
358 
359 static cl::opt<bool> ClOptStack(
360     "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
361     cl::Hidden, cl::init(false));
362 
363 static cl::opt<bool> ClDynamicAllocaStack(
364     "asan-stack-dynamic-alloca",
365     cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
366     cl::init(true));
367 
368 static cl::opt<uint32_t> ClForceExperiment(
369     "asan-force-experiment",
370     cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
371     cl::init(0));
372 
373 static cl::opt<bool>
374     ClUsePrivateAlias("asan-use-private-alias",
375                       cl::desc("Use private aliases for global variables"),
376                       cl::Hidden, cl::init(false));
377 
378 static cl::opt<bool>
379     ClUseOdrIndicator("asan-use-odr-indicator",
380                       cl::desc("Use odr indicators to improve ODR reporting"),
381                       cl::Hidden, cl::init(false));
382 
383 static cl::opt<bool>
384     ClUseGlobalsGC("asan-globals-live-support",
385                    cl::desc("Use linker features to support dead "
386                             "code stripping of globals"),
387                    cl::Hidden, cl::init(true));
388 
389 // This is on by default even though there is a bug in gold:
390 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
391 static cl::opt<bool>
392     ClWithComdat("asan-with-comdat",
393                  cl::desc("Place ASan constructors in comdat sections"),
394                  cl::Hidden, cl::init(true));
395 
396 static cl::opt<AsanDtorKind> ClOverrideDestructorKind(
397     "asan-destructor-kind",
398     cl::desc("Sets the ASan destructor kind. The default is to use the value "
399              "provided to the pass constructor"),
400     cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"),
401                clEnumValN(AsanDtorKind::Global, "global",
402                           "Use global destructors")),
403     cl::init(AsanDtorKind::Invalid), cl::Hidden);
404 
405 // Debug flags.
406 
407 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
408                             cl::init(0));
409 
410 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
411                                  cl::Hidden, cl::init(0));
412 
413 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
414                                         cl::desc("Debug func"));
415 
416 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
417                                cl::Hidden, cl::init(-1));
418 
419 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
420                                cl::Hidden, cl::init(-1));
421 
422 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
423 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
424 STATISTIC(NumOptimizedAccessesToGlobalVar,
425           "Number of optimized accesses to global vars");
426 STATISTIC(NumOptimizedAccessesToStackVar,
427           "Number of optimized accesses to stack vars");
428 
429 namespace {
430 
431 /// This struct defines the shadow mapping using the rule:
432 ///   shadow = (mem >> Scale) ADD-or-OR Offset.
433 /// If InGlobal is true, then
434 ///   extern char __asan_shadow[];
435 ///   shadow = (mem >> Scale) + &__asan_shadow
436 struct ShadowMapping {
437   int Scale;
438   uint64_t Offset;
439   bool OrShadowOffset;
440   bool InGlobal;
441 };
442 
443 } // end anonymous namespace
444 
445 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize,
446                                       bool IsKasan) {
447   bool IsAndroid = TargetTriple.isAndroid();
448   bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS();
449   bool IsMacOS = TargetTriple.isMacOSX();
450   bool IsFreeBSD = TargetTriple.isOSFreeBSD();
451   bool IsNetBSD = TargetTriple.isOSNetBSD();
452   bool IsPS4CPU = TargetTriple.isPS4CPU();
453   bool IsLinux = TargetTriple.isOSLinux();
454   bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 ||
455                  TargetTriple.getArch() == Triple::ppc64le;
456   bool IsSystemZ = TargetTriple.getArch() == Triple::systemz;
457   bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
458   bool IsMIPS32 = TargetTriple.isMIPS32();
459   bool IsMIPS64 = TargetTriple.isMIPS64();
460   bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb();
461   bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64;
462   bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64;
463   bool IsWindows = TargetTriple.isOSWindows();
464   bool IsFuchsia = TargetTriple.isOSFuchsia();
465   bool IsEmscripten = TargetTriple.isOSEmscripten();
466   bool IsAMDGPU = TargetTriple.isAMDGPU();
467 
468   ShadowMapping Mapping;
469 
470   Mapping.Scale = kDefaultShadowScale;
471   if (ClMappingScale.getNumOccurrences() > 0) {
472     Mapping.Scale = ClMappingScale;
473   }
474 
475   if (LongSize == 32) {
476     if (IsAndroid)
477       Mapping.Offset = kDynamicShadowSentinel;
478     else if (IsMIPS32)
479       Mapping.Offset = kMIPS32_ShadowOffset32;
480     else if (IsFreeBSD)
481       Mapping.Offset = kFreeBSD_ShadowOffset32;
482     else if (IsNetBSD)
483       Mapping.Offset = kNetBSD_ShadowOffset32;
484     else if (IsIOS)
485       Mapping.Offset = kDynamicShadowSentinel;
486     else if (IsWindows)
487       Mapping.Offset = kWindowsShadowOffset32;
488     else if (IsEmscripten)
489       Mapping.Offset = kEmscriptenShadowOffset;
490     else
491       Mapping.Offset = kDefaultShadowOffset32;
492   } else {  // LongSize == 64
493     // Fuchsia is always PIE, which means that the beginning of the address
494     // space is always available.
495     if (IsFuchsia)
496       Mapping.Offset = 0;
497     else if (IsPPC64)
498       Mapping.Offset = kPPC64_ShadowOffset64;
499     else if (IsSystemZ)
500       Mapping.Offset = kSystemZ_ShadowOffset64;
501     else if (IsFreeBSD && !IsMIPS64) {
502       if (IsKasan)
503         Mapping.Offset = kFreeBSDKasan_ShadowOffset64;
504       else
505         Mapping.Offset = kFreeBSD_ShadowOffset64;
506     } else if (IsNetBSD) {
507       if (IsKasan)
508         Mapping.Offset = kNetBSDKasan_ShadowOffset64;
509       else
510         Mapping.Offset = kNetBSD_ShadowOffset64;
511     } else if (IsPS4CPU)
512       Mapping.Offset = kPS4CPU_ShadowOffset64;
513     else if (IsLinux && IsX86_64) {
514       if (IsKasan)
515         Mapping.Offset = kLinuxKasan_ShadowOffset64;
516       else
517         Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
518                           (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
519     } else if (IsWindows && IsX86_64) {
520       Mapping.Offset = kWindowsShadowOffset64;
521     } else if (IsMIPS64)
522       Mapping.Offset = kMIPS64_ShadowOffset64;
523     else if (IsIOS)
524       Mapping.Offset = kDynamicShadowSentinel;
525     else if (IsMacOS && IsAArch64)
526       Mapping.Offset = kDynamicShadowSentinel;
527     else if (IsAArch64)
528       Mapping.Offset = kAArch64_ShadowOffset64;
529     else if (IsRISCV64)
530       Mapping.Offset = kRISCV64_ShadowOffset64;
531     else if (IsAMDGPU)
532       Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
533                         (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
534     else
535       Mapping.Offset = kDefaultShadowOffset64;
536   }
537 
538   if (ClForceDynamicShadow) {
539     Mapping.Offset = kDynamicShadowSentinel;
540   }
541 
542   if (ClMappingOffset.getNumOccurrences() > 0) {
543     Mapping.Offset = ClMappingOffset;
544   }
545 
546   // OR-ing shadow offset if more efficient (at least on x86) if the offset
547   // is a power of two, but on ppc64 we have to use add since the shadow
548   // offset is not necessary 1/8-th of the address space.  On SystemZ,
549   // we could OR the constant in a single instruction, but it's more
550   // efficient to load it once and use indexed addressing.
551   Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU &&
552                            !IsRISCV64 &&
553                            !(Mapping.Offset & (Mapping.Offset - 1)) &&
554                            Mapping.Offset != kDynamicShadowSentinel;
555   bool IsAndroidWithIfuncSupport =
556       IsAndroid && !TargetTriple.isAndroidVersionLT(21);
557   Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb;
558 
559   return Mapping;
560 }
561 
562 static uint64_t getRedzoneSizeForScale(int MappingScale) {
563   // Redzone used for stack and globals is at least 32 bytes.
564   // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
565   return std::max(32U, 1U << MappingScale);
566 }
567 
568 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) {
569   if (TargetTriple.isOSEmscripten()) {
570     return kAsanEmscriptenCtorAndDtorPriority;
571   } else {
572     return kAsanCtorAndDtorPriority;
573   }
574 }
575 
576 namespace {
577 
578 /// Module analysis for getting various metadata about the module.
579 class ASanGlobalsMetadataWrapperPass : public ModulePass {
580 public:
581   static char ID;
582 
583   ASanGlobalsMetadataWrapperPass() : ModulePass(ID) {
584     initializeASanGlobalsMetadataWrapperPassPass(
585         *PassRegistry::getPassRegistry());
586   }
587 
588   bool runOnModule(Module &M) override {
589     GlobalsMD = GlobalsMetadata(M);
590     return false;
591   }
592 
593   StringRef getPassName() const override {
594     return "ASanGlobalsMetadataWrapperPass";
595   }
596 
597   void getAnalysisUsage(AnalysisUsage &AU) const override {
598     AU.setPreservesAll();
599   }
600 
601   GlobalsMetadata &getGlobalsMD() { return GlobalsMD; }
602 
603 private:
604   GlobalsMetadata GlobalsMD;
605 };
606 
607 char ASanGlobalsMetadataWrapperPass::ID = 0;
608 
609 /// AddressSanitizer: instrument the code in module to find memory bugs.
610 struct AddressSanitizer {
611   AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
612                    bool CompileKernel = false, bool Recover = false,
613                    bool UseAfterScope = false,
614                    AsanDetectStackUseAfterReturnMode UseAfterReturn =
615                        AsanDetectStackUseAfterReturnMode::Runtime)
616       : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
617                                                             : CompileKernel),
618         Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
619         UseAfterScope(UseAfterScope || ClUseAfterScope),
620         UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn
621                                                             : UseAfterReturn),
622         GlobalsMD(*GlobalsMD) {
623     C = &(M.getContext());
624     LongSize = M.getDataLayout().getPointerSizeInBits();
625     IntptrTy = Type::getIntNTy(*C, LongSize);
626     TargetTriple = Triple(M.getTargetTriple());
627 
628     Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
629 
630     assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid);
631   }
632 
633   uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const {
634     uint64_t ArraySize = 1;
635     if (AI.isArrayAllocation()) {
636       const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
637       assert(CI && "non-constant array size");
638       ArraySize = CI->getZExtValue();
639     }
640     Type *Ty = AI.getAllocatedType();
641     uint64_t SizeInBytes =
642         AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
643     return SizeInBytes * ArraySize;
644   }
645 
646   /// Check if we want (and can) handle this alloca.
647   bool isInterestingAlloca(const AllocaInst &AI);
648 
649   bool ignoreAccess(Value *Ptr);
650   void getInterestingMemoryOperands(
651       Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting);
652 
653   void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
654                      InterestingMemoryOperand &O, bool UseCalls,
655                      const DataLayout &DL);
656   void instrumentPointerComparisonOrSubtraction(Instruction *I);
657   void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
658                          Value *Addr, uint32_t TypeSize, bool IsWrite,
659                          Value *SizeArgument, bool UseCalls, uint32_t Exp);
660   Instruction *instrumentAMDGPUAddress(Instruction *OrigIns,
661                                        Instruction *InsertBefore, Value *Addr,
662                                        uint32_t TypeSize, bool IsWrite,
663                                        Value *SizeArgument);
664   void instrumentUnusualSizeOrAlignment(Instruction *I,
665                                         Instruction *InsertBefore, Value *Addr,
666                                         uint32_t TypeSize, bool IsWrite,
667                                         Value *SizeArgument, bool UseCalls,
668                                         uint32_t Exp);
669   Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
670                            Value *ShadowValue, uint32_t TypeSize);
671   Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
672                                  bool IsWrite, size_t AccessSizeIndex,
673                                  Value *SizeArgument, uint32_t Exp);
674   void instrumentMemIntrinsic(MemIntrinsic *MI);
675   Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
676   bool suppressInstrumentationSiteForDebug(int &Instrumented);
677   bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI);
678   bool maybeInsertAsanInitAtFunctionEntry(Function &F);
679   bool maybeInsertDynamicShadowAtFunctionEntry(Function &F);
680   void markEscapedLocalAllocas(Function &F);
681 
682 private:
683   friend struct FunctionStackPoisoner;
684 
685   void initializeCallbacks(Module &M);
686 
687   bool LooksLikeCodeInBug11395(Instruction *I);
688   bool GlobalIsLinkerInitialized(GlobalVariable *G);
689   bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
690                     uint64_t TypeSize) const;
691 
692   /// Helper to cleanup per-function state.
693   struct FunctionStateRAII {
694     AddressSanitizer *Pass;
695 
696     FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
697       assert(Pass->ProcessedAllocas.empty() &&
698              "last pass forgot to clear cache");
699       assert(!Pass->LocalDynamicShadow);
700     }
701 
702     ~FunctionStateRAII() {
703       Pass->LocalDynamicShadow = nullptr;
704       Pass->ProcessedAllocas.clear();
705     }
706   };
707 
708   LLVMContext *C;
709   Triple TargetTriple;
710   int LongSize;
711   bool CompileKernel;
712   bool Recover;
713   bool UseAfterScope;
714   AsanDetectStackUseAfterReturnMode UseAfterReturn;
715   Type *IntptrTy;
716   ShadowMapping Mapping;
717   FunctionCallee AsanHandleNoReturnFunc;
718   FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction;
719   Constant *AsanShadowGlobal;
720 
721   // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
722   FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes];
723   FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
724 
725   // These arrays is indexed by AccessIsWrite and Experiment.
726   FunctionCallee AsanErrorCallbackSized[2][2];
727   FunctionCallee AsanMemoryAccessCallbackSized[2][2];
728 
729   FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset;
730   Value *LocalDynamicShadow = nullptr;
731   const GlobalsMetadata &GlobalsMD;
732   DenseMap<const AllocaInst *, bool> ProcessedAllocas;
733 
734   FunctionCallee AMDGPUAddressShared;
735   FunctionCallee AMDGPUAddressPrivate;
736 };
737 
738 class AddressSanitizerLegacyPass : public FunctionPass {
739 public:
740   static char ID;
741 
742   explicit AddressSanitizerLegacyPass(
743       bool CompileKernel = false, bool Recover = false,
744       bool UseAfterScope = false,
745       AsanDetectStackUseAfterReturnMode UseAfterReturn =
746           AsanDetectStackUseAfterReturnMode::Runtime)
747       : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover),
748         UseAfterScope(UseAfterScope), UseAfterReturn(UseAfterReturn) {
749     initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry());
750   }
751 
752   StringRef getPassName() const override {
753     return "AddressSanitizerFunctionPass";
754   }
755 
756   void getAnalysisUsage(AnalysisUsage &AU) const override {
757     AU.addRequired<ASanGlobalsMetadataWrapperPass>();
758     AU.addRequired<TargetLibraryInfoWrapperPass>();
759   }
760 
761   bool runOnFunction(Function &F) override {
762     GlobalsMetadata &GlobalsMD =
763         getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
764     const TargetLibraryInfo *TLI =
765         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
766     AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover,
767                           UseAfterScope, UseAfterReturn);
768     return ASan.instrumentFunction(F, TLI);
769   }
770 
771 private:
772   bool CompileKernel;
773   bool Recover;
774   bool UseAfterScope;
775   AsanDetectStackUseAfterReturnMode UseAfterReturn;
776 };
777 
778 class ModuleAddressSanitizer {
779 public:
780   ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
781                          bool CompileKernel = false, bool Recover = false,
782                          bool UseGlobalsGC = true, bool UseOdrIndicator = false,
783                          AsanDtorKind DestructorKind = AsanDtorKind::Global)
784       : GlobalsMD(*GlobalsMD),
785         CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
786                                                             : CompileKernel),
787         Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
788         UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel),
789         // Enable aliases as they should have no downside with ODR indicators.
790         UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias),
791         UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator),
792         // Not a typo: ClWithComdat is almost completely pointless without
793         // ClUseGlobalsGC (because then it only works on modules without
794         // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
795         // and both suffer from gold PR19002 for which UseGlobalsGC constructor
796         // argument is designed as workaround. Therefore, disable both
797         // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
798         // do globals-gc.
799         UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel),
800         DestructorKind(DestructorKind) {
801     C = &(M.getContext());
802     int LongSize = M.getDataLayout().getPointerSizeInBits();
803     IntptrTy = Type::getIntNTy(*C, LongSize);
804     TargetTriple = Triple(M.getTargetTriple());
805     Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
806 
807     if (ClOverrideDestructorKind != AsanDtorKind::Invalid)
808       this->DestructorKind = ClOverrideDestructorKind;
809     assert(this->DestructorKind != AsanDtorKind::Invalid);
810   }
811 
812   bool instrumentModule(Module &);
813 
814 private:
815   void initializeCallbacks(Module &M);
816 
817   bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat);
818   void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M,
819                              ArrayRef<GlobalVariable *> ExtendedGlobals,
820                              ArrayRef<Constant *> MetadataInitializers);
821   void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M,
822                             ArrayRef<GlobalVariable *> ExtendedGlobals,
823                             ArrayRef<Constant *> MetadataInitializers,
824                             const std::string &UniqueModuleId);
825   void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M,
826                               ArrayRef<GlobalVariable *> ExtendedGlobals,
827                               ArrayRef<Constant *> MetadataInitializers);
828   void
829   InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M,
830                                      ArrayRef<GlobalVariable *> ExtendedGlobals,
831                                      ArrayRef<Constant *> MetadataInitializers);
832 
833   GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer,
834                                        StringRef OriginalName);
835   void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata,
836                                   StringRef InternalSuffix);
837   Instruction *CreateAsanModuleDtor(Module &M);
838 
839   const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const;
840   bool shouldInstrumentGlobal(GlobalVariable *G) const;
841   bool ShouldUseMachOGlobalsSection() const;
842   StringRef getGlobalMetadataSection() const;
843   void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
844   void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
845   uint64_t getMinRedzoneSizeForGlobal() const {
846     return getRedzoneSizeForScale(Mapping.Scale);
847   }
848   uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const;
849   int GetAsanVersion(const Module &M) const;
850 
851   const GlobalsMetadata &GlobalsMD;
852   bool CompileKernel;
853   bool Recover;
854   bool UseGlobalsGC;
855   bool UsePrivateAlias;
856   bool UseOdrIndicator;
857   bool UseCtorComdat;
858   AsanDtorKind DestructorKind;
859   Type *IntptrTy;
860   LLVMContext *C;
861   Triple TargetTriple;
862   ShadowMapping Mapping;
863   FunctionCallee AsanPoisonGlobals;
864   FunctionCallee AsanUnpoisonGlobals;
865   FunctionCallee AsanRegisterGlobals;
866   FunctionCallee AsanUnregisterGlobals;
867   FunctionCallee AsanRegisterImageGlobals;
868   FunctionCallee AsanUnregisterImageGlobals;
869   FunctionCallee AsanRegisterElfGlobals;
870   FunctionCallee AsanUnregisterElfGlobals;
871 
872   Function *AsanCtorFunction = nullptr;
873   Function *AsanDtorFunction = nullptr;
874 };
875 
876 class ModuleAddressSanitizerLegacyPass : public ModulePass {
877 public:
878   static char ID;
879 
880   explicit ModuleAddressSanitizerLegacyPass(
881       bool CompileKernel = false, bool Recover = false, bool UseGlobalGC = true,
882       bool UseOdrIndicator = false,
883       AsanDtorKind DestructorKind = AsanDtorKind::Global)
884       : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover),
885         UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator),
886         DestructorKind(DestructorKind) {
887     initializeModuleAddressSanitizerLegacyPassPass(
888         *PassRegistry::getPassRegistry());
889   }
890 
891   StringRef getPassName() const override { return "ModuleAddressSanitizer"; }
892 
893   void getAnalysisUsage(AnalysisUsage &AU) const override {
894     AU.addRequired<ASanGlobalsMetadataWrapperPass>();
895   }
896 
897   bool runOnModule(Module &M) override {
898     GlobalsMetadata &GlobalsMD =
899         getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
900     ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover,
901                                       UseGlobalGC, UseOdrIndicator,
902                                       DestructorKind);
903     return ASanModule.instrumentModule(M);
904   }
905 
906 private:
907   bool CompileKernel;
908   bool Recover;
909   bool UseGlobalGC;
910   bool UseOdrIndicator;
911   AsanDtorKind DestructorKind;
912 };
913 
914 // Stack poisoning does not play well with exception handling.
915 // When an exception is thrown, we essentially bypass the code
916 // that unpoisones the stack. This is why the run-time library has
917 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
918 // stack in the interceptor. This however does not work inside the
919 // actual function which catches the exception. Most likely because the
920 // compiler hoists the load of the shadow value somewhere too high.
921 // This causes asan to report a non-existing bug on 453.povray.
922 // It sounds like an LLVM bug.
923 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
924   Function &F;
925   AddressSanitizer &ASan;
926   DIBuilder DIB;
927   LLVMContext *C;
928   Type *IntptrTy;
929   Type *IntptrPtrTy;
930   ShadowMapping Mapping;
931 
932   SmallVector<AllocaInst *, 16> AllocaVec;
933   SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
934   SmallVector<Instruction *, 8> RetVec;
935 
936   FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
937       AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
938   FunctionCallee AsanSetShadowFunc[0x100] = {};
939   FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc;
940   FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc;
941 
942   // Stores a place and arguments of poisoning/unpoisoning call for alloca.
943   struct AllocaPoisonCall {
944     IntrinsicInst *InsBefore;
945     AllocaInst *AI;
946     uint64_t Size;
947     bool DoPoison;
948   };
949   SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
950   SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
951   bool HasUntracedLifetimeIntrinsic = false;
952 
953   SmallVector<AllocaInst *, 1> DynamicAllocaVec;
954   SmallVector<IntrinsicInst *, 1> StackRestoreVec;
955   AllocaInst *DynamicAllocaLayout = nullptr;
956   IntrinsicInst *LocalEscapeCall = nullptr;
957 
958   bool HasInlineAsm = false;
959   bool HasReturnsTwiceCall = false;
960   bool PoisonStack;
961 
962   FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
963       : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false),
964         C(ASan.C), IntptrTy(ASan.IntptrTy),
965         IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping),
966         PoisonStack(ClStack &&
967                     !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {}
968 
969   bool runOnFunction() {
970     if (!PoisonStack)
971       return false;
972 
973     if (ClRedzoneByvalArgs)
974       copyArgsPassedByValToAllocas();
975 
976     // Collect alloca, ret, lifetime instructions etc.
977     for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
978 
979     if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
980 
981     initializeCallbacks(*F.getParent());
982 
983     if (HasUntracedLifetimeIntrinsic) {
984       // If there are lifetime intrinsics which couldn't be traced back to an
985       // alloca, we may not know exactly when a variable enters scope, and
986       // therefore should "fail safe" by not poisoning them.
987       StaticAllocaPoisonCallVec.clear();
988       DynamicAllocaPoisonCallVec.clear();
989     }
990 
991     processDynamicAllocas();
992     processStaticAllocas();
993 
994     if (ClDebugStack) {
995       LLVM_DEBUG(dbgs() << F);
996     }
997     return true;
998   }
999 
1000   // Arguments marked with the "byval" attribute are implicitly copied without
1001   // using an alloca instruction.  To produce redzones for those arguments, we
1002   // copy them a second time into memory allocated with an alloca instruction.
1003   void copyArgsPassedByValToAllocas();
1004 
1005   // Finds all Alloca instructions and puts
1006   // poisoned red zones around all of them.
1007   // Then unpoison everything back before the function returns.
1008   void processStaticAllocas();
1009   void processDynamicAllocas();
1010 
1011   void createDynamicAllocasInitStorage();
1012 
1013   // ----------------------- Visitors.
1014   /// Collect all Ret instructions, or the musttail call instruction if it
1015   /// precedes the return instruction.
1016   void visitReturnInst(ReturnInst &RI) {
1017     if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall())
1018       RetVec.push_back(CI);
1019     else
1020       RetVec.push_back(&RI);
1021   }
1022 
1023   /// Collect all Resume instructions.
1024   void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }
1025 
1026   /// Collect all CatchReturnInst instructions.
1027   void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }
1028 
1029   void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
1030                                         Value *SavedStack) {
1031     IRBuilder<> IRB(InstBefore);
1032     Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
1033     // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
1034     // need to adjust extracted SP to compute the address of the most recent
1035     // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
1036     // this purpose.
1037     if (!isa<ReturnInst>(InstBefore)) {
1038       Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
1039           InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
1040           {IntptrTy});
1041 
1042       Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
1043 
1044       DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
1045                                      DynamicAreaOffset);
1046     }
1047 
1048     IRB.CreateCall(
1049         AsanAllocasUnpoisonFunc,
1050         {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr});
1051   }
1052 
1053   // Unpoison dynamic allocas redzones.
1054   void unpoisonDynamicAllocas() {
1055     for (Instruction *Ret : RetVec)
1056       unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
1057 
1058     for (Instruction *StackRestoreInst : StackRestoreVec)
1059       unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
1060                                        StackRestoreInst->getOperand(0));
1061   }
1062 
1063   // Deploy and poison redzones around dynamic alloca call. To do this, we
1064   // should replace this call with another one with changed parameters and
1065   // replace all its uses with new address, so
1066   //   addr = alloca type, old_size, align
1067   // is replaced by
1068   //   new_size = (old_size + additional_size) * sizeof(type)
1069   //   tmp = alloca i8, new_size, max(align, 32)
1070   //   addr = tmp + 32 (first 32 bytes are for the left redzone).
1071   // Additional_size is added to make new memory allocation contain not only
1072   // requested memory, but also left, partial and right redzones.
1073   void handleDynamicAllocaCall(AllocaInst *AI);
1074 
1075   /// Collect Alloca instructions we want (and can) handle.
1076   void visitAllocaInst(AllocaInst &AI) {
1077     if (!ASan.isInterestingAlloca(AI)) {
1078       if (AI.isStaticAlloca()) {
1079         // Skip over allocas that are present *before* the first instrumented
1080         // alloca, we don't want to move those around.
1081         if (AllocaVec.empty())
1082           return;
1083 
1084         StaticAllocasToMoveUp.push_back(&AI);
1085       }
1086       return;
1087     }
1088 
1089     if (!AI.isStaticAlloca())
1090       DynamicAllocaVec.push_back(&AI);
1091     else
1092       AllocaVec.push_back(&AI);
1093   }
1094 
1095   /// Collect lifetime intrinsic calls to check for use-after-scope
1096   /// errors.
1097   void visitIntrinsicInst(IntrinsicInst &II) {
1098     Intrinsic::ID ID = II.getIntrinsicID();
1099     if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
1100     if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
1101     if (!ASan.UseAfterScope)
1102       return;
1103     if (!II.isLifetimeStartOrEnd())
1104       return;
1105     // Found lifetime intrinsic, add ASan instrumentation if necessary.
1106     auto *Size = cast<ConstantInt>(II.getArgOperand(0));
1107     // If size argument is undefined, don't do anything.
1108     if (Size->isMinusOne()) return;
1109     // Check that size doesn't saturate uint64_t and can
1110     // be stored in IntptrTy.
1111     const uint64_t SizeValue = Size->getValue().getLimitedValue();
1112     if (SizeValue == ~0ULL ||
1113         !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
1114       return;
1115     // Find alloca instruction that corresponds to llvm.lifetime argument.
1116     // Currently we can only handle lifetime markers pointing to the
1117     // beginning of the alloca.
1118     AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true);
1119     if (!AI) {
1120       HasUntracedLifetimeIntrinsic = true;
1121       return;
1122     }
1123     // We're interested only in allocas we can handle.
1124     if (!ASan.isInterestingAlloca(*AI))
1125       return;
1126     bool DoPoison = (ID == Intrinsic::lifetime_end);
1127     AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
1128     if (AI->isStaticAlloca())
1129       StaticAllocaPoisonCallVec.push_back(APC);
1130     else if (ClInstrumentDynamicAllocas)
1131       DynamicAllocaPoisonCallVec.push_back(APC);
1132   }
1133 
1134   void visitCallBase(CallBase &CB) {
1135     if (CallInst *CI = dyn_cast<CallInst>(&CB)) {
1136       HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow;
1137       HasReturnsTwiceCall |= CI->canReturnTwice();
1138     }
1139   }
1140 
1141   // ---------------------- Helpers.
1142   void initializeCallbacks(Module &M);
1143 
1144   // Copies bytes from ShadowBytes into shadow memory for indexes where
1145   // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
1146   // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
1147   void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1148                     IRBuilder<> &IRB, Value *ShadowBase);
1149   void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1150                     size_t Begin, size_t End, IRBuilder<> &IRB,
1151                     Value *ShadowBase);
1152   void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
1153                           ArrayRef<uint8_t> ShadowBytes, size_t Begin,
1154                           size_t End, IRBuilder<> &IRB, Value *ShadowBase);
1155 
1156   void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
1157 
1158   Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
1159                                bool Dynamic);
1160   PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
1161                      Instruction *ThenTerm, Value *ValueIfFalse);
1162 };
1163 
1164 } // end anonymous namespace
1165 
1166 void LocationMetadata::parse(MDNode *MDN) {
1167   assert(MDN->getNumOperands() == 3);
1168   MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
1169   Filename = DIFilename->getString();
1170   LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
1171   ColumnNo =
1172       mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
1173 }
1174 
1175 // FIXME: It would be cleaner to instead attach relevant metadata to the globals
1176 // we want to sanitize instead and reading this metadata on each pass over a
1177 // function instead of reading module level metadata at first.
1178 GlobalsMetadata::GlobalsMetadata(Module &M) {
1179   NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
1180   if (!Globals)
1181     return;
1182   for (auto MDN : Globals->operands()) {
1183     // Metadata node contains the global and the fields of "Entry".
1184     assert(MDN->getNumOperands() == 5);
1185     auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0));
1186     // The optimizer may optimize away a global entirely.
1187     if (!V)
1188       continue;
1189     auto *StrippedV = V->stripPointerCasts();
1190     auto *GV = dyn_cast<GlobalVariable>(StrippedV);
1191     if (!GV)
1192       continue;
1193     // We can already have an entry for GV if it was merged with another
1194     // global.
1195     Entry &E = Entries[GV];
1196     if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
1197       E.SourceLoc.parse(Loc);
1198     if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
1199       E.Name = Name->getString();
1200     ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3));
1201     E.IsDynInit |= IsDynInit->isOne();
1202     ConstantInt *IsExcluded =
1203         mdconst::extract<ConstantInt>(MDN->getOperand(4));
1204     E.IsExcluded |= IsExcluded->isOne();
1205   }
1206 }
1207 
1208 AnalysisKey ASanGlobalsMetadataAnalysis::Key;
1209 
1210 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M,
1211                                                  ModuleAnalysisManager &AM) {
1212   return GlobalsMetadata(M);
1213 }
1214 
1215 AddressSanitizerPass::AddressSanitizerPass(
1216     bool CompileKernel, bool Recover, bool UseAfterScope,
1217     AsanDetectStackUseAfterReturnMode UseAfterReturn)
1218     : CompileKernel(CompileKernel), Recover(Recover),
1219       UseAfterScope(UseAfterScope), UseAfterReturn(UseAfterReturn) {}
1220 
1221 PreservedAnalyses AddressSanitizerPass::run(Function &F,
1222                                             AnalysisManager<Function> &AM) {
1223   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1224   Module &M = *F.getParent();
1225   if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) {
1226     const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
1227     AddressSanitizer Sanitizer(M, R, CompileKernel, Recover, UseAfterScope,
1228                                UseAfterReturn);
1229     if (Sanitizer.instrumentFunction(F, TLI))
1230       return PreservedAnalyses::none();
1231     return PreservedAnalyses::all();
1232   }
1233 
1234   report_fatal_error(
1235       "The ASanGlobalsMetadataAnalysis is required to run before "
1236       "AddressSanitizer can run");
1237   return PreservedAnalyses::all();
1238 }
1239 
1240 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(
1241     bool CompileKernel, bool Recover, bool UseGlobalGC, bool UseOdrIndicator,
1242     AsanDtorKind DestructorKind)
1243     : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC),
1244       UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind) {}
1245 
1246 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M,
1247                                                   AnalysisManager<Module> &AM) {
1248   GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M);
1249   ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover,
1250                                    UseGlobalGC, UseOdrIndicator,
1251                                    DestructorKind);
1252   if (Sanitizer.instrumentModule(M))
1253     return PreservedAnalyses::none();
1254   return PreservedAnalyses::all();
1255 }
1256 
1257 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md",
1258                 "Read metadata to mark which globals should be instrumented "
1259                 "when running ASan.",
1260                 false, true)
1261 
1262 char AddressSanitizerLegacyPass::ID = 0;
1263 
1264 INITIALIZE_PASS_BEGIN(
1265     AddressSanitizerLegacyPass, "asan",
1266     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1267     false)
1268 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass)
1269 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1270 INITIALIZE_PASS_END(
1271     AddressSanitizerLegacyPass, "asan",
1272     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1273     false)
1274 
1275 FunctionPass *llvm::createAddressSanitizerFunctionPass(
1276     bool CompileKernel, bool Recover, bool UseAfterScope,
1277     AsanDetectStackUseAfterReturnMode UseAfterReturn) {
1278   assert(!CompileKernel || Recover);
1279   return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope,
1280                                         UseAfterReturn);
1281 }
1282 
1283 char ModuleAddressSanitizerLegacyPass::ID = 0;
1284 
1285 INITIALIZE_PASS(
1286     ModuleAddressSanitizerLegacyPass, "asan-module",
1287     "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
1288     "ModulePass",
1289     false, false)
1290 
1291 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass(
1292     bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator,
1293     AsanDtorKind Destructor) {
1294   assert(!CompileKernel || Recover);
1295   return new ModuleAddressSanitizerLegacyPass(
1296       CompileKernel, Recover, UseGlobalsGC, UseOdrIndicator, Destructor);
1297 }
1298 
1299 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
1300   size_t Res = countTrailingZeros(TypeSize / 8);
1301   assert(Res < kNumberOfAccessSizes);
1302   return Res;
1303 }
1304 
1305 /// Create a global describing a source location.
1306 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
1307                                                        LocationMetadata MD) {
1308   Constant *LocData[] = {
1309       createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix),
1310       ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
1311       ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
1312   };
1313   auto LocStruct = ConstantStruct::getAnon(LocData);
1314   auto GV = new GlobalVariable(M, LocStruct->getType(), true,
1315                                GlobalValue::PrivateLinkage, LocStruct,
1316                                kAsanGenPrefix);
1317   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1318   return GV;
1319 }
1320 
1321 /// Check if \p G has been created by a trusted compiler pass.
1322 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
1323   // Do not instrument @llvm.global_ctors, @llvm.used, etc.
1324   if (G->getName().startswith("llvm."))
1325     return true;
1326 
1327   // Do not instrument asan globals.
1328   if (G->getName().startswith(kAsanGenPrefix) ||
1329       G->getName().startswith(kSanCovGenPrefix) ||
1330       G->getName().startswith(kODRGenPrefix))
1331     return true;
1332 
1333   // Do not instrument gcov counter arrays.
1334   if (G->getName() == "__llvm_gcov_ctr")
1335     return true;
1336 
1337   return false;
1338 }
1339 
1340 static bool isUnsupportedAMDGPUAddrspace(Value *Addr) {
1341   Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
1342   unsigned int AddrSpace = PtrTy->getPointerAddressSpace();
1343   if (AddrSpace == 3 || AddrSpace == 5)
1344     return true;
1345   return false;
1346 }
1347 
1348 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
1349   // Shadow >> scale
1350   Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
1351   if (Mapping.Offset == 0) return Shadow;
1352   // (Shadow >> scale) | offset
1353   Value *ShadowBase;
1354   if (LocalDynamicShadow)
1355     ShadowBase = LocalDynamicShadow;
1356   else
1357     ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
1358   if (Mapping.OrShadowOffset)
1359     return IRB.CreateOr(Shadow, ShadowBase);
1360   else
1361     return IRB.CreateAdd(Shadow, ShadowBase);
1362 }
1363 
1364 // Instrument memset/memmove/memcpy
1365 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
1366   IRBuilder<> IRB(MI);
1367   if (isa<MemTransferInst>(MI)) {
1368     IRB.CreateCall(
1369         isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
1370         {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1371          IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
1372          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1373   } else if (isa<MemSetInst>(MI)) {
1374     IRB.CreateCall(
1375         AsanMemset,
1376         {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1377          IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
1378          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1379   }
1380   MI->eraseFromParent();
1381 }
1382 
1383 /// Check if we want (and can) handle this alloca.
1384 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
1385   auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
1386 
1387   if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
1388     return PreviouslySeenAllocaInfo->getSecond();
1389 
1390   bool IsInteresting =
1391       (AI.getAllocatedType()->isSized() &&
1392        // alloca() may be called with 0 size, ignore it.
1393        ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) &&
1394        // We are only interested in allocas not promotable to registers.
1395        // Promotable allocas are common under -O0.
1396        (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
1397        // inalloca allocas are not treated as static, and we don't want
1398        // dynamic alloca instrumentation for them as well.
1399        !AI.isUsedWithInAlloca() &&
1400        // swifterror allocas are register promoted by ISel
1401        !AI.isSwiftError());
1402 
1403   ProcessedAllocas[&AI] = IsInteresting;
1404   return IsInteresting;
1405 }
1406 
1407 bool AddressSanitizer::ignoreAccess(Value *Ptr) {
1408   // Instrument acesses from different address spaces only for AMDGPU.
1409   Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
1410   if (PtrTy->getPointerAddressSpace() != 0 &&
1411       !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr)))
1412     return true;
1413 
1414   // Ignore swifterror addresses.
1415   // swifterror memory addresses are mem2reg promoted by instruction
1416   // selection. As such they cannot have regular uses like an instrumentation
1417   // function and it makes no sense to track them as memory.
1418   if (Ptr->isSwiftError())
1419     return true;
1420 
1421   // Treat memory accesses to promotable allocas as non-interesting since they
1422   // will not cause memory violations. This greatly speeds up the instrumented
1423   // executable at -O0.
1424   if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr))
1425     if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI))
1426       return true;
1427 
1428   return false;
1429 }
1430 
1431 void AddressSanitizer::getInterestingMemoryOperands(
1432     Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) {
1433   // Skip memory accesses inserted by another instrumentation.
1434   if (I->hasMetadata("nosanitize"))
1435     return;
1436 
1437   // Do not instrument the load fetching the dynamic shadow address.
1438   if (LocalDynamicShadow == I)
1439     return;
1440 
1441   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1442     if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand()))
1443       return;
1444     Interesting.emplace_back(I, LI->getPointerOperandIndex(), false,
1445                              LI->getType(), LI->getAlign());
1446   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1447     if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand()))
1448       return;
1449     Interesting.emplace_back(I, SI->getPointerOperandIndex(), true,
1450                              SI->getValueOperand()->getType(), SI->getAlign());
1451   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
1452     if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand()))
1453       return;
1454     Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true,
1455                              RMW->getValOperand()->getType(), None);
1456   } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
1457     if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand()))
1458       return;
1459     Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true,
1460                              XCHG->getCompareOperand()->getType(), None);
1461   } else if (auto CI = dyn_cast<CallInst>(I)) {
1462     auto *F = CI->getCalledFunction();
1463     if (F && (F->getName().startswith("llvm.masked.load.") ||
1464               F->getName().startswith("llvm.masked.store."))) {
1465       bool IsWrite = F->getName().startswith("llvm.masked.store.");
1466       // Masked store has an initial operand for the value.
1467       unsigned OpOffset = IsWrite ? 1 : 0;
1468       if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1469         return;
1470 
1471       auto BasePtr = CI->getOperand(OpOffset);
1472       if (ignoreAccess(BasePtr))
1473         return;
1474       auto Ty = cast<PointerType>(BasePtr->getType())->getElementType();
1475       MaybeAlign Alignment = Align(1);
1476       // Otherwise no alignment guarantees. We probably got Undef.
1477       if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
1478         Alignment = Op->getMaybeAlignValue();
1479       Value *Mask = CI->getOperand(2 + OpOffset);
1480       Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask);
1481     } else {
1482       for (unsigned ArgNo = 0; ArgNo < CI->getNumArgOperands(); ArgNo++) {
1483         if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) ||
1484             ignoreAccess(CI->getArgOperand(ArgNo)))
1485           continue;
1486         Type *Ty = CI->getParamByValType(ArgNo);
1487         Interesting.emplace_back(I, ArgNo, false, Ty, Align(1));
1488       }
1489     }
1490   }
1491 }
1492 
1493 static bool isPointerOperand(Value *V) {
1494   return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
1495 }
1496 
1497 // This is a rough heuristic; it may cause both false positives and
1498 // false negatives. The proper implementation requires cooperation with
1499 // the frontend.
1500 static bool isInterestingPointerComparison(Instruction *I) {
1501   if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
1502     if (!Cmp->isRelational())
1503       return false;
1504   } else {
1505     return false;
1506   }
1507   return isPointerOperand(I->getOperand(0)) &&
1508          isPointerOperand(I->getOperand(1));
1509 }
1510 
1511 // This is a rough heuristic; it may cause both false positives and
1512 // false negatives. The proper implementation requires cooperation with
1513 // the frontend.
1514 static bool isInterestingPointerSubtraction(Instruction *I) {
1515   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1516     if (BO->getOpcode() != Instruction::Sub)
1517       return false;
1518   } else {
1519     return false;
1520   }
1521   return isPointerOperand(I->getOperand(0)) &&
1522          isPointerOperand(I->getOperand(1));
1523 }
1524 
1525 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
1526   // If a global variable does not have dynamic initialization we don't
1527   // have to instrument it.  However, if a global does not have initializer
1528   // at all, we assume it has dynamic initializer (in other TU).
1529   //
1530   // FIXME: Metadata should be attched directly to the global directly instead
1531   // of being added to llvm.asan.globals.
1532   return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
1533 }
1534 
1535 void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1536     Instruction *I) {
1537   IRBuilder<> IRB(I);
1538   FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
1539   Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
1540   for (Value *&i : Param) {
1541     if (i->getType()->isPointerTy())
1542       i = IRB.CreatePointerCast(i, IntptrTy);
1543   }
1544   IRB.CreateCall(F, Param);
1545 }
1546 
1547 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
1548                                 Instruction *InsertBefore, Value *Addr,
1549                                 MaybeAlign Alignment, unsigned Granularity,
1550                                 uint32_t TypeSize, bool IsWrite,
1551                                 Value *SizeArgument, bool UseCalls,
1552                                 uint32_t Exp) {
1553   // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1554   // if the data is properly aligned.
1555   if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
1556        TypeSize == 128) &&
1557       (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8))
1558     return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite,
1559                                    nullptr, UseCalls, Exp);
1560   Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize,
1561                                          IsWrite, nullptr, UseCalls, Exp);
1562 }
1563 
1564 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass,
1565                                         const DataLayout &DL, Type *IntptrTy,
1566                                         Value *Mask, Instruction *I,
1567                                         Value *Addr, MaybeAlign Alignment,
1568                                         unsigned Granularity, uint32_t TypeSize,
1569                                         bool IsWrite, Value *SizeArgument,
1570                                         bool UseCalls, uint32_t Exp) {
1571   auto *VTy = cast<FixedVectorType>(
1572       cast<PointerType>(Addr->getType())->getElementType());
1573   uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
1574   unsigned Num = VTy->getNumElements();
1575   auto Zero = ConstantInt::get(IntptrTy, 0);
1576   for (unsigned Idx = 0; Idx < Num; ++Idx) {
1577     Value *InstrumentedAddress = nullptr;
1578     Instruction *InsertBefore = I;
1579     if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
1580       // dyn_cast as we might get UndefValue
1581       if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
1582         if (Masked->isZero())
1583           // Mask is constant false, so no instrumentation needed.
1584           continue;
1585         // If we have a true or undef value, fall through to doInstrumentAddress
1586         // with InsertBefore == I
1587       }
1588     } else {
1589       IRBuilder<> IRB(I);
1590       Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
1591       Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
1592       InsertBefore = ThenTerm;
1593     }
1594 
1595     IRBuilder<> IRB(InsertBefore);
1596     InstrumentedAddress =
1597         IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
1598     doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment,
1599                         Granularity, ElemTypeSize, IsWrite, SizeArgument,
1600                         UseCalls, Exp);
1601   }
1602 }
1603 
1604 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
1605                                      InterestingMemoryOperand &O, bool UseCalls,
1606                                      const DataLayout &DL) {
1607   Value *Addr = O.getPtr();
1608 
1609   // Optimization experiments.
1610   // The experiments can be used to evaluate potential optimizations that remove
1611   // instrumentation (assess false negatives). Instead of completely removing
1612   // some instrumentation, you set Exp to a non-zero value (mask of optimization
1613   // experiments that want to remove instrumentation of this instruction).
1614   // If Exp is non-zero, this pass will emit special calls into runtime
1615   // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1616   // make runtime terminate the program in a special way (with a different
1617   // exit status). Then you run the new compiler on a buggy corpus, collect
1618   // the special terminations (ideally, you don't see them at all -- no false
1619   // negatives) and make the decision on the optimization.
1620   uint32_t Exp = ClForceExperiment;
1621 
1622   if (ClOpt && ClOptGlobals) {
1623     // If initialization order checking is disabled, a simple access to a
1624     // dynamically initialized global is always valid.
1625     GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr));
1626     if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
1627         isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) {
1628       NumOptimizedAccessesToGlobalVar++;
1629       return;
1630     }
1631   }
1632 
1633   if (ClOpt && ClOptStack) {
1634     // A direct inbounds access to a stack variable is always valid.
1635     if (isa<AllocaInst>(getUnderlyingObject(Addr)) &&
1636         isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) {
1637       NumOptimizedAccessesToStackVar++;
1638       return;
1639     }
1640   }
1641 
1642   if (O.IsWrite)
1643     NumInstrumentedWrites++;
1644   else
1645     NumInstrumentedReads++;
1646 
1647   unsigned Granularity = 1 << Mapping.Scale;
1648   if (O.MaybeMask) {
1649     instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(),
1650                                 Addr, O.Alignment, Granularity, O.TypeSize,
1651                                 O.IsWrite, nullptr, UseCalls, Exp);
1652   } else {
1653     doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment,
1654                         Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls,
1655                         Exp);
1656   }
1657 }
1658 
1659 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
1660                                                  Value *Addr, bool IsWrite,
1661                                                  size_t AccessSizeIndex,
1662                                                  Value *SizeArgument,
1663                                                  uint32_t Exp) {
1664   IRBuilder<> IRB(InsertBefore);
1665   Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
1666   CallInst *Call = nullptr;
1667   if (SizeArgument) {
1668     if (Exp == 0)
1669       Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
1670                             {Addr, SizeArgument});
1671     else
1672       Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
1673                             {Addr, SizeArgument, ExpVal});
1674   } else {
1675     if (Exp == 0)
1676       Call =
1677           IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
1678     else
1679       Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
1680                             {Addr, ExpVal});
1681   }
1682 
1683   Call->setCannotMerge();
1684   return Call;
1685 }
1686 
1687 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
1688                                            Value *ShadowValue,
1689                                            uint32_t TypeSize) {
1690   size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
1691   // Addr & (Granularity - 1)
1692   Value *LastAccessedByte =
1693       IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
1694   // (Addr & (Granularity - 1)) + size - 1
1695   if (TypeSize / 8 > 1)
1696     LastAccessedByte = IRB.CreateAdd(
1697         LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
1698   // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1699   LastAccessedByte =
1700       IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
1701   // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1702   return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
1703 }
1704 
1705 Instruction *AddressSanitizer::instrumentAMDGPUAddress(
1706     Instruction *OrigIns, Instruction *InsertBefore, Value *Addr,
1707     uint32_t TypeSize, bool IsWrite, Value *SizeArgument) {
1708   // Do not instrument unsupported addrspaces.
1709   if (isUnsupportedAMDGPUAddrspace(Addr))
1710     return nullptr;
1711   Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
1712   // Follow host instrumentation for global and constant addresses.
1713   if (PtrTy->getPointerAddressSpace() != 0)
1714     return InsertBefore;
1715   // Instrument generic addresses in supported addressspaces.
1716   IRBuilder<> IRB(InsertBefore);
1717   Value *AddrLong = IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy());
1718   Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {AddrLong});
1719   Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {AddrLong});
1720   Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate);
1721   Value *Cmp = IRB.CreateICmpNE(IRB.getTrue(), IsSharedOrPrivate);
1722   Value *AddrSpaceZeroLanding =
1723       SplitBlockAndInsertIfThen(Cmp, InsertBefore, false);
1724   InsertBefore = cast<Instruction>(AddrSpaceZeroLanding);
1725   return InsertBefore;
1726 }
1727 
1728 void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
1729                                          Instruction *InsertBefore, Value *Addr,
1730                                          uint32_t TypeSize, bool IsWrite,
1731                                          Value *SizeArgument, bool UseCalls,
1732                                          uint32_t Exp) {
1733   if (TargetTriple.isAMDGPU()) {
1734     InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr,
1735                                            TypeSize, IsWrite, SizeArgument);
1736     if (!InsertBefore)
1737       return;
1738   }
1739 
1740   IRBuilder<> IRB(InsertBefore);
1741   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1742   size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
1743 
1744   if (UseCalls) {
1745     if (Exp == 0)
1746       IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
1747                      AddrLong);
1748     else
1749       IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
1750                      {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1751     return;
1752   }
1753 
1754   Type *ShadowTy =
1755       IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
1756   Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
1757   Value *ShadowPtr = memToShadow(AddrLong, IRB);
1758   Value *CmpVal = Constant::getNullValue(ShadowTy);
1759   Value *ShadowValue =
1760       IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
1761 
1762   Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
1763   size_t Granularity = 1ULL << Mapping.Scale;
1764   Instruction *CrashTerm = nullptr;
1765 
1766   if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
1767     // We use branch weights for the slow path check, to indicate that the slow
1768     // path is rarely taken. This seems to be the case for SPEC benchmarks.
1769     Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1770         Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
1771     assert(cast<BranchInst>(CheckTerm)->isUnconditional());
1772     BasicBlock *NextBB = CheckTerm->getSuccessor(0);
1773     IRB.SetInsertPoint(CheckTerm);
1774     Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
1775     if (Recover) {
1776       CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
1777     } else {
1778       BasicBlock *CrashBlock =
1779         BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
1780       CrashTerm = new UnreachableInst(*C, CrashBlock);
1781       BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
1782       ReplaceInstWithInst(CheckTerm, NewTerm);
1783     }
1784   } else {
1785     CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
1786   }
1787 
1788   Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
1789                                          AccessSizeIndex, SizeArgument, Exp);
1790   Crash->setDebugLoc(OrigIns->getDebugLoc());
1791 }
1792 
1793 // Instrument unusual size or unusual alignment.
1794 // We can not do it with a single check, so we do 1-byte check for the first
1795 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1796 // to report the actual access size.
1797 void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1798     Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize,
1799     bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) {
1800   IRBuilder<> IRB(InsertBefore);
1801   Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
1802   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1803   if (UseCalls) {
1804     if (Exp == 0)
1805       IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
1806                      {AddrLong, Size});
1807     else
1808       IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
1809                      {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1810   } else {
1811     Value *LastByte = IRB.CreateIntToPtr(
1812         IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
1813         Addr->getType());
1814     instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp);
1815     instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp);
1816   }
1817 }
1818 
1819 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit,
1820                                                   GlobalValue *ModuleName) {
1821   // Set up the arguments to our poison/unpoison functions.
1822   IRBuilder<> IRB(&GlobalInit.front(),
1823                   GlobalInit.front().getFirstInsertionPt());
1824 
1825   // Add a call to poison all external globals before the given function starts.
1826   Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
1827   IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
1828 
1829   // Add calls to unpoison all globals before each return instruction.
1830   for (auto &BB : GlobalInit.getBasicBlockList())
1831     if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1832       CallInst::Create(AsanUnpoisonGlobals, "", RI);
1833 }
1834 
1835 void ModuleAddressSanitizer::createInitializerPoisonCalls(
1836     Module &M, GlobalValue *ModuleName) {
1837   GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1838   if (!GV)
1839     return;
1840 
1841   ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
1842   if (!CA)
1843     return;
1844 
1845   for (Use &OP : CA->operands()) {
1846     if (isa<ConstantAggregateZero>(OP)) continue;
1847     ConstantStruct *CS = cast<ConstantStruct>(OP);
1848 
1849     // Must have a function or null ptr.
1850     if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
1851       if (F->getName() == kAsanModuleCtorName) continue;
1852       auto *Priority = cast<ConstantInt>(CS->getOperand(0));
1853       // Don't instrument CTORs that will run before asan.module_ctor.
1854       if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple))
1855         continue;
1856       poisonOneInitializer(*F, ModuleName);
1857     }
1858   }
1859 }
1860 
1861 const GlobalVariable *
1862 ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const {
1863   // In case this function should be expanded to include rules that do not just
1864   // apply when CompileKernel is true, either guard all existing rules with an
1865   // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules
1866   // should also apply to user space.
1867   assert(CompileKernel && "Only expecting to be called when compiling kernel");
1868 
1869   const Constant *C = GA.getAliasee();
1870 
1871   // When compiling the kernel, globals that are aliased by symbols prefixed
1872   // by "__" are special and cannot be padded with a redzone.
1873   if (GA.getName().startswith("__"))
1874     return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases());
1875 
1876   return nullptr;
1877 }
1878 
1879 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const {
1880   Type *Ty = G->getValueType();
1881   LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
1882 
1883   // FIXME: Metadata should be attched directly to the global directly instead
1884   // of being added to llvm.asan.globals.
1885   if (GlobalsMD.get(G).IsExcluded) return false;
1886   if (!Ty->isSized()) return false;
1887   if (!G->hasInitializer()) return false;
1888   // Globals in address space 1 and 4 are supported for AMDGPU.
1889   if (G->getAddressSpace() &&
1890       !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G)))
1891     return false;
1892   if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
1893   // Two problems with thread-locals:
1894   //   - The address of the main thread's copy can't be computed at link-time.
1895   //   - Need to poison all copies, not just the main thread's one.
1896   if (G->isThreadLocal()) return false;
1897   // For now, just ignore this Global if the alignment is large.
1898   if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false;
1899 
1900   // For non-COFF targets, only instrument globals known to be defined by this
1901   // TU.
1902   // FIXME: We can instrument comdat globals on ELF if we are using the
1903   // GC-friendly metadata scheme.
1904   if (!TargetTriple.isOSBinFormatCOFF()) {
1905     if (!G->hasExactDefinition() || G->hasComdat())
1906       return false;
1907   } else {
1908     // On COFF, don't instrument non-ODR linkages.
1909     if (G->isInterposable())
1910       return false;
1911   }
1912 
1913   // If a comdat is present, it must have a selection kind that implies ODR
1914   // semantics: no duplicates, any, or exact match.
1915   if (Comdat *C = G->getComdat()) {
1916     switch (C->getSelectionKind()) {
1917     case Comdat::Any:
1918     case Comdat::ExactMatch:
1919     case Comdat::NoDeduplicate:
1920       break;
1921     case Comdat::Largest:
1922     case Comdat::SameSize:
1923       return false;
1924     }
1925   }
1926 
1927   if (G->hasSection()) {
1928     // The kernel uses explicit sections for mostly special global variables
1929     // that we should not instrument. E.g. the kernel may rely on their layout
1930     // without redzones, or remove them at link time ("discard.*"), etc.
1931     if (CompileKernel)
1932       return false;
1933 
1934     StringRef Section = G->getSection();
1935 
1936     // Globals from llvm.metadata aren't emitted, do not instrument them.
1937     if (Section == "llvm.metadata") return false;
1938     // Do not instrument globals from special LLVM sections.
1939     if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false;
1940 
1941     // Do not instrument function pointers to initialization and termination
1942     // routines: dynamic linker will not properly handle redzones.
1943     if (Section.startswith(".preinit_array") ||
1944         Section.startswith(".init_array") ||
1945         Section.startswith(".fini_array")) {
1946       return false;
1947     }
1948 
1949     // Do not instrument user-defined sections (with names resembling
1950     // valid C identifiers)
1951     if (TargetTriple.isOSBinFormatELF()) {
1952       if (llvm::all_of(Section,
1953                        [](char c) { return llvm::isAlnum(c) || c == '_'; }))
1954         return false;
1955     }
1956 
1957     // On COFF, if the section name contains '$', it is highly likely that the
1958     // user is using section sorting to create an array of globals similar to
1959     // the way initialization callbacks are registered in .init_array and
1960     // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
1961     // to such globals is counterproductive, because the intent is that they
1962     // will form an array, and out-of-bounds accesses are expected.
1963     // See https://github.com/google/sanitizers/issues/305
1964     // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
1965     if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) {
1966       LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
1967                         << *G << "\n");
1968       return false;
1969     }
1970 
1971     if (TargetTriple.isOSBinFormatMachO()) {
1972       StringRef ParsedSegment, ParsedSection;
1973       unsigned TAA = 0, StubSize = 0;
1974       bool TAAParsed;
1975       cantFail(MCSectionMachO::ParseSectionSpecifier(
1976           Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize));
1977 
1978       // Ignore the globals from the __OBJC section. The ObjC runtime assumes
1979       // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
1980       // them.
1981       if (ParsedSegment == "__OBJC" ||
1982           (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
1983         LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
1984         return false;
1985       }
1986       // See https://github.com/google/sanitizers/issues/32
1987       // Constant CFString instances are compiled in the following way:
1988       //  -- the string buffer is emitted into
1989       //     __TEXT,__cstring,cstring_literals
1990       //  -- the constant NSConstantString structure referencing that buffer
1991       //     is placed into __DATA,__cfstring
1992       // Therefore there's no point in placing redzones into __DATA,__cfstring.
1993       // Moreover, it causes the linker to crash on OS X 10.7
1994       if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
1995         LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
1996         return false;
1997       }
1998       // The linker merges the contents of cstring_literals and removes the
1999       // trailing zeroes.
2000       if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
2001         LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
2002         return false;
2003       }
2004     }
2005   }
2006 
2007   if (CompileKernel) {
2008     // Globals that prefixed by "__" are special and cannot be padded with a
2009     // redzone.
2010     if (G->getName().startswith("__"))
2011       return false;
2012   }
2013 
2014   return true;
2015 }
2016 
2017 // On Mach-O platforms, we emit global metadata in a separate section of the
2018 // binary in order to allow the linker to properly dead strip. This is only
2019 // supported on recent versions of ld64.
2020 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
2021   if (!TargetTriple.isOSBinFormatMachO())
2022     return false;
2023 
2024   if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
2025     return true;
2026   if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
2027     return true;
2028   if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
2029     return true;
2030 
2031   return false;
2032 }
2033 
2034 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const {
2035   switch (TargetTriple.getObjectFormat()) {
2036   case Triple::COFF:  return ".ASAN$GL";
2037   case Triple::ELF:   return "asan_globals";
2038   case Triple::MachO: return "__DATA,__asan_globals,regular";
2039   case Triple::Wasm:
2040   case Triple::GOFF:
2041   case Triple::XCOFF:
2042     report_fatal_error(
2043         "ModuleAddressSanitizer not implemented for object file format");
2044   case Triple::UnknownObjectFormat:
2045     break;
2046   }
2047   llvm_unreachable("unsupported object format");
2048 }
2049 
2050 void ModuleAddressSanitizer::initializeCallbacks(Module &M) {
2051   IRBuilder<> IRB(*C);
2052 
2053   // Declare our poisoning and unpoisoning functions.
2054   AsanPoisonGlobals =
2055       M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy);
2056   AsanUnpoisonGlobals =
2057       M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy());
2058 
2059   // Declare functions that register/unregister globals.
2060   AsanRegisterGlobals = M.getOrInsertFunction(
2061       kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2062   AsanUnregisterGlobals = M.getOrInsertFunction(
2063       kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2064 
2065   // Declare the functions that find globals in a shared object and then invoke
2066   // the (un)register function on them.
2067   AsanRegisterImageGlobals = M.getOrInsertFunction(
2068       kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
2069   AsanUnregisterImageGlobals = M.getOrInsertFunction(
2070       kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
2071 
2072   AsanRegisterElfGlobals =
2073       M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(),
2074                             IntptrTy, IntptrTy, IntptrTy);
2075   AsanUnregisterElfGlobals =
2076       M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(),
2077                             IntptrTy, IntptrTy, IntptrTy);
2078 }
2079 
2080 // Put the metadata and the instrumented global in the same group. This ensures
2081 // that the metadata is discarded if the instrumented global is discarded.
2082 void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
2083     GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) {
2084   Module &M = *G->getParent();
2085   Comdat *C = G->getComdat();
2086   if (!C) {
2087     if (!G->hasName()) {
2088       // If G is unnamed, it must be internal. Give it an artificial name
2089       // so we can put it in a comdat.
2090       assert(G->hasLocalLinkage());
2091       G->setName(Twine(kAsanGenPrefix) + "_anon_global");
2092     }
2093 
2094     if (!InternalSuffix.empty() && G->hasLocalLinkage()) {
2095       std::string Name = std::string(G->getName());
2096       Name += InternalSuffix;
2097       C = M.getOrInsertComdat(Name);
2098     } else {
2099       C = M.getOrInsertComdat(G->getName());
2100     }
2101 
2102     // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
2103     // linkage to internal linkage so that a symbol table entry is emitted. This
2104     // is necessary in order to create the comdat group.
2105     if (TargetTriple.isOSBinFormatCOFF()) {
2106       C->setSelectionKind(Comdat::NoDeduplicate);
2107       if (G->hasPrivateLinkage())
2108         G->setLinkage(GlobalValue::InternalLinkage);
2109     }
2110     G->setComdat(C);
2111   }
2112 
2113   assert(G->hasComdat());
2114   Metadata->setComdat(G->getComdat());
2115 }
2116 
2117 // Create a separate metadata global and put it in the appropriate ASan
2118 // global registration section.
2119 GlobalVariable *
2120 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer,
2121                                              StringRef OriginalName) {
2122   auto Linkage = TargetTriple.isOSBinFormatMachO()
2123                      ? GlobalVariable::InternalLinkage
2124                      : GlobalVariable::PrivateLinkage;
2125   GlobalVariable *Metadata = new GlobalVariable(
2126       M, Initializer->getType(), false, Linkage, Initializer,
2127       Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName));
2128   Metadata->setSection(getGlobalMetadataSection());
2129   return Metadata;
2130 }
2131 
2132 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) {
2133   AsanDtorFunction = Function::createWithDefaultAttr(
2134       FunctionType::get(Type::getVoidTy(*C), false),
2135       GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M);
2136   AsanDtorFunction->addAttribute(AttributeList::FunctionIndex,
2137                                  Attribute::NoUnwind);
2138   // Ensure Dtor cannot be discarded, even if in a comdat.
2139   appendToUsed(M, {AsanDtorFunction});
2140   BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
2141 
2142   return ReturnInst::Create(*C, AsanDtorBB);
2143 }
2144 
2145 void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
2146     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2147     ArrayRef<Constant *> MetadataInitializers) {
2148   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2149   auto &DL = M.getDataLayout();
2150 
2151   SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2152   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2153     Constant *Initializer = MetadataInitializers[i];
2154     GlobalVariable *G = ExtendedGlobals[i];
2155     GlobalVariable *Metadata =
2156         CreateMetadataGlobal(M, Initializer, G->getName());
2157     MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2158     Metadata->setMetadata(LLVMContext::MD_associated, MD);
2159     MetadataGlobals[i] = Metadata;
2160 
2161     // The MSVC linker always inserts padding when linking incrementally. We
2162     // cope with that by aligning each struct to its size, which must be a power
2163     // of two.
2164     unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
2165     assert(isPowerOf2_32(SizeOfGlobalStruct) &&
2166            "global metadata will not be padded appropriately");
2167     Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct));
2168 
2169     SetComdatForGlobalMetadata(G, Metadata, "");
2170   }
2171 
2172   // Update llvm.compiler.used, adding the new metadata globals. This is
2173   // needed so that during LTO these variables stay alive.
2174   if (!MetadataGlobals.empty())
2175     appendToCompilerUsed(M, MetadataGlobals);
2176 }
2177 
2178 void ModuleAddressSanitizer::InstrumentGlobalsELF(
2179     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2180     ArrayRef<Constant *> MetadataInitializers,
2181     const std::string &UniqueModuleId) {
2182   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2183 
2184   // Putting globals in a comdat changes the semantic and potentially cause
2185   // false negative odr violations at link time. If odr indicators are used, we
2186   // keep the comdat sections, as link time odr violations will be dectected on
2187   // the odr indicator symbols.
2188   bool UseComdatForGlobalsGC = UseOdrIndicator;
2189 
2190   SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2191   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2192     GlobalVariable *G = ExtendedGlobals[i];
2193     GlobalVariable *Metadata =
2194         CreateMetadataGlobal(M, MetadataInitializers[i], G->getName());
2195     MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2196     Metadata->setMetadata(LLVMContext::MD_associated, MD);
2197     MetadataGlobals[i] = Metadata;
2198 
2199     if (UseComdatForGlobalsGC)
2200       SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId);
2201   }
2202 
2203   // Update llvm.compiler.used, adding the new metadata globals. This is
2204   // needed so that during LTO these variables stay alive.
2205   if (!MetadataGlobals.empty())
2206     appendToCompilerUsed(M, MetadataGlobals);
2207 
2208   // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2209   // to look up the loaded image that contains it. Second, we can store in it
2210   // whether registration has already occurred, to prevent duplicate
2211   // registration.
2212   //
2213   // Common linkage ensures that there is only one global per shared library.
2214   GlobalVariable *RegisteredFlag = new GlobalVariable(
2215       M, IntptrTy, false, GlobalVariable::CommonLinkage,
2216       ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2217   RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2218 
2219   // Create start and stop symbols.
2220   GlobalVariable *StartELFMetadata = new GlobalVariable(
2221       M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2222       "__start_" + getGlobalMetadataSection());
2223   StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2224   GlobalVariable *StopELFMetadata = new GlobalVariable(
2225       M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2226       "__stop_" + getGlobalMetadataSection());
2227   StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2228 
2229   // Create a call to register the globals with the runtime.
2230   IRB.CreateCall(AsanRegisterElfGlobals,
2231                  {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2232                   IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2233                   IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2234 
2235   // We also need to unregister globals at the end, e.g., when a shared library
2236   // gets closed.
2237   if (DestructorKind != AsanDtorKind::None) {
2238     IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2239     IrbDtor.CreateCall(AsanUnregisterElfGlobals,
2240                        {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2241                         IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2242                         IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2243   }
2244 }
2245 
2246 void ModuleAddressSanitizer::InstrumentGlobalsMachO(
2247     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2248     ArrayRef<Constant *> MetadataInitializers) {
2249   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2250 
2251   // On recent Mach-O platforms, use a structure which binds the liveness of
2252   // the global variable to the metadata struct. Keep the list of "Liveness" GV
2253   // created to be added to llvm.compiler.used
2254   StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy);
2255   SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());
2256 
2257   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2258     Constant *Initializer = MetadataInitializers[i];
2259     GlobalVariable *G = ExtendedGlobals[i];
2260     GlobalVariable *Metadata =
2261         CreateMetadataGlobal(M, Initializer, G->getName());
2262 
2263     // On recent Mach-O platforms, we emit the global metadata in a way that
2264     // allows the linker to properly strip dead globals.
2265     auto LivenessBinder =
2266         ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u),
2267                             ConstantExpr::getPointerCast(Metadata, IntptrTy));
2268     GlobalVariable *Liveness = new GlobalVariable(
2269         M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
2270         Twine("__asan_binder_") + G->getName());
2271     Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
2272     LivenessGlobals[i] = Liveness;
2273   }
2274 
2275   // Update llvm.compiler.used, adding the new liveness globals. This is
2276   // needed so that during LTO these variables stay alive. The alternative
2277   // would be to have the linker handling the LTO symbols, but libLTO
2278   // current API does not expose access to the section for each symbol.
2279   if (!LivenessGlobals.empty())
2280     appendToCompilerUsed(M, LivenessGlobals);
2281 
2282   // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2283   // to look up the loaded image that contains it. Second, we can store in it
2284   // whether registration has already occurred, to prevent duplicate
2285   // registration.
2286   //
2287   // common linkage ensures that there is only one global per shared library.
2288   GlobalVariable *RegisteredFlag = new GlobalVariable(
2289       M, IntptrTy, false, GlobalVariable::CommonLinkage,
2290       ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2291   RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2292 
2293   IRB.CreateCall(AsanRegisterImageGlobals,
2294                  {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2295 
2296   // We also need to unregister globals at the end, e.g., when a shared library
2297   // gets closed.
2298   if (DestructorKind != AsanDtorKind::None) {
2299     IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2300     IrbDtor.CreateCall(AsanUnregisterImageGlobals,
2301                        {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2302   }
2303 }
2304 
2305 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
2306     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2307     ArrayRef<Constant *> MetadataInitializers) {
2308   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2309   unsigned N = ExtendedGlobals.size();
2310   assert(N > 0);
2311 
2312   // On platforms that don't have a custom metadata section, we emit an array
2313   // of global metadata structures.
2314   ArrayType *ArrayOfGlobalStructTy =
2315       ArrayType::get(MetadataInitializers[0]->getType(), N);
2316   auto AllGlobals = new GlobalVariable(
2317       M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
2318       ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
2319   if (Mapping.Scale > 3)
2320     AllGlobals->setAlignment(Align(1ULL << Mapping.Scale));
2321 
2322   IRB.CreateCall(AsanRegisterGlobals,
2323                  {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2324                   ConstantInt::get(IntptrTy, N)});
2325 
2326   // We also need to unregister globals at the end, e.g., when a shared library
2327   // gets closed.
2328   if (DestructorKind != AsanDtorKind::None) {
2329     IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2330     IrbDtor.CreateCall(AsanUnregisterGlobals,
2331                        {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2332                         ConstantInt::get(IntptrTy, N)});
2333   }
2334 }
2335 
2336 // This function replaces all global variables with new variables that have
2337 // trailing redzones. It also creates a function that poisons
2338 // redzones and inserts this function into llvm.global_ctors.
2339 // Sets *CtorComdat to true if the global registration code emitted into the
2340 // asan constructor is comdat-compatible.
2341 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M,
2342                                                bool *CtorComdat) {
2343   *CtorComdat = false;
2344 
2345   // Build set of globals that are aliased by some GA, where
2346   // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable.
2347   SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions;
2348   if (CompileKernel) {
2349     for (auto &GA : M.aliases()) {
2350       if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA))
2351         AliasedGlobalExclusions.insert(GV);
2352     }
2353   }
2354 
2355   SmallVector<GlobalVariable *, 16> GlobalsToChange;
2356   for (auto &G : M.globals()) {
2357     if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G))
2358       GlobalsToChange.push_back(&G);
2359   }
2360 
2361   size_t n = GlobalsToChange.size();
2362   if (n == 0) {
2363     *CtorComdat = true;
2364     return false;
2365   }
2366 
2367   auto &DL = M.getDataLayout();
2368 
2369   // A global is described by a structure
2370   //   size_t beg;
2371   //   size_t size;
2372   //   size_t size_with_redzone;
2373   //   const char *name;
2374   //   const char *module_name;
2375   //   size_t has_dynamic_init;
2376   //   void *source_location;
2377   //   size_t odr_indicator;
2378   // We initialize an array of such structures and pass it to a run-time call.
2379   StructType *GlobalStructTy =
2380       StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
2381                       IntptrTy, IntptrTy, IntptrTy);
2382   SmallVector<GlobalVariable *, 16> NewGlobals(n);
2383   SmallVector<Constant *, 16> Initializers(n);
2384 
2385   bool HasDynamicallyInitializedGlobals = false;
2386 
2387   // We shouldn't merge same module names, as this string serves as unique
2388   // module ID in runtime.
2389   GlobalVariable *ModuleName = createPrivateGlobalForString(
2390       M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix);
2391 
2392   for (size_t i = 0; i < n; i++) {
2393     GlobalVariable *G = GlobalsToChange[i];
2394 
2395     // FIXME: Metadata should be attched directly to the global directly instead
2396     // of being added to llvm.asan.globals.
2397     auto MD = GlobalsMD.get(G);
2398     StringRef NameForGlobal = G->getName();
2399     // Create string holding the global name (use global name from metadata
2400     // if it's available, otherwise just write the name of global variable).
2401     GlobalVariable *Name = createPrivateGlobalForString(
2402         M, MD.Name.empty() ? NameForGlobal : MD.Name,
2403         /*AllowMerging*/ true, kAsanGenPrefix);
2404 
2405     Type *Ty = G->getValueType();
2406     const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
2407     const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes);
2408     Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
2409 
2410     StructType *NewTy = StructType::get(Ty, RightRedZoneTy);
2411     Constant *NewInitializer = ConstantStruct::get(
2412         NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy));
2413 
2414     // Create a new global variable with enough space for a redzone.
2415     GlobalValue::LinkageTypes Linkage = G->getLinkage();
2416     if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
2417       Linkage = GlobalValue::InternalLinkage;
2418     GlobalVariable *NewGlobal = new GlobalVariable(
2419         M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G,
2420         G->getThreadLocalMode(), G->getAddressSpace());
2421     NewGlobal->copyAttributesFrom(G);
2422     NewGlobal->setComdat(G->getComdat());
2423     NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal()));
2424     // Don't fold globals with redzones. ODR violation detector and redzone
2425     // poisoning implicitly creates a dependence on the global's address, so it
2426     // is no longer valid for it to be marked unnamed_addr.
2427     NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
2428 
2429     // Move null-terminated C strings to "__asan_cstring" section on Darwin.
2430     if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
2431         G->isConstant()) {
2432       auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
2433       if (Seq && Seq->isCString())
2434         NewGlobal->setSection("__TEXT,__asan_cstring,regular");
2435     }
2436 
2437     // Transfer the debug info and type metadata.  The payload starts at offset
2438     // zero so we can copy the metadata over as is.
2439     NewGlobal->copyMetadata(G, 0);
2440 
2441     Value *Indices2[2];
2442     Indices2[0] = IRB.getInt32(0);
2443     Indices2[1] = IRB.getInt32(0);
2444 
2445     G->replaceAllUsesWith(
2446         ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
2447     NewGlobal->takeName(G);
2448     G->eraseFromParent();
2449     NewGlobals[i] = NewGlobal;
2450 
2451     Constant *SourceLoc;
2452     if (!MD.SourceLoc.empty()) {
2453       auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
2454       SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
2455     } else {
2456       SourceLoc = ConstantInt::get(IntptrTy, 0);
2457     }
2458 
2459     Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy());
2460     GlobalValue *InstrumentedGlobal = NewGlobal;
2461 
2462     bool CanUsePrivateAliases =
2463         TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
2464         TargetTriple.isOSBinFormatWasm();
2465     if (CanUsePrivateAliases && UsePrivateAlias) {
2466       // Create local alias for NewGlobal to avoid crash on ODR between
2467       // instrumented and non-instrumented libraries.
2468       InstrumentedGlobal =
2469           GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal);
2470     }
2471 
2472     // ODR should not happen for local linkage.
2473     if (NewGlobal->hasLocalLinkage()) {
2474       ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1),
2475                                                IRB.getInt8PtrTy());
2476     } else if (UseOdrIndicator) {
2477       // With local aliases, we need to provide another externally visible
2478       // symbol __odr_asan_XXX to detect ODR violation.
2479       auto *ODRIndicatorSym =
2480           new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
2481                              Constant::getNullValue(IRB.getInt8Ty()),
2482                              kODRGenPrefix + NameForGlobal, nullptr,
2483                              NewGlobal->getThreadLocalMode());
2484 
2485       // Set meaningful attributes for indicator symbol.
2486       ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
2487       ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
2488       ODRIndicatorSym->setAlignment(Align(1));
2489       ODRIndicator = ODRIndicatorSym;
2490     }
2491 
2492     Constant *Initializer = ConstantStruct::get(
2493         GlobalStructTy,
2494         ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
2495         ConstantInt::get(IntptrTy, SizeInBytes),
2496         ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
2497         ConstantExpr::getPointerCast(Name, IntptrTy),
2498         ConstantExpr::getPointerCast(ModuleName, IntptrTy),
2499         ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc,
2500         ConstantExpr::getPointerCast(ODRIndicator, IntptrTy));
2501 
2502     if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
2503 
2504     LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
2505 
2506     Initializers[i] = Initializer;
2507   }
2508 
2509   // Add instrumented globals to llvm.compiler.used list to avoid LTO from
2510   // ConstantMerge'ing them.
2511   SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList;
2512   for (size_t i = 0; i < n; i++) {
2513     GlobalVariable *G = NewGlobals[i];
2514     if (G->getName().empty()) continue;
2515     GlobalsToAddToUsedList.push_back(G);
2516   }
2517   appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList));
2518 
2519   std::string ELFUniqueModuleId =
2520       (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M)
2521                                                         : "";
2522 
2523   if (!ELFUniqueModuleId.empty()) {
2524     InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId);
2525     *CtorComdat = true;
2526   } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) {
2527     InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers);
2528   } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) {
2529     InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers);
2530   } else {
2531     InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers);
2532   }
2533 
2534   // Create calls for poisoning before initializers run and unpoisoning after.
2535   if (HasDynamicallyInitializedGlobals)
2536     createInitializerPoisonCalls(M, ModuleName);
2537 
2538   LLVM_DEBUG(dbgs() << M);
2539   return true;
2540 }
2541 
2542 uint64_t
2543 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const {
2544   constexpr uint64_t kMaxRZ = 1 << 18;
2545   const uint64_t MinRZ = getMinRedzoneSizeForGlobal();
2546 
2547   uint64_t RZ = 0;
2548   if (SizeInBytes <= MinRZ / 2) {
2549     // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is
2550     // at least 32 bytes, optimize when SizeInBytes is less than or equal to
2551     // half of MinRZ.
2552     RZ = MinRZ - SizeInBytes;
2553   } else {
2554     // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes.
2555     RZ = std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ));
2556 
2557     // Round up to multiple of MinRZ.
2558     if (SizeInBytes % MinRZ)
2559       RZ += MinRZ - (SizeInBytes % MinRZ);
2560   }
2561 
2562   assert((RZ + SizeInBytes) % MinRZ == 0);
2563 
2564   return RZ;
2565 }
2566 
2567 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const {
2568   int LongSize = M.getDataLayout().getPointerSizeInBits();
2569   bool isAndroid = Triple(M.getTargetTriple()).isAndroid();
2570   int Version = 8;
2571   // 32-bit Android is one version ahead because of the switch to dynamic
2572   // shadow.
2573   Version += (LongSize == 32 && isAndroid);
2574   return Version;
2575 }
2576 
2577 bool ModuleAddressSanitizer::instrumentModule(Module &M) {
2578   initializeCallbacks(M);
2579 
2580   // Create a module constructor. A destructor is created lazily because not all
2581   // platforms, and not all modules need it.
2582   if (CompileKernel) {
2583     // The kernel always builds with its own runtime, and therefore does not
2584     // need the init and version check calls.
2585     AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName);
2586   } else {
2587     std::string AsanVersion = std::to_string(GetAsanVersion(M));
2588     std::string VersionCheckName =
2589         ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : "";
2590     std::tie(AsanCtorFunction, std::ignore) =
2591         createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName,
2592                                             kAsanInitName, /*InitArgTypes=*/{},
2593                                             /*InitArgs=*/{}, VersionCheckName);
2594   }
2595 
2596   bool CtorComdat = true;
2597   if (ClGlobals) {
2598     IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator());
2599     InstrumentGlobals(IRB, M, &CtorComdat);
2600   }
2601 
2602   const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple);
2603 
2604   // Put the constructor and destructor in comdat if both
2605   // (1) global instrumentation is not TU-specific
2606   // (2) target is ELF.
2607   if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) {
2608     AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName));
2609     appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction);
2610     if (AsanDtorFunction) {
2611       AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName));
2612       appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction);
2613     }
2614   } else {
2615     appendToGlobalCtors(M, AsanCtorFunction, Priority);
2616     if (AsanDtorFunction)
2617       appendToGlobalDtors(M, AsanDtorFunction, Priority);
2618   }
2619 
2620   return true;
2621 }
2622 
2623 void AddressSanitizer::initializeCallbacks(Module &M) {
2624   IRBuilder<> IRB(*C);
2625   // Create __asan_report* callbacks.
2626   // IsWrite, TypeSize and Exp are encoded in the function name.
2627   for (int Exp = 0; Exp < 2; Exp++) {
2628     for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
2629       const std::string TypeStr = AccessIsWrite ? "store" : "load";
2630       const std::string ExpStr = Exp ? "exp_" : "";
2631       const std::string EndingStr = Recover ? "_noabort" : "";
2632 
2633       SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
2634       SmallVector<Type *, 2> Args1{1, IntptrTy};
2635       if (Exp) {
2636         Type *ExpType = Type::getInt32Ty(*C);
2637         Args2.push_back(ExpType);
2638         Args1.push_back(ExpType);
2639       }
2640       AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2641           kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr,
2642           FunctionType::get(IRB.getVoidTy(), Args2, false));
2643 
2644       AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2645           ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
2646           FunctionType::get(IRB.getVoidTy(), Args2, false));
2647 
2648       for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
2649            AccessSizeIndex++) {
2650         const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
2651         AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2652             M.getOrInsertFunction(
2653                 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
2654                 FunctionType::get(IRB.getVoidTy(), Args1, false));
2655 
2656         AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2657             M.getOrInsertFunction(
2658                 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
2659                 FunctionType::get(IRB.getVoidTy(), Args1, false));
2660       }
2661     }
2662   }
2663 
2664   const std::string MemIntrinCallbackPrefix =
2665       CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
2666   AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
2667                                       IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2668                                       IRB.getInt8PtrTy(), IntptrTy);
2669   AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy",
2670                                      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2671                                      IRB.getInt8PtrTy(), IntptrTy);
2672   AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
2673                                      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2674                                      IRB.getInt32Ty(), IntptrTy);
2675 
2676   AsanHandleNoReturnFunc =
2677       M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy());
2678 
2679   AsanPtrCmpFunction =
2680       M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy);
2681   AsanPtrSubFunction =
2682       M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy);
2683   if (Mapping.InGlobal)
2684     AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow",
2685                                            ArrayType::get(IRB.getInt8Ty(), 0));
2686 
2687   AMDGPUAddressShared = M.getOrInsertFunction(
2688       kAMDGPUAddressSharedName, IRB.getInt1Ty(), IRB.getInt8PtrTy());
2689   AMDGPUAddressPrivate = M.getOrInsertFunction(
2690       kAMDGPUAddressPrivateName, IRB.getInt1Ty(), IRB.getInt8PtrTy());
2691 }
2692 
2693 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
2694   // For each NSObject descendant having a +load method, this method is invoked
2695   // by the ObjC runtime before any of the static constructors is called.
2696   // Therefore we need to instrument such methods with a call to __asan_init
2697   // at the beginning in order to initialize our runtime before any access to
2698   // the shadow memory.
2699   // We cannot just ignore these methods, because they may call other
2700   // instrumented functions.
2701   if (F.getName().find(" load]") != std::string::npos) {
2702     FunctionCallee AsanInitFunction =
2703         declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {});
2704     IRBuilder<> IRB(&F.front(), F.front().begin());
2705     IRB.CreateCall(AsanInitFunction, {});
2706     return true;
2707   }
2708   return false;
2709 }
2710 
2711 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
2712   // Generate code only when dynamic addressing is needed.
2713   if (Mapping.Offset != kDynamicShadowSentinel)
2714     return false;
2715 
2716   IRBuilder<> IRB(&F.front().front());
2717   if (Mapping.InGlobal) {
2718     if (ClWithIfuncSuppressRemat) {
2719       // An empty inline asm with input reg == output reg.
2720       // An opaque pointer-to-int cast, basically.
2721       InlineAsm *Asm = InlineAsm::get(
2722           FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false),
2723           StringRef(""), StringRef("=r,0"),
2724           /*hasSideEffects=*/false);
2725       LocalDynamicShadow =
2726           IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow");
2727     } else {
2728       LocalDynamicShadow =
2729           IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow");
2730     }
2731   } else {
2732     Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
2733         kAsanShadowMemoryDynamicAddress, IntptrTy);
2734     LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
2735   }
2736   return true;
2737 }
2738 
2739 void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
2740   // Find the one possible call to llvm.localescape and pre-mark allocas passed
2741   // to it as uninteresting. This assumes we haven't started processing allocas
2742   // yet. This check is done up front because iterating the use list in
2743   // isInterestingAlloca would be algorithmically slower.
2744   assert(ProcessedAllocas.empty() && "must process localescape before allocas");
2745 
2746   // Try to get the declaration of llvm.localescape. If it's not in the module,
2747   // we can exit early.
2748   if (!F.getParent()->getFunction("llvm.localescape")) return;
2749 
2750   // Look for a call to llvm.localescape call in the entry block. It can't be in
2751   // any other block.
2752   for (Instruction &I : F.getEntryBlock()) {
2753     IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
2754     if (II && II->getIntrinsicID() == Intrinsic::localescape) {
2755       // We found a call. Mark all the allocas passed in as uninteresting.
2756       for (Value *Arg : II->arg_operands()) {
2757         AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
2758         assert(AI && AI->isStaticAlloca() &&
2759                "non-static alloca arg to localescape");
2760         ProcessedAllocas[AI] = false;
2761       }
2762       break;
2763     }
2764   }
2765 }
2766 
2767 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) {
2768   bool ShouldInstrument =
2769       ClDebugMin < 0 || ClDebugMax < 0 ||
2770       (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax);
2771   Instrumented++;
2772   return !ShouldInstrument;
2773 }
2774 
2775 bool AddressSanitizer::instrumentFunction(Function &F,
2776                                           const TargetLibraryInfo *TLI) {
2777   if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
2778   if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
2779   if (F.getName().startswith("__asan_")) return false;
2780 
2781   bool FunctionModified = false;
2782 
2783   // If needed, insert __asan_init before checking for SanitizeAddress attr.
2784   // This function needs to be called even if the function body is not
2785   // instrumented.
2786   if (maybeInsertAsanInitAtFunctionEntry(F))
2787     FunctionModified = true;
2788 
2789   // Leave if the function doesn't need instrumentation.
2790   if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;
2791 
2792   LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
2793 
2794   initializeCallbacks(*F.getParent());
2795 
2796   FunctionStateRAII CleanupObj(this);
2797 
2798   FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F);
2799 
2800   // We can't instrument allocas used with llvm.localescape. Only static allocas
2801   // can be passed to that intrinsic.
2802   markEscapedLocalAllocas(F);
2803 
2804   // We want to instrument every address only once per basic block (unless there
2805   // are calls between uses).
2806   SmallPtrSet<Value *, 16> TempsToInstrument;
2807   SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument;
2808   SmallVector<MemIntrinsic *, 16> IntrinToInstrument;
2809   SmallVector<Instruction *, 8> NoReturnCalls;
2810   SmallVector<BasicBlock *, 16> AllBlocks;
2811   SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
2812   int NumAllocas = 0;
2813 
2814   // Fill the set of memory operations to instrument.
2815   for (auto &BB : F) {
2816     AllBlocks.push_back(&BB);
2817     TempsToInstrument.clear();
2818     int NumInsnsPerBB = 0;
2819     for (auto &Inst : BB) {
2820       if (LooksLikeCodeInBug11395(&Inst)) return false;
2821       SmallVector<InterestingMemoryOperand, 1> InterestingOperands;
2822       getInterestingMemoryOperands(&Inst, InterestingOperands);
2823 
2824       if (!InterestingOperands.empty()) {
2825         for (auto &Operand : InterestingOperands) {
2826           if (ClOpt && ClOptSameTemp) {
2827             Value *Ptr = Operand.getPtr();
2828             // If we have a mask, skip instrumentation if we've already
2829             // instrumented the full object. But don't add to TempsToInstrument
2830             // because we might get another load/store with a different mask.
2831             if (Operand.MaybeMask) {
2832               if (TempsToInstrument.count(Ptr))
2833                 continue; // We've seen this (whole) temp in the current BB.
2834             } else {
2835               if (!TempsToInstrument.insert(Ptr).second)
2836                 continue; // We've seen this temp in the current BB.
2837             }
2838           }
2839           OperandsToInstrument.push_back(Operand);
2840           NumInsnsPerBB++;
2841         }
2842       } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) &&
2843                   isInterestingPointerComparison(&Inst)) ||
2844                  ((ClInvalidPointerPairs || ClInvalidPointerSub) &&
2845                   isInterestingPointerSubtraction(&Inst))) {
2846         PointerComparisonsOrSubtracts.push_back(&Inst);
2847       } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) {
2848         // ok, take it.
2849         IntrinToInstrument.push_back(MI);
2850         NumInsnsPerBB++;
2851       } else {
2852         if (isa<AllocaInst>(Inst)) NumAllocas++;
2853         if (auto *CB = dyn_cast<CallBase>(&Inst)) {
2854           // A call inside BB.
2855           TempsToInstrument.clear();
2856           if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize"))
2857             NoReturnCalls.push_back(CB);
2858         }
2859         if (CallInst *CI = dyn_cast<CallInst>(&Inst))
2860           maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
2861       }
2862       if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
2863     }
2864   }
2865 
2866   bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 &&
2867                    OperandsToInstrument.size() + IntrinToInstrument.size() >
2868                        (unsigned)ClInstrumentationWithCallsThreshold);
2869   const DataLayout &DL = F.getParent()->getDataLayout();
2870   ObjectSizeOpts ObjSizeOpts;
2871   ObjSizeOpts.RoundToAlign = true;
2872   ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts);
2873 
2874   // Instrument.
2875   int NumInstrumented = 0;
2876   for (auto &Operand : OperandsToInstrument) {
2877     if (!suppressInstrumentationSiteForDebug(NumInstrumented))
2878       instrumentMop(ObjSizeVis, Operand, UseCalls,
2879                     F.getParent()->getDataLayout());
2880     FunctionModified = true;
2881   }
2882   for (auto Inst : IntrinToInstrument) {
2883     if (!suppressInstrumentationSiteForDebug(NumInstrumented))
2884       instrumentMemIntrinsic(Inst);
2885     FunctionModified = true;
2886   }
2887 
2888   FunctionStackPoisoner FSP(F, *this);
2889   bool ChangedStack = FSP.runOnFunction();
2890 
2891   // We must unpoison the stack before NoReturn calls (throw, _exit, etc).
2892   // See e.g. https://github.com/google/sanitizers/issues/37
2893   for (auto CI : NoReturnCalls) {
2894     IRBuilder<> IRB(CI);
2895     IRB.CreateCall(AsanHandleNoReturnFunc, {});
2896   }
2897 
2898   for (auto Inst : PointerComparisonsOrSubtracts) {
2899     instrumentPointerComparisonOrSubtraction(Inst);
2900     FunctionModified = true;
2901   }
2902 
2903   if (ChangedStack || !NoReturnCalls.empty())
2904     FunctionModified = true;
2905 
2906   LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "
2907                     << F << "\n");
2908 
2909   return FunctionModified;
2910 }
2911 
2912 // Workaround for bug 11395: we don't want to instrument stack in functions
2913 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
2914 // FIXME: remove once the bug 11395 is fixed.
2915 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
2916   if (LongSize != 32) return false;
2917   CallInst *CI = dyn_cast<CallInst>(I);
2918   if (!CI || !CI->isInlineAsm()) return false;
2919   if (CI->getNumArgOperands() <= 5) return false;
2920   // We have inline assembly with quite a few arguments.
2921   return true;
2922 }
2923 
2924 void FunctionStackPoisoner::initializeCallbacks(Module &M) {
2925   IRBuilder<> IRB(*C);
2926   if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always ||
2927       ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) {
2928     const char *MallocNameTemplate =
2929         ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always
2930             ? kAsanStackMallocAlwaysNameTemplate
2931             : kAsanStackMallocNameTemplate;
2932     for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) {
2933       std::string Suffix = itostr(Index);
2934       AsanStackMallocFunc[Index] = M.getOrInsertFunction(
2935           MallocNameTemplate + Suffix, IntptrTy, IntptrTy);
2936       AsanStackFreeFunc[Index] =
2937           M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
2938                                 IRB.getVoidTy(), IntptrTy, IntptrTy);
2939     }
2940   }
2941   if (ASan.UseAfterScope) {
2942     AsanPoisonStackMemoryFunc = M.getOrInsertFunction(
2943         kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2944     AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction(
2945         kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2946   }
2947 
2948   for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) {
2949     std::ostringstream Name;
2950     Name << kAsanSetShadowPrefix;
2951     Name << std::setw(2) << std::setfill('0') << std::hex << Val;
2952     AsanSetShadowFunc[Val] =
2953         M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy);
2954   }
2955 
2956   AsanAllocaPoisonFunc = M.getOrInsertFunction(
2957       kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
2958   AsanAllocasUnpoisonFunc = M.getOrInsertFunction(
2959       kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
2960 }
2961 
2962 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
2963                                                ArrayRef<uint8_t> ShadowBytes,
2964                                                size_t Begin, size_t End,
2965                                                IRBuilder<> &IRB,
2966                                                Value *ShadowBase) {
2967   if (Begin >= End)
2968     return;
2969 
2970   const size_t LargestStoreSizeInBytes =
2971       std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);
2972 
2973   const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian();
2974 
2975   // Poison given range in shadow using larges store size with out leading and
2976   // trailing zeros in ShadowMask. Zeros never change, so they need neither
2977   // poisoning nor up-poisoning. Still we don't mind if some of them get into a
2978   // middle of a store.
2979   for (size_t i = Begin; i < End;) {
2980     if (!ShadowMask[i]) {
2981       assert(!ShadowBytes[i]);
2982       ++i;
2983       continue;
2984     }
2985 
2986     size_t StoreSizeInBytes = LargestStoreSizeInBytes;
2987     // Fit store size into the range.
2988     while (StoreSizeInBytes > End - i)
2989       StoreSizeInBytes /= 2;
2990 
2991     // Minimize store size by trimming trailing zeros.
2992     for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
2993       while (j <= StoreSizeInBytes / 2)
2994         StoreSizeInBytes /= 2;
2995     }
2996 
2997     uint64_t Val = 0;
2998     for (size_t j = 0; j < StoreSizeInBytes; j++) {
2999       if (IsLittleEndian)
3000         Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
3001       else
3002         Val = (Val << 8) | ShadowBytes[i + j];
3003     }
3004 
3005     Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
3006     Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
3007     IRB.CreateAlignedStore(
3008         Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()),
3009         Align(1));
3010 
3011     i += StoreSizeInBytes;
3012   }
3013 }
3014 
3015 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
3016                                          ArrayRef<uint8_t> ShadowBytes,
3017                                          IRBuilder<> &IRB, Value *ShadowBase) {
3018   copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
3019 }
3020 
3021 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
3022                                          ArrayRef<uint8_t> ShadowBytes,
3023                                          size_t Begin, size_t End,
3024                                          IRBuilder<> &IRB, Value *ShadowBase) {
3025   assert(ShadowMask.size() == ShadowBytes.size());
3026   size_t Done = Begin;
3027   for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
3028     if (!ShadowMask[i]) {
3029       assert(!ShadowBytes[i]);
3030       continue;
3031     }
3032     uint8_t Val = ShadowBytes[i];
3033     if (!AsanSetShadowFunc[Val])
3034       continue;
3035 
3036     // Skip same values.
3037     for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
3038     }
3039 
3040     if (j - i >= ClMaxInlinePoisoningSize) {
3041       copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
3042       IRB.CreateCall(AsanSetShadowFunc[Val],
3043                      {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
3044                       ConstantInt::get(IntptrTy, j - i)});
3045       Done = j;
3046     }
3047   }
3048 
3049   copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
3050 }
3051 
3052 // Fake stack allocator (asan_fake_stack.h) has 11 size classes
3053 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
3054 static int StackMallocSizeClass(uint64_t LocalStackSize) {
3055   assert(LocalStackSize <= kMaxStackMallocSize);
3056   uint64_t MaxSize = kMinStackMallocSize;
3057   for (int i = 0;; i++, MaxSize *= 2)
3058     if (LocalStackSize <= MaxSize) return i;
3059   llvm_unreachable("impossible LocalStackSize");
3060 }
3061 
3062 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
3063   Instruction *CopyInsertPoint = &F.front().front();
3064   if (CopyInsertPoint == ASan.LocalDynamicShadow) {
3065     // Insert after the dynamic shadow location is determined
3066     CopyInsertPoint = CopyInsertPoint->getNextNode();
3067     assert(CopyInsertPoint);
3068   }
3069   IRBuilder<> IRB(CopyInsertPoint);
3070   const DataLayout &DL = F.getParent()->getDataLayout();
3071   for (Argument &Arg : F.args()) {
3072     if (Arg.hasByValAttr()) {
3073       Type *Ty = Arg.getParamByValType();
3074       const Align Alignment =
3075           DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty);
3076 
3077       AllocaInst *AI = IRB.CreateAlloca(
3078           Ty, nullptr,
3079           (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) +
3080               ".byval");
3081       AI->setAlignment(Alignment);
3082       Arg.replaceAllUsesWith(AI);
3083 
3084       uint64_t AllocSize = DL.getTypeAllocSize(Ty);
3085       IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize);
3086     }
3087   }
3088 }
3089 
3090 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
3091                                           Value *ValueIfTrue,
3092                                           Instruction *ThenTerm,
3093                                           Value *ValueIfFalse) {
3094   PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
3095   BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
3096   PHI->addIncoming(ValueIfFalse, CondBlock);
3097   BasicBlock *ThenBlock = ThenTerm->getParent();
3098   PHI->addIncoming(ValueIfTrue, ThenBlock);
3099   return PHI;
3100 }
3101 
3102 Value *FunctionStackPoisoner::createAllocaForLayout(
3103     IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
3104   AllocaInst *Alloca;
3105   if (Dynamic) {
3106     Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
3107                               ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
3108                               "MyAlloca");
3109   } else {
3110     Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
3111                               nullptr, "MyAlloca");
3112     assert(Alloca->isStaticAlloca());
3113   }
3114   assert((ClRealignStack & (ClRealignStack - 1)) == 0);
3115   size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
3116   Alloca->setAlignment(Align(FrameAlignment));
3117   return IRB.CreatePointerCast(Alloca, IntptrTy);
3118 }
3119 
3120 void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
3121   BasicBlock &FirstBB = *F.begin();
3122   IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
3123   DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
3124   IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
3125   DynamicAllocaLayout->setAlignment(Align(32));
3126 }
3127 
3128 void FunctionStackPoisoner::processDynamicAllocas() {
3129   if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
3130     assert(DynamicAllocaPoisonCallVec.empty());
3131     return;
3132   }
3133 
3134   // Insert poison calls for lifetime intrinsics for dynamic allocas.
3135   for (const auto &APC : DynamicAllocaPoisonCallVec) {
3136     assert(APC.InsBefore);
3137     assert(APC.AI);
3138     assert(ASan.isInterestingAlloca(*APC.AI));
3139     assert(!APC.AI->isStaticAlloca());
3140 
3141     IRBuilder<> IRB(APC.InsBefore);
3142     poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
3143     // Dynamic allocas will be unpoisoned unconditionally below in
3144     // unpoisonDynamicAllocas.
3145     // Flag that we need unpoison static allocas.
3146   }
3147 
3148   // Handle dynamic allocas.
3149   createDynamicAllocasInitStorage();
3150   for (auto &AI : DynamicAllocaVec)
3151     handleDynamicAllocaCall(AI);
3152   unpoisonDynamicAllocas();
3153 }
3154 
3155 /// Collect instructions in the entry block after \p InsBefore which initialize
3156 /// permanent storage for a function argument. These instructions must remain in
3157 /// the entry block so that uninitialized values do not appear in backtraces. An
3158 /// added benefit is that this conserves spill slots. This does not move stores
3159 /// before instrumented / "interesting" allocas.
3160 static void findStoresToUninstrumentedArgAllocas(
3161     AddressSanitizer &ASan, Instruction &InsBefore,
3162     SmallVectorImpl<Instruction *> &InitInsts) {
3163   Instruction *Start = InsBefore.getNextNonDebugInstruction();
3164   for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) {
3165     // Argument initialization looks like:
3166     // 1) store <Argument>, <Alloca> OR
3167     // 2) <CastArgument> = cast <Argument> to ...
3168     //    store <CastArgument> to <Alloca>
3169     // Do not consider any other kind of instruction.
3170     //
3171     // Note: This covers all known cases, but may not be exhaustive. An
3172     // alternative to pattern-matching stores is to DFS over all Argument uses:
3173     // this might be more general, but is probably much more complicated.
3174     if (isa<AllocaInst>(It) || isa<CastInst>(It))
3175       continue;
3176     if (auto *Store = dyn_cast<StoreInst>(It)) {
3177       // The store destination must be an alloca that isn't interesting for
3178       // ASan to instrument. These are moved up before InsBefore, and they're
3179       // not interesting because allocas for arguments can be mem2reg'd.
3180       auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand());
3181       if (!Alloca || ASan.isInterestingAlloca(*Alloca))
3182         continue;
3183 
3184       Value *Val = Store->getValueOperand();
3185       bool IsDirectArgInit = isa<Argument>(Val);
3186       bool IsArgInitViaCast =
3187           isa<CastInst>(Val) &&
3188           isa<Argument>(cast<CastInst>(Val)->getOperand(0)) &&
3189           // Check that the cast appears directly before the store. Otherwise
3190           // moving the cast before InsBefore may break the IR.
3191           Val == It->getPrevNonDebugInstruction();
3192       bool IsArgInit = IsDirectArgInit || IsArgInitViaCast;
3193       if (!IsArgInit)
3194         continue;
3195 
3196       if (IsArgInitViaCast)
3197         InitInsts.push_back(cast<Instruction>(Val));
3198       InitInsts.push_back(Store);
3199       continue;
3200     }
3201 
3202     // Do not reorder past unknown instructions: argument initialization should
3203     // only involve casts and stores.
3204     return;
3205   }
3206 }
3207 
3208 void FunctionStackPoisoner::processStaticAllocas() {
3209   if (AllocaVec.empty()) {
3210     assert(StaticAllocaPoisonCallVec.empty());
3211     return;
3212   }
3213 
3214   int StackMallocIdx = -1;
3215   DebugLoc EntryDebugLocation;
3216   if (auto SP = F.getSubprogram())
3217     EntryDebugLocation =
3218         DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP);
3219 
3220   Instruction *InsBefore = AllocaVec[0];
3221   IRBuilder<> IRB(InsBefore);
3222 
3223   // Make sure non-instrumented allocas stay in the entry block. Otherwise,
3224   // debug info is broken, because only entry-block allocas are treated as
3225   // regular stack slots.
3226   auto InsBeforeB = InsBefore->getParent();
3227   assert(InsBeforeB == &F.getEntryBlock());
3228   for (auto *AI : StaticAllocasToMoveUp)
3229     if (AI->getParent() == InsBeforeB)
3230       AI->moveBefore(InsBefore);
3231 
3232   // Move stores of arguments into entry-block allocas as well. This prevents
3233   // extra stack slots from being generated (to house the argument values until
3234   // they can be stored into the allocas). This also prevents uninitialized
3235   // values from being shown in backtraces.
3236   SmallVector<Instruction *, 8> ArgInitInsts;
3237   findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts);
3238   for (Instruction *ArgInitInst : ArgInitInsts)
3239     ArgInitInst->moveBefore(InsBefore);
3240 
3241   // If we have a call to llvm.localescape, keep it in the entry block.
3242   if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
3243 
3244   SmallVector<ASanStackVariableDescription, 16> SVD;
3245   SVD.reserve(AllocaVec.size());
3246   for (AllocaInst *AI : AllocaVec) {
3247     ASanStackVariableDescription D = {AI->getName().data(),
3248                                       ASan.getAllocaSizeInBytes(*AI),
3249                                       0,
3250                                       AI->getAlignment(),
3251                                       AI,
3252                                       0,
3253                                       0};
3254     SVD.push_back(D);
3255   }
3256 
3257   // Minimal header size (left redzone) is 4 pointers,
3258   // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
3259   size_t Granularity = 1ULL << Mapping.Scale;
3260   size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity);
3261   const ASanStackFrameLayout &L =
3262       ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize);
3263 
3264   // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
3265   DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
3266   for (auto &Desc : SVD)
3267     AllocaToSVDMap[Desc.AI] = &Desc;
3268 
3269   // Update SVD with information from lifetime intrinsics.
3270   for (const auto &APC : StaticAllocaPoisonCallVec) {
3271     assert(APC.InsBefore);
3272     assert(APC.AI);
3273     assert(ASan.isInterestingAlloca(*APC.AI));
3274     assert(APC.AI->isStaticAlloca());
3275 
3276     ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3277     Desc.LifetimeSize = Desc.Size;
3278     if (const DILocation *FnLoc = EntryDebugLocation.get()) {
3279       if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
3280         if (LifetimeLoc->getFile() == FnLoc->getFile())
3281           if (unsigned Line = LifetimeLoc->getLine())
3282             Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
3283       }
3284     }
3285   }
3286 
3287   auto DescriptionString = ComputeASanStackFrameDescription(SVD);
3288   LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n");
3289   uint64_t LocalStackSize = L.FrameSize;
3290   bool DoStackMalloc =
3291       ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never &&
3292       !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize;
3293   bool DoDynamicAlloca = ClDynamicAllocaStack;
3294   // Don't do dynamic alloca or stack malloc if:
3295   // 1) There is inline asm: too often it makes assumptions on which registers
3296   //    are available.
3297   // 2) There is a returns_twice call (typically setjmp), which is
3298   //    optimization-hostile, and doesn't play well with introduced indirect
3299   //    register-relative calculation of local variable addresses.
3300   DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall;
3301   DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall;
3302 
3303   Value *StaticAlloca =
3304       DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
3305 
3306   Value *FakeStack;
3307   Value *LocalStackBase;
3308   Value *LocalStackBaseAlloca;
3309   uint8_t DIExprFlags = DIExpression::ApplyOffset;
3310 
3311   if (DoStackMalloc) {
3312     LocalStackBaseAlloca =
3313         IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base");
3314     if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) {
3315       // void *FakeStack = __asan_option_detect_stack_use_after_return
3316       //     ? __asan_stack_malloc_N(LocalStackSize)
3317       //     : nullptr;
3318       // void *LocalStackBase = (FakeStack) ? FakeStack :
3319       //                        alloca(LocalStackSize);
3320       Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
3321           kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
3322       Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE(
3323           IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn),
3324           Constant::getNullValue(IRB.getInt32Ty()));
3325       Instruction *Term =
3326           SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
3327       IRBuilder<> IRBIf(Term);
3328       StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3329       assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
3330       Value *FakeStackValue =
3331           IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
3332                            ConstantInt::get(IntptrTy, LocalStackSize));
3333       IRB.SetInsertPoint(InsBefore);
3334       FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
3335                             ConstantInt::get(IntptrTy, 0));
3336     } else {
3337       // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always)
3338       // void *FakeStack = __asan_stack_malloc_N(LocalStackSize);
3339       // void *LocalStackBase = (FakeStack) ? FakeStack :
3340       //                        alloca(LocalStackSize);
3341       StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3342       FakeStack = IRB.CreateCall(AsanStackMallocFunc[StackMallocIdx],
3343                                  ConstantInt::get(IntptrTy, LocalStackSize));
3344     }
3345     Value *NoFakeStack =
3346         IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
3347     Instruction *Term =
3348         SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
3349     IRBuilder<> IRBIf(Term);
3350     Value *AllocaValue =
3351         DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
3352 
3353     IRB.SetInsertPoint(InsBefore);
3354     LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
3355     IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca);
3356     DIExprFlags |= DIExpression::DerefBefore;
3357   } else {
3358     // void *FakeStack = nullptr;
3359     // void *LocalStackBase = alloca(LocalStackSize);
3360     FakeStack = ConstantInt::get(IntptrTy, 0);
3361     LocalStackBase =
3362         DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
3363     LocalStackBaseAlloca = LocalStackBase;
3364   }
3365 
3366   // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the
3367   // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse
3368   // later passes and can result in dropped variable coverage in debug info.
3369   Value *LocalStackBaseAllocaPtr =
3370       isa<PtrToIntInst>(LocalStackBaseAlloca)
3371           ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand()
3372           : LocalStackBaseAlloca;
3373   assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) &&
3374          "Variable descriptions relative to ASan stack base will be dropped");
3375 
3376   // Replace Alloca instructions with base+offset.
3377   for (const auto &Desc : SVD) {
3378     AllocaInst *AI = Desc.AI;
3379     replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags,
3380                       Desc.Offset);
3381     Value *NewAllocaPtr = IRB.CreateIntToPtr(
3382         IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
3383         AI->getType());
3384     AI->replaceAllUsesWith(NewAllocaPtr);
3385   }
3386 
3387   // The left-most redzone has enough space for at least 4 pointers.
3388   // Write the Magic value to redzone[0].
3389   Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
3390   IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
3391                   BasePlus0);
3392   // Write the frame description constant to redzone[1].
3393   Value *BasePlus1 = IRB.CreateIntToPtr(
3394       IRB.CreateAdd(LocalStackBase,
3395                     ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
3396       IntptrPtrTy);
3397   GlobalVariable *StackDescriptionGlobal =
3398       createPrivateGlobalForString(*F.getParent(), DescriptionString,
3399                                    /*AllowMerging*/ true, kAsanGenPrefix);
3400   Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
3401   IRB.CreateStore(Description, BasePlus1);
3402   // Write the PC to redzone[2].
3403   Value *BasePlus2 = IRB.CreateIntToPtr(
3404       IRB.CreateAdd(LocalStackBase,
3405                     ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
3406       IntptrPtrTy);
3407   IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
3408 
3409   const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);
3410 
3411   // Poison the stack red zones at the entry.
3412   Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
3413   // As mask we must use most poisoned case: red zones and after scope.
3414   // As bytes we can use either the same or just red zones only.
3415   copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);
3416 
3417   if (!StaticAllocaPoisonCallVec.empty()) {
3418     const auto &ShadowInScope = GetShadowBytes(SVD, L);
3419 
3420     // Poison static allocas near lifetime intrinsics.
3421     for (const auto &APC : StaticAllocaPoisonCallVec) {
3422       const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3423       assert(Desc.Offset % L.Granularity == 0);
3424       size_t Begin = Desc.Offset / L.Granularity;
3425       size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;
3426 
3427       IRBuilder<> IRB(APC.InsBefore);
3428       copyToShadow(ShadowAfterScope,
3429                    APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
3430                    IRB, ShadowBase);
3431     }
3432   }
3433 
3434   SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
3435   SmallVector<uint8_t, 64> ShadowAfterReturn;
3436 
3437   // (Un)poison the stack before all ret instructions.
3438   for (Instruction *Ret : RetVec) {
3439     IRBuilder<> IRBRet(Ret);
3440     // Mark the current frame as retired.
3441     IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
3442                        BasePlus0);
3443     if (DoStackMalloc) {
3444       assert(StackMallocIdx >= 0);
3445       // if FakeStack != 0  // LocalStackBase == FakeStack
3446       //     // In use-after-return mode, poison the whole stack frame.
3447       //     if StackMallocIdx <= 4
3448       //         // For small sizes inline the whole thing:
3449       //         memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
3450       //         **SavedFlagPtr(FakeStack) = 0
3451       //     else
3452       //         __asan_stack_free_N(FakeStack, LocalStackSize)
3453       // else
3454       //     <This is not a fake stack; unpoison the redzones>
3455       Value *Cmp =
3456           IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
3457       Instruction *ThenTerm, *ElseTerm;
3458       SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
3459 
3460       IRBuilder<> IRBPoison(ThenTerm);
3461       if (StackMallocIdx <= 4) {
3462         int ClassSize = kMinStackMallocSize << StackMallocIdx;
3463         ShadowAfterReturn.resize(ClassSize / L.Granularity,
3464                                  kAsanStackUseAfterReturnMagic);
3465         copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
3466                      ShadowBase);
3467         Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
3468             FakeStack,
3469             ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
3470         Value *SavedFlagPtr = IRBPoison.CreateLoad(
3471             IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
3472         IRBPoison.CreateStore(
3473             Constant::getNullValue(IRBPoison.getInt8Ty()),
3474             IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
3475       } else {
3476         // For larger frames call __asan_stack_free_*.
3477         IRBPoison.CreateCall(
3478             AsanStackFreeFunc[StackMallocIdx],
3479             {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
3480       }
3481 
3482       IRBuilder<> IRBElse(ElseTerm);
3483       copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
3484     } else {
3485       copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
3486     }
3487   }
3488 
3489   // We are done. Remove the old unused alloca instructions.
3490   for (auto AI : AllocaVec) AI->eraseFromParent();
3491 }
3492 
3493 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
3494                                          IRBuilder<> &IRB, bool DoPoison) {
3495   // For now just insert the call to ASan runtime.
3496   Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
3497   Value *SizeArg = ConstantInt::get(IntptrTy, Size);
3498   IRB.CreateCall(
3499       DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
3500       {AddrArg, SizeArg});
3501 }
3502 
3503 // Handling llvm.lifetime intrinsics for a given %alloca:
3504 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
3505 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
3506 //     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
3507 //     could be poisoned by previous llvm.lifetime.end instruction, as the
3508 //     variable may go in and out of scope several times, e.g. in loops).
3509 // (3) if we poisoned at least one %alloca in a function,
3510 //     unpoison the whole stack frame at function exit.
3511 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
3512   IRBuilder<> IRB(AI);
3513 
3514   const unsigned Alignment = std::max(kAllocaRzSize, AI->getAlignment());
3515   const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
3516 
3517   Value *Zero = Constant::getNullValue(IntptrTy);
3518   Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
3519   Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
3520 
3521   // Since we need to extend alloca with additional memory to locate
3522   // redzones, and OldSize is number of allocated blocks with
3523   // ElementSize size, get allocated memory size in bytes by
3524   // OldSize * ElementSize.
3525   const unsigned ElementSize =
3526       F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
3527   Value *OldSize =
3528       IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
3529                     ConstantInt::get(IntptrTy, ElementSize));
3530 
3531   // PartialSize = OldSize % 32
3532   Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
3533 
3534   // Misalign = kAllocaRzSize - PartialSize;
3535   Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
3536 
3537   // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
3538   Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
3539   Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
3540 
3541   // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize
3542   // Alignment is added to locate left redzone, PartialPadding for possible
3543   // partial redzone and kAllocaRzSize for right redzone respectively.
3544   Value *AdditionalChunkSize = IRB.CreateAdd(
3545       ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding);
3546 
3547   Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
3548 
3549   // Insert new alloca with new NewSize and Alignment params.
3550   AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
3551   NewAlloca->setAlignment(Align(Alignment));
3552 
3553   // NewAddress = Address + Alignment
3554   Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
3555                                     ConstantInt::get(IntptrTy, Alignment));
3556 
3557   // Insert __asan_alloca_poison call for new created alloca.
3558   IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
3559 
3560   // Store the last alloca's address to DynamicAllocaLayout. We'll need this
3561   // for unpoisoning stuff.
3562   IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
3563 
3564   Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
3565 
3566   // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
3567   AI->replaceAllUsesWith(NewAddressPtr);
3568 
3569   // We are done. Erase old alloca from parent.
3570   AI->eraseFromParent();
3571 }
3572 
3573 // isSafeAccess returns true if Addr is always inbounds with respect to its
3574 // base object. For example, it is a field access or an array access with
3575 // constant inbounds index.
3576 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
3577                                     Value *Addr, uint64_t TypeSize) const {
3578   SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
3579   if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
3580   uint64_t Size = SizeOffset.first.getZExtValue();
3581   int64_t Offset = SizeOffset.second.getSExtValue();
3582   // Three checks are required to ensure safety:
3583   // . Offset >= 0  (since the offset is given from the base ptr)
3584   // . Size >= Offset  (unsigned)
3585   // . Size - Offset >= NeededSize  (unsigned)
3586   return Offset >= 0 && Size >= uint64_t(Offset) &&
3587          Size - uint64_t(Offset) >= TypeSize / 8;
3588 }
3589