1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
11 /// analysis.
12 ///
13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific
14 /// class of bugs on its own.  Instead, it provides a generic dynamic data flow
15 /// analysis framework to be used by clients to help detect application-specific
16 /// issues within their own code.
17 ///
18 /// The analysis is based on automatic propagation of data flow labels (also
19 /// known as taint labels) through a program as it performs computation.
20 ///
21 /// Argument and return value labels are passed through TLS variables
22 /// __dfsan_arg_tls and __dfsan_retval_tls.
23 ///
24 /// Each byte of application memory is backed by a shadow memory byte. The
25 /// shadow byte can represent up to 8 labels. On Linux/x86_64, memory is then
26 /// laid out as follows:
27 ///
28 /// +--------------------+ 0x800000000000 (top of memory)
29 /// |    application 3   |
30 /// +--------------------+ 0x700000000000
31 /// |      invalid       |
32 /// +--------------------+ 0x610000000000
33 /// |      origin 1      |
34 /// +--------------------+ 0x600000000000
35 /// |    application 2   |
36 /// +--------------------+ 0x510000000000
37 /// |      shadow 1      |
38 /// +--------------------+ 0x500000000000
39 /// |      invalid       |
40 /// +--------------------+ 0x400000000000
41 /// |      origin 3      |
42 /// +--------------------+ 0x300000000000
43 /// |      shadow 3      |
44 /// +--------------------+ 0x200000000000
45 /// |      origin 2      |
46 /// +--------------------+ 0x110000000000
47 /// |      invalid       |
48 /// +--------------------+ 0x100000000000
49 /// |      shadow 2      |
50 /// +--------------------+ 0x010000000000
51 /// |    application 1   |
52 /// +--------------------+ 0x000000000000
53 ///
54 /// MEM_TO_SHADOW(mem) = mem ^ 0x500000000000
55 /// SHADOW_TO_ORIGIN(shadow) = shadow + 0x100000000000
56 ///
57 /// For more information, please refer to the design document:
58 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
59 //
60 //===----------------------------------------------------------------------===//
61 
62 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DenseSet.h"
65 #include "llvm/ADT/DepthFirstIterator.h"
66 #include "llvm/ADT/SmallPtrSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/ADT/StringRef.h"
69 #include "llvm/ADT/StringSet.h"
70 #include "llvm/ADT/Triple.h"
71 #include "llvm/ADT/iterator.h"
72 #include "llvm/Analysis/GlobalsModRef.h"
73 #include "llvm/Analysis/TargetLibraryInfo.h"
74 #include "llvm/Analysis/ValueTracking.h"
75 #include "llvm/IR/Argument.h"
76 #include "llvm/IR/Attributes.h"
77 #include "llvm/IR/BasicBlock.h"
78 #include "llvm/IR/Constant.h"
79 #include "llvm/IR/Constants.h"
80 #include "llvm/IR/DataLayout.h"
81 #include "llvm/IR/DerivedTypes.h"
82 #include "llvm/IR/Dominators.h"
83 #include "llvm/IR/Function.h"
84 #include "llvm/IR/GlobalAlias.h"
85 #include "llvm/IR/GlobalValue.h"
86 #include "llvm/IR/GlobalVariable.h"
87 #include "llvm/IR/IRBuilder.h"
88 #include "llvm/IR/InstVisitor.h"
89 #include "llvm/IR/InstrTypes.h"
90 #include "llvm/IR/Instruction.h"
91 #include "llvm/IR/Instructions.h"
92 #include "llvm/IR/IntrinsicInst.h"
93 #include "llvm/IR/MDBuilder.h"
94 #include "llvm/IR/Module.h"
95 #include "llvm/IR/PassManager.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/InitializePasses.h"
100 #include "llvm/Pass.h"
101 #include "llvm/Support/Alignment.h"
102 #include "llvm/Support/Casting.h"
103 #include "llvm/Support/CommandLine.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/SpecialCaseList.h"
106 #include "llvm/Support/VirtualFileSystem.h"
107 #include "llvm/Transforms/Instrumentation.h"
108 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
109 #include "llvm/Transforms/Utils/Local.h"
110 #include <algorithm>
111 #include <cassert>
112 #include <cstddef>
113 #include <cstdint>
114 #include <memory>
115 #include <set>
116 #include <string>
117 #include <utility>
118 #include <vector>
119 
120 using namespace llvm;
121 
122 // This must be consistent with ShadowWidthBits.
123 static const Align ShadowTLSAlignment = Align(2);
124 
125 static const Align MinOriginAlignment = Align(4);
126 
127 // The size of TLS variables. These constants must be kept in sync with the ones
128 // in dfsan.cpp.
129 static const unsigned ArgTLSSize = 800;
130 static const unsigned RetvalTLSSize = 800;
131 
132 // The -dfsan-preserve-alignment flag controls whether this pass assumes that
133 // alignment requirements provided by the input IR are correct.  For example,
134 // if the input IR contains a load with alignment 8, this flag will cause
135 // the shadow load to have alignment 16.  This flag is disabled by default as
136 // we have unfortunately encountered too much code (including Clang itself;
137 // see PR14291) which performs misaligned access.
138 static cl::opt<bool> ClPreserveAlignment(
139     "dfsan-preserve-alignment",
140     cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
141     cl::init(false));
142 
143 // The ABI list files control how shadow parameters are passed. The pass treats
144 // every function labelled "uninstrumented" in the ABI list file as conforming
145 // to the "native" (i.e. unsanitized) ABI.  Unless the ABI list contains
146 // additional annotations for those functions, a call to one of those functions
147 // will produce a warning message, as the labelling behaviour of the function is
148 // unknown. The other supported annotations for uninstrumented functions are
149 // "functional" and "discard", which are described below under
150 // DataFlowSanitizer::WrapperKind.
151 // Functions will often be labelled with both "uninstrumented" and one of
152 // "functional" or "discard". This will leave the function unchanged by this
153 // pass, and create a wrapper function that will call the original.
154 //
155 // Instrumented functions can also be annotated as "force_zero_labels", which
156 // will make all shadow and return values set zero labels.
157 // Functions should never be labelled with both "force_zero_labels" and
158 // "uninstrumented" or any of the unistrumented wrapper kinds.
159 static cl::list<std::string> ClABIListFiles(
160     "dfsan-abilist",
161     cl::desc("File listing native ABI functions and how the pass treats them"),
162     cl::Hidden);
163 
164 // Controls whether the pass includes or ignores the labels of pointers in load
165 // instructions.
166 static cl::opt<bool> ClCombinePointerLabelsOnLoad(
167     "dfsan-combine-pointer-labels-on-load",
168     cl::desc("Combine the label of the pointer with the label of the data when "
169              "loading from memory."),
170     cl::Hidden, cl::init(true));
171 
172 // Controls whether the pass includes or ignores the labels of pointers in
173 // stores instructions.
174 static cl::opt<bool> ClCombinePointerLabelsOnStore(
175     "dfsan-combine-pointer-labels-on-store",
176     cl::desc("Combine the label of the pointer with the label of the data when "
177              "storing in memory."),
178     cl::Hidden, cl::init(false));
179 
180 // Controls whether the pass propagates labels of offsets in GEP instructions.
181 static cl::opt<bool> ClCombineOffsetLabelsOnGEP(
182     "dfsan-combine-offset-labels-on-gep",
183     cl::desc(
184         "Combine the label of the offset with the label of the pointer when "
185         "doing pointer arithmetic."),
186     cl::Hidden, cl::init(true));
187 
188 static cl::list<std::string> ClCombineTaintLookupTables(
189     "dfsan-combine-taint-lookup-table",
190     cl::desc(
191         "When dfsan-combine-offset-labels-on-gep and/or "
192         "dfsan-combine-pointer-labels-on-load are false, this flag can "
193         "be used to re-enable combining offset and/or pointer taint when "
194         "loading specific constant global variables (i.e. lookup tables)."),
195     cl::Hidden);
196 
197 static cl::opt<bool> ClDebugNonzeroLabels(
198     "dfsan-debug-nonzero-labels",
199     cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
200              "load or return with a nonzero label"),
201     cl::Hidden);
202 
203 // Experimental feature that inserts callbacks for certain data events.
204 // Currently callbacks are only inserted for loads, stores, memory transfers
205 // (i.e. memcpy and memmove), and comparisons.
206 //
207 // If this flag is set to true, the user must provide definitions for the
208 // following callback functions:
209 //   void __dfsan_load_callback(dfsan_label Label, void* addr);
210 //   void __dfsan_store_callback(dfsan_label Label, void* addr);
211 //   void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len);
212 //   void __dfsan_cmp_callback(dfsan_label CombinedLabel);
213 static cl::opt<bool> ClEventCallbacks(
214     "dfsan-event-callbacks",
215     cl::desc("Insert calls to __dfsan_*_callback functions on data events."),
216     cl::Hidden, cl::init(false));
217 
218 // Experimental feature that inserts callbacks for conditionals, including:
219 // conditional branch, switch, select.
220 // This must be true for dfsan_set_conditional_callback() to have effect.
221 static cl::opt<bool> ClConditionalCallbacks(
222     "dfsan-conditional-callbacks",
223     cl::desc("Insert calls to callback functions on conditionals."), cl::Hidden,
224     cl::init(false));
225 
226 // Experimental feature that inserts callbacks for data reaching a function,
227 // either via function arguments and loads.
228 // This must be true for dfsan_set_reaches_function_callback() to have effect.
229 static cl::opt<bool> ClReachesFunctionCallbacks(
230     "dfsan-reaches-function-callbacks",
231     cl::desc("Insert calls to callback functions on data reaching a function."),
232     cl::Hidden, cl::init(false));
233 
234 // Controls whether the pass tracks the control flow of select instructions.
235 static cl::opt<bool> ClTrackSelectControlFlow(
236     "dfsan-track-select-control-flow",
237     cl::desc("Propagate labels from condition values of select instructions "
238              "to results."),
239     cl::Hidden, cl::init(true));
240 
241 // TODO: This default value follows MSan. DFSan may use a different value.
242 static cl::opt<int> ClInstrumentWithCallThreshold(
243     "dfsan-instrument-with-call-threshold",
244     cl::desc("If the function being instrumented requires more than "
245              "this number of origin stores, use callbacks instead of "
246              "inline checks (-1 means never use callbacks)."),
247     cl::Hidden, cl::init(3500));
248 
249 // Controls how to track origins.
250 // * 0: do not track origins.
251 // * 1: track origins at memory store operations.
252 // * 2: track origins at memory load and store operations.
253 //      TODO: track callsites.
254 static cl::opt<int> ClTrackOrigins("dfsan-track-origins",
255                                    cl::desc("Track origins of labels"),
256                                    cl::Hidden, cl::init(0));
257 
258 static cl::opt<bool> ClIgnorePersonalityRoutine(
259     "dfsan-ignore-personality-routine",
260     cl::desc("If a personality routine is marked uninstrumented from the ABI "
261              "list, do not create a wrapper for it."),
262     cl::Hidden, cl::init(false));
263 
264 static StringRef getGlobalTypeString(const GlobalValue &G) {
265   // Types of GlobalVariables are always pointer types.
266   Type *GType = G.getValueType();
267   // For now we support excluding struct types only.
268   if (StructType *SGType = dyn_cast<StructType>(GType)) {
269     if (!SGType->isLiteral())
270       return SGType->getName();
271   }
272   return "<unknown type>";
273 }
274 
275 namespace {
276 
277 // Memory map parameters used in application-to-shadow address calculation.
278 // Offset = (Addr & ~AndMask) ^ XorMask
279 // Shadow = ShadowBase + Offset
280 // Origin = (OriginBase + Offset) & ~3ULL
281 struct MemoryMapParams {
282   uint64_t AndMask;
283   uint64_t XorMask;
284   uint64_t ShadowBase;
285   uint64_t OriginBase;
286 };
287 
288 } // end anonymous namespace
289 
290 // NOLINTBEGIN(readability-identifier-naming)
291 // aarch64 Linux
292 const MemoryMapParams Linux_AArch64_MemoryMapParams = {
293     0,               // AndMask (not used)
294     0x0B00000000000, // XorMask
295     0,               // ShadowBase (not used)
296     0x0200000000000, // OriginBase
297 };
298 
299 // x86_64 Linux
300 const MemoryMapParams Linux_X86_64_MemoryMapParams = {
301     0,              // AndMask (not used)
302     0x500000000000, // XorMask
303     0,              // ShadowBase (not used)
304     0x100000000000, // OriginBase
305 };
306 // NOLINTEND(readability-identifier-naming)
307 
308 namespace {
309 
310 class DFSanABIList {
311   std::unique_ptr<SpecialCaseList> SCL;
312 
313 public:
314   DFSanABIList() = default;
315 
316   void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); }
317 
318   /// Returns whether either this function or its source file are listed in the
319   /// given category.
320   bool isIn(const Function &F, StringRef Category) const {
321     return isIn(*F.getParent(), Category) ||
322            SCL->inSection("dataflow", "fun", F.getName(), Category);
323   }
324 
325   /// Returns whether this global alias is listed in the given category.
326   ///
327   /// If GA aliases a function, the alias's name is matched as a function name
328   /// would be.  Similarly, aliases of globals are matched like globals.
329   bool isIn(const GlobalAlias &GA, StringRef Category) const {
330     if (isIn(*GA.getParent(), Category))
331       return true;
332 
333     if (isa<FunctionType>(GA.getValueType()))
334       return SCL->inSection("dataflow", "fun", GA.getName(), Category);
335 
336     return SCL->inSection("dataflow", "global", GA.getName(), Category) ||
337            SCL->inSection("dataflow", "type", getGlobalTypeString(GA),
338                           Category);
339   }
340 
341   /// Returns whether this module is listed in the given category.
342   bool isIn(const Module &M, StringRef Category) const {
343     return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category);
344   }
345 };
346 
347 /// TransformedFunction is used to express the result of transforming one
348 /// function type into another.  This struct is immutable.  It holds metadata
349 /// useful for updating calls of the old function to the new type.
350 struct TransformedFunction {
351   TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType,
352                       std::vector<unsigned> ArgumentIndexMapping)
353       : OriginalType(OriginalType), TransformedType(TransformedType),
354         ArgumentIndexMapping(ArgumentIndexMapping) {}
355 
356   // Disallow copies.
357   TransformedFunction(const TransformedFunction &) = delete;
358   TransformedFunction &operator=(const TransformedFunction &) = delete;
359 
360   // Allow moves.
361   TransformedFunction(TransformedFunction &&) = default;
362   TransformedFunction &operator=(TransformedFunction &&) = default;
363 
364   /// Type of the function before the transformation.
365   FunctionType *OriginalType;
366 
367   /// Type of the function after the transformation.
368   FunctionType *TransformedType;
369 
370   /// Transforming a function may change the position of arguments.  This
371   /// member records the mapping from each argument's old position to its new
372   /// position.  Argument positions are zero-indexed.  If the transformation
373   /// from F to F' made the first argument of F into the third argument of F',
374   /// then ArgumentIndexMapping[0] will equal 2.
375   std::vector<unsigned> ArgumentIndexMapping;
376 };
377 
378 /// Given function attributes from a call site for the original function,
379 /// return function attributes appropriate for a call to the transformed
380 /// function.
381 AttributeList
382 transformFunctionAttributes(const TransformedFunction &TransformedFunction,
383                             LLVMContext &Ctx, AttributeList CallSiteAttrs) {
384 
385   // Construct a vector of AttributeSet for each function argument.
386   std::vector<llvm::AttributeSet> ArgumentAttributes(
387       TransformedFunction.TransformedType->getNumParams());
388 
389   // Copy attributes from the parameter of the original function to the
390   // transformed version.  'ArgumentIndexMapping' holds the mapping from
391   // old argument position to new.
392   for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size();
393        I < IE; ++I) {
394     unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I];
395     ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttrs(I);
396   }
397 
398   // Copy annotations on varargs arguments.
399   for (unsigned I = TransformedFunction.OriginalType->getNumParams(),
400                 IE = CallSiteAttrs.getNumAttrSets();
401        I < IE; ++I) {
402     ArgumentAttributes.push_back(CallSiteAttrs.getParamAttrs(I));
403   }
404 
405   return AttributeList::get(Ctx, CallSiteAttrs.getFnAttrs(),
406                             CallSiteAttrs.getRetAttrs(),
407                             llvm::ArrayRef(ArgumentAttributes));
408 }
409 
410 class DataFlowSanitizer {
411   friend struct DFSanFunction;
412   friend class DFSanVisitor;
413 
414   enum { ShadowWidthBits = 8, ShadowWidthBytes = ShadowWidthBits / 8 };
415 
416   enum { OriginWidthBits = 32, OriginWidthBytes = OriginWidthBits / 8 };
417 
418   /// How should calls to uninstrumented functions be handled?
419   enum WrapperKind {
420     /// This function is present in an uninstrumented form but we don't know
421     /// how it should be handled.  Print a warning and call the function anyway.
422     /// Don't label the return value.
423     WK_Warning,
424 
425     /// This function does not write to (user-accessible) memory, and its return
426     /// value is unlabelled.
427     WK_Discard,
428 
429     /// This function does not write to (user-accessible) memory, and the label
430     /// of its return value is the union of the label of its arguments.
431     WK_Functional,
432 
433     /// Instead of calling the function, a custom wrapper __dfsw_F is called,
434     /// where F is the name of the function.  This function may wrap the
435     /// original function or provide its own implementation. WK_Custom uses an
436     /// extra pointer argument to return the shadow.  This allows the wrapped
437     /// form of the function type to be expressed in C.
438     WK_Custom
439   };
440 
441   Module *Mod;
442   LLVMContext *Ctx;
443   Type *Int8Ptr;
444   IntegerType *OriginTy;
445   PointerType *OriginPtrTy;
446   ConstantInt *ZeroOrigin;
447   /// The shadow type for all primitive types and vector types.
448   IntegerType *PrimitiveShadowTy;
449   PointerType *PrimitiveShadowPtrTy;
450   IntegerType *IntptrTy;
451   ConstantInt *ZeroPrimitiveShadow;
452   Constant *ArgTLS;
453   ArrayType *ArgOriginTLSTy;
454   Constant *ArgOriginTLS;
455   Constant *RetvalTLS;
456   Constant *RetvalOriginTLS;
457   FunctionType *DFSanUnionLoadFnTy;
458   FunctionType *DFSanLoadLabelAndOriginFnTy;
459   FunctionType *DFSanUnimplementedFnTy;
460   FunctionType *DFSanWrapperExternWeakNullFnTy;
461   FunctionType *DFSanSetLabelFnTy;
462   FunctionType *DFSanNonzeroLabelFnTy;
463   FunctionType *DFSanVarargWrapperFnTy;
464   FunctionType *DFSanConditionalCallbackFnTy;
465   FunctionType *DFSanConditionalCallbackOriginFnTy;
466   FunctionType *DFSanReachesFunctionCallbackFnTy;
467   FunctionType *DFSanReachesFunctionCallbackOriginFnTy;
468   FunctionType *DFSanCmpCallbackFnTy;
469   FunctionType *DFSanLoadStoreCallbackFnTy;
470   FunctionType *DFSanMemTransferCallbackFnTy;
471   FunctionType *DFSanChainOriginFnTy;
472   FunctionType *DFSanChainOriginIfTaintedFnTy;
473   FunctionType *DFSanMemOriginTransferFnTy;
474   FunctionType *DFSanMemShadowOriginTransferFnTy;
475   FunctionType *DFSanMemShadowOriginConditionalExchangeFnTy;
476   FunctionType *DFSanMaybeStoreOriginFnTy;
477   FunctionCallee DFSanUnionLoadFn;
478   FunctionCallee DFSanLoadLabelAndOriginFn;
479   FunctionCallee DFSanUnimplementedFn;
480   FunctionCallee DFSanWrapperExternWeakNullFn;
481   FunctionCallee DFSanSetLabelFn;
482   FunctionCallee DFSanNonzeroLabelFn;
483   FunctionCallee DFSanVarargWrapperFn;
484   FunctionCallee DFSanLoadCallbackFn;
485   FunctionCallee DFSanStoreCallbackFn;
486   FunctionCallee DFSanMemTransferCallbackFn;
487   FunctionCallee DFSanConditionalCallbackFn;
488   FunctionCallee DFSanConditionalCallbackOriginFn;
489   FunctionCallee DFSanReachesFunctionCallbackFn;
490   FunctionCallee DFSanReachesFunctionCallbackOriginFn;
491   FunctionCallee DFSanCmpCallbackFn;
492   FunctionCallee DFSanChainOriginFn;
493   FunctionCallee DFSanChainOriginIfTaintedFn;
494   FunctionCallee DFSanMemOriginTransferFn;
495   FunctionCallee DFSanMemShadowOriginTransferFn;
496   FunctionCallee DFSanMemShadowOriginConditionalExchangeFn;
497   FunctionCallee DFSanMaybeStoreOriginFn;
498   SmallPtrSet<Value *, 16> DFSanRuntimeFunctions;
499   MDNode *ColdCallWeights;
500   MDNode *OriginStoreWeights;
501   DFSanABIList ABIList;
502   DenseMap<Value *, Function *> UnwrappedFnMap;
503   AttributeMask ReadOnlyNoneAttrs;
504   StringSet<> CombineTaintLookupTableNames;
505 
506   /// Memory map parameters used in calculation mapping application addresses
507   /// to shadow addresses and origin addresses.
508   const MemoryMapParams *MapParams;
509 
510   Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB);
511   Value *getShadowAddress(Value *Addr, Instruction *Pos);
512   Value *getShadowAddress(Value *Addr, Instruction *Pos, Value *ShadowOffset);
513   std::pair<Value *, Value *>
514   getShadowOriginAddress(Value *Addr, Align InstAlignment, Instruction *Pos);
515   bool isInstrumented(const Function *F);
516   bool isInstrumented(const GlobalAlias *GA);
517   bool isForceZeroLabels(const Function *F);
518   TransformedFunction getCustomFunctionType(FunctionType *T);
519   WrapperKind getWrapperKind(Function *F);
520   void addGlobalNameSuffix(GlobalValue *GV);
521   void buildExternWeakCheckIfNeeded(IRBuilder<> &IRB, Function *F);
522   Function *buildWrapperFunction(Function *F, StringRef NewFName,
523                                  GlobalValue::LinkageTypes NewFLink,
524                                  FunctionType *NewFT);
525   void initializeCallbackFunctions(Module &M);
526   void initializeRuntimeFunctions(Module &M);
527   bool initializeModule(Module &M);
528 
529   /// Advances \p OriginAddr to point to the next 32-bit origin and then loads
530   /// from it. Returns the origin's loaded value.
531   Value *loadNextOrigin(Instruction *Pos, Align OriginAlign,
532                         Value **OriginAddr);
533 
534   /// Returns whether the given load byte size is amenable to inlined
535   /// optimization patterns.
536   bool hasLoadSizeForFastPath(uint64_t Size);
537 
538   /// Returns whether the pass tracks origins. Supports only TLS ABI mode.
539   bool shouldTrackOrigins();
540 
541   /// Returns a zero constant with the shadow type of OrigTy.
542   ///
543   /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...}
544   /// getZeroShadow([n x T]) = [n x getZeroShadow(T)]
545   /// getZeroShadow(other type) = i16(0)
546   Constant *getZeroShadow(Type *OrigTy);
547   /// Returns a zero constant with the shadow type of V's type.
548   Constant *getZeroShadow(Value *V);
549 
550   /// Checks if V is a zero shadow.
551   bool isZeroShadow(Value *V);
552 
553   /// Returns the shadow type of OrigTy.
554   ///
555   /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...}
556   /// getShadowTy([n x T]) = [n x getShadowTy(T)]
557   /// getShadowTy(other type) = i16
558   Type *getShadowTy(Type *OrigTy);
559   /// Returns the shadow type of of V's type.
560   Type *getShadowTy(Value *V);
561 
562   const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes;
563 
564 public:
565   DataFlowSanitizer(const std::vector<std::string> &ABIListFiles);
566 
567   bool runImpl(Module &M,
568                llvm::function_ref<TargetLibraryInfo &(Function &)> GetTLI);
569 };
570 
571 struct DFSanFunction {
572   DataFlowSanitizer &DFS;
573   Function *F;
574   DominatorTree DT;
575   bool IsNativeABI;
576   bool IsForceZeroLabels;
577   TargetLibraryInfo &TLI;
578   AllocaInst *LabelReturnAlloca = nullptr;
579   AllocaInst *OriginReturnAlloca = nullptr;
580   DenseMap<Value *, Value *> ValShadowMap;
581   DenseMap<Value *, Value *> ValOriginMap;
582   DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
583   DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap;
584 
585   struct PHIFixupElement {
586     PHINode *Phi;
587     PHINode *ShadowPhi;
588     PHINode *OriginPhi;
589   };
590   std::vector<PHIFixupElement> PHIFixups;
591 
592   DenseSet<Instruction *> SkipInsts;
593   std::vector<Value *> NonZeroChecks;
594 
595   struct CachedShadow {
596     BasicBlock *Block; // The block where Shadow is defined.
597     Value *Shadow;
598   };
599   /// Maps a value to its latest shadow value in terms of domination tree.
600   DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows;
601   /// Maps a value to its latest collapsed shadow value it was converted to in
602   /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is
603   /// used at a post process where CFG blocks are split. So it does not cache
604   /// BasicBlock like CachedShadows, but uses domination between values.
605   DenseMap<Value *, Value *> CachedCollapsedShadows;
606   DenseMap<Value *, std::set<Value *>> ShadowElements;
607 
608   DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI,
609                 bool IsForceZeroLabels, TargetLibraryInfo &TLI)
610       : DFS(DFS), F(F), IsNativeABI(IsNativeABI),
611         IsForceZeroLabels(IsForceZeroLabels), TLI(TLI) {
612     DT.recalculate(*F);
613   }
614 
615   /// Computes the shadow address for a given function argument.
616   ///
617   /// Shadow = ArgTLS+ArgOffset.
618   Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB);
619 
620   /// Computes the shadow address for a return value.
621   Value *getRetvalTLS(Type *T, IRBuilder<> &IRB);
622 
623   /// Computes the origin address for a given function argument.
624   ///
625   /// Origin = ArgOriginTLS[ArgNo].
626   Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB);
627 
628   /// Computes the origin address for a return value.
629   Value *getRetvalOriginTLS();
630 
631   Value *getOrigin(Value *V);
632   void setOrigin(Instruction *I, Value *Origin);
633   /// Generates IR to compute the origin of the last operand with a taint label.
634   Value *combineOperandOrigins(Instruction *Inst);
635   /// Before the instruction Pos, generates IR to compute the last origin with a
636   /// taint label. Labels and origins are from vectors Shadows and Origins
637   /// correspondingly. The generated IR is like
638   ///   Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0
639   /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be
640   /// zeros with other bitwidths.
641   Value *combineOrigins(const std::vector<Value *> &Shadows,
642                         const std::vector<Value *> &Origins, Instruction *Pos,
643                         ConstantInt *Zero = nullptr);
644 
645   Value *getShadow(Value *V);
646   void setShadow(Instruction *I, Value *Shadow);
647   /// Generates IR to compute the union of the two given shadows, inserting it
648   /// before Pos. The combined value is with primitive type.
649   Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
650   /// Combines the shadow values of V1 and V2, then converts the combined value
651   /// with primitive type into a shadow value with the original type T.
652   Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2,
653                                    Instruction *Pos);
654   Value *combineOperandShadows(Instruction *Inst);
655 
656   /// Generates IR to load shadow and origin corresponding to bytes [\p
657   /// Addr, \p Addr + \p Size), where addr has alignment \p
658   /// InstAlignment, and take the union of each of those shadows. The returned
659   /// shadow always has primitive type.
660   ///
661   /// When tracking loads is enabled, the returned origin is a chain at the
662   /// current stack if the returned shadow is tainted.
663   std::pair<Value *, Value *> loadShadowOrigin(Value *Addr, uint64_t Size,
664                                                Align InstAlignment,
665                                                Instruction *Pos);
666 
667   void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size,
668                                   Align InstAlignment, Value *PrimitiveShadow,
669                                   Value *Origin, Instruction *Pos);
670   /// Applies PrimitiveShadow to all primitive subtypes of T, returning
671   /// the expanded shadow value.
672   ///
673   /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...}
674   /// EFP([n x T], PS) = [n x EFP(T,PS)]
675   /// EFP(other types, PS) = PS
676   Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow,
677                                    Instruction *Pos);
678   /// Collapses Shadow into a single primitive shadow value, unioning all
679   /// primitive shadow values in the process. Returns the final primitive
680   /// shadow value.
681   ///
682   /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...)
683   /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...)
684   /// CTP(other types, PS) = PS
685   Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos);
686 
687   void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign,
688                                 Instruction *Pos);
689 
690   Align getShadowAlign(Align InstAlignment);
691 
692   // If ClConditionalCallbacks is enabled, insert a callback after a given
693   // branch instruction using the given conditional expression.
694   void addConditionalCallbacksIfEnabled(Instruction &I, Value *Condition);
695 
696   // If ClReachesFunctionCallbacks is enabled, insert a callback for each
697   // argument and load instruction.
698   void addReachesFunctionCallbacksIfEnabled(IRBuilder<> &IRB, Instruction &I,
699                                             Value *Data);
700 
701   bool isLookupTableConstant(Value *P);
702 
703 private:
704   /// Collapses the shadow with aggregate type into a single primitive shadow
705   /// value.
706   template <class AggregateType>
707   Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow,
708                                  IRBuilder<> &IRB);
709 
710   Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB);
711 
712   /// Returns the shadow value of an argument A.
713   Value *getShadowForTLSArgument(Argument *A);
714 
715   /// The fast path of loading shadows.
716   std::pair<Value *, Value *>
717   loadShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size,
718                  Align ShadowAlign, Align OriginAlign, Value *FirstOrigin,
719                  Instruction *Pos);
720 
721   Align getOriginAlign(Align InstAlignment);
722 
723   /// Because 4 contiguous bytes share one 4-byte origin, the most accurate load
724   /// is __dfsan_load_label_and_origin. This function returns the union of all
725   /// labels and the origin of the first taint label. However this is an
726   /// additional call with many instructions. To ensure common cases are fast,
727   /// checks if it is possible to load labels and origins without using the
728   /// callback function.
729   ///
730   /// When enabling tracking load instructions, we always use
731   /// __dfsan_load_label_and_origin to reduce code size.
732   bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment);
733 
734   /// Returns a chain at the current stack with previous origin V.
735   Value *updateOrigin(Value *V, IRBuilder<> &IRB);
736 
737   /// Returns a chain at the current stack with previous origin V if Shadow is
738   /// tainted.
739   Value *updateOriginIfTainted(Value *Shadow, Value *Origin, IRBuilder<> &IRB);
740 
741   /// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns
742   /// Origin otherwise.
743   Value *originToIntptr(IRBuilder<> &IRB, Value *Origin);
744 
745   /// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr +
746   /// Size).
747   void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr,
748                    uint64_t StoreOriginSize, Align Alignment);
749 
750   /// Stores Origin in terms of its Shadow value.
751   /// * Do not write origins for zero shadows because we do not trace origins
752   ///   for untainted sinks.
753   /// * Use __dfsan_maybe_store_origin if there are too many origin store
754   ///   instrumentations.
755   void storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, Value *Shadow,
756                    Value *Origin, Value *StoreOriginAddr, Align InstAlignment);
757 
758   /// Convert a scalar value to an i1 by comparing with 0.
759   Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = "");
760 
761   bool shouldInstrumentWithCall();
762 
763   /// Generates IR to load shadow and origin corresponding to bytes [\p
764   /// Addr, \p Addr + \p Size), where addr has alignment \p
765   /// InstAlignment, and take the union of each of those shadows. The returned
766   /// shadow always has primitive type.
767   std::pair<Value *, Value *>
768   loadShadowOriginSansLoadTracking(Value *Addr, uint64_t Size,
769                                    Align InstAlignment, Instruction *Pos);
770   int NumOriginStores = 0;
771 };
772 
773 class DFSanVisitor : public InstVisitor<DFSanVisitor> {
774 public:
775   DFSanFunction &DFSF;
776 
777   DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
778 
779   const DataLayout &getDataLayout() const {
780     return DFSF.F->getParent()->getDataLayout();
781   }
782 
783   // Combines shadow values and origins for all of I's operands.
784   void visitInstOperands(Instruction &I);
785 
786   void visitUnaryOperator(UnaryOperator &UO);
787   void visitBinaryOperator(BinaryOperator &BO);
788   void visitBitCastInst(BitCastInst &BCI);
789   void visitCastInst(CastInst &CI);
790   void visitCmpInst(CmpInst &CI);
791   void visitLandingPadInst(LandingPadInst &LPI);
792   void visitGetElementPtrInst(GetElementPtrInst &GEPI);
793   void visitLoadInst(LoadInst &LI);
794   void visitStoreInst(StoreInst &SI);
795   void visitAtomicRMWInst(AtomicRMWInst &I);
796   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I);
797   void visitReturnInst(ReturnInst &RI);
798   void visitLibAtomicLoad(CallBase &CB);
799   void visitLibAtomicStore(CallBase &CB);
800   void visitLibAtomicExchange(CallBase &CB);
801   void visitLibAtomicCompareExchange(CallBase &CB);
802   void visitCallBase(CallBase &CB);
803   void visitPHINode(PHINode &PN);
804   void visitExtractElementInst(ExtractElementInst &I);
805   void visitInsertElementInst(InsertElementInst &I);
806   void visitShuffleVectorInst(ShuffleVectorInst &I);
807   void visitExtractValueInst(ExtractValueInst &I);
808   void visitInsertValueInst(InsertValueInst &I);
809   void visitAllocaInst(AllocaInst &I);
810   void visitSelectInst(SelectInst &I);
811   void visitMemSetInst(MemSetInst &I);
812   void visitMemTransferInst(MemTransferInst &I);
813   void visitBranchInst(BranchInst &BR);
814   void visitSwitchInst(SwitchInst &SW);
815 
816 private:
817   void visitCASOrRMW(Align InstAlignment, Instruction &I);
818 
819   // Returns false when this is an invoke of a custom function.
820   bool visitWrappedCallBase(Function &F, CallBase &CB);
821 
822   // Combines origins for all of I's operands.
823   void visitInstOperandOrigins(Instruction &I);
824 
825   void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args,
826                           IRBuilder<> &IRB);
827 
828   void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args,
829                           IRBuilder<> &IRB);
830 
831   Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB);
832   Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB);
833 };
834 
835 bool LibAtomicFunction(const Function &F) {
836   // This is a bit of a hack because TargetLibraryInfo is a function pass.
837   // The DFSan pass would need to be refactored to be function pass oriented
838   // (like MSan is) in order to fit together nicely with TargetLibraryInfo.
839   // We need this check to prevent them from being instrumented, or wrapped.
840   // Match on name and number of arguments.
841   if (!F.hasName() || F.isVarArg())
842     return false;
843   switch (F.arg_size()) {
844   case 4:
845     return F.getName() == "__atomic_load" || F.getName() == "__atomic_store";
846   case 5:
847     return F.getName() == "__atomic_exchange";
848   case 6:
849     return F.getName() == "__atomic_compare_exchange";
850   default:
851     return false;
852   }
853 }
854 
855 } // end anonymous namespace
856 
857 DataFlowSanitizer::DataFlowSanitizer(
858     const std::vector<std::string> &ABIListFiles) {
859   std::vector<std::string> AllABIListFiles(std::move(ABIListFiles));
860   llvm::append_range(AllABIListFiles, ClABIListFiles);
861   // FIXME: should we propagate vfs::FileSystem to this constructor?
862   ABIList.set(
863       SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem()));
864 
865   for (StringRef v : ClCombineTaintLookupTables)
866     CombineTaintLookupTableNames.insert(v);
867 }
868 
869 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
870   SmallVector<Type *, 4> ArgTypes;
871 
872   // Some parameters of the custom function being constructed are
873   // parameters of T.  Record the mapping from parameters of T to
874   // parameters of the custom function, so that parameter attributes
875   // at call sites can be updated.
876   std::vector<unsigned> ArgumentIndexMapping;
877   for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) {
878     Type *ParamType = T->getParamType(I);
879     ArgumentIndexMapping.push_back(ArgTypes.size());
880     ArgTypes.push_back(ParamType);
881   }
882   for (unsigned I = 0, E = T->getNumParams(); I != E; ++I)
883     ArgTypes.push_back(PrimitiveShadowTy);
884   if (T->isVarArg())
885     ArgTypes.push_back(PrimitiveShadowPtrTy);
886   Type *RetType = T->getReturnType();
887   if (!RetType->isVoidTy())
888     ArgTypes.push_back(PrimitiveShadowPtrTy);
889 
890   if (shouldTrackOrigins()) {
891     for (unsigned I = 0, E = T->getNumParams(); I != E; ++I)
892       ArgTypes.push_back(OriginTy);
893     if (T->isVarArg())
894       ArgTypes.push_back(OriginPtrTy);
895     if (!RetType->isVoidTy())
896       ArgTypes.push_back(OriginPtrTy);
897   }
898 
899   return TransformedFunction(
900       T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()),
901       ArgumentIndexMapping);
902 }
903 
904 bool DataFlowSanitizer::isZeroShadow(Value *V) {
905   Type *T = V->getType();
906   if (!isa<ArrayType>(T) && !isa<StructType>(T)) {
907     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
908       return CI->isZero();
909     return false;
910   }
911 
912   return isa<ConstantAggregateZero>(V);
913 }
914 
915 bool DataFlowSanitizer::hasLoadSizeForFastPath(uint64_t Size) {
916   uint64_t ShadowSize = Size * ShadowWidthBytes;
917   return ShadowSize % 8 == 0 || ShadowSize == 4;
918 }
919 
920 bool DataFlowSanitizer::shouldTrackOrigins() {
921   static const bool ShouldTrackOrigins = ClTrackOrigins;
922   return ShouldTrackOrigins;
923 }
924 
925 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) {
926   if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy))
927     return ZeroPrimitiveShadow;
928   Type *ShadowTy = getShadowTy(OrigTy);
929   return ConstantAggregateZero::get(ShadowTy);
930 }
931 
932 Constant *DataFlowSanitizer::getZeroShadow(Value *V) {
933   return getZeroShadow(V->getType());
934 }
935 
936 static Value *expandFromPrimitiveShadowRecursive(
937     Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy,
938     Value *PrimitiveShadow, IRBuilder<> &IRB) {
939   if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy))
940     return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices);
941 
942   if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) {
943     for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) {
944       Indices.push_back(Idx);
945       Shadow = expandFromPrimitiveShadowRecursive(
946           Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB);
947       Indices.pop_back();
948     }
949     return Shadow;
950   }
951 
952   if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) {
953     for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) {
954       Indices.push_back(Idx);
955       Shadow = expandFromPrimitiveShadowRecursive(
956           Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB);
957       Indices.pop_back();
958     }
959     return Shadow;
960   }
961   llvm_unreachable("Unexpected shadow type");
962 }
963 
964 bool DFSanFunction::shouldInstrumentWithCall() {
965   return ClInstrumentWithCallThreshold >= 0 &&
966          NumOriginStores >= ClInstrumentWithCallThreshold;
967 }
968 
969 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow,
970                                                 Instruction *Pos) {
971   Type *ShadowTy = DFS.getShadowTy(T);
972 
973   if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
974     return PrimitiveShadow;
975 
976   if (DFS.isZeroShadow(PrimitiveShadow))
977     return DFS.getZeroShadow(ShadowTy);
978 
979   IRBuilder<> IRB(Pos);
980   SmallVector<unsigned, 4> Indices;
981   Value *Shadow = UndefValue::get(ShadowTy);
982   Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy,
983                                               PrimitiveShadow, IRB);
984 
985   // Caches the primitive shadow value that built the shadow value.
986   CachedCollapsedShadows[Shadow] = PrimitiveShadow;
987   return Shadow;
988 }
989 
990 template <class AggregateType>
991 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow,
992                                               IRBuilder<> &IRB) {
993   if (!AT->getNumElements())
994     return DFS.ZeroPrimitiveShadow;
995 
996   Value *FirstItem = IRB.CreateExtractValue(Shadow, 0);
997   Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB);
998 
999   for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) {
1000     Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
1001     Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB);
1002     Aggregator = IRB.CreateOr(Aggregator, ShadowInner);
1003   }
1004   return Aggregator;
1005 }
1006 
1007 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow,
1008                                                 IRBuilder<> &IRB) {
1009   Type *ShadowTy = Shadow->getType();
1010   if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
1011     return Shadow;
1012   if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy))
1013     return collapseAggregateShadow<>(AT, Shadow, IRB);
1014   if (StructType *ST = dyn_cast<StructType>(ShadowTy))
1015     return collapseAggregateShadow<>(ST, Shadow, IRB);
1016   llvm_unreachable("Unexpected shadow type");
1017 }
1018 
1019 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow,
1020                                                 Instruction *Pos) {
1021   Type *ShadowTy = Shadow->getType();
1022   if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
1023     return Shadow;
1024 
1025   // Checks if the cached collapsed shadow value dominates Pos.
1026   Value *&CS = CachedCollapsedShadows[Shadow];
1027   if (CS && DT.dominates(CS, Pos))
1028     return CS;
1029 
1030   IRBuilder<> IRB(Pos);
1031   Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB);
1032   // Caches the converted primitive shadow value.
1033   CS = PrimitiveShadow;
1034   return PrimitiveShadow;
1035 }
1036 
1037 void DFSanFunction::addConditionalCallbacksIfEnabled(Instruction &I,
1038                                                      Value *Condition) {
1039   if (!ClConditionalCallbacks) {
1040     return;
1041   }
1042   IRBuilder<> IRB(&I);
1043   Value *CondShadow = getShadow(Condition);
1044   CallInst *CI;
1045   if (DFS.shouldTrackOrigins()) {
1046     Value *CondOrigin = getOrigin(Condition);
1047     CI = IRB.CreateCall(DFS.DFSanConditionalCallbackOriginFn,
1048                         {CondShadow, CondOrigin});
1049   } else {
1050     CI = IRB.CreateCall(DFS.DFSanConditionalCallbackFn, {CondShadow});
1051   }
1052   CI->addParamAttr(0, Attribute::ZExt);
1053 }
1054 
1055 void DFSanFunction::addReachesFunctionCallbacksIfEnabled(IRBuilder<> &IRB,
1056                                                          Instruction &I,
1057                                                          Value *Data) {
1058   if (!ClReachesFunctionCallbacks) {
1059     return;
1060   }
1061   const DebugLoc &dbgloc = I.getDebugLoc();
1062   Value *DataShadow = collapseToPrimitiveShadow(getShadow(Data), IRB);
1063   ConstantInt *CILine;
1064   llvm::Value *FilePathPtr;
1065 
1066   if (dbgloc.get() == nullptr) {
1067     CILine = llvm::ConstantInt::get(I.getContext(), llvm::APInt(32, 0));
1068     FilePathPtr = IRB.CreateGlobalStringPtr(
1069         I.getFunction()->getParent()->getSourceFileName());
1070   } else {
1071     CILine = llvm::ConstantInt::get(I.getContext(),
1072                                     llvm::APInt(32, dbgloc.getLine()));
1073     FilePathPtr =
1074         IRB.CreateGlobalStringPtr(dbgloc->getFilename());
1075   }
1076 
1077   llvm::Value *FunctionNamePtr =
1078       IRB.CreateGlobalStringPtr(I.getFunction()->getName());
1079 
1080   CallInst *CB;
1081   std::vector<Value *> args;
1082 
1083   if (DFS.shouldTrackOrigins()) {
1084     Value *DataOrigin = getOrigin(Data);
1085     args = { DataShadow, DataOrigin, FilePathPtr, CILine, FunctionNamePtr };
1086     CB = IRB.CreateCall(DFS.DFSanReachesFunctionCallbackOriginFn, args);
1087   } else {
1088     args = { DataShadow, FilePathPtr, CILine, FunctionNamePtr };
1089     CB = IRB.CreateCall(DFS.DFSanReachesFunctionCallbackFn, args);
1090   }
1091   CB->addParamAttr(0, Attribute::ZExt);
1092   CB->setDebugLoc(dbgloc);
1093 }
1094 
1095 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) {
1096   if (!OrigTy->isSized())
1097     return PrimitiveShadowTy;
1098   if (isa<IntegerType>(OrigTy))
1099     return PrimitiveShadowTy;
1100   if (isa<VectorType>(OrigTy))
1101     return PrimitiveShadowTy;
1102   if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy))
1103     return ArrayType::get(getShadowTy(AT->getElementType()),
1104                           AT->getNumElements());
1105   if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
1106     SmallVector<Type *, 4> Elements;
1107     for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I)
1108       Elements.push_back(getShadowTy(ST->getElementType(I)));
1109     return StructType::get(*Ctx, Elements);
1110   }
1111   return PrimitiveShadowTy;
1112 }
1113 
1114 Type *DataFlowSanitizer::getShadowTy(Value *V) {
1115   return getShadowTy(V->getType());
1116 }
1117 
1118 bool DataFlowSanitizer::initializeModule(Module &M) {
1119   Triple TargetTriple(M.getTargetTriple());
1120   const DataLayout &DL = M.getDataLayout();
1121 
1122   if (TargetTriple.getOS() != Triple::Linux)
1123     report_fatal_error("unsupported operating system");
1124   switch (TargetTriple.getArch()) {
1125   case Triple::aarch64:
1126     MapParams = &Linux_AArch64_MemoryMapParams;
1127     break;
1128   case Triple::x86_64:
1129     MapParams = &Linux_X86_64_MemoryMapParams;
1130     break;
1131   default:
1132     report_fatal_error("unsupported architecture");
1133   }
1134 
1135   Mod = &M;
1136   Ctx = &M.getContext();
1137   Int8Ptr = Type::getInt8PtrTy(*Ctx);
1138   OriginTy = IntegerType::get(*Ctx, OriginWidthBits);
1139   OriginPtrTy = PointerType::getUnqual(OriginTy);
1140   PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits);
1141   PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy);
1142   IntptrTy = DL.getIntPtrType(*Ctx);
1143   ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0);
1144   ZeroOrigin = ConstantInt::getSigned(OriginTy, 0);
1145 
1146   Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy};
1147   DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs,
1148                                          /*isVarArg=*/false);
1149   Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy};
1150   DFSanLoadLabelAndOriginFnTy =
1151       FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs,
1152                         /*isVarArg=*/false);
1153   DFSanUnimplementedFnTy = FunctionType::get(
1154       Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
1155   Type *DFSanWrapperExternWeakNullArgs[2] = {Int8Ptr, Int8Ptr};
1156   DFSanWrapperExternWeakNullFnTy =
1157       FunctionType::get(Type::getVoidTy(*Ctx), DFSanWrapperExternWeakNullArgs,
1158                         /*isVarArg=*/false);
1159   Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy,
1160                                 Type::getInt8PtrTy(*Ctx), IntptrTy};
1161   DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
1162                                         DFSanSetLabelArgs, /*isVarArg=*/false);
1163   DFSanNonzeroLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), std::nullopt,
1164                                             /*isVarArg=*/false);
1165   DFSanVarargWrapperFnTy = FunctionType::get(
1166       Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
1167   DFSanConditionalCallbackFnTy =
1168       FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy,
1169                         /*isVarArg=*/false);
1170   Type *DFSanConditionalCallbackOriginArgs[2] = {PrimitiveShadowTy, OriginTy};
1171   DFSanConditionalCallbackOriginFnTy = FunctionType::get(
1172       Type::getVoidTy(*Ctx), DFSanConditionalCallbackOriginArgs,
1173       /*isVarArg=*/false);
1174   Type *DFSanReachesFunctionCallbackArgs[4] = {PrimitiveShadowTy, Int8Ptr,
1175                                                OriginTy, Int8Ptr};
1176   DFSanReachesFunctionCallbackFnTy =
1177       FunctionType::get(Type::getVoidTy(*Ctx), DFSanReachesFunctionCallbackArgs,
1178                         /*isVarArg=*/false);
1179   Type *DFSanReachesFunctionCallbackOriginArgs[5] = {
1180       PrimitiveShadowTy, OriginTy, Int8Ptr, OriginTy, Int8Ptr};
1181   DFSanReachesFunctionCallbackOriginFnTy = FunctionType::get(
1182       Type::getVoidTy(*Ctx), DFSanReachesFunctionCallbackOriginArgs,
1183       /*isVarArg=*/false);
1184   DFSanCmpCallbackFnTy =
1185       FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy,
1186                         /*isVarArg=*/false);
1187   DFSanChainOriginFnTy =
1188       FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false);
1189   Type *DFSanChainOriginIfTaintedArgs[2] = {PrimitiveShadowTy, OriginTy};
1190   DFSanChainOriginIfTaintedFnTy = FunctionType::get(
1191       OriginTy, DFSanChainOriginIfTaintedArgs, /*isVarArg=*/false);
1192   Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits),
1193                                         Int8Ptr, IntptrTy, OriginTy};
1194   DFSanMaybeStoreOriginFnTy = FunctionType::get(
1195       Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false);
1196   Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy};
1197   DFSanMemOriginTransferFnTy = FunctionType::get(
1198       Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false);
1199   Type *DFSanMemShadowOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy};
1200   DFSanMemShadowOriginTransferFnTy =
1201       FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemShadowOriginTransferArgs,
1202                         /*isVarArg=*/false);
1203   Type *DFSanMemShadowOriginConditionalExchangeArgs[5] = {
1204       IntegerType::get(*Ctx, 8), Int8Ptr, Int8Ptr, Int8Ptr, IntptrTy};
1205   DFSanMemShadowOriginConditionalExchangeFnTy = FunctionType::get(
1206       Type::getVoidTy(*Ctx), DFSanMemShadowOriginConditionalExchangeArgs,
1207       /*isVarArg=*/false);
1208   Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr};
1209   DFSanLoadStoreCallbackFnTy =
1210       FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs,
1211                         /*isVarArg=*/false);
1212   Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy};
1213   DFSanMemTransferCallbackFnTy =
1214       FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs,
1215                         /*isVarArg=*/false);
1216 
1217   ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
1218   OriginStoreWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
1219   return true;
1220 }
1221 
1222 bool DataFlowSanitizer::isInstrumented(const Function *F) {
1223   return !ABIList.isIn(*F, "uninstrumented");
1224 }
1225 
1226 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
1227   return !ABIList.isIn(*GA, "uninstrumented");
1228 }
1229 
1230 bool DataFlowSanitizer::isForceZeroLabels(const Function *F) {
1231   return ABIList.isIn(*F, "force_zero_labels");
1232 }
1233 
1234 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
1235   if (ABIList.isIn(*F, "functional"))
1236     return WK_Functional;
1237   if (ABIList.isIn(*F, "discard"))
1238     return WK_Discard;
1239   if (ABIList.isIn(*F, "custom"))
1240     return WK_Custom;
1241 
1242   return WK_Warning;
1243 }
1244 
1245 void DataFlowSanitizer::addGlobalNameSuffix(GlobalValue *GV) {
1246   std::string GVName = std::string(GV->getName()), Suffix = ".dfsan";
1247   GV->setName(GVName + Suffix);
1248 
1249   // Try to change the name of the function in module inline asm.  We only do
1250   // this for specific asm directives, currently only ".symver", to try to avoid
1251   // corrupting asm which happens to contain the symbol name as a substring.
1252   // Note that the substitution for .symver assumes that the versioned symbol
1253   // also has an instrumented name.
1254   std::string Asm = GV->getParent()->getModuleInlineAsm();
1255   std::string SearchStr = ".symver " + GVName + ",";
1256   size_t Pos = Asm.find(SearchStr);
1257   if (Pos != std::string::npos) {
1258     Asm.replace(Pos, SearchStr.size(), ".symver " + GVName + Suffix + ",");
1259     Pos = Asm.find("@");
1260 
1261     if (Pos == std::string::npos)
1262       report_fatal_error(Twine("unsupported .symver: ", Asm));
1263 
1264     Asm.replace(Pos, 1, Suffix + "@");
1265     GV->getParent()->setModuleInlineAsm(Asm);
1266   }
1267 }
1268 
1269 void DataFlowSanitizer::buildExternWeakCheckIfNeeded(IRBuilder<> &IRB,
1270                                                      Function *F) {
1271   // If the function we are wrapping was ExternWeak, it may be null.
1272   // The original code before calling this wrapper may have checked for null,
1273   // but replacing with a known-to-not-be-null wrapper can break this check.
1274   // When replacing uses of the extern weak function with the wrapper we try
1275   // to avoid replacing uses in conditionals, but this is not perfect.
1276   // In the case where we fail, and accidentally optimize out a null check
1277   // for a extern weak function, add a check here to help identify the issue.
1278   if (GlobalValue::isExternalWeakLinkage(F->getLinkage())) {
1279     std::vector<Value *> Args;
1280     Args.push_back(IRB.CreatePointerCast(F, IRB.getInt8PtrTy()));
1281     Args.push_back(IRB.CreateGlobalStringPtr(F->getName()));
1282     IRB.CreateCall(DFSanWrapperExternWeakNullFn, Args);
1283   }
1284 }
1285 
1286 Function *
1287 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
1288                                         GlobalValue::LinkageTypes NewFLink,
1289                                         FunctionType *NewFT) {
1290   FunctionType *FT = F->getFunctionType();
1291   Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(),
1292                                     NewFName, F->getParent());
1293   NewF->copyAttributesFrom(F);
1294   NewF->removeRetAttrs(
1295       AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
1296 
1297   BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
1298   if (F->isVarArg()) {
1299     NewF->removeFnAttr("split-stack");
1300     CallInst::Create(DFSanVarargWrapperFn,
1301                      IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "",
1302                      BB);
1303     new UnreachableInst(*Ctx, BB);
1304   } else {
1305     auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin());
1306     std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams());
1307 
1308     CallInst *CI = CallInst::Create(F, Args, "", BB);
1309     if (FT->getReturnType()->isVoidTy())
1310       ReturnInst::Create(*Ctx, BB);
1311     else
1312       ReturnInst::Create(*Ctx, CI, BB);
1313   }
1314 
1315   return NewF;
1316 }
1317 
1318 // Initialize DataFlowSanitizer runtime functions and declare them in the module
1319 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) {
1320   LLVMContext &C = M.getContext();
1321   {
1322     AttributeList AL;
1323     AL = AL.addFnAttribute(C, Attribute::NoUnwind);
1324     AL = AL.addFnAttribute(
1325         C, Attribute::getWithMemoryEffects(C, MemoryEffects::readOnly()));
1326     AL = AL.addRetAttribute(C, Attribute::ZExt);
1327     DFSanUnionLoadFn =
1328         Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL);
1329   }
1330   {
1331     AttributeList AL;
1332     AL = AL.addFnAttribute(C, Attribute::NoUnwind);
1333     AL = AL.addFnAttribute(
1334         C, Attribute::getWithMemoryEffects(C, MemoryEffects::readOnly()));
1335     AL = AL.addRetAttribute(C, Attribute::ZExt);
1336     DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction(
1337         "__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL);
1338   }
1339   DFSanUnimplementedFn =
1340       Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
1341   DFSanWrapperExternWeakNullFn = Mod->getOrInsertFunction(
1342       "__dfsan_wrapper_extern_weak_null", DFSanWrapperExternWeakNullFnTy);
1343   {
1344     AttributeList AL;
1345     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1346     AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
1347     DFSanSetLabelFn =
1348         Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL);
1349   }
1350   DFSanNonzeroLabelFn =
1351       Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
1352   DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper",
1353                                                   DFSanVarargWrapperFnTy);
1354   {
1355     AttributeList AL;
1356     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1357     AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt);
1358     DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin",
1359                                                   DFSanChainOriginFnTy, AL);
1360   }
1361   {
1362     AttributeList AL;
1363     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1364     AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
1365     AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt);
1366     DFSanChainOriginIfTaintedFn = Mod->getOrInsertFunction(
1367         "__dfsan_chain_origin_if_tainted", DFSanChainOriginIfTaintedFnTy, AL);
1368   }
1369   DFSanMemOriginTransferFn = Mod->getOrInsertFunction(
1370       "__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy);
1371 
1372   DFSanMemShadowOriginTransferFn = Mod->getOrInsertFunction(
1373       "__dfsan_mem_shadow_origin_transfer", DFSanMemShadowOriginTransferFnTy);
1374 
1375   DFSanMemShadowOriginConditionalExchangeFn =
1376       Mod->getOrInsertFunction("__dfsan_mem_shadow_origin_conditional_exchange",
1377                                DFSanMemShadowOriginConditionalExchangeFnTy);
1378 
1379   {
1380     AttributeList AL;
1381     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1382     AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt);
1383     DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction(
1384         "__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL);
1385   }
1386 
1387   DFSanRuntimeFunctions.insert(
1388       DFSanUnionLoadFn.getCallee()->stripPointerCasts());
1389   DFSanRuntimeFunctions.insert(
1390       DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts());
1391   DFSanRuntimeFunctions.insert(
1392       DFSanUnimplementedFn.getCallee()->stripPointerCasts());
1393   DFSanRuntimeFunctions.insert(
1394       DFSanWrapperExternWeakNullFn.getCallee()->stripPointerCasts());
1395   DFSanRuntimeFunctions.insert(
1396       DFSanSetLabelFn.getCallee()->stripPointerCasts());
1397   DFSanRuntimeFunctions.insert(
1398       DFSanNonzeroLabelFn.getCallee()->stripPointerCasts());
1399   DFSanRuntimeFunctions.insert(
1400       DFSanVarargWrapperFn.getCallee()->stripPointerCasts());
1401   DFSanRuntimeFunctions.insert(
1402       DFSanLoadCallbackFn.getCallee()->stripPointerCasts());
1403   DFSanRuntimeFunctions.insert(
1404       DFSanStoreCallbackFn.getCallee()->stripPointerCasts());
1405   DFSanRuntimeFunctions.insert(
1406       DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts());
1407   DFSanRuntimeFunctions.insert(
1408       DFSanConditionalCallbackFn.getCallee()->stripPointerCasts());
1409   DFSanRuntimeFunctions.insert(
1410       DFSanConditionalCallbackOriginFn.getCallee()->stripPointerCasts());
1411   DFSanRuntimeFunctions.insert(
1412       DFSanReachesFunctionCallbackFn.getCallee()->stripPointerCasts());
1413   DFSanRuntimeFunctions.insert(
1414       DFSanReachesFunctionCallbackOriginFn.getCallee()->stripPointerCasts());
1415   DFSanRuntimeFunctions.insert(
1416       DFSanCmpCallbackFn.getCallee()->stripPointerCasts());
1417   DFSanRuntimeFunctions.insert(
1418       DFSanChainOriginFn.getCallee()->stripPointerCasts());
1419   DFSanRuntimeFunctions.insert(
1420       DFSanChainOriginIfTaintedFn.getCallee()->stripPointerCasts());
1421   DFSanRuntimeFunctions.insert(
1422       DFSanMemOriginTransferFn.getCallee()->stripPointerCasts());
1423   DFSanRuntimeFunctions.insert(
1424       DFSanMemShadowOriginTransferFn.getCallee()->stripPointerCasts());
1425   DFSanRuntimeFunctions.insert(
1426       DFSanMemShadowOriginConditionalExchangeFn.getCallee()
1427           ->stripPointerCasts());
1428   DFSanRuntimeFunctions.insert(
1429       DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts());
1430 }
1431 
1432 // Initializes event callback functions and declare them in the module
1433 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) {
1434   {
1435     AttributeList AL;
1436     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1437     DFSanLoadCallbackFn = Mod->getOrInsertFunction(
1438         "__dfsan_load_callback", DFSanLoadStoreCallbackFnTy, AL);
1439   }
1440   {
1441     AttributeList AL;
1442     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1443     DFSanStoreCallbackFn = Mod->getOrInsertFunction(
1444         "__dfsan_store_callback", DFSanLoadStoreCallbackFnTy, AL);
1445   }
1446   DFSanMemTransferCallbackFn = Mod->getOrInsertFunction(
1447       "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy);
1448   {
1449     AttributeList AL;
1450     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1451     DFSanCmpCallbackFn = Mod->getOrInsertFunction("__dfsan_cmp_callback",
1452                                                   DFSanCmpCallbackFnTy, AL);
1453   }
1454   {
1455     AttributeList AL;
1456     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1457     DFSanConditionalCallbackFn = Mod->getOrInsertFunction(
1458         "__dfsan_conditional_callback", DFSanConditionalCallbackFnTy, AL);
1459   }
1460   {
1461     AttributeList AL;
1462     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1463     DFSanConditionalCallbackOriginFn =
1464         Mod->getOrInsertFunction("__dfsan_conditional_callback_origin",
1465                                  DFSanConditionalCallbackOriginFnTy, AL);
1466   }
1467   {
1468     AttributeList AL;
1469     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1470     DFSanReachesFunctionCallbackFn =
1471         Mod->getOrInsertFunction("__dfsan_reaches_function_callback",
1472                                  DFSanReachesFunctionCallbackFnTy, AL);
1473   }
1474   {
1475     AttributeList AL;
1476     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1477     DFSanReachesFunctionCallbackOriginFn =
1478         Mod->getOrInsertFunction("__dfsan_reaches_function_callback_origin",
1479                                  DFSanReachesFunctionCallbackOriginFnTy, AL);
1480   }
1481 }
1482 
1483 bool DataFlowSanitizer::runImpl(
1484     Module &M, llvm::function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1485   initializeModule(M);
1486 
1487   if (ABIList.isIn(M, "skip"))
1488     return false;
1489 
1490   const unsigned InitialGlobalSize = M.global_size();
1491   const unsigned InitialModuleSize = M.size();
1492 
1493   bool Changed = false;
1494 
1495   auto GetOrInsertGlobal = [this, &Changed](StringRef Name,
1496                                             Type *Ty) -> Constant * {
1497     Constant *C = Mod->getOrInsertGlobal(Name, Ty);
1498     if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) {
1499       Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel;
1500       G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
1501     }
1502     return C;
1503   };
1504 
1505   // These globals must be kept in sync with the ones in dfsan.cpp.
1506   ArgTLS =
1507       GetOrInsertGlobal("__dfsan_arg_tls",
1508                         ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8));
1509   RetvalTLS = GetOrInsertGlobal(
1510       "__dfsan_retval_tls",
1511       ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8));
1512   ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS);
1513   ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy);
1514   RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy);
1515 
1516   (void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] {
1517     Changed = true;
1518     return new GlobalVariable(
1519         M, OriginTy, true, GlobalValue::WeakODRLinkage,
1520         ConstantInt::getSigned(OriginTy,
1521                                shouldTrackOrigins() ? ClTrackOrigins : 0),
1522         "__dfsan_track_origins");
1523   });
1524 
1525   initializeCallbackFunctions(M);
1526   initializeRuntimeFunctions(M);
1527 
1528   std::vector<Function *> FnsToInstrument;
1529   SmallPtrSet<Function *, 2> FnsWithNativeABI;
1530   SmallPtrSet<Function *, 2> FnsWithForceZeroLabel;
1531   SmallPtrSet<Constant *, 1> PersonalityFns;
1532   for (Function &F : M)
1533     if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F) &&
1534         !LibAtomicFunction(F)) {
1535       FnsToInstrument.push_back(&F);
1536       if (F.hasPersonalityFn())
1537         PersonalityFns.insert(F.getPersonalityFn()->stripPointerCasts());
1538     }
1539 
1540   if (ClIgnorePersonalityRoutine) {
1541     for (auto *C : PersonalityFns) {
1542       assert(isa<Function>(C) && "Personality routine is not a function!");
1543       Function *F = cast<Function>(C);
1544       if (!isInstrumented(F))
1545         llvm::erase_value(FnsToInstrument, F);
1546     }
1547   }
1548 
1549   // Give function aliases prefixes when necessary, and build wrappers where the
1550   // instrumentedness is inconsistent.
1551   for (GlobalAlias &GA : llvm::make_early_inc_range(M.aliases())) {
1552     // Don't stop on weak.  We assume people aren't playing games with the
1553     // instrumentedness of overridden weak aliases.
1554     auto *F = dyn_cast<Function>(GA.getAliaseeObject());
1555     if (!F)
1556       continue;
1557 
1558     bool GAInst = isInstrumented(&GA), FInst = isInstrumented(F);
1559     if (GAInst && FInst) {
1560       addGlobalNameSuffix(&GA);
1561     } else if (GAInst != FInst) {
1562       // Non-instrumented alias of an instrumented function, or vice versa.
1563       // Replace the alias with a native-ABI wrapper of the aliasee.  The pass
1564       // below will take care of instrumenting it.
1565       Function *NewF =
1566           buildWrapperFunction(F, "", GA.getLinkage(), F->getFunctionType());
1567       GA.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA.getType()));
1568       NewF->takeName(&GA);
1569       GA.eraseFromParent();
1570       FnsToInstrument.push_back(NewF);
1571     }
1572   }
1573 
1574   // TODO: This could be more precise.
1575   ReadOnlyNoneAttrs.addAttribute(Attribute::Memory);
1576 
1577   // First, change the ABI of every function in the module.  ABI-listed
1578   // functions keep their original ABI and get a wrapper function.
1579   for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(),
1580                                          FE = FnsToInstrument.end();
1581        FI != FE; ++FI) {
1582     Function &F = **FI;
1583     FunctionType *FT = F.getFunctionType();
1584 
1585     bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
1586                               FT->getReturnType()->isVoidTy());
1587 
1588     if (isInstrumented(&F)) {
1589       if (isForceZeroLabels(&F))
1590         FnsWithForceZeroLabel.insert(&F);
1591 
1592       // Instrumented functions get a '.dfsan' suffix.  This allows us to more
1593       // easily identify cases of mismatching ABIs. This naming scheme is
1594       // mangling-compatible (see Itanium ABI), using a vendor-specific suffix.
1595       addGlobalNameSuffix(&F);
1596     } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
1597       // Build a wrapper function for F.  The wrapper simply calls F, and is
1598       // added to FnsToInstrument so that any instrumentation according to its
1599       // WrapperKind is done in the second pass below.
1600 
1601       // If the function being wrapped has local linkage, then preserve the
1602       // function's linkage in the wrapper function.
1603       GlobalValue::LinkageTypes WrapperLinkage =
1604           F.hasLocalLinkage() ? F.getLinkage()
1605                               : GlobalValue::LinkOnceODRLinkage;
1606 
1607       Function *NewF = buildWrapperFunction(
1608           &F,
1609           (shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) +
1610               std::string(F.getName()),
1611           WrapperLinkage, FT);
1612       NewF->removeFnAttrs(ReadOnlyNoneAttrs);
1613 
1614       Value *WrappedFnCst =
1615           ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
1616 
1617       // Extern weak functions can sometimes be null at execution time.
1618       // Code will sometimes check if an extern weak function is null.
1619       // This could look something like:
1620       //   declare extern_weak i8 @my_func(i8)
1621       //   br i1 icmp ne (i8 (i8)* @my_func, i8 (i8)* null), label %use_my_func,
1622       //   label %avoid_my_func
1623       // The @"dfsw$my_func" wrapper is never null, so if we replace this use
1624       // in the comparison, the icmp will simplify to false and we have
1625       // accidentally optimized away a null check that is necessary.
1626       // This can lead to a crash when the null extern_weak my_func is called.
1627       //
1628       // To prevent (the most common pattern of) this problem,
1629       // do not replace uses in comparisons with the wrapper.
1630       // We definitely want to replace uses in call instructions.
1631       // Other uses (e.g. store the function address somewhere) might be
1632       // called or compared or both - this case may not be handled correctly.
1633       // We will default to replacing with wrapper in cases we are unsure.
1634       auto IsNotCmpUse = [](Use &U) -> bool {
1635         User *Usr = U.getUser();
1636         if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) {
1637           // This is the most common case for icmp ne null
1638           if (CE->getOpcode() == Instruction::ICmp) {
1639             return false;
1640           }
1641         }
1642         if (Instruction *I = dyn_cast<Instruction>(Usr)) {
1643           if (I->getOpcode() == Instruction::ICmp) {
1644             return false;
1645           }
1646         }
1647         return true;
1648       };
1649       F.replaceUsesWithIf(WrappedFnCst, IsNotCmpUse);
1650 
1651       UnwrappedFnMap[WrappedFnCst] = &F;
1652       *FI = NewF;
1653 
1654       if (!F.isDeclaration()) {
1655         // This function is probably defining an interposition of an
1656         // uninstrumented function and hence needs to keep the original ABI.
1657         // But any functions it may call need to use the instrumented ABI, so
1658         // we instrument it in a mode which preserves the original ABI.
1659         FnsWithNativeABI.insert(&F);
1660 
1661         // This code needs to rebuild the iterators, as they may be invalidated
1662         // by the push_back, taking care that the new range does not include
1663         // any functions added by this code.
1664         size_t N = FI - FnsToInstrument.begin(),
1665                Count = FE - FnsToInstrument.begin();
1666         FnsToInstrument.push_back(&F);
1667         FI = FnsToInstrument.begin() + N;
1668         FE = FnsToInstrument.begin() + Count;
1669       }
1670       // Hopefully, nobody will try to indirectly call a vararg
1671       // function... yet.
1672     } else if (FT->isVarArg()) {
1673       UnwrappedFnMap[&F] = &F;
1674       *FI = nullptr;
1675     }
1676   }
1677 
1678   for (Function *F : FnsToInstrument) {
1679     if (!F || F->isDeclaration())
1680       continue;
1681 
1682     removeUnreachableBlocks(*F);
1683 
1684     DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F),
1685                        FnsWithForceZeroLabel.count(F), GetTLI(*F));
1686 
1687     if (ClReachesFunctionCallbacks) {
1688       // Add callback for arguments reaching this function.
1689       for (auto &FArg : F->args()) {
1690         Instruction *Next = &F->getEntryBlock().front();
1691         Value *FArgShadow = DFSF.getShadow(&FArg);
1692         if (isZeroShadow(FArgShadow))
1693           continue;
1694         if (Instruction *FArgShadowInst = dyn_cast<Instruction>(FArgShadow)) {
1695           Next = FArgShadowInst->getNextNode();
1696         }
1697         if (shouldTrackOrigins()) {
1698           if (Instruction *Origin =
1699                   dyn_cast<Instruction>(DFSF.getOrigin(&FArg))) {
1700             // Ensure IRB insertion point is after loads for shadow and origin.
1701             Instruction *OriginNext = Origin->getNextNode();
1702             if (Next->comesBefore(OriginNext)) {
1703               Next = OriginNext;
1704             }
1705           }
1706         }
1707         IRBuilder<> IRB(Next);
1708         DFSF.addReachesFunctionCallbacksIfEnabled(IRB, *Next, &FArg);
1709       }
1710     }
1711 
1712     // DFSanVisitor may create new basic blocks, which confuses df_iterator.
1713     // Build a copy of the list before iterating over it.
1714     SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock()));
1715 
1716     for (BasicBlock *BB : BBList) {
1717       Instruction *Inst = &BB->front();
1718       while (true) {
1719         // DFSanVisitor may split the current basic block, changing the current
1720         // instruction's next pointer and moving the next instruction to the
1721         // tail block from which we should continue.
1722         Instruction *Next = Inst->getNextNode();
1723         // DFSanVisitor may delete Inst, so keep track of whether it was a
1724         // terminator.
1725         bool IsTerminator = Inst->isTerminator();
1726         if (!DFSF.SkipInsts.count(Inst))
1727           DFSanVisitor(DFSF).visit(Inst);
1728         if (IsTerminator)
1729           break;
1730         Inst = Next;
1731       }
1732     }
1733 
1734     // We will not necessarily be able to compute the shadow for every phi node
1735     // until we have visited every block.  Therefore, the code that handles phi
1736     // nodes adds them to the PHIFixups list so that they can be properly
1737     // handled here.
1738     for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) {
1739       for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N;
1740            ++Val) {
1741         P.ShadowPhi->setIncomingValue(
1742             Val, DFSF.getShadow(P.Phi->getIncomingValue(Val)));
1743         if (P.OriginPhi)
1744           P.OriginPhi->setIncomingValue(
1745               Val, DFSF.getOrigin(P.Phi->getIncomingValue(Val)));
1746       }
1747     }
1748 
1749     // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
1750     // places (i.e. instructions in basic blocks we haven't even begun visiting
1751     // yet).  To make our life easier, do this work in a pass after the main
1752     // instrumentation.
1753     if (ClDebugNonzeroLabels) {
1754       for (Value *V : DFSF.NonZeroChecks) {
1755         Instruction *Pos;
1756         if (Instruction *I = dyn_cast<Instruction>(V))
1757           Pos = I->getNextNode();
1758         else
1759           Pos = &DFSF.F->getEntryBlock().front();
1760         while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
1761           Pos = Pos->getNextNode();
1762         IRBuilder<> IRB(Pos);
1763         Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos);
1764         Value *Ne =
1765             IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow);
1766         BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
1767             Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
1768         IRBuilder<> ThenIRB(BI);
1769         ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {});
1770       }
1771     }
1772   }
1773 
1774   return Changed || !FnsToInstrument.empty() ||
1775          M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize;
1776 }
1777 
1778 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) {
1779   Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy);
1780   if (ArgOffset)
1781     Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset));
1782   return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0),
1783                             "_dfsarg");
1784 }
1785 
1786 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) {
1787   return IRB.CreatePointerCast(
1788       DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret");
1789 }
1790 
1791 Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; }
1792 
1793 Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) {
1794   return IRB.CreateConstGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, ArgNo,
1795                                 "_dfsarg_o");
1796 }
1797 
1798 Value *DFSanFunction::getOrigin(Value *V) {
1799   assert(DFS.shouldTrackOrigins());
1800   if (!isa<Argument>(V) && !isa<Instruction>(V))
1801     return DFS.ZeroOrigin;
1802   Value *&Origin = ValOriginMap[V];
1803   if (!Origin) {
1804     if (Argument *A = dyn_cast<Argument>(V)) {
1805       if (IsNativeABI)
1806         return DFS.ZeroOrigin;
1807       if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) {
1808         Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin();
1809         IRBuilder<> IRB(ArgOriginTLSPos);
1810         Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB);
1811         Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr);
1812       } else {
1813         // Overflow
1814         Origin = DFS.ZeroOrigin;
1815       }
1816     } else {
1817       Origin = DFS.ZeroOrigin;
1818     }
1819   }
1820   return Origin;
1821 }
1822 
1823 void DFSanFunction::setOrigin(Instruction *I, Value *Origin) {
1824   if (!DFS.shouldTrackOrigins())
1825     return;
1826   assert(!ValOriginMap.count(I));
1827   assert(Origin->getType() == DFS.OriginTy);
1828   ValOriginMap[I] = Origin;
1829 }
1830 
1831 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) {
1832   unsigned ArgOffset = 0;
1833   const DataLayout &DL = F->getParent()->getDataLayout();
1834   for (auto &FArg : F->args()) {
1835     if (!FArg.getType()->isSized()) {
1836       if (A == &FArg)
1837         break;
1838       continue;
1839     }
1840 
1841     unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg));
1842     if (A != &FArg) {
1843       ArgOffset += alignTo(Size, ShadowTLSAlignment);
1844       if (ArgOffset > ArgTLSSize)
1845         break; // ArgTLS overflows, uses a zero shadow.
1846       continue;
1847     }
1848 
1849     if (ArgOffset + Size > ArgTLSSize)
1850       break; // ArgTLS overflows, uses a zero shadow.
1851 
1852     Instruction *ArgTLSPos = &*F->getEntryBlock().begin();
1853     IRBuilder<> IRB(ArgTLSPos);
1854     Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB);
1855     return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr,
1856                                  ShadowTLSAlignment);
1857   }
1858 
1859   return DFS.getZeroShadow(A);
1860 }
1861 
1862 Value *DFSanFunction::getShadow(Value *V) {
1863   if (!isa<Argument>(V) && !isa<Instruction>(V))
1864     return DFS.getZeroShadow(V);
1865   if (IsForceZeroLabels)
1866     return DFS.getZeroShadow(V);
1867   Value *&Shadow = ValShadowMap[V];
1868   if (!Shadow) {
1869     if (Argument *A = dyn_cast<Argument>(V)) {
1870       if (IsNativeABI)
1871         return DFS.getZeroShadow(V);
1872       Shadow = getShadowForTLSArgument(A);
1873       NonZeroChecks.push_back(Shadow);
1874     } else {
1875       Shadow = DFS.getZeroShadow(V);
1876     }
1877   }
1878   return Shadow;
1879 }
1880 
1881 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
1882   assert(!ValShadowMap.count(I));
1883   ValShadowMap[I] = Shadow;
1884 }
1885 
1886 /// Compute the integer shadow offset that corresponds to a given
1887 /// application address.
1888 ///
1889 /// Offset = (Addr & ~AndMask) ^ XorMask
1890 Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) {
1891   assert(Addr != RetvalTLS && "Reinstrumenting?");
1892   Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy);
1893 
1894   uint64_t AndMask = MapParams->AndMask;
1895   if (AndMask)
1896     OffsetLong =
1897         IRB.CreateAnd(OffsetLong, ConstantInt::get(IntptrTy, ~AndMask));
1898 
1899   uint64_t XorMask = MapParams->XorMask;
1900   if (XorMask)
1901     OffsetLong = IRB.CreateXor(OffsetLong, ConstantInt::get(IntptrTy, XorMask));
1902   return OffsetLong;
1903 }
1904 
1905 std::pair<Value *, Value *>
1906 DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment,
1907                                           Instruction *Pos) {
1908   // Returns ((Addr & shadow_mask) + origin_base - shadow_base) & ~4UL
1909   IRBuilder<> IRB(Pos);
1910   Value *ShadowOffset = getShadowOffset(Addr, IRB);
1911   Value *ShadowLong = ShadowOffset;
1912   uint64_t ShadowBase = MapParams->ShadowBase;
1913   if (ShadowBase != 0) {
1914     ShadowLong =
1915         IRB.CreateAdd(ShadowLong, ConstantInt::get(IntptrTy, ShadowBase));
1916   }
1917   IntegerType *ShadowTy = IntegerType::get(*Ctx, ShadowWidthBits);
1918   Value *ShadowPtr =
1919       IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
1920   Value *OriginPtr = nullptr;
1921   if (shouldTrackOrigins()) {
1922     Value *OriginLong = ShadowOffset;
1923     uint64_t OriginBase = MapParams->OriginBase;
1924     if (OriginBase != 0)
1925       OriginLong =
1926           IRB.CreateAdd(OriginLong, ConstantInt::get(IntptrTy, OriginBase));
1927     const Align Alignment = llvm::assumeAligned(InstAlignment.value());
1928     // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB.
1929     // So Mask is unnecessary.
1930     if (Alignment < MinOriginAlignment) {
1931       uint64_t Mask = MinOriginAlignment.value() - 1;
1932       OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask));
1933     }
1934     OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy);
1935   }
1936   return std::make_pair(ShadowPtr, OriginPtr);
1937 }
1938 
1939 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos,
1940                                            Value *ShadowOffset) {
1941   IRBuilder<> IRB(Pos);
1942   return IRB.CreateIntToPtr(ShadowOffset, PrimitiveShadowPtrTy);
1943 }
1944 
1945 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
1946   IRBuilder<> IRB(Pos);
1947   Value *ShadowOffset = getShadowOffset(Addr, IRB);
1948   return getShadowAddress(Addr, Pos, ShadowOffset);
1949 }
1950 
1951 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2,
1952                                                 Instruction *Pos) {
1953   Value *PrimitiveValue = combineShadows(V1, V2, Pos);
1954   return expandFromPrimitiveShadow(T, PrimitiveValue, Pos);
1955 }
1956 
1957 // Generates IR to compute the union of the two given shadows, inserting it
1958 // before Pos. The combined value is with primitive type.
1959 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) {
1960   if (DFS.isZeroShadow(V1))
1961     return collapseToPrimitiveShadow(V2, Pos);
1962   if (DFS.isZeroShadow(V2))
1963     return collapseToPrimitiveShadow(V1, Pos);
1964   if (V1 == V2)
1965     return collapseToPrimitiveShadow(V1, Pos);
1966 
1967   auto V1Elems = ShadowElements.find(V1);
1968   auto V2Elems = ShadowElements.find(V2);
1969   if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) {
1970     if (std::includes(V1Elems->second.begin(), V1Elems->second.end(),
1971                       V2Elems->second.begin(), V2Elems->second.end())) {
1972       return collapseToPrimitiveShadow(V1, Pos);
1973     }
1974     if (std::includes(V2Elems->second.begin(), V2Elems->second.end(),
1975                       V1Elems->second.begin(), V1Elems->second.end())) {
1976       return collapseToPrimitiveShadow(V2, Pos);
1977     }
1978   } else if (V1Elems != ShadowElements.end()) {
1979     if (V1Elems->second.count(V2))
1980       return collapseToPrimitiveShadow(V1, Pos);
1981   } else if (V2Elems != ShadowElements.end()) {
1982     if (V2Elems->second.count(V1))
1983       return collapseToPrimitiveShadow(V2, Pos);
1984   }
1985 
1986   auto Key = std::make_pair(V1, V2);
1987   if (V1 > V2)
1988     std::swap(Key.first, Key.second);
1989   CachedShadow &CCS = CachedShadows[Key];
1990   if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent()))
1991     return CCS.Shadow;
1992 
1993   // Converts inputs shadows to shadows with primitive types.
1994   Value *PV1 = collapseToPrimitiveShadow(V1, Pos);
1995   Value *PV2 = collapseToPrimitiveShadow(V2, Pos);
1996 
1997   IRBuilder<> IRB(Pos);
1998   CCS.Block = Pos->getParent();
1999   CCS.Shadow = IRB.CreateOr(PV1, PV2);
2000 
2001   std::set<Value *> UnionElems;
2002   if (V1Elems != ShadowElements.end()) {
2003     UnionElems = V1Elems->second;
2004   } else {
2005     UnionElems.insert(V1);
2006   }
2007   if (V2Elems != ShadowElements.end()) {
2008     UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end());
2009   } else {
2010     UnionElems.insert(V2);
2011   }
2012   ShadowElements[CCS.Shadow] = std::move(UnionElems);
2013 
2014   return CCS.Shadow;
2015 }
2016 
2017 // A convenience function which folds the shadows of each of the operands
2018 // of the provided instruction Inst, inserting the IR before Inst.  Returns
2019 // the computed union Value.
2020 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
2021   if (Inst->getNumOperands() == 0)
2022     return DFS.getZeroShadow(Inst);
2023 
2024   Value *Shadow = getShadow(Inst->getOperand(0));
2025   for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I)
2026     Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)), Inst);
2027 
2028   return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst);
2029 }
2030 
2031 void DFSanVisitor::visitInstOperands(Instruction &I) {
2032   Value *CombinedShadow = DFSF.combineOperandShadows(&I);
2033   DFSF.setShadow(&I, CombinedShadow);
2034   visitInstOperandOrigins(I);
2035 }
2036 
2037 Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows,
2038                                      const std::vector<Value *> &Origins,
2039                                      Instruction *Pos, ConstantInt *Zero) {
2040   assert(Shadows.size() == Origins.size());
2041   size_t Size = Origins.size();
2042   if (Size == 0)
2043     return DFS.ZeroOrigin;
2044   Value *Origin = nullptr;
2045   if (!Zero)
2046     Zero = DFS.ZeroPrimitiveShadow;
2047   for (size_t I = 0; I != Size; ++I) {
2048     Value *OpOrigin = Origins[I];
2049     Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin);
2050     if (ConstOpOrigin && ConstOpOrigin->isNullValue())
2051       continue;
2052     if (!Origin) {
2053       Origin = OpOrigin;
2054       continue;
2055     }
2056     Value *OpShadow = Shadows[I];
2057     Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos);
2058     IRBuilder<> IRB(Pos);
2059     Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero);
2060     Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
2061   }
2062   return Origin ? Origin : DFS.ZeroOrigin;
2063 }
2064 
2065 Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) {
2066   size_t Size = Inst->getNumOperands();
2067   std::vector<Value *> Shadows(Size);
2068   std::vector<Value *> Origins(Size);
2069   for (unsigned I = 0; I != Size; ++I) {
2070     Shadows[I] = getShadow(Inst->getOperand(I));
2071     Origins[I] = getOrigin(Inst->getOperand(I));
2072   }
2073   return combineOrigins(Shadows, Origins, Inst);
2074 }
2075 
2076 void DFSanVisitor::visitInstOperandOrigins(Instruction &I) {
2077   if (!DFSF.DFS.shouldTrackOrigins())
2078     return;
2079   Value *CombinedOrigin = DFSF.combineOperandOrigins(&I);
2080   DFSF.setOrigin(&I, CombinedOrigin);
2081 }
2082 
2083 Align DFSanFunction::getShadowAlign(Align InstAlignment) {
2084   const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1);
2085   return Align(Alignment.value() * DFS.ShadowWidthBytes);
2086 }
2087 
2088 Align DFSanFunction::getOriginAlign(Align InstAlignment) {
2089   const Align Alignment = llvm::assumeAligned(InstAlignment.value());
2090   return Align(std::max(MinOriginAlignment, Alignment));
2091 }
2092 
2093 bool DFSanFunction::isLookupTableConstant(Value *P) {
2094   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P->stripPointerCasts()))
2095     if (GV->isConstant() && GV->hasName())
2096       return DFS.CombineTaintLookupTableNames.count(GV->getName());
2097 
2098   return false;
2099 }
2100 
2101 bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size,
2102                                                   Align InstAlignment) {
2103   // When enabling tracking load instructions, we always use
2104   // __dfsan_load_label_and_origin to reduce code size.
2105   if (ClTrackOrigins == 2)
2106     return true;
2107 
2108   assert(Size != 0);
2109   // * if Size == 1, it is sufficient to load its origin aligned at 4.
2110   // * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to
2111   //   load its origin aligned at 4. If not, although origins may be lost, it
2112   //   should not happen very often.
2113   // * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When
2114   //   Size % 4 == 0, it is more efficient to load origins without callbacks.
2115   // * Otherwise we use __dfsan_load_label_and_origin.
2116   // This should ensure that common cases run efficiently.
2117   if (Size <= 2)
2118     return false;
2119 
2120   const Align Alignment = llvm::assumeAligned(InstAlignment.value());
2121   return Alignment < MinOriginAlignment || !DFS.hasLoadSizeForFastPath(Size);
2122 }
2123 
2124 Value *DataFlowSanitizer::loadNextOrigin(Instruction *Pos, Align OriginAlign,
2125                                          Value **OriginAddr) {
2126   IRBuilder<> IRB(Pos);
2127   *OriginAddr =
2128       IRB.CreateGEP(OriginTy, *OriginAddr, ConstantInt::get(IntptrTy, 1));
2129   return IRB.CreateAlignedLoad(OriginTy, *OriginAddr, OriginAlign);
2130 }
2131 
2132 std::pair<Value *, Value *> DFSanFunction::loadShadowFast(
2133     Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign,
2134     Align OriginAlign, Value *FirstOrigin, Instruction *Pos) {
2135   const bool ShouldTrackOrigins = DFS.shouldTrackOrigins();
2136   const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes;
2137 
2138   assert(Size >= 4 && "Not large enough load size for fast path!");
2139 
2140   // Used for origin tracking.
2141   std::vector<Value *> Shadows;
2142   std::vector<Value *> Origins;
2143 
2144   // Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20)
2145   // but this function is only used in a subset of cases that make it possible
2146   // to optimize the instrumentation.
2147   //
2148   // Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow
2149   // per byte) is either:
2150   // - a multiple of 8  (common)
2151   // - equal to 4       (only for load32)
2152   //
2153   // For the second case, we can fit the wide shadow in a 32-bit integer. In all
2154   // other cases, we use a 64-bit integer to hold the wide shadow.
2155   Type *WideShadowTy =
2156       ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx);
2157 
2158   IRBuilder<> IRB(Pos);
2159   Value *WideAddr = IRB.CreateBitCast(ShadowAddr, WideShadowTy->getPointerTo());
2160   Value *CombinedWideShadow =
2161       IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign);
2162 
2163   unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth();
2164   const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits;
2165 
2166   auto AppendWideShadowAndOrigin = [&](Value *WideShadow, Value *Origin) {
2167     if (BytesPerWideShadow > 4) {
2168       assert(BytesPerWideShadow == 8);
2169       // The wide shadow relates to two origin pointers: one for the first four
2170       // application bytes, and one for the latest four. We use a left shift to
2171       // get just the shadow bytes that correspond to the first origin pointer,
2172       // and then the entire shadow for the second origin pointer (which will be
2173       // chosen by combineOrigins() iff the least-significant half of the wide
2174       // shadow was empty but the other half was not).
2175       Value *WideShadowLo = IRB.CreateShl(
2176           WideShadow, ConstantInt::get(WideShadowTy, WideShadowBitWidth / 2));
2177       Shadows.push_back(WideShadow);
2178       Origins.push_back(DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr));
2179 
2180       Shadows.push_back(WideShadowLo);
2181       Origins.push_back(Origin);
2182     } else {
2183       Shadows.push_back(WideShadow);
2184       Origins.push_back(Origin);
2185     }
2186   };
2187 
2188   if (ShouldTrackOrigins)
2189     AppendWideShadowAndOrigin(CombinedWideShadow, FirstOrigin);
2190 
2191   // First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly;
2192   // then OR individual shadows within the combined WideShadow by binary ORing.
2193   // This is fewer instructions than ORing shadows individually, since it
2194   // needs logN shift/or instructions (N being the bytes of the combined wide
2195   // shadow).
2196   for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size;
2197        ByteOfs += BytesPerWideShadow) {
2198     WideAddr = IRB.CreateGEP(WideShadowTy, WideAddr,
2199                              ConstantInt::get(DFS.IntptrTy, 1));
2200     Value *NextWideShadow =
2201         IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign);
2202     CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow);
2203     if (ShouldTrackOrigins) {
2204       Value *NextOrigin = DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr);
2205       AppendWideShadowAndOrigin(NextWideShadow, NextOrigin);
2206     }
2207   }
2208   for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits;
2209        Width >>= 1) {
2210     Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width);
2211     CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow);
2212   }
2213   return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy),
2214           ShouldTrackOrigins
2215               ? combineOrigins(Shadows, Origins, Pos,
2216                                ConstantInt::getSigned(IRB.getInt64Ty(), 0))
2217               : DFS.ZeroOrigin};
2218 }
2219 
2220 std::pair<Value *, Value *> DFSanFunction::loadShadowOriginSansLoadTracking(
2221     Value *Addr, uint64_t Size, Align InstAlignment, Instruction *Pos) {
2222   const bool ShouldTrackOrigins = DFS.shouldTrackOrigins();
2223 
2224   // Non-escaped loads.
2225   if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
2226     const auto SI = AllocaShadowMap.find(AI);
2227     if (SI != AllocaShadowMap.end()) {
2228       IRBuilder<> IRB(Pos);
2229       Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second);
2230       const auto OI = AllocaOriginMap.find(AI);
2231       assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end());
2232       return {ShadowLI, ShouldTrackOrigins
2233                             ? IRB.CreateLoad(DFS.OriginTy, OI->second)
2234                             : nullptr};
2235     }
2236   }
2237 
2238   // Load from constant addresses.
2239   SmallVector<const Value *, 2> Objs;
2240   getUnderlyingObjects(Addr, Objs);
2241   bool AllConstants = true;
2242   for (const Value *Obj : Objs) {
2243     if (isa<Function>(Obj) || isa<BlockAddress>(Obj))
2244       continue;
2245     if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant())
2246       continue;
2247 
2248     AllConstants = false;
2249     break;
2250   }
2251   if (AllConstants)
2252     return {DFS.ZeroPrimitiveShadow,
2253             ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr};
2254 
2255   if (Size == 0)
2256     return {DFS.ZeroPrimitiveShadow,
2257             ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr};
2258 
2259   // Use callback to load if this is not an optimizable case for origin
2260   // tracking.
2261   if (ShouldTrackOrigins &&
2262       useCallbackLoadLabelAndOrigin(Size, InstAlignment)) {
2263     IRBuilder<> IRB(Pos);
2264     CallInst *Call =
2265         IRB.CreateCall(DFS.DFSanLoadLabelAndOriginFn,
2266                        {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
2267                         ConstantInt::get(DFS.IntptrTy, Size)});
2268     Call->addRetAttr(Attribute::ZExt);
2269     return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits),
2270                             DFS.PrimitiveShadowTy),
2271             IRB.CreateTrunc(Call, DFS.OriginTy)};
2272   }
2273 
2274   // Other cases that support loading shadows or origins in a fast way.
2275   Value *ShadowAddr, *OriginAddr;
2276   std::tie(ShadowAddr, OriginAddr) =
2277       DFS.getShadowOriginAddress(Addr, InstAlignment, Pos);
2278 
2279   const Align ShadowAlign = getShadowAlign(InstAlignment);
2280   const Align OriginAlign = getOriginAlign(InstAlignment);
2281   Value *Origin = nullptr;
2282   if (ShouldTrackOrigins) {
2283     IRBuilder<> IRB(Pos);
2284     Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign);
2285   }
2286 
2287   // When the byte size is small enough, we can load the shadow directly with
2288   // just a few instructions.
2289   switch (Size) {
2290   case 1: {
2291     LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos);
2292     LI->setAlignment(ShadowAlign);
2293     return {LI, Origin};
2294   }
2295   case 2: {
2296     IRBuilder<> IRB(Pos);
2297     Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr,
2298                                        ConstantInt::get(DFS.IntptrTy, 1));
2299     Value *Load =
2300         IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign);
2301     Value *Load1 =
2302         IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign);
2303     return {combineShadows(Load, Load1, Pos), Origin};
2304   }
2305   }
2306   bool HasSizeForFastPath = DFS.hasLoadSizeForFastPath(Size);
2307 
2308   if (HasSizeForFastPath)
2309     return loadShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign,
2310                           OriginAlign, Origin, Pos);
2311 
2312   IRBuilder<> IRB(Pos);
2313   CallInst *FallbackCall = IRB.CreateCall(
2314       DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
2315   FallbackCall->addRetAttr(Attribute::ZExt);
2316   return {FallbackCall, Origin};
2317 }
2318 
2319 std::pair<Value *, Value *> DFSanFunction::loadShadowOrigin(Value *Addr,
2320                                                             uint64_t Size,
2321                                                             Align InstAlignment,
2322                                                             Instruction *Pos) {
2323   Value *PrimitiveShadow, *Origin;
2324   std::tie(PrimitiveShadow, Origin) =
2325       loadShadowOriginSansLoadTracking(Addr, Size, InstAlignment, Pos);
2326   if (DFS.shouldTrackOrigins()) {
2327     if (ClTrackOrigins == 2) {
2328       IRBuilder<> IRB(Pos);
2329       auto *ConstantShadow = dyn_cast<Constant>(PrimitiveShadow);
2330       if (!ConstantShadow || !ConstantShadow->isZeroValue())
2331         Origin = updateOriginIfTainted(PrimitiveShadow, Origin, IRB);
2332     }
2333   }
2334   return {PrimitiveShadow, Origin};
2335 }
2336 
2337 static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) {
2338   switch (AO) {
2339   case AtomicOrdering::NotAtomic:
2340     return AtomicOrdering::NotAtomic;
2341   case AtomicOrdering::Unordered:
2342   case AtomicOrdering::Monotonic:
2343   case AtomicOrdering::Acquire:
2344     return AtomicOrdering::Acquire;
2345   case AtomicOrdering::Release:
2346   case AtomicOrdering::AcquireRelease:
2347     return AtomicOrdering::AcquireRelease;
2348   case AtomicOrdering::SequentiallyConsistent:
2349     return AtomicOrdering::SequentiallyConsistent;
2350   }
2351   llvm_unreachable("Unknown ordering");
2352 }
2353 
2354 Value *StripPointerGEPsAndCasts(Value *V) {
2355   if (!V->getType()->isPointerTy())
2356     return V;
2357 
2358   // DFSan pass should be running on valid IR, but we'll
2359   // keep a seen set to ensure there are no issues.
2360   SmallPtrSet<const Value *, 4> Visited;
2361   Visited.insert(V);
2362   do {
2363     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
2364       V = GEP->getPointerOperand();
2365     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
2366       V = cast<Operator>(V)->getOperand(0);
2367       if (!V->getType()->isPointerTy())
2368         return V;
2369     } else if (isa<GlobalAlias>(V)) {
2370       V = cast<GlobalAlias>(V)->getAliasee();
2371     }
2372   } while (Visited.insert(V).second);
2373 
2374   return V;
2375 }
2376 
2377 void DFSanVisitor::visitLoadInst(LoadInst &LI) {
2378   auto &DL = LI.getModule()->getDataLayout();
2379   uint64_t Size = DL.getTypeStoreSize(LI.getType());
2380   if (Size == 0) {
2381     DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI));
2382     DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin);
2383     return;
2384   }
2385 
2386   // When an application load is atomic, increase atomic ordering between
2387   // atomic application loads and stores to ensure happen-before order; load
2388   // shadow data after application data; store zero shadow data before
2389   // application data. This ensure shadow loads return either labels of the
2390   // initial application data or zeros.
2391   if (LI.isAtomic())
2392     LI.setOrdering(addAcquireOrdering(LI.getOrdering()));
2393 
2394   Instruction *AfterLi = LI.getNextNode();
2395   Instruction *Pos = LI.isAtomic() ? LI.getNextNode() : &LI;
2396   std::vector<Value *> Shadows;
2397   std::vector<Value *> Origins;
2398   Value *PrimitiveShadow, *Origin;
2399   std::tie(PrimitiveShadow, Origin) =
2400       DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos);
2401   const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
2402   if (ShouldTrackOrigins) {
2403     Shadows.push_back(PrimitiveShadow);
2404     Origins.push_back(Origin);
2405   }
2406   if (ClCombinePointerLabelsOnLoad ||
2407       DFSF.isLookupTableConstant(
2408           StripPointerGEPsAndCasts(LI.getPointerOperand()))) {
2409     Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
2410     PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos);
2411     if (ShouldTrackOrigins) {
2412       Shadows.push_back(PtrShadow);
2413       Origins.push_back(DFSF.getOrigin(LI.getPointerOperand()));
2414     }
2415   }
2416   if (!DFSF.DFS.isZeroShadow(PrimitiveShadow))
2417     DFSF.NonZeroChecks.push_back(PrimitiveShadow);
2418 
2419   Value *Shadow =
2420       DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos);
2421   DFSF.setShadow(&LI, Shadow);
2422 
2423   if (ShouldTrackOrigins) {
2424     DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos));
2425   }
2426 
2427   if (ClEventCallbacks) {
2428     IRBuilder<> IRB(Pos);
2429     Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr);
2430     CallInst *CI =
2431         IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8});
2432     CI->addParamAttr(0, Attribute::ZExt);
2433   }
2434 
2435   IRBuilder<> IRB(AfterLi);
2436   DFSF.addReachesFunctionCallbacksIfEnabled(IRB, LI, &LI);
2437 }
2438 
2439 Value *DFSanFunction::updateOriginIfTainted(Value *Shadow, Value *Origin,
2440                                             IRBuilder<> &IRB) {
2441   assert(DFS.shouldTrackOrigins());
2442   return IRB.CreateCall(DFS.DFSanChainOriginIfTaintedFn, {Shadow, Origin});
2443 }
2444 
2445 Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) {
2446   if (!DFS.shouldTrackOrigins())
2447     return V;
2448   return IRB.CreateCall(DFS.DFSanChainOriginFn, V);
2449 }
2450 
2451 Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) {
2452   const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes;
2453   const DataLayout &DL = F->getParent()->getDataLayout();
2454   unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy);
2455   if (IntptrSize == OriginSize)
2456     return Origin;
2457   assert(IntptrSize == OriginSize * 2);
2458   Origin = IRB.CreateIntCast(Origin, DFS.IntptrTy, /* isSigned */ false);
2459   return IRB.CreateOr(Origin, IRB.CreateShl(Origin, OriginSize * 8));
2460 }
2461 
2462 void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin,
2463                                 Value *StoreOriginAddr,
2464                                 uint64_t StoreOriginSize, Align Alignment) {
2465   const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes;
2466   const DataLayout &DL = F->getParent()->getDataLayout();
2467   const Align IntptrAlignment = DL.getABITypeAlign(DFS.IntptrTy);
2468   unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy);
2469   assert(IntptrAlignment >= MinOriginAlignment);
2470   assert(IntptrSize >= OriginSize);
2471 
2472   unsigned Ofs = 0;
2473   Align CurrentAlignment = Alignment;
2474   if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) {
2475     Value *IntptrOrigin = originToIntptr(IRB, Origin);
2476     Value *IntptrStoreOriginPtr = IRB.CreatePointerCast(
2477         StoreOriginAddr, PointerType::get(DFS.IntptrTy, 0));
2478     for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) {
2479       Value *Ptr =
2480           I ? IRB.CreateConstGEP1_32(DFS.IntptrTy, IntptrStoreOriginPtr, I)
2481             : IntptrStoreOriginPtr;
2482       IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
2483       Ofs += IntptrSize / OriginSize;
2484       CurrentAlignment = IntptrAlignment;
2485     }
2486   }
2487 
2488   for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize;
2489        ++I) {
2490     Value *GEP = I ? IRB.CreateConstGEP1_32(DFS.OriginTy, StoreOriginAddr, I)
2491                    : StoreOriginAddr;
2492     IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
2493     CurrentAlignment = MinOriginAlignment;
2494   }
2495 }
2496 
2497 Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB,
2498                                     const Twine &Name) {
2499   Type *VTy = V->getType();
2500   assert(VTy->isIntegerTy());
2501   if (VTy->getIntegerBitWidth() == 1)
2502     // Just converting a bool to a bool, so do nothing.
2503     return V;
2504   return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), Name);
2505 }
2506 
2507 void DFSanFunction::storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size,
2508                                 Value *Shadow, Value *Origin,
2509                                 Value *StoreOriginAddr, Align InstAlignment) {
2510   // Do not write origins for zero shadows because we do not trace origins for
2511   // untainted sinks.
2512   const Align OriginAlignment = getOriginAlign(InstAlignment);
2513   Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos);
2514   IRBuilder<> IRB(Pos);
2515   if (auto *ConstantShadow = dyn_cast<Constant>(CollapsedShadow)) {
2516     if (!ConstantShadow->isZeroValue())
2517       paintOrigin(IRB, updateOrigin(Origin, IRB), StoreOriginAddr, Size,
2518                   OriginAlignment);
2519     return;
2520   }
2521 
2522   if (shouldInstrumentWithCall()) {
2523     IRB.CreateCall(DFS.DFSanMaybeStoreOriginFn,
2524                    {CollapsedShadow,
2525                     IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
2526                     ConstantInt::get(DFS.IntptrTy, Size), Origin});
2527   } else {
2528     Value *Cmp = convertToBool(CollapsedShadow, IRB, "_dfscmp");
2529     Instruction *CheckTerm = SplitBlockAndInsertIfThen(
2530         Cmp, &*IRB.GetInsertPoint(), false, DFS.OriginStoreWeights, &DT);
2531     IRBuilder<> IRBNew(CheckTerm);
2532     paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), StoreOriginAddr, Size,
2533                 OriginAlignment);
2534     ++NumOriginStores;
2535   }
2536 }
2537 
2538 void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size,
2539                                              Align ShadowAlign,
2540                                              Instruction *Pos) {
2541   IRBuilder<> IRB(Pos);
2542   IntegerType *ShadowTy =
2543       IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits);
2544   Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
2545   Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
2546   Value *ExtShadowAddr =
2547       IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy));
2548   IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign);
2549   // Do not write origins for 0 shadows because we do not trace origins for
2550   // untainted sinks.
2551 }
2552 
2553 void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size,
2554                                                Align InstAlignment,
2555                                                Value *PrimitiveShadow,
2556                                                Value *Origin,
2557                                                Instruction *Pos) {
2558   const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin;
2559 
2560   if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
2561     const auto SI = AllocaShadowMap.find(AI);
2562     if (SI != AllocaShadowMap.end()) {
2563       IRBuilder<> IRB(Pos);
2564       IRB.CreateStore(PrimitiveShadow, SI->second);
2565 
2566       // Do not write origins for 0 shadows because we do not trace origins for
2567       // untainted sinks.
2568       if (ShouldTrackOrigins && !DFS.isZeroShadow(PrimitiveShadow)) {
2569         const auto OI = AllocaOriginMap.find(AI);
2570         assert(OI != AllocaOriginMap.end() && Origin);
2571         IRB.CreateStore(Origin, OI->second);
2572       }
2573       return;
2574     }
2575   }
2576 
2577   const Align ShadowAlign = getShadowAlign(InstAlignment);
2578   if (DFS.isZeroShadow(PrimitiveShadow)) {
2579     storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos);
2580     return;
2581   }
2582 
2583   IRBuilder<> IRB(Pos);
2584   Value *ShadowAddr, *OriginAddr;
2585   std::tie(ShadowAddr, OriginAddr) =
2586       DFS.getShadowOriginAddress(Addr, InstAlignment, Pos);
2587 
2588   const unsigned ShadowVecSize = 8;
2589   assert(ShadowVecSize * DFS.ShadowWidthBits <= 128 &&
2590          "Shadow vector is too large!");
2591 
2592   uint64_t Offset = 0;
2593   uint64_t LeftSize = Size;
2594   if (LeftSize >= ShadowVecSize) {
2595     auto *ShadowVecTy =
2596         FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize);
2597     Value *ShadowVec = PoisonValue::get(ShadowVecTy);
2598     for (unsigned I = 0; I != ShadowVecSize; ++I) {
2599       ShadowVec = IRB.CreateInsertElement(
2600           ShadowVec, PrimitiveShadow,
2601           ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), I));
2602     }
2603     Value *ShadowVecAddr =
2604         IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy));
2605     do {
2606       Value *CurShadowVecAddr =
2607           IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset);
2608       IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
2609       LeftSize -= ShadowVecSize;
2610       ++Offset;
2611     } while (LeftSize >= ShadowVecSize);
2612     Offset *= ShadowVecSize;
2613   }
2614   while (LeftSize > 0) {
2615     Value *CurShadowAddr =
2616         IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset);
2617     IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign);
2618     --LeftSize;
2619     ++Offset;
2620   }
2621 
2622   if (ShouldTrackOrigins) {
2623     storeOrigin(Pos, Addr, Size, PrimitiveShadow, Origin, OriginAddr,
2624                 InstAlignment);
2625   }
2626 }
2627 
2628 static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) {
2629   switch (AO) {
2630   case AtomicOrdering::NotAtomic:
2631     return AtomicOrdering::NotAtomic;
2632   case AtomicOrdering::Unordered:
2633   case AtomicOrdering::Monotonic:
2634   case AtomicOrdering::Release:
2635     return AtomicOrdering::Release;
2636   case AtomicOrdering::Acquire:
2637   case AtomicOrdering::AcquireRelease:
2638     return AtomicOrdering::AcquireRelease;
2639   case AtomicOrdering::SequentiallyConsistent:
2640     return AtomicOrdering::SequentiallyConsistent;
2641   }
2642   llvm_unreachable("Unknown ordering");
2643 }
2644 
2645 void DFSanVisitor::visitStoreInst(StoreInst &SI) {
2646   auto &DL = SI.getModule()->getDataLayout();
2647   Value *Val = SI.getValueOperand();
2648   uint64_t Size = DL.getTypeStoreSize(Val->getType());
2649   if (Size == 0)
2650     return;
2651 
2652   // When an application store is atomic, increase atomic ordering between
2653   // atomic application loads and stores to ensure happen-before order; load
2654   // shadow data after application data; store zero shadow data before
2655   // application data. This ensure shadow loads return either labels of the
2656   // initial application data or zeros.
2657   if (SI.isAtomic())
2658     SI.setOrdering(addReleaseOrdering(SI.getOrdering()));
2659 
2660   const bool ShouldTrackOrigins =
2661       DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic();
2662   std::vector<Value *> Shadows;
2663   std::vector<Value *> Origins;
2664 
2665   Value *Shadow =
2666       SI.isAtomic() ? DFSF.DFS.getZeroShadow(Val) : DFSF.getShadow(Val);
2667 
2668   if (ShouldTrackOrigins) {
2669     Shadows.push_back(Shadow);
2670     Origins.push_back(DFSF.getOrigin(Val));
2671   }
2672 
2673   Value *PrimitiveShadow;
2674   if (ClCombinePointerLabelsOnStore) {
2675     Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
2676     if (ShouldTrackOrigins) {
2677       Shadows.push_back(PtrShadow);
2678       Origins.push_back(DFSF.getOrigin(SI.getPointerOperand()));
2679     }
2680     PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
2681   } else {
2682     PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI);
2683   }
2684   Value *Origin = nullptr;
2685   if (ShouldTrackOrigins)
2686     Origin = DFSF.combineOrigins(Shadows, Origins, &SI);
2687   DFSF.storePrimitiveShadowOrigin(SI.getPointerOperand(), Size, SI.getAlign(),
2688                                   PrimitiveShadow, Origin, &SI);
2689   if (ClEventCallbacks) {
2690     IRBuilder<> IRB(&SI);
2691     Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr);
2692     CallInst *CI =
2693         IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8});
2694     CI->addParamAttr(0, Attribute::ZExt);
2695   }
2696 }
2697 
2698 void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) {
2699   assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
2700 
2701   Value *Val = I.getOperand(1);
2702   const auto &DL = I.getModule()->getDataLayout();
2703   uint64_t Size = DL.getTypeStoreSize(Val->getType());
2704   if (Size == 0)
2705     return;
2706 
2707   // Conservatively set data at stored addresses and return with zero shadow to
2708   // prevent shadow data races.
2709   IRBuilder<> IRB(&I);
2710   Value *Addr = I.getOperand(0);
2711   const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment);
2712   DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, &I);
2713   DFSF.setShadow(&I, DFSF.DFS.getZeroShadow(&I));
2714   DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin);
2715 }
2716 
2717 void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) {
2718   visitCASOrRMW(I.getAlign(), I);
2719   // TODO: The ordering change follows MSan. It is possible not to change
2720   // ordering because we always set and use 0 shadows.
2721   I.setOrdering(addReleaseOrdering(I.getOrdering()));
2722 }
2723 
2724 void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
2725   visitCASOrRMW(I.getAlign(), I);
2726   // TODO: The ordering change follows MSan. It is possible not to change
2727   // ordering because we always set and use 0 shadows.
2728   I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
2729 }
2730 
2731 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) {
2732   visitInstOperands(UO);
2733 }
2734 
2735 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
2736   visitInstOperands(BO);
2737 }
2738 
2739 void DFSanVisitor::visitBitCastInst(BitCastInst &BCI) {
2740   // Special case: if this is the bitcast (there is exactly 1 allowed) between
2741   // a musttail call and a ret, don't instrument. New instructions are not
2742   // allowed after a musttail call.
2743   if (auto *CI = dyn_cast<CallInst>(BCI.getOperand(0)))
2744     if (CI->isMustTailCall())
2745       return;
2746   visitInstOperands(BCI);
2747 }
2748 
2749 void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); }
2750 
2751 void DFSanVisitor::visitCmpInst(CmpInst &CI) {
2752   visitInstOperands(CI);
2753   if (ClEventCallbacks) {
2754     IRBuilder<> IRB(&CI);
2755     Value *CombinedShadow = DFSF.getShadow(&CI);
2756     CallInst *CallI =
2757         IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow);
2758     CallI->addParamAttr(0, Attribute::ZExt);
2759   }
2760 }
2761 
2762 void DFSanVisitor::visitLandingPadInst(LandingPadInst &LPI) {
2763   // We do not need to track data through LandingPadInst.
2764   //
2765   // For the C++ exceptions, if a value is thrown, this value will be stored
2766   // in a memory location provided by __cxa_allocate_exception(...) (on the
2767   // throw side) or  __cxa_begin_catch(...) (on the catch side).
2768   // This memory will have a shadow, so with the loads and stores we will be
2769   // able to propagate labels on data thrown through exceptions, without any
2770   // special handling of the LandingPadInst.
2771   //
2772   // The second element in the pair result of the LandingPadInst is a
2773   // register value, but it is for a type ID and should never be tainted.
2774   DFSF.setShadow(&LPI, DFSF.DFS.getZeroShadow(&LPI));
2775   DFSF.setOrigin(&LPI, DFSF.DFS.ZeroOrigin);
2776 }
2777 
2778 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
2779   if (ClCombineOffsetLabelsOnGEP ||
2780       DFSF.isLookupTableConstant(
2781           StripPointerGEPsAndCasts(GEPI.getPointerOperand()))) {
2782     visitInstOperands(GEPI);
2783     return;
2784   }
2785 
2786   // Only propagate shadow/origin of base pointer value but ignore those of
2787   // offset operands.
2788   Value *BasePointer = GEPI.getPointerOperand();
2789   DFSF.setShadow(&GEPI, DFSF.getShadow(BasePointer));
2790   if (DFSF.DFS.shouldTrackOrigins())
2791     DFSF.setOrigin(&GEPI, DFSF.getOrigin(BasePointer));
2792 }
2793 
2794 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
2795   visitInstOperands(I);
2796 }
2797 
2798 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
2799   visitInstOperands(I);
2800 }
2801 
2802 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
2803   visitInstOperands(I);
2804 }
2805 
2806 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
2807   IRBuilder<> IRB(&I);
2808   Value *Agg = I.getAggregateOperand();
2809   Value *AggShadow = DFSF.getShadow(Agg);
2810   Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
2811   DFSF.setShadow(&I, ResShadow);
2812   visitInstOperandOrigins(I);
2813 }
2814 
2815 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
2816   IRBuilder<> IRB(&I);
2817   Value *AggShadow = DFSF.getShadow(I.getAggregateOperand());
2818   Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand());
2819   Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
2820   DFSF.setShadow(&I, Res);
2821   visitInstOperandOrigins(I);
2822 }
2823 
2824 void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
2825   bool AllLoadsStores = true;
2826   for (User *U : I.users()) {
2827     if (isa<LoadInst>(U))
2828       continue;
2829 
2830     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
2831       if (SI->getPointerOperand() == &I)
2832         continue;
2833     }
2834 
2835     AllLoadsStores = false;
2836     break;
2837   }
2838   if (AllLoadsStores) {
2839     IRBuilder<> IRB(&I);
2840     DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy);
2841     if (DFSF.DFS.shouldTrackOrigins()) {
2842       DFSF.AllocaOriginMap[&I] =
2843           IRB.CreateAlloca(DFSF.DFS.OriginTy, nullptr, "_dfsa");
2844     }
2845   }
2846   DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow);
2847   DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin);
2848 }
2849 
2850 void DFSanVisitor::visitSelectInst(SelectInst &I) {
2851   Value *CondShadow = DFSF.getShadow(I.getCondition());
2852   Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
2853   Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
2854   Value *ShadowSel = nullptr;
2855   const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
2856   std::vector<Value *> Shadows;
2857   std::vector<Value *> Origins;
2858   Value *TrueOrigin =
2859       ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr;
2860   Value *FalseOrigin =
2861       ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr;
2862 
2863   DFSF.addConditionalCallbacksIfEnabled(I, I.getCondition());
2864 
2865   if (isa<VectorType>(I.getCondition()->getType())) {
2866     ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow,
2867                                                FalseShadow, &I);
2868     if (ShouldTrackOrigins) {
2869       Shadows.push_back(TrueShadow);
2870       Shadows.push_back(FalseShadow);
2871       Origins.push_back(TrueOrigin);
2872       Origins.push_back(FalseOrigin);
2873     }
2874   } else {
2875     if (TrueShadow == FalseShadow) {
2876       ShadowSel = TrueShadow;
2877       if (ShouldTrackOrigins) {
2878         Shadows.push_back(TrueShadow);
2879         Origins.push_back(TrueOrigin);
2880       }
2881     } else {
2882       ShadowSel =
2883           SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
2884       if (ShouldTrackOrigins) {
2885         Shadows.push_back(ShadowSel);
2886         Origins.push_back(SelectInst::Create(I.getCondition(), TrueOrigin,
2887                                              FalseOrigin, "", &I));
2888       }
2889     }
2890   }
2891   DFSF.setShadow(&I, ClTrackSelectControlFlow
2892                          ? DFSF.combineShadowsThenConvert(
2893                                I.getType(), CondShadow, ShadowSel, &I)
2894                          : ShadowSel);
2895   if (ShouldTrackOrigins) {
2896     if (ClTrackSelectControlFlow) {
2897       Shadows.push_back(CondShadow);
2898       Origins.push_back(DFSF.getOrigin(I.getCondition()));
2899     }
2900     DFSF.setOrigin(&I, DFSF.combineOrigins(Shadows, Origins, &I));
2901   }
2902 }
2903 
2904 void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
2905   IRBuilder<> IRB(&I);
2906   Value *ValShadow = DFSF.getShadow(I.getValue());
2907   Value *ValOrigin = DFSF.DFS.shouldTrackOrigins()
2908                          ? DFSF.getOrigin(I.getValue())
2909                          : DFSF.DFS.ZeroOrigin;
2910   IRB.CreateCall(
2911       DFSF.DFS.DFSanSetLabelFn,
2912       {ValShadow, ValOrigin,
2913        IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)),
2914        IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
2915 }
2916 
2917 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
2918   IRBuilder<> IRB(&I);
2919 
2920   // CopyOrMoveOrigin transfers origins by refering to their shadows. So we
2921   // need to move origins before moving shadows.
2922   if (DFSF.DFS.shouldTrackOrigins()) {
2923     IRB.CreateCall(
2924         DFSF.DFS.DFSanMemOriginTransferFn,
2925         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2926          IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
2927          IRB.CreateIntCast(I.getArgOperand(2), DFSF.DFS.IntptrTy, false)});
2928   }
2929 
2930   Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
2931   Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
2932   Value *LenShadow =
2933       IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(),
2934                                                     DFSF.DFS.ShadowWidthBytes));
2935   Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx);
2936   Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr);
2937   SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr);
2938   auto *MTI = cast<MemTransferInst>(
2939       IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(),
2940                      {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()}));
2941   MTI->setDestAlignment(DFSF.getShadowAlign(I.getDestAlign().valueOrOne()));
2942   MTI->setSourceAlignment(DFSF.getShadowAlign(I.getSourceAlign().valueOrOne()));
2943   if (ClEventCallbacks) {
2944     IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn,
2945                    {RawDestShadow,
2946                     IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
2947   }
2948 }
2949 
2950 void DFSanVisitor::visitBranchInst(BranchInst &BR) {
2951   if (!BR.isConditional())
2952     return;
2953 
2954   DFSF.addConditionalCallbacksIfEnabled(BR, BR.getCondition());
2955 }
2956 
2957 void DFSanVisitor::visitSwitchInst(SwitchInst &SW) {
2958   DFSF.addConditionalCallbacksIfEnabled(SW, SW.getCondition());
2959 }
2960 
2961 static bool isAMustTailRetVal(Value *RetVal) {
2962   // Tail call may have a bitcast between return.
2963   if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
2964     RetVal = I->getOperand(0);
2965   }
2966   if (auto *I = dyn_cast<CallInst>(RetVal)) {
2967     return I->isMustTailCall();
2968   }
2969   return false;
2970 }
2971 
2972 void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
2973   if (!DFSF.IsNativeABI && RI.getReturnValue()) {
2974     // Don't emit the instrumentation for musttail call returns.
2975     if (isAMustTailRetVal(RI.getReturnValue()))
2976       return;
2977 
2978     Value *S = DFSF.getShadow(RI.getReturnValue());
2979     IRBuilder<> IRB(&RI);
2980     Type *RT = DFSF.F->getFunctionType()->getReturnType();
2981     unsigned Size = getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT));
2982     if (Size <= RetvalTLSSize) {
2983       // If the size overflows, stores nothing. At callsite, oversized return
2984       // shadows are set to zero.
2985       IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), ShadowTLSAlignment);
2986     }
2987     if (DFSF.DFS.shouldTrackOrigins()) {
2988       Value *O = DFSF.getOrigin(RI.getReturnValue());
2989       IRB.CreateStore(O, DFSF.getRetvalOriginTLS());
2990     }
2991   }
2992 }
2993 
2994 void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB,
2995                                       std::vector<Value *> &Args,
2996                                       IRBuilder<> &IRB) {
2997   FunctionType *FT = F.getFunctionType();
2998 
2999   auto *I = CB.arg_begin();
3000 
3001   // Adds non-variable argument shadows.
3002   for (unsigned N = FT->getNumParams(); N != 0; ++I, --N)
3003     Args.push_back(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB));
3004 
3005   // Adds variable argument shadows.
3006   if (FT->isVarArg()) {
3007     auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy,
3008                                      CB.arg_size() - FT->getNumParams());
3009     auto *LabelVAAlloca =
3010         new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(),
3011                        "labelva", &DFSF.F->getEntryBlock().front());
3012 
3013     for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) {
3014       auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N);
3015       IRB.CreateStore(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB),
3016                       LabelVAPtr);
3017     }
3018 
3019     Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0));
3020   }
3021 
3022   // Adds the return value shadow.
3023   if (!FT->getReturnType()->isVoidTy()) {
3024     if (!DFSF.LabelReturnAlloca) {
3025       DFSF.LabelReturnAlloca = new AllocaInst(
3026           DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(),
3027           "labelreturn", &DFSF.F->getEntryBlock().front());
3028     }
3029     Args.push_back(DFSF.LabelReturnAlloca);
3030   }
3031 }
3032 
3033 void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB,
3034                                       std::vector<Value *> &Args,
3035                                       IRBuilder<> &IRB) {
3036   FunctionType *FT = F.getFunctionType();
3037 
3038   auto *I = CB.arg_begin();
3039 
3040   // Add non-variable argument origins.
3041   for (unsigned N = FT->getNumParams(); N != 0; ++I, --N)
3042     Args.push_back(DFSF.getOrigin(*I));
3043 
3044   // Add variable argument origins.
3045   if (FT->isVarArg()) {
3046     auto *OriginVATy =
3047         ArrayType::get(DFSF.DFS.OriginTy, CB.arg_size() - FT->getNumParams());
3048     auto *OriginVAAlloca =
3049         new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(),
3050                        "originva", &DFSF.F->getEntryBlock().front());
3051 
3052     for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) {
3053       auto *OriginVAPtr = IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, N);
3054       IRB.CreateStore(DFSF.getOrigin(*I), OriginVAPtr);
3055     }
3056 
3057     Args.push_back(IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, 0));
3058   }
3059 
3060   // Add the return value origin.
3061   if (!FT->getReturnType()->isVoidTy()) {
3062     if (!DFSF.OriginReturnAlloca) {
3063       DFSF.OriginReturnAlloca = new AllocaInst(
3064           DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(),
3065           "originreturn", &DFSF.F->getEntryBlock().front());
3066     }
3067     Args.push_back(DFSF.OriginReturnAlloca);
3068   }
3069 }
3070 
3071 bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) {
3072   IRBuilder<> IRB(&CB);
3073   switch (DFSF.DFS.getWrapperKind(&F)) {
3074   case DataFlowSanitizer::WK_Warning:
3075     CB.setCalledFunction(&F);
3076     IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
3077                    IRB.CreateGlobalStringPtr(F.getName()));
3078     DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F);
3079     DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
3080     DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin);
3081     return true;
3082   case DataFlowSanitizer::WK_Discard:
3083     CB.setCalledFunction(&F);
3084     DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F);
3085     DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
3086     DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin);
3087     return true;
3088   case DataFlowSanitizer::WK_Functional:
3089     CB.setCalledFunction(&F);
3090     DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F);
3091     visitInstOperands(CB);
3092     return true;
3093   case DataFlowSanitizer::WK_Custom:
3094     // Don't try to handle invokes of custom functions, it's too complicated.
3095     // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
3096     // wrapper.
3097     CallInst *CI = dyn_cast<CallInst>(&CB);
3098     if (!CI)
3099       return false;
3100 
3101     const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
3102     FunctionType *FT = F.getFunctionType();
3103     TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT);
3104     std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_";
3105     CustomFName += F.getName();
3106     FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction(
3107         CustomFName, CustomFn.TransformedType);
3108     if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) {
3109       CustomFn->copyAttributesFrom(&F);
3110 
3111       // Custom functions returning non-void will write to the return label.
3112       if (!FT->getReturnType()->isVoidTy()) {
3113         CustomFn->removeFnAttrs(DFSF.DFS.ReadOnlyNoneAttrs);
3114       }
3115     }
3116 
3117     std::vector<Value *> Args;
3118 
3119     // Adds non-variable arguments.
3120     auto *I = CB.arg_begin();
3121     for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) {
3122       Args.push_back(*I);
3123     }
3124 
3125     // Adds shadow arguments.
3126     const unsigned ShadowArgStart = Args.size();
3127     addShadowArguments(F, CB, Args, IRB);
3128 
3129     // Adds origin arguments.
3130     const unsigned OriginArgStart = Args.size();
3131     if (ShouldTrackOrigins)
3132       addOriginArguments(F, CB, Args, IRB);
3133 
3134     // Adds variable arguments.
3135     append_range(Args, drop_begin(CB.args(), FT->getNumParams()));
3136 
3137     CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
3138     CustomCI->setCallingConv(CI->getCallingConv());
3139     CustomCI->setAttributes(transformFunctionAttributes(
3140         CustomFn, CI->getContext(), CI->getAttributes()));
3141 
3142     // Update the parameter attributes of the custom call instruction to
3143     // zero extend the shadow parameters. This is required for targets
3144     // which consider PrimitiveShadowTy an illegal type.
3145     for (unsigned N = 0; N < FT->getNumParams(); N++) {
3146       const unsigned ArgNo = ShadowArgStart + N;
3147       if (CustomCI->getArgOperand(ArgNo)->getType() ==
3148           DFSF.DFS.PrimitiveShadowTy)
3149         CustomCI->addParamAttr(ArgNo, Attribute::ZExt);
3150       if (ShouldTrackOrigins) {
3151         const unsigned OriginArgNo = OriginArgStart + N;
3152         if (CustomCI->getArgOperand(OriginArgNo)->getType() ==
3153             DFSF.DFS.OriginTy)
3154           CustomCI->addParamAttr(OriginArgNo, Attribute::ZExt);
3155       }
3156     }
3157 
3158     // Loads the return value shadow and origin.
3159     if (!FT->getReturnType()->isVoidTy()) {
3160       LoadInst *LabelLoad =
3161           IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca);
3162       DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow(
3163                                    FT->getReturnType(), LabelLoad, &CB));
3164       if (ShouldTrackOrigins) {
3165         LoadInst *OriginLoad =
3166             IRB.CreateLoad(DFSF.DFS.OriginTy, DFSF.OriginReturnAlloca);
3167         DFSF.setOrigin(CustomCI, OriginLoad);
3168       }
3169     }
3170 
3171     CI->replaceAllUsesWith(CustomCI);
3172     CI->eraseFromParent();
3173     return true;
3174   }
3175   return false;
3176 }
3177 
3178 Value *DFSanVisitor::makeAddAcquireOrderingTable(IRBuilder<> &IRB) {
3179   constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1;
3180   uint32_t OrderingTable[NumOrderings] = {};
3181 
3182   OrderingTable[(int)AtomicOrderingCABI::relaxed] =
3183       OrderingTable[(int)AtomicOrderingCABI::acquire] =
3184           OrderingTable[(int)AtomicOrderingCABI::consume] =
3185               (int)AtomicOrderingCABI::acquire;
3186   OrderingTable[(int)AtomicOrderingCABI::release] =
3187       OrderingTable[(int)AtomicOrderingCABI::acq_rel] =
3188           (int)AtomicOrderingCABI::acq_rel;
3189   OrderingTable[(int)AtomicOrderingCABI::seq_cst] =
3190       (int)AtomicOrderingCABI::seq_cst;
3191 
3192   return ConstantDataVector::get(IRB.getContext(),
3193                                  ArrayRef(OrderingTable, NumOrderings));
3194 }
3195 
3196 void DFSanVisitor::visitLibAtomicLoad(CallBase &CB) {
3197   // Since we use getNextNode here, we can't have CB terminate the BB.
3198   assert(isa<CallInst>(CB));
3199 
3200   IRBuilder<> IRB(&CB);
3201   Value *Size = CB.getArgOperand(0);
3202   Value *SrcPtr = CB.getArgOperand(1);
3203   Value *DstPtr = CB.getArgOperand(2);
3204   Value *Ordering = CB.getArgOperand(3);
3205   // Convert the call to have at least Acquire ordering to make sure
3206   // the shadow operations aren't reordered before it.
3207   Value *NewOrdering =
3208       IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering);
3209   CB.setArgOperand(3, NewOrdering);
3210 
3211   IRBuilder<> NextIRB(CB.getNextNode());
3212   NextIRB.SetCurrentDebugLocation(CB.getDebugLoc());
3213 
3214   // TODO: Support ClCombinePointerLabelsOnLoad
3215   // TODO: Support ClEventCallbacks
3216 
3217   NextIRB.CreateCall(DFSF.DFS.DFSanMemShadowOriginTransferFn,
3218                      {NextIRB.CreatePointerCast(DstPtr, NextIRB.getInt8PtrTy()),
3219                       NextIRB.CreatePointerCast(SrcPtr, NextIRB.getInt8PtrTy()),
3220                       NextIRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
3221 }
3222 
3223 Value *DFSanVisitor::makeAddReleaseOrderingTable(IRBuilder<> &IRB) {
3224   constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1;
3225   uint32_t OrderingTable[NumOrderings] = {};
3226 
3227   OrderingTable[(int)AtomicOrderingCABI::relaxed] =
3228       OrderingTable[(int)AtomicOrderingCABI::release] =
3229           (int)AtomicOrderingCABI::release;
3230   OrderingTable[(int)AtomicOrderingCABI::consume] =
3231       OrderingTable[(int)AtomicOrderingCABI::acquire] =
3232           OrderingTable[(int)AtomicOrderingCABI::acq_rel] =
3233               (int)AtomicOrderingCABI::acq_rel;
3234   OrderingTable[(int)AtomicOrderingCABI::seq_cst] =
3235       (int)AtomicOrderingCABI::seq_cst;
3236 
3237   return ConstantDataVector::get(IRB.getContext(),
3238                                  ArrayRef(OrderingTable, NumOrderings));
3239 }
3240 
3241 void DFSanVisitor::visitLibAtomicStore(CallBase &CB) {
3242   IRBuilder<> IRB(&CB);
3243   Value *Size = CB.getArgOperand(0);
3244   Value *SrcPtr = CB.getArgOperand(1);
3245   Value *DstPtr = CB.getArgOperand(2);
3246   Value *Ordering = CB.getArgOperand(3);
3247   // Convert the call to have at least Release ordering to make sure
3248   // the shadow operations aren't reordered after it.
3249   Value *NewOrdering =
3250       IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering);
3251   CB.setArgOperand(3, NewOrdering);
3252 
3253   // TODO: Support ClCombinePointerLabelsOnStore
3254   // TODO: Support ClEventCallbacks
3255 
3256   IRB.CreateCall(DFSF.DFS.DFSanMemShadowOriginTransferFn,
3257                  {IRB.CreatePointerCast(DstPtr, IRB.getInt8PtrTy()),
3258                   IRB.CreatePointerCast(SrcPtr, IRB.getInt8PtrTy()),
3259                   IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
3260 }
3261 
3262 void DFSanVisitor::visitLibAtomicExchange(CallBase &CB) {
3263   // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, int
3264   // ordering)
3265   IRBuilder<> IRB(&CB);
3266   Value *Size = CB.getArgOperand(0);
3267   Value *TargetPtr = CB.getArgOperand(1);
3268   Value *SrcPtr = CB.getArgOperand(2);
3269   Value *DstPtr = CB.getArgOperand(3);
3270 
3271   // This operation is not atomic for the shadow and origin memory.
3272   // This could result in DFSan false positives or false negatives.
3273   // For now we will assume these operations are rare, and
3274   // the additional complexity to address this is not warrented.
3275 
3276   // Current Target to Dest
3277   IRB.CreateCall(DFSF.DFS.DFSanMemShadowOriginTransferFn,
3278                  {IRB.CreatePointerCast(DstPtr, IRB.getInt8PtrTy()),
3279                   IRB.CreatePointerCast(TargetPtr, IRB.getInt8PtrTy()),
3280                   IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
3281 
3282   // Current Src to Target (overriding)
3283   IRB.CreateCall(DFSF.DFS.DFSanMemShadowOriginTransferFn,
3284                  {IRB.CreatePointerCast(TargetPtr, IRB.getInt8PtrTy()),
3285                   IRB.CreatePointerCast(SrcPtr, IRB.getInt8PtrTy()),
3286                   IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
3287 }
3288 
3289 void DFSanVisitor::visitLibAtomicCompareExchange(CallBase &CB) {
3290   // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, void
3291   // *desired, int success_order, int failure_order)
3292   Value *Size = CB.getArgOperand(0);
3293   Value *TargetPtr = CB.getArgOperand(1);
3294   Value *ExpectedPtr = CB.getArgOperand(2);
3295   Value *DesiredPtr = CB.getArgOperand(3);
3296 
3297   // This operation is not atomic for the shadow and origin memory.
3298   // This could result in DFSan false positives or false negatives.
3299   // For now we will assume these operations are rare, and
3300   // the additional complexity to address this is not warrented.
3301 
3302   IRBuilder<> NextIRB(CB.getNextNode());
3303   NextIRB.SetCurrentDebugLocation(CB.getDebugLoc());
3304 
3305   DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
3306 
3307   // If original call returned true, copy Desired to Target.
3308   // If original call returned false, copy Target to Expected.
3309   NextIRB.CreateCall(
3310       DFSF.DFS.DFSanMemShadowOriginConditionalExchangeFn,
3311       {NextIRB.CreateIntCast(&CB, NextIRB.getInt8Ty(), false),
3312        NextIRB.CreatePointerCast(TargetPtr, NextIRB.getInt8PtrTy()),
3313        NextIRB.CreatePointerCast(ExpectedPtr, NextIRB.getInt8PtrTy()),
3314        NextIRB.CreatePointerCast(DesiredPtr, NextIRB.getInt8PtrTy()),
3315        NextIRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
3316 }
3317 
3318 void DFSanVisitor::visitCallBase(CallBase &CB) {
3319   Function *F = CB.getCalledFunction();
3320   if ((F && F->isIntrinsic()) || CB.isInlineAsm()) {
3321     visitInstOperands(CB);
3322     return;
3323   }
3324 
3325   // Calls to this function are synthesized in wrappers, and we shouldn't
3326   // instrument them.
3327   if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts())
3328     return;
3329 
3330   LibFunc LF;
3331   if (DFSF.TLI.getLibFunc(CB, LF)) {
3332     // libatomic.a functions need to have special handling because there isn't
3333     // a good way to intercept them or compile the library with
3334     // instrumentation.
3335     switch (LF) {
3336     case LibFunc_atomic_load:
3337       if (!isa<CallInst>(CB)) {
3338         llvm::errs() << "DFSAN -- cannot instrument invoke of libatomic load. "
3339                         "Ignoring!\n";
3340         break;
3341       }
3342       visitLibAtomicLoad(CB);
3343       return;
3344     case LibFunc_atomic_store:
3345       visitLibAtomicStore(CB);
3346       return;
3347     default:
3348       break;
3349     }
3350   }
3351 
3352   // TODO: These are not supported by TLI? They are not in the enum.
3353   if (F && F->hasName() && !F->isVarArg()) {
3354     if (F->getName() == "__atomic_exchange") {
3355       visitLibAtomicExchange(CB);
3356       return;
3357     }
3358     if (F->getName() == "__atomic_compare_exchange") {
3359       visitLibAtomicCompareExchange(CB);
3360       return;
3361     }
3362   }
3363 
3364   DenseMap<Value *, Function *>::iterator UnwrappedFnIt =
3365       DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand());
3366   if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end())
3367     if (visitWrappedCallBase(*UnwrappedFnIt->second, CB))
3368       return;
3369 
3370   IRBuilder<> IRB(&CB);
3371 
3372   const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
3373   FunctionType *FT = CB.getFunctionType();
3374   const DataLayout &DL = getDataLayout();
3375 
3376   // Stores argument shadows.
3377   unsigned ArgOffset = 0;
3378   for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) {
3379     if (ShouldTrackOrigins) {
3380       // Ignore overflowed origins
3381       Value *ArgShadow = DFSF.getShadow(CB.getArgOperand(I));
3382       if (I < DFSF.DFS.NumOfElementsInArgOrgTLS &&
3383           !DFSF.DFS.isZeroShadow(ArgShadow))
3384         IRB.CreateStore(DFSF.getOrigin(CB.getArgOperand(I)),
3385                         DFSF.getArgOriginTLS(I, IRB));
3386     }
3387 
3388     unsigned Size =
3389         DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I)));
3390     // Stop storing if arguments' size overflows. Inside a function, arguments
3391     // after overflow have zero shadow values.
3392     if (ArgOffset + Size > ArgTLSSize)
3393       break;
3394     IRB.CreateAlignedStore(DFSF.getShadow(CB.getArgOperand(I)),
3395                            DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB),
3396                            ShadowTLSAlignment);
3397     ArgOffset += alignTo(Size, ShadowTLSAlignment);
3398   }
3399 
3400   Instruction *Next = nullptr;
3401   if (!CB.getType()->isVoidTy()) {
3402     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
3403       if (II->getNormalDest()->getSinglePredecessor()) {
3404         Next = &II->getNormalDest()->front();
3405       } else {
3406         BasicBlock *NewBB =
3407             SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT);
3408         Next = &NewBB->front();
3409       }
3410     } else {
3411       assert(CB.getIterator() != CB.getParent()->end());
3412       Next = CB.getNextNode();
3413     }
3414 
3415     // Don't emit the epilogue for musttail call returns.
3416     if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall())
3417       return;
3418 
3419     // Loads the return value shadow.
3420     IRBuilder<> NextIRB(Next);
3421     unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB));
3422     if (Size > RetvalTLSSize) {
3423       // Set overflowed return shadow to be zero.
3424       DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
3425     } else {
3426       LoadInst *LI = NextIRB.CreateAlignedLoad(
3427           DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB),
3428           ShadowTLSAlignment, "_dfsret");
3429       DFSF.SkipInsts.insert(LI);
3430       DFSF.setShadow(&CB, LI);
3431       DFSF.NonZeroChecks.push_back(LI);
3432     }
3433 
3434     if (ShouldTrackOrigins) {
3435       LoadInst *LI = NextIRB.CreateLoad(DFSF.DFS.OriginTy,
3436                                         DFSF.getRetvalOriginTLS(), "_dfsret_o");
3437       DFSF.SkipInsts.insert(LI);
3438       DFSF.setOrigin(&CB, LI);
3439     }
3440 
3441     DFSF.addReachesFunctionCallbacksIfEnabled(NextIRB, CB, &CB);
3442   }
3443 }
3444 
3445 void DFSanVisitor::visitPHINode(PHINode &PN) {
3446   Type *ShadowTy = DFSF.DFS.getShadowTy(&PN);
3447   PHINode *ShadowPN =
3448       PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN);
3449 
3450   // Give the shadow phi node valid predecessors to fool SplitEdge into working.
3451   Value *UndefShadow = UndefValue::get(ShadowTy);
3452   for (BasicBlock *BB : PN.blocks())
3453     ShadowPN->addIncoming(UndefShadow, BB);
3454 
3455   DFSF.setShadow(&PN, ShadowPN);
3456 
3457   PHINode *OriginPN = nullptr;
3458   if (DFSF.DFS.shouldTrackOrigins()) {
3459     OriginPN =
3460         PHINode::Create(DFSF.DFS.OriginTy, PN.getNumIncomingValues(), "", &PN);
3461     Value *UndefOrigin = UndefValue::get(DFSF.DFS.OriginTy);
3462     for (BasicBlock *BB : PN.blocks())
3463       OriginPN->addIncoming(UndefOrigin, BB);
3464     DFSF.setOrigin(&PN, OriginPN);
3465   }
3466 
3467   DFSF.PHIFixups.push_back({&PN, ShadowPN, OriginPN});
3468 }
3469 
3470 PreservedAnalyses DataFlowSanitizerPass::run(Module &M,
3471                                              ModuleAnalysisManager &AM) {
3472   auto GetTLI = [&](Function &F) -> TargetLibraryInfo & {
3473     auto &FAM =
3474         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
3475     return FAM.getResult<TargetLibraryAnalysis>(F);
3476   };
3477   if (!DataFlowSanitizer(ABIListFiles).runImpl(M, GetTLI))
3478     return PreservedAnalyses::all();
3479 
3480   PreservedAnalyses PA = PreservedAnalyses::none();
3481   // GlobalsAA is considered stateless and does not get invalidated unless
3482   // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers
3483   // make changes that require GlobalsAA to be invalidated.
3484   PA.abandon<GlobalsAA>();
3485   return PA;
3486 }
3487