1 //===- PGOInstrumentation.cpp - MST-based PGO Instrumentation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements PGO instrumentation using a minimum spanning tree based
10 // on the following paper:
11 //   [1] Donald E. Knuth, Francis R. Stevenson. Optimal measurement of points
12 //   for program frequency counts. BIT Numerical Mathematics 1973, Volume 13,
13 //   Issue 3, pp 313-322
14 // The idea of the algorithm based on the fact that for each node (except for
15 // the entry and exit), the sum of incoming edge counts equals the sum of
16 // outgoing edge counts. The count of edge on spanning tree can be derived from
17 // those edges not on the spanning tree. Knuth proves this method instruments
18 // the minimum number of edges.
19 //
20 // The minimal spanning tree here is actually a maximum weight tree -- on-tree
21 // edges have higher frequencies (more likely to execute). The idea is to
22 // instrument those less frequently executed edges to reduce the runtime
23 // overhead of instrumented binaries.
24 //
25 // This file contains two passes:
26 // (1) Pass PGOInstrumentationGen which instruments the IR to generate edge
27 // count profile, and generates the instrumentation for indirect call
28 // profiling.
29 // (2) Pass PGOInstrumentationUse which reads the edge count profile and
30 // annotates the branch weights. It also reads the indirect call value
31 // profiling records and annotate the indirect call instructions.
32 //
33 // To get the precise counter information, These two passes need to invoke at
34 // the same compilation point (so they see the same IR). For pass
35 // PGOInstrumentationGen, the real work is done in instrumentOneFunc(). For
36 // pass PGOInstrumentationUse, the real work in done in class PGOUseFunc and
37 // the profile is opened in module level and passed to each PGOUseFunc instance.
38 // The shared code for PGOInstrumentationGen and PGOInstrumentationUse is put
39 // in class FuncPGOInstrumentation.
40 //
41 // Class PGOEdge represents a CFG edge and some auxiliary information. Class
42 // BBInfo contains auxiliary information for each BB. These two classes are used
43 // in pass PGOInstrumentationGen. Class PGOUseEdge and UseBBInfo are the derived
44 // class of PGOEdge and BBInfo, respectively. They contains extra data structure
45 // used in populating profile counters.
46 // The MST implementation is in Class CFGMST (CFGMST.h).
47 //
48 //===----------------------------------------------------------------------===//
49 
50 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
51 #include "CFGMST.h"
52 #include "ValueProfileCollector.h"
53 #include "llvm/ADT/APInt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/STLExtras.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/Statistic.h"
58 #include "llvm/ADT/StringRef.h"
59 #include "llvm/ADT/Triple.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/ADT/iterator.h"
62 #include "llvm/ADT/iterator_range.h"
63 #include "llvm/Analysis/BlockFrequencyInfo.h"
64 #include "llvm/Analysis/BranchProbabilityInfo.h"
65 #include "llvm/Analysis/CFG.h"
66 #include "llvm/Analysis/EHPersonalities.h"
67 #include "llvm/Analysis/LoopInfo.h"
68 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
69 #include "llvm/Analysis/ProfileSummaryInfo.h"
70 #include "llvm/Analysis/TargetLibraryInfo.h"
71 #include "llvm/IR/Attributes.h"
72 #include "llvm/IR/BasicBlock.h"
73 #include "llvm/IR/CFG.h"
74 #include "llvm/IR/Comdat.h"
75 #include "llvm/IR/Constant.h"
76 #include "llvm/IR/Constants.h"
77 #include "llvm/IR/DiagnosticInfo.h"
78 #include "llvm/IR/Dominators.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GlobalAlias.h"
81 #include "llvm/IR/GlobalValue.h"
82 #include "llvm/IR/GlobalVariable.h"
83 #include "llvm/IR/IRBuilder.h"
84 #include "llvm/IR/InstVisitor.h"
85 #include "llvm/IR/InstrTypes.h"
86 #include "llvm/IR/Instruction.h"
87 #include "llvm/IR/Instructions.h"
88 #include "llvm/IR/IntrinsicInst.h"
89 #include "llvm/IR/Intrinsics.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/MDBuilder.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/PassManager.h"
94 #include "llvm/IR/ProfileSummary.h"
95 #include "llvm/IR/Type.h"
96 #include "llvm/IR/Value.h"
97 #include "llvm/ProfileData/InstrProf.h"
98 #include "llvm/ProfileData/InstrProfReader.h"
99 #include "llvm/Support/BranchProbability.h"
100 #include "llvm/Support/CRC.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/DOTGraphTraits.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/Error.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/GraphWriter.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include "llvm/Transforms/Instrumentation.h"
110 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
111 #include "llvm/Transforms/Utils/MisExpect.h"
112 #include "llvm/Transforms/Utils/ModuleUtils.h"
113 #include <algorithm>
114 #include <cassert>
115 #include <cstdint>
116 #include <memory>
117 #include <numeric>
118 #include <string>
119 #include <unordered_map>
120 #include <utility>
121 #include <vector>
122 
123 using namespace llvm;
124 using ProfileCount = Function::ProfileCount;
125 using VPCandidateInfo = ValueProfileCollector::CandidateInfo;
126 
127 #define DEBUG_TYPE "pgo-instrumentation"
128 
129 STATISTIC(NumOfPGOInstrument, "Number of edges instrumented.");
130 STATISTIC(NumOfPGOSelectInsts, "Number of select instruction instrumented.");
131 STATISTIC(NumOfPGOMemIntrinsics, "Number of mem intrinsics instrumented.");
132 STATISTIC(NumOfPGOEdge, "Number of edges.");
133 STATISTIC(NumOfPGOBB, "Number of basic-blocks.");
134 STATISTIC(NumOfPGOSplit, "Number of critical edge splits.");
135 STATISTIC(NumOfPGOFunc, "Number of functions having valid profile counts.");
136 STATISTIC(NumOfPGOMismatch, "Number of functions having mismatch profile.");
137 STATISTIC(NumOfPGOMissing, "Number of functions without profile.");
138 STATISTIC(NumOfPGOICall, "Number of indirect call value instrumentations.");
139 STATISTIC(NumOfCSPGOInstrument, "Number of edges instrumented in CSPGO.");
140 STATISTIC(NumOfCSPGOSelectInsts,
141           "Number of select instruction instrumented in CSPGO.");
142 STATISTIC(NumOfCSPGOMemIntrinsics,
143           "Number of mem intrinsics instrumented in CSPGO.");
144 STATISTIC(NumOfCSPGOEdge, "Number of edges in CSPGO.");
145 STATISTIC(NumOfCSPGOBB, "Number of basic-blocks in CSPGO.");
146 STATISTIC(NumOfCSPGOSplit, "Number of critical edge splits in CSPGO.");
147 STATISTIC(NumOfCSPGOFunc,
148           "Number of functions having valid profile counts in CSPGO.");
149 STATISTIC(NumOfCSPGOMismatch,
150           "Number of functions having mismatch profile in CSPGO.");
151 STATISTIC(NumOfCSPGOMissing, "Number of functions without profile in CSPGO.");
152 
153 // Command line option to specify the file to read profile from. This is
154 // mainly used for testing.
155 static cl::opt<std::string>
156     PGOTestProfileFile("pgo-test-profile-file", cl::init(""), cl::Hidden,
157                        cl::value_desc("filename"),
158                        cl::desc("Specify the path of profile data file. This is"
159                                 "mainly for test purpose."));
160 static cl::opt<std::string> PGOTestProfileRemappingFile(
161     "pgo-test-profile-remapping-file", cl::init(""), cl::Hidden,
162     cl::value_desc("filename"),
163     cl::desc("Specify the path of profile remapping file. This is mainly for "
164              "test purpose."));
165 
166 // Command line option to disable value profiling. The default is false:
167 // i.e. value profiling is enabled by default. This is for debug purpose.
168 static cl::opt<bool> DisableValueProfiling("disable-vp", cl::init(false),
169                                            cl::Hidden,
170                                            cl::desc("Disable Value Profiling"));
171 
172 // Command line option to set the maximum number of VP annotations to write to
173 // the metadata for a single indirect call callsite.
174 static cl::opt<unsigned> MaxNumAnnotations(
175     "icp-max-annotations", cl::init(3), cl::Hidden,
176     cl::desc("Max number of annotations for a single indirect "
177              "call callsite"));
178 
179 // Command line option to set the maximum number of value annotations
180 // to write to the metadata for a single memop intrinsic.
181 static cl::opt<unsigned> MaxNumMemOPAnnotations(
182     "memop-max-annotations", cl::init(4), cl::Hidden,
183     cl::desc("Max number of preicise value annotations for a single memop"
184              "intrinsic"));
185 
186 // Command line option to control appending FunctionHash to the name of a COMDAT
187 // function. This is to avoid the hash mismatch caused by the preinliner.
188 static cl::opt<bool> DoComdatRenaming(
189     "do-comdat-renaming", cl::init(false), cl::Hidden,
190     cl::desc("Append function hash to the name of COMDAT function to avoid "
191              "function hash mismatch due to the preinliner"));
192 
193 // Command line option to enable/disable the warning about missing profile
194 // information.
195 static cl::opt<bool>
196     PGOWarnMissing("pgo-warn-missing-function", cl::init(false), cl::Hidden,
197                    cl::desc("Use this option to turn on/off "
198                             "warnings about missing profile data for "
199                             "functions."));
200 
201 namespace llvm {
202 // Command line option to enable/disable the warning about a hash mismatch in
203 // the profile data.
204 cl::opt<bool>
205     NoPGOWarnMismatch("no-pgo-warn-mismatch", cl::init(false), cl::Hidden,
206                       cl::desc("Use this option to turn off/on "
207                                "warnings about profile cfg mismatch."));
208 } // namespace llvm
209 
210 // Command line option to enable/disable the warning about a hash mismatch in
211 // the profile data for Comdat functions, which often turns out to be false
212 // positive due to the pre-instrumentation inline.
213 static cl::opt<bool> NoPGOWarnMismatchComdatWeak(
214     "no-pgo-warn-mismatch-comdat-weak", cl::init(true), cl::Hidden,
215     cl::desc("The option is used to turn on/off "
216              "warnings about hash mismatch for comdat "
217              "or weak functions."));
218 
219 // Command line option to enable/disable select instruction instrumentation.
220 static cl::opt<bool>
221     PGOInstrSelect("pgo-instr-select", cl::init(true), cl::Hidden,
222                    cl::desc("Use this option to turn on/off SELECT "
223                             "instruction instrumentation. "));
224 
225 // Command line option to turn on CFG dot or text dump of raw profile counts
226 static cl::opt<PGOViewCountsType> PGOViewRawCounts(
227     "pgo-view-raw-counts", cl::Hidden,
228     cl::desc("A boolean option to show CFG dag or text "
229              "with raw profile counts from "
230              "profile data. See also option "
231              "-pgo-view-counts. To limit graph "
232              "display to only one function, use "
233              "filtering option -view-bfi-func-name."),
234     cl::values(clEnumValN(PGOVCT_None, "none", "do not show."),
235                clEnumValN(PGOVCT_Graph, "graph", "show a graph."),
236                clEnumValN(PGOVCT_Text, "text", "show in text.")));
237 
238 // Command line option to enable/disable memop intrinsic call.size profiling.
239 static cl::opt<bool>
240     PGOInstrMemOP("pgo-instr-memop", cl::init(true), cl::Hidden,
241                   cl::desc("Use this option to turn on/off "
242                            "memory intrinsic size profiling."));
243 
244 // Emit branch probability as optimization remarks.
245 static cl::opt<bool>
246     EmitBranchProbability("pgo-emit-branch-prob", cl::init(false), cl::Hidden,
247                           cl::desc("When this option is on, the annotated "
248                                    "branch probability will be emitted as "
249                                    "optimization remarks: -{Rpass|"
250                                    "pass-remarks}=pgo-instrumentation"));
251 
252 static cl::opt<bool> PGOInstrumentEntry(
253     "pgo-instrument-entry", cl::init(false), cl::Hidden,
254     cl::desc("Force to instrument function entry basicblock."));
255 
256 static cl::opt<bool> PGOFunctionEntryCoverage(
257     "pgo-function-entry-coverage", cl::Hidden,
258     cl::desc(
259         "Use this option to enable function entry coverage instrumentation."));
260 
261 static cl::opt<bool>
262     PGOFixEntryCount("pgo-fix-entry-count", cl::init(true), cl::Hidden,
263                      cl::desc("Fix function entry count in profile use."));
264 
265 static cl::opt<bool> PGOVerifyHotBFI(
266     "pgo-verify-hot-bfi", cl::init(false), cl::Hidden,
267     cl::desc("Print out the non-match BFI count if a hot raw profile count "
268              "becomes non-hot, or a cold raw profile count becomes hot. "
269              "The print is enabled under -Rpass-analysis=pgo, or "
270              "internal option -pass-remakrs-analysis=pgo."));
271 
272 static cl::opt<bool> PGOVerifyBFI(
273     "pgo-verify-bfi", cl::init(false), cl::Hidden,
274     cl::desc("Print out mismatched BFI counts after setting profile metadata "
275              "The print is enabled under -Rpass-analysis=pgo, or "
276              "internal option -pass-remakrs-analysis=pgo."));
277 
278 static cl::opt<unsigned> PGOVerifyBFIRatio(
279     "pgo-verify-bfi-ratio", cl::init(2), cl::Hidden,
280     cl::desc("Set the threshold for pgo-verify-bfi:  only print out "
281              "mismatched BFI if the difference percentage is greater than "
282              "this value (in percentage)."));
283 
284 static cl::opt<unsigned> PGOVerifyBFICutoff(
285     "pgo-verify-bfi-cutoff", cl::init(5), cl::Hidden,
286     cl::desc("Set the threshold for pgo-verify-bfi: skip the counts whose "
287              "profile count value is below."));
288 
289 static cl::opt<std::string> PGOTraceFuncHash(
290     "pgo-trace-func-hash", cl::init("-"), cl::Hidden,
291     cl::value_desc("function name"),
292     cl::desc("Trace the hash of the function with this name."));
293 
294 namespace llvm {
295 // Command line option to turn on CFG dot dump after profile annotation.
296 // Defined in Analysis/BlockFrequencyInfo.cpp:  -pgo-view-counts
297 extern cl::opt<PGOViewCountsType> PGOViewCounts;
298 
299 // Command line option to specify the name of the function for CFG dump
300 // Defined in Analysis/BlockFrequencyInfo.cpp:  -view-bfi-func-name=
301 extern cl::opt<std::string> ViewBlockFreqFuncName;
302 
303 extern cl::opt<bool> DebugInfoCorrelate;
304 } // namespace llvm
305 
306 static cl::opt<bool>
307     PGOOldCFGHashing("pgo-instr-old-cfg-hashing", cl::init(false), cl::Hidden,
308                      cl::desc("Use the old CFG function hashing"));
309 
310 // Return a string describing the branch condition that can be
311 // used in static branch probability heuristics:
312 static std::string getBranchCondString(Instruction *TI) {
313   BranchInst *BI = dyn_cast<BranchInst>(TI);
314   if (!BI || !BI->isConditional())
315     return std::string();
316 
317   Value *Cond = BI->getCondition();
318   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
319   if (!CI)
320     return std::string();
321 
322   std::string result;
323   raw_string_ostream OS(result);
324   OS << CmpInst::getPredicateName(CI->getPredicate()) << "_";
325   CI->getOperand(0)->getType()->print(OS, true);
326 
327   Value *RHS = CI->getOperand(1);
328   ConstantInt *CV = dyn_cast<ConstantInt>(RHS);
329   if (CV) {
330     if (CV->isZero())
331       OS << "_Zero";
332     else if (CV->isOne())
333       OS << "_One";
334     else if (CV->isMinusOne())
335       OS << "_MinusOne";
336     else
337       OS << "_Const";
338   }
339   OS.flush();
340   return result;
341 }
342 
343 static const char *ValueProfKindDescr[] = {
344 #define VALUE_PROF_KIND(Enumerator, Value, Descr) Descr,
345 #include "llvm/ProfileData/InstrProfData.inc"
346 };
347 
348 // Create a COMDAT variable INSTR_PROF_RAW_VERSION_VAR to make the runtime
349 // aware this is an ir_level profile so it can set the version flag.
350 static GlobalVariable *createIRLevelProfileFlagVar(Module &M, bool IsCS) {
351   const StringRef VarName(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
352   Type *IntTy64 = Type::getInt64Ty(M.getContext());
353   uint64_t ProfileVersion = (INSTR_PROF_RAW_VERSION | VARIANT_MASK_IR_PROF);
354   if (IsCS)
355     ProfileVersion |= VARIANT_MASK_CSIR_PROF;
356   if (PGOInstrumentEntry)
357     ProfileVersion |= VARIANT_MASK_INSTR_ENTRY;
358   if (DebugInfoCorrelate)
359     ProfileVersion |= VARIANT_MASK_DBG_CORRELATE;
360   if (PGOFunctionEntryCoverage)
361     ProfileVersion |=
362         VARIANT_MASK_BYTE_COVERAGE | VARIANT_MASK_FUNCTION_ENTRY_ONLY;
363   auto IRLevelVersionVariable = new GlobalVariable(
364       M, IntTy64, true, GlobalValue::WeakAnyLinkage,
365       Constant::getIntegerValue(IntTy64, APInt(64, ProfileVersion)), VarName);
366   IRLevelVersionVariable->setVisibility(GlobalValue::DefaultVisibility);
367   Triple TT(M.getTargetTriple());
368   if (TT.supportsCOMDAT()) {
369     IRLevelVersionVariable->setLinkage(GlobalValue::ExternalLinkage);
370     IRLevelVersionVariable->setComdat(M.getOrInsertComdat(VarName));
371   }
372   return IRLevelVersionVariable;
373 }
374 
375 namespace {
376 
377 /// The select instruction visitor plays three roles specified
378 /// by the mode. In \c VM_counting mode, it simply counts the number of
379 /// select instructions. In \c VM_instrument mode, it inserts code to count
380 /// the number times TrueValue of select is taken. In \c VM_annotate mode,
381 /// it reads the profile data and annotate the select instruction with metadata.
382 enum VisitMode { VM_counting, VM_instrument, VM_annotate };
383 class PGOUseFunc;
384 
385 /// Instruction Visitor class to visit select instructions.
386 struct SelectInstVisitor : public InstVisitor<SelectInstVisitor> {
387   Function &F;
388   unsigned NSIs = 0;             // Number of select instructions instrumented.
389   VisitMode Mode = VM_counting;  // Visiting mode.
390   unsigned *CurCtrIdx = nullptr; // Pointer to current counter index.
391   unsigned TotalNumCtrs = 0;     // Total number of counters
392   GlobalVariable *FuncNameVar = nullptr;
393   uint64_t FuncHash = 0;
394   PGOUseFunc *UseFunc = nullptr;
395 
396   SelectInstVisitor(Function &Func) : F(Func) {}
397 
398   void countSelects(Function &Func) {
399     NSIs = 0;
400     Mode = VM_counting;
401     visit(Func);
402   }
403 
404   // Visit the IR stream and instrument all select instructions. \p
405   // Ind is a pointer to the counter index variable; \p TotalNC
406   // is the total number of counters; \p FNV is the pointer to the
407   // PGO function name var; \p FHash is the function hash.
408   void instrumentSelects(Function &Func, unsigned *Ind, unsigned TotalNC,
409                          GlobalVariable *FNV, uint64_t FHash) {
410     Mode = VM_instrument;
411     CurCtrIdx = Ind;
412     TotalNumCtrs = TotalNC;
413     FuncHash = FHash;
414     FuncNameVar = FNV;
415     visit(Func);
416   }
417 
418   // Visit the IR stream and annotate all select instructions.
419   void annotateSelects(Function &Func, PGOUseFunc *UF, unsigned *Ind) {
420     Mode = VM_annotate;
421     UseFunc = UF;
422     CurCtrIdx = Ind;
423     visit(Func);
424   }
425 
426   void instrumentOneSelectInst(SelectInst &SI);
427   void annotateOneSelectInst(SelectInst &SI);
428 
429   // Visit \p SI instruction and perform tasks according to visit mode.
430   void visitSelectInst(SelectInst &SI);
431 
432   // Return the number of select instructions. This needs be called after
433   // countSelects().
434   unsigned getNumOfSelectInsts() const { return NSIs; }
435 };
436 
437 } // end anonymous namespace
438 
439 namespace {
440 
441 /// An MST based instrumentation for PGO
442 ///
443 /// Implements a Minimum Spanning Tree (MST) based instrumentation for PGO
444 /// in the function level.
445 struct PGOEdge {
446   // This class implements the CFG edges. Note the CFG can be a multi-graph.
447   // So there might be multiple edges with same SrcBB and DestBB.
448   const BasicBlock *SrcBB;
449   const BasicBlock *DestBB;
450   uint64_t Weight;
451   bool InMST = false;
452   bool Removed = false;
453   bool IsCritical = false;
454 
455   PGOEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W = 1)
456       : SrcBB(Src), DestBB(Dest), Weight(W) {}
457 
458   // Return the information string of an edge.
459   std::string infoString() const {
460     return (Twine(Removed ? "-" : " ") + (InMST ? " " : "*") +
461             (IsCritical ? "c" : " ") + "  W=" + Twine(Weight)).str();
462   }
463 };
464 
465 // This class stores the auxiliary information for each BB.
466 struct BBInfo {
467   BBInfo *Group;
468   uint32_t Index;
469   uint32_t Rank = 0;
470 
471   BBInfo(unsigned IX) : Group(this), Index(IX) {}
472 
473   // Return the information string of this object.
474   std::string infoString() const {
475     return (Twine("Index=") + Twine(Index)).str();
476   }
477 
478   // Empty function -- only applicable to UseBBInfo.
479   void addOutEdge(PGOEdge *E LLVM_ATTRIBUTE_UNUSED) {}
480 
481   // Empty function -- only applicable to UseBBInfo.
482   void addInEdge(PGOEdge *E LLVM_ATTRIBUTE_UNUSED) {}
483 };
484 
485 // This class implements the CFG edges. Note the CFG can be a multi-graph.
486 template <class Edge, class BBInfo> class FuncPGOInstrumentation {
487 private:
488   Function &F;
489 
490   // Is this is context-sensitive instrumentation.
491   bool IsCS;
492 
493   // A map that stores the Comdat group in function F.
494   std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers;
495 
496   ValueProfileCollector VPC;
497 
498   void computeCFGHash();
499   void renameComdatFunction();
500 
501 public:
502   std::vector<std::vector<VPCandidateInfo>> ValueSites;
503   SelectInstVisitor SIVisitor;
504   std::string FuncName;
505   GlobalVariable *FuncNameVar;
506 
507   // CFG hash value for this function.
508   uint64_t FunctionHash = 0;
509 
510   // The Minimum Spanning Tree of function CFG.
511   CFGMST<Edge, BBInfo> MST;
512 
513   // Collect all the BBs that will be instrumented, and store them in
514   // InstrumentBBs.
515   void getInstrumentBBs(std::vector<BasicBlock *> &InstrumentBBs);
516 
517   // Give an edge, find the BB that will be instrumented.
518   // Return nullptr if there is no BB to be instrumented.
519   BasicBlock *getInstrBB(Edge *E);
520 
521   // Return the auxiliary BB information.
522   BBInfo &getBBInfo(const BasicBlock *BB) const { return MST.getBBInfo(BB); }
523 
524   // Return the auxiliary BB information if available.
525   BBInfo *findBBInfo(const BasicBlock *BB) const { return MST.findBBInfo(BB); }
526 
527   // Dump edges and BB information.
528   void dumpInfo(std::string Str = "") const {
529     MST.dumpEdges(dbgs(), Twine("Dump Function ") + FuncName + " Hash: " +
530                               Twine(FunctionHash) + "\t" + Str);
531   }
532 
533   FuncPGOInstrumentation(
534       Function &Func, TargetLibraryInfo &TLI,
535       std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
536       bool CreateGlobalVar = false, BranchProbabilityInfo *BPI = nullptr,
537       BlockFrequencyInfo *BFI = nullptr, bool IsCS = false,
538       bool InstrumentFuncEntry = true)
539       : F(Func), IsCS(IsCS), ComdatMembers(ComdatMembers), VPC(Func, TLI),
540         ValueSites(IPVK_Last + 1), SIVisitor(Func),
541         MST(F, InstrumentFuncEntry, BPI, BFI) {
542     // This should be done before CFG hash computation.
543     SIVisitor.countSelects(Func);
544     ValueSites[IPVK_MemOPSize] = VPC.get(IPVK_MemOPSize);
545     if (!IsCS) {
546       NumOfPGOSelectInsts += SIVisitor.getNumOfSelectInsts();
547       NumOfPGOMemIntrinsics += ValueSites[IPVK_MemOPSize].size();
548       NumOfPGOBB += MST.BBInfos.size();
549       ValueSites[IPVK_IndirectCallTarget] = VPC.get(IPVK_IndirectCallTarget);
550     } else {
551       NumOfCSPGOSelectInsts += SIVisitor.getNumOfSelectInsts();
552       NumOfCSPGOMemIntrinsics += ValueSites[IPVK_MemOPSize].size();
553       NumOfCSPGOBB += MST.BBInfos.size();
554     }
555 
556     FuncName = getPGOFuncName(F);
557     computeCFGHash();
558     if (!ComdatMembers.empty())
559       renameComdatFunction();
560     LLVM_DEBUG(dumpInfo("after CFGMST"));
561 
562     for (auto &E : MST.AllEdges) {
563       if (E->Removed)
564         continue;
565       IsCS ? NumOfCSPGOEdge++ : NumOfPGOEdge++;
566       if (!E->InMST)
567         IsCS ? NumOfCSPGOInstrument++ : NumOfPGOInstrument++;
568     }
569 
570     if (CreateGlobalVar)
571       FuncNameVar = createPGOFuncNameVar(F, FuncName);
572   }
573 };
574 
575 } // end anonymous namespace
576 
577 // Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index
578 // value of each BB in the CFG. The higher 32 bits are the CRC32 of the numbers
579 // of selects, indirect calls, mem ops and edges.
580 template <class Edge, class BBInfo>
581 void FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash() {
582   std::vector<uint8_t> Indexes;
583   JamCRC JC;
584   for (auto &BB : F) {
585     const Instruction *TI = BB.getTerminator();
586     for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
587       BasicBlock *Succ = TI->getSuccessor(I);
588       auto BI = findBBInfo(Succ);
589       if (BI == nullptr)
590         continue;
591       uint32_t Index = BI->Index;
592       for (int J = 0; J < 4; J++)
593         Indexes.push_back((uint8_t)(Index >> (J * 8)));
594     }
595   }
596   JC.update(Indexes);
597 
598   JamCRC JCH;
599   if (PGOOldCFGHashing) {
600     // Hash format for context sensitive profile. Reserve 4 bits for other
601     // information.
602     FunctionHash = (uint64_t)SIVisitor.getNumOfSelectInsts() << 56 |
603                    (uint64_t)ValueSites[IPVK_IndirectCallTarget].size() << 48 |
604                    //(uint64_t)ValueSites[IPVK_MemOPSize].size() << 40 |
605                    (uint64_t)MST.AllEdges.size() << 32 | JC.getCRC();
606   } else {
607     // The higher 32 bits.
608     auto updateJCH = [&JCH](uint64_t Num) {
609       uint8_t Data[8];
610       support::endian::write64le(Data, Num);
611       JCH.update(Data);
612     };
613     updateJCH((uint64_t)SIVisitor.getNumOfSelectInsts());
614     updateJCH((uint64_t)ValueSites[IPVK_IndirectCallTarget].size());
615     updateJCH((uint64_t)ValueSites[IPVK_MemOPSize].size());
616     updateJCH((uint64_t)MST.AllEdges.size());
617 
618     // Hash format for context sensitive profile. Reserve 4 bits for other
619     // information.
620     FunctionHash = (((uint64_t)JCH.getCRC()) << 28) + JC.getCRC();
621   }
622 
623   // Reserve bit 60-63 for other information purpose.
624   FunctionHash &= 0x0FFFFFFFFFFFFFFF;
625   if (IsCS)
626     NamedInstrProfRecord::setCSFlagInHash(FunctionHash);
627   LLVM_DEBUG(dbgs() << "Function Hash Computation for " << F.getName() << ":\n"
628                     << " CRC = " << JC.getCRC()
629                     << ", Selects = " << SIVisitor.getNumOfSelectInsts()
630                     << ", Edges = " << MST.AllEdges.size() << ", ICSites = "
631                     << ValueSites[IPVK_IndirectCallTarget].size());
632   if (!PGOOldCFGHashing) {
633     LLVM_DEBUG(dbgs() << ", Memops = " << ValueSites[IPVK_MemOPSize].size()
634                       << ", High32 CRC = " << JCH.getCRC());
635   }
636   LLVM_DEBUG(dbgs() << ", Hash = " << FunctionHash << "\n";);
637 
638   if (PGOTraceFuncHash != "-" && F.getName().contains(PGOTraceFuncHash))
639     dbgs() << "Funcname=" << F.getName() << ", Hash=" << FunctionHash
640            << " in building " << F.getParent()->getSourceFileName() << "\n";
641 }
642 
643 // Check if we can safely rename this Comdat function.
644 static bool canRenameComdat(
645     Function &F,
646     std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers) {
647   if (!DoComdatRenaming || !canRenameComdatFunc(F, true))
648     return false;
649 
650   // FIXME: Current only handle those Comdat groups that only containing one
651   // function.
652   // (1) For a Comdat group containing multiple functions, we need to have a
653   // unique postfix based on the hashes for each function. There is a
654   // non-trivial code refactoring to do this efficiently.
655   // (2) Variables can not be renamed, so we can not rename Comdat function in a
656   // group including global vars.
657   Comdat *C = F.getComdat();
658   for (auto &&CM : make_range(ComdatMembers.equal_range(C))) {
659     assert(!isa<GlobalAlias>(CM.second));
660     Function *FM = dyn_cast<Function>(CM.second);
661     if (FM != &F)
662       return false;
663   }
664   return true;
665 }
666 
667 // Append the CFGHash to the Comdat function name.
668 template <class Edge, class BBInfo>
669 void FuncPGOInstrumentation<Edge, BBInfo>::renameComdatFunction() {
670   if (!canRenameComdat(F, ComdatMembers))
671     return;
672   std::string OrigName = F.getName().str();
673   std::string NewFuncName =
674       Twine(F.getName() + "." + Twine(FunctionHash)).str();
675   F.setName(Twine(NewFuncName));
676   GlobalAlias::create(GlobalValue::WeakAnyLinkage, OrigName, &F);
677   FuncName = Twine(FuncName + "." + Twine(FunctionHash)).str();
678   Comdat *NewComdat;
679   Module *M = F.getParent();
680   // For AvailableExternallyLinkage functions, change the linkage to
681   // LinkOnceODR and put them into comdat. This is because after renaming, there
682   // is no backup external copy available for the function.
683   if (!F.hasComdat()) {
684     assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage);
685     NewComdat = M->getOrInsertComdat(StringRef(NewFuncName));
686     F.setLinkage(GlobalValue::LinkOnceODRLinkage);
687     F.setComdat(NewComdat);
688     return;
689   }
690 
691   // This function belongs to a single function Comdat group.
692   Comdat *OrigComdat = F.getComdat();
693   std::string NewComdatName =
694       Twine(OrigComdat->getName() + "." + Twine(FunctionHash)).str();
695   NewComdat = M->getOrInsertComdat(StringRef(NewComdatName));
696   NewComdat->setSelectionKind(OrigComdat->getSelectionKind());
697 
698   for (auto &&CM : make_range(ComdatMembers.equal_range(OrigComdat))) {
699     // Must be a function.
700     cast<Function>(CM.second)->setComdat(NewComdat);
701   }
702 }
703 
704 // Collect all the BBs that will be instruments and return them in
705 // InstrumentBBs and setup InEdges/OutEdge for UseBBInfo.
706 template <class Edge, class BBInfo>
707 void FuncPGOInstrumentation<Edge, BBInfo>::getInstrumentBBs(
708     std::vector<BasicBlock *> &InstrumentBBs) {
709   // Use a worklist as we will update the vector during the iteration.
710   std::vector<Edge *> EdgeList;
711   EdgeList.reserve(MST.AllEdges.size());
712   for (auto &E : MST.AllEdges)
713     EdgeList.push_back(E.get());
714 
715   for (auto &E : EdgeList) {
716     BasicBlock *InstrBB = getInstrBB(E);
717     if (InstrBB)
718       InstrumentBBs.push_back(InstrBB);
719   }
720 
721   // Set up InEdges/OutEdges for all BBs.
722   for (auto &E : MST.AllEdges) {
723     if (E->Removed)
724       continue;
725     const BasicBlock *SrcBB = E->SrcBB;
726     const BasicBlock *DestBB = E->DestBB;
727     BBInfo &SrcInfo = getBBInfo(SrcBB);
728     BBInfo &DestInfo = getBBInfo(DestBB);
729     SrcInfo.addOutEdge(E.get());
730     DestInfo.addInEdge(E.get());
731   }
732 }
733 
734 // Given a CFG E to be instrumented, find which BB to place the instrumented
735 // code. The function will split the critical edge if necessary.
736 template <class Edge, class BBInfo>
737 BasicBlock *FuncPGOInstrumentation<Edge, BBInfo>::getInstrBB(Edge *E) {
738   if (E->InMST || E->Removed)
739     return nullptr;
740 
741   BasicBlock *SrcBB = const_cast<BasicBlock *>(E->SrcBB);
742   BasicBlock *DestBB = const_cast<BasicBlock *>(E->DestBB);
743   // For a fake edge, instrument the real BB.
744   if (SrcBB == nullptr)
745     return DestBB;
746   if (DestBB == nullptr)
747     return SrcBB;
748 
749   auto canInstrument = [](BasicBlock *BB) -> BasicBlock * {
750     // There are basic blocks (such as catchswitch) cannot be instrumented.
751     // If the returned first insertion point is the end of BB, skip this BB.
752     if (BB->getFirstInsertionPt() == BB->end())
753       return nullptr;
754     return BB;
755   };
756 
757   // Instrument the SrcBB if it has a single successor,
758   // otherwise, the DestBB if this is not a critical edge.
759   Instruction *TI = SrcBB->getTerminator();
760   if (TI->getNumSuccessors() <= 1)
761     return canInstrument(SrcBB);
762   if (!E->IsCritical)
763     return canInstrument(DestBB);
764 
765   // Some IndirectBr critical edges cannot be split by the previous
766   // SplitIndirectBrCriticalEdges call. Bail out.
767   unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB);
768   BasicBlock *InstrBB =
769       isa<IndirectBrInst>(TI) ? nullptr : SplitCriticalEdge(TI, SuccNum);
770   if (!InstrBB) {
771     LLVM_DEBUG(
772         dbgs() << "Fail to split critical edge: not instrument this edge.\n");
773     return nullptr;
774   }
775   // For a critical edge, we have to split. Instrument the newly
776   // created BB.
777   IsCS ? NumOfCSPGOSplit++ : NumOfPGOSplit++;
778   LLVM_DEBUG(dbgs() << "Split critical edge: " << getBBInfo(SrcBB).Index
779                     << " --> " << getBBInfo(DestBB).Index << "\n");
780   // Need to add two new edges. First one: Add new edge of SrcBB->InstrBB.
781   MST.addEdge(SrcBB, InstrBB, 0);
782   // Second one: Add new edge of InstrBB->DestBB.
783   Edge &NewEdge1 = MST.addEdge(InstrBB, DestBB, 0);
784   NewEdge1.InMST = true;
785   E->Removed = true;
786 
787   return canInstrument(InstrBB);
788 }
789 
790 // When generating value profiling calls on Windows routines that make use of
791 // handler funclets for exception processing an operand bundle needs to attached
792 // to the called function. This routine will set \p OpBundles to contain the
793 // funclet information, if any is needed, that should be placed on the generated
794 // value profiling call for the value profile candidate call.
795 static void
796 populateEHOperandBundle(VPCandidateInfo &Cand,
797                         DenseMap<BasicBlock *, ColorVector> &BlockColors,
798                         SmallVectorImpl<OperandBundleDef> &OpBundles) {
799   auto *OrigCall = dyn_cast<CallBase>(Cand.AnnotatedInst);
800   if (!OrigCall)
801     return;
802 
803   if (!isa<IntrinsicInst>(OrigCall)) {
804     // The instrumentation call should belong to the same funclet as a
805     // non-intrinsic call, so just copy the operand bundle, if any exists.
806     Optional<OperandBundleUse> ParentFunclet =
807         OrigCall->getOperandBundle(LLVMContext::OB_funclet);
808     if (ParentFunclet)
809       OpBundles.emplace_back(OperandBundleDef(*ParentFunclet));
810   } else {
811     // Intrinsics or other instructions do not get funclet information from the
812     // front-end. Need to use the BlockColors that was computed by the routine
813     // colorEHFunclets to determine whether a funclet is needed.
814     if (!BlockColors.empty()) {
815       const ColorVector &CV = BlockColors.find(OrigCall->getParent())->second;
816       assert(CV.size() == 1 && "non-unique color for block!");
817       Instruction *EHPad = CV.front()->getFirstNonPHI();
818       if (EHPad->isEHPad())
819         OpBundles.emplace_back("funclet", EHPad);
820     }
821   }
822 }
823 
824 // Visit all edge and instrument the edges not in MST, and do value profiling.
825 // Critical edges will be split.
826 static void instrumentOneFunc(
827     Function &F, Module *M, TargetLibraryInfo &TLI, BranchProbabilityInfo *BPI,
828     BlockFrequencyInfo *BFI,
829     std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
830     bool IsCS) {
831   // Split indirectbr critical edges here before computing the MST rather than
832   // later in getInstrBB() to avoid invalidating it.
833   SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/false, BPI, BFI);
834 
835   FuncPGOInstrumentation<PGOEdge, BBInfo> FuncInfo(
836       F, TLI, ComdatMembers, true, BPI, BFI, IsCS, PGOInstrumentEntry);
837 
838   Type *I8PtrTy = Type::getInt8PtrTy(M->getContext());
839   auto Name = ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy);
840   auto CFGHash = ConstantInt::get(Type::getInt64Ty(M->getContext()),
841                                   FuncInfo.FunctionHash);
842   if (PGOFunctionEntryCoverage) {
843     auto &EntryBB = F.getEntryBlock();
844     IRBuilder<> Builder(&EntryBB, EntryBB.getFirstInsertionPt());
845     // llvm.instrprof.cover(i8* <name>, i64 <hash>, i32 <num-counters>,
846     //                      i32 <index>)
847     Builder.CreateCall(
848         Intrinsic::getDeclaration(M, Intrinsic::instrprof_cover),
849         {Name, CFGHash, Builder.getInt32(1), Builder.getInt32(0)});
850     return;
851   }
852 
853   std::vector<BasicBlock *> InstrumentBBs;
854   FuncInfo.getInstrumentBBs(InstrumentBBs);
855   unsigned NumCounters =
856       InstrumentBBs.size() + FuncInfo.SIVisitor.getNumOfSelectInsts();
857 
858   uint32_t I = 0;
859   for (auto *InstrBB : InstrumentBBs) {
860     IRBuilder<> Builder(InstrBB, InstrBB->getFirstInsertionPt());
861     assert(Builder.GetInsertPoint() != InstrBB->end() &&
862            "Cannot get the Instrumentation point");
863     // llvm.instrprof.increment(i8* <name>, i64 <hash>, i32 <num-counters>,
864     //                          i32 <index>)
865     Builder.CreateCall(
866         Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment),
867         {Name, CFGHash, Builder.getInt32(NumCounters), Builder.getInt32(I++)});
868   }
869 
870   // Now instrument select instructions:
871   FuncInfo.SIVisitor.instrumentSelects(F, &I, NumCounters, FuncInfo.FuncNameVar,
872                                        FuncInfo.FunctionHash);
873   assert(I == NumCounters);
874 
875   if (DisableValueProfiling)
876     return;
877 
878   NumOfPGOICall += FuncInfo.ValueSites[IPVK_IndirectCallTarget].size();
879 
880   // Intrinsic function calls do not have funclet operand bundles needed for
881   // Windows exception handling attached to them. However, if value profiling is
882   // inserted for one of these calls, then a funclet value will need to be set
883   // on the instrumentation call based on the funclet coloring.
884   DenseMap<BasicBlock *, ColorVector> BlockColors;
885   if (F.hasPersonalityFn() &&
886       isFuncletEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
887     BlockColors = colorEHFunclets(F);
888 
889   // For each VP Kind, walk the VP candidates and instrument each one.
890   for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {
891     unsigned SiteIndex = 0;
892     if (Kind == IPVK_MemOPSize && !PGOInstrMemOP)
893       continue;
894 
895     for (VPCandidateInfo Cand : FuncInfo.ValueSites[Kind]) {
896       LLVM_DEBUG(dbgs() << "Instrument one VP " << ValueProfKindDescr[Kind]
897                         << " site: CallSite Index = " << SiteIndex << "\n");
898 
899       IRBuilder<> Builder(Cand.InsertPt);
900       assert(Builder.GetInsertPoint() != Cand.InsertPt->getParent()->end() &&
901              "Cannot get the Instrumentation point");
902 
903       Value *ToProfile = nullptr;
904       if (Cand.V->getType()->isIntegerTy())
905         ToProfile = Builder.CreateZExtOrTrunc(Cand.V, Builder.getInt64Ty());
906       else if (Cand.V->getType()->isPointerTy())
907         ToProfile = Builder.CreatePtrToInt(Cand.V, Builder.getInt64Ty());
908       assert(ToProfile && "value profiling Value is of unexpected type");
909 
910       SmallVector<OperandBundleDef, 1> OpBundles;
911       populateEHOperandBundle(Cand, BlockColors, OpBundles);
912       Builder.CreateCall(
913           Intrinsic::getDeclaration(M, Intrinsic::instrprof_value_profile),
914           {ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy),
915            Builder.getInt64(FuncInfo.FunctionHash), ToProfile,
916            Builder.getInt32(Kind), Builder.getInt32(SiteIndex++)},
917           OpBundles);
918     }
919   } // IPVK_First <= Kind <= IPVK_Last
920 }
921 
922 namespace {
923 
924 // This class represents a CFG edge in profile use compilation.
925 struct PGOUseEdge : public PGOEdge {
926   bool CountValid = false;
927   uint64_t CountValue = 0;
928 
929   PGOUseEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W = 1)
930       : PGOEdge(Src, Dest, W) {}
931 
932   // Set edge count value
933   void setEdgeCount(uint64_t Value) {
934     CountValue = Value;
935     CountValid = true;
936   }
937 
938   // Return the information string for this object.
939   std::string infoString() const {
940     if (!CountValid)
941       return PGOEdge::infoString();
942     return (Twine(PGOEdge::infoString()) + "  Count=" + Twine(CountValue))
943         .str();
944   }
945 };
946 
947 using DirectEdges = SmallVector<PGOUseEdge *, 2>;
948 
949 // This class stores the auxiliary information for each BB.
950 struct UseBBInfo : public BBInfo {
951   uint64_t CountValue = 0;
952   bool CountValid;
953   int32_t UnknownCountInEdge = 0;
954   int32_t UnknownCountOutEdge = 0;
955   DirectEdges InEdges;
956   DirectEdges OutEdges;
957 
958   UseBBInfo(unsigned IX) : BBInfo(IX), CountValid(false) {}
959 
960   UseBBInfo(unsigned IX, uint64_t C)
961       : BBInfo(IX), CountValue(C), CountValid(true) {}
962 
963   // Set the profile count value for this BB.
964   void setBBInfoCount(uint64_t Value) {
965     CountValue = Value;
966     CountValid = true;
967   }
968 
969   // Return the information string of this object.
970   std::string infoString() const {
971     if (!CountValid)
972       return BBInfo::infoString();
973     return (Twine(BBInfo::infoString()) + "  Count=" + Twine(CountValue)).str();
974   }
975 
976   // Add an OutEdge and update the edge count.
977   void addOutEdge(PGOUseEdge *E) {
978     OutEdges.push_back(E);
979     UnknownCountOutEdge++;
980   }
981 
982   // Add an InEdge and update the edge count.
983   void addInEdge(PGOUseEdge *E) {
984     InEdges.push_back(E);
985     UnknownCountInEdge++;
986   }
987 };
988 
989 } // end anonymous namespace
990 
991 // Sum up the count values for all the edges.
992 static uint64_t sumEdgeCount(const ArrayRef<PGOUseEdge *> Edges) {
993   uint64_t Total = 0;
994   for (auto &E : Edges) {
995     if (E->Removed)
996       continue;
997     Total += E->CountValue;
998   }
999   return Total;
1000 }
1001 
1002 namespace {
1003 
1004 class PGOUseFunc {
1005 public:
1006   PGOUseFunc(Function &Func, Module *Modu, TargetLibraryInfo &TLI,
1007              std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
1008              BranchProbabilityInfo *BPI, BlockFrequencyInfo *BFIin,
1009              ProfileSummaryInfo *PSI, bool IsCS, bool InstrumentFuncEntry)
1010       : F(Func), M(Modu), BFI(BFIin), PSI(PSI),
1011         FuncInfo(Func, TLI, ComdatMembers, false, BPI, BFIin, IsCS,
1012                  InstrumentFuncEntry),
1013         FreqAttr(FFA_Normal), IsCS(IsCS) {}
1014 
1015   // Read counts for the instrumented BB from profile.
1016   bool readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros,
1017                     bool &AllMinusOnes);
1018 
1019   // Populate the counts for all BBs.
1020   void populateCounters();
1021 
1022   // Set the branch weights based on the count values.
1023   void setBranchWeights();
1024 
1025   // Annotate the value profile call sites for all value kind.
1026   void annotateValueSites();
1027 
1028   // Annotate the value profile call sites for one value kind.
1029   void annotateValueSites(uint32_t Kind);
1030 
1031   // Annotate the irreducible loop header weights.
1032   void annotateIrrLoopHeaderWeights();
1033 
1034   // The hotness of the function from the profile count.
1035   enum FuncFreqAttr { FFA_Normal, FFA_Cold, FFA_Hot };
1036 
1037   // Return the function hotness from the profile.
1038   FuncFreqAttr getFuncFreqAttr() const { return FreqAttr; }
1039 
1040   // Return the function hash.
1041   uint64_t getFuncHash() const { return FuncInfo.FunctionHash; }
1042 
1043   // Return the profile record for this function;
1044   InstrProfRecord &getProfileRecord() { return ProfileRecord; }
1045 
1046   // Return the auxiliary BB information.
1047   UseBBInfo &getBBInfo(const BasicBlock *BB) const {
1048     return FuncInfo.getBBInfo(BB);
1049   }
1050 
1051   // Return the auxiliary BB information if available.
1052   UseBBInfo *findBBInfo(const BasicBlock *BB) const {
1053     return FuncInfo.findBBInfo(BB);
1054   }
1055 
1056   Function &getFunc() const { return F; }
1057 
1058   void dumpInfo(std::string Str = "") const {
1059     FuncInfo.dumpInfo(Str);
1060   }
1061 
1062   uint64_t getProgramMaxCount() const { return ProgramMaxCount; }
1063 private:
1064   Function &F;
1065   Module *M;
1066   BlockFrequencyInfo *BFI;
1067   ProfileSummaryInfo *PSI;
1068 
1069   // This member stores the shared information with class PGOGenFunc.
1070   FuncPGOInstrumentation<PGOUseEdge, UseBBInfo> FuncInfo;
1071 
1072   // The maximum count value in the profile. This is only used in PGO use
1073   // compilation.
1074   uint64_t ProgramMaxCount;
1075 
1076   // Position of counter that remains to be read.
1077   uint32_t CountPosition = 0;
1078 
1079   // Total size of the profile count for this function.
1080   uint32_t ProfileCountSize = 0;
1081 
1082   // ProfileRecord for this function.
1083   InstrProfRecord ProfileRecord;
1084 
1085   // Function hotness info derived from profile.
1086   FuncFreqAttr FreqAttr;
1087 
1088   // Is to use the context sensitive profile.
1089   bool IsCS;
1090 
1091   // Find the Instrumented BB and set the value. Return false on error.
1092   bool setInstrumentedCounts(const std::vector<uint64_t> &CountFromProfile);
1093 
1094   // Set the edge counter value for the unknown edge -- there should be only
1095   // one unknown edge.
1096   void setEdgeCount(DirectEdges &Edges, uint64_t Value);
1097 
1098   // Return FuncName string;
1099   std::string getFuncName() const { return FuncInfo.FuncName; }
1100 
1101   // Set the hot/cold inline hints based on the count values.
1102   // FIXME: This function should be removed once the functionality in
1103   // the inliner is implemented.
1104   void markFunctionAttributes(uint64_t EntryCount, uint64_t MaxCount) {
1105     if (PSI->isHotCount(EntryCount))
1106       FreqAttr = FFA_Hot;
1107     else if (PSI->isColdCount(MaxCount))
1108       FreqAttr = FFA_Cold;
1109   }
1110 };
1111 
1112 } // end anonymous namespace
1113 
1114 // Visit all the edges and assign the count value for the instrumented
1115 // edges and the BB. Return false on error.
1116 bool PGOUseFunc::setInstrumentedCounts(
1117     const std::vector<uint64_t> &CountFromProfile) {
1118 
1119   std::vector<BasicBlock *> InstrumentBBs;
1120   FuncInfo.getInstrumentBBs(InstrumentBBs);
1121   unsigned NumCounters =
1122       InstrumentBBs.size() + FuncInfo.SIVisitor.getNumOfSelectInsts();
1123   // The number of counters here should match the number of counters
1124   // in profile. Return if they mismatch.
1125   if (NumCounters != CountFromProfile.size()) {
1126     return false;
1127   }
1128   auto *FuncEntry = &*F.begin();
1129 
1130   // Set the profile count to the Instrumented BBs.
1131   uint32_t I = 0;
1132   for (BasicBlock *InstrBB : InstrumentBBs) {
1133     uint64_t CountValue = CountFromProfile[I++];
1134     UseBBInfo &Info = getBBInfo(InstrBB);
1135     // If we reach here, we know that we have some nonzero count
1136     // values in this function. The entry count should not be 0.
1137     // Fix it if necessary.
1138     if (InstrBB == FuncEntry && CountValue == 0)
1139       CountValue = 1;
1140     Info.setBBInfoCount(CountValue);
1141   }
1142   ProfileCountSize = CountFromProfile.size();
1143   CountPosition = I;
1144 
1145   // Set the edge count and update the count of unknown edges for BBs.
1146   auto setEdgeCount = [this](PGOUseEdge *E, uint64_t Value) -> void {
1147     E->setEdgeCount(Value);
1148     this->getBBInfo(E->SrcBB).UnknownCountOutEdge--;
1149     this->getBBInfo(E->DestBB).UnknownCountInEdge--;
1150   };
1151 
1152   // Set the profile count the Instrumented edges. There are BBs that not in
1153   // MST but not instrumented. Need to set the edge count value so that we can
1154   // populate the profile counts later.
1155   for (auto &E : FuncInfo.MST.AllEdges) {
1156     if (E->Removed || E->InMST)
1157       continue;
1158     const BasicBlock *SrcBB = E->SrcBB;
1159     UseBBInfo &SrcInfo = getBBInfo(SrcBB);
1160 
1161     // If only one out-edge, the edge profile count should be the same as BB
1162     // profile count.
1163     if (SrcInfo.CountValid && SrcInfo.OutEdges.size() == 1)
1164       setEdgeCount(E.get(), SrcInfo.CountValue);
1165     else {
1166       const BasicBlock *DestBB = E->DestBB;
1167       UseBBInfo &DestInfo = getBBInfo(DestBB);
1168       // If only one in-edge, the edge profile count should be the same as BB
1169       // profile count.
1170       if (DestInfo.CountValid && DestInfo.InEdges.size() == 1)
1171         setEdgeCount(E.get(), DestInfo.CountValue);
1172     }
1173     if (E->CountValid)
1174       continue;
1175     // E's count should have been set from profile. If not, this meenas E skips
1176     // the instrumentation. We set the count to 0.
1177     setEdgeCount(E.get(), 0);
1178   }
1179   return true;
1180 }
1181 
1182 // Set the count value for the unknown edge. There should be one and only one
1183 // unknown edge in Edges vector.
1184 void PGOUseFunc::setEdgeCount(DirectEdges &Edges, uint64_t Value) {
1185   for (auto &E : Edges) {
1186     if (E->CountValid)
1187       continue;
1188     E->setEdgeCount(Value);
1189 
1190     getBBInfo(E->SrcBB).UnknownCountOutEdge--;
1191     getBBInfo(E->DestBB).UnknownCountInEdge--;
1192     return;
1193   }
1194   llvm_unreachable("Cannot find the unknown count edge");
1195 }
1196 
1197 // Emit function metadata indicating PGO profile mismatch.
1198 static void annotateFunctionWithHashMismatch(Function &F,
1199                                              LLVMContext &ctx) {
1200   const char MetadataName[] = "instr_prof_hash_mismatch";
1201   SmallVector<Metadata *, 2> Names;
1202   // If this metadata already exists, ignore.
1203   auto *Existing = F.getMetadata(LLVMContext::MD_annotation);
1204   if (Existing) {
1205     MDTuple *Tuple = cast<MDTuple>(Existing);
1206     for (auto &N : Tuple->operands()) {
1207       if (cast<MDString>(N.get())->getString() ==  MetadataName)
1208         return;
1209       Names.push_back(N.get());
1210     }
1211   }
1212 
1213   MDBuilder MDB(ctx);
1214   Names.push_back(MDB.createString(MetadataName));
1215   MDNode *MD = MDTuple::get(ctx, Names);
1216   F.setMetadata(LLVMContext::MD_annotation, MD);
1217 }
1218 
1219 // Read the profile from ProfileFileName and assign the value to the
1220 // instrumented BB and the edges. This function also updates ProgramMaxCount.
1221 // Return true if the profile are successfully read, and false on errors.
1222 bool PGOUseFunc::readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros,
1223                               bool &AllMinusOnes) {
1224   auto &Ctx = M->getContext();
1225   uint64_t MismatchedFuncSum = 0;
1226   Expected<InstrProfRecord> Result = PGOReader->getInstrProfRecord(
1227       FuncInfo.FuncName, FuncInfo.FunctionHash, &MismatchedFuncSum);
1228   if (Error E = Result.takeError()) {
1229     handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
1230       auto Err = IPE.get();
1231       bool SkipWarning = false;
1232       LLVM_DEBUG(dbgs() << "Error in reading profile for Func "
1233                         << FuncInfo.FuncName << ": ");
1234       if (Err == instrprof_error::unknown_function) {
1235         IsCS ? NumOfCSPGOMissing++ : NumOfPGOMissing++;
1236         SkipWarning = !PGOWarnMissing;
1237         LLVM_DEBUG(dbgs() << "unknown function");
1238       } else if (Err == instrprof_error::hash_mismatch ||
1239                  Err == instrprof_error::malformed) {
1240         IsCS ? NumOfCSPGOMismatch++ : NumOfPGOMismatch++;
1241         SkipWarning =
1242             NoPGOWarnMismatch ||
1243             (NoPGOWarnMismatchComdatWeak &&
1244              (F.hasComdat() || F.getLinkage() == GlobalValue::WeakAnyLinkage ||
1245               F.getLinkage() == GlobalValue::AvailableExternallyLinkage));
1246         LLVM_DEBUG(dbgs() << "hash mismatch (hash= " << FuncInfo.FunctionHash
1247                           << " skip=" << SkipWarning << ")");
1248         // Emit function metadata indicating PGO profile mismatch.
1249         annotateFunctionWithHashMismatch(F, M->getContext());
1250       }
1251 
1252       LLVM_DEBUG(dbgs() << " IsCS=" << IsCS << "\n");
1253       if (SkipWarning)
1254         return;
1255 
1256       std::string Msg =
1257           IPE.message() + std::string(" ") + F.getName().str() +
1258           std::string(" Hash = ") + std::to_string(FuncInfo.FunctionHash) +
1259           std::string(" up to ") + std::to_string(MismatchedFuncSum) +
1260           std::string(" count discarded");
1261 
1262       Ctx.diagnose(
1263           DiagnosticInfoPGOProfile(M->getName().data(), Msg, DS_Warning));
1264     });
1265     return false;
1266   }
1267   ProfileRecord = std::move(Result.get());
1268   std::vector<uint64_t> &CountFromProfile = ProfileRecord.Counts;
1269 
1270   IsCS ? NumOfCSPGOFunc++ : NumOfPGOFunc++;
1271   LLVM_DEBUG(dbgs() << CountFromProfile.size() << " counts\n");
1272   AllMinusOnes = (CountFromProfile.size() > 0);
1273   uint64_t ValueSum = 0;
1274   for (unsigned I = 0, S = CountFromProfile.size(); I < S; I++) {
1275     LLVM_DEBUG(dbgs() << "  " << I << ": " << CountFromProfile[I] << "\n");
1276     ValueSum += CountFromProfile[I];
1277     if (CountFromProfile[I] != (uint64_t)-1)
1278       AllMinusOnes = false;
1279   }
1280   AllZeros = (ValueSum == 0);
1281 
1282   LLVM_DEBUG(dbgs() << "SUM =  " << ValueSum << "\n");
1283 
1284   getBBInfo(nullptr).UnknownCountOutEdge = 2;
1285   getBBInfo(nullptr).UnknownCountInEdge = 2;
1286 
1287   if (!setInstrumentedCounts(CountFromProfile)) {
1288     LLVM_DEBUG(
1289         dbgs() << "Inconsistent number of counts, skipping this function");
1290     Ctx.diagnose(DiagnosticInfoPGOProfile(
1291         M->getName().data(),
1292         Twine("Inconsistent number of counts in ") + F.getName().str()
1293         + Twine(": the profile may be stale or there is a function name collision."),
1294         DS_Warning));
1295     return false;
1296   }
1297   ProgramMaxCount = PGOReader->getMaximumFunctionCount(IsCS);
1298   return true;
1299 }
1300 
1301 // Populate the counters from instrumented BBs to all BBs.
1302 // In the end of this operation, all BBs should have a valid count value.
1303 void PGOUseFunc::populateCounters() {
1304   bool Changes = true;
1305   unsigned NumPasses = 0;
1306   while (Changes) {
1307     NumPasses++;
1308     Changes = false;
1309 
1310     // For efficient traversal, it's better to start from the end as most
1311     // of the instrumented edges are at the end.
1312     for (auto &BB : reverse(F)) {
1313       UseBBInfo *Count = findBBInfo(&BB);
1314       if (Count == nullptr)
1315         continue;
1316       if (!Count->CountValid) {
1317         if (Count->UnknownCountOutEdge == 0) {
1318           Count->CountValue = sumEdgeCount(Count->OutEdges);
1319           Count->CountValid = true;
1320           Changes = true;
1321         } else if (Count->UnknownCountInEdge == 0) {
1322           Count->CountValue = sumEdgeCount(Count->InEdges);
1323           Count->CountValid = true;
1324           Changes = true;
1325         }
1326       }
1327       if (Count->CountValid) {
1328         if (Count->UnknownCountOutEdge == 1) {
1329           uint64_t Total = 0;
1330           uint64_t OutSum = sumEdgeCount(Count->OutEdges);
1331           // If the one of the successor block can early terminate (no-return),
1332           // we can end up with situation where out edge sum count is larger as
1333           // the source BB's count is collected by a post-dominated block.
1334           if (Count->CountValue > OutSum)
1335             Total = Count->CountValue - OutSum;
1336           setEdgeCount(Count->OutEdges, Total);
1337           Changes = true;
1338         }
1339         if (Count->UnknownCountInEdge == 1) {
1340           uint64_t Total = 0;
1341           uint64_t InSum = sumEdgeCount(Count->InEdges);
1342           if (Count->CountValue > InSum)
1343             Total = Count->CountValue - InSum;
1344           setEdgeCount(Count->InEdges, Total);
1345           Changes = true;
1346         }
1347       }
1348     }
1349   }
1350 
1351   LLVM_DEBUG(dbgs() << "Populate counts in " << NumPasses << " passes.\n");
1352   (void) NumPasses;
1353 #ifndef NDEBUG
1354   // Assert every BB has a valid counter.
1355   for (auto &BB : F) {
1356     auto BI = findBBInfo(&BB);
1357     if (BI == nullptr)
1358       continue;
1359     assert(BI->CountValid && "BB count is not valid");
1360   }
1361 #endif
1362   uint64_t FuncEntryCount = getBBInfo(&*F.begin()).CountValue;
1363   uint64_t FuncMaxCount = FuncEntryCount;
1364   for (auto &BB : F) {
1365     auto BI = findBBInfo(&BB);
1366     if (BI == nullptr)
1367       continue;
1368     FuncMaxCount = std::max(FuncMaxCount, BI->CountValue);
1369   }
1370 
1371   // Fix the obviously inconsistent entry count.
1372   if (FuncMaxCount > 0 && FuncEntryCount == 0)
1373     FuncEntryCount = 1;
1374   F.setEntryCount(ProfileCount(FuncEntryCount, Function::PCT_Real));
1375   markFunctionAttributes(FuncEntryCount, FuncMaxCount);
1376 
1377   // Now annotate select instructions
1378   FuncInfo.SIVisitor.annotateSelects(F, this, &CountPosition);
1379   assert(CountPosition == ProfileCountSize);
1380 
1381   LLVM_DEBUG(FuncInfo.dumpInfo("after reading profile."));
1382 }
1383 
1384 // Assign the scaled count values to the BB with multiple out edges.
1385 void PGOUseFunc::setBranchWeights() {
1386   // Generate MD_prof metadata for every branch instruction.
1387   LLVM_DEBUG(dbgs() << "\nSetting branch weights for func " << F.getName()
1388                     << " IsCS=" << IsCS << "\n");
1389   for (auto &BB : F) {
1390     Instruction *TI = BB.getTerminator();
1391     if (TI->getNumSuccessors() < 2)
1392       continue;
1393     if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) ||
1394           isa<IndirectBrInst>(TI) || isa<InvokeInst>(TI)))
1395       continue;
1396 
1397     if (getBBInfo(&BB).CountValue == 0)
1398       continue;
1399 
1400     // We have a non-zero Branch BB.
1401     const UseBBInfo &BBCountInfo = getBBInfo(&BB);
1402     unsigned Size = BBCountInfo.OutEdges.size();
1403     SmallVector<uint64_t, 2> EdgeCounts(Size, 0);
1404     uint64_t MaxCount = 0;
1405     for (unsigned s = 0; s < Size; s++) {
1406       const PGOUseEdge *E = BBCountInfo.OutEdges[s];
1407       const BasicBlock *SrcBB = E->SrcBB;
1408       const BasicBlock *DestBB = E->DestBB;
1409       if (DestBB == nullptr)
1410         continue;
1411       unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB);
1412       uint64_t EdgeCount = E->CountValue;
1413       if (EdgeCount > MaxCount)
1414         MaxCount = EdgeCount;
1415       EdgeCounts[SuccNum] = EdgeCount;
1416     }
1417     setProfMetadata(M, TI, EdgeCounts, MaxCount);
1418   }
1419 }
1420 
1421 static bool isIndirectBrTarget(BasicBlock *BB) {
1422   for (BasicBlock *Pred : predecessors(BB)) {
1423     if (isa<IndirectBrInst>(Pred->getTerminator()))
1424       return true;
1425   }
1426   return false;
1427 }
1428 
1429 void PGOUseFunc::annotateIrrLoopHeaderWeights() {
1430   LLVM_DEBUG(dbgs() << "\nAnnotating irreducible loop header weights.\n");
1431   // Find irr loop headers
1432   for (auto &BB : F) {
1433     // As a heuristic also annotate indrectbr targets as they have a high chance
1434     // to become an irreducible loop header after the indirectbr tail
1435     // duplication.
1436     if (BFI->isIrrLoopHeader(&BB) || isIndirectBrTarget(&BB)) {
1437       Instruction *TI = BB.getTerminator();
1438       const UseBBInfo &BBCountInfo = getBBInfo(&BB);
1439       setIrrLoopHeaderMetadata(M, TI, BBCountInfo.CountValue);
1440     }
1441   }
1442 }
1443 
1444 void SelectInstVisitor::instrumentOneSelectInst(SelectInst &SI) {
1445   if (PGOFunctionEntryCoverage)
1446     return;
1447   Module *M = F.getParent();
1448   IRBuilder<> Builder(&SI);
1449   Type *Int64Ty = Builder.getInt64Ty();
1450   Type *I8PtrTy = Builder.getInt8PtrTy();
1451   auto *Step = Builder.CreateZExt(SI.getCondition(), Int64Ty);
1452   Builder.CreateCall(
1453       Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment_step),
1454       {ConstantExpr::getBitCast(FuncNameVar, I8PtrTy),
1455        Builder.getInt64(FuncHash), Builder.getInt32(TotalNumCtrs),
1456        Builder.getInt32(*CurCtrIdx), Step});
1457   ++(*CurCtrIdx);
1458 }
1459 
1460 void SelectInstVisitor::annotateOneSelectInst(SelectInst &SI) {
1461   std::vector<uint64_t> &CountFromProfile = UseFunc->getProfileRecord().Counts;
1462   assert(*CurCtrIdx < CountFromProfile.size() &&
1463          "Out of bound access of counters");
1464   uint64_t SCounts[2];
1465   SCounts[0] = CountFromProfile[*CurCtrIdx]; // True count
1466   ++(*CurCtrIdx);
1467   uint64_t TotalCount = 0;
1468   auto BI = UseFunc->findBBInfo(SI.getParent());
1469   if (BI != nullptr)
1470     TotalCount = BI->CountValue;
1471   // False Count
1472   SCounts[1] = (TotalCount > SCounts[0] ? TotalCount - SCounts[0] : 0);
1473   uint64_t MaxCount = std::max(SCounts[0], SCounts[1]);
1474   if (MaxCount)
1475     setProfMetadata(F.getParent(), &SI, SCounts, MaxCount);
1476 }
1477 
1478 void SelectInstVisitor::visitSelectInst(SelectInst &SI) {
1479   if (!PGOInstrSelect)
1480     return;
1481   // FIXME: do not handle this yet.
1482   if (SI.getCondition()->getType()->isVectorTy())
1483     return;
1484 
1485   switch (Mode) {
1486   case VM_counting:
1487     NSIs++;
1488     return;
1489   case VM_instrument:
1490     instrumentOneSelectInst(SI);
1491     return;
1492   case VM_annotate:
1493     annotateOneSelectInst(SI);
1494     return;
1495   }
1496 
1497   llvm_unreachable("Unknown visiting mode");
1498 }
1499 
1500 // Traverse all valuesites and annotate the instructions for all value kind.
1501 void PGOUseFunc::annotateValueSites() {
1502   if (DisableValueProfiling)
1503     return;
1504 
1505   // Create the PGOFuncName meta data.
1506   createPGOFuncNameMetadata(F, FuncInfo.FuncName);
1507 
1508   for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
1509     annotateValueSites(Kind);
1510 }
1511 
1512 // Annotate the instructions for a specific value kind.
1513 void PGOUseFunc::annotateValueSites(uint32_t Kind) {
1514   assert(Kind <= IPVK_Last);
1515   unsigned ValueSiteIndex = 0;
1516   auto &ValueSites = FuncInfo.ValueSites[Kind];
1517   unsigned NumValueSites = ProfileRecord.getNumValueSites(Kind);
1518   if (NumValueSites != ValueSites.size()) {
1519     auto &Ctx = M->getContext();
1520     Ctx.diagnose(DiagnosticInfoPGOProfile(
1521         M->getName().data(),
1522         Twine("Inconsistent number of value sites for ") +
1523             Twine(ValueProfKindDescr[Kind]) +
1524             Twine(" profiling in \"") + F.getName().str() +
1525             Twine("\", possibly due to the use of a stale profile."),
1526         DS_Warning));
1527     return;
1528   }
1529 
1530   for (VPCandidateInfo &I : ValueSites) {
1531     LLVM_DEBUG(dbgs() << "Read one value site profile (kind = " << Kind
1532                       << "): Index = " << ValueSiteIndex << " out of "
1533                       << NumValueSites << "\n");
1534     annotateValueSite(*M, *I.AnnotatedInst, ProfileRecord,
1535                       static_cast<InstrProfValueKind>(Kind), ValueSiteIndex,
1536                       Kind == IPVK_MemOPSize ? MaxNumMemOPAnnotations
1537                                              : MaxNumAnnotations);
1538     ValueSiteIndex++;
1539   }
1540 }
1541 
1542 // Collect the set of members for each Comdat in module M and store
1543 // in ComdatMembers.
1544 static void collectComdatMembers(
1545     Module &M,
1546     std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers) {
1547   if (!DoComdatRenaming)
1548     return;
1549   for (Function &F : M)
1550     if (Comdat *C = F.getComdat())
1551       ComdatMembers.insert(std::make_pair(C, &F));
1552   for (GlobalVariable &GV : M.globals())
1553     if (Comdat *C = GV.getComdat())
1554       ComdatMembers.insert(std::make_pair(C, &GV));
1555   for (GlobalAlias &GA : M.aliases())
1556     if (Comdat *C = GA.getComdat())
1557       ComdatMembers.insert(std::make_pair(C, &GA));
1558 }
1559 
1560 static bool InstrumentAllFunctions(
1561     Module &M, function_ref<TargetLibraryInfo &(Function &)> LookupTLI,
1562     function_ref<BranchProbabilityInfo *(Function &)> LookupBPI,
1563     function_ref<BlockFrequencyInfo *(Function &)> LookupBFI, bool IsCS) {
1564   // For the context-sensitve instrumentation, we should have a separated pass
1565   // (before LTO/ThinLTO linking) to create these variables.
1566   if (!IsCS)
1567     createIRLevelProfileFlagVar(M, /*IsCS=*/false);
1568   std::unordered_multimap<Comdat *, GlobalValue *> ComdatMembers;
1569   collectComdatMembers(M, ComdatMembers);
1570 
1571   for (auto &F : M) {
1572     if (F.isDeclaration())
1573       continue;
1574     if (F.hasFnAttribute(llvm::Attribute::NoProfile))
1575       continue;
1576     auto &TLI = LookupTLI(F);
1577     auto *BPI = LookupBPI(F);
1578     auto *BFI = LookupBFI(F);
1579     instrumentOneFunc(F, &M, TLI, BPI, BFI, ComdatMembers, IsCS);
1580   }
1581   return true;
1582 }
1583 
1584 PreservedAnalyses
1585 PGOInstrumentationGenCreateVar::run(Module &M, ModuleAnalysisManager &AM) {
1586   createProfileFileNameVar(M, CSInstrName);
1587   // The variable in a comdat may be discarded by LTO. Ensure the declaration
1588   // will be retained.
1589   appendToCompilerUsed(M, createIRLevelProfileFlagVar(M, /*IsCS=*/true));
1590   return PreservedAnalyses::all();
1591 }
1592 
1593 PreservedAnalyses PGOInstrumentationGen::run(Module &M,
1594                                              ModuleAnalysisManager &AM) {
1595   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1596   auto LookupTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
1597     return FAM.getResult<TargetLibraryAnalysis>(F);
1598   };
1599   auto LookupBPI = [&FAM](Function &F) {
1600     return &FAM.getResult<BranchProbabilityAnalysis>(F);
1601   };
1602   auto LookupBFI = [&FAM](Function &F) {
1603     return &FAM.getResult<BlockFrequencyAnalysis>(F);
1604   };
1605 
1606   if (!InstrumentAllFunctions(M, LookupTLI, LookupBPI, LookupBFI, IsCS))
1607     return PreservedAnalyses::all();
1608 
1609   return PreservedAnalyses::none();
1610 }
1611 
1612 // Using the ratio b/w sums of profile count values and BFI count values to
1613 // adjust the func entry count.
1614 static void fixFuncEntryCount(PGOUseFunc &Func, LoopInfo &LI,
1615                               BranchProbabilityInfo &NBPI) {
1616   Function &F = Func.getFunc();
1617   BlockFrequencyInfo NBFI(F, NBPI, LI);
1618 #ifndef NDEBUG
1619   auto BFIEntryCount = F.getEntryCount();
1620   assert(BFIEntryCount && (BFIEntryCount->getCount() > 0) &&
1621          "Invalid BFI Entrycount");
1622 #endif
1623   auto SumCount = APFloat::getZero(APFloat::IEEEdouble());
1624   auto SumBFICount = APFloat::getZero(APFloat::IEEEdouble());
1625   for (auto &BBI : F) {
1626     uint64_t CountValue = 0;
1627     uint64_t BFICountValue = 0;
1628     if (!Func.findBBInfo(&BBI))
1629       continue;
1630     auto BFICount = NBFI.getBlockProfileCount(&BBI);
1631     CountValue = Func.getBBInfo(&BBI).CountValue;
1632     BFICountValue = *BFICount;
1633     SumCount.add(APFloat(CountValue * 1.0), APFloat::rmNearestTiesToEven);
1634     SumBFICount.add(APFloat(BFICountValue * 1.0), APFloat::rmNearestTiesToEven);
1635   }
1636   if (SumCount.isZero())
1637     return;
1638 
1639   assert(SumBFICount.compare(APFloat(0.0)) == APFloat::cmpGreaterThan &&
1640          "Incorrect sum of BFI counts");
1641   if (SumBFICount.compare(SumCount) == APFloat::cmpEqual)
1642     return;
1643   double Scale = (SumCount / SumBFICount).convertToDouble();
1644   if (Scale < 1.001 && Scale > 0.999)
1645     return;
1646 
1647   uint64_t FuncEntryCount = Func.getBBInfo(&*F.begin()).CountValue;
1648   uint64_t NewEntryCount = 0.5 + FuncEntryCount * Scale;
1649   if (NewEntryCount == 0)
1650     NewEntryCount = 1;
1651   if (NewEntryCount != FuncEntryCount) {
1652     F.setEntryCount(ProfileCount(NewEntryCount, Function::PCT_Real));
1653     LLVM_DEBUG(dbgs() << "FixFuncEntryCount: in " << F.getName()
1654                       << ", entry_count " << FuncEntryCount << " --> "
1655                       << NewEntryCount << "\n");
1656   }
1657 }
1658 
1659 // Compare the profile count values with BFI count values, and print out
1660 // the non-matching ones.
1661 static void verifyFuncBFI(PGOUseFunc &Func, LoopInfo &LI,
1662                           BranchProbabilityInfo &NBPI,
1663                           uint64_t HotCountThreshold,
1664                           uint64_t ColdCountThreshold) {
1665   Function &F = Func.getFunc();
1666   BlockFrequencyInfo NBFI(F, NBPI, LI);
1667   //  bool PrintFunc = false;
1668   bool HotBBOnly = PGOVerifyHotBFI;
1669   std::string Msg;
1670   OptimizationRemarkEmitter ORE(&F);
1671 
1672   unsigned BBNum = 0, BBMisMatchNum = 0, NonZeroBBNum = 0;
1673   for (auto &BBI : F) {
1674     uint64_t CountValue = 0;
1675     uint64_t BFICountValue = 0;
1676 
1677     if (Func.getBBInfo(&BBI).CountValid)
1678       CountValue = Func.getBBInfo(&BBI).CountValue;
1679 
1680     BBNum++;
1681     if (CountValue)
1682       NonZeroBBNum++;
1683     auto BFICount = NBFI.getBlockProfileCount(&BBI);
1684     if (BFICount)
1685       BFICountValue = *BFICount;
1686 
1687     if (HotBBOnly) {
1688       bool rawIsHot = CountValue >= HotCountThreshold;
1689       bool BFIIsHot = BFICountValue >= HotCountThreshold;
1690       bool rawIsCold = CountValue <= ColdCountThreshold;
1691       bool ShowCount = false;
1692       if (rawIsHot && !BFIIsHot) {
1693         Msg = "raw-Hot to BFI-nonHot";
1694         ShowCount = true;
1695       } else if (rawIsCold && BFIIsHot) {
1696         Msg = "raw-Cold to BFI-Hot";
1697         ShowCount = true;
1698       }
1699       if (!ShowCount)
1700         continue;
1701     } else {
1702       if ((CountValue < PGOVerifyBFICutoff) &&
1703           (BFICountValue < PGOVerifyBFICutoff))
1704         continue;
1705       uint64_t Diff = (BFICountValue >= CountValue)
1706                           ? BFICountValue - CountValue
1707                           : CountValue - BFICountValue;
1708       if (Diff <= CountValue / 100 * PGOVerifyBFIRatio)
1709         continue;
1710     }
1711     BBMisMatchNum++;
1712 
1713     ORE.emit([&]() {
1714       OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "bfi-verify",
1715                                         F.getSubprogram(), &BBI);
1716       Remark << "BB " << ore::NV("Block", BBI.getName())
1717              << " Count=" << ore::NV("Count", CountValue)
1718              << " BFI_Count=" << ore::NV("Count", BFICountValue);
1719       if (!Msg.empty())
1720         Remark << " (" << Msg << ")";
1721       return Remark;
1722     });
1723   }
1724   if (BBMisMatchNum)
1725     ORE.emit([&]() {
1726       return OptimizationRemarkAnalysis(DEBUG_TYPE, "bfi-verify",
1727                                         F.getSubprogram(), &F.getEntryBlock())
1728              << "In Func " << ore::NV("Function", F.getName())
1729              << ": Num_of_BB=" << ore::NV("Count", BBNum)
1730              << ", Num_of_non_zerovalue_BB=" << ore::NV("Count", NonZeroBBNum)
1731              << ", Num_of_mis_matching_BB=" << ore::NV("Count", BBMisMatchNum);
1732     });
1733 }
1734 
1735 static bool annotateAllFunctions(
1736     Module &M, StringRef ProfileFileName, StringRef ProfileRemappingFileName,
1737     function_ref<TargetLibraryInfo &(Function &)> LookupTLI,
1738     function_ref<BranchProbabilityInfo *(Function &)> LookupBPI,
1739     function_ref<BlockFrequencyInfo *(Function &)> LookupBFI,
1740     ProfileSummaryInfo *PSI, bool IsCS) {
1741   LLVM_DEBUG(dbgs() << "Read in profile counters: ");
1742   auto &Ctx = M.getContext();
1743   // Read the counter array from file.
1744   auto ReaderOrErr =
1745       IndexedInstrProfReader::create(ProfileFileName, ProfileRemappingFileName);
1746   if (Error E = ReaderOrErr.takeError()) {
1747     handleAllErrors(std::move(E), [&](const ErrorInfoBase &EI) {
1748       Ctx.diagnose(
1749           DiagnosticInfoPGOProfile(ProfileFileName.data(), EI.message()));
1750     });
1751     return false;
1752   }
1753 
1754   std::unique_ptr<IndexedInstrProfReader> PGOReader =
1755       std::move(ReaderOrErr.get());
1756   if (!PGOReader) {
1757     Ctx.diagnose(DiagnosticInfoPGOProfile(ProfileFileName.data(),
1758                                           StringRef("Cannot get PGOReader")));
1759     return false;
1760   }
1761   if (!PGOReader->hasCSIRLevelProfile() && IsCS)
1762     return false;
1763 
1764   // TODO: might need to change the warning once the clang option is finalized.
1765   if (!PGOReader->isIRLevelProfile()) {
1766     Ctx.diagnose(DiagnosticInfoPGOProfile(
1767         ProfileFileName.data(), "Not an IR level instrumentation profile"));
1768     return false;
1769   }
1770   if (PGOReader->hasSingleByteCoverage()) {
1771     Ctx.diagnose(DiagnosticInfoPGOProfile(
1772         ProfileFileName.data(),
1773         "Cannot use coverage profiles for optimization"));
1774     return false;
1775   }
1776   if (PGOReader->functionEntryOnly()) {
1777     Ctx.diagnose(DiagnosticInfoPGOProfile(
1778         ProfileFileName.data(),
1779         "Function entry profiles are not yet supported for optimization"));
1780     return false;
1781   }
1782 
1783   // Add the profile summary (read from the header of the indexed summary) here
1784   // so that we can use it below when reading counters (which checks if the
1785   // function should be marked with a cold or inlinehint attribute).
1786   M.setProfileSummary(PGOReader->getSummary(IsCS).getMD(M.getContext()),
1787                       IsCS ? ProfileSummary::PSK_CSInstr
1788                            : ProfileSummary::PSK_Instr);
1789   PSI->refresh();
1790 
1791   std::unordered_multimap<Comdat *, GlobalValue *> ComdatMembers;
1792   collectComdatMembers(M, ComdatMembers);
1793   std::vector<Function *> HotFunctions;
1794   std::vector<Function *> ColdFunctions;
1795 
1796   // If the profile marked as always instrument the entry BB, do the
1797   // same. Note this can be overwritten by the internal option in CFGMST.h
1798   bool InstrumentFuncEntry = PGOReader->instrEntryBBEnabled();
1799   if (PGOInstrumentEntry.getNumOccurrences() > 0)
1800     InstrumentFuncEntry = PGOInstrumentEntry;
1801   for (auto &F : M) {
1802     if (F.isDeclaration())
1803       continue;
1804     auto &TLI = LookupTLI(F);
1805     auto *BPI = LookupBPI(F);
1806     auto *BFI = LookupBFI(F);
1807     // Split indirectbr critical edges here before computing the MST rather than
1808     // later in getInstrBB() to avoid invalidating it.
1809     SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/false, BPI, BFI);
1810     PGOUseFunc Func(F, &M, TLI, ComdatMembers, BPI, BFI, PSI, IsCS,
1811                     InstrumentFuncEntry);
1812     // When AllMinusOnes is true, it means the profile for the function
1813     // is unrepresentative and this function is actually hot. Set the
1814     // entry count of the function to be multiple times of hot threshold
1815     // and drop all its internal counters.
1816     bool AllMinusOnes = false;
1817     bool AllZeros = false;
1818     if (!Func.readCounters(PGOReader.get(), AllZeros, AllMinusOnes))
1819       continue;
1820     if (AllZeros) {
1821       F.setEntryCount(ProfileCount(0, Function::PCT_Real));
1822       if (Func.getProgramMaxCount() != 0)
1823         ColdFunctions.push_back(&F);
1824       continue;
1825     }
1826     const unsigned MultiplyFactor = 3;
1827     if (AllMinusOnes) {
1828       uint64_t HotThreshold = PSI->getHotCountThreshold();
1829       if (HotThreshold)
1830         F.setEntryCount(
1831             ProfileCount(HotThreshold * MultiplyFactor, Function::PCT_Real));
1832       HotFunctions.push_back(&F);
1833       continue;
1834     }
1835     Func.populateCounters();
1836     Func.setBranchWeights();
1837     Func.annotateValueSites();
1838     Func.annotateIrrLoopHeaderWeights();
1839     PGOUseFunc::FuncFreqAttr FreqAttr = Func.getFuncFreqAttr();
1840     if (FreqAttr == PGOUseFunc::FFA_Cold)
1841       ColdFunctions.push_back(&F);
1842     else if (FreqAttr == PGOUseFunc::FFA_Hot)
1843       HotFunctions.push_back(&F);
1844     if (PGOViewCounts != PGOVCT_None &&
1845         (ViewBlockFreqFuncName.empty() ||
1846          F.getName().equals(ViewBlockFreqFuncName))) {
1847       LoopInfo LI{DominatorTree(F)};
1848       std::unique_ptr<BranchProbabilityInfo> NewBPI =
1849           std::make_unique<BranchProbabilityInfo>(F, LI);
1850       std::unique_ptr<BlockFrequencyInfo> NewBFI =
1851           std::make_unique<BlockFrequencyInfo>(F, *NewBPI, LI);
1852       if (PGOViewCounts == PGOVCT_Graph)
1853         NewBFI->view();
1854       else if (PGOViewCounts == PGOVCT_Text) {
1855         dbgs() << "pgo-view-counts: " << Func.getFunc().getName() << "\n";
1856         NewBFI->print(dbgs());
1857       }
1858     }
1859     if (PGOViewRawCounts != PGOVCT_None &&
1860         (ViewBlockFreqFuncName.empty() ||
1861          F.getName().equals(ViewBlockFreqFuncName))) {
1862       if (PGOViewRawCounts == PGOVCT_Graph)
1863         if (ViewBlockFreqFuncName.empty())
1864           WriteGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName());
1865         else
1866           ViewGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName());
1867       else if (PGOViewRawCounts == PGOVCT_Text) {
1868         dbgs() << "pgo-view-raw-counts: " << Func.getFunc().getName() << "\n";
1869         Func.dumpInfo();
1870       }
1871     }
1872 
1873     if (PGOVerifyBFI || PGOVerifyHotBFI || PGOFixEntryCount) {
1874       LoopInfo LI{DominatorTree(F)};
1875       BranchProbabilityInfo NBPI(F, LI);
1876 
1877       // Fix func entry count.
1878       if (PGOFixEntryCount)
1879         fixFuncEntryCount(Func, LI, NBPI);
1880 
1881       // Verify BlockFrequency information.
1882       uint64_t HotCountThreshold = 0, ColdCountThreshold = 0;
1883       if (PGOVerifyHotBFI) {
1884         HotCountThreshold = PSI->getOrCompHotCountThreshold();
1885         ColdCountThreshold = PSI->getOrCompColdCountThreshold();
1886       }
1887       verifyFuncBFI(Func, LI, NBPI, HotCountThreshold, ColdCountThreshold);
1888     }
1889   }
1890 
1891   // Set function hotness attribute from the profile.
1892   // We have to apply these attributes at the end because their presence
1893   // can affect the BranchProbabilityInfo of any callers, resulting in an
1894   // inconsistent MST between prof-gen and prof-use.
1895   for (auto &F : HotFunctions) {
1896     F->addFnAttr(Attribute::InlineHint);
1897     LLVM_DEBUG(dbgs() << "Set inline attribute to function: " << F->getName()
1898                       << "\n");
1899   }
1900   for (auto &F : ColdFunctions) {
1901     // Only set when there is no Attribute::Hot set by the user. For Hot
1902     // attribute, user's annotation has the precedence over the profile.
1903     if (F->hasFnAttribute(Attribute::Hot)) {
1904       auto &Ctx = M.getContext();
1905       std::string Msg = std::string("Function ") + F->getName().str() +
1906                         std::string(" is annotated as a hot function but"
1907                                     " the profile is cold");
1908       Ctx.diagnose(
1909           DiagnosticInfoPGOProfile(M.getName().data(), Msg, DS_Warning));
1910       continue;
1911     }
1912     F->addFnAttr(Attribute::Cold);
1913     LLVM_DEBUG(dbgs() << "Set cold attribute to function: " << F->getName()
1914                       << "\n");
1915   }
1916   return true;
1917 }
1918 
1919 PGOInstrumentationUse::PGOInstrumentationUse(std::string Filename,
1920                                              std::string RemappingFilename,
1921                                              bool IsCS)
1922     : ProfileFileName(std::move(Filename)),
1923       ProfileRemappingFileName(std::move(RemappingFilename)), IsCS(IsCS) {
1924   if (!PGOTestProfileFile.empty())
1925     ProfileFileName = PGOTestProfileFile;
1926   if (!PGOTestProfileRemappingFile.empty())
1927     ProfileRemappingFileName = PGOTestProfileRemappingFile;
1928 }
1929 
1930 PreservedAnalyses PGOInstrumentationUse::run(Module &M,
1931                                              ModuleAnalysisManager &AM) {
1932 
1933   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1934   auto LookupTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
1935     return FAM.getResult<TargetLibraryAnalysis>(F);
1936   };
1937   auto LookupBPI = [&FAM](Function &F) {
1938     return &FAM.getResult<BranchProbabilityAnalysis>(F);
1939   };
1940   auto LookupBFI = [&FAM](Function &F) {
1941     return &FAM.getResult<BlockFrequencyAnalysis>(F);
1942   };
1943 
1944   auto *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
1945 
1946   if (!annotateAllFunctions(M, ProfileFileName, ProfileRemappingFileName,
1947                             LookupTLI, LookupBPI, LookupBFI, PSI, IsCS))
1948     return PreservedAnalyses::all();
1949 
1950   return PreservedAnalyses::none();
1951 }
1952 
1953 static std::string getSimpleNodeName(const BasicBlock *Node) {
1954   if (!Node->getName().empty())
1955     return std::string(Node->getName());
1956 
1957   std::string SimpleNodeName;
1958   raw_string_ostream OS(SimpleNodeName);
1959   Node->printAsOperand(OS, false);
1960   return OS.str();
1961 }
1962 
1963 void llvm::setProfMetadata(Module *M, Instruction *TI,
1964                            ArrayRef<uint64_t> EdgeCounts,
1965                            uint64_t MaxCount) {
1966   MDBuilder MDB(M->getContext());
1967   assert(MaxCount > 0 && "Bad max count");
1968   uint64_t Scale = calculateCountScale(MaxCount);
1969   SmallVector<unsigned, 4> Weights;
1970   for (const auto &ECI : EdgeCounts)
1971     Weights.push_back(scaleBranchCount(ECI, Scale));
1972 
1973   LLVM_DEBUG(dbgs() << "Weight is: "; for (const auto &W
1974                                            : Weights) {
1975     dbgs() << W << " ";
1976   } dbgs() << "\n";);
1977 
1978   misexpect::checkExpectAnnotations(*TI, Weights, /*IsFrontend=*/false);
1979 
1980   TI->setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
1981   if (EmitBranchProbability) {
1982     std::string BrCondStr = getBranchCondString(TI);
1983     if (BrCondStr.empty())
1984       return;
1985 
1986     uint64_t WSum =
1987         std::accumulate(Weights.begin(), Weights.end(), (uint64_t)0,
1988                         [](uint64_t w1, uint64_t w2) { return w1 + w2; });
1989     uint64_t TotalCount =
1990         std::accumulate(EdgeCounts.begin(), EdgeCounts.end(), (uint64_t)0,
1991                         [](uint64_t c1, uint64_t c2) { return c1 + c2; });
1992     Scale = calculateCountScale(WSum);
1993     BranchProbability BP(scaleBranchCount(Weights[0], Scale),
1994                          scaleBranchCount(WSum, Scale));
1995     std::string BranchProbStr;
1996     raw_string_ostream OS(BranchProbStr);
1997     OS << BP;
1998     OS << " (total count : " << TotalCount << ")";
1999     OS.flush();
2000     Function *F = TI->getParent()->getParent();
2001     OptimizationRemarkEmitter ORE(F);
2002     ORE.emit([&]() {
2003       return OptimizationRemark(DEBUG_TYPE, "pgo-instrumentation", TI)
2004              << BrCondStr << " is true with probability : " << BranchProbStr;
2005     });
2006   }
2007 }
2008 
2009 namespace llvm {
2010 
2011 void setIrrLoopHeaderMetadata(Module *M, Instruction *TI, uint64_t Count) {
2012   MDBuilder MDB(M->getContext());
2013   TI->setMetadata(llvm::LLVMContext::MD_irr_loop,
2014                   MDB.createIrrLoopHeaderWeight(Count));
2015 }
2016 
2017 template <> struct GraphTraits<PGOUseFunc *> {
2018   using NodeRef = const BasicBlock *;
2019   using ChildIteratorType = const_succ_iterator;
2020   using nodes_iterator = pointer_iterator<Function::const_iterator>;
2021 
2022   static NodeRef getEntryNode(const PGOUseFunc *G) {
2023     return &G->getFunc().front();
2024   }
2025 
2026   static ChildIteratorType child_begin(const NodeRef N) {
2027     return succ_begin(N);
2028   }
2029 
2030   static ChildIteratorType child_end(const NodeRef N) { return succ_end(N); }
2031 
2032   static nodes_iterator nodes_begin(const PGOUseFunc *G) {
2033     return nodes_iterator(G->getFunc().begin());
2034   }
2035 
2036   static nodes_iterator nodes_end(const PGOUseFunc *G) {
2037     return nodes_iterator(G->getFunc().end());
2038   }
2039 };
2040 
2041 template <> struct DOTGraphTraits<PGOUseFunc *> : DefaultDOTGraphTraits {
2042   explicit DOTGraphTraits(bool isSimple = false)
2043       : DefaultDOTGraphTraits(isSimple) {}
2044 
2045   static std::string getGraphName(const PGOUseFunc *G) {
2046     return std::string(G->getFunc().getName());
2047   }
2048 
2049   std::string getNodeLabel(const BasicBlock *Node, const PGOUseFunc *Graph) {
2050     std::string Result;
2051     raw_string_ostream OS(Result);
2052 
2053     OS << getSimpleNodeName(Node) << ":\\l";
2054     UseBBInfo *BI = Graph->findBBInfo(Node);
2055     OS << "Count : ";
2056     if (BI && BI->CountValid)
2057       OS << BI->CountValue << "\\l";
2058     else
2059       OS << "Unknown\\l";
2060 
2061     if (!PGOInstrSelect)
2062       return Result;
2063 
2064     for (const Instruction &I : *Node) {
2065       if (!isa<SelectInst>(&I))
2066         continue;
2067       // Display scaled counts for SELECT instruction:
2068       OS << "SELECT : { T = ";
2069       uint64_t TC, FC;
2070       bool HasProf = I.extractProfMetadata(TC, FC);
2071       if (!HasProf)
2072         OS << "Unknown, F = Unknown }\\l";
2073       else
2074         OS << TC << ", F = " << FC << " }\\l";
2075     }
2076     return Result;
2077   }
2078 };
2079 
2080 } // end namespace llvm
2081