1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/InitializePasses.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/DebugCounter.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Transforms/Scalar.h"
33 
34 #include <string>
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 #define DEBUG_TYPE "constraint-elimination"
40 
41 STATISTIC(NumCondsRemoved, "Number of instructions removed");
42 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
43               "Controls which conditions are eliminated");
44 
45 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
46 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
47 
48 namespace {
49 
50 class ConstraintInfo;
51 
52 struct StackEntry {
53   unsigned NumIn;
54   unsigned NumOut;
55   bool IsNot;
56   bool IsSigned = false;
57   /// Variables that can be removed from the system once the stack entry gets
58   /// removed.
59   SmallVector<Value *, 2> ValuesToRelease;
60 
61   StackEntry(unsigned NumIn, unsigned NumOut, bool IsNot, bool IsSigned,
62              SmallVector<Value *, 2> ValuesToRelease)
63       : NumIn(NumIn), NumOut(NumOut), IsNot(IsNot), IsSigned(IsSigned),
64         ValuesToRelease(ValuesToRelease) {}
65 };
66 
67 /// Struct to express a pre-condition of the form %Op0 Pred %Op1.
68 struct PreconditionTy {
69   CmpInst::Predicate Pred;
70   Value *Op0;
71   Value *Op1;
72 
73   PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
74       : Pred(Pred), Op0(Op0), Op1(Op1) {}
75 };
76 
77 struct ConstraintTy {
78   SmallVector<int64_t, 8> Coefficients;
79   SmallVector<PreconditionTy, 2> Preconditions;
80 
81   bool IsSigned = false;
82   bool IsEq = false;
83 
84   ConstraintTy() = default;
85 
86   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned)
87       : Coefficients(Coefficients), IsSigned(IsSigned) {}
88 
89   unsigned size() const { return Coefficients.size(); }
90 
91   unsigned empty() const { return Coefficients.empty(); }
92 
93   /// Returns true if any constraint has a non-zero coefficient for any of the
94   /// newly added indices. Zero coefficients for new indices are removed. If it
95   /// returns true, no new variable need to be added to the system.
96   bool needsNewIndices(const DenseMap<Value *, unsigned> &NewIndices) {
97     for (unsigned I = 0; I < NewIndices.size(); ++I) {
98       int64_t Last = Coefficients.pop_back_val();
99       if (Last != 0)
100         return true;
101     }
102     return false;
103   }
104 
105   /// Returns true if all preconditions for this list of constraints are
106   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
107   bool isValid(const ConstraintInfo &Info) const;
108 };
109 
110 /// Wrapper encapsulating separate constraint systems and corresponding value
111 /// mappings for both unsigned and signed information. Facts are added to and
112 /// conditions are checked against the corresponding system depending on the
113 /// signed-ness of their predicates. While the information is kept separate
114 /// based on signed-ness, certain conditions can be transferred between the two
115 /// systems.
116 class ConstraintInfo {
117   DenseMap<Value *, unsigned> UnsignedValue2Index;
118   DenseMap<Value *, unsigned> SignedValue2Index;
119 
120   ConstraintSystem UnsignedCS;
121   ConstraintSystem SignedCS;
122 
123 public:
124   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
125     return Signed ? SignedValue2Index : UnsignedValue2Index;
126   }
127   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
128     return Signed ? SignedValue2Index : UnsignedValue2Index;
129   }
130 
131   ConstraintSystem &getCS(bool Signed) {
132     return Signed ? SignedCS : UnsignedCS;
133   }
134   const ConstraintSystem &getCS(bool Signed) const {
135     return Signed ? SignedCS : UnsignedCS;
136   }
137 
138   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
139   void popLastNVariables(bool Signed, unsigned N) {
140     getCS(Signed).popLastNVariables(N);
141   }
142 
143   bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
144 
145   void addFact(CmpInst::Predicate Pred, Value *A, Value *B, bool IsNegated,
146                unsigned NumIn, unsigned NumOut,
147                SmallVectorImpl<StackEntry> &DFSInStack);
148 
149   /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
150   /// constraints, using indices from the corresponding constraint system.
151   /// Additional indices for newly discovered values are added to \p NewIndices.
152   ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
153                              DenseMap<Value *, unsigned> &NewIndices) const;
154 
155   /// Turn a condition \p CmpI into a vector of constraints, using indices from
156   /// the corresponding constraint system. Additional indices for newly
157   /// discovered values are added to \p NewIndices.
158   ConstraintTy getConstraint(CmpInst *Cmp,
159                              DenseMap<Value *, unsigned> &NewIndices) const {
160     return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0),
161                          Cmp->getOperand(1), NewIndices);
162   }
163 
164   /// Try to add information from \p A \p Pred \p B to the unsigned/signed
165   /// system if \p Pred is signed/unsigned.
166   void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
167                              bool IsNegated, unsigned NumIn, unsigned NumOut,
168                              SmallVectorImpl<StackEntry> &DFSInStack);
169 };
170 
171 } // namespace
172 
173 // Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The
174 // sum of the pairs equals \p V.  The first pair is the constant-factor and X
175 // must be nullptr. If the expression cannot be decomposed, returns an empty
176 // vector.
177 static SmallVector<std::pair<int64_t, Value *>, 4>
178 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions,
179           bool IsSigned) {
180 
181   auto CanUseSExt = [](ConstantInt *CI) {
182     const APInt &Val = CI->getValue();
183     return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
184   };
185   // Decompose \p V used with a signed predicate.
186   if (IsSigned) {
187     if (auto *CI = dyn_cast<ConstantInt>(V)) {
188       if (CanUseSExt(CI))
189         return {{CI->getSExtValue(), nullptr}};
190     }
191 
192     return {{0, nullptr}, {1, V}};
193   }
194 
195   if (auto *CI = dyn_cast<ConstantInt>(V)) {
196     if (CI->uge(MaxConstraintValue))
197       return {};
198     return {{CI->getZExtValue(), nullptr}};
199   }
200   auto *GEP = dyn_cast<GetElementPtrInst>(V);
201   if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) {
202     Value *Op0, *Op1;
203     ConstantInt *CI;
204 
205     // If the index is zero-extended, it is guaranteed to be positive.
206     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
207               m_ZExt(m_Value(Op0)))) {
208       if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) &&
209           CanUseSExt(CI))
210         return {{0, nullptr},
211                 {1, GEP->getPointerOperand()},
212                 {std::pow(int64_t(2), CI->getSExtValue()), Op1}};
213       if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))) &&
214           CanUseSExt(CI))
215         return {{CI->getSExtValue(), nullptr},
216                 {1, GEP->getPointerOperand()},
217                 {1, Op1}};
218       return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
219     }
220 
221     if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) &&
222         !CI->isNegative() && CanUseSExt(CI))
223       return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}};
224 
225     SmallVector<std::pair<int64_t, Value *>, 4> Result;
226     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
227               m_NUWShl(m_Value(Op0), m_ConstantInt(CI))) &&
228         CanUseSExt(CI))
229       Result = {{0, nullptr},
230                 {1, GEP->getPointerOperand()},
231                 {std::pow(int64_t(2), CI->getSExtValue()), Op0}};
232     else if (match(GEP->getOperand(GEP->getNumOperands() - 1),
233                    m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))) &&
234              CanUseSExt(CI))
235       Result = {{CI->getSExtValue(), nullptr},
236                 {1, GEP->getPointerOperand()},
237                 {1, Op0}};
238     else {
239       Op0 = GEP->getOperand(GEP->getNumOperands() - 1);
240       Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
241     }
242     // If Op0 is signed non-negative, the GEP is increasing monotonically and
243     // can be de-composed.
244     Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
245                                ConstantInt::get(Op0->getType(), 0));
246     return Result;
247   }
248 
249   Value *Op0;
250   if (match(V, m_ZExt(m_Value(Op0))))
251     V = Op0;
252 
253   Value *Op1;
254   ConstantInt *CI;
255   if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI))) &&
256       !CI->uge(MaxConstraintValue))
257     return {{CI->getZExtValue(), nullptr}, {1, Op0}};
258   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
259       CanUseSExt(CI)) {
260     Preconditions.emplace_back(
261         CmpInst::ICMP_UGE, Op0,
262         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
263     return {{CI->getSExtValue(), nullptr}, {1, Op0}};
264   }
265   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1))))
266     return {{0, nullptr}, {1, Op0}, {1, Op1}};
267 
268   if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && CanUseSExt(CI))
269     return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}};
270   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
271     return {{0, nullptr}, {1, Op0}, {-1, Op1}};
272 
273   return {{0, nullptr}, {1, V}};
274 }
275 
276 ConstraintTy
277 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
278                               DenseMap<Value *, unsigned> &NewIndices) const {
279   bool IsEq = false;
280   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
281   switch (Pred) {
282   case CmpInst::ICMP_UGT:
283   case CmpInst::ICMP_UGE:
284   case CmpInst::ICMP_SGT:
285   case CmpInst::ICMP_SGE: {
286     Pred = CmpInst::getSwappedPredicate(Pred);
287     std::swap(Op0, Op1);
288     break;
289   }
290   case CmpInst::ICMP_EQ:
291     if (match(Op1, m_Zero())) {
292       Pred = CmpInst::ICMP_ULE;
293     } else {
294       IsEq = true;
295       Pred = CmpInst::ICMP_ULE;
296     }
297     break;
298   case CmpInst::ICMP_NE:
299     if (!match(Op1, m_Zero()))
300       return {};
301     Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
302     std::swap(Op0, Op1);
303     break;
304   default:
305     break;
306   }
307 
308   // Only ULE and ULT predicates are supported at the moment.
309   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
310       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
311     return {};
312 
313   SmallVector<PreconditionTy, 4> Preconditions;
314   bool IsSigned = CmpInst::isSigned(Pred);
315   auto &Value2Index = getValue2Index(IsSigned);
316   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
317                         Preconditions, IsSigned);
318   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
319                         Preconditions, IsSigned);
320   // Skip if decomposing either of the values failed.
321   if (ADec.empty() || BDec.empty())
322     return {};
323 
324   int64_t Offset1 = ADec[0].first;
325   int64_t Offset2 = BDec[0].first;
326   Offset1 *= -1;
327 
328   // Create iterator ranges that skip the constant-factor.
329   auto VariablesA = llvm::drop_begin(ADec);
330   auto VariablesB = llvm::drop_begin(BDec);
331 
332   // First try to look up \p V in Value2Index and NewIndices. Otherwise add a
333   // new entry to NewIndices.
334   auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned {
335     auto V2I = Value2Index.find(V);
336     if (V2I != Value2Index.end())
337       return V2I->second;
338     auto Insert =
339         NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1});
340     return Insert.first->second;
341   };
342 
343   // Make sure all variables have entries in Value2Index or NewIndices.
344   for (const auto &KV :
345        concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB))
346     GetOrAddIndex(KV.second);
347 
348   // Build result constraint, by first adding all coefficients from A and then
349   // subtracting all coefficients from B.
350   ConstraintTy Res(
351       SmallVector<int64_t, 8>(Value2Index.size() + NewIndices.size() + 1, 0),
352       IsSigned);
353   Res.IsEq = IsEq;
354   auto &R = Res.Coefficients;
355   for (const auto &KV : VariablesA)
356     R[GetOrAddIndex(KV.second)] += KV.first;
357 
358   for (const auto &KV : VariablesB)
359     R[GetOrAddIndex(KV.second)] -= KV.first;
360 
361   int64_t OffsetSum;
362   if (AddOverflow(Offset1, Offset2, OffsetSum))
363     return {};
364   if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
365     if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
366       return {};
367   R[0] = OffsetSum;
368   Res.Preconditions = std::move(Preconditions);
369   return Res;
370 }
371 
372 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
373   return Coefficients.size() > 0 &&
374          all_of(Preconditions, [&Info](const PreconditionTy &C) {
375            return Info.doesHold(C.Pred, C.Op0, C.Op1);
376          });
377 }
378 
379 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
380                               Value *B) const {
381   DenseMap<Value *, unsigned> NewIndices;
382   auto R = getConstraint(Pred, A, B, NewIndices);
383 
384   if (!NewIndices.empty())
385     return false;
386 
387   // TODO: properly check NewIndices.
388   return NewIndices.empty() && R.Preconditions.empty() && !R.IsEq &&
389          !R.empty() &&
390          getCS(CmpInst::isSigned(Pred)).isConditionImplied(R.Coefficients);
391 }
392 
393 void ConstraintInfo::transferToOtherSystem(
394     CmpInst::Predicate Pred, Value *A, Value *B, bool IsNegated, unsigned NumIn,
395     unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
396   // Check if we can combine facts from the signed and unsigned systems to
397   // derive additional facts.
398   if (!A->getType()->isIntegerTy())
399     return;
400   // FIXME: This currently depends on the order we add facts. Ideally we
401   // would first add all known facts and only then try to add additional
402   // facts.
403   switch (Pred) {
404   default:
405     break;
406   case CmpInst::ICMP_ULT:
407     //  If B is a signed positive constant, A >=s 0 and A <s B.
408     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
409       addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0),
410               IsNegated, NumIn, NumOut, DFSInStack);
411       addFact(CmpInst::ICMP_SLT, A, B, IsNegated, NumIn, NumOut, DFSInStack);
412     }
413     break;
414   case CmpInst::ICMP_SLT:
415     if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0)))
416       addFact(CmpInst::ICMP_ULT, A, B, IsNegated, NumIn, NumOut, DFSInStack);
417     break;
418   case CmpInst::ICMP_SGT:
419     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1)))
420       addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0),
421               IsNegated, NumIn, NumOut, DFSInStack);
422     break;
423   case CmpInst::ICMP_SGE:
424     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
425       addFact(CmpInst::ICMP_UGE, A, B, IsNegated, NumIn, NumOut, DFSInStack);
426     }
427     break;
428   }
429 }
430 
431 namespace {
432 /// Represents either a condition that holds on entry to a block or a basic
433 /// block, with their respective Dominator DFS in and out numbers.
434 struct ConstraintOrBlock {
435   unsigned NumIn;
436   unsigned NumOut;
437   bool IsBlock;
438   bool Not;
439   union {
440     BasicBlock *BB;
441     CmpInst *Condition;
442   };
443 
444   ConstraintOrBlock(DomTreeNode *DTN)
445       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
446         BB(DTN->getBlock()) {}
447   ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
448       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
449         Not(Not), Condition(Condition) {}
450 };
451 
452 /// Keep state required to build worklist.
453 struct State {
454   DominatorTree &DT;
455   SmallVector<ConstraintOrBlock, 64> WorkList;
456 
457   State(DominatorTree &DT) : DT(DT) {}
458 
459   /// Process block \p BB and add known facts to work-list.
460   void addInfoFor(BasicBlock &BB);
461 
462   /// Returns true if we can add a known condition from BB to its successor
463   /// block Succ. Each predecessor of Succ can either be BB or be dominated
464   /// by Succ (e.g. the case when adding a condition from a pre-header to a
465   /// loop header).
466   bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
467     if (BB.getSingleSuccessor()) {
468       assert(BB.getSingleSuccessor() == Succ);
469       return DT.properlyDominates(&BB, Succ);
470     }
471     return any_of(successors(&BB),
472                   [Succ](const BasicBlock *S) { return S != Succ; }) &&
473            all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) {
474              return Pred == &BB || DT.dominates(Succ, Pred);
475            });
476   }
477 };
478 
479 } // namespace
480 
481 #ifndef NDEBUG
482 static void dumpWithNames(const ConstraintSystem &CS,
483                           DenseMap<Value *, unsigned> &Value2Index) {
484   SmallVector<std::string> Names(Value2Index.size(), "");
485   for (auto &KV : Value2Index) {
486     Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
487   }
488   CS.dump(Names);
489 }
490 
491 static void dumpWithNames(ArrayRef<int64_t> C,
492                           DenseMap<Value *, unsigned> &Value2Index) {
493   ConstraintSystem CS;
494   CS.addVariableRowFill(C);
495   dumpWithNames(CS, Value2Index);
496 }
497 #endif
498 
499 void State::addInfoFor(BasicBlock &BB) {
500   WorkList.emplace_back(DT.getNode(&BB));
501 
502   // True as long as long as the current instruction is guaranteed to execute.
503   bool GuaranteedToExecute = true;
504   // Scan BB for assume calls.
505   // TODO: also use this scan to queue conditions to simplify, so we can
506   // interleave facts from assumes and conditions to simplify in a single
507   // basic block. And to skip another traversal of each basic block when
508   // simplifying.
509   for (Instruction &I : BB) {
510     Value *Cond;
511     // For now, just handle assumes with a single compare as condition.
512     if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
513         isa<ICmpInst>(Cond)) {
514       if (GuaranteedToExecute) {
515         // The assume is guaranteed to execute when BB is entered, hence Cond
516         // holds on entry to BB.
517         WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false);
518       } else {
519         // Otherwise the condition only holds in the successors.
520         for (BasicBlock *Succ : successors(&BB)) {
521           if (!canAddSuccessor(BB, Succ))
522             continue;
523           WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false);
524         }
525       }
526     }
527     GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
528   }
529 
530   auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
531   if (!Br || !Br->isConditional())
532     return;
533 
534   // If the condition is an OR of 2 compares and the false successor only has
535   // the current block as predecessor, queue both negated conditions for the
536   // false successor.
537   Value *Op0, *Op1;
538   if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) &&
539       isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) {
540     BasicBlock *FalseSuccessor = Br->getSuccessor(1);
541     if (canAddSuccessor(BB, FalseSuccessor)) {
542       WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op0),
543                             true);
544       WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op1),
545                             true);
546     }
547     return;
548   }
549 
550   // If the condition is an AND of 2 compares and the true successor only has
551   // the current block as predecessor, queue both conditions for the true
552   // successor.
553   if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) &&
554       isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) {
555     BasicBlock *TrueSuccessor = Br->getSuccessor(0);
556     if (canAddSuccessor(BB, TrueSuccessor)) {
557       WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op0),
558                             false);
559       WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op1),
560                             false);
561     }
562     return;
563   }
564 
565   auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
566   if (!CmpI)
567     return;
568   if (canAddSuccessor(BB, Br->getSuccessor(0)))
569     WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
570   if (canAddSuccessor(BB, Br->getSuccessor(1)))
571     WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
572 }
573 
574 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
575                              bool IsNegated, unsigned NumIn, unsigned NumOut,
576                              SmallVectorImpl<StackEntry> &DFSInStack) {
577   // If the constraint has a pre-condition, skip the constraint if it does not
578   // hold.
579   DenseMap<Value *, unsigned> NewIndices;
580   auto R = getConstraint(Pred, A, B, NewIndices);
581   if (!R.isValid(*this))
582     return;
583 
584   //LLVM_DEBUG(dbgs() << "Adding " << *Condition << " " << IsNegated << "\n");
585   bool Added = false;
586   assert(CmpInst::isSigned(Pred) == R.IsSigned &&
587          "condition and constraint signs must match");
588   auto &CSToUse = getCS(R.IsSigned);
589   if (R.Coefficients.empty())
590     return;
591 
592   Added |= CSToUse.addVariableRowFill(R.Coefficients);
593 
594   // If R has been added to the system, queue it for removal once it goes
595   // out-of-scope.
596   if (Added) {
597     SmallVector<Value *, 2> ValuesToRelease;
598     for (auto &KV : NewIndices) {
599       getValue2Index(R.IsSigned).insert(KV);
600       ValuesToRelease.push_back(KV.first);
601     }
602 
603     LLVM_DEBUG({
604       dbgs() << "  constraint: ";
605       dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned));
606     });
607 
608     DFSInStack.emplace_back(NumIn, NumOut, IsNegated, R.IsSigned,
609                             ValuesToRelease);
610 
611     if (R.IsEq) {
612       // Also add the inverted constraint for equality constraints.
613       for (auto &Coeff : R.Coefficients)
614         Coeff *= -1;
615       CSToUse.addVariableRowFill(R.Coefficients);
616 
617       DFSInStack.emplace_back(NumIn, NumOut, IsNegated, R.IsSigned,
618                               SmallVector<Value *, 2>());
619     }
620   }
621 }
622 
623 static void
624 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
625                           SmallVectorImpl<Instruction *> &ToRemove) {
626   auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
627                               ConstraintInfo &Info) {
628     DenseMap<Value *, unsigned> NewIndices;
629     auto R = Info.getConstraint(Pred, A, B, NewIndices);
630     if (R.size() < 2 || R.needsNewIndices(NewIndices) || !R.isValid(Info))
631       return false;
632 
633     auto &CSToUse = Info.getCS(CmpInst::isSigned(Pred));
634     return CSToUse.isConditionImplied(R.Coefficients);
635   };
636 
637   if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
638     // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
639     // can be simplified to a regular sub.
640     Value *A = II->getArgOperand(0);
641     Value *B = II->getArgOperand(1);
642     if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
643         !DoesConditionHold(CmpInst::ICMP_SGE, B,
644                            ConstantInt::get(A->getType(), 0), Info))
645       return;
646 
647     IRBuilder<> Builder(II->getParent(), II->getIterator());
648     Value *Sub = nullptr;
649     for (User *U : make_early_inc_range(II->users())) {
650       if (match(U, m_ExtractValue<0>(m_Value()))) {
651         if (!Sub)
652           Sub = Builder.CreateSub(A, B);
653         U->replaceAllUsesWith(Sub);
654       } else if (match(U, m_ExtractValue<1>(m_Value())))
655         U->replaceAllUsesWith(Builder.getFalse());
656       else
657         continue;
658 
659       if (U->use_empty()) {
660         auto *I = cast<Instruction>(U);
661         ToRemove.push_back(I);
662         I->setOperand(0, PoisonValue::get(II->getType()));
663       }
664     }
665 
666     if (II->use_empty())
667       II->eraseFromParent();
668   }
669 }
670 
671 static bool eliminateConstraints(Function &F, DominatorTree &DT) {
672   bool Changed = false;
673   DT.updateDFSNumbers();
674 
675   ConstraintInfo Info;
676   State S(DT);
677 
678   // First, collect conditions implied by branches and blocks with their
679   // Dominator DFS in and out numbers.
680   for (BasicBlock &BB : F) {
681     if (!DT.getNode(&BB))
682       continue;
683     S.addInfoFor(BB);
684   }
685 
686   // Next, sort worklist by dominance, so that dominating blocks and conditions
687   // come before blocks and conditions dominated by them. If a block and a
688   // condition have the same numbers, the condition comes before the block, as
689   // it holds on entry to the block.
690   stable_sort(S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
691     return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock);
692   });
693 
694   SmallVector<Instruction *> ToRemove;
695 
696   // Finally, process ordered worklist and eliminate implied conditions.
697   SmallVector<StackEntry, 16> DFSInStack;
698   for (ConstraintOrBlock &CB : S.WorkList) {
699     // First, pop entries from the stack that are out-of-scope for CB. Remove
700     // the corresponding entry from the constraint system.
701     while (!DFSInStack.empty()) {
702       auto &E = DFSInStack.back();
703       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
704                         << "\n");
705       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
706       assert(E.NumIn <= CB.NumIn);
707       if (CB.NumOut <= E.NumOut)
708         break;
709       LLVM_DEBUG({
710         dbgs() << "Removing ";
711         dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(),
712                       Info.getValue2Index(E.IsSigned));
713         dbgs() << "\n";
714       });
715 
716       Info.popLastConstraint(E.IsSigned);
717       // Remove variables in the system that went out of scope.
718       auto &Mapping = Info.getValue2Index(E.IsSigned);
719       for (Value *V : E.ValuesToRelease)
720         Mapping.erase(V);
721       Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
722       DFSInStack.pop_back();
723     }
724 
725     LLVM_DEBUG({
726       dbgs() << "Processing ";
727       if (CB.IsBlock)
728         dbgs() << *CB.BB;
729       else
730         dbgs() << *CB.Condition;
731       dbgs() << "\n";
732     });
733 
734     // For a block, check if any CmpInsts become known based on the current set
735     // of constraints.
736     if (CB.IsBlock) {
737       for (Instruction &I : make_early_inc_range(*CB.BB)) {
738         if (auto *II = dyn_cast<WithOverflowInst>(&I)) {
739           tryToSimplifyOverflowMath(II, Info, ToRemove);
740           continue;
741         }
742         auto *Cmp = dyn_cast<ICmpInst>(&I);
743         if (!Cmp)
744           continue;
745 
746         DenseMap<Value *, unsigned> NewIndices;
747         auto R = Info.getConstraint(Cmp, NewIndices);
748         if (R.IsEq || R.empty() || R.needsNewIndices(NewIndices) ||
749             !R.isValid(Info))
750           continue;
751 
752         auto &CSToUse = Info.getCS(R.IsSigned);
753         if (CSToUse.isConditionImplied(R.Coefficients)) {
754           if (!DebugCounter::shouldExecute(EliminatedCounter))
755             continue;
756 
757           LLVM_DEBUG({
758             dbgs() << "Condition " << *Cmp
759                    << " implied by dominating constraints\n";
760             dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
761           });
762           Cmp->replaceUsesWithIf(
763               ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) {
764                 // Conditions in an assume trivially simplify to true. Skip uses
765                 // in assume calls to not destroy the available information.
766                 auto *II = dyn_cast<IntrinsicInst>(U.getUser());
767                 return !II || II->getIntrinsicID() != Intrinsic::assume;
768               });
769           NumCondsRemoved++;
770           Changed = true;
771         }
772         if (CSToUse.isConditionImplied(
773                 ConstraintSystem::negate(R.Coefficients))) {
774           if (!DebugCounter::shouldExecute(EliminatedCounter))
775             continue;
776 
777           LLVM_DEBUG({
778             dbgs() << "Condition !" << *Cmp
779                    << " implied by dominating constraints\n";
780             dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
781           });
782           Cmp->replaceAllUsesWith(
783               ConstantInt::getFalse(F.getParent()->getContext()));
784           NumCondsRemoved++;
785           Changed = true;
786         }
787       }
788       continue;
789     }
790 
791     // Set up a function to restore the predicate at the end of the scope if it
792     // has been negated. Negate the predicate in-place, if required.
793     auto *CI = dyn_cast<ICmpInst>(CB.Condition);
794     auto PredicateRestorer = make_scope_exit([CI, &CB]() {
795       if (CB.Not && CI)
796         CI->setPredicate(CI->getInversePredicate());
797     });
798     if (CB.Not) {
799       if (CI) {
800         CI->setPredicate(CI->getInversePredicate());
801       } else {
802         LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n");
803         continue;
804       }
805     }
806 
807     ICmpInst::Predicate Pred;
808     Value *A, *B;
809     if (match(CB.Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
810       // Otherwise, add the condition to the system and stack, if we can
811       // transform it into a constraint.
812       Info.addFact(Pred, A, B, CB.Not, CB.NumIn, CB.NumOut, DFSInStack);
813       Info.transferToOtherSystem(Pred, A, B, CB.Not, CB.NumIn, CB.NumOut,
814                                  DFSInStack);
815     }
816   }
817 
818 #ifndef NDEBUG
819   unsigned SignedEntries =
820       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
821   assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
822          "updates to CS and DFSInStack are out of sync");
823   assert(Info.getCS(true).size() == SignedEntries &&
824          "updates to CS and DFSInStack are out of sync");
825 #endif
826 
827   for (Instruction *I : ToRemove)
828     I->eraseFromParent();
829   return Changed;
830 }
831 
832 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
833                                                  FunctionAnalysisManager &AM) {
834   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
835   if (!eliminateConstraints(F, DT))
836     return PreservedAnalyses::all();
837 
838   PreservedAnalyses PA;
839   PA.preserve<DominatorTreeAnalysis>();
840   PA.preserveSet<CFGAnalyses>();
841   return PA;
842 }
843 
844 namespace {
845 
846 class ConstraintElimination : public FunctionPass {
847 public:
848   static char ID;
849 
850   ConstraintElimination() : FunctionPass(ID) {
851     initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
852   }
853 
854   bool runOnFunction(Function &F) override {
855     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
856     return eliminateConstraints(F, DT);
857   }
858 
859   void getAnalysisUsage(AnalysisUsage &AU) const override {
860     AU.setPreservesCFG();
861     AU.addRequired<DominatorTreeWrapperPass>();
862     AU.addPreserved<GlobalsAAWrapperPass>();
863     AU.addPreserved<DominatorTreeWrapperPass>();
864   }
865 };
866 
867 } // end anonymous namespace
868 
869 char ConstraintElimination::ID = 0;
870 
871 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
872                       "Constraint Elimination", false, false)
873 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
874 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
875 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
876                     "Constraint Elimination", false, false)
877 
878 FunctionPass *llvm::createConstraintEliminationPass() {
879   return new ConstraintElimination();
880 }
881