1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/DebugCounter.h"
33 #include "llvm/Support/MathExtras.h"
34 
35 #include <cmath>
36 #include <string>
37 
38 using namespace llvm;
39 using namespace PatternMatch;
40 
41 #define DEBUG_TYPE "constraint-elimination"
42 
43 STATISTIC(NumCondsRemoved, "Number of instructions removed");
44 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
45               "Controls which conditions are eliminated");
46 
47 static cl::opt<unsigned>
48     MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden,
49             cl::desc("Maximum number of rows to keep in constraint system"));
50 
51 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
52 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
53 
54 // A helper to multiply 2 signed integers where overflowing is allowed.
55 static int64_t multiplyWithOverflow(int64_t A, int64_t B) {
56   int64_t Result;
57   MulOverflow(A, B, Result);
58   return Result;
59 }
60 
61 // A helper to add 2 signed integers where overflowing is allowed.
62 static int64_t addWithOverflow(int64_t A, int64_t B) {
63   int64_t Result;
64   AddOverflow(A, B, Result);
65   return Result;
66 }
67 
68 namespace {
69 
70 class ConstraintInfo;
71 
72 struct StackEntry {
73   unsigned NumIn;
74   unsigned NumOut;
75   bool IsSigned = false;
76   /// Variables that can be removed from the system once the stack entry gets
77   /// removed.
78   SmallVector<Value *, 2> ValuesToRelease;
79 
80   StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned,
81              SmallVector<Value *, 2> ValuesToRelease)
82       : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned),
83         ValuesToRelease(ValuesToRelease) {}
84 };
85 
86 /// Struct to express a pre-condition of the form %Op0 Pred %Op1.
87 struct PreconditionTy {
88   CmpInst::Predicate Pred;
89   Value *Op0;
90   Value *Op1;
91 
92   PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
93       : Pred(Pred), Op0(Op0), Op1(Op1) {}
94 };
95 
96 struct ConstraintTy {
97   SmallVector<int64_t, 8> Coefficients;
98   SmallVector<PreconditionTy, 2> Preconditions;
99 
100   SmallVector<SmallVector<int64_t, 8>> ExtraInfo;
101 
102   bool IsSigned = false;
103   bool IsEq = false;
104 
105   ConstraintTy() = default;
106 
107   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned)
108       : Coefficients(Coefficients), IsSigned(IsSigned) {}
109 
110   unsigned size() const { return Coefficients.size(); }
111 
112   unsigned empty() const { return Coefficients.empty(); }
113 
114   /// Returns true if all preconditions for this list of constraints are
115   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
116   bool isValid(const ConstraintInfo &Info) const;
117 };
118 
119 /// Wrapper encapsulating separate constraint systems and corresponding value
120 /// mappings for both unsigned and signed information. Facts are added to and
121 /// conditions are checked against the corresponding system depending on the
122 /// signed-ness of their predicates. While the information is kept separate
123 /// based on signed-ness, certain conditions can be transferred between the two
124 /// systems.
125 class ConstraintInfo {
126   DenseMap<Value *, unsigned> UnsignedValue2Index;
127   DenseMap<Value *, unsigned> SignedValue2Index;
128 
129   ConstraintSystem UnsignedCS;
130   ConstraintSystem SignedCS;
131 
132   const DataLayout &DL;
133 
134 public:
135   ConstraintInfo(const DataLayout &DL) : DL(DL) {}
136 
137   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
138     return Signed ? SignedValue2Index : UnsignedValue2Index;
139   }
140   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
141     return Signed ? SignedValue2Index : UnsignedValue2Index;
142   }
143 
144   ConstraintSystem &getCS(bool Signed) {
145     return Signed ? SignedCS : UnsignedCS;
146   }
147   const ConstraintSystem &getCS(bool Signed) const {
148     return Signed ? SignedCS : UnsignedCS;
149   }
150 
151   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
152   void popLastNVariables(bool Signed, unsigned N) {
153     getCS(Signed).popLastNVariables(N);
154   }
155 
156   bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
157 
158   void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
159                unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
160 
161   /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
162   /// constraints, using indices from the corresponding constraint system.
163   /// New variables that need to be added to the system are collected in
164   /// \p NewVariables.
165   ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
166                              SmallVectorImpl<Value *> &NewVariables) const;
167 
168   /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
169   /// constraints using getConstraint. Returns an empty constraint if the result
170   /// cannot be used to query the existing constraint system, e.g. because it
171   /// would require adding new variables. Also tries to convert signed
172   /// predicates to unsigned ones if possible to allow using the unsigned system
173   /// which increases the effectiveness of the signed <-> unsigned transfer
174   /// logic.
175   ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0,
176                                        Value *Op1) const;
177 
178   /// Try to add information from \p A \p Pred \p B to the unsigned/signed
179   /// system if \p Pred is signed/unsigned.
180   void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
181                              unsigned NumIn, unsigned NumOut,
182                              SmallVectorImpl<StackEntry> &DFSInStack);
183 };
184 
185 /// Represents a (Coefficient * Variable) entry after IR decomposition.
186 struct DecompEntry {
187   int64_t Coefficient;
188   Value *Variable;
189   /// True if the variable is known positive in the current constraint.
190   bool IsKnownNonNegative;
191 
192   DecompEntry(int64_t Coefficient, Value *Variable,
193               bool IsKnownNonNegative = false)
194       : Coefficient(Coefficient), Variable(Variable),
195         IsKnownNonNegative(IsKnownNonNegative) {}
196 };
197 
198 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition.
199 struct Decomposition {
200   int64_t Offset = 0;
201   SmallVector<DecompEntry, 3> Vars;
202 
203   Decomposition(int64_t Offset) : Offset(Offset) {}
204   Decomposition(Value *V, bool IsKnownNonNegative = false) {
205     Vars.emplace_back(1, V, IsKnownNonNegative);
206   }
207   Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars)
208       : Offset(Offset), Vars(Vars) {}
209 
210   void add(int64_t OtherOffset) {
211     Offset = addWithOverflow(Offset, OtherOffset);
212   }
213 
214   void add(const Decomposition &Other) {
215     add(Other.Offset);
216     append_range(Vars, Other.Vars);
217   }
218 
219   void mul(int64_t Factor) {
220     Offset = multiplyWithOverflow(Offset, Factor);
221     for (auto &Var : Vars)
222       Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor);
223   }
224 };
225 
226 } // namespace
227 
228 static Decomposition decompose(Value *V,
229                                SmallVectorImpl<PreconditionTy> &Preconditions,
230                                bool IsSigned, const DataLayout &DL);
231 
232 static bool canUseSExt(ConstantInt *CI) {
233   const APInt &Val = CI->getValue();
234   return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
235 }
236 
237 static Decomposition
238 decomposeGEP(GetElementPtrInst &GEP,
239              SmallVectorImpl<PreconditionTy> &Preconditions, bool IsSigned,
240              const DataLayout &DL) {
241   // Do not reason about pointers where the index size is larger than 64 bits,
242   // as the coefficients used to encode constraints are 64 bit integers.
243   if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64)
244     return &GEP;
245 
246   if (!GEP.isInBounds())
247     return &GEP;
248 
249   assert(!IsSigned && "The logic below only supports decomposition for "
250                       "unsinged predicates at the moment.");
251   Type *PtrTy = GEP.getType()->getScalarType();
252   unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy);
253   MapVector<Value *, APInt> VariableOffsets;
254   APInt ConstantOffset(BitWidth, 0);
255   if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset))
256     return &GEP;
257 
258   // Handle the (gep (gep ....), C) case by incrementing the constant
259   // coefficient of the inner GEP, if C is a constant.
260   auto *InnerGEP = dyn_cast<GetElementPtrInst>(GEP.getPointerOperand());
261   if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) {
262     auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL);
263     Result.add(ConstantOffset.getSExtValue());
264 
265     if (ConstantOffset.isNegative()) {
266       unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType());
267       int64_t ConstantOffsetI = ConstantOffset.getSExtValue();
268       if (ConstantOffsetI % Scale != 0)
269         return &GEP;
270       // Add pre-condition ensuring the GEP is increasing monotonically and
271       // can be de-composed.
272       // Both sides are normalized by being divided by Scale.
273       Preconditions.emplace_back(
274           CmpInst::ICMP_SGE, InnerGEP->getOperand(1),
275           ConstantInt::get(InnerGEP->getOperand(1)->getType(),
276                            -1 * (ConstantOffsetI / Scale)));
277     }
278     return Result;
279   }
280 
281   Decomposition Result(ConstantOffset.getSExtValue(),
282                        DecompEntry(1, GEP.getPointerOperand()));
283   for (auto [Index, Scale] : VariableOffsets) {
284     auto IdxResult = decompose(Index, Preconditions, IsSigned, DL);
285     IdxResult.mul(Scale.getSExtValue());
286     Result.add(IdxResult);
287 
288     // If Op0 is signed non-negative, the GEP is increasing monotonically and
289     // can be de-composed.
290     if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
291       Preconditions.emplace_back(CmpInst::ICMP_SGE, Index,
292                                  ConstantInt::get(Index->getType(), 0));
293   }
294   return Result;
295 }
296 
297 // Decomposes \p V into a constant offset + list of pairs { Coefficient,
298 // Variable } where Coefficient * Variable. The sum of the constant offset and
299 // pairs equals \p V.
300 static Decomposition decompose(Value *V,
301                                SmallVectorImpl<PreconditionTy> &Preconditions,
302                                bool IsSigned, const DataLayout &DL) {
303 
304   auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B,
305                                                       bool IsSignedB) {
306     auto ResA = decompose(A, Preconditions, IsSigned, DL);
307     auto ResB = decompose(B, Preconditions, IsSignedB, DL);
308     ResA.add(ResB);
309     return ResA;
310   };
311 
312   // Decompose \p V used with a signed predicate.
313   if (IsSigned) {
314     if (auto *CI = dyn_cast<ConstantInt>(V)) {
315       if (canUseSExt(CI))
316         return CI->getSExtValue();
317     }
318     Value *Op0;
319     Value *Op1;
320     if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1))))
321       return MergeResults(Op0, Op1, IsSigned);
322 
323     return V;
324   }
325 
326   if (auto *CI = dyn_cast<ConstantInt>(V)) {
327     if (CI->uge(MaxConstraintValue))
328       return V;
329     return int64_t(CI->getZExtValue());
330   }
331 
332   if (auto *GEP = dyn_cast<GetElementPtrInst>(V))
333     return decomposeGEP(*GEP, Preconditions, IsSigned, DL);
334 
335   Value *Op0;
336   bool IsKnownNonNegative = false;
337   if (match(V, m_ZExt(m_Value(Op0)))) {
338     IsKnownNonNegative = true;
339     V = Op0;
340   }
341 
342   Value *Op1;
343   ConstantInt *CI;
344   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
345     return MergeResults(Op0, Op1, IsSigned);
346   }
347   if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) {
348     if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
349       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
350                                  ConstantInt::get(Op0->getType(), 0));
351     if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
352       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1,
353                                  ConstantInt::get(Op1->getType(), 0));
354 
355     return MergeResults(Op0, Op1, IsSigned);
356   }
357 
358   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
359       canUseSExt(CI)) {
360     Preconditions.emplace_back(
361         CmpInst::ICMP_UGE, Op0,
362         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
363     return MergeResults(Op0, CI, true);
364   }
365 
366   if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) {
367     int64_t Mult = int64_t(std::pow(int64_t(2), CI->getSExtValue()));
368     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
369     Result.mul(Mult);
370     return Result;
371   }
372 
373   if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) &&
374       (!CI->isNegative())) {
375     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
376     Result.mul(CI->getSExtValue());
377     return Result;
378   }
379 
380   if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI))
381     return {-1 * CI->getSExtValue(), {{1, Op0}}};
382   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
383     return {0, {{1, Op0}, {-1, Op1}}};
384 
385   return {V, IsKnownNonNegative};
386 }
387 
388 ConstraintTy
389 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
390                               SmallVectorImpl<Value *> &NewVariables) const {
391   assert(NewVariables.empty() && "NewVariables must be empty when passed in");
392   bool IsEq = false;
393   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
394   switch (Pred) {
395   case CmpInst::ICMP_UGT:
396   case CmpInst::ICMP_UGE:
397   case CmpInst::ICMP_SGT:
398   case CmpInst::ICMP_SGE: {
399     Pred = CmpInst::getSwappedPredicate(Pred);
400     std::swap(Op0, Op1);
401     break;
402   }
403   case CmpInst::ICMP_EQ:
404     if (match(Op1, m_Zero())) {
405       Pred = CmpInst::ICMP_ULE;
406     } else {
407       IsEq = true;
408       Pred = CmpInst::ICMP_ULE;
409     }
410     break;
411   case CmpInst::ICMP_NE:
412     if (!match(Op1, m_Zero()))
413       return {};
414     Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
415     std::swap(Op0, Op1);
416     break;
417   default:
418     break;
419   }
420 
421   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
422       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
423     return {};
424 
425   SmallVector<PreconditionTy, 4> Preconditions;
426   bool IsSigned = CmpInst::isSigned(Pred);
427   auto &Value2Index = getValue2Index(IsSigned);
428   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
429                         Preconditions, IsSigned, DL);
430   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
431                         Preconditions, IsSigned, DL);
432   int64_t Offset1 = ADec.Offset;
433   int64_t Offset2 = BDec.Offset;
434   Offset1 *= -1;
435 
436   auto &VariablesA = ADec.Vars;
437   auto &VariablesB = BDec.Vars;
438 
439   // First try to look up \p V in Value2Index and NewVariables. Otherwise add a
440   // new entry to NewVariables.
441   DenseMap<Value *, unsigned> NewIndexMap;
442   auto GetOrAddIndex = [&Value2Index, &NewVariables,
443                         &NewIndexMap](Value *V) -> unsigned {
444     auto V2I = Value2Index.find(V);
445     if (V2I != Value2Index.end())
446       return V2I->second;
447     auto Insert =
448         NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1});
449     if (Insert.second)
450       NewVariables.push_back(V);
451     return Insert.first->second;
452   };
453 
454   // Make sure all variables have entries in Value2Index or NewVariables.
455   for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
456     GetOrAddIndex(KV.Variable);
457 
458   // Build result constraint, by first adding all coefficients from A and then
459   // subtracting all coefficients from B.
460   ConstraintTy Res(
461       SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0),
462       IsSigned);
463   // Collect variables that are known to be positive in all uses in the
464   // constraint.
465   DenseMap<Value *, bool> KnownNonNegativeVariables;
466   Res.IsEq = IsEq;
467   auto &R = Res.Coefficients;
468   for (const auto &KV : VariablesA) {
469     R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
470     auto I =
471         KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
472     I.first->second &= KV.IsKnownNonNegative;
473   }
474 
475   for (const auto &KV : VariablesB) {
476     R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient;
477     auto I =
478         KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
479     I.first->second &= KV.IsKnownNonNegative;
480   }
481 
482   int64_t OffsetSum;
483   if (AddOverflow(Offset1, Offset2, OffsetSum))
484     return {};
485   if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
486     if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
487       return {};
488   R[0] = OffsetSum;
489   Res.Preconditions = std::move(Preconditions);
490 
491   // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new
492   // variables.
493   while (!NewVariables.empty()) {
494     int64_t Last = R.back();
495     if (Last != 0)
496       break;
497     R.pop_back();
498     Value *RemovedV = NewVariables.pop_back_val();
499     NewIndexMap.erase(RemovedV);
500   }
501 
502   // Add extra constraints for variables that are known positive.
503   for (auto &KV : KnownNonNegativeVariables) {
504     if (!KV.second || (Value2Index.find(KV.first) == Value2Index.end() &&
505                        NewIndexMap.find(KV.first) == NewIndexMap.end()))
506       continue;
507     SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0);
508     C[GetOrAddIndex(KV.first)] = -1;
509     Res.ExtraInfo.push_back(C);
510   }
511   return Res;
512 }
513 
514 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred,
515                                                      Value *Op0,
516                                                      Value *Op1) const {
517   // If both operands are known to be non-negative, change signed predicates to
518   // unsigned ones. This increases the reasoning effectiveness in combination
519   // with the signed <-> unsigned transfer logic.
520   if (CmpInst::isSigned(Pred) &&
521       isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) &&
522       isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
523     Pred = CmpInst::getUnsignedPredicate(Pred);
524 
525   SmallVector<Value *> NewVariables;
526   ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables);
527   if (R.IsEq || !NewVariables.empty())
528     return {};
529   return R;
530 }
531 
532 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
533   return Coefficients.size() > 0 &&
534          all_of(Preconditions, [&Info](const PreconditionTy &C) {
535            return Info.doesHold(C.Pred, C.Op0, C.Op1);
536          });
537 }
538 
539 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
540                               Value *B) const {
541   auto R = getConstraintForSolving(Pred, A, B);
542   return R.Preconditions.empty() && !R.empty() &&
543          getCS(R.IsSigned).isConditionImplied(R.Coefficients);
544 }
545 
546 void ConstraintInfo::transferToOtherSystem(
547     CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
548     unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
549   // Check if we can combine facts from the signed and unsigned systems to
550   // derive additional facts.
551   if (!A->getType()->isIntegerTy())
552     return;
553   // FIXME: This currently depends on the order we add facts. Ideally we
554   // would first add all known facts and only then try to add additional
555   // facts.
556   switch (Pred) {
557   default:
558     break;
559   case CmpInst::ICMP_ULT:
560     //  If B is a signed positive constant, A >=s 0 and A <s B.
561     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
562       addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn,
563               NumOut, DFSInStack);
564       addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack);
565     }
566     break;
567   case CmpInst::ICMP_SLT:
568     if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0)))
569       addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack);
570     break;
571   case CmpInst::ICMP_SGT:
572     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1)))
573       addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn,
574               NumOut, DFSInStack);
575     break;
576   case CmpInst::ICMP_SGE:
577     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
578       addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack);
579     }
580     break;
581   }
582 }
583 
584 namespace {
585 /// Represents either
586 ///  * a condition that holds on entry to a block (=conditional fact)
587 ///  * an assume (=assume fact)
588 ///  * an instruction to simplify.
589 /// It also tracks the Dominator DFS in and out numbers for each entry.
590 struct FactOrCheck {
591   Instruction *Inst;
592   unsigned NumIn;
593   unsigned NumOut;
594   bool IsCheck;
595   bool Not;
596 
597   FactOrCheck(DomTreeNode *DTN, Instruction *Inst, bool IsCheck, bool Not)
598       : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
599         IsCheck(IsCheck), Not(Not) {}
600 
601   static FactOrCheck getFact(DomTreeNode *DTN, Instruction *Inst,
602                              bool Not = false) {
603     return FactOrCheck(DTN, Inst, false, Not);
604   }
605 
606   static FactOrCheck getCheck(DomTreeNode *DTN, Instruction *Inst) {
607     return FactOrCheck(DTN, Inst, true, false);
608   }
609 
610   bool isAssumeFact() const {
611     if (!IsCheck && isa<IntrinsicInst>(Inst)) {
612       assert(match(Inst, m_Intrinsic<Intrinsic::assume>()));
613       return true;
614     }
615     return false;
616   }
617 
618   bool isConditionFact() const { return !IsCheck && isa<CmpInst>(Inst); }
619 };
620 
621 /// Keep state required to build worklist.
622 struct State {
623   DominatorTree &DT;
624   SmallVector<FactOrCheck, 64> WorkList;
625 
626   State(DominatorTree &DT) : DT(DT) {}
627 
628   /// Process block \p BB and add known facts to work-list.
629   void addInfoFor(BasicBlock &BB);
630 
631   /// Returns true if we can add a known condition from BB to its successor
632   /// block Succ.
633   bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
634     return DT.dominates(BasicBlockEdge(&BB, Succ), Succ);
635   }
636 };
637 
638 } // namespace
639 
640 #ifndef NDEBUG
641 static void dumpWithNames(const ConstraintSystem &CS,
642                           DenseMap<Value *, unsigned> &Value2Index) {
643   SmallVector<std::string> Names(Value2Index.size(), "");
644   for (auto &KV : Value2Index) {
645     Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
646   }
647   CS.dump(Names);
648 }
649 
650 static void dumpWithNames(ArrayRef<int64_t> C,
651                           DenseMap<Value *, unsigned> &Value2Index) {
652   ConstraintSystem CS;
653   CS.addVariableRowFill(C);
654   dumpWithNames(CS, Value2Index);
655 }
656 #endif
657 
658 void State::addInfoFor(BasicBlock &BB) {
659   // True as long as long as the current instruction is guaranteed to execute.
660   bool GuaranteedToExecute = true;
661   // Queue conditions and assumes.
662   for (Instruction &I : BB) {
663     if (auto Cmp = dyn_cast<ICmpInst>(&I)) {
664       WorkList.push_back(FactOrCheck::getCheck(DT.getNode(&BB), Cmp));
665       continue;
666     }
667 
668     if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) {
669       WorkList.push_back(FactOrCheck::getCheck(DT.getNode(&BB), &I));
670       continue;
671     }
672 
673     Value *Cond;
674     // For now, just handle assumes with a single compare as condition.
675     if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
676         isa<ICmpInst>(Cond)) {
677       if (GuaranteedToExecute) {
678         // The assume is guaranteed to execute when BB is entered, hence Cond
679         // holds on entry to BB.
680         WorkList.emplace_back(FactOrCheck::getFact(DT.getNode(I.getParent()),
681                                                    cast<Instruction>(Cond)));
682       } else {
683         WorkList.emplace_back(
684             FactOrCheck::getFact(DT.getNode(I.getParent()), &I));
685       }
686     }
687     GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
688   }
689 
690   auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
691   if (!Br || !Br->isConditional())
692     return;
693 
694   Value *Cond = Br->getCondition();
695 
696   // If the condition is a chain of ORs/AND and the successor only has the
697   // current block as predecessor, queue conditions for the successor.
698   Value *Op0, *Op1;
699   if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
700       match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
701     bool IsOr = match(Cond, m_LogicalOr());
702     bool IsAnd = match(Cond, m_LogicalAnd());
703     // If there's a select that matches both AND and OR, we need to commit to
704     // one of the options. Arbitrarily pick OR.
705     if (IsOr && IsAnd)
706       IsAnd = false;
707 
708     BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0);
709     if (canAddSuccessor(BB, Successor)) {
710       SmallVector<Value *> CondWorkList;
711       SmallPtrSet<Value *, 8> SeenCond;
712       auto QueueValue = [&CondWorkList, &SeenCond](Value *V) {
713         if (SeenCond.insert(V).second)
714           CondWorkList.push_back(V);
715       };
716       QueueValue(Op1);
717       QueueValue(Op0);
718       while (!CondWorkList.empty()) {
719         Value *Cur = CondWorkList.pop_back_val();
720         if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) {
721           WorkList.emplace_back(
722               FactOrCheck::getFact(DT.getNode(Successor), Cmp, IsOr));
723           continue;
724         }
725         if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
726           QueueValue(Op1);
727           QueueValue(Op0);
728           continue;
729         }
730         if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
731           QueueValue(Op1);
732           QueueValue(Op0);
733           continue;
734         }
735       }
736     }
737     return;
738   }
739 
740   auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
741   if (!CmpI)
742     return;
743   if (canAddSuccessor(BB, Br->getSuccessor(0)))
744     WorkList.emplace_back(
745         FactOrCheck::getFact(DT.getNode(Br->getSuccessor(0)), CmpI));
746   if (canAddSuccessor(BB, Br->getSuccessor(1)))
747     WorkList.emplace_back(
748         FactOrCheck::getFact(DT.getNode(Br->getSuccessor(1)), CmpI, true));
749 }
750 
751 static bool checkAndReplaceCondition(CmpInst *Cmp, ConstraintInfo &Info) {
752   LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n");
753 
754   CmpInst::Predicate Pred = Cmp->getPredicate();
755   Value *A = Cmp->getOperand(0);
756   Value *B = Cmp->getOperand(1);
757 
758   auto R = Info.getConstraintForSolving(Pred, A, B);
759   if (R.empty() || !R.isValid(Info)){
760     LLVM_DEBUG(dbgs() << "   failed to decompose condition\n");
761     return false;
762   }
763 
764   auto &CSToUse = Info.getCS(R.IsSigned);
765 
766   // If there was extra information collected during decomposition, apply
767   // it now and remove it immediately once we are done with reasoning
768   // about the constraint.
769   for (auto &Row : R.ExtraInfo)
770     CSToUse.addVariableRow(Row);
771   auto InfoRestorer = make_scope_exit([&]() {
772     for (unsigned I = 0; I < R.ExtraInfo.size(); ++I)
773       CSToUse.popLastConstraint();
774   });
775 
776   bool Changed = false;
777   if (CSToUse.isConditionImplied(R.Coefficients)) {
778     if (!DebugCounter::shouldExecute(EliminatedCounter))
779       return false;
780 
781     LLVM_DEBUG({
782       dbgs() << "Condition " << *Cmp << " implied by dominating constraints\n";
783       dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
784     });
785     Constant *TrueC =
786         ConstantInt::getTrue(CmpInst::makeCmpResultType(Cmp->getType()));
787     Cmp->replaceUsesWithIf(TrueC, [](Use &U) {
788       // Conditions in an assume trivially simplify to true. Skip uses
789       // in assume calls to not destroy the available information.
790       auto *II = dyn_cast<IntrinsicInst>(U.getUser());
791       return !II || II->getIntrinsicID() != Intrinsic::assume;
792     });
793     NumCondsRemoved++;
794     Changed = true;
795   }
796   if (CSToUse.isConditionImplied(ConstraintSystem::negate(R.Coefficients))) {
797     if (!DebugCounter::shouldExecute(EliminatedCounter))
798       return false;
799 
800     LLVM_DEBUG({
801       dbgs() << "Condition !" << *Cmp << " implied by dominating constraints\n";
802       dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
803     });
804     Constant *FalseC =
805         ConstantInt::getFalse(CmpInst::makeCmpResultType(Cmp->getType()));
806     Cmp->replaceAllUsesWith(FalseC);
807     NumCondsRemoved++;
808     Changed = true;
809   }
810   return Changed;
811 }
812 
813 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
814                              unsigned NumIn, unsigned NumOut,
815                              SmallVectorImpl<StackEntry> &DFSInStack) {
816   // If the constraint has a pre-condition, skip the constraint if it does not
817   // hold.
818   SmallVector<Value *> NewVariables;
819   auto R = getConstraint(Pred, A, B, NewVariables);
820   if (!R.isValid(*this))
821     return;
822 
823   LLVM_DEBUG(dbgs() << "Adding '" << CmpInst::getPredicateName(Pred) << " ";
824              A->printAsOperand(dbgs(), false); dbgs() << ", ";
825              B->printAsOperand(dbgs(), false); dbgs() << "'\n");
826   bool Added = false;
827   auto &CSToUse = getCS(R.IsSigned);
828   if (R.Coefficients.empty())
829     return;
830 
831   Added |= CSToUse.addVariableRowFill(R.Coefficients);
832 
833   // If R has been added to the system, add the new variables and queue it for
834   // removal once it goes out-of-scope.
835   if (Added) {
836     SmallVector<Value *, 2> ValuesToRelease;
837     auto &Value2Index = getValue2Index(R.IsSigned);
838     for (Value *V : NewVariables) {
839       Value2Index.insert({V, Value2Index.size() + 1});
840       ValuesToRelease.push_back(V);
841     }
842 
843     LLVM_DEBUG({
844       dbgs() << "  constraint: ";
845       dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned));
846       dbgs() << "\n";
847     });
848 
849     DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
850                             std::move(ValuesToRelease));
851 
852     if (R.IsEq) {
853       // Also add the inverted constraint for equality constraints.
854       for (auto &Coeff : R.Coefficients)
855         Coeff *= -1;
856       CSToUse.addVariableRowFill(R.Coefficients);
857 
858       DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
859                               SmallVector<Value *, 2>());
860     }
861   }
862 }
863 
864 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B,
865                                    SmallVectorImpl<Instruction *> &ToRemove) {
866   bool Changed = false;
867   IRBuilder<> Builder(II->getParent(), II->getIterator());
868   Value *Sub = nullptr;
869   for (User *U : make_early_inc_range(II->users())) {
870     if (match(U, m_ExtractValue<0>(m_Value()))) {
871       if (!Sub)
872         Sub = Builder.CreateSub(A, B);
873       U->replaceAllUsesWith(Sub);
874       Changed = true;
875     } else if (match(U, m_ExtractValue<1>(m_Value()))) {
876       U->replaceAllUsesWith(Builder.getFalse());
877       Changed = true;
878     } else
879       continue;
880 
881     if (U->use_empty()) {
882       auto *I = cast<Instruction>(U);
883       ToRemove.push_back(I);
884       I->setOperand(0, PoisonValue::get(II->getType()));
885       Changed = true;
886     }
887   }
888 
889   if (II->use_empty()) {
890     II->eraseFromParent();
891     Changed = true;
892   }
893   return Changed;
894 }
895 
896 static bool
897 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
898                           SmallVectorImpl<Instruction *> &ToRemove) {
899   auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
900                               ConstraintInfo &Info) {
901     auto R = Info.getConstraintForSolving(Pred, A, B);
902     if (R.size() < 2 || !R.isValid(Info))
903       return false;
904 
905     auto &CSToUse = Info.getCS(R.IsSigned);
906     return CSToUse.isConditionImplied(R.Coefficients);
907   };
908 
909   bool Changed = false;
910   if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
911     // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
912     // can be simplified to a regular sub.
913     Value *A = II->getArgOperand(0);
914     Value *B = II->getArgOperand(1);
915     if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
916         !DoesConditionHold(CmpInst::ICMP_SGE, B,
917                            ConstantInt::get(A->getType(), 0), Info))
918       return false;
919     Changed = replaceSubOverflowUses(II, A, B, ToRemove);
920   }
921   return Changed;
922 }
923 
924 static bool eliminateConstraints(Function &F, DominatorTree &DT) {
925   bool Changed = false;
926   DT.updateDFSNumbers();
927 
928   ConstraintInfo Info(F.getParent()->getDataLayout());
929   State S(DT);
930 
931   // First, collect conditions implied by branches and blocks with their
932   // Dominator DFS in and out numbers.
933   for (BasicBlock &BB : F) {
934     if (!DT.getNode(&BB))
935       continue;
936     S.addInfoFor(BB);
937   }
938 
939   // Next, sort worklist by dominance, so that dominating conditions to check
940   // and facts come before conditions and facts dominated by them. If a
941   // condition to check and a fact have the same numbers, conditional facts come
942   // first. Assume facts and checks are ordered according to their relative
943   // order in the containing basic block. Also make sure conditions with
944   // constant operands come before conditions without constant operands. This
945   // increases the effectiveness of the current signed <-> unsigned fact
946   // transfer logic.
947   stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) {
948     auto HasNoConstOp = [](const FactOrCheck &B) {
949       return !isa<ConstantInt>(B.Inst->getOperand(0)) &&
950              !isa<ConstantInt>(B.Inst->getOperand(1));
951     };
952     // If both entries have the same In numbers, conditional facts come first.
953     // Otherwise use the relative order in the basic block.
954     if (A.NumIn == B.NumIn) {
955       if (A.isConditionFact() && B.isConditionFact()) {
956         bool NoConstOpA = HasNoConstOp(A);
957         bool NoConstOpB = HasNoConstOp(B);
958         return NoConstOpA < NoConstOpB;
959       }
960       if (A.isConditionFact())
961         return true;
962       if (B.isConditionFact())
963         return false;
964       return A.Inst->comesBefore(B.Inst);
965     }
966     return A.NumIn < B.NumIn;
967   });
968 
969   SmallVector<Instruction *> ToRemove;
970 
971   // Finally, process ordered worklist and eliminate implied conditions.
972   SmallVector<StackEntry, 16> DFSInStack;
973   for (FactOrCheck &CB : S.WorkList) {
974     // First, pop entries from the stack that are out-of-scope for CB. Remove
975     // the corresponding entry from the constraint system.
976     while (!DFSInStack.empty()) {
977       auto &E = DFSInStack.back();
978       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
979                         << "\n");
980       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
981       assert(E.NumIn <= CB.NumIn);
982       if (CB.NumOut <= E.NumOut)
983         break;
984       LLVM_DEBUG({
985         dbgs() << "Removing ";
986         dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(),
987                       Info.getValue2Index(E.IsSigned));
988         dbgs() << "\n";
989       });
990 
991       Info.popLastConstraint(E.IsSigned);
992       // Remove variables in the system that went out of scope.
993       auto &Mapping = Info.getValue2Index(E.IsSigned);
994       for (Value *V : E.ValuesToRelease)
995         Mapping.erase(V);
996       Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
997       DFSInStack.pop_back();
998     }
999 
1000     LLVM_DEBUG({
1001       dbgs() << "Processing ";
1002       if (CB.IsCheck)
1003         dbgs() << "condition to simplify: " << *CB.Inst;
1004       else
1005         dbgs() << "fact to add to the system: " << *CB.Inst;
1006       dbgs() << "\n";
1007     });
1008 
1009     // For a block, check if any CmpInsts become known based on the current set
1010     // of constraints.
1011     if (CB.IsCheck) {
1012       if (auto *II = dyn_cast<WithOverflowInst>(CB.Inst)) {
1013         Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove);
1014       } else if (auto *Cmp = dyn_cast<ICmpInst>(CB.Inst)) {
1015         Changed |= checkAndReplaceCondition(Cmp, Info);
1016       }
1017       continue;
1018     }
1019 
1020     ICmpInst::Predicate Pred;
1021     Value *A, *B;
1022     Value *Cmp = CB.Inst;
1023     match(Cmp, m_Intrinsic<Intrinsic::assume>(m_Value(Cmp)));
1024     if (match(Cmp, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
1025       if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) {
1026         LLVM_DEBUG(
1027             dbgs()
1028             << "Skip adding constraint because system has too many rows.\n");
1029         continue;
1030       }
1031 
1032       // Use the inverse predicate if required.
1033       if (CB.Not)
1034         Pred = CmpInst::getInversePredicate(Pred);
1035 
1036       Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1037       Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1038     }
1039   }
1040 
1041 #ifndef NDEBUG
1042   unsigned SignedEntries =
1043       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
1044   assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
1045          "updates to CS and DFSInStack are out of sync");
1046   assert(Info.getCS(true).size() == SignedEntries &&
1047          "updates to CS and DFSInStack are out of sync");
1048 #endif
1049 
1050   for (Instruction *I : ToRemove)
1051     I->eraseFromParent();
1052   return Changed;
1053 }
1054 
1055 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
1056                                                  FunctionAnalysisManager &AM) {
1057   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1058   if (!eliminateConstraints(F, DT))
1059     return PreservedAnalyses::all();
1060 
1061   PreservedAnalyses PA;
1062   PA.preserve<DominatorTreeAnalysis>();
1063   PA.preserveSet<CFGAnalyses>();
1064   return PA;
1065 }
1066