1 //===- DeadStoreElimination.cpp - MemorySSA Backed Dead Store Elimination -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The code below implements dead store elimination using MemorySSA. It uses
10 // the following general approach: given a MemoryDef, walk upwards to find
11 // clobbering MemoryDefs that may be killed by the starting def. Then check
12 // that there are no uses that may read the location of the original MemoryDef
13 // in between both MemoryDefs. A bit more concretely:
14 //
15 // For all MemoryDefs StartDef:
16 // 1. Get the next dominating clobbering MemoryDef (MaybeDeadAccess) by walking
17 //    upwards.
18 // 2. Check that there are no reads between MaybeDeadAccess and the StartDef by
19 //    checking all uses starting at MaybeDeadAccess and walking until we see
20 //    StartDef.
21 // 3. For each found CurrentDef, check that:
22 //   1. There are no barrier instructions between CurrentDef and StartDef (like
23 //       throws or stores with ordering constraints).
24 //   2. StartDef is executed whenever CurrentDef is executed.
25 //   3. StartDef completely overwrites CurrentDef.
26 // 4. Erase CurrentDef from the function and MemorySSA.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "llvm/Transforms/Scalar/DeadStoreElimination.h"
31 #include "llvm/ADT/APInt.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/MapVector.h"
34 #include "llvm/ADT/PostOrderIterator.h"
35 #include "llvm/ADT/SetVector.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/ADT/StringRef.h"
40 #include "llvm/Analysis/AliasAnalysis.h"
41 #include "llvm/Analysis/CaptureTracking.h"
42 #include "llvm/Analysis/GlobalsModRef.h"
43 #include "llvm/Analysis/LoopInfo.h"
44 #include "llvm/Analysis/MemoryBuiltins.h"
45 #include "llvm/Analysis/MemoryLocation.h"
46 #include "llvm/Analysis/MemorySSA.h"
47 #include "llvm/Analysis/MemorySSAUpdater.h"
48 #include "llvm/Analysis/MustExecute.h"
49 #include "llvm/Analysis/PostDominators.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/Analysis/ValueTracking.h"
52 #include "llvm/IR/Argument.h"
53 #include "llvm/IR/BasicBlock.h"
54 #include "llvm/IR/Constant.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DebugInfo.h"
58 #include "llvm/IR/Dominators.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/IRBuilder.h"
61 #include "llvm/IR/InstIterator.h"
62 #include "llvm/IR/InstrTypes.h"
63 #include "llvm/IR/Instruction.h"
64 #include "llvm/IR/Instructions.h"
65 #include "llvm/IR/IntrinsicInst.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/PassManager.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/CommandLine.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/DebugCounter.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
77 #include "llvm/Transforms/Utils/BuildLibCalls.h"
78 #include "llvm/Transforms/Utils/Local.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <cstdint>
82 #include <iterator>
83 #include <map>
84 #include <optional>
85 #include <utility>
86 
87 using namespace llvm;
88 using namespace PatternMatch;
89 
90 #define DEBUG_TYPE "dse"
91 
92 STATISTIC(NumRemainingStores, "Number of stores remaining after DSE");
93 STATISTIC(NumRedundantStores, "Number of redundant stores deleted");
94 STATISTIC(NumFastStores, "Number of stores deleted");
95 STATISTIC(NumFastOther, "Number of other instrs removed");
96 STATISTIC(NumCompletePartials, "Number of stores dead by later partials");
97 STATISTIC(NumModifiedStores, "Number of stores modified");
98 STATISTIC(NumCFGChecks, "Number of stores modified");
99 STATISTIC(NumCFGTries, "Number of stores modified");
100 STATISTIC(NumCFGSuccess, "Number of stores modified");
101 STATISTIC(NumGetDomMemoryDefPassed,
102           "Number of times a valid candidate is returned from getDomMemoryDef");
103 STATISTIC(NumDomMemDefChecks,
104           "Number iterations check for reads in getDomMemoryDef");
105 
106 DEBUG_COUNTER(MemorySSACounter, "dse-memoryssa",
107               "Controls which MemoryDefs are eliminated.");
108 
109 static cl::opt<bool>
110 EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking",
111   cl::init(true), cl::Hidden,
112   cl::desc("Enable partial-overwrite tracking in DSE"));
113 
114 static cl::opt<bool>
115 EnablePartialStoreMerging("enable-dse-partial-store-merging",
116   cl::init(true), cl::Hidden,
117   cl::desc("Enable partial store merging in DSE"));
118 
119 static cl::opt<unsigned>
120     MemorySSAScanLimit("dse-memoryssa-scanlimit", cl::init(150), cl::Hidden,
121                        cl::desc("The number of memory instructions to scan for "
122                                 "dead store elimination (default = 150)"));
123 static cl::opt<unsigned> MemorySSAUpwardsStepLimit(
124     "dse-memoryssa-walklimit", cl::init(90), cl::Hidden,
125     cl::desc("The maximum number of steps while walking upwards to find "
126              "MemoryDefs that may be killed (default = 90)"));
127 
128 static cl::opt<unsigned> MemorySSAPartialStoreLimit(
129     "dse-memoryssa-partial-store-limit", cl::init(5), cl::Hidden,
130     cl::desc("The maximum number candidates that only partially overwrite the "
131              "killing MemoryDef to consider"
132              " (default = 5)"));
133 
134 static cl::opt<unsigned> MemorySSADefsPerBlockLimit(
135     "dse-memoryssa-defs-per-block-limit", cl::init(5000), cl::Hidden,
136     cl::desc("The number of MemoryDefs we consider as candidates to eliminated "
137              "other stores per basic block (default = 5000)"));
138 
139 static cl::opt<unsigned> MemorySSASameBBStepCost(
140     "dse-memoryssa-samebb-cost", cl::init(1), cl::Hidden,
141     cl::desc(
142         "The cost of a step in the same basic block as the killing MemoryDef"
143         "(default = 1)"));
144 
145 static cl::opt<unsigned>
146     MemorySSAOtherBBStepCost("dse-memoryssa-otherbb-cost", cl::init(5),
147                              cl::Hidden,
148                              cl::desc("The cost of a step in a different basic "
149                                       "block than the killing MemoryDef"
150                                       "(default = 5)"));
151 
152 static cl::opt<unsigned> MemorySSAPathCheckLimit(
153     "dse-memoryssa-path-check-limit", cl::init(50), cl::Hidden,
154     cl::desc("The maximum number of blocks to check when trying to prove that "
155              "all paths to an exit go through a killing block (default = 50)"));
156 
157 // This flags allows or disallows DSE to optimize MemorySSA during its
158 // traversal. Note that DSE optimizing MemorySSA may impact other passes
159 // downstream of the DSE invocation and can lead to issues not being
160 // reproducible in isolation (i.e. when MemorySSA is built from scratch). In
161 // those cases, the flag can be used to check if DSE's MemorySSA optimizations
162 // impact follow-up passes.
163 static cl::opt<bool>
164     OptimizeMemorySSA("dse-optimize-memoryssa", cl::init(true), cl::Hidden,
165                       cl::desc("Allow DSE to optimize memory accesses."));
166 
167 //===----------------------------------------------------------------------===//
168 // Helper functions
169 //===----------------------------------------------------------------------===//
170 using OverlapIntervalsTy = std::map<int64_t, int64_t>;
171 using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>;
172 
173 /// Returns true if the end of this instruction can be safely shortened in
174 /// length.
175 static bool isShortenableAtTheEnd(Instruction *I) {
176   // Don't shorten stores for now
177   if (isa<StoreInst>(I))
178     return false;
179 
180   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
181     switch (II->getIntrinsicID()) {
182       default: return false;
183       case Intrinsic::memset:
184       case Intrinsic::memcpy:
185       case Intrinsic::memcpy_element_unordered_atomic:
186       case Intrinsic::memset_element_unordered_atomic:
187         // Do shorten memory intrinsics.
188         // FIXME: Add memmove if it's also safe to transform.
189         return true;
190     }
191   }
192 
193   // Don't shorten libcalls calls for now.
194 
195   return false;
196 }
197 
198 /// Returns true if the beginning of this instruction can be safely shortened
199 /// in length.
200 static bool isShortenableAtTheBeginning(Instruction *I) {
201   // FIXME: Handle only memset for now. Supporting memcpy/memmove should be
202   // easily done by offsetting the source address.
203   return isa<AnyMemSetInst>(I);
204 }
205 
206 static std::optional<TypeSize> getPointerSize(const Value *V,
207                                               const DataLayout &DL,
208                                               const TargetLibraryInfo &TLI,
209                                               const Function *F) {
210   uint64_t Size;
211   ObjectSizeOpts Opts;
212   Opts.NullIsUnknownSize = NullPointerIsDefined(F);
213 
214   if (getObjectSize(V, Size, DL, &TLI, Opts))
215     return TypeSize::getFixed(Size);
216   return std::nullopt;
217 }
218 
219 namespace {
220 
221 enum OverwriteResult {
222   OW_Begin,
223   OW_Complete,
224   OW_End,
225   OW_PartialEarlierWithFullLater,
226   OW_MaybePartial,
227   OW_None,
228   OW_Unknown
229 };
230 
231 } // end anonymous namespace
232 
233 /// Check if two instruction are masked stores that completely
234 /// overwrite one another. More specifically, \p KillingI has to
235 /// overwrite \p DeadI.
236 static OverwriteResult isMaskedStoreOverwrite(const Instruction *KillingI,
237                                               const Instruction *DeadI,
238                                               BatchAAResults &AA) {
239   const auto *KillingII = dyn_cast<IntrinsicInst>(KillingI);
240   const auto *DeadII = dyn_cast<IntrinsicInst>(DeadI);
241   if (KillingII == nullptr || DeadII == nullptr)
242     return OW_Unknown;
243   if (KillingII->getIntrinsicID() != DeadII->getIntrinsicID())
244     return OW_Unknown;
245   if (KillingII->getIntrinsicID() == Intrinsic::masked_store) {
246     // Type size.
247     VectorType *KillingTy =
248         cast<VectorType>(KillingII->getArgOperand(0)->getType());
249     VectorType *DeadTy = cast<VectorType>(DeadII->getArgOperand(0)->getType());
250     if (KillingTy->getScalarSizeInBits() != DeadTy->getScalarSizeInBits())
251       return OW_Unknown;
252     // Element count.
253     if (KillingTy->getElementCount() != DeadTy->getElementCount())
254       return OW_Unknown;
255     // Pointers.
256     Value *KillingPtr = KillingII->getArgOperand(1)->stripPointerCasts();
257     Value *DeadPtr = DeadII->getArgOperand(1)->stripPointerCasts();
258     if (KillingPtr != DeadPtr && !AA.isMustAlias(KillingPtr, DeadPtr))
259       return OW_Unknown;
260     // Masks.
261     // TODO: check that KillingII's mask is a superset of the DeadII's mask.
262     if (KillingII->getArgOperand(3) != DeadII->getArgOperand(3))
263       return OW_Unknown;
264     return OW_Complete;
265   }
266   return OW_Unknown;
267 }
268 
269 /// Return 'OW_Complete' if a store to the 'KillingLoc' location completely
270 /// overwrites a store to the 'DeadLoc' location, 'OW_End' if the end of the
271 /// 'DeadLoc' location is completely overwritten by 'KillingLoc', 'OW_Begin'
272 /// if the beginning of the 'DeadLoc' location is overwritten by 'KillingLoc'.
273 /// 'OW_PartialEarlierWithFullLater' means that a dead (big) store was
274 /// overwritten by a killing (smaller) store which doesn't write outside the big
275 /// store's memory locations. Returns 'OW_Unknown' if nothing can be determined.
276 /// NOTE: This function must only be called if both \p KillingLoc and \p
277 /// DeadLoc belong to the same underlying object with valid \p KillingOff and
278 /// \p DeadOff.
279 static OverwriteResult isPartialOverwrite(const MemoryLocation &KillingLoc,
280                                           const MemoryLocation &DeadLoc,
281                                           int64_t KillingOff, int64_t DeadOff,
282                                           Instruction *DeadI,
283                                           InstOverlapIntervalsTy &IOL) {
284   const uint64_t KillingSize = KillingLoc.Size.getValue();
285   const uint64_t DeadSize = DeadLoc.Size.getValue();
286   // We may now overlap, although the overlap is not complete. There might also
287   // be other incomplete overlaps, and together, they might cover the complete
288   // dead store.
289   // Note: The correctness of this logic depends on the fact that this function
290   // is not even called providing DepWrite when there are any intervening reads.
291   if (EnablePartialOverwriteTracking &&
292       KillingOff < int64_t(DeadOff + DeadSize) &&
293       int64_t(KillingOff + KillingSize) >= DeadOff) {
294 
295     // Insert our part of the overlap into the map.
296     auto &IM = IOL[DeadI];
297     LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: DeadLoc [" << DeadOff << ", "
298                       << int64_t(DeadOff + DeadSize) << ") KillingLoc ["
299                       << KillingOff << ", " << int64_t(KillingOff + KillingSize)
300                       << ")\n");
301 
302     // Make sure that we only insert non-overlapping intervals and combine
303     // adjacent intervals. The intervals are stored in the map with the ending
304     // offset as the key (in the half-open sense) and the starting offset as
305     // the value.
306     int64_t KillingIntStart = KillingOff;
307     int64_t KillingIntEnd = KillingOff + KillingSize;
308 
309     // Find any intervals ending at, or after, KillingIntStart which start
310     // before KillingIntEnd.
311     auto ILI = IM.lower_bound(KillingIntStart);
312     if (ILI != IM.end() && ILI->second <= KillingIntEnd) {
313       // This existing interval is overlapped with the current store somewhere
314       // in [KillingIntStart, KillingIntEnd]. Merge them by erasing the existing
315       // intervals and adjusting our start and end.
316       KillingIntStart = std::min(KillingIntStart, ILI->second);
317       KillingIntEnd = std::max(KillingIntEnd, ILI->first);
318       ILI = IM.erase(ILI);
319 
320       // Continue erasing and adjusting our end in case other previous
321       // intervals are also overlapped with the current store.
322       //
323       // |--- dead 1 ---|  |--- dead 2 ---|
324       //     |------- killing---------|
325       //
326       while (ILI != IM.end() && ILI->second <= KillingIntEnd) {
327         assert(ILI->second > KillingIntStart && "Unexpected interval");
328         KillingIntEnd = std::max(KillingIntEnd, ILI->first);
329         ILI = IM.erase(ILI);
330       }
331     }
332 
333     IM[KillingIntEnd] = KillingIntStart;
334 
335     ILI = IM.begin();
336     if (ILI->second <= DeadOff && ILI->first >= int64_t(DeadOff + DeadSize)) {
337       LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: DeadLoc ["
338                         << DeadOff << ", " << int64_t(DeadOff + DeadSize)
339                         << ") Composite KillingLoc [" << ILI->second << ", "
340                         << ILI->first << ")\n");
341       ++NumCompletePartials;
342       return OW_Complete;
343     }
344   }
345 
346   // Check for a dead store which writes to all the memory locations that
347   // the killing store writes to.
348   if (EnablePartialStoreMerging && KillingOff >= DeadOff &&
349       int64_t(DeadOff + DeadSize) > KillingOff &&
350       uint64_t(KillingOff - DeadOff) + KillingSize <= DeadSize) {
351     LLVM_DEBUG(dbgs() << "DSE: Partial overwrite a dead load [" << DeadOff
352                       << ", " << int64_t(DeadOff + DeadSize)
353                       << ") by a killing store [" << KillingOff << ", "
354                       << int64_t(KillingOff + KillingSize) << ")\n");
355     // TODO: Maybe come up with a better name?
356     return OW_PartialEarlierWithFullLater;
357   }
358 
359   // Another interesting case is if the killing store overwrites the end of the
360   // dead store.
361   //
362   //      |--dead--|
363   //                |--   killing   --|
364   //
365   // In this case we may want to trim the size of dead store to avoid
366   // generating stores to addresses which will definitely be overwritten killing
367   // store.
368   if (!EnablePartialOverwriteTracking &&
369       (KillingOff > DeadOff && KillingOff < int64_t(DeadOff + DeadSize) &&
370        int64_t(KillingOff + KillingSize) >= int64_t(DeadOff + DeadSize)))
371     return OW_End;
372 
373   // Finally, we also need to check if the killing store overwrites the
374   // beginning of the dead store.
375   //
376   //                |--dead--|
377   //      |--  killing  --|
378   //
379   // In this case we may want to move the destination address and trim the size
380   // of dead store to avoid generating stores to addresses which will definitely
381   // be overwritten killing store.
382   if (!EnablePartialOverwriteTracking &&
383       (KillingOff <= DeadOff && int64_t(KillingOff + KillingSize) > DeadOff)) {
384     assert(int64_t(KillingOff + KillingSize) < int64_t(DeadOff + DeadSize) &&
385            "Expect to be handled as OW_Complete");
386     return OW_Begin;
387   }
388   // Otherwise, they don't completely overlap.
389   return OW_Unknown;
390 }
391 
392 /// Returns true if the memory which is accessed by the second instruction is not
393 /// modified between the first and the second instruction.
394 /// Precondition: Second instruction must be dominated by the first
395 /// instruction.
396 static bool
397 memoryIsNotModifiedBetween(Instruction *FirstI, Instruction *SecondI,
398                            BatchAAResults &AA, const DataLayout &DL,
399                            DominatorTree *DT) {
400   // Do a backwards scan through the CFG from SecondI to FirstI. Look for
401   // instructions which can modify the memory location accessed by SecondI.
402   //
403   // While doing the walk keep track of the address to check. It might be
404   // different in different basic blocks due to PHI translation.
405   using BlockAddressPair = std::pair<BasicBlock *, PHITransAddr>;
406   SmallVector<BlockAddressPair, 16> WorkList;
407   // Keep track of the address we visited each block with. Bail out if we
408   // visit a block with different addresses.
409   DenseMap<BasicBlock *, Value *> Visited;
410 
411   BasicBlock::iterator FirstBBI(FirstI);
412   ++FirstBBI;
413   BasicBlock::iterator SecondBBI(SecondI);
414   BasicBlock *FirstBB = FirstI->getParent();
415   BasicBlock *SecondBB = SecondI->getParent();
416   MemoryLocation MemLoc;
417   if (auto *MemSet = dyn_cast<MemSetInst>(SecondI))
418     MemLoc = MemoryLocation::getForDest(MemSet);
419   else
420     MemLoc = MemoryLocation::get(SecondI);
421 
422   auto *MemLocPtr = const_cast<Value *>(MemLoc.Ptr);
423 
424   // Start checking the SecondBB.
425   WorkList.push_back(
426       std::make_pair(SecondBB, PHITransAddr(MemLocPtr, DL, nullptr)));
427   bool isFirstBlock = true;
428 
429   // Check all blocks going backward until we reach the FirstBB.
430   while (!WorkList.empty()) {
431     BlockAddressPair Current = WorkList.pop_back_val();
432     BasicBlock *B = Current.first;
433     PHITransAddr &Addr = Current.second;
434     Value *Ptr = Addr.getAddr();
435 
436     // Ignore instructions before FirstI if this is the FirstBB.
437     BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin());
438 
439     BasicBlock::iterator EI;
440     if (isFirstBlock) {
441       // Ignore instructions after SecondI if this is the first visit of SecondBB.
442       assert(B == SecondBB && "first block is not the store block");
443       EI = SecondBBI;
444       isFirstBlock = false;
445     } else {
446       // It's not SecondBB or (in case of a loop) the second visit of SecondBB.
447       // In this case we also have to look at instructions after SecondI.
448       EI = B->end();
449     }
450     for (; BI != EI; ++BI) {
451       Instruction *I = &*BI;
452       if (I->mayWriteToMemory() && I != SecondI)
453         if (isModSet(AA.getModRefInfo(I, MemLoc.getWithNewPtr(Ptr))))
454           return false;
455     }
456     if (B != FirstBB) {
457       assert(B != &FirstBB->getParent()->getEntryBlock() &&
458           "Should not hit the entry block because SI must be dominated by LI");
459       for (BasicBlock *Pred : predecessors(B)) {
460         PHITransAddr PredAddr = Addr;
461         if (PredAddr.needsPHITranslationFromBlock(B)) {
462           if (!PredAddr.isPotentiallyPHITranslatable())
463             return false;
464           if (!PredAddr.translateValue(B, Pred, DT, false))
465             return false;
466         }
467         Value *TranslatedPtr = PredAddr.getAddr();
468         auto Inserted = Visited.insert(std::make_pair(Pred, TranslatedPtr));
469         if (!Inserted.second) {
470           // We already visited this block before. If it was with a different
471           // address - bail out!
472           if (TranslatedPtr != Inserted.first->second)
473             return false;
474           // ... otherwise just skip it.
475           continue;
476         }
477         WorkList.push_back(std::make_pair(Pred, PredAddr));
478       }
479     }
480   }
481   return true;
482 }
483 
484 static void shortenAssignment(Instruction *Inst, Value *OriginalDest,
485                               uint64_t OldOffsetInBits, uint64_t OldSizeInBits,
486                               uint64_t NewSizeInBits, bool IsOverwriteEnd) {
487   const DataLayout &DL = Inst->getModule()->getDataLayout();
488   uint64_t DeadSliceSizeInBits = OldSizeInBits - NewSizeInBits;
489   uint64_t DeadSliceOffsetInBits =
490       OldOffsetInBits + (IsOverwriteEnd ? NewSizeInBits : 0);
491   auto SetDeadFragExpr = [](auto *Assign,
492                             DIExpression::FragmentInfo DeadFragment) {
493     // createFragmentExpression expects an offset relative to the existing
494     // fragment offset if there is one.
495     uint64_t RelativeOffset = DeadFragment.OffsetInBits -
496                               Assign->getExpression()
497                                   ->getFragmentInfo()
498                                   .value_or(DIExpression::FragmentInfo(0, 0))
499                                   .OffsetInBits;
500     if (auto NewExpr = DIExpression::createFragmentExpression(
501             Assign->getExpression(), RelativeOffset, DeadFragment.SizeInBits)) {
502       Assign->setExpression(*NewExpr);
503       return;
504     }
505     // Failed to create a fragment expression for this so discard the value,
506     // making this a kill location.
507     auto *Expr = *DIExpression::createFragmentExpression(
508         DIExpression::get(Assign->getContext(), std::nullopt),
509         DeadFragment.OffsetInBits, DeadFragment.SizeInBits);
510     Assign->setExpression(Expr);
511     Assign->setKillLocation();
512   };
513 
514   // A DIAssignID to use so that the inserted dbg.assign intrinsics do not
515   // link to any instructions. Created in the loop below (once).
516   DIAssignID *LinkToNothing = nullptr;
517   LLVMContext &Ctx = Inst->getContext();
518   auto GetDeadLink = [&Ctx, &LinkToNothing]() {
519     if (!LinkToNothing)
520       LinkToNothing = DIAssignID::getDistinct(Ctx);
521     return LinkToNothing;
522   };
523 
524   // Insert an unlinked dbg.assign intrinsic for the dead fragment after each
525   // overlapping dbg.assign intrinsic. The loop invalidates the iterators
526   // returned by getAssignmentMarkers so save a copy of the markers to iterate
527   // over.
528   auto LinkedRange = at::getAssignmentMarkers(Inst);
529   SmallVector<DPValue *> LinkedDPVAssigns = at::getDPVAssignmentMarkers(Inst);
530   SmallVector<DbgAssignIntrinsic *> Linked(LinkedRange.begin(),
531                                            LinkedRange.end());
532   auto InsertAssignForOverlap = [&](auto *Assign) {
533     std::optional<DIExpression::FragmentInfo> NewFragment;
534     if (!at::calculateFragmentIntersect(DL, OriginalDest, DeadSliceOffsetInBits,
535                                         DeadSliceSizeInBits, Assign,
536                                         NewFragment) ||
537         !NewFragment) {
538       // We couldn't calculate the intersecting fragment for some reason. Be
539       // cautious and unlink the whole assignment from the store.
540       Assign->setKillAddress();
541       Assign->setAssignId(GetDeadLink());
542       return;
543     }
544     // No intersect.
545     if (NewFragment->SizeInBits == 0)
546       return;
547 
548     // Fragments overlap: insert a new dbg.assign for this dead part.
549     auto *NewAssign = static_cast<decltype(Assign)>(Assign->clone());
550     NewAssign->insertAfter(Assign);
551     NewAssign->setAssignId(GetDeadLink());
552     if (NewFragment)
553       SetDeadFragExpr(NewAssign, *NewFragment);
554     NewAssign->setKillAddress();
555   };
556   for_each(Linked, InsertAssignForOverlap);
557   for_each(LinkedDPVAssigns, InsertAssignForOverlap);
558 }
559 
560 static bool tryToShorten(Instruction *DeadI, int64_t &DeadStart,
561                          uint64_t &DeadSize, int64_t KillingStart,
562                          uint64_t KillingSize, bool IsOverwriteEnd) {
563   auto *DeadIntrinsic = cast<AnyMemIntrinsic>(DeadI);
564   Align PrefAlign = DeadIntrinsic->getDestAlign().valueOrOne();
565 
566   // We assume that memet/memcpy operates in chunks of the "largest" native
567   // type size and aligned on the same value. That means optimal start and size
568   // of memset/memcpy should be modulo of preferred alignment of that type. That
569   // is it there is no any sense in trying to reduce store size any further
570   // since any "extra" stores comes for free anyway.
571   // On the other hand, maximum alignment we can achieve is limited by alignment
572   // of initial store.
573 
574   // TODO: Limit maximum alignment by preferred (or abi?) alignment of the
575   // "largest" native type.
576   // Note: What is the proper way to get that value?
577   // Should TargetTransformInfo::getRegisterBitWidth be used or anything else?
578   // PrefAlign = std::min(DL.getPrefTypeAlign(LargestType), PrefAlign);
579 
580   int64_t ToRemoveStart = 0;
581   uint64_t ToRemoveSize = 0;
582   // Compute start and size of the region to remove. Make sure 'PrefAlign' is
583   // maintained on the remaining store.
584   if (IsOverwriteEnd) {
585     // Calculate required adjustment for 'KillingStart' in order to keep
586     // remaining store size aligned on 'PerfAlign'.
587     uint64_t Off =
588         offsetToAlignment(uint64_t(KillingStart - DeadStart), PrefAlign);
589     ToRemoveStart = KillingStart + Off;
590     if (DeadSize <= uint64_t(ToRemoveStart - DeadStart))
591       return false;
592     ToRemoveSize = DeadSize - uint64_t(ToRemoveStart - DeadStart);
593   } else {
594     ToRemoveStart = DeadStart;
595     assert(KillingSize >= uint64_t(DeadStart - KillingStart) &&
596            "Not overlapping accesses?");
597     ToRemoveSize = KillingSize - uint64_t(DeadStart - KillingStart);
598     // Calculate required adjustment for 'ToRemoveSize'in order to keep
599     // start of the remaining store aligned on 'PerfAlign'.
600     uint64_t Off = offsetToAlignment(ToRemoveSize, PrefAlign);
601     if (Off != 0) {
602       if (ToRemoveSize <= (PrefAlign.value() - Off))
603         return false;
604       ToRemoveSize -= PrefAlign.value() - Off;
605     }
606     assert(isAligned(PrefAlign, ToRemoveSize) &&
607            "Should preserve selected alignment");
608   }
609 
610   assert(ToRemoveSize > 0 && "Shouldn't reach here if nothing to remove");
611   assert(DeadSize > ToRemoveSize && "Can't remove more than original size");
612 
613   uint64_t NewSize = DeadSize - ToRemoveSize;
614   if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(DeadI)) {
615     // When shortening an atomic memory intrinsic, the newly shortened
616     // length must remain an integer multiple of the element size.
617     const uint32_t ElementSize = AMI->getElementSizeInBytes();
618     if (0 != NewSize % ElementSize)
619       return false;
620   }
621 
622   LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  OW "
623                     << (IsOverwriteEnd ? "END" : "BEGIN") << ": " << *DeadI
624                     << "\n  KILLER [" << ToRemoveStart << ", "
625                     << int64_t(ToRemoveStart + ToRemoveSize) << ")\n");
626 
627   Value *DeadWriteLength = DeadIntrinsic->getLength();
628   Value *TrimmedLength = ConstantInt::get(DeadWriteLength->getType(), NewSize);
629   DeadIntrinsic->setLength(TrimmedLength);
630   DeadIntrinsic->setDestAlignment(PrefAlign);
631 
632   Value *OrigDest = DeadIntrinsic->getRawDest();
633   if (!IsOverwriteEnd) {
634     Value *Indices[1] = {
635         ConstantInt::get(DeadWriteLength->getType(), ToRemoveSize)};
636     Instruction *NewDestGEP = GetElementPtrInst::CreateInBounds(
637         Type::getInt8Ty(DeadIntrinsic->getContext()), OrigDest, Indices, "", DeadI);
638     NewDestGEP->setDebugLoc(DeadIntrinsic->getDebugLoc());
639     DeadIntrinsic->setDest(NewDestGEP);
640   }
641 
642   // Update attached dbg.assign intrinsics. Assume 8-bit byte.
643   shortenAssignment(DeadI, OrigDest, DeadStart * 8, DeadSize * 8, NewSize * 8,
644                     IsOverwriteEnd);
645 
646   // Finally update start and size of dead access.
647   if (!IsOverwriteEnd)
648     DeadStart += ToRemoveSize;
649   DeadSize = NewSize;
650 
651   return true;
652 }
653 
654 static bool tryToShortenEnd(Instruction *DeadI, OverlapIntervalsTy &IntervalMap,
655                             int64_t &DeadStart, uint64_t &DeadSize) {
656   if (IntervalMap.empty() || !isShortenableAtTheEnd(DeadI))
657     return false;
658 
659   OverlapIntervalsTy::iterator OII = --IntervalMap.end();
660   int64_t KillingStart = OII->second;
661   uint64_t KillingSize = OII->first - KillingStart;
662 
663   assert(OII->first - KillingStart >= 0 && "Size expected to be positive");
664 
665   if (KillingStart > DeadStart &&
666       // Note: "KillingStart - KillingStart" is known to be positive due to
667       // preceding check.
668       (uint64_t)(KillingStart - DeadStart) < DeadSize &&
669       // Note: "DeadSize - (uint64_t)(KillingStart - DeadStart)" is known to
670       // be non negative due to preceding checks.
671       KillingSize >= DeadSize - (uint64_t)(KillingStart - DeadStart)) {
672     if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize,
673                      true)) {
674       IntervalMap.erase(OII);
675       return true;
676     }
677   }
678   return false;
679 }
680 
681 static bool tryToShortenBegin(Instruction *DeadI,
682                               OverlapIntervalsTy &IntervalMap,
683                               int64_t &DeadStart, uint64_t &DeadSize) {
684   if (IntervalMap.empty() || !isShortenableAtTheBeginning(DeadI))
685     return false;
686 
687   OverlapIntervalsTy::iterator OII = IntervalMap.begin();
688   int64_t KillingStart = OII->second;
689   uint64_t KillingSize = OII->first - KillingStart;
690 
691   assert(OII->first - KillingStart >= 0 && "Size expected to be positive");
692 
693   if (KillingStart <= DeadStart &&
694       // Note: "DeadStart - KillingStart" is known to be non negative due to
695       // preceding check.
696       KillingSize > (uint64_t)(DeadStart - KillingStart)) {
697     // Note: "KillingSize - (uint64_t)(DeadStart - DeadStart)" is known to
698     // be positive due to preceding checks.
699     assert(KillingSize - (uint64_t)(DeadStart - KillingStart) < DeadSize &&
700            "Should have been handled as OW_Complete");
701     if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize,
702                      false)) {
703       IntervalMap.erase(OII);
704       return true;
705     }
706   }
707   return false;
708 }
709 
710 static Constant *
711 tryToMergePartialOverlappingStores(StoreInst *KillingI, StoreInst *DeadI,
712                                    int64_t KillingOffset, int64_t DeadOffset,
713                                    const DataLayout &DL, BatchAAResults &AA,
714                                    DominatorTree *DT) {
715 
716   if (DeadI && isa<ConstantInt>(DeadI->getValueOperand()) &&
717       DL.typeSizeEqualsStoreSize(DeadI->getValueOperand()->getType()) &&
718       KillingI && isa<ConstantInt>(KillingI->getValueOperand()) &&
719       DL.typeSizeEqualsStoreSize(KillingI->getValueOperand()->getType()) &&
720       memoryIsNotModifiedBetween(DeadI, KillingI, AA, DL, DT)) {
721     // If the store we find is:
722     //   a) partially overwritten by the store to 'Loc'
723     //   b) the killing store is fully contained in the dead one and
724     //   c) they both have a constant value
725     //   d) none of the two stores need padding
726     // Merge the two stores, replacing the dead store's value with a
727     // merge of both values.
728     // TODO: Deal with other constant types (vectors, etc), and probably
729     // some mem intrinsics (if needed)
730 
731     APInt DeadValue = cast<ConstantInt>(DeadI->getValueOperand())->getValue();
732     APInt KillingValue =
733         cast<ConstantInt>(KillingI->getValueOperand())->getValue();
734     unsigned KillingBits = KillingValue.getBitWidth();
735     assert(DeadValue.getBitWidth() > KillingValue.getBitWidth());
736     KillingValue = KillingValue.zext(DeadValue.getBitWidth());
737 
738     // Offset of the smaller store inside the larger store
739     unsigned BitOffsetDiff = (KillingOffset - DeadOffset) * 8;
740     unsigned LShiftAmount =
741         DL.isBigEndian() ? DeadValue.getBitWidth() - BitOffsetDiff - KillingBits
742                          : BitOffsetDiff;
743     APInt Mask = APInt::getBitsSet(DeadValue.getBitWidth(), LShiftAmount,
744                                    LShiftAmount + KillingBits);
745     // Clear the bits we'll be replacing, then OR with the smaller
746     // store, shifted appropriately.
747     APInt Merged = (DeadValue & ~Mask) | (KillingValue << LShiftAmount);
748     LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n  Dead: " << *DeadI
749                       << "\n  Killing: " << *KillingI
750                       << "\n  Merged Value: " << Merged << '\n');
751     return ConstantInt::get(DeadI->getValueOperand()->getType(), Merged);
752   }
753   return nullptr;
754 }
755 
756 namespace {
757 // Returns true if \p I is an intrinsic that does not read or write memory.
758 bool isNoopIntrinsic(Instruction *I) {
759   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
760     switch (II->getIntrinsicID()) {
761     case Intrinsic::lifetime_start:
762     case Intrinsic::lifetime_end:
763     case Intrinsic::invariant_end:
764     case Intrinsic::launder_invariant_group:
765     case Intrinsic::assume:
766       return true;
767     case Intrinsic::dbg_declare:
768     case Intrinsic::dbg_label:
769     case Intrinsic::dbg_value:
770       llvm_unreachable("Intrinsic should not be modeled in MemorySSA");
771     default:
772       return false;
773     }
774   }
775   return false;
776 }
777 
778 // Check if we can ignore \p D for DSE.
779 bool canSkipDef(MemoryDef *D, bool DefVisibleToCaller) {
780   Instruction *DI = D->getMemoryInst();
781   // Calls that only access inaccessible memory cannot read or write any memory
782   // locations we consider for elimination.
783   if (auto *CB = dyn_cast<CallBase>(DI))
784     if (CB->onlyAccessesInaccessibleMemory())
785       return true;
786 
787   // We can eliminate stores to locations not visible to the caller across
788   // throwing instructions.
789   if (DI->mayThrow() && !DefVisibleToCaller)
790     return true;
791 
792   // We can remove the dead stores, irrespective of the fence and its ordering
793   // (release/acquire/seq_cst). Fences only constraints the ordering of
794   // already visible stores, it does not make a store visible to other
795   // threads. So, skipping over a fence does not change a store from being
796   // dead.
797   if (isa<FenceInst>(DI))
798     return true;
799 
800   // Skip intrinsics that do not really read or modify memory.
801   if (isNoopIntrinsic(DI))
802     return true;
803 
804   return false;
805 }
806 
807 struct DSEState {
808   Function &F;
809   AliasAnalysis &AA;
810   EarliestEscapeInfo EI;
811 
812   /// The single BatchAA instance that is used to cache AA queries. It will
813   /// not be invalidated over the whole run. This is safe, because:
814   /// 1. Only memory writes are removed, so the alias cache for memory
815   ///    locations remains valid.
816   /// 2. No new instructions are added (only instructions removed), so cached
817   ///    information for a deleted value cannot be accessed by a re-used new
818   ///    value pointer.
819   BatchAAResults BatchAA;
820 
821   MemorySSA &MSSA;
822   DominatorTree &DT;
823   PostDominatorTree &PDT;
824   const TargetLibraryInfo &TLI;
825   const DataLayout &DL;
826   const LoopInfo &LI;
827 
828   // Whether the function contains any irreducible control flow, useful for
829   // being accurately able to detect loops.
830   bool ContainsIrreducibleLoops;
831 
832   // All MemoryDefs that potentially could kill other MemDefs.
833   SmallVector<MemoryDef *, 64> MemDefs;
834   // Any that should be skipped as they are already deleted
835   SmallPtrSet<MemoryAccess *, 4> SkipStores;
836   // Keep track whether a given object is captured before return or not.
837   DenseMap<const Value *, bool> CapturedBeforeReturn;
838   // Keep track of all of the objects that are invisible to the caller after
839   // the function returns.
840   DenseMap<const Value *, bool> InvisibleToCallerAfterRet;
841   // Keep track of blocks with throwing instructions not modeled in MemorySSA.
842   SmallPtrSet<BasicBlock *, 16> ThrowingBlocks;
843   // Post-order numbers for each basic block. Used to figure out if memory
844   // accesses are executed before another access.
845   DenseMap<BasicBlock *, unsigned> PostOrderNumbers;
846 
847   /// Keep track of instructions (partly) overlapping with killing MemoryDefs per
848   /// basic block.
849   MapVector<BasicBlock *, InstOverlapIntervalsTy> IOLs;
850   // Check if there are root nodes that are terminated by UnreachableInst.
851   // Those roots pessimize post-dominance queries. If there are such roots,
852   // fall back to CFG scan starting from all non-unreachable roots.
853   bool AnyUnreachableExit;
854 
855   // Whether or not we should iterate on removing dead stores at the end of the
856   // function due to removing a store causing a previously captured pointer to
857   // no longer be captured.
858   bool ShouldIterateEndOfFunctionDSE;
859 
860   /// Dead instructions to be removed at the end of DSE.
861   SmallVector<Instruction *> ToRemove;
862 
863   // Class contains self-reference, make sure it's not copied/moved.
864   DSEState(const DSEState &) = delete;
865   DSEState &operator=(const DSEState &) = delete;
866 
867   DSEState(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, DominatorTree &DT,
868            PostDominatorTree &PDT, const TargetLibraryInfo &TLI,
869            const LoopInfo &LI)
870       : F(F), AA(AA), EI(DT, &LI), BatchAA(AA, &EI), MSSA(MSSA), DT(DT),
871         PDT(PDT), TLI(TLI), DL(F.getParent()->getDataLayout()), LI(LI) {
872     // Collect blocks with throwing instructions not modeled in MemorySSA and
873     // alloc-like objects.
874     unsigned PO = 0;
875     for (BasicBlock *BB : post_order(&F)) {
876       PostOrderNumbers[BB] = PO++;
877       for (Instruction &I : *BB) {
878         MemoryAccess *MA = MSSA.getMemoryAccess(&I);
879         if (I.mayThrow() && !MA)
880           ThrowingBlocks.insert(I.getParent());
881 
882         auto *MD = dyn_cast_or_null<MemoryDef>(MA);
883         if (MD && MemDefs.size() < MemorySSADefsPerBlockLimit &&
884             (getLocForWrite(&I) || isMemTerminatorInst(&I)))
885           MemDefs.push_back(MD);
886       }
887     }
888 
889     // Treat byval or inalloca arguments the same as Allocas, stores to them are
890     // dead at the end of the function.
891     for (Argument &AI : F.args())
892       if (AI.hasPassPointeeByValueCopyAttr())
893         InvisibleToCallerAfterRet.insert({&AI, true});
894 
895     // Collect whether there is any irreducible control flow in the function.
896     ContainsIrreducibleLoops = mayContainIrreducibleControl(F, &LI);
897 
898     AnyUnreachableExit = any_of(PDT.roots(), [](const BasicBlock *E) {
899       return isa<UnreachableInst>(E->getTerminator());
900     });
901   }
902 
903   LocationSize strengthenLocationSize(const Instruction *I,
904                                       LocationSize Size) const {
905     if (auto *CB = dyn_cast<CallBase>(I)) {
906       LibFunc F;
907       if (TLI.getLibFunc(*CB, F) && TLI.has(F) &&
908           (F == LibFunc_memset_chk || F == LibFunc_memcpy_chk)) {
909         // Use the precise location size specified by the 3rd argument
910         // for determining KillingI overwrites DeadLoc if it is a memset_chk
911         // instruction. memset_chk will write either the amount specified as 3rd
912         // argument or the function will immediately abort and exit the program.
913         // NOTE: AA may determine NoAlias if it can prove that the access size
914         // is larger than the allocation size due to that being UB. To avoid
915         // returning potentially invalid NoAlias results by AA, limit the use of
916         // the precise location size to isOverwrite.
917         if (const auto *Len = dyn_cast<ConstantInt>(CB->getArgOperand(2)))
918           return LocationSize::precise(Len->getZExtValue());
919       }
920     }
921     return Size;
922   }
923 
924   /// Return 'OW_Complete' if a store to the 'KillingLoc' location (by \p
925   /// KillingI instruction) completely overwrites a store to the 'DeadLoc'
926   /// location (by \p DeadI instruction).
927   /// Return OW_MaybePartial if \p KillingI does not completely overwrite
928   /// \p DeadI, but they both write to the same underlying object. In that
929   /// case, use isPartialOverwrite to check if \p KillingI partially overwrites
930   /// \p DeadI. Returns 'OR_None' if \p KillingI is known to not overwrite the
931   /// \p DeadI. Returns 'OW_Unknown' if nothing can be determined.
932   OverwriteResult isOverwrite(const Instruction *KillingI,
933                               const Instruction *DeadI,
934                               const MemoryLocation &KillingLoc,
935                               const MemoryLocation &DeadLoc,
936                               int64_t &KillingOff, int64_t &DeadOff) {
937     // AliasAnalysis does not always account for loops. Limit overwrite checks
938     // to dependencies for which we can guarantee they are independent of any
939     // loops they are in.
940     if (!isGuaranteedLoopIndependent(DeadI, KillingI, DeadLoc))
941       return OW_Unknown;
942 
943     LocationSize KillingLocSize =
944         strengthenLocationSize(KillingI, KillingLoc.Size);
945     const Value *DeadPtr = DeadLoc.Ptr->stripPointerCasts();
946     const Value *KillingPtr = KillingLoc.Ptr->stripPointerCasts();
947     const Value *DeadUndObj = getUnderlyingObject(DeadPtr);
948     const Value *KillingUndObj = getUnderlyingObject(KillingPtr);
949 
950     // Check whether the killing store overwrites the whole object, in which
951     // case the size/offset of the dead store does not matter.
952     if (DeadUndObj == KillingUndObj && KillingLocSize.isPrecise() &&
953         isIdentifiedObject(KillingUndObj)) {
954       std::optional<TypeSize> KillingUndObjSize =
955           getPointerSize(KillingUndObj, DL, TLI, &F);
956       if (KillingUndObjSize && *KillingUndObjSize == KillingLocSize.getValue())
957         return OW_Complete;
958     }
959 
960     // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll
961     // get imprecise values here, though (except for unknown sizes).
962     if (!KillingLocSize.isPrecise() || !DeadLoc.Size.isPrecise()) {
963       // In case no constant size is known, try to an IR values for the number
964       // of bytes written and check if they match.
965       const auto *KillingMemI = dyn_cast<MemIntrinsic>(KillingI);
966       const auto *DeadMemI = dyn_cast<MemIntrinsic>(DeadI);
967       if (KillingMemI && DeadMemI) {
968         const Value *KillingV = KillingMemI->getLength();
969         const Value *DeadV = DeadMemI->getLength();
970         if (KillingV == DeadV && BatchAA.isMustAlias(DeadLoc, KillingLoc))
971           return OW_Complete;
972       }
973 
974       // Masked stores have imprecise locations, but we can reason about them
975       // to some extent.
976       return isMaskedStoreOverwrite(KillingI, DeadI, BatchAA);
977     }
978 
979     const TypeSize KillingSize = KillingLocSize.getValue();
980     const TypeSize DeadSize = DeadLoc.Size.getValue();
981     // Bail on doing Size comparison which depends on AA for now
982     // TODO: Remove AnyScalable once Alias Analysis deal with scalable vectors
983     const bool AnyScalable =
984         DeadSize.isScalable() || KillingLocSize.isScalable();
985 
986     if (AnyScalable)
987       return OW_Unknown;
988     // Query the alias information
989     AliasResult AAR = BatchAA.alias(KillingLoc, DeadLoc);
990 
991     // If the start pointers are the same, we just have to compare sizes to see if
992     // the killing store was larger than the dead store.
993     if (AAR == AliasResult::MustAlias) {
994       // Make sure that the KillingSize size is >= the DeadSize size.
995       if (KillingSize >= DeadSize)
996         return OW_Complete;
997     }
998 
999     // If we hit a partial alias we may have a full overwrite
1000     if (AAR == AliasResult::PartialAlias && AAR.hasOffset()) {
1001       int32_t Off = AAR.getOffset();
1002       if (Off >= 0 && (uint64_t)Off + DeadSize <= KillingSize)
1003         return OW_Complete;
1004     }
1005 
1006     // If we can't resolve the same pointers to the same object, then we can't
1007     // analyze them at all.
1008     if (DeadUndObj != KillingUndObj) {
1009       // Non aliasing stores to different objects don't overlap. Note that
1010       // if the killing store is known to overwrite whole object (out of
1011       // bounds access overwrites whole object as well) then it is assumed to
1012       // completely overwrite any store to the same object even if they don't
1013       // actually alias (see next check).
1014       if (AAR == AliasResult::NoAlias)
1015         return OW_None;
1016       return OW_Unknown;
1017     }
1018 
1019     // Okay, we have stores to two completely different pointers.  Try to
1020     // decompose the pointer into a "base + constant_offset" form.  If the base
1021     // pointers are equal, then we can reason about the two stores.
1022     DeadOff = 0;
1023     KillingOff = 0;
1024     const Value *DeadBasePtr =
1025         GetPointerBaseWithConstantOffset(DeadPtr, DeadOff, DL);
1026     const Value *KillingBasePtr =
1027         GetPointerBaseWithConstantOffset(KillingPtr, KillingOff, DL);
1028 
1029     // If the base pointers still differ, we have two completely different
1030     // stores.
1031     if (DeadBasePtr != KillingBasePtr)
1032       return OW_Unknown;
1033 
1034     // The killing access completely overlaps the dead store if and only if
1035     // both start and end of the dead one is "inside" the killing one:
1036     //    |<->|--dead--|<->|
1037     //    |-----killing------|
1038     // Accesses may overlap if and only if start of one of them is "inside"
1039     // another one:
1040     //    |<->|--dead--|<-------->|
1041     //    |-------killing--------|
1042     //           OR
1043     //    |-------dead-------|
1044     //    |<->|---killing---|<----->|
1045     //
1046     // We have to be careful here as *Off is signed while *.Size is unsigned.
1047 
1048     // Check if the dead access starts "not before" the killing one.
1049     if (DeadOff >= KillingOff) {
1050       // If the dead access ends "not after" the killing access then the
1051       // dead one is completely overwritten by the killing one.
1052       if (uint64_t(DeadOff - KillingOff) + DeadSize <= KillingSize)
1053         return OW_Complete;
1054       // If start of the dead access is "before" end of the killing access
1055       // then accesses overlap.
1056       else if ((uint64_t)(DeadOff - KillingOff) < KillingSize)
1057         return OW_MaybePartial;
1058     }
1059     // If start of the killing access is "before" end of the dead access then
1060     // accesses overlap.
1061     else if ((uint64_t)(KillingOff - DeadOff) < DeadSize) {
1062       return OW_MaybePartial;
1063     }
1064 
1065     // Can reach here only if accesses are known not to overlap.
1066     return OW_None;
1067   }
1068 
1069   bool isInvisibleToCallerAfterRet(const Value *V) {
1070     if (isa<AllocaInst>(V))
1071       return true;
1072     auto I = InvisibleToCallerAfterRet.insert({V, false});
1073     if (I.second) {
1074       if (!isInvisibleToCallerOnUnwind(V)) {
1075         I.first->second = false;
1076       } else if (isNoAliasCall(V)) {
1077         I.first->second = !PointerMayBeCaptured(V, true, false);
1078       }
1079     }
1080     return I.first->second;
1081   }
1082 
1083   bool isInvisibleToCallerOnUnwind(const Value *V) {
1084     bool RequiresNoCaptureBeforeUnwind;
1085     if (!isNotVisibleOnUnwind(V, RequiresNoCaptureBeforeUnwind))
1086       return false;
1087     if (!RequiresNoCaptureBeforeUnwind)
1088       return true;
1089 
1090     auto I = CapturedBeforeReturn.insert({V, true});
1091     if (I.second)
1092       // NOTE: This could be made more precise by PointerMayBeCapturedBefore
1093       // with the killing MemoryDef. But we refrain from doing so for now to
1094       // limit compile-time and this does not cause any changes to the number
1095       // of stores removed on a large test set in practice.
1096       I.first->second = PointerMayBeCaptured(V, false, true);
1097     return !I.first->second;
1098   }
1099 
1100   std::optional<MemoryLocation> getLocForWrite(Instruction *I) const {
1101     if (!I->mayWriteToMemory())
1102       return std::nullopt;
1103 
1104     if (auto *CB = dyn_cast<CallBase>(I))
1105       return MemoryLocation::getForDest(CB, TLI);
1106 
1107     return MemoryLocation::getOrNone(I);
1108   }
1109 
1110   /// Assuming this instruction has a dead analyzable write, can we delete
1111   /// this instruction?
1112   bool isRemovable(Instruction *I) {
1113     assert(getLocForWrite(I) && "Must have analyzable write");
1114 
1115     // Don't remove volatile/atomic stores.
1116     if (StoreInst *SI = dyn_cast<StoreInst>(I))
1117       return SI->isUnordered();
1118 
1119     if (auto *CB = dyn_cast<CallBase>(I)) {
1120       // Don't remove volatile memory intrinsics.
1121       if (auto *MI = dyn_cast<MemIntrinsic>(CB))
1122         return !MI->isVolatile();
1123 
1124       // Never remove dead lifetime intrinsics, e.g. because they are followed
1125       // by a free.
1126       if (CB->isLifetimeStartOrEnd())
1127         return false;
1128 
1129       return CB->use_empty() && CB->willReturn() && CB->doesNotThrow() &&
1130              !CB->isTerminator();
1131     }
1132 
1133     return false;
1134   }
1135 
1136   /// Returns true if \p UseInst completely overwrites \p DefLoc
1137   /// (stored by \p DefInst).
1138   bool isCompleteOverwrite(const MemoryLocation &DefLoc, Instruction *DefInst,
1139                            Instruction *UseInst) {
1140     // UseInst has a MemoryDef associated in MemorySSA. It's possible for a
1141     // MemoryDef to not write to memory, e.g. a volatile load is modeled as a
1142     // MemoryDef.
1143     if (!UseInst->mayWriteToMemory())
1144       return false;
1145 
1146     if (auto *CB = dyn_cast<CallBase>(UseInst))
1147       if (CB->onlyAccessesInaccessibleMemory())
1148         return false;
1149 
1150     int64_t InstWriteOffset, DepWriteOffset;
1151     if (auto CC = getLocForWrite(UseInst))
1152       return isOverwrite(UseInst, DefInst, *CC, DefLoc, InstWriteOffset,
1153                          DepWriteOffset) == OW_Complete;
1154     return false;
1155   }
1156 
1157   /// Returns true if \p Def is not read before returning from the function.
1158   bool isWriteAtEndOfFunction(MemoryDef *Def) {
1159     LLVM_DEBUG(dbgs() << "  Check if def " << *Def << " ("
1160                       << *Def->getMemoryInst()
1161                       << ") is at the end the function \n");
1162 
1163     auto MaybeLoc = getLocForWrite(Def->getMemoryInst());
1164     if (!MaybeLoc) {
1165       LLVM_DEBUG(dbgs() << "  ... could not get location for write.\n");
1166       return false;
1167     }
1168 
1169     SmallVector<MemoryAccess *, 4> WorkList;
1170     SmallPtrSet<MemoryAccess *, 8> Visited;
1171     auto PushMemUses = [&WorkList, &Visited](MemoryAccess *Acc) {
1172       if (!Visited.insert(Acc).second)
1173         return;
1174       for (Use &U : Acc->uses())
1175         WorkList.push_back(cast<MemoryAccess>(U.getUser()));
1176     };
1177     PushMemUses(Def);
1178     for (unsigned I = 0; I < WorkList.size(); I++) {
1179       if (WorkList.size() >= MemorySSAScanLimit) {
1180         LLVM_DEBUG(dbgs() << "  ... hit exploration limit.\n");
1181         return false;
1182       }
1183 
1184       MemoryAccess *UseAccess = WorkList[I];
1185       if (isa<MemoryPhi>(UseAccess)) {
1186         // AliasAnalysis does not account for loops. Limit elimination to
1187         // candidates for which we can guarantee they always store to the same
1188         // memory location.
1189         if (!isGuaranteedLoopInvariant(MaybeLoc->Ptr))
1190           return false;
1191 
1192         PushMemUses(cast<MemoryPhi>(UseAccess));
1193         continue;
1194       }
1195       // TODO: Checking for aliasing is expensive. Consider reducing the amount
1196       // of times this is called and/or caching it.
1197       Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst();
1198       if (isReadClobber(*MaybeLoc, UseInst)) {
1199         LLVM_DEBUG(dbgs() << "  ... hit read clobber " << *UseInst << ".\n");
1200         return false;
1201       }
1202 
1203       if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess))
1204         PushMemUses(UseDef);
1205     }
1206     return true;
1207   }
1208 
1209   /// If \p I is a memory  terminator like llvm.lifetime.end or free, return a
1210   /// pair with the MemoryLocation terminated by \p I and a boolean flag
1211   /// indicating whether \p I is a free-like call.
1212   std::optional<std::pair<MemoryLocation, bool>>
1213   getLocForTerminator(Instruction *I) const {
1214     uint64_t Len;
1215     Value *Ptr;
1216     if (match(I, m_Intrinsic<Intrinsic::lifetime_end>(m_ConstantInt(Len),
1217                                                       m_Value(Ptr))))
1218       return {std::make_pair(MemoryLocation(Ptr, Len), false)};
1219 
1220     if (auto *CB = dyn_cast<CallBase>(I)) {
1221       if (Value *FreedOp = getFreedOperand(CB, &TLI))
1222         return {std::make_pair(MemoryLocation::getAfter(FreedOp), true)};
1223     }
1224 
1225     return std::nullopt;
1226   }
1227 
1228   /// Returns true if \p I is a memory terminator instruction like
1229   /// llvm.lifetime.end or free.
1230   bool isMemTerminatorInst(Instruction *I) const {
1231     auto *CB = dyn_cast<CallBase>(I);
1232     return CB && (CB->getIntrinsicID() == Intrinsic::lifetime_end ||
1233                   getFreedOperand(CB, &TLI) != nullptr);
1234   }
1235 
1236   /// Returns true if \p MaybeTerm is a memory terminator for \p Loc from
1237   /// instruction \p AccessI.
1238   bool isMemTerminator(const MemoryLocation &Loc, Instruction *AccessI,
1239                        Instruction *MaybeTerm) {
1240     std::optional<std::pair<MemoryLocation, bool>> MaybeTermLoc =
1241         getLocForTerminator(MaybeTerm);
1242 
1243     if (!MaybeTermLoc)
1244       return false;
1245 
1246     // If the terminator is a free-like call, all accesses to the underlying
1247     // object can be considered terminated.
1248     if (getUnderlyingObject(Loc.Ptr) !=
1249         getUnderlyingObject(MaybeTermLoc->first.Ptr))
1250       return false;
1251 
1252     auto TermLoc = MaybeTermLoc->first;
1253     if (MaybeTermLoc->second) {
1254       const Value *LocUO = getUnderlyingObject(Loc.Ptr);
1255       return BatchAA.isMustAlias(TermLoc.Ptr, LocUO);
1256     }
1257     int64_t InstWriteOffset = 0;
1258     int64_t DepWriteOffset = 0;
1259     return isOverwrite(MaybeTerm, AccessI, TermLoc, Loc, InstWriteOffset,
1260                        DepWriteOffset) == OW_Complete;
1261   }
1262 
1263   // Returns true if \p Use may read from \p DefLoc.
1264   bool isReadClobber(const MemoryLocation &DefLoc, Instruction *UseInst) {
1265     if (isNoopIntrinsic(UseInst))
1266       return false;
1267 
1268     // Monotonic or weaker atomic stores can be re-ordered and do not need to be
1269     // treated as read clobber.
1270     if (auto SI = dyn_cast<StoreInst>(UseInst))
1271       return isStrongerThan(SI->getOrdering(), AtomicOrdering::Monotonic);
1272 
1273     if (!UseInst->mayReadFromMemory())
1274       return false;
1275 
1276     if (auto *CB = dyn_cast<CallBase>(UseInst))
1277       if (CB->onlyAccessesInaccessibleMemory())
1278         return false;
1279 
1280     return isRefSet(BatchAA.getModRefInfo(UseInst, DefLoc));
1281   }
1282 
1283   /// Returns true if a dependency between \p Current and \p KillingDef is
1284   /// guaranteed to be loop invariant for the loops that they are in. Either
1285   /// because they are known to be in the same block, in the same loop level or
1286   /// by guaranteeing that \p CurrentLoc only references a single MemoryLocation
1287   /// during execution of the containing function.
1288   bool isGuaranteedLoopIndependent(const Instruction *Current,
1289                                    const Instruction *KillingDef,
1290                                    const MemoryLocation &CurrentLoc) {
1291     // If the dependency is within the same block or loop level (being careful
1292     // of irreducible loops), we know that AA will return a valid result for the
1293     // memory dependency. (Both at the function level, outside of any loop,
1294     // would also be valid but we currently disable that to limit compile time).
1295     if (Current->getParent() == KillingDef->getParent())
1296       return true;
1297     const Loop *CurrentLI = LI.getLoopFor(Current->getParent());
1298     if (!ContainsIrreducibleLoops && CurrentLI &&
1299         CurrentLI == LI.getLoopFor(KillingDef->getParent()))
1300       return true;
1301     // Otherwise check the memory location is invariant to any loops.
1302     return isGuaranteedLoopInvariant(CurrentLoc.Ptr);
1303   }
1304 
1305   /// Returns true if \p Ptr is guaranteed to be loop invariant for any possible
1306   /// loop. In particular, this guarantees that it only references a single
1307   /// MemoryLocation during execution of the containing function.
1308   bool isGuaranteedLoopInvariant(const Value *Ptr) {
1309     Ptr = Ptr->stripPointerCasts();
1310     if (auto *GEP = dyn_cast<GEPOperator>(Ptr))
1311       if (GEP->hasAllConstantIndices())
1312         Ptr = GEP->getPointerOperand()->stripPointerCasts();
1313 
1314     if (auto *I = dyn_cast<Instruction>(Ptr)) {
1315       return I->getParent()->isEntryBlock() ||
1316              (!ContainsIrreducibleLoops && !LI.getLoopFor(I->getParent()));
1317     }
1318     return true;
1319   }
1320 
1321   // Find a MemoryDef writing to \p KillingLoc and dominating \p StartAccess,
1322   // with no read access between them or on any other path to a function exit
1323   // block if \p KillingLoc is not accessible after the function returns. If
1324   // there is no such MemoryDef, return std::nullopt. The returned value may not
1325   // (completely) overwrite \p KillingLoc. Currently we bail out when we
1326   // encounter an aliasing MemoryUse (read).
1327   std::optional<MemoryAccess *>
1328   getDomMemoryDef(MemoryDef *KillingDef, MemoryAccess *StartAccess,
1329                   const MemoryLocation &KillingLoc, const Value *KillingUndObj,
1330                   unsigned &ScanLimit, unsigned &WalkerStepLimit,
1331                   bool IsMemTerm, unsigned &PartialLimit) {
1332     if (ScanLimit == 0 || WalkerStepLimit == 0) {
1333       LLVM_DEBUG(dbgs() << "\n    ...  hit scan limit\n");
1334       return std::nullopt;
1335     }
1336 
1337     MemoryAccess *Current = StartAccess;
1338     Instruction *KillingI = KillingDef->getMemoryInst();
1339     LLVM_DEBUG(dbgs() << "  trying to get dominating access\n");
1340 
1341     // Only optimize defining access of KillingDef when directly starting at its
1342     // defining access. The defining access also must only access KillingLoc. At
1343     // the moment we only support instructions with a single write location, so
1344     // it should be sufficient to disable optimizations for instructions that
1345     // also read from memory.
1346     bool CanOptimize = OptimizeMemorySSA &&
1347                        KillingDef->getDefiningAccess() == StartAccess &&
1348                        !KillingI->mayReadFromMemory();
1349 
1350     // Find the next clobbering Mod access for DefLoc, starting at StartAccess.
1351     std::optional<MemoryLocation> CurrentLoc;
1352     for (;; Current = cast<MemoryDef>(Current)->getDefiningAccess()) {
1353       LLVM_DEBUG({
1354         dbgs() << "   visiting " << *Current;
1355         if (!MSSA.isLiveOnEntryDef(Current) && isa<MemoryUseOrDef>(Current))
1356           dbgs() << " (" << *cast<MemoryUseOrDef>(Current)->getMemoryInst()
1357                  << ")";
1358         dbgs() << "\n";
1359       });
1360 
1361       // Reached TOP.
1362       if (MSSA.isLiveOnEntryDef(Current)) {
1363         LLVM_DEBUG(dbgs() << "   ...  found LiveOnEntryDef\n");
1364         if (CanOptimize && Current != KillingDef->getDefiningAccess())
1365           // The first clobbering def is... none.
1366           KillingDef->setOptimized(Current);
1367         return std::nullopt;
1368       }
1369 
1370       // Cost of a step. Accesses in the same block are more likely to be valid
1371       // candidates for elimination, hence consider them cheaper.
1372       unsigned StepCost = KillingDef->getBlock() == Current->getBlock()
1373                               ? MemorySSASameBBStepCost
1374                               : MemorySSAOtherBBStepCost;
1375       if (WalkerStepLimit <= StepCost) {
1376         LLVM_DEBUG(dbgs() << "   ...  hit walker step limit\n");
1377         return std::nullopt;
1378       }
1379       WalkerStepLimit -= StepCost;
1380 
1381       // Return for MemoryPhis. They cannot be eliminated directly and the
1382       // caller is responsible for traversing them.
1383       if (isa<MemoryPhi>(Current)) {
1384         LLVM_DEBUG(dbgs() << "   ...  found MemoryPhi\n");
1385         return Current;
1386       }
1387 
1388       // Below, check if CurrentDef is a valid candidate to be eliminated by
1389       // KillingDef. If it is not, check the next candidate.
1390       MemoryDef *CurrentDef = cast<MemoryDef>(Current);
1391       Instruction *CurrentI = CurrentDef->getMemoryInst();
1392 
1393       if (canSkipDef(CurrentDef, !isInvisibleToCallerOnUnwind(KillingUndObj))) {
1394         CanOptimize = false;
1395         continue;
1396       }
1397 
1398       // Before we try to remove anything, check for any extra throwing
1399       // instructions that block us from DSEing
1400       if (mayThrowBetween(KillingI, CurrentI, KillingUndObj)) {
1401         LLVM_DEBUG(dbgs() << "  ... skip, may throw!\n");
1402         return std::nullopt;
1403       }
1404 
1405       // Check for anything that looks like it will be a barrier to further
1406       // removal
1407       if (isDSEBarrier(KillingUndObj, CurrentI)) {
1408         LLVM_DEBUG(dbgs() << "  ... skip, barrier\n");
1409         return std::nullopt;
1410       }
1411 
1412       // If Current is known to be on path that reads DefLoc or is a read
1413       // clobber, bail out, as the path is not profitable. We skip this check
1414       // for intrinsic calls, because the code knows how to handle memcpy
1415       // intrinsics.
1416       if (!isa<IntrinsicInst>(CurrentI) && isReadClobber(KillingLoc, CurrentI))
1417         return std::nullopt;
1418 
1419       // Quick check if there are direct uses that are read-clobbers.
1420       if (any_of(Current->uses(), [this, &KillingLoc, StartAccess](Use &U) {
1421             if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(U.getUser()))
1422               return !MSSA.dominates(StartAccess, UseOrDef) &&
1423                      isReadClobber(KillingLoc, UseOrDef->getMemoryInst());
1424             return false;
1425           })) {
1426         LLVM_DEBUG(dbgs() << "   ...  found a read clobber\n");
1427         return std::nullopt;
1428       }
1429 
1430       // If Current does not have an analyzable write location or is not
1431       // removable, skip it.
1432       CurrentLoc = getLocForWrite(CurrentI);
1433       if (!CurrentLoc || !isRemovable(CurrentI)) {
1434         CanOptimize = false;
1435         continue;
1436       }
1437 
1438       // AliasAnalysis does not account for loops. Limit elimination to
1439       // candidates for which we can guarantee they always store to the same
1440       // memory location and not located in different loops.
1441       if (!isGuaranteedLoopIndependent(CurrentI, KillingI, *CurrentLoc)) {
1442         LLVM_DEBUG(dbgs() << "  ... not guaranteed loop independent\n");
1443         CanOptimize = false;
1444         continue;
1445       }
1446 
1447       if (IsMemTerm) {
1448         // If the killing def is a memory terminator (e.g. lifetime.end), check
1449         // the next candidate if the current Current does not write the same
1450         // underlying object as the terminator.
1451         if (!isMemTerminator(*CurrentLoc, CurrentI, KillingI)) {
1452           CanOptimize = false;
1453           continue;
1454         }
1455       } else {
1456         int64_t KillingOffset = 0;
1457         int64_t DeadOffset = 0;
1458         auto OR = isOverwrite(KillingI, CurrentI, KillingLoc, *CurrentLoc,
1459                               KillingOffset, DeadOffset);
1460         if (CanOptimize) {
1461           // CurrentDef is the earliest write clobber of KillingDef. Use it as
1462           // optimized access. Do not optimize if CurrentDef is already the
1463           // defining access of KillingDef.
1464           if (CurrentDef != KillingDef->getDefiningAccess() &&
1465               (OR == OW_Complete || OR == OW_MaybePartial))
1466             KillingDef->setOptimized(CurrentDef);
1467 
1468           // Once a may-aliasing def is encountered do not set an optimized
1469           // access.
1470           if (OR != OW_None)
1471             CanOptimize = false;
1472         }
1473 
1474         // If Current does not write to the same object as KillingDef, check
1475         // the next candidate.
1476         if (OR == OW_Unknown || OR == OW_None)
1477           continue;
1478         else if (OR == OW_MaybePartial) {
1479           // If KillingDef only partially overwrites Current, check the next
1480           // candidate if the partial step limit is exceeded. This aggressively
1481           // limits the number of candidates for partial store elimination,
1482           // which are less likely to be removable in the end.
1483           if (PartialLimit <= 1) {
1484             WalkerStepLimit -= 1;
1485             LLVM_DEBUG(dbgs() << "   ... reached partial limit ... continue with next access\n");
1486             continue;
1487           }
1488           PartialLimit -= 1;
1489         }
1490       }
1491       break;
1492     };
1493 
1494     // Accesses to objects accessible after the function returns can only be
1495     // eliminated if the access is dead along all paths to the exit. Collect
1496     // the blocks with killing (=completely overwriting MemoryDefs) and check if
1497     // they cover all paths from MaybeDeadAccess to any function exit.
1498     SmallPtrSet<Instruction *, 16> KillingDefs;
1499     KillingDefs.insert(KillingDef->getMemoryInst());
1500     MemoryAccess *MaybeDeadAccess = Current;
1501     MemoryLocation MaybeDeadLoc = *CurrentLoc;
1502     Instruction *MaybeDeadI = cast<MemoryDef>(MaybeDeadAccess)->getMemoryInst();
1503     LLVM_DEBUG(dbgs() << "  Checking for reads of " << *MaybeDeadAccess << " ("
1504                       << *MaybeDeadI << ")\n");
1505 
1506     SmallSetVector<MemoryAccess *, 32> WorkList;
1507     auto PushMemUses = [&WorkList](MemoryAccess *Acc) {
1508       for (Use &U : Acc->uses())
1509         WorkList.insert(cast<MemoryAccess>(U.getUser()));
1510     };
1511     PushMemUses(MaybeDeadAccess);
1512 
1513     // Check if DeadDef may be read.
1514     for (unsigned I = 0; I < WorkList.size(); I++) {
1515       MemoryAccess *UseAccess = WorkList[I];
1516 
1517       LLVM_DEBUG(dbgs() << "   " << *UseAccess);
1518       // Bail out if the number of accesses to check exceeds the scan limit.
1519       if (ScanLimit < (WorkList.size() - I)) {
1520         LLVM_DEBUG(dbgs() << "\n    ...  hit scan limit\n");
1521         return std::nullopt;
1522       }
1523       --ScanLimit;
1524       NumDomMemDefChecks++;
1525 
1526       if (isa<MemoryPhi>(UseAccess)) {
1527         if (any_of(KillingDefs, [this, UseAccess](Instruction *KI) {
1528               return DT.properlyDominates(KI->getParent(),
1529                                           UseAccess->getBlock());
1530             })) {
1531           LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing block\n");
1532           continue;
1533         }
1534         LLVM_DEBUG(dbgs() << "\n    ... adding PHI uses\n");
1535         PushMemUses(UseAccess);
1536         continue;
1537       }
1538 
1539       Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst();
1540       LLVM_DEBUG(dbgs() << " (" << *UseInst << ")\n");
1541 
1542       if (any_of(KillingDefs, [this, UseInst](Instruction *KI) {
1543             return DT.dominates(KI, UseInst);
1544           })) {
1545         LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing def\n");
1546         continue;
1547       }
1548 
1549       // A memory terminator kills all preceeding MemoryDefs and all succeeding
1550       // MemoryAccesses. We do not have to check it's users.
1551       if (isMemTerminator(MaybeDeadLoc, MaybeDeadI, UseInst)) {
1552         LLVM_DEBUG(
1553             dbgs()
1554             << " ... skipping, memterminator invalidates following accesses\n");
1555         continue;
1556       }
1557 
1558       if (isNoopIntrinsic(cast<MemoryUseOrDef>(UseAccess)->getMemoryInst())) {
1559         LLVM_DEBUG(dbgs() << "    ... adding uses of intrinsic\n");
1560         PushMemUses(UseAccess);
1561         continue;
1562       }
1563 
1564       if (UseInst->mayThrow() && !isInvisibleToCallerOnUnwind(KillingUndObj)) {
1565         LLVM_DEBUG(dbgs() << "  ... found throwing instruction\n");
1566         return std::nullopt;
1567       }
1568 
1569       // Uses which may read the original MemoryDef mean we cannot eliminate the
1570       // original MD. Stop walk.
1571       if (isReadClobber(MaybeDeadLoc, UseInst)) {
1572         LLVM_DEBUG(dbgs() << "    ... found read clobber\n");
1573         return std::nullopt;
1574       }
1575 
1576       // If this worklist walks back to the original memory access (and the
1577       // pointer is not guarenteed loop invariant) then we cannot assume that a
1578       // store kills itself.
1579       if (MaybeDeadAccess == UseAccess &&
1580           !isGuaranteedLoopInvariant(MaybeDeadLoc.Ptr)) {
1581         LLVM_DEBUG(dbgs() << "    ... found not loop invariant self access\n");
1582         return std::nullopt;
1583       }
1584       // Otherwise, for the KillingDef and MaybeDeadAccess we only have to check
1585       // if it reads the memory location.
1586       // TODO: It would probably be better to check for self-reads before
1587       // calling the function.
1588       if (KillingDef == UseAccess || MaybeDeadAccess == UseAccess) {
1589         LLVM_DEBUG(dbgs() << "    ... skipping killing def/dom access\n");
1590         continue;
1591       }
1592 
1593       // Check all uses for MemoryDefs, except for defs completely overwriting
1594       // the original location. Otherwise we have to check uses of *all*
1595       // MemoryDefs we discover, including non-aliasing ones. Otherwise we might
1596       // miss cases like the following
1597       //   1 = Def(LoE) ; <----- DeadDef stores [0,1]
1598       //   2 = Def(1)   ; (2, 1) = NoAlias,   stores [2,3]
1599       //   Use(2)       ; MayAlias 2 *and* 1, loads [0, 3].
1600       //                  (The Use points to the *first* Def it may alias)
1601       //   3 = Def(1)   ; <---- Current  (3, 2) = NoAlias, (3,1) = MayAlias,
1602       //                  stores [0,1]
1603       if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess)) {
1604         if (isCompleteOverwrite(MaybeDeadLoc, MaybeDeadI, UseInst)) {
1605           BasicBlock *MaybeKillingBlock = UseInst->getParent();
1606           if (PostOrderNumbers.find(MaybeKillingBlock)->second <
1607               PostOrderNumbers.find(MaybeDeadAccess->getBlock())->second) {
1608             if (!isInvisibleToCallerAfterRet(KillingUndObj)) {
1609               LLVM_DEBUG(dbgs()
1610                          << "    ... found killing def " << *UseInst << "\n");
1611               KillingDefs.insert(UseInst);
1612             }
1613           } else {
1614             LLVM_DEBUG(dbgs()
1615                        << "    ... found preceeding def " << *UseInst << "\n");
1616             return std::nullopt;
1617           }
1618         } else
1619           PushMemUses(UseDef);
1620       }
1621     }
1622 
1623     // For accesses to locations visible after the function returns, make sure
1624     // that the location is dead (=overwritten) along all paths from
1625     // MaybeDeadAccess to the exit.
1626     if (!isInvisibleToCallerAfterRet(KillingUndObj)) {
1627       SmallPtrSet<BasicBlock *, 16> KillingBlocks;
1628       for (Instruction *KD : KillingDefs)
1629         KillingBlocks.insert(KD->getParent());
1630       assert(!KillingBlocks.empty() &&
1631              "Expected at least a single killing block");
1632 
1633       // Find the common post-dominator of all killing blocks.
1634       BasicBlock *CommonPred = *KillingBlocks.begin();
1635       for (BasicBlock *BB : llvm::drop_begin(KillingBlocks)) {
1636         if (!CommonPred)
1637           break;
1638         CommonPred = PDT.findNearestCommonDominator(CommonPred, BB);
1639       }
1640 
1641       // If the common post-dominator does not post-dominate MaybeDeadAccess,
1642       // there is a path from MaybeDeadAccess to an exit not going through a
1643       // killing block.
1644       if (!PDT.dominates(CommonPred, MaybeDeadAccess->getBlock())) {
1645         if (!AnyUnreachableExit)
1646           return std::nullopt;
1647 
1648         // Fall back to CFG scan starting at all non-unreachable roots if not
1649         // all paths to the exit go through CommonPred.
1650         CommonPred = nullptr;
1651       }
1652 
1653       // If CommonPred itself is in the set of killing blocks, we're done.
1654       if (KillingBlocks.count(CommonPred))
1655         return {MaybeDeadAccess};
1656 
1657       SetVector<BasicBlock *> WorkList;
1658       // If CommonPred is null, there are multiple exits from the function.
1659       // They all have to be added to the worklist.
1660       if (CommonPred)
1661         WorkList.insert(CommonPred);
1662       else
1663         for (BasicBlock *R : PDT.roots()) {
1664           if (!isa<UnreachableInst>(R->getTerminator()))
1665             WorkList.insert(R);
1666         }
1667 
1668       NumCFGTries++;
1669       // Check if all paths starting from an exit node go through one of the
1670       // killing blocks before reaching MaybeDeadAccess.
1671       for (unsigned I = 0; I < WorkList.size(); I++) {
1672         NumCFGChecks++;
1673         BasicBlock *Current = WorkList[I];
1674         if (KillingBlocks.count(Current))
1675           continue;
1676         if (Current == MaybeDeadAccess->getBlock())
1677           return std::nullopt;
1678 
1679         // MaybeDeadAccess is reachable from the entry, so we don't have to
1680         // explore unreachable blocks further.
1681         if (!DT.isReachableFromEntry(Current))
1682           continue;
1683 
1684         for (BasicBlock *Pred : predecessors(Current))
1685           WorkList.insert(Pred);
1686 
1687         if (WorkList.size() >= MemorySSAPathCheckLimit)
1688           return std::nullopt;
1689       }
1690       NumCFGSuccess++;
1691     }
1692 
1693     // No aliasing MemoryUses of MaybeDeadAccess found, MaybeDeadAccess is
1694     // potentially dead.
1695     return {MaybeDeadAccess};
1696   }
1697 
1698   /// Delete dead memory defs and recursively add their operands to ToRemove if
1699   /// they became dead.
1700   void deleteDeadInstruction(Instruction *SI) {
1701     MemorySSAUpdater Updater(&MSSA);
1702     SmallVector<Instruction *, 32> NowDeadInsts;
1703     NowDeadInsts.push_back(SI);
1704     --NumFastOther;
1705 
1706     while (!NowDeadInsts.empty()) {
1707       Instruction *DeadInst = NowDeadInsts.pop_back_val();
1708       ++NumFastOther;
1709 
1710       // Try to preserve debug information attached to the dead instruction.
1711       salvageDebugInfo(*DeadInst);
1712       salvageKnowledge(DeadInst);
1713 
1714       // Remove the Instruction from MSSA.
1715       MemoryAccess *MA = MSSA.getMemoryAccess(DeadInst);
1716       bool IsMemDef = MA && isa<MemoryDef>(MA);
1717       if (MA) {
1718         if (IsMemDef) {
1719           auto *MD = cast<MemoryDef>(MA);
1720           SkipStores.insert(MD);
1721           if (auto *SI = dyn_cast<StoreInst>(MD->getMemoryInst())) {
1722             if (SI->getValueOperand()->getType()->isPointerTy()) {
1723               const Value *UO = getUnderlyingObject(SI->getValueOperand());
1724               if (CapturedBeforeReturn.erase(UO))
1725                 ShouldIterateEndOfFunctionDSE = true;
1726               InvisibleToCallerAfterRet.erase(UO);
1727             }
1728           }
1729         }
1730 
1731         Updater.removeMemoryAccess(MA);
1732       }
1733 
1734       auto I = IOLs.find(DeadInst->getParent());
1735       if (I != IOLs.end())
1736         I->second.erase(DeadInst);
1737       // Remove its operands
1738       for (Use &O : DeadInst->operands())
1739         if (Instruction *OpI = dyn_cast<Instruction>(O)) {
1740           O.set(PoisonValue::get(O->getType()));
1741           if (isInstructionTriviallyDead(OpI, &TLI))
1742             NowDeadInsts.push_back(OpI);
1743         }
1744 
1745       EI.removeInstruction(DeadInst);
1746       // Remove memory defs directly if they don't produce results, but only
1747       // queue other dead instructions for later removal. They may have been
1748       // used as memory locations that have been cached by BatchAA. Removing
1749       // them here may lead to newly created instructions to be allocated at the
1750       // same address, yielding stale cache entries.
1751       if (IsMemDef && DeadInst->getType()->isVoidTy())
1752         DeadInst->eraseFromParent();
1753       else
1754         ToRemove.push_back(DeadInst);
1755     }
1756   }
1757 
1758   // Check for any extra throws between \p KillingI and \p DeadI that block
1759   // DSE.  This only checks extra maythrows (those that aren't MemoryDef's).
1760   // MemoryDef that may throw are handled during the walk from one def to the
1761   // next.
1762   bool mayThrowBetween(Instruction *KillingI, Instruction *DeadI,
1763                        const Value *KillingUndObj) {
1764     // First see if we can ignore it by using the fact that KillingI is an
1765     // alloca/alloca like object that is not visible to the caller during
1766     // execution of the function.
1767     if (KillingUndObj && isInvisibleToCallerOnUnwind(KillingUndObj))
1768       return false;
1769 
1770     if (KillingI->getParent() == DeadI->getParent())
1771       return ThrowingBlocks.count(KillingI->getParent());
1772     return !ThrowingBlocks.empty();
1773   }
1774 
1775   // Check if \p DeadI acts as a DSE barrier for \p KillingI. The following
1776   // instructions act as barriers:
1777   //  * A memory instruction that may throw and \p KillingI accesses a non-stack
1778   //  object.
1779   //  * Atomic stores stronger that monotonic.
1780   bool isDSEBarrier(const Value *KillingUndObj, Instruction *DeadI) {
1781     // If DeadI may throw it acts as a barrier, unless we are to an
1782     // alloca/alloca like object that does not escape.
1783     if (DeadI->mayThrow() && !isInvisibleToCallerOnUnwind(KillingUndObj))
1784       return true;
1785 
1786     // If DeadI is an atomic load/store stronger than monotonic, do not try to
1787     // eliminate/reorder it.
1788     if (DeadI->isAtomic()) {
1789       if (auto *LI = dyn_cast<LoadInst>(DeadI))
1790         return isStrongerThanMonotonic(LI->getOrdering());
1791       if (auto *SI = dyn_cast<StoreInst>(DeadI))
1792         return isStrongerThanMonotonic(SI->getOrdering());
1793       if (auto *ARMW = dyn_cast<AtomicRMWInst>(DeadI))
1794         return isStrongerThanMonotonic(ARMW->getOrdering());
1795       if (auto *CmpXchg = dyn_cast<AtomicCmpXchgInst>(DeadI))
1796         return isStrongerThanMonotonic(CmpXchg->getSuccessOrdering()) ||
1797                isStrongerThanMonotonic(CmpXchg->getFailureOrdering());
1798       llvm_unreachable("other instructions should be skipped in MemorySSA");
1799     }
1800     return false;
1801   }
1802 
1803   /// Eliminate writes to objects that are not visible in the caller and are not
1804   /// accessed before returning from the function.
1805   bool eliminateDeadWritesAtEndOfFunction() {
1806     bool MadeChange = false;
1807     LLVM_DEBUG(
1808         dbgs()
1809         << "Trying to eliminate MemoryDefs at the end of the function\n");
1810     do {
1811       ShouldIterateEndOfFunctionDSE = false;
1812       for (MemoryDef *Def : llvm::reverse(MemDefs)) {
1813         if (SkipStores.contains(Def))
1814           continue;
1815 
1816         Instruction *DefI = Def->getMemoryInst();
1817         auto DefLoc = getLocForWrite(DefI);
1818         if (!DefLoc || !isRemovable(DefI))
1819           continue;
1820 
1821         // NOTE: Currently eliminating writes at the end of a function is
1822         // limited to MemoryDefs with a single underlying object, to save
1823         // compile-time. In practice it appears the case with multiple
1824         // underlying objects is very uncommon. If it turns out to be important,
1825         // we can use getUnderlyingObjects here instead.
1826         const Value *UO = getUnderlyingObject(DefLoc->Ptr);
1827         if (!isInvisibleToCallerAfterRet(UO))
1828           continue;
1829 
1830         if (isWriteAtEndOfFunction(Def)) {
1831           // See through pointer-to-pointer bitcasts
1832           LLVM_DEBUG(dbgs() << "   ... MemoryDef is not accessed until the end "
1833                                "of the function\n");
1834           deleteDeadInstruction(DefI);
1835           ++NumFastStores;
1836           MadeChange = true;
1837         }
1838       }
1839     } while (ShouldIterateEndOfFunctionDSE);
1840     return MadeChange;
1841   }
1842 
1843   /// If we have a zero initializing memset following a call to malloc,
1844   /// try folding it into a call to calloc.
1845   bool tryFoldIntoCalloc(MemoryDef *Def, const Value *DefUO) {
1846     Instruction *DefI = Def->getMemoryInst();
1847     MemSetInst *MemSet = dyn_cast<MemSetInst>(DefI);
1848     if (!MemSet)
1849       // TODO: Could handle zero store to small allocation as well.
1850       return false;
1851     Constant *StoredConstant = dyn_cast<Constant>(MemSet->getValue());
1852     if (!StoredConstant || !StoredConstant->isNullValue())
1853       return false;
1854 
1855     if (!isRemovable(DefI))
1856       // The memset might be volatile..
1857       return false;
1858 
1859     if (F.hasFnAttribute(Attribute::SanitizeMemory) ||
1860         F.hasFnAttribute(Attribute::SanitizeAddress) ||
1861         F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
1862         F.getName() == "calloc")
1863       return false;
1864     auto *Malloc = const_cast<CallInst *>(dyn_cast<CallInst>(DefUO));
1865     if (!Malloc)
1866       return false;
1867     auto *InnerCallee = Malloc->getCalledFunction();
1868     if (!InnerCallee)
1869       return false;
1870     LibFunc Func;
1871     if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
1872         Func != LibFunc_malloc)
1873       return false;
1874     // Gracefully handle malloc with unexpected memory attributes.
1875     auto *MallocDef = dyn_cast_or_null<MemoryDef>(MSSA.getMemoryAccess(Malloc));
1876     if (!MallocDef)
1877       return false;
1878 
1879     auto shouldCreateCalloc = [](CallInst *Malloc, CallInst *Memset) {
1880       // Check for br(icmp ptr, null), truebb, falsebb) pattern at the end
1881       // of malloc block
1882       auto *MallocBB = Malloc->getParent(),
1883         *MemsetBB = Memset->getParent();
1884       if (MallocBB == MemsetBB)
1885         return true;
1886       auto *Ptr = Memset->getArgOperand(0);
1887       auto *TI = MallocBB->getTerminator();
1888       ICmpInst::Predicate Pred;
1889       BasicBlock *TrueBB, *FalseBB;
1890       if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Ptr), m_Zero()), TrueBB,
1891                           FalseBB)))
1892         return false;
1893       if (Pred != ICmpInst::ICMP_EQ || MemsetBB != FalseBB)
1894         return false;
1895       return true;
1896     };
1897 
1898     if (Malloc->getOperand(0) != MemSet->getLength())
1899       return false;
1900     if (!shouldCreateCalloc(Malloc, MemSet) ||
1901         !DT.dominates(Malloc, MemSet) ||
1902         !memoryIsNotModifiedBetween(Malloc, MemSet, BatchAA, DL, &DT))
1903       return false;
1904     IRBuilder<> IRB(Malloc);
1905     Type *SizeTTy = Malloc->getArgOperand(0)->getType();
1906     auto *Calloc = emitCalloc(ConstantInt::get(SizeTTy, 1),
1907                               Malloc->getArgOperand(0), IRB, TLI);
1908     if (!Calloc)
1909       return false;
1910 
1911     MemorySSAUpdater Updater(&MSSA);
1912     auto *NewAccess =
1913       Updater.createMemoryAccessAfter(cast<Instruction>(Calloc), nullptr,
1914                                       MallocDef);
1915     auto *NewAccessMD = cast<MemoryDef>(NewAccess);
1916     Updater.insertDef(NewAccessMD, /*RenameUses=*/true);
1917     Malloc->replaceAllUsesWith(Calloc);
1918     deleteDeadInstruction(Malloc);
1919     return true;
1920   }
1921 
1922   /// \returns true if \p Def is a no-op store, either because it
1923   /// directly stores back a loaded value or stores zero to a calloced object.
1924   bool storeIsNoop(MemoryDef *Def, const Value *DefUO) {
1925     Instruction *DefI = Def->getMemoryInst();
1926     StoreInst *Store = dyn_cast<StoreInst>(DefI);
1927     MemSetInst *MemSet = dyn_cast<MemSetInst>(DefI);
1928     Constant *StoredConstant = nullptr;
1929     if (Store)
1930       StoredConstant = dyn_cast<Constant>(Store->getOperand(0));
1931     else if (MemSet)
1932       StoredConstant = dyn_cast<Constant>(MemSet->getValue());
1933     else
1934       return false;
1935 
1936     if (!isRemovable(DefI))
1937       return false;
1938 
1939     if (StoredConstant) {
1940       Constant *InitC =
1941           getInitialValueOfAllocation(DefUO, &TLI, StoredConstant->getType());
1942       // If the clobbering access is LiveOnEntry, no instructions between them
1943       // can modify the memory location.
1944       if (InitC && InitC == StoredConstant)
1945         return MSSA.isLiveOnEntryDef(
1946             MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(Def, BatchAA));
1947     }
1948 
1949     if (!Store)
1950       return false;
1951 
1952     if (auto *LoadI = dyn_cast<LoadInst>(Store->getOperand(0))) {
1953       if (LoadI->getPointerOperand() == Store->getOperand(1)) {
1954         // Get the defining access for the load.
1955         auto *LoadAccess = MSSA.getMemoryAccess(LoadI)->getDefiningAccess();
1956         // Fast path: the defining accesses are the same.
1957         if (LoadAccess == Def->getDefiningAccess())
1958           return true;
1959 
1960         // Look through phi accesses. Recursively scan all phi accesses by
1961         // adding them to a worklist. Bail when we run into a memory def that
1962         // does not match LoadAccess.
1963         SetVector<MemoryAccess *> ToCheck;
1964         MemoryAccess *Current =
1965             MSSA.getWalker()->getClobberingMemoryAccess(Def, BatchAA);
1966         // We don't want to bail when we run into the store memory def. But,
1967         // the phi access may point to it. So, pretend like we've already
1968         // checked it.
1969         ToCheck.insert(Def);
1970         ToCheck.insert(Current);
1971         // Start at current (1) to simulate already having checked Def.
1972         for (unsigned I = 1; I < ToCheck.size(); ++I) {
1973           Current = ToCheck[I];
1974           if (auto PhiAccess = dyn_cast<MemoryPhi>(Current)) {
1975             // Check all the operands.
1976             for (auto &Use : PhiAccess->incoming_values())
1977               ToCheck.insert(cast<MemoryAccess>(&Use));
1978             continue;
1979           }
1980 
1981           // If we found a memory def, bail. This happens when we have an
1982           // unrelated write in between an otherwise noop store.
1983           assert(isa<MemoryDef>(Current) &&
1984                  "Only MemoryDefs should reach here.");
1985           // TODO: Skip no alias MemoryDefs that have no aliasing reads.
1986           // We are searching for the definition of the store's destination.
1987           // So, if that is the same definition as the load, then this is a
1988           // noop. Otherwise, fail.
1989           if (LoadAccess != Current)
1990             return false;
1991         }
1992         return true;
1993       }
1994     }
1995 
1996     return false;
1997   }
1998 
1999   bool removePartiallyOverlappedStores(InstOverlapIntervalsTy &IOL) {
2000     bool Changed = false;
2001     for (auto OI : IOL) {
2002       Instruction *DeadI = OI.first;
2003       MemoryLocation Loc = *getLocForWrite(DeadI);
2004       assert(isRemovable(DeadI) && "Expect only removable instruction");
2005 
2006       const Value *Ptr = Loc.Ptr->stripPointerCasts();
2007       int64_t DeadStart = 0;
2008       uint64_t DeadSize = Loc.Size.getValue();
2009       GetPointerBaseWithConstantOffset(Ptr, DeadStart, DL);
2010       OverlapIntervalsTy &IntervalMap = OI.second;
2011       Changed |= tryToShortenEnd(DeadI, IntervalMap, DeadStart, DeadSize);
2012       if (IntervalMap.empty())
2013         continue;
2014       Changed |= tryToShortenBegin(DeadI, IntervalMap, DeadStart, DeadSize);
2015     }
2016     return Changed;
2017   }
2018 
2019   /// Eliminates writes to locations where the value that is being written
2020   /// is already stored at the same location.
2021   bool eliminateRedundantStoresOfExistingValues() {
2022     bool MadeChange = false;
2023     LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs that write the "
2024                          "already existing value\n");
2025     for (auto *Def : MemDefs) {
2026       if (SkipStores.contains(Def) || MSSA.isLiveOnEntryDef(Def))
2027         continue;
2028 
2029       Instruction *DefInst = Def->getMemoryInst();
2030       auto MaybeDefLoc = getLocForWrite(DefInst);
2031       if (!MaybeDefLoc || !isRemovable(DefInst))
2032         continue;
2033 
2034       MemoryDef *UpperDef;
2035       // To conserve compile-time, we avoid walking to the next clobbering def.
2036       // Instead, we just try to get the optimized access, if it exists. DSE
2037       // will try to optimize defs during the earlier traversal.
2038       if (Def->isOptimized())
2039         UpperDef = dyn_cast<MemoryDef>(Def->getOptimized());
2040       else
2041         UpperDef = dyn_cast<MemoryDef>(Def->getDefiningAccess());
2042       if (!UpperDef || MSSA.isLiveOnEntryDef(UpperDef))
2043         continue;
2044 
2045       Instruction *UpperInst = UpperDef->getMemoryInst();
2046       auto IsRedundantStore = [&]() {
2047         if (DefInst->isIdenticalTo(UpperInst))
2048           return true;
2049         if (auto *MemSetI = dyn_cast<MemSetInst>(UpperInst)) {
2050           if (auto *SI = dyn_cast<StoreInst>(DefInst)) {
2051             // MemSetInst must have a write location.
2052             MemoryLocation UpperLoc = *getLocForWrite(UpperInst);
2053             int64_t InstWriteOffset = 0;
2054             int64_t DepWriteOffset = 0;
2055             auto OR = isOverwrite(UpperInst, DefInst, UpperLoc, *MaybeDefLoc,
2056                                   InstWriteOffset, DepWriteOffset);
2057             Value *StoredByte = isBytewiseValue(SI->getValueOperand(), DL);
2058             return StoredByte && StoredByte == MemSetI->getOperand(1) &&
2059                    OR == OW_Complete;
2060           }
2061         }
2062         return false;
2063       };
2064 
2065       if (!IsRedundantStore() || isReadClobber(*MaybeDefLoc, DefInst))
2066         continue;
2067       LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n  DEAD: " << *DefInst
2068                         << '\n');
2069       deleteDeadInstruction(DefInst);
2070       NumRedundantStores++;
2071       MadeChange = true;
2072     }
2073     return MadeChange;
2074   }
2075 };
2076 
2077 static bool eliminateDeadStores(Function &F, AliasAnalysis &AA, MemorySSA &MSSA,
2078                                 DominatorTree &DT, PostDominatorTree &PDT,
2079                                 const TargetLibraryInfo &TLI,
2080                                 const LoopInfo &LI) {
2081   bool MadeChange = false;
2082 
2083   DSEState State(F, AA, MSSA, DT, PDT, TLI, LI);
2084   // For each store:
2085   for (unsigned I = 0; I < State.MemDefs.size(); I++) {
2086     MemoryDef *KillingDef = State.MemDefs[I];
2087     if (State.SkipStores.count(KillingDef))
2088       continue;
2089     Instruction *KillingI = KillingDef->getMemoryInst();
2090 
2091     std::optional<MemoryLocation> MaybeKillingLoc;
2092     if (State.isMemTerminatorInst(KillingI)) {
2093       if (auto KillingLoc = State.getLocForTerminator(KillingI))
2094         MaybeKillingLoc = KillingLoc->first;
2095     } else {
2096       MaybeKillingLoc = State.getLocForWrite(KillingI);
2097     }
2098 
2099     if (!MaybeKillingLoc) {
2100       LLVM_DEBUG(dbgs() << "Failed to find analyzable write location for "
2101                         << *KillingI << "\n");
2102       continue;
2103     }
2104     MemoryLocation KillingLoc = *MaybeKillingLoc;
2105     assert(KillingLoc.Ptr && "KillingLoc should not be null");
2106     const Value *KillingUndObj = getUnderlyingObject(KillingLoc.Ptr);
2107     LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs killed by "
2108                       << *KillingDef << " (" << *KillingI << ")\n");
2109 
2110     unsigned ScanLimit = MemorySSAScanLimit;
2111     unsigned WalkerStepLimit = MemorySSAUpwardsStepLimit;
2112     unsigned PartialLimit = MemorySSAPartialStoreLimit;
2113     // Worklist of MemoryAccesses that may be killed by KillingDef.
2114     SetVector<MemoryAccess *> ToCheck;
2115     ToCheck.insert(KillingDef->getDefiningAccess());
2116 
2117     bool Shortend = false;
2118     bool IsMemTerm = State.isMemTerminatorInst(KillingI);
2119     // Check if MemoryAccesses in the worklist are killed by KillingDef.
2120     for (unsigned I = 0; I < ToCheck.size(); I++) {
2121       MemoryAccess *Current = ToCheck[I];
2122       if (State.SkipStores.count(Current))
2123         continue;
2124 
2125       std::optional<MemoryAccess *> MaybeDeadAccess = State.getDomMemoryDef(
2126           KillingDef, Current, KillingLoc, KillingUndObj, ScanLimit,
2127           WalkerStepLimit, IsMemTerm, PartialLimit);
2128 
2129       if (!MaybeDeadAccess) {
2130         LLVM_DEBUG(dbgs() << "  finished walk\n");
2131         continue;
2132       }
2133 
2134       MemoryAccess *DeadAccess = *MaybeDeadAccess;
2135       LLVM_DEBUG(dbgs() << " Checking if we can kill " << *DeadAccess);
2136       if (isa<MemoryPhi>(DeadAccess)) {
2137         LLVM_DEBUG(dbgs() << "\n  ... adding incoming values to worklist\n");
2138         for (Value *V : cast<MemoryPhi>(DeadAccess)->incoming_values()) {
2139           MemoryAccess *IncomingAccess = cast<MemoryAccess>(V);
2140           BasicBlock *IncomingBlock = IncomingAccess->getBlock();
2141           BasicBlock *PhiBlock = DeadAccess->getBlock();
2142 
2143           // We only consider incoming MemoryAccesses that come before the
2144           // MemoryPhi. Otherwise we could discover candidates that do not
2145           // strictly dominate our starting def.
2146           if (State.PostOrderNumbers[IncomingBlock] >
2147               State.PostOrderNumbers[PhiBlock])
2148             ToCheck.insert(IncomingAccess);
2149         }
2150         continue;
2151       }
2152       auto *DeadDefAccess = cast<MemoryDef>(DeadAccess);
2153       Instruction *DeadI = DeadDefAccess->getMemoryInst();
2154       LLVM_DEBUG(dbgs() << " (" << *DeadI << ")\n");
2155       ToCheck.insert(DeadDefAccess->getDefiningAccess());
2156       NumGetDomMemoryDefPassed++;
2157 
2158       if (!DebugCounter::shouldExecute(MemorySSACounter))
2159         continue;
2160 
2161       MemoryLocation DeadLoc = *State.getLocForWrite(DeadI);
2162 
2163       if (IsMemTerm) {
2164         const Value *DeadUndObj = getUnderlyingObject(DeadLoc.Ptr);
2165         if (KillingUndObj != DeadUndObj)
2166           continue;
2167         LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: " << *DeadI
2168                           << "\n  KILLER: " << *KillingI << '\n');
2169         State.deleteDeadInstruction(DeadI);
2170         ++NumFastStores;
2171         MadeChange = true;
2172       } else {
2173         // Check if DeadI overwrites KillingI.
2174         int64_t KillingOffset = 0;
2175         int64_t DeadOffset = 0;
2176         OverwriteResult OR = State.isOverwrite(
2177             KillingI, DeadI, KillingLoc, DeadLoc, KillingOffset, DeadOffset);
2178         if (OR == OW_MaybePartial) {
2179           auto Iter = State.IOLs.insert(
2180               std::make_pair<BasicBlock *, InstOverlapIntervalsTy>(
2181                   DeadI->getParent(), InstOverlapIntervalsTy()));
2182           auto &IOL = Iter.first->second;
2183           OR = isPartialOverwrite(KillingLoc, DeadLoc, KillingOffset,
2184                                   DeadOffset, DeadI, IOL);
2185         }
2186 
2187         if (EnablePartialStoreMerging && OR == OW_PartialEarlierWithFullLater) {
2188           auto *DeadSI = dyn_cast<StoreInst>(DeadI);
2189           auto *KillingSI = dyn_cast<StoreInst>(KillingI);
2190           // We are re-using tryToMergePartialOverlappingStores, which requires
2191           // DeadSI to dominate KillingSI.
2192           // TODO: implement tryToMergeParialOverlappingStores using MemorySSA.
2193           if (DeadSI && KillingSI && DT.dominates(DeadSI, KillingSI)) {
2194             if (Constant *Merged = tryToMergePartialOverlappingStores(
2195                     KillingSI, DeadSI, KillingOffset, DeadOffset, State.DL,
2196                     State.BatchAA, &DT)) {
2197 
2198               // Update stored value of earlier store to merged constant.
2199               DeadSI->setOperand(0, Merged);
2200               ++NumModifiedStores;
2201               MadeChange = true;
2202 
2203               Shortend = true;
2204               // Remove killing store and remove any outstanding overlap
2205               // intervals for the updated store.
2206               State.deleteDeadInstruction(KillingSI);
2207               auto I = State.IOLs.find(DeadSI->getParent());
2208               if (I != State.IOLs.end())
2209                 I->second.erase(DeadSI);
2210               break;
2211             }
2212           }
2213         }
2214 
2215         if (OR == OW_Complete) {
2216           LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: " << *DeadI
2217                             << "\n  KILLER: " << *KillingI << '\n');
2218           State.deleteDeadInstruction(DeadI);
2219           ++NumFastStores;
2220           MadeChange = true;
2221         }
2222       }
2223     }
2224 
2225     // Check if the store is a no-op.
2226     if (!Shortend && State.storeIsNoop(KillingDef, KillingUndObj)) {
2227       LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n  DEAD: " << *KillingI
2228                         << '\n');
2229       State.deleteDeadInstruction(KillingI);
2230       NumRedundantStores++;
2231       MadeChange = true;
2232       continue;
2233     }
2234 
2235     // Can we form a calloc from a memset/malloc pair?
2236     if (!Shortend && State.tryFoldIntoCalloc(KillingDef, KillingUndObj)) {
2237       LLVM_DEBUG(dbgs() << "DSE: Remove memset after forming calloc:\n"
2238                         << "  DEAD: " << *KillingI << '\n');
2239       State.deleteDeadInstruction(KillingI);
2240       MadeChange = true;
2241       continue;
2242     }
2243   }
2244 
2245   if (EnablePartialOverwriteTracking)
2246     for (auto &KV : State.IOLs)
2247       MadeChange |= State.removePartiallyOverlappedStores(KV.second);
2248 
2249   MadeChange |= State.eliminateRedundantStoresOfExistingValues();
2250   MadeChange |= State.eliminateDeadWritesAtEndOfFunction();
2251 
2252   while (!State.ToRemove.empty()) {
2253     Instruction *DeadInst = State.ToRemove.pop_back_val();
2254     DeadInst->eraseFromParent();
2255   }
2256 
2257   return MadeChange;
2258 }
2259 } // end anonymous namespace
2260 
2261 //===----------------------------------------------------------------------===//
2262 // DSE Pass
2263 //===----------------------------------------------------------------------===//
2264 PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) {
2265   AliasAnalysis &AA = AM.getResult<AAManager>(F);
2266   const TargetLibraryInfo &TLI = AM.getResult<TargetLibraryAnalysis>(F);
2267   DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
2268   MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
2269   PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
2270   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
2271 
2272   bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, TLI, LI);
2273 
2274 #ifdef LLVM_ENABLE_STATS
2275   if (AreStatisticsEnabled())
2276     for (auto &I : instructions(F))
2277       NumRemainingStores += isa<StoreInst>(&I);
2278 #endif
2279 
2280   if (!Changed)
2281     return PreservedAnalyses::all();
2282 
2283   PreservedAnalyses PA;
2284   PA.preserveSet<CFGAnalyses>();
2285   PA.preserve<MemorySSAAnalysis>();
2286   PA.preserve<LoopAnalysis>();
2287   return PA;
2288 }
2289