1 //===- DivRemPairs.cpp - Hoist/[dr]ecompose division and remainder --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass hoists and/or decomposes/recomposes integer division and remainder
10 // instructions to enable CFG improvements and better codegen.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/DivRemPairs.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/TargetTransformInfo.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/PatternMatch.h"
24 #include "llvm/InitializePasses.h"
25 #include "llvm/Pass.h"
26 #include "llvm/Support/DebugCounter.h"
27 #include "llvm/Transforms/Scalar.h"
28 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
29 
30 using namespace llvm;
31 using namespace llvm::PatternMatch;
32 
33 #define DEBUG_TYPE "div-rem-pairs"
34 STATISTIC(NumPairs, "Number of div/rem pairs");
35 STATISTIC(NumRecomposed, "Number of instructions recomposed");
36 STATISTIC(NumHoisted, "Number of instructions hoisted");
37 STATISTIC(NumDecomposed, "Number of instructions decomposed");
38 DEBUG_COUNTER(DRPCounter, "div-rem-pairs-transform",
39               "Controls transformations in div-rem-pairs pass");
40 
41 namespace {
42 struct ExpandedMatch {
43   DivRemMapKey Key;
44   Instruction *Value;
45 };
46 } // namespace
47 
48 /// See if we can match: (which is the form we expand into)
49 ///   X - ((X ?/ Y) * Y)
50 /// which is equivalent to:
51 ///   X ?% Y
52 static llvm::Optional<ExpandedMatch> matchExpandedRem(Instruction &I) {
53   Value *Dividend, *XroundedDownToMultipleOfY;
54   if (!match(&I, m_Sub(m_Value(Dividend), m_Value(XroundedDownToMultipleOfY))))
55     return llvm::None;
56 
57   Value *Divisor;
58   Instruction *Div;
59   // Look for  ((X / Y) * Y)
60   if (!match(
61           XroundedDownToMultipleOfY,
62           m_c_Mul(m_CombineAnd(m_IDiv(m_Specific(Dividend), m_Value(Divisor)),
63                                m_Instruction(Div)),
64                   m_Deferred(Divisor))))
65     return llvm::None;
66 
67   ExpandedMatch M;
68   M.Key.SignedOp = Div->getOpcode() == Instruction::SDiv;
69   M.Key.Dividend = Dividend;
70   M.Key.Divisor = Divisor;
71   M.Value = &I;
72   return M;
73 }
74 
75 namespace {
76 /// A thin wrapper to store two values that we matched as div-rem pair.
77 /// We want this extra indirection to avoid dealing with RAUW'ing the map keys.
78 struct DivRemPairWorklistEntry {
79   /// The actual udiv/sdiv instruction. Source of truth.
80   AssertingVH<Instruction> DivInst;
81 
82   /// The instruction that we have matched as a remainder instruction.
83   /// Should only be used as Value, don't introspect it.
84   AssertingVH<Instruction> RemInst;
85 
86   DivRemPairWorklistEntry(Instruction *DivInst_, Instruction *RemInst_)
87       : DivInst(DivInst_), RemInst(RemInst_) {
88     assert((DivInst->getOpcode() == Instruction::UDiv ||
89             DivInst->getOpcode() == Instruction::SDiv) &&
90            "Not a division.");
91     assert(DivInst->getType() == RemInst->getType() && "Types should match.");
92     // We can't check anything else about remainder instruction,
93     // it's not strictly required to be a urem/srem.
94   }
95 
96   /// The type for this pair, identical for both the div and rem.
97   Type *getType() const { return DivInst->getType(); }
98 
99   /// Is this pair signed or unsigned?
100   bool isSigned() const { return DivInst->getOpcode() == Instruction::SDiv; }
101 
102   /// In this pair, what are the divident and divisor?
103   Value *getDividend() const { return DivInst->getOperand(0); }
104   Value *getDivisor() const { return DivInst->getOperand(1); }
105 
106   bool isRemExpanded() const {
107     switch (RemInst->getOpcode()) {
108     case Instruction::SRem:
109     case Instruction::URem:
110       return false; // single 'rem' instruction - unexpanded form.
111     default:
112       return true; // anything else means we have remainder in expanded form.
113     }
114   }
115 };
116 } // namespace
117 using DivRemWorklistTy = SmallVector<DivRemPairWorklistEntry, 4>;
118 
119 /// Find matching pairs of integer div/rem ops (they have the same numerator,
120 /// denominator, and signedness). Place those pairs into a worklist for further
121 /// processing. This indirection is needed because we have to use TrackingVH<>
122 /// because we will be doing RAUW, and if one of the rem instructions we change
123 /// happens to be an input to another div/rem in the maps, we'd have problems.
124 static DivRemWorklistTy getWorklist(Function &F) {
125   // Insert all divide and remainder instructions into maps keyed by their
126   // operands and opcode (signed or unsigned).
127   DenseMap<DivRemMapKey, Instruction *> DivMap;
128   // Use a MapVector for RemMap so that instructions are moved/inserted in a
129   // deterministic order.
130   MapVector<DivRemMapKey, Instruction *> RemMap;
131   for (auto &BB : F) {
132     for (auto &I : BB) {
133       if (I.getOpcode() == Instruction::SDiv)
134         DivMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I;
135       else if (I.getOpcode() == Instruction::UDiv)
136         DivMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I;
137       else if (I.getOpcode() == Instruction::SRem)
138         RemMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I;
139       else if (I.getOpcode() == Instruction::URem)
140         RemMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I;
141       else if (auto Match = matchExpandedRem(I))
142         RemMap[Match->Key] = Match->Value;
143     }
144   }
145 
146   // We'll accumulate the matching pairs of div-rem instructions here.
147   DivRemWorklistTy Worklist;
148 
149   // We can iterate over either map because we are only looking for matched
150   // pairs. Choose remainders for efficiency because they are usually even more
151   // rare than division.
152   for (auto &RemPair : RemMap) {
153     // Find the matching division instruction from the division map.
154     Instruction *DivInst = DivMap[RemPair.first];
155     if (!DivInst)
156       continue;
157 
158     // We have a matching pair of div/rem instructions.
159     NumPairs++;
160     Instruction *RemInst = RemPair.second;
161 
162     // Place it in the worklist.
163     Worklist.emplace_back(DivInst, RemInst);
164   }
165 
166   return Worklist;
167 }
168 
169 /// Find matching pairs of integer div/rem ops (they have the same numerator,
170 /// denominator, and signedness). If they exist in different basic blocks, bring
171 /// them together by hoisting or replace the common division operation that is
172 /// implicit in the remainder:
173 /// X % Y <--> X - ((X / Y) * Y).
174 ///
175 /// We can largely ignore the normal safety and cost constraints on speculation
176 /// of these ops when we find a matching pair. This is because we are already
177 /// guaranteed that any exceptions and most cost are already incurred by the
178 /// first member of the pair.
179 ///
180 /// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or
181 /// SimplifyCFG, but it's split off on its own because it's different enough
182 /// that it doesn't quite match the stated objectives of those passes.
183 static bool optimizeDivRem(Function &F, const TargetTransformInfo &TTI,
184                            const DominatorTree &DT) {
185   bool Changed = false;
186 
187   // Get the matching pairs of div-rem instructions. We want this extra
188   // indirection to avoid dealing with having to RAUW the keys of the maps.
189   DivRemWorklistTy Worklist = getWorklist(F);
190 
191   // Process each entry in the worklist.
192   for (DivRemPairWorklistEntry &E : Worklist) {
193     if (!DebugCounter::shouldExecute(DRPCounter))
194       continue;
195 
196     bool HasDivRemOp = TTI.hasDivRemOp(E.getType(), E.isSigned());
197 
198     auto &DivInst = E.DivInst;
199     auto &RemInst = E.RemInst;
200 
201     const bool RemOriginallyWasInExpandedForm = E.isRemExpanded();
202     (void)RemOriginallyWasInExpandedForm; // suppress unused variable warning
203 
204     if (HasDivRemOp && E.isRemExpanded()) {
205       // The target supports div+rem but the rem is expanded.
206       // We should recompose it first.
207       Value *X = E.getDividend();
208       Value *Y = E.getDivisor();
209       Instruction *RealRem = E.isSigned() ? BinaryOperator::CreateSRem(X, Y)
210                                           : BinaryOperator::CreateURem(X, Y);
211       // Note that we place it right next to the original expanded instruction,
212       // and letting further handling to move it if needed.
213       RealRem->setName(RemInst->getName() + ".recomposed");
214       RealRem->insertAfter(RemInst);
215       Instruction *OrigRemInst = RemInst;
216       // Update AssertingVH<> with new instruction so it doesn't assert.
217       RemInst = RealRem;
218       // And replace the original instruction with the new one.
219       OrigRemInst->replaceAllUsesWith(RealRem);
220       OrigRemInst->eraseFromParent();
221       NumRecomposed++;
222       // Note that we have left ((X / Y) * Y) around.
223       // If it had other uses we could rewrite it as X - X % Y
224       Changed = true;
225     }
226 
227     assert((!E.isRemExpanded() || !HasDivRemOp) &&
228            "*If* the target supports div-rem, then by now the RemInst *is* "
229            "Instruction::[US]Rem.");
230 
231     // If the target supports div+rem and the instructions are in the same block
232     // already, there's nothing to do. The backend should handle this. If the
233     // target does not support div+rem, then we will decompose the rem.
234     if (HasDivRemOp && RemInst->getParent() == DivInst->getParent())
235       continue;
236 
237     bool DivDominates = DT.dominates(DivInst, RemInst);
238     if (!DivDominates && !DT.dominates(RemInst, DivInst)) {
239       // We have matching div-rem pair, but they are in two different blocks,
240       // neither of which dominates one another.
241       // FIXME: We could hoist both ops to the common predecessor block?
242       continue;
243     }
244 
245     // The target does not have a single div/rem operation,
246     // and the rem is already in expanded form. Nothing to do.
247     if (!HasDivRemOp && E.isRemExpanded())
248       continue;
249 
250     if (HasDivRemOp) {
251       // The target has a single div/rem operation. Hoist the lower instruction
252       // to make the matched pair visible to the backend.
253       if (DivDominates)
254         RemInst->moveAfter(DivInst);
255       else
256         DivInst->moveAfter(RemInst);
257       NumHoisted++;
258     } else {
259       // The target does not have a single div/rem operation,
260       // and the rem is *not* in a already-expanded form.
261       // Decompose the remainder calculation as:
262       // X % Y --> X - ((X / Y) * Y).
263 
264       assert(!RemOriginallyWasInExpandedForm &&
265              "We should not be expanding if the rem was in expanded form to "
266              "begin with.");
267 
268       Value *X = E.getDividend();
269       Value *Y = E.getDivisor();
270       Instruction *Mul = BinaryOperator::CreateMul(DivInst, Y);
271       Instruction *Sub = BinaryOperator::CreateSub(X, Mul);
272 
273       // If the remainder dominates, then hoist the division up to that block:
274       //
275       // bb1:
276       //   %rem = srem %x, %y
277       // bb2:
278       //   %div = sdiv %x, %y
279       // -->
280       // bb1:
281       //   %div = sdiv %x, %y
282       //   %mul = mul %div, %y
283       //   %rem = sub %x, %mul
284       //
285       // If the division dominates, it's already in the right place. The mul+sub
286       // will be in a different block because we don't assume that they are
287       // cheap to speculatively execute:
288       //
289       // bb1:
290       //   %div = sdiv %x, %y
291       // bb2:
292       //   %rem = srem %x, %y
293       // -->
294       // bb1:
295       //   %div = sdiv %x, %y
296       // bb2:
297       //   %mul = mul %div, %y
298       //   %rem = sub %x, %mul
299       //
300       // If the div and rem are in the same block, we do the same transform,
301       // but any code movement would be within the same block.
302 
303       if (!DivDominates)
304         DivInst->moveBefore(RemInst);
305       Mul->insertAfter(RemInst);
306       Sub->insertAfter(Mul);
307 
308       // If X can be undef, X should be frozen first.
309       // For example, let's assume that Y = 1 & X = undef:
310       //   %div = sdiv undef, 1 // %div = undef
311       //   %rem = srem undef, 1 // %rem = 0
312       // =>
313       //   %div = sdiv undef, 1 // %div = undef
314       //   %mul = mul %div, 1   // %mul = undef
315       //   %rem = sub %x, %mul  // %rem = undef - undef = undef
316       // If X is not frozen, %rem becomes undef after transformation.
317       // TODO: We need a undef-specific checking function in ValueTracking
318       if (!isGuaranteedNotToBeUndefOrPoison(X, DivInst, &DT)) {
319         auto *FrX = new FreezeInst(X, X->getName() + ".frozen", DivInst);
320         DivInst->setOperand(0, FrX);
321         Sub->setOperand(0, FrX);
322       }
323       // Same for Y. If X = 1 and Y = (undef | 1), %rem in src is either 1 or 0,
324       // but %rem in tgt can be one of many integer values.
325       if (!isGuaranteedNotToBeUndefOrPoison(Y, DivInst, &DT)) {
326         auto *FrY = new FreezeInst(Y, Y->getName() + ".frozen", DivInst);
327         DivInst->setOperand(1, FrY);
328         Mul->setOperand(1, FrY);
329       }
330 
331       // Now kill the explicit remainder. We have replaced it with:
332       // (sub X, (mul (div X, Y), Y)
333       Sub->setName(RemInst->getName() + ".decomposed");
334       Instruction *OrigRemInst = RemInst;
335       // Update AssertingVH<> with new instruction so it doesn't assert.
336       RemInst = Sub;
337       // And replace the original instruction with the new one.
338       OrigRemInst->replaceAllUsesWith(Sub);
339       OrigRemInst->eraseFromParent();
340       NumDecomposed++;
341     }
342     Changed = true;
343   }
344 
345   return Changed;
346 }
347 
348 // Pass manager boilerplate below here.
349 
350 namespace {
351 struct DivRemPairsLegacyPass : public FunctionPass {
352   static char ID;
353   DivRemPairsLegacyPass() : FunctionPass(ID) {
354     initializeDivRemPairsLegacyPassPass(*PassRegistry::getPassRegistry());
355   }
356 
357   void getAnalysisUsage(AnalysisUsage &AU) const override {
358     AU.addRequired<DominatorTreeWrapperPass>();
359     AU.addRequired<TargetTransformInfoWrapperPass>();
360     AU.setPreservesCFG();
361     AU.addPreserved<DominatorTreeWrapperPass>();
362     AU.addPreserved<GlobalsAAWrapperPass>();
363     FunctionPass::getAnalysisUsage(AU);
364   }
365 
366   bool runOnFunction(Function &F) override {
367     if (skipFunction(F))
368       return false;
369     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
370     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
371     return optimizeDivRem(F, TTI, DT);
372   }
373 };
374 } // namespace
375 
376 char DivRemPairsLegacyPass::ID = 0;
377 INITIALIZE_PASS_BEGIN(DivRemPairsLegacyPass, "div-rem-pairs",
378                       "Hoist/decompose integer division and remainder", false,
379                       false)
380 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
381 INITIALIZE_PASS_END(DivRemPairsLegacyPass, "div-rem-pairs",
382                     "Hoist/decompose integer division and remainder", false,
383                     false)
384 FunctionPass *llvm::createDivRemPairsPass() {
385   return new DivRemPairsLegacyPass();
386 }
387 
388 PreservedAnalyses DivRemPairsPass::run(Function &F,
389                                        FunctionAnalysisManager &FAM) {
390   TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
391   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
392   if (!optimizeDivRem(F, TTI, DT))
393     return PreservedAnalyses::all();
394   // TODO: This pass just hoists/replaces math ops - all analyses are preserved?
395   PreservedAnalyses PA;
396   PA.preserveSet<CFGAnalyses>();
397   PA.preserve<GlobalsAA>();
398   return PA;
399 }
400