1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs a simple dominator tree walk that eliminates trivially
10 // redundant instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/EarlyCSE.h"
15 #include "llvm/ADT/DenseMapInfo.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/ScopedHashTable.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/GuardUtils.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/MemorySSA.h"
27 #include "llvm/Analysis/MemorySSAUpdater.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/PassManager.h"
43 #include "llvm/IR/PatternMatch.h"
44 #include "llvm/IR/Statepoint.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Use.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/InitializePasses.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Allocator.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/DebugCounter.h"
55 #include "llvm/Support/RecyclingAllocator.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
59 #include "llvm/Transforms/Utils/GuardUtils.h"
60 #include "llvm/Transforms/Utils/Local.h"
61 #include <cassert>
62 #include <deque>
63 #include <memory>
64 #include <utility>
65 
66 using namespace llvm;
67 using namespace llvm::PatternMatch;
68 
69 #define DEBUG_TYPE "early-cse"
70 
71 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
72 STATISTIC(NumCSE,      "Number of instructions CSE'd");
73 STATISTIC(NumCSECVP,   "Number of compare instructions CVP'd");
74 STATISTIC(NumCSELoad,  "Number of load instructions CSE'd");
75 STATISTIC(NumCSECall,  "Number of call instructions CSE'd");
76 STATISTIC(NumDSE,      "Number of trivial dead stores removed");
77 
78 DEBUG_COUNTER(CSECounter, "early-cse",
79               "Controls which instructions are removed");
80 
81 static cl::opt<unsigned> EarlyCSEMssaOptCap(
82     "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden,
83     cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange "
84              "for faster compile. Caps the MemorySSA clobbering calls."));
85 
86 static cl::opt<bool> EarlyCSEDebugHash(
87     "earlycse-debug-hash", cl::init(false), cl::Hidden,
88     cl::desc("Perform extra assertion checking to verify that SimpleValue's hash "
89              "function is well-behaved w.r.t. its isEqual predicate"));
90 
91 //===----------------------------------------------------------------------===//
92 // SimpleValue
93 //===----------------------------------------------------------------------===//
94 
95 namespace {
96 
97 /// Struct representing the available values in the scoped hash table.
98 struct SimpleValue {
99   Instruction *Inst;
100 
101   SimpleValue(Instruction *I) : Inst(I) {
102     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
103   }
104 
105   bool isSentinel() const {
106     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
107            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
108   }
109 
110   static bool canHandle(Instruction *Inst) {
111     // This can only handle non-void readnone functions.
112     if (CallInst *CI = dyn_cast<CallInst>(Inst))
113       return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
114     return isa<CastInst>(Inst) || isa<UnaryOperator>(Inst) ||
115            isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) ||
116            isa<CmpInst>(Inst) || isa<SelectInst>(Inst) ||
117            isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
118            isa<ShuffleVectorInst>(Inst) || isa<ExtractValueInst>(Inst) ||
119            isa<InsertValueInst>(Inst) || isa<FreezeInst>(Inst);
120   }
121 };
122 
123 } // end anonymous namespace
124 
125 namespace llvm {
126 
127 template <> struct DenseMapInfo<SimpleValue> {
128   static inline SimpleValue getEmptyKey() {
129     return DenseMapInfo<Instruction *>::getEmptyKey();
130   }
131 
132   static inline SimpleValue getTombstoneKey() {
133     return DenseMapInfo<Instruction *>::getTombstoneKey();
134   }
135 
136   static unsigned getHashValue(SimpleValue Val);
137   static bool isEqual(SimpleValue LHS, SimpleValue RHS);
138 };
139 
140 } // end namespace llvm
141 
142 /// Match a 'select' including an optional 'not's of the condition.
143 static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A,
144                                            Value *&B,
145                                            SelectPatternFlavor &Flavor) {
146   // Return false if V is not even a select.
147   if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))))
148     return false;
149 
150   // Look through a 'not' of the condition operand by swapping A/B.
151   Value *CondNot;
152   if (match(Cond, m_Not(m_Value(CondNot)))) {
153     Cond = CondNot;
154     std::swap(A, B);
155   }
156 
157   // Match canonical forms of abs/nabs/min/max. We are not using ValueTracking's
158   // more powerful matchSelectPattern() because it may rely on instruction flags
159   // such as "nsw". That would be incompatible with the current hashing
160   // mechanism that may remove flags to increase the likelihood of CSE.
161 
162   // These are the canonical forms of abs(X) and nabs(X) created by instcombine:
163   // %N = sub i32 0, %X
164   // %C = icmp slt i32 %X, 0
165   // %ABS = select i1 %C, i32 %N, i32 %X
166   //
167   // %N = sub i32 0, %X
168   // %C = icmp slt i32 %X, 0
169   // %NABS = select i1 %C, i32 %X, i32 %N
170   Flavor = SPF_UNKNOWN;
171   CmpInst::Predicate Pred;
172   if (match(Cond, m_ICmp(Pred, m_Specific(B), m_ZeroInt())) &&
173       Pred == ICmpInst::ICMP_SLT && match(A, m_Neg(m_Specific(B)))) {
174     // ABS: B < 0 ? -B : B
175     Flavor = SPF_ABS;
176     return true;
177   }
178   if (match(Cond, m_ICmp(Pred, m_Specific(A), m_ZeroInt())) &&
179       Pred == ICmpInst::ICMP_SLT && match(B, m_Neg(m_Specific(A)))) {
180     // NABS: A < 0 ? A : -A
181     Flavor = SPF_NABS;
182     return true;
183   }
184 
185   if (!match(Cond, m_ICmp(Pred, m_Specific(A), m_Specific(B)))) {
186     // Check for commuted variants of min/max by swapping predicate.
187     // If we do not match the standard or commuted patterns, this is not a
188     // recognized form of min/max, but it is still a select, so return true.
189     if (!match(Cond, m_ICmp(Pred, m_Specific(B), m_Specific(A))))
190       return true;
191     Pred = ICmpInst::getSwappedPredicate(Pred);
192   }
193 
194   switch (Pred) {
195   case CmpInst::ICMP_UGT: Flavor = SPF_UMAX; break;
196   case CmpInst::ICMP_ULT: Flavor = SPF_UMIN; break;
197   case CmpInst::ICMP_SGT: Flavor = SPF_SMAX; break;
198   case CmpInst::ICMP_SLT: Flavor = SPF_SMIN; break;
199   default: break;
200   }
201 
202   return true;
203 }
204 
205 static unsigned getHashValueImpl(SimpleValue Val) {
206   Instruction *Inst = Val.Inst;
207   // Hash in all of the operands as pointers.
208   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
209     Value *LHS = BinOp->getOperand(0);
210     Value *RHS = BinOp->getOperand(1);
211     if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
212       std::swap(LHS, RHS);
213 
214     return hash_combine(BinOp->getOpcode(), LHS, RHS);
215   }
216 
217   if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
218     // Compares can be commuted by swapping the comparands and
219     // updating the predicate.  Choose the form that has the
220     // comparands in sorted order, or in the case of a tie, the
221     // one with the lower predicate.
222     Value *LHS = CI->getOperand(0);
223     Value *RHS = CI->getOperand(1);
224     CmpInst::Predicate Pred = CI->getPredicate();
225     CmpInst::Predicate SwappedPred = CI->getSwappedPredicate();
226     if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) {
227       std::swap(LHS, RHS);
228       Pred = SwappedPred;
229     }
230     return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
231   }
232 
233   // Hash general selects to allow matching commuted true/false operands.
234   SelectPatternFlavor SPF;
235   Value *Cond, *A, *B;
236   if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) {
237     // Hash min/max/abs (cmp + select) to allow for commuted operands.
238     // Min/max may also have non-canonical compare predicate (eg, the compare for
239     // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the
240     // compare.
241     // TODO: We should also detect FP min/max.
242     if (SPF == SPF_SMIN || SPF == SPF_SMAX ||
243         SPF == SPF_UMIN || SPF == SPF_UMAX) {
244       if (A > B)
245         std::swap(A, B);
246       return hash_combine(Inst->getOpcode(), SPF, A, B);
247     }
248     if (SPF == SPF_ABS || SPF == SPF_NABS) {
249       // ABS/NABS always puts the input in A and its negation in B.
250       return hash_combine(Inst->getOpcode(), SPF, A, B);
251     }
252 
253     // Hash general selects to allow matching commuted true/false operands.
254 
255     // If we do not have a compare as the condition, just hash in the condition.
256     CmpInst::Predicate Pred;
257     Value *X, *Y;
258     if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y))))
259       return hash_combine(Inst->getOpcode(), Cond, A, B);
260 
261     // Similar to cmp normalization (above) - canonicalize the predicate value:
262     // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A
263     if (CmpInst::getInversePredicate(Pred) < Pred) {
264       Pred = CmpInst::getInversePredicate(Pred);
265       std::swap(A, B);
266     }
267     return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B);
268   }
269 
270   if (CastInst *CI = dyn_cast<CastInst>(Inst))
271     return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
272 
273   if (FreezeInst *FI = dyn_cast<FreezeInst>(Inst))
274     return hash_combine(FI->getOpcode(), FI->getOperand(0));
275 
276   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
277     return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
278                         hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
279 
280   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
281     return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
282                         IVI->getOperand(1),
283                         hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
284 
285   assert((isa<CallInst>(Inst) || isa<GetElementPtrInst>(Inst) ||
286           isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
287           isa<ShuffleVectorInst>(Inst) || isa<UnaryOperator>(Inst) ||
288           isa<FreezeInst>(Inst)) &&
289          "Invalid/unknown instruction");
290 
291   // Mix in the opcode.
292   return hash_combine(
293       Inst->getOpcode(),
294       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
295 }
296 
297 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
298 #ifndef NDEBUG
299   // If -earlycse-debug-hash was specified, return a constant -- this
300   // will force all hashing to collide, so we'll exhaustively search
301   // the table for a match, and the assertion in isEqual will fire if
302   // there's a bug causing equal keys to hash differently.
303   if (EarlyCSEDebugHash)
304     return 0;
305 #endif
306   return getHashValueImpl(Val);
307 }
308 
309 static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) {
310   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
311 
312   if (LHS.isSentinel() || RHS.isSentinel())
313     return LHSI == RHSI;
314 
315   if (LHSI->getOpcode() != RHSI->getOpcode())
316     return false;
317   if (LHSI->isIdenticalToWhenDefined(RHSI))
318     return true;
319 
320   // If we're not strictly identical, we still might be a commutable instruction
321   if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
322     if (!LHSBinOp->isCommutative())
323       return false;
324 
325     assert(isa<BinaryOperator>(RHSI) &&
326            "same opcode, but different instruction type?");
327     BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
328 
329     // Commuted equality
330     return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
331            LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
332   }
333   if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
334     assert(isa<CmpInst>(RHSI) &&
335            "same opcode, but different instruction type?");
336     CmpInst *RHSCmp = cast<CmpInst>(RHSI);
337     // Commuted equality
338     return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
339            LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
340            LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
341   }
342 
343   // Min/max/abs can occur with commuted operands, non-canonical predicates,
344   // and/or non-canonical operands.
345   // Selects can be non-trivially equivalent via inverted conditions and swaps.
346   SelectPatternFlavor LSPF, RSPF;
347   Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB;
348   if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) &&
349       matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) {
350     if (LSPF == RSPF) {
351       // TODO: We should also detect FP min/max.
352       if (LSPF == SPF_SMIN || LSPF == SPF_SMAX ||
353           LSPF == SPF_UMIN || LSPF == SPF_UMAX)
354         return ((LHSA == RHSA && LHSB == RHSB) ||
355                 (LHSA == RHSB && LHSB == RHSA));
356 
357       if (LSPF == SPF_ABS || LSPF == SPF_NABS) {
358         // Abs results are placed in a defined order by matchSelectPattern.
359         return LHSA == RHSA && LHSB == RHSB;
360       }
361 
362       // select Cond, A, B <--> select not(Cond), B, A
363       if (CondL == CondR && LHSA == RHSA && LHSB == RHSB)
364         return true;
365     }
366 
367     // If the true/false operands are swapped and the conditions are compares
368     // with inverted predicates, the selects are equal:
369     // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A
370     //
371     // This also handles patterns with a double-negation in the sense of not +
372     // inverse, because we looked through a 'not' in the matching function and
373     // swapped A/B:
374     // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A
375     //
376     // This intentionally does NOT handle patterns with a double-negation in
377     // the sense of not + not, because doing so could result in values
378     // comparing
379     // as equal that hash differently in the min/max/abs cases like:
380     // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y
381     //   ^ hashes as min                  ^ would not hash as min
382     // In the context of the EarlyCSE pass, however, such cases never reach
383     // this code, as we simplify the double-negation before hashing the second
384     // select (and so still succeed at CSEing them).
385     if (LHSA == RHSB && LHSB == RHSA) {
386       CmpInst::Predicate PredL, PredR;
387       Value *X, *Y;
388       if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) &&
389           match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) &&
390           CmpInst::getInversePredicate(PredL) == PredR)
391         return true;
392     }
393   }
394 
395   return false;
396 }
397 
398 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
399   // These comparisons are nontrivial, so assert that equality implies
400   // hash equality (DenseMap demands this as an invariant).
401   bool Result = isEqualImpl(LHS, RHS);
402   assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) ||
403          getHashValueImpl(LHS) == getHashValueImpl(RHS));
404   return Result;
405 }
406 
407 //===----------------------------------------------------------------------===//
408 // CallValue
409 //===----------------------------------------------------------------------===//
410 
411 namespace {
412 
413 /// Struct representing the available call values in the scoped hash
414 /// table.
415 struct CallValue {
416   Instruction *Inst;
417 
418   CallValue(Instruction *I) : Inst(I) {
419     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
420   }
421 
422   bool isSentinel() const {
423     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
424            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
425   }
426 
427   static bool canHandle(Instruction *Inst) {
428     // Don't value number anything that returns void.
429     if (Inst->getType()->isVoidTy())
430       return false;
431 
432     CallInst *CI = dyn_cast<CallInst>(Inst);
433     if (!CI || !CI->onlyReadsMemory())
434       return false;
435     return true;
436   }
437 };
438 
439 } // end anonymous namespace
440 
441 namespace llvm {
442 
443 template <> struct DenseMapInfo<CallValue> {
444   static inline CallValue getEmptyKey() {
445     return DenseMapInfo<Instruction *>::getEmptyKey();
446   }
447 
448   static inline CallValue getTombstoneKey() {
449     return DenseMapInfo<Instruction *>::getTombstoneKey();
450   }
451 
452   static unsigned getHashValue(CallValue Val);
453   static bool isEqual(CallValue LHS, CallValue RHS);
454 };
455 
456 } // end namespace llvm
457 
458 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
459   Instruction *Inst = Val.Inst;
460 
461   // gc.relocate is 'special' call: its second and third operands are
462   // not real values, but indices into statepoint's argument list.
463   // Get values they point to.
464   if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(Inst))
465     return hash_combine(GCR->getOpcode(), GCR->getOperand(0),
466                         GCR->getBasePtr(), GCR->getDerivedPtr());
467 
468   // Hash all of the operands as pointers and mix in the opcode.
469   return hash_combine(
470       Inst->getOpcode(),
471       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
472 }
473 
474 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
475   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
476   if (LHS.isSentinel() || RHS.isSentinel())
477     return LHSI == RHSI;
478 
479   // See comment above in `getHashValue()`.
480   if (const GCRelocateInst *GCR1 = dyn_cast<GCRelocateInst>(LHSI))
481     if (const GCRelocateInst *GCR2 = dyn_cast<GCRelocateInst>(RHSI))
482       return GCR1->getOperand(0) == GCR2->getOperand(0) &&
483              GCR1->getBasePtr() == GCR2->getBasePtr() &&
484              GCR1->getDerivedPtr() == GCR2->getDerivedPtr();
485 
486   return LHSI->isIdenticalTo(RHSI);
487 }
488 
489 //===----------------------------------------------------------------------===//
490 // EarlyCSE implementation
491 //===----------------------------------------------------------------------===//
492 
493 namespace {
494 
495 /// A simple and fast domtree-based CSE pass.
496 ///
497 /// This pass does a simple depth-first walk over the dominator tree,
498 /// eliminating trivially redundant instructions and using instsimplify to
499 /// canonicalize things as it goes. It is intended to be fast and catch obvious
500 /// cases so that instcombine and other passes are more effective. It is
501 /// expected that a later pass of GVN will catch the interesting/hard cases.
502 class EarlyCSE {
503 public:
504   const TargetLibraryInfo &TLI;
505   const TargetTransformInfo &TTI;
506   DominatorTree &DT;
507   AssumptionCache &AC;
508   const SimplifyQuery SQ;
509   MemorySSA *MSSA;
510   std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
511 
512   using AllocatorTy =
513       RecyclingAllocator<BumpPtrAllocator,
514                          ScopedHashTableVal<SimpleValue, Value *>>;
515   using ScopedHTType =
516       ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
517                       AllocatorTy>;
518 
519   /// A scoped hash table of the current values of all of our simple
520   /// scalar expressions.
521   ///
522   /// As we walk down the domtree, we look to see if instructions are in this:
523   /// if so, we replace them with what we find, otherwise we insert them so
524   /// that dominated values can succeed in their lookup.
525   ScopedHTType AvailableValues;
526 
527   /// A scoped hash table of the current values of previously encountered
528   /// memory locations.
529   ///
530   /// This allows us to get efficient access to dominating loads or stores when
531   /// we have a fully redundant load.  In addition to the most recent load, we
532   /// keep track of a generation count of the read, which is compared against
533   /// the current generation count.  The current generation count is incremented
534   /// after every possibly writing memory operation, which ensures that we only
535   /// CSE loads with other loads that have no intervening store.  Ordering
536   /// events (such as fences or atomic instructions) increment the generation
537   /// count as well; essentially, we model these as writes to all possible
538   /// locations.  Note that atomic and/or volatile loads and stores can be
539   /// present the table; it is the responsibility of the consumer to inspect
540   /// the atomicity/volatility if needed.
541   struct LoadValue {
542     Instruction *DefInst = nullptr;
543     unsigned Generation = 0;
544     int MatchingId = -1;
545     bool IsAtomic = false;
546 
547     LoadValue() = default;
548     LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId,
549               bool IsAtomic)
550         : DefInst(Inst), Generation(Generation), MatchingId(MatchingId),
551           IsAtomic(IsAtomic) {}
552   };
553 
554   using LoadMapAllocator =
555       RecyclingAllocator<BumpPtrAllocator,
556                          ScopedHashTableVal<Value *, LoadValue>>;
557   using LoadHTType =
558       ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>,
559                       LoadMapAllocator>;
560 
561   LoadHTType AvailableLoads;
562 
563   // A scoped hash table mapping memory locations (represented as typed
564   // addresses) to generation numbers at which that memory location became
565   // (henceforth indefinitely) invariant.
566   using InvariantMapAllocator =
567       RecyclingAllocator<BumpPtrAllocator,
568                          ScopedHashTableVal<MemoryLocation, unsigned>>;
569   using InvariantHTType =
570       ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>,
571                       InvariantMapAllocator>;
572   InvariantHTType AvailableInvariants;
573 
574   /// A scoped hash table of the current values of read-only call
575   /// values.
576   ///
577   /// It uses the same generation count as loads.
578   using CallHTType =
579       ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>;
580   CallHTType AvailableCalls;
581 
582   /// This is the current generation of the memory value.
583   unsigned CurrentGeneration = 0;
584 
585   /// Set up the EarlyCSE runner for a particular function.
586   EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI,
587            const TargetTransformInfo &TTI, DominatorTree &DT,
588            AssumptionCache &AC, MemorySSA *MSSA)
589       : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA),
590         MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {}
591 
592   bool run();
593 
594 private:
595   unsigned ClobberCounter = 0;
596   // Almost a POD, but needs to call the constructors for the scoped hash
597   // tables so that a new scope gets pushed on. These are RAII so that the
598   // scope gets popped when the NodeScope is destroyed.
599   class NodeScope {
600   public:
601     NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
602               InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls)
603       : Scope(AvailableValues), LoadScope(AvailableLoads),
604         InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {}
605     NodeScope(const NodeScope &) = delete;
606     NodeScope &operator=(const NodeScope &) = delete;
607 
608   private:
609     ScopedHTType::ScopeTy Scope;
610     LoadHTType::ScopeTy LoadScope;
611     InvariantHTType::ScopeTy InvariantScope;
612     CallHTType::ScopeTy CallScope;
613   };
614 
615   // Contains all the needed information to create a stack for doing a depth
616   // first traversal of the tree. This includes scopes for values, loads, and
617   // calls as well as the generation. There is a child iterator so that the
618   // children do not need to be store separately.
619   class StackNode {
620   public:
621     StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
622               InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls,
623               unsigned cg, DomTreeNode *n, DomTreeNode::const_iterator child,
624               DomTreeNode::const_iterator end)
625         : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
626           EndIter(end),
627           Scopes(AvailableValues, AvailableLoads, AvailableInvariants,
628                  AvailableCalls)
629           {}
630     StackNode(const StackNode &) = delete;
631     StackNode &operator=(const StackNode &) = delete;
632 
633     // Accessors.
634     unsigned currentGeneration() { return CurrentGeneration; }
635     unsigned childGeneration() { return ChildGeneration; }
636     void childGeneration(unsigned generation) { ChildGeneration = generation; }
637     DomTreeNode *node() { return Node; }
638     DomTreeNode::const_iterator childIter() { return ChildIter; }
639 
640     DomTreeNode *nextChild() {
641       DomTreeNode *child = *ChildIter;
642       ++ChildIter;
643       return child;
644     }
645 
646     DomTreeNode::const_iterator end() { return EndIter; }
647     bool isProcessed() { return Processed; }
648     void process() { Processed = true; }
649 
650   private:
651     unsigned CurrentGeneration;
652     unsigned ChildGeneration;
653     DomTreeNode *Node;
654     DomTreeNode::const_iterator ChildIter;
655     DomTreeNode::const_iterator EndIter;
656     NodeScope Scopes;
657     bool Processed = false;
658   };
659 
660   /// Wrapper class to handle memory instructions, including loads,
661   /// stores and intrinsic loads and stores defined by the target.
662   class ParseMemoryInst {
663   public:
664     ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
665       : Inst(Inst) {
666       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
667         if (TTI.getTgtMemIntrinsic(II, Info))
668           IsTargetMemInst = true;
669     }
670 
671     bool isLoad() const {
672       if (IsTargetMemInst) return Info.ReadMem;
673       return isa<LoadInst>(Inst);
674     }
675 
676     bool isStore() const {
677       if (IsTargetMemInst) return Info.WriteMem;
678       return isa<StoreInst>(Inst);
679     }
680 
681     bool isAtomic() const {
682       if (IsTargetMemInst)
683         return Info.Ordering != AtomicOrdering::NotAtomic;
684       return Inst->isAtomic();
685     }
686 
687     bool isUnordered() const {
688       if (IsTargetMemInst)
689         return Info.isUnordered();
690 
691       if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
692         return LI->isUnordered();
693       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
694         return SI->isUnordered();
695       }
696       // Conservative answer
697       return !Inst->isAtomic();
698     }
699 
700     bool isVolatile() const {
701       if (IsTargetMemInst)
702         return Info.IsVolatile;
703 
704       if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
705         return LI->isVolatile();
706       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
707         return SI->isVolatile();
708       }
709       // Conservative answer
710       return true;
711     }
712 
713     bool isInvariantLoad() const {
714       if (auto *LI = dyn_cast<LoadInst>(Inst))
715         return LI->hasMetadata(LLVMContext::MD_invariant_load);
716       return false;
717     }
718 
719     bool isMatchingMemLoc(const ParseMemoryInst &Inst) const {
720       return (getPointerOperand() == Inst.getPointerOperand() &&
721               getMatchingId() == Inst.getMatchingId());
722     }
723 
724     bool isValid() const { return getPointerOperand() != nullptr; }
725 
726     // For regular (non-intrinsic) loads/stores, this is set to -1. For
727     // intrinsic loads/stores, the id is retrieved from the corresponding
728     // field in the MemIntrinsicInfo structure.  That field contains
729     // non-negative values only.
730     int getMatchingId() const {
731       if (IsTargetMemInst) return Info.MatchingId;
732       return -1;
733     }
734 
735     Value *getPointerOperand() const {
736       if (IsTargetMemInst) return Info.PtrVal;
737       return getLoadStorePointerOperand(Inst);
738     }
739 
740     bool mayReadFromMemory() const {
741       if (IsTargetMemInst) return Info.ReadMem;
742       return Inst->mayReadFromMemory();
743     }
744 
745     bool mayWriteToMemory() const {
746       if (IsTargetMemInst) return Info.WriteMem;
747       return Inst->mayWriteToMemory();
748     }
749 
750   private:
751     bool IsTargetMemInst = false;
752     MemIntrinsicInfo Info;
753     Instruction *Inst;
754   };
755 
756   bool processNode(DomTreeNode *Node);
757 
758   bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI,
759                              const BasicBlock *BB, const BasicBlock *Pred);
760 
761   Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
762     if (auto *LI = dyn_cast<LoadInst>(Inst))
763       return LI;
764     if (auto *SI = dyn_cast<StoreInst>(Inst))
765       return SI->getValueOperand();
766     assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
767     return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst),
768                                                  ExpectedType);
769   }
770 
771   /// Return true if the instruction is known to only operate on memory
772   /// provably invariant in the given "generation".
773   bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt);
774 
775   bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration,
776                            Instruction *EarlierInst, Instruction *LaterInst);
777 
778   void removeMSSA(Instruction &Inst) {
779     if (!MSSA)
780       return;
781     if (VerifyMemorySSA)
782       MSSA->verifyMemorySSA();
783     // Removing a store here can leave MemorySSA in an unoptimized state by
784     // creating MemoryPhis that have identical arguments and by creating
785     // MemoryUses whose defining access is not an actual clobber. The phi case
786     // is handled by MemorySSA when passing OptimizePhis = true to
787     // removeMemoryAccess.  The non-optimized MemoryUse case is lazily updated
788     // by MemorySSA's getClobberingMemoryAccess.
789     MSSAUpdater->removeMemoryAccess(&Inst, true);
790   }
791 };
792 
793 } // end anonymous namespace
794 
795 /// Determine if the memory referenced by LaterInst is from the same heap
796 /// version as EarlierInst.
797 /// This is currently called in two scenarios:
798 ///
799 ///   load p
800 ///   ...
801 ///   load p
802 ///
803 /// and
804 ///
805 ///   x = load p
806 ///   ...
807 ///   store x, p
808 ///
809 /// in both cases we want to verify that there are no possible writes to the
810 /// memory referenced by p between the earlier and later instruction.
811 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration,
812                                    unsigned LaterGeneration,
813                                    Instruction *EarlierInst,
814                                    Instruction *LaterInst) {
815   // Check the simple memory generation tracking first.
816   if (EarlierGeneration == LaterGeneration)
817     return true;
818 
819   if (!MSSA)
820     return false;
821 
822   // If MemorySSA has determined that one of EarlierInst or LaterInst does not
823   // read/write memory, then we can safely return true here.
824   // FIXME: We could be more aggressive when checking doesNotAccessMemory(),
825   // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass
826   // by also checking the MemorySSA MemoryAccess on the instruction.  Initial
827   // experiments suggest this isn't worthwhile, at least for C/C++ code compiled
828   // with the default optimization pipeline.
829   auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst);
830   if (!EarlierMA)
831     return true;
832   auto *LaterMA = MSSA->getMemoryAccess(LaterInst);
833   if (!LaterMA)
834     return true;
835 
836   // Since we know LaterDef dominates LaterInst and EarlierInst dominates
837   // LaterInst, if LaterDef dominates EarlierInst then it can't occur between
838   // EarlierInst and LaterInst and neither can any other write that potentially
839   // clobbers LaterInst.
840   MemoryAccess *LaterDef;
841   if (ClobberCounter < EarlyCSEMssaOptCap) {
842     LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst);
843     ClobberCounter++;
844   } else
845     LaterDef = LaterMA->getDefiningAccess();
846 
847   return MSSA->dominates(LaterDef, EarlierMA);
848 }
849 
850 bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) {
851   // A location loaded from with an invariant_load is assumed to *never* change
852   // within the visible scope of the compilation.
853   if (auto *LI = dyn_cast<LoadInst>(I))
854     if (LI->hasMetadata(LLVMContext::MD_invariant_load))
855       return true;
856 
857   auto MemLocOpt = MemoryLocation::getOrNone(I);
858   if (!MemLocOpt)
859     // "target" intrinsic forms of loads aren't currently known to
860     // MemoryLocation::get.  TODO
861     return false;
862   MemoryLocation MemLoc = *MemLocOpt;
863   if (!AvailableInvariants.count(MemLoc))
864     return false;
865 
866   // Is the generation at which this became invariant older than the
867   // current one?
868   return AvailableInvariants.lookup(MemLoc) <= GenAt;
869 }
870 
871 bool EarlyCSE::handleBranchCondition(Instruction *CondInst,
872                                      const BranchInst *BI, const BasicBlock *BB,
873                                      const BasicBlock *Pred) {
874   assert(BI->isConditional() && "Should be a conditional branch!");
875   assert(BI->getCondition() == CondInst && "Wrong condition?");
876   assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB);
877   auto *TorF = (BI->getSuccessor(0) == BB)
878                    ? ConstantInt::getTrue(BB->getContext())
879                    : ConstantInt::getFalse(BB->getContext());
880   auto MatchBinOp = [](Instruction *I, unsigned Opcode) {
881     if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(I))
882       return BOp->getOpcode() == Opcode;
883     return false;
884   };
885   // If the condition is AND operation, we can propagate its operands into the
886   // true branch. If it is OR operation, we can propagate them into the false
887   // branch.
888   unsigned PropagateOpcode =
889       (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or;
890 
891   bool MadeChanges = false;
892   SmallVector<Instruction *, 4> WorkList;
893   SmallPtrSet<Instruction *, 4> Visited;
894   WorkList.push_back(CondInst);
895   while (!WorkList.empty()) {
896     Instruction *Curr = WorkList.pop_back_val();
897 
898     AvailableValues.insert(Curr, TorF);
899     LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '"
900                       << Curr->getName() << "' as " << *TorF << " in "
901                       << BB->getName() << "\n");
902     if (!DebugCounter::shouldExecute(CSECounter)) {
903       LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
904     } else {
905       // Replace all dominated uses with the known value.
906       if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT,
907                                                     BasicBlockEdge(Pred, BB))) {
908         NumCSECVP += Count;
909         MadeChanges = true;
910       }
911     }
912 
913     if (MatchBinOp(Curr, PropagateOpcode))
914       for (auto &Op : cast<BinaryOperator>(Curr)->operands())
915         if (Instruction *OPI = dyn_cast<Instruction>(Op))
916           if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second)
917             WorkList.push_back(OPI);
918   }
919 
920   return MadeChanges;
921 }
922 
923 bool EarlyCSE::processNode(DomTreeNode *Node) {
924   bool Changed = false;
925   BasicBlock *BB = Node->getBlock();
926 
927   // If this block has a single predecessor, then the predecessor is the parent
928   // of the domtree node and all of the live out memory values are still current
929   // in this block.  If this block has multiple predecessors, then they could
930   // have invalidated the live-out memory values of our parent value.  For now,
931   // just be conservative and invalidate memory if this block has multiple
932   // predecessors.
933   if (!BB->getSinglePredecessor())
934     ++CurrentGeneration;
935 
936   // If this node has a single predecessor which ends in a conditional branch,
937   // we can infer the value of the branch condition given that we took this
938   // path.  We need the single predecessor to ensure there's not another path
939   // which reaches this block where the condition might hold a different
940   // value.  Since we're adding this to the scoped hash table (like any other
941   // def), it will have been popped if we encounter a future merge block.
942   if (BasicBlock *Pred = BB->getSinglePredecessor()) {
943     auto *BI = dyn_cast<BranchInst>(Pred->getTerminator());
944     if (BI && BI->isConditional()) {
945       auto *CondInst = dyn_cast<Instruction>(BI->getCondition());
946       if (CondInst && SimpleValue::canHandle(CondInst))
947         Changed |= handleBranchCondition(CondInst, BI, BB, Pred);
948     }
949   }
950 
951   /// LastStore - Keep track of the last non-volatile store that we saw... for
952   /// as long as there in no instruction that reads memory.  If we see a store
953   /// to the same location, we delete the dead store.  This zaps trivial dead
954   /// stores which can occur in bitfield code among other things.
955   Instruction *LastStore = nullptr;
956 
957   // See if any instructions in the block can be eliminated.  If so, do it.  If
958   // not, add them to AvailableValues.
959   for (Instruction &Inst : make_early_inc_range(BB->getInstList())) {
960     // Dead instructions should just be removed.
961     if (isInstructionTriviallyDead(&Inst, &TLI)) {
962       LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << Inst << '\n');
963       if (!DebugCounter::shouldExecute(CSECounter)) {
964         LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
965         continue;
966       }
967 
968       salvageKnowledge(&Inst, &AC);
969       salvageDebugInfo(Inst);
970       removeMSSA(Inst);
971       Inst.eraseFromParent();
972       Changed = true;
973       ++NumSimplify;
974       continue;
975     }
976 
977     // Skip assume intrinsics, they don't really have side effects (although
978     // they're marked as such to ensure preservation of control dependencies),
979     // and this pass will not bother with its removal. However, we should mark
980     // its condition as true for all dominated blocks.
981     if (match(&Inst, m_Intrinsic<Intrinsic::assume>())) {
982       auto *CondI =
983           dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0));
984       if (CondI && SimpleValue::canHandle(CondI)) {
985         LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << Inst
986                           << '\n');
987         AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
988       } else
989         LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << Inst << '\n');
990       continue;
991     }
992 
993     // Skip sideeffect intrinsics, for the same reason as assume intrinsics.
994     if (match(&Inst, m_Intrinsic<Intrinsic::sideeffect>())) {
995       LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << Inst << '\n');
996       continue;
997     }
998 
999     // We can skip all invariant.start intrinsics since they only read memory,
1000     // and we can forward values across it. For invariant starts without
1001     // invariant ends, we can use the fact that the invariantness never ends to
1002     // start a scope in the current generaton which is true for all future
1003     // generations.  Also, we dont need to consume the last store since the
1004     // semantics of invariant.start allow us to perform   DSE of the last
1005     // store, if there was a store following invariant.start. Consider:
1006     //
1007     // store 30, i8* p
1008     // invariant.start(p)
1009     // store 40, i8* p
1010     // We can DSE the store to 30, since the store 40 to invariant location p
1011     // causes undefined behaviour.
1012     if (match(&Inst, m_Intrinsic<Intrinsic::invariant_start>())) {
1013       // If there are any uses, the scope might end.
1014       if (!Inst.use_empty())
1015         continue;
1016       MemoryLocation MemLoc =
1017           MemoryLocation::getForArgument(&cast<CallInst>(Inst), 1, TLI);
1018       // Don't start a scope if we already have a better one pushed
1019       if (!AvailableInvariants.count(MemLoc))
1020         AvailableInvariants.insert(MemLoc, CurrentGeneration);
1021       continue;
1022     }
1023 
1024     if (isGuard(&Inst)) {
1025       if (auto *CondI =
1026               dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0))) {
1027         if (SimpleValue::canHandle(CondI)) {
1028           // Do we already know the actual value of this condition?
1029           if (auto *KnownCond = AvailableValues.lookup(CondI)) {
1030             // Is the condition known to be true?
1031             if (isa<ConstantInt>(KnownCond) &&
1032                 cast<ConstantInt>(KnownCond)->isOne()) {
1033               LLVM_DEBUG(dbgs()
1034                          << "EarlyCSE removing guard: " << Inst << '\n');
1035               salvageKnowledge(&Inst, &AC);
1036               removeMSSA(Inst);
1037               Inst.eraseFromParent();
1038               Changed = true;
1039               continue;
1040             } else
1041               // Use the known value if it wasn't true.
1042               cast<CallInst>(Inst).setArgOperand(0, KnownCond);
1043           }
1044           // The condition we're on guarding here is true for all dominated
1045           // locations.
1046           AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
1047         }
1048       }
1049 
1050       // Guard intrinsics read all memory, but don't write any memory.
1051       // Accordingly, don't update the generation but consume the last store (to
1052       // avoid an incorrect DSE).
1053       LastStore = nullptr;
1054       continue;
1055     }
1056 
1057     // If the instruction can be simplified (e.g. X+0 = X) then replace it with
1058     // its simpler value.
1059     if (Value *V = SimplifyInstruction(&Inst, SQ)) {
1060       LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << Inst << "  to: " << *V
1061                         << '\n');
1062       if (!DebugCounter::shouldExecute(CSECounter)) {
1063         LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1064       } else {
1065         bool Killed = false;
1066         if (!Inst.use_empty()) {
1067           Inst.replaceAllUsesWith(V);
1068           Changed = true;
1069         }
1070         if (isInstructionTriviallyDead(&Inst, &TLI)) {
1071           salvageKnowledge(&Inst, &AC);
1072           removeMSSA(Inst);
1073           Inst.eraseFromParent();
1074           Changed = true;
1075           Killed = true;
1076         }
1077         if (Changed)
1078           ++NumSimplify;
1079         if (Killed)
1080           continue;
1081       }
1082     }
1083 
1084     // If this is a simple instruction that we can value number, process it.
1085     if (SimpleValue::canHandle(&Inst)) {
1086       // See if the instruction has an available value.  If so, use it.
1087       if (Value *V = AvailableValues.lookup(&Inst)) {
1088         LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << Inst << "  to: " << *V
1089                           << '\n');
1090         if (!DebugCounter::shouldExecute(CSECounter)) {
1091           LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1092           continue;
1093         }
1094         if (auto *I = dyn_cast<Instruction>(V))
1095           I->andIRFlags(&Inst);
1096         Inst.replaceAllUsesWith(V);
1097         salvageKnowledge(&Inst, &AC);
1098         removeMSSA(Inst);
1099         Inst.eraseFromParent();
1100         Changed = true;
1101         ++NumCSE;
1102         continue;
1103       }
1104 
1105       // Otherwise, just remember that this value is available.
1106       AvailableValues.insert(&Inst, &Inst);
1107       continue;
1108     }
1109 
1110     ParseMemoryInst MemInst(&Inst, TTI);
1111     // If this is a non-volatile load, process it.
1112     if (MemInst.isValid() && MemInst.isLoad()) {
1113       // (conservatively) we can't peak past the ordering implied by this
1114       // operation, but we can add this load to our set of available values
1115       if (MemInst.isVolatile() || !MemInst.isUnordered()) {
1116         LastStore = nullptr;
1117         ++CurrentGeneration;
1118       }
1119 
1120       if (MemInst.isInvariantLoad()) {
1121         // If we pass an invariant load, we know that memory location is
1122         // indefinitely constant from the moment of first dereferenceability.
1123         // We conservatively treat the invariant_load as that moment.  If we
1124         // pass a invariant load after already establishing a scope, don't
1125         // restart it since we want to preserve the earliest point seen.
1126         auto MemLoc = MemoryLocation::get(&Inst);
1127         if (!AvailableInvariants.count(MemLoc))
1128           AvailableInvariants.insert(MemLoc, CurrentGeneration);
1129       }
1130 
1131       // If we have an available version of this load, and if it is the right
1132       // generation or the load is known to be from an invariant location,
1133       // replace this instruction.
1134       //
1135       // If either the dominating load or the current load are invariant, then
1136       // we can assume the current load loads the same value as the dominating
1137       // load.
1138       LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
1139       if (InVal.DefInst != nullptr &&
1140           InVal.MatchingId == MemInst.getMatchingId() &&
1141           // We don't yet handle removing loads with ordering of any kind.
1142           !MemInst.isVolatile() && MemInst.isUnordered() &&
1143           // We can't replace an atomic load with one which isn't also atomic.
1144           InVal.IsAtomic >= MemInst.isAtomic() &&
1145           (isOperatingOnInvariantMemAt(&Inst, InVal.Generation) ||
1146            isSameMemGeneration(InVal.Generation, CurrentGeneration,
1147                                InVal.DefInst, &Inst))) {
1148         Value *Op = getOrCreateResult(InVal.DefInst, Inst.getType());
1149         if (Op != nullptr) {
1150           LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << Inst
1151                             << "  to: " << *InVal.DefInst << '\n');
1152           if (!DebugCounter::shouldExecute(CSECounter)) {
1153             LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1154             continue;
1155           }
1156           if (!Inst.use_empty())
1157             Inst.replaceAllUsesWith(Op);
1158           salvageKnowledge(&Inst, &AC);
1159           removeMSSA(Inst);
1160           Inst.eraseFromParent();
1161           Changed = true;
1162           ++NumCSELoad;
1163           continue;
1164         }
1165       }
1166 
1167       // Otherwise, remember that we have this instruction.
1168       AvailableLoads.insert(MemInst.getPointerOperand(),
1169                             LoadValue(&Inst, CurrentGeneration,
1170                                       MemInst.getMatchingId(),
1171                                       MemInst.isAtomic()));
1172       LastStore = nullptr;
1173       continue;
1174     }
1175 
1176     // If this instruction may read from memory or throw (and potentially read
1177     // from memory in the exception handler), forget LastStore.  Load/store
1178     // intrinsics will indicate both a read and a write to memory.  The target
1179     // may override this (e.g. so that a store intrinsic does not read from
1180     // memory, and thus will be treated the same as a regular store for
1181     // commoning purposes).
1182     if ((Inst.mayReadFromMemory() || Inst.mayThrow()) &&
1183         !(MemInst.isValid() && !MemInst.mayReadFromMemory()))
1184       LastStore = nullptr;
1185 
1186     // If this is a read-only call, process it.
1187     if (CallValue::canHandle(&Inst)) {
1188       // If we have an available version of this call, and if it is the right
1189       // generation, replace this instruction.
1190       std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(&Inst);
1191       if (InVal.first != nullptr &&
1192           isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first,
1193                               &Inst)) {
1194         LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << Inst
1195                           << "  to: " << *InVal.first << '\n');
1196         if (!DebugCounter::shouldExecute(CSECounter)) {
1197           LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1198           continue;
1199         }
1200         if (!Inst.use_empty())
1201           Inst.replaceAllUsesWith(InVal.first);
1202         salvageKnowledge(&Inst, &AC);
1203         removeMSSA(Inst);
1204         Inst.eraseFromParent();
1205         Changed = true;
1206         ++NumCSECall;
1207         continue;
1208       }
1209 
1210       // Otherwise, remember that we have this instruction.
1211       AvailableCalls.insert(&Inst, std::make_pair(&Inst, CurrentGeneration));
1212       continue;
1213     }
1214 
1215     // A release fence requires that all stores complete before it, but does
1216     // not prevent the reordering of following loads 'before' the fence.  As a
1217     // result, we don't need to consider it as writing to memory and don't need
1218     // to advance the generation.  We do need to prevent DSE across the fence,
1219     // but that's handled above.
1220     if (auto *FI = dyn_cast<FenceInst>(&Inst))
1221       if (FI->getOrdering() == AtomicOrdering::Release) {
1222         assert(Inst.mayReadFromMemory() && "relied on to prevent DSE above");
1223         continue;
1224       }
1225 
1226     // write back DSE - If we write back the same value we just loaded from
1227     // the same location and haven't passed any intervening writes or ordering
1228     // operations, we can remove the write.  The primary benefit is in allowing
1229     // the available load table to remain valid and value forward past where
1230     // the store originally was.
1231     if (MemInst.isValid() && MemInst.isStore()) {
1232       LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
1233       if (InVal.DefInst &&
1234           InVal.DefInst == getOrCreateResult(&Inst, InVal.DefInst->getType()) &&
1235           InVal.MatchingId == MemInst.getMatchingId() &&
1236           // We don't yet handle removing stores with ordering of any kind.
1237           !MemInst.isVolatile() && MemInst.isUnordered() &&
1238           (isOperatingOnInvariantMemAt(&Inst, InVal.Generation) ||
1239            isSameMemGeneration(InVal.Generation, CurrentGeneration,
1240                                InVal.DefInst, &Inst))) {
1241         // It is okay to have a LastStore to a different pointer here if MemorySSA
1242         // tells us that the load and store are from the same memory generation.
1243         // In that case, LastStore should keep its present value since we're
1244         // removing the current store.
1245         assert((!LastStore ||
1246                 ParseMemoryInst(LastStore, TTI).getPointerOperand() ==
1247                     MemInst.getPointerOperand() ||
1248                 MSSA) &&
1249                "can't have an intervening store if not using MemorySSA!");
1250         LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << Inst << '\n');
1251         if (!DebugCounter::shouldExecute(CSECounter)) {
1252           LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1253           continue;
1254         }
1255         salvageKnowledge(&Inst, &AC);
1256         removeMSSA(Inst);
1257         Inst.eraseFromParent();
1258         Changed = true;
1259         ++NumDSE;
1260         // We can avoid incrementing the generation count since we were able
1261         // to eliminate this store.
1262         continue;
1263       }
1264     }
1265 
1266     // Okay, this isn't something we can CSE at all.  Check to see if it is
1267     // something that could modify memory.  If so, our available memory values
1268     // cannot be used so bump the generation count.
1269     if (Inst.mayWriteToMemory()) {
1270       ++CurrentGeneration;
1271 
1272       if (MemInst.isValid() && MemInst.isStore()) {
1273         // We do a trivial form of DSE if there are two stores to the same
1274         // location with no intervening loads.  Delete the earlier store.
1275         // At the moment, we don't remove ordered stores, but do remove
1276         // unordered atomic stores.  There's no special requirement (for
1277         // unordered atomics) about removing atomic stores only in favor of
1278         // other atomic stores since we were going to execute the non-atomic
1279         // one anyway and the atomic one might never have become visible.
1280         if (LastStore) {
1281           ParseMemoryInst LastStoreMemInst(LastStore, TTI);
1282           assert(LastStoreMemInst.isUnordered() &&
1283                  !LastStoreMemInst.isVolatile() &&
1284                  "Violated invariant");
1285           if (LastStoreMemInst.isMatchingMemLoc(MemInst)) {
1286             LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
1287                               << "  due to: " << Inst << '\n');
1288             if (!DebugCounter::shouldExecute(CSECounter)) {
1289               LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1290             } else {
1291               salvageKnowledge(&Inst, &AC);
1292               removeMSSA(*LastStore);
1293               LastStore->eraseFromParent();
1294               Changed = true;
1295               ++NumDSE;
1296               LastStore = nullptr;
1297             }
1298           }
1299           // fallthrough - we can exploit information about this store
1300         }
1301 
1302         // Okay, we just invalidated anything we knew about loaded values.  Try
1303         // to salvage *something* by remembering that the stored value is a live
1304         // version of the pointer.  It is safe to forward from volatile stores
1305         // to non-volatile loads, so we don't have to check for volatility of
1306         // the store.
1307         AvailableLoads.insert(MemInst.getPointerOperand(),
1308                               LoadValue(&Inst, CurrentGeneration,
1309                                         MemInst.getMatchingId(),
1310                                         MemInst.isAtomic()));
1311 
1312         // Remember that this was the last unordered store we saw for DSE. We
1313         // don't yet handle DSE on ordered or volatile stores since we don't
1314         // have a good way to model the ordering requirement for following
1315         // passes  once the store is removed.  We could insert a fence, but
1316         // since fences are slightly stronger than stores in their ordering,
1317         // it's not clear this is a profitable transform. Another option would
1318         // be to merge the ordering with that of the post dominating store.
1319         if (MemInst.isUnordered() && !MemInst.isVolatile())
1320           LastStore = &Inst;
1321         else
1322           LastStore = nullptr;
1323       }
1324     }
1325   }
1326 
1327   return Changed;
1328 }
1329 
1330 bool EarlyCSE::run() {
1331   // Note, deque is being used here because there is significant performance
1332   // gains over vector when the container becomes very large due to the
1333   // specific access patterns. For more information see the mailing list
1334   // discussion on this:
1335   // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
1336   std::deque<StackNode *> nodesToProcess;
1337 
1338   bool Changed = false;
1339 
1340   // Process the root node.
1341   nodesToProcess.push_back(new StackNode(
1342       AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls,
1343       CurrentGeneration, DT.getRootNode(),
1344       DT.getRootNode()->begin(), DT.getRootNode()->end()));
1345 
1346   assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it.");
1347 
1348   // Process the stack.
1349   while (!nodesToProcess.empty()) {
1350     // Grab the first item off the stack. Set the current generation, remove
1351     // the node from the stack, and process it.
1352     StackNode *NodeToProcess = nodesToProcess.back();
1353 
1354     // Initialize class members.
1355     CurrentGeneration = NodeToProcess->currentGeneration();
1356 
1357     // Check if the node needs to be processed.
1358     if (!NodeToProcess->isProcessed()) {
1359       // Process the node.
1360       Changed |= processNode(NodeToProcess->node());
1361       NodeToProcess->childGeneration(CurrentGeneration);
1362       NodeToProcess->process();
1363     } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
1364       // Push the next child onto the stack.
1365       DomTreeNode *child = NodeToProcess->nextChild();
1366       nodesToProcess.push_back(
1367           new StackNode(AvailableValues, AvailableLoads, AvailableInvariants,
1368                         AvailableCalls, NodeToProcess->childGeneration(),
1369                         child, child->begin(), child->end()));
1370     } else {
1371       // It has been processed, and there are no more children to process,
1372       // so delete it and pop it off the stack.
1373       delete NodeToProcess;
1374       nodesToProcess.pop_back();
1375     }
1376   } // while (!nodes...)
1377 
1378   return Changed;
1379 }
1380 
1381 PreservedAnalyses EarlyCSEPass::run(Function &F,
1382                                     FunctionAnalysisManager &AM) {
1383   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1384   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1385   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1386   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1387   auto *MSSA =
1388       UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr;
1389 
1390   EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
1391 
1392   if (!CSE.run())
1393     return PreservedAnalyses::all();
1394 
1395   PreservedAnalyses PA;
1396   PA.preserveSet<CFGAnalyses>();
1397   PA.preserve<GlobalsAA>();
1398   if (UseMemorySSA)
1399     PA.preserve<MemorySSAAnalysis>();
1400   return PA;
1401 }
1402 
1403 namespace {
1404 
1405 /// A simple and fast domtree-based CSE pass.
1406 ///
1407 /// This pass does a simple depth-first walk over the dominator tree,
1408 /// eliminating trivially redundant instructions and using instsimplify to
1409 /// canonicalize things as it goes. It is intended to be fast and catch obvious
1410 /// cases so that instcombine and other passes are more effective. It is
1411 /// expected that a later pass of GVN will catch the interesting/hard cases.
1412 template<bool UseMemorySSA>
1413 class EarlyCSELegacyCommonPass : public FunctionPass {
1414 public:
1415   static char ID;
1416 
1417   EarlyCSELegacyCommonPass() : FunctionPass(ID) {
1418     if (UseMemorySSA)
1419       initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry());
1420     else
1421       initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
1422   }
1423 
1424   bool runOnFunction(Function &F) override {
1425     if (skipFunction(F))
1426       return false;
1427 
1428     auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1429     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1430     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1431     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1432     auto *MSSA =
1433         UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr;
1434 
1435     EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
1436 
1437     return CSE.run();
1438   }
1439 
1440   void getAnalysisUsage(AnalysisUsage &AU) const override {
1441     AU.addRequired<AssumptionCacheTracker>();
1442     AU.addRequired<DominatorTreeWrapperPass>();
1443     AU.addRequired<TargetLibraryInfoWrapperPass>();
1444     AU.addRequired<TargetTransformInfoWrapperPass>();
1445     if (UseMemorySSA) {
1446       AU.addRequired<MemorySSAWrapperPass>();
1447       AU.addPreserved<MemorySSAWrapperPass>();
1448     }
1449     AU.addPreserved<GlobalsAAWrapperPass>();
1450     AU.addPreserved<AAResultsWrapperPass>();
1451     AU.setPreservesCFG();
1452   }
1453 };
1454 
1455 } // end anonymous namespace
1456 
1457 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>;
1458 
1459 template<>
1460 char EarlyCSELegacyPass::ID = 0;
1461 
1462 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
1463                       false)
1464 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1465 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1466 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1467 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1468 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)
1469 
1470 using EarlyCSEMemSSALegacyPass =
1471     EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>;
1472 
1473 template<>
1474 char EarlyCSEMemSSALegacyPass::ID = 0;
1475 
1476 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) {
1477   if (UseMemorySSA)
1478     return new EarlyCSEMemSSALegacyPass();
1479   else
1480     return new EarlyCSELegacyPass();
1481 }
1482 
1483 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
1484                       "Early CSE w/ MemorySSA", false, false)
1485 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1486 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1487 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1488 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1489 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
1490 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
1491                     "Early CSE w/ MemorySSA", false, false)
1492