1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs global value numbering to eliminate fully redundant
10 // instructions.  It also performs simple dead load elimination.
11 //
12 // Note that this pass does the value numbering itself; it does not use the
13 // ValueNumbering analysis passes.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Scalar/GVN.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DepthFirstIterator.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/MapVector.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Analysis/AliasAnalysis.h"
29 #include "llvm/Analysis/AssumeBundleQueries.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/CFG.h"
32 #include "llvm/Analysis/DomTreeUpdater.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/InstructionPrecedenceTracking.h"
35 #include "llvm/Analysis/InstructionSimplify.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/MemoryBuiltins.h"
38 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
39 #include "llvm/Analysis/MemorySSA.h"
40 #include "llvm/Analysis/MemorySSAUpdater.h"
41 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
42 #include "llvm/Analysis/PHITransAddr.h"
43 #include "llvm/Analysis/TargetLibraryInfo.h"
44 #include "llvm/Analysis/ValueTracking.h"
45 #include "llvm/IR/Attributes.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instruction.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/PassManager.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Use.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/InitializePasses.h"
65 #include "llvm/Pass.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Compiler.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
72 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
73 #include "llvm/Transforms/Utils/Local.h"
74 #include "llvm/Transforms/Utils/SSAUpdater.h"
75 #include "llvm/Transforms/Utils/VNCoercion.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstdint>
79 #include <optional>
80 #include <utility>
81 
82 using namespace llvm;
83 using namespace llvm::gvn;
84 using namespace llvm::VNCoercion;
85 using namespace PatternMatch;
86 
87 #define DEBUG_TYPE "gvn"
88 
89 STATISTIC(NumGVNInstr, "Number of instructions deleted");
90 STATISTIC(NumGVNLoad, "Number of loads deleted");
91 STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
92 STATISTIC(NumGVNBlocks, "Number of blocks merged");
93 STATISTIC(NumGVNSimpl, "Number of instructions simplified");
94 STATISTIC(NumGVNEqProp, "Number of equalities propagated");
95 STATISTIC(NumPRELoad, "Number of loads PRE'd");
96 STATISTIC(NumPRELoopLoad, "Number of loop loads PRE'd");
97 STATISTIC(NumPRELoadMoved2CEPred,
98           "Number of loads moved to predecessor of a critical edge in PRE");
99 
100 STATISTIC(IsValueFullyAvailableInBlockNumSpeculationsMax,
101           "Number of blocks speculated as available in "
102           "IsValueFullyAvailableInBlock(), max");
103 STATISTIC(MaxBBSpeculationCutoffReachedTimes,
104           "Number of times we we reached gvn-max-block-speculations cut-off "
105           "preventing further exploration");
106 
107 static cl::opt<bool> GVNEnablePRE("enable-pre", cl::init(true), cl::Hidden);
108 static cl::opt<bool> GVNEnableLoadPRE("enable-load-pre", cl::init(true));
109 static cl::opt<bool> GVNEnableLoadInLoopPRE("enable-load-in-loop-pre",
110                                             cl::init(true));
111 static cl::opt<bool>
112 GVNEnableSplitBackedgeInLoadPRE("enable-split-backedge-in-load-pre",
113                                 cl::init(false));
114 static cl::opt<bool> GVNEnableMemDep("enable-gvn-memdep", cl::init(true));
115 
116 static cl::opt<uint32_t> MaxNumDeps(
117     "gvn-max-num-deps", cl::Hidden, cl::init(100),
118     cl::desc("Max number of dependences to attempt Load PRE (default = 100)"));
119 
120 // This is based on IsValueFullyAvailableInBlockNumSpeculationsMax stat.
121 static cl::opt<uint32_t> MaxBBSpeculations(
122     "gvn-max-block-speculations", cl::Hidden, cl::init(600),
123     cl::desc("Max number of blocks we're willing to speculate on (and recurse "
124              "into) when deducing if a value is fully available or not in GVN "
125              "(default = 600)"));
126 
127 static cl::opt<uint32_t> MaxNumVisitedInsts(
128     "gvn-max-num-visited-insts", cl::Hidden, cl::init(100),
129     cl::desc("Max number of visited instructions when trying to find "
130              "dominating value of select dependency (default = 100)"));
131 
132 static cl::opt<uint32_t> MaxNumInsnsPerBlock(
133     "gvn-max-num-insns", cl::Hidden, cl::init(100),
134     cl::desc("Max number of instructions to scan in each basic block in GVN "
135              "(default = 100)"));
136 
137 struct llvm::GVNPass::Expression {
138   uint32_t opcode;
139   bool commutative = false;
140   // The type is not necessarily the result type of the expression, it may be
141   // any additional type needed to disambiguate the expression.
142   Type *type = nullptr;
143   SmallVector<uint32_t, 4> varargs;
144 
145   Expression(uint32_t o = ~2U) : opcode(o) {}
146 
147   bool operator==(const Expression &other) const {
148     if (opcode != other.opcode)
149       return false;
150     if (opcode == ~0U || opcode == ~1U)
151       return true;
152     if (type != other.type)
153       return false;
154     if (varargs != other.varargs)
155       return false;
156     return true;
157   }
158 
159   friend hash_code hash_value(const Expression &Value) {
160     return hash_combine(
161         Value.opcode, Value.type,
162         hash_combine_range(Value.varargs.begin(), Value.varargs.end()));
163   }
164 };
165 
166 namespace llvm {
167 
168 template <> struct DenseMapInfo<GVNPass::Expression> {
169   static inline GVNPass::Expression getEmptyKey() { return ~0U; }
170   static inline GVNPass::Expression getTombstoneKey() { return ~1U; }
171 
172   static unsigned getHashValue(const GVNPass::Expression &e) {
173     using llvm::hash_value;
174 
175     return static_cast<unsigned>(hash_value(e));
176   }
177 
178   static bool isEqual(const GVNPass::Expression &LHS,
179                       const GVNPass::Expression &RHS) {
180     return LHS == RHS;
181   }
182 };
183 
184 } // end namespace llvm
185 
186 /// Represents a particular available value that we know how to materialize.
187 /// Materialization of an AvailableValue never fails.  An AvailableValue is
188 /// implicitly associated with a rematerialization point which is the
189 /// location of the instruction from which it was formed.
190 struct llvm::gvn::AvailableValue {
191   enum class ValType {
192     SimpleVal, // A simple offsetted value that is accessed.
193     LoadVal,   // A value produced by a load.
194     MemIntrin, // A memory intrinsic which is loaded from.
195     UndefVal,  // A UndefValue representing a value from dead block (which
196                // is not yet physically removed from the CFG).
197     SelectVal, // A pointer select which is loaded from and for which the load
198                // can be replace by a value select.
199   };
200 
201   /// Val - The value that is live out of the block.
202   Value *Val;
203   /// Kind of the live-out value.
204   ValType Kind;
205 
206   /// Offset - The byte offset in Val that is interesting for the load query.
207   unsigned Offset = 0;
208   /// V1, V2 - The dominating non-clobbered values of SelectVal.
209   Value *V1 = nullptr, *V2 = nullptr;
210 
211   static AvailableValue get(Value *V, unsigned Offset = 0) {
212     AvailableValue Res;
213     Res.Val = V;
214     Res.Kind = ValType::SimpleVal;
215     Res.Offset = Offset;
216     return Res;
217   }
218 
219   static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) {
220     AvailableValue Res;
221     Res.Val = MI;
222     Res.Kind = ValType::MemIntrin;
223     Res.Offset = Offset;
224     return Res;
225   }
226 
227   static AvailableValue getLoad(LoadInst *Load, unsigned Offset = 0) {
228     AvailableValue Res;
229     Res.Val = Load;
230     Res.Kind = ValType::LoadVal;
231     Res.Offset = Offset;
232     return Res;
233   }
234 
235   static AvailableValue getUndef() {
236     AvailableValue Res;
237     Res.Val = nullptr;
238     Res.Kind = ValType::UndefVal;
239     Res.Offset = 0;
240     return Res;
241   }
242 
243   static AvailableValue getSelect(SelectInst *Sel, Value *V1, Value *V2) {
244     AvailableValue Res;
245     Res.Val = Sel;
246     Res.Kind = ValType::SelectVal;
247     Res.Offset = 0;
248     Res.V1 = V1;
249     Res.V2 = V2;
250     return Res;
251   }
252 
253   bool isSimpleValue() const { return Kind == ValType::SimpleVal; }
254   bool isCoercedLoadValue() const { return Kind == ValType::LoadVal; }
255   bool isMemIntrinValue() const { return Kind == ValType::MemIntrin; }
256   bool isUndefValue() const { return Kind == ValType::UndefVal; }
257   bool isSelectValue() const { return Kind == ValType::SelectVal; }
258 
259   Value *getSimpleValue() const {
260     assert(isSimpleValue() && "Wrong accessor");
261     return Val;
262   }
263 
264   LoadInst *getCoercedLoadValue() const {
265     assert(isCoercedLoadValue() && "Wrong accessor");
266     return cast<LoadInst>(Val);
267   }
268 
269   MemIntrinsic *getMemIntrinValue() const {
270     assert(isMemIntrinValue() && "Wrong accessor");
271     return cast<MemIntrinsic>(Val);
272   }
273 
274   SelectInst *getSelectValue() const {
275     assert(isSelectValue() && "Wrong accessor");
276     return cast<SelectInst>(Val);
277   }
278 
279   /// Emit code at the specified insertion point to adjust the value defined
280   /// here to the specified type. This handles various coercion cases.
281   Value *MaterializeAdjustedValue(LoadInst *Load, Instruction *InsertPt,
282                                   GVNPass &gvn) const;
283 };
284 
285 /// Represents an AvailableValue which can be rematerialized at the end of
286 /// the associated BasicBlock.
287 struct llvm::gvn::AvailableValueInBlock {
288   /// BB - The basic block in question.
289   BasicBlock *BB = nullptr;
290 
291   /// AV - The actual available value
292   AvailableValue AV;
293 
294   static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) {
295     AvailableValueInBlock Res;
296     Res.BB = BB;
297     Res.AV = std::move(AV);
298     return Res;
299   }
300 
301   static AvailableValueInBlock get(BasicBlock *BB, Value *V,
302                                    unsigned Offset = 0) {
303     return get(BB, AvailableValue::get(V, Offset));
304   }
305 
306   static AvailableValueInBlock getUndef(BasicBlock *BB) {
307     return get(BB, AvailableValue::getUndef());
308   }
309 
310   static AvailableValueInBlock getSelect(BasicBlock *BB, SelectInst *Sel,
311                                          Value *V1, Value *V2) {
312     return get(BB, AvailableValue::getSelect(Sel, V1, V2));
313   }
314 
315   /// Emit code at the end of this block to adjust the value defined here to
316   /// the specified type. This handles various coercion cases.
317   Value *MaterializeAdjustedValue(LoadInst *Load, GVNPass &gvn) const {
318     return AV.MaterializeAdjustedValue(Load, BB->getTerminator(), gvn);
319   }
320 };
321 
322 //===----------------------------------------------------------------------===//
323 //                     ValueTable Internal Functions
324 //===----------------------------------------------------------------------===//
325 
326 GVNPass::Expression GVNPass::ValueTable::createExpr(Instruction *I) {
327   Expression e;
328   e.type = I->getType();
329   e.opcode = I->getOpcode();
330   if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(I)) {
331     // gc.relocate is 'special' call: its second and third operands are
332     // not real values, but indices into statepoint's argument list.
333     // Use the refered to values for purposes of identity.
334     e.varargs.push_back(lookupOrAdd(GCR->getOperand(0)));
335     e.varargs.push_back(lookupOrAdd(GCR->getBasePtr()));
336     e.varargs.push_back(lookupOrAdd(GCR->getDerivedPtr()));
337   } else {
338     for (Use &Op : I->operands())
339       e.varargs.push_back(lookupOrAdd(Op));
340   }
341   if (I->isCommutative()) {
342     // Ensure that commutative instructions that only differ by a permutation
343     // of their operands get the same value number by sorting the operand value
344     // numbers.  Since commutative operands are the 1st two operands it is more
345     // efficient to sort by hand rather than using, say, std::sort.
346     assert(I->getNumOperands() >= 2 && "Unsupported commutative instruction!");
347     if (e.varargs[0] > e.varargs[1])
348       std::swap(e.varargs[0], e.varargs[1]);
349     e.commutative = true;
350   }
351 
352   if (auto *C = dyn_cast<CmpInst>(I)) {
353     // Sort the operand value numbers so x<y and y>x get the same value number.
354     CmpInst::Predicate Predicate = C->getPredicate();
355     if (e.varargs[0] > e.varargs[1]) {
356       std::swap(e.varargs[0], e.varargs[1]);
357       Predicate = CmpInst::getSwappedPredicate(Predicate);
358     }
359     e.opcode = (C->getOpcode() << 8) | Predicate;
360     e.commutative = true;
361   } else if (auto *E = dyn_cast<InsertValueInst>(I)) {
362     e.varargs.append(E->idx_begin(), E->idx_end());
363   } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
364     ArrayRef<int> ShuffleMask = SVI->getShuffleMask();
365     e.varargs.append(ShuffleMask.begin(), ShuffleMask.end());
366   }
367 
368   return e;
369 }
370 
371 GVNPass::Expression GVNPass::ValueTable::createCmpExpr(
372     unsigned Opcode, CmpInst::Predicate Predicate, Value *LHS, Value *RHS) {
373   assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
374          "Not a comparison!");
375   Expression e;
376   e.type = CmpInst::makeCmpResultType(LHS->getType());
377   e.varargs.push_back(lookupOrAdd(LHS));
378   e.varargs.push_back(lookupOrAdd(RHS));
379 
380   // Sort the operand value numbers so x<y and y>x get the same value number.
381   if (e.varargs[0] > e.varargs[1]) {
382     std::swap(e.varargs[0], e.varargs[1]);
383     Predicate = CmpInst::getSwappedPredicate(Predicate);
384   }
385   e.opcode = (Opcode << 8) | Predicate;
386   e.commutative = true;
387   return e;
388 }
389 
390 GVNPass::Expression
391 GVNPass::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) {
392   assert(EI && "Not an ExtractValueInst?");
393   Expression e;
394   e.type = EI->getType();
395   e.opcode = 0;
396 
397   WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
398   if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
399     // EI is an extract from one of our with.overflow intrinsics. Synthesize
400     // a semantically equivalent expression instead of an extract value
401     // expression.
402     e.opcode = WO->getBinaryOp();
403     e.varargs.push_back(lookupOrAdd(WO->getLHS()));
404     e.varargs.push_back(lookupOrAdd(WO->getRHS()));
405     return e;
406   }
407 
408   // Not a recognised intrinsic. Fall back to producing an extract value
409   // expression.
410   e.opcode = EI->getOpcode();
411   for (Use &Op : EI->operands())
412     e.varargs.push_back(lookupOrAdd(Op));
413 
414   append_range(e.varargs, EI->indices());
415 
416   return e;
417 }
418 
419 GVNPass::Expression GVNPass::ValueTable::createGEPExpr(GetElementPtrInst *GEP) {
420   Expression E;
421   Type *PtrTy = GEP->getType()->getScalarType();
422   const DataLayout &DL = GEP->getModule()->getDataLayout();
423   unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy);
424   MapVector<Value *, APInt> VariableOffsets;
425   APInt ConstantOffset(BitWidth, 0);
426   if (GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) {
427     // Convert into offset representation, to recognize equivalent address
428     // calculations that use different type encoding.
429     LLVMContext &Context = GEP->getContext();
430     E.opcode = GEP->getOpcode();
431     E.type = nullptr;
432     E.varargs.push_back(lookupOrAdd(GEP->getPointerOperand()));
433     for (const auto &Pair : VariableOffsets) {
434       E.varargs.push_back(lookupOrAdd(Pair.first));
435       E.varargs.push_back(lookupOrAdd(ConstantInt::get(Context, Pair.second)));
436     }
437     if (!ConstantOffset.isZero())
438       E.varargs.push_back(
439           lookupOrAdd(ConstantInt::get(Context, ConstantOffset)));
440   } else {
441     // If converting to offset representation fails (for scalable vectors),
442     // fall back to type-based implementation:
443     E.opcode = GEP->getOpcode();
444     E.type = GEP->getSourceElementType();
445     for (Use &Op : GEP->operands())
446       E.varargs.push_back(lookupOrAdd(Op));
447   }
448   return E;
449 }
450 
451 //===----------------------------------------------------------------------===//
452 //                     ValueTable External Functions
453 //===----------------------------------------------------------------------===//
454 
455 GVNPass::ValueTable::ValueTable() = default;
456 GVNPass::ValueTable::ValueTable(const ValueTable &) = default;
457 GVNPass::ValueTable::ValueTable(ValueTable &&) = default;
458 GVNPass::ValueTable::~ValueTable() = default;
459 GVNPass::ValueTable &
460 GVNPass::ValueTable::operator=(const GVNPass::ValueTable &Arg) = default;
461 
462 /// add - Insert a value into the table with a specified value number.
463 void GVNPass::ValueTable::add(Value *V, uint32_t num) {
464   valueNumbering.insert(std::make_pair(V, num));
465   if (PHINode *PN = dyn_cast<PHINode>(V))
466     NumberingPhi[num] = PN;
467 }
468 
469 uint32_t GVNPass::ValueTable::lookupOrAddCall(CallInst *C) {
470   // FIXME: Currently the calls which may access the thread id may
471   // be considered as not accessing the memory. But this is
472   // problematic for coroutines, since coroutines may resume in a
473   // different thread. So we disable the optimization here for the
474   // correctness. However, it may block many other correct
475   // optimizations. Revert this one when we detect the memory
476   // accessing kind more precisely.
477   if (C->getFunction()->isPresplitCoroutine()) {
478     valueNumbering[C] = nextValueNumber;
479     return nextValueNumber++;
480   }
481 
482   // Do not combine convergent calls since they implicitly depend on the set of
483   // threads that is currently executing, and they might be in different basic
484   // blocks.
485   if (C->isConvergent()) {
486     valueNumbering[C] = nextValueNumber;
487     return nextValueNumber++;
488   }
489 
490   if (AA->doesNotAccessMemory(C)) {
491     Expression exp = createExpr(C);
492     uint32_t e = assignExpNewValueNum(exp).first;
493     valueNumbering[C] = e;
494     return e;
495   }
496 
497   if (MD && AA->onlyReadsMemory(C)) {
498     Expression exp = createExpr(C);
499     auto ValNum = assignExpNewValueNum(exp);
500     if (ValNum.second) {
501       valueNumbering[C] = ValNum.first;
502       return ValNum.first;
503     }
504 
505     MemDepResult local_dep = MD->getDependency(C);
506 
507     if (!local_dep.isDef() && !local_dep.isNonLocal()) {
508       valueNumbering[C] =  nextValueNumber;
509       return nextValueNumber++;
510     }
511 
512     if (local_dep.isDef()) {
513       // For masked load/store intrinsics, the local_dep may actually be
514       // a normal load or store instruction.
515       CallInst *local_cdep = dyn_cast<CallInst>(local_dep.getInst());
516 
517       if (!local_cdep || local_cdep->arg_size() != C->arg_size()) {
518         valueNumbering[C] = nextValueNumber;
519         return nextValueNumber++;
520       }
521 
522       for (unsigned i = 0, e = C->arg_size(); i < e; ++i) {
523         uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
524         uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i));
525         if (c_vn != cd_vn) {
526           valueNumbering[C] = nextValueNumber;
527           return nextValueNumber++;
528         }
529       }
530 
531       uint32_t v = lookupOrAdd(local_cdep);
532       valueNumbering[C] = v;
533       return v;
534     }
535 
536     // Non-local case.
537     const MemoryDependenceResults::NonLocalDepInfo &deps =
538         MD->getNonLocalCallDependency(C);
539     // FIXME: Move the checking logic to MemDep!
540     CallInst* cdep = nullptr;
541 
542     // Check to see if we have a single dominating call instruction that is
543     // identical to C.
544     for (const NonLocalDepEntry &I : deps) {
545       if (I.getResult().isNonLocal())
546         continue;
547 
548       // We don't handle non-definitions.  If we already have a call, reject
549       // instruction dependencies.
550       if (!I.getResult().isDef() || cdep != nullptr) {
551         cdep = nullptr;
552         break;
553       }
554 
555       CallInst *NonLocalDepCall = dyn_cast<CallInst>(I.getResult().getInst());
556       // FIXME: All duplicated with non-local case.
557       if (NonLocalDepCall && DT->properlyDominates(I.getBB(), C->getParent())) {
558         cdep = NonLocalDepCall;
559         continue;
560       }
561 
562       cdep = nullptr;
563       break;
564     }
565 
566     if (!cdep) {
567       valueNumbering[C] = nextValueNumber;
568       return nextValueNumber++;
569     }
570 
571     if (cdep->arg_size() != C->arg_size()) {
572       valueNumbering[C] = nextValueNumber;
573       return nextValueNumber++;
574     }
575     for (unsigned i = 0, e = C->arg_size(); i < e; ++i) {
576       uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
577       uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i));
578       if (c_vn != cd_vn) {
579         valueNumbering[C] = nextValueNumber;
580         return nextValueNumber++;
581       }
582     }
583 
584     uint32_t v = lookupOrAdd(cdep);
585     valueNumbering[C] = v;
586     return v;
587   }
588 
589   valueNumbering[C] = nextValueNumber;
590   return nextValueNumber++;
591 }
592 
593 /// Returns true if a value number exists for the specified value.
594 bool GVNPass::ValueTable::exists(Value *V) const {
595   return valueNumbering.count(V) != 0;
596 }
597 
598 /// lookup_or_add - Returns the value number for the specified value, assigning
599 /// it a new number if it did not have one before.
600 uint32_t GVNPass::ValueTable::lookupOrAdd(Value *V) {
601   DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
602   if (VI != valueNumbering.end())
603     return VI->second;
604 
605   auto *I = dyn_cast<Instruction>(V);
606   if (!I) {
607     valueNumbering[V] = nextValueNumber;
608     return nextValueNumber++;
609   }
610 
611   Expression exp;
612   switch (I->getOpcode()) {
613     case Instruction::Call:
614       return lookupOrAddCall(cast<CallInst>(I));
615     case Instruction::FNeg:
616     case Instruction::Add:
617     case Instruction::FAdd:
618     case Instruction::Sub:
619     case Instruction::FSub:
620     case Instruction::Mul:
621     case Instruction::FMul:
622     case Instruction::UDiv:
623     case Instruction::SDiv:
624     case Instruction::FDiv:
625     case Instruction::URem:
626     case Instruction::SRem:
627     case Instruction::FRem:
628     case Instruction::Shl:
629     case Instruction::LShr:
630     case Instruction::AShr:
631     case Instruction::And:
632     case Instruction::Or:
633     case Instruction::Xor:
634     case Instruction::ICmp:
635     case Instruction::FCmp:
636     case Instruction::Trunc:
637     case Instruction::ZExt:
638     case Instruction::SExt:
639     case Instruction::FPToUI:
640     case Instruction::FPToSI:
641     case Instruction::UIToFP:
642     case Instruction::SIToFP:
643     case Instruction::FPTrunc:
644     case Instruction::FPExt:
645     case Instruction::PtrToInt:
646     case Instruction::IntToPtr:
647     case Instruction::AddrSpaceCast:
648     case Instruction::BitCast:
649     case Instruction::Select:
650     case Instruction::Freeze:
651     case Instruction::ExtractElement:
652     case Instruction::InsertElement:
653     case Instruction::ShuffleVector:
654     case Instruction::InsertValue:
655       exp = createExpr(I);
656       break;
657     case Instruction::GetElementPtr:
658       exp = createGEPExpr(cast<GetElementPtrInst>(I));
659       break;
660     case Instruction::ExtractValue:
661       exp = createExtractvalueExpr(cast<ExtractValueInst>(I));
662       break;
663     case Instruction::PHI:
664       valueNumbering[V] = nextValueNumber;
665       NumberingPhi[nextValueNumber] = cast<PHINode>(V);
666       return nextValueNumber++;
667     default:
668       valueNumbering[V] = nextValueNumber;
669       return nextValueNumber++;
670   }
671 
672   uint32_t e = assignExpNewValueNum(exp).first;
673   valueNumbering[V] = e;
674   return e;
675 }
676 
677 /// Returns the value number of the specified value. Fails if
678 /// the value has not yet been numbered.
679 uint32_t GVNPass::ValueTable::lookup(Value *V, bool Verify) const {
680   DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
681   if (Verify) {
682     assert(VI != valueNumbering.end() && "Value not numbered?");
683     return VI->second;
684   }
685   return (VI != valueNumbering.end()) ? VI->second : 0;
686 }
687 
688 /// Returns the value number of the given comparison,
689 /// assigning it a new number if it did not have one before.  Useful when
690 /// we deduced the result of a comparison, but don't immediately have an
691 /// instruction realizing that comparison to hand.
692 uint32_t GVNPass::ValueTable::lookupOrAddCmp(unsigned Opcode,
693                                              CmpInst::Predicate Predicate,
694                                              Value *LHS, Value *RHS) {
695   Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS);
696   return assignExpNewValueNum(exp).first;
697 }
698 
699 /// Remove all entries from the ValueTable.
700 void GVNPass::ValueTable::clear() {
701   valueNumbering.clear();
702   expressionNumbering.clear();
703   NumberingPhi.clear();
704   PhiTranslateTable.clear();
705   nextValueNumber = 1;
706   Expressions.clear();
707   ExprIdx.clear();
708   nextExprNumber = 0;
709 }
710 
711 /// Remove a value from the value numbering.
712 void GVNPass::ValueTable::erase(Value *V) {
713   uint32_t Num = valueNumbering.lookup(V);
714   valueNumbering.erase(V);
715   // If V is PHINode, V <--> value number is an one-to-one mapping.
716   if (isa<PHINode>(V))
717     NumberingPhi.erase(Num);
718 }
719 
720 /// verifyRemoved - Verify that the value is removed from all internal data
721 /// structures.
722 void GVNPass::ValueTable::verifyRemoved(const Value *V) const {
723   assert(!valueNumbering.contains(V) &&
724          "Inst still occurs in value numbering map!");
725 }
726 
727 //===----------------------------------------------------------------------===//
728 //                                GVN Pass
729 //===----------------------------------------------------------------------===//
730 
731 bool GVNPass::isPREEnabled() const {
732   return Options.AllowPRE.value_or(GVNEnablePRE);
733 }
734 
735 bool GVNPass::isLoadPREEnabled() const {
736   return Options.AllowLoadPRE.value_or(GVNEnableLoadPRE);
737 }
738 
739 bool GVNPass::isLoadInLoopPREEnabled() const {
740   return Options.AllowLoadInLoopPRE.value_or(GVNEnableLoadInLoopPRE);
741 }
742 
743 bool GVNPass::isLoadPRESplitBackedgeEnabled() const {
744   return Options.AllowLoadPRESplitBackedge.value_or(
745       GVNEnableSplitBackedgeInLoadPRE);
746 }
747 
748 bool GVNPass::isMemDepEnabled() const {
749   return Options.AllowMemDep.value_or(GVNEnableMemDep);
750 }
751 
752 PreservedAnalyses GVNPass::run(Function &F, FunctionAnalysisManager &AM) {
753   // FIXME: The order of evaluation of these 'getResult' calls is very
754   // significant! Re-ordering these variables will cause GVN when run alone to
755   // be less effective! We should fix memdep and basic-aa to not exhibit this
756   // behavior, but until then don't change the order here.
757   auto &AC = AM.getResult<AssumptionAnalysis>(F);
758   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
759   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
760   auto &AA = AM.getResult<AAManager>(F);
761   auto *MemDep =
762       isMemDepEnabled() ? &AM.getResult<MemoryDependenceAnalysis>(F) : nullptr;
763   auto &LI = AM.getResult<LoopAnalysis>(F);
764   auto *MSSA = AM.getCachedResult<MemorySSAAnalysis>(F);
765   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
766   bool Changed = runImpl(F, AC, DT, TLI, AA, MemDep, LI, &ORE,
767                          MSSA ? &MSSA->getMSSA() : nullptr);
768   if (!Changed)
769     return PreservedAnalyses::all();
770   PreservedAnalyses PA;
771   PA.preserve<DominatorTreeAnalysis>();
772   PA.preserve<TargetLibraryAnalysis>();
773   if (MSSA)
774     PA.preserve<MemorySSAAnalysis>();
775   PA.preserve<LoopAnalysis>();
776   return PA;
777 }
778 
779 void GVNPass::printPipeline(
780     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
781   static_cast<PassInfoMixin<GVNPass> *>(this)->printPipeline(
782       OS, MapClassName2PassName);
783 
784   OS << '<';
785   if (Options.AllowPRE != std::nullopt)
786     OS << (*Options.AllowPRE ? "" : "no-") << "pre;";
787   if (Options.AllowLoadPRE != std::nullopt)
788     OS << (*Options.AllowLoadPRE ? "" : "no-") << "load-pre;";
789   if (Options.AllowLoadPRESplitBackedge != std::nullopt)
790     OS << (*Options.AllowLoadPRESplitBackedge ? "" : "no-")
791        << "split-backedge-load-pre;";
792   if (Options.AllowMemDep != std::nullopt)
793     OS << (*Options.AllowMemDep ? "" : "no-") << "memdep";
794   OS << '>';
795 }
796 
797 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
798 LLVM_DUMP_METHOD void GVNPass::dump(DenseMap<uint32_t, Value *> &d) const {
799   errs() << "{\n";
800   for (auto &I : d) {
801     errs() << I.first << "\n";
802     I.second->dump();
803   }
804   errs() << "}\n";
805 }
806 #endif
807 
808 enum class AvailabilityState : char {
809   /// We know the block *is not* fully available. This is a fixpoint.
810   Unavailable = 0,
811   /// We know the block *is* fully available. This is a fixpoint.
812   Available = 1,
813   /// We do not know whether the block is fully available or not,
814   /// but we are currently speculating that it will be.
815   /// If it would have turned out that the block was, in fact, not fully
816   /// available, this would have been cleaned up into an Unavailable.
817   SpeculativelyAvailable = 2,
818 };
819 
820 /// Return true if we can prove that the value
821 /// we're analyzing is fully available in the specified block.  As we go, keep
822 /// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
823 /// map is actually a tri-state map with the following values:
824 ///   0) we know the block *is not* fully available.
825 ///   1) we know the block *is* fully available.
826 ///   2) we do not know whether the block is fully available or not, but we are
827 ///      currently speculating that it will be.
828 static bool IsValueFullyAvailableInBlock(
829     BasicBlock *BB,
830     DenseMap<BasicBlock *, AvailabilityState> &FullyAvailableBlocks) {
831   SmallVector<BasicBlock *, 32> Worklist;
832   std::optional<BasicBlock *> UnavailableBB;
833 
834   // The number of times we didn't find an entry for a block in a map and
835   // optimistically inserted an entry marking block as speculatively available.
836   unsigned NumNewNewSpeculativelyAvailableBBs = 0;
837 
838 #ifndef NDEBUG
839   SmallSet<BasicBlock *, 32> NewSpeculativelyAvailableBBs;
840   SmallVector<BasicBlock *, 32> AvailableBBs;
841 #endif
842 
843   Worklist.emplace_back(BB);
844   while (!Worklist.empty()) {
845     BasicBlock *CurrBB = Worklist.pop_back_val(); // LoadFO - depth-first!
846     // Optimistically assume that the block is Speculatively Available and check
847     // to see if we already know about this block in one lookup.
848     std::pair<DenseMap<BasicBlock *, AvailabilityState>::iterator, bool> IV =
849         FullyAvailableBlocks.try_emplace(
850             CurrBB, AvailabilityState::SpeculativelyAvailable);
851     AvailabilityState &State = IV.first->second;
852 
853     // Did the entry already exist for this block?
854     if (!IV.second) {
855       if (State == AvailabilityState::Unavailable) {
856         UnavailableBB = CurrBB;
857         break; // Backpropagate unavailability info.
858       }
859 
860 #ifndef NDEBUG
861       AvailableBBs.emplace_back(CurrBB);
862 #endif
863       continue; // Don't recurse further, but continue processing worklist.
864     }
865 
866     // No entry found for block.
867     ++NumNewNewSpeculativelyAvailableBBs;
868     bool OutOfBudget = NumNewNewSpeculativelyAvailableBBs > MaxBBSpeculations;
869 
870     // If we have exhausted our budget, mark this block as unavailable.
871     // Also, if this block has no predecessors, the value isn't live-in here.
872     if (OutOfBudget || pred_empty(CurrBB)) {
873       MaxBBSpeculationCutoffReachedTimes += (int)OutOfBudget;
874       State = AvailabilityState::Unavailable;
875       UnavailableBB = CurrBB;
876       break; // Backpropagate unavailability info.
877     }
878 
879     // Tentatively consider this block as speculatively available.
880 #ifndef NDEBUG
881     NewSpeculativelyAvailableBBs.insert(CurrBB);
882 #endif
883     // And further recurse into block's predecessors, in depth-first order!
884     Worklist.append(pred_begin(CurrBB), pred_end(CurrBB));
885   }
886 
887 #if LLVM_ENABLE_STATS
888   IsValueFullyAvailableInBlockNumSpeculationsMax.updateMax(
889       NumNewNewSpeculativelyAvailableBBs);
890 #endif
891 
892   // If the block isn't marked as fixpoint yet
893   // (the Unavailable and Available states are fixpoints)
894   auto MarkAsFixpointAndEnqueueSuccessors =
895       [&](BasicBlock *BB, AvailabilityState FixpointState) {
896         auto It = FullyAvailableBlocks.find(BB);
897         if (It == FullyAvailableBlocks.end())
898           return; // Never queried this block, leave as-is.
899         switch (AvailabilityState &State = It->second) {
900         case AvailabilityState::Unavailable:
901         case AvailabilityState::Available:
902           return; // Don't backpropagate further, continue processing worklist.
903         case AvailabilityState::SpeculativelyAvailable: // Fix it!
904           State = FixpointState;
905 #ifndef NDEBUG
906           assert(NewSpeculativelyAvailableBBs.erase(BB) &&
907                  "Found a speculatively available successor leftover?");
908 #endif
909           // Queue successors for further processing.
910           Worklist.append(succ_begin(BB), succ_end(BB));
911           return;
912         }
913       };
914 
915   if (UnavailableBB) {
916     // Okay, we have encountered an unavailable block.
917     // Mark speculatively available blocks reachable from UnavailableBB as
918     // unavailable as well. Paths are terminated when they reach blocks not in
919     // FullyAvailableBlocks or they are not marked as speculatively available.
920     Worklist.clear();
921     Worklist.append(succ_begin(*UnavailableBB), succ_end(*UnavailableBB));
922     while (!Worklist.empty())
923       MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(),
924                                          AvailabilityState::Unavailable);
925   }
926 
927 #ifndef NDEBUG
928   Worklist.clear();
929   for (BasicBlock *AvailableBB : AvailableBBs)
930     Worklist.append(succ_begin(AvailableBB), succ_end(AvailableBB));
931   while (!Worklist.empty())
932     MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(),
933                                        AvailabilityState::Available);
934 
935   assert(NewSpeculativelyAvailableBBs.empty() &&
936          "Must have fixed all the new speculatively available blocks.");
937 #endif
938 
939   return !UnavailableBB;
940 }
941 
942 /// If the specified OldValue exists in ValuesPerBlock, replace its value with
943 /// NewValue.
944 static void replaceValuesPerBlockEntry(
945     SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock, Value *OldValue,
946     Value *NewValue) {
947   for (AvailableValueInBlock &V : ValuesPerBlock) {
948     if (V.AV.Val == OldValue)
949       V.AV.Val = NewValue;
950     if (V.AV.isSelectValue()) {
951       if (V.AV.V1 == OldValue)
952         V.AV.V1 = NewValue;
953       if (V.AV.V2 == OldValue)
954         V.AV.V2 = NewValue;
955     }
956   }
957 }
958 
959 /// Given a set of loads specified by ValuesPerBlock,
960 /// construct SSA form, allowing us to eliminate Load.  This returns the value
961 /// that should be used at Load's definition site.
962 static Value *
963 ConstructSSAForLoadSet(LoadInst *Load,
964                        SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
965                        GVNPass &gvn) {
966   // Check for the fully redundant, dominating load case.  In this case, we can
967   // just use the dominating value directly.
968   if (ValuesPerBlock.size() == 1 &&
969       gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
970                                                Load->getParent())) {
971     assert(!ValuesPerBlock[0].AV.isUndefValue() &&
972            "Dead BB dominate this block");
973     return ValuesPerBlock[0].MaterializeAdjustedValue(Load, gvn);
974   }
975 
976   // Otherwise, we have to construct SSA form.
977   SmallVector<PHINode*, 8> NewPHIs;
978   SSAUpdater SSAUpdate(&NewPHIs);
979   SSAUpdate.Initialize(Load->getType(), Load->getName());
980 
981   for (const AvailableValueInBlock &AV : ValuesPerBlock) {
982     BasicBlock *BB = AV.BB;
983 
984     if (AV.AV.isUndefValue())
985       continue;
986 
987     if (SSAUpdate.HasValueForBlock(BB))
988       continue;
989 
990     // If the value is the load that we will be eliminating, and the block it's
991     // available in is the block that the load is in, then don't add it as
992     // SSAUpdater will resolve the value to the relevant phi which may let it
993     // avoid phi construction entirely if there's actually only one value.
994     if (BB == Load->getParent() &&
995         ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == Load) ||
996          (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == Load)))
997       continue;
998 
999     SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(Load, gvn));
1000   }
1001 
1002   // Perform PHI construction.
1003   return SSAUpdate.GetValueInMiddleOfBlock(Load->getParent());
1004 }
1005 
1006 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *Load,
1007                                                 Instruction *InsertPt,
1008                                                 GVNPass &gvn) const {
1009   Value *Res;
1010   Type *LoadTy = Load->getType();
1011   const DataLayout &DL = Load->getModule()->getDataLayout();
1012   if (isSimpleValue()) {
1013     Res = getSimpleValue();
1014     if (Res->getType() != LoadTy) {
1015       Res = getValueForLoad(Res, Offset, LoadTy, InsertPt, DL);
1016 
1017       LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset
1018                         << "  " << *getSimpleValue() << '\n'
1019                         << *Res << '\n'
1020                         << "\n\n\n");
1021     }
1022   } else if (isCoercedLoadValue()) {
1023     LoadInst *CoercedLoad = getCoercedLoadValue();
1024     if (CoercedLoad->getType() == LoadTy && Offset == 0) {
1025       Res = CoercedLoad;
1026       combineMetadataForCSE(CoercedLoad, Load, false);
1027     } else {
1028       Res = getValueForLoad(CoercedLoad, Offset, LoadTy, InsertPt, DL);
1029       // We are adding a new user for this load, for which the original
1030       // metadata may not hold. Additionally, the new load may have a different
1031       // size and type, so their metadata cannot be combined in any
1032       // straightforward way.
1033       // Drop all metadata that is not known to cause immediate UB on violation,
1034       // unless the load has !noundef, in which case all metadata violations
1035       // will be promoted to UB.
1036       // TODO: We can combine noalias/alias.scope metadata here, because it is
1037       // independent of the load type.
1038       if (!CoercedLoad->hasMetadata(LLVMContext::MD_noundef))
1039         CoercedLoad->dropUnknownNonDebugMetadata(
1040             {LLVMContext::MD_dereferenceable,
1041              LLVMContext::MD_dereferenceable_or_null,
1042              LLVMContext::MD_invariant_load, LLVMContext::MD_invariant_group});
1043       LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset
1044                         << "  " << *getCoercedLoadValue() << '\n'
1045                         << *Res << '\n'
1046                         << "\n\n\n");
1047     }
1048   } else if (isMemIntrinValue()) {
1049     Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
1050                                  InsertPt, DL);
1051     LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1052                       << "  " << *getMemIntrinValue() << '\n'
1053                       << *Res << '\n'
1054                       << "\n\n\n");
1055   } else if (isSelectValue()) {
1056     // Introduce a new value select for a load from an eligible pointer select.
1057     SelectInst *Sel = getSelectValue();
1058     assert(V1 && V2 && "both value operands of the select must be present");
1059     Res = SelectInst::Create(Sel->getCondition(), V1, V2, "", Sel);
1060   } else {
1061     llvm_unreachable("Should not materialize value from dead block");
1062   }
1063   assert(Res && "failed to materialize?");
1064   return Res;
1065 }
1066 
1067 static bool isLifetimeStart(const Instruction *Inst) {
1068   if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1069     return II->getIntrinsicID() == Intrinsic::lifetime_start;
1070   return false;
1071 }
1072 
1073 /// Assuming To can be reached from both From and Between, does Between lie on
1074 /// every path from From to To?
1075 static bool liesBetween(const Instruction *From, Instruction *Between,
1076                         const Instruction *To, DominatorTree *DT) {
1077   if (From->getParent() == Between->getParent())
1078     return DT->dominates(From, Between);
1079   SmallSet<BasicBlock *, 1> Exclusion;
1080   Exclusion.insert(Between->getParent());
1081   return !isPotentiallyReachable(From, To, &Exclusion, DT);
1082 }
1083 
1084 /// Try to locate the three instruction involved in a missed
1085 /// load-elimination case that is due to an intervening store.
1086 static void reportMayClobberedLoad(LoadInst *Load, MemDepResult DepInfo,
1087                                    DominatorTree *DT,
1088                                    OptimizationRemarkEmitter *ORE) {
1089   using namespace ore;
1090 
1091   Instruction *OtherAccess = nullptr;
1092 
1093   OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", Load);
1094   R << "load of type " << NV("Type", Load->getType()) << " not eliminated"
1095     << setExtraArgs();
1096 
1097   for (auto *U : Load->getPointerOperand()->users()) {
1098     if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U))) {
1099       auto *I = cast<Instruction>(U);
1100       if (I->getFunction() == Load->getFunction() && DT->dominates(I, Load)) {
1101         // Use the most immediately dominating value
1102         if (OtherAccess) {
1103           if (DT->dominates(OtherAccess, I))
1104             OtherAccess = I;
1105           else
1106             assert(U == OtherAccess || DT->dominates(I, OtherAccess));
1107         } else
1108           OtherAccess = I;
1109       }
1110     }
1111   }
1112 
1113   if (!OtherAccess) {
1114     // There is no dominating use, check if we can find a closest non-dominating
1115     // use that lies between any other potentially available use and Load.
1116     for (auto *U : Load->getPointerOperand()->users()) {
1117       if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U))) {
1118         auto *I = cast<Instruction>(U);
1119         if (I->getFunction() == Load->getFunction() &&
1120             isPotentiallyReachable(I, Load, nullptr, DT)) {
1121           if (OtherAccess) {
1122             if (liesBetween(OtherAccess, I, Load, DT)) {
1123               OtherAccess = I;
1124             } else if (!liesBetween(I, OtherAccess, Load, DT)) {
1125               // These uses are both partially available at Load were it not for
1126               // the clobber, but neither lies strictly after the other.
1127               OtherAccess = nullptr;
1128               break;
1129             } // else: keep current OtherAccess since it lies between U and Load
1130           } else {
1131             OtherAccess = I;
1132           }
1133         }
1134       }
1135     }
1136   }
1137 
1138   if (OtherAccess)
1139     R << " in favor of " << NV("OtherAccess", OtherAccess);
1140 
1141   R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst());
1142 
1143   ORE->emit(R);
1144 }
1145 
1146 // Find non-clobbered value for Loc memory location in extended basic block
1147 // (chain of basic blocks with single predecessors) starting From instruction.
1148 static Value *findDominatingValue(const MemoryLocation &Loc, Type *LoadTy,
1149                                   Instruction *From, AAResults *AA) {
1150   uint32_t NumVisitedInsts = 0;
1151   BasicBlock *FromBB = From->getParent();
1152   BatchAAResults BatchAA(*AA);
1153   for (BasicBlock *BB = FromBB; BB; BB = BB->getSinglePredecessor())
1154     for (auto *Inst = BB == FromBB ? From : BB->getTerminator();
1155          Inst != nullptr; Inst = Inst->getPrevNonDebugInstruction()) {
1156       // Stop the search if limit is reached.
1157       if (++NumVisitedInsts > MaxNumVisitedInsts)
1158         return nullptr;
1159       if (isModSet(BatchAA.getModRefInfo(Inst, Loc)))
1160         return nullptr;
1161       if (auto *LI = dyn_cast<LoadInst>(Inst))
1162         if (LI->getPointerOperand() == Loc.Ptr && LI->getType() == LoadTy)
1163           return LI;
1164     }
1165   return nullptr;
1166 }
1167 
1168 std::optional<AvailableValue>
1169 GVNPass::AnalyzeLoadAvailability(LoadInst *Load, MemDepResult DepInfo,
1170                                  Value *Address) {
1171   assert(Load->isUnordered() && "rules below are incorrect for ordered access");
1172   assert(DepInfo.isLocal() && "expected a local dependence");
1173 
1174   Instruction *DepInst = DepInfo.getInst();
1175 
1176   const DataLayout &DL = Load->getModule()->getDataLayout();
1177   if (DepInfo.isClobber()) {
1178     // If the dependence is to a store that writes to a superset of the bits
1179     // read by the load, we can extract the bits we need for the load from the
1180     // stored value.
1181     if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1182       // Can't forward from non-atomic to atomic without violating memory model.
1183       if (Address && Load->isAtomic() <= DepSI->isAtomic()) {
1184         int Offset =
1185             analyzeLoadFromClobberingStore(Load->getType(), Address, DepSI, DL);
1186         if (Offset != -1)
1187           return AvailableValue::get(DepSI->getValueOperand(), Offset);
1188       }
1189     }
1190 
1191     // Check to see if we have something like this:
1192     //    load i32* P
1193     //    load i8* (P+1)
1194     // if we have this, replace the later with an extraction from the former.
1195     if (LoadInst *DepLoad = dyn_cast<LoadInst>(DepInst)) {
1196       // If this is a clobber and L is the first instruction in its block, then
1197       // we have the first instruction in the entry block.
1198       // Can't forward from non-atomic to atomic without violating memory model.
1199       if (DepLoad != Load && Address &&
1200           Load->isAtomic() <= DepLoad->isAtomic()) {
1201         Type *LoadType = Load->getType();
1202         int Offset = -1;
1203 
1204         // If MD reported clobber, check it was nested.
1205         if (DepInfo.isClobber() &&
1206             canCoerceMustAliasedValueToLoad(DepLoad, LoadType, DL)) {
1207           const auto ClobberOff = MD->getClobberOffset(DepLoad);
1208           // GVN has no deal with a negative offset.
1209           Offset = (ClobberOff == std::nullopt || *ClobberOff < 0)
1210                        ? -1
1211                        : *ClobberOff;
1212         }
1213         if (Offset == -1)
1214           Offset =
1215               analyzeLoadFromClobberingLoad(LoadType, Address, DepLoad, DL);
1216         if (Offset != -1)
1217           return AvailableValue::getLoad(DepLoad, Offset);
1218       }
1219     }
1220 
1221     // If the clobbering value is a memset/memcpy/memmove, see if we can
1222     // forward a value on from it.
1223     if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1224       if (Address && !Load->isAtomic()) {
1225         int Offset = analyzeLoadFromClobberingMemInst(Load->getType(), Address,
1226                                                       DepMI, DL);
1227         if (Offset != -1)
1228           return AvailableValue::getMI(DepMI, Offset);
1229       }
1230     }
1231 
1232     // Nothing known about this clobber, have to be conservative
1233     LLVM_DEBUG(
1234         // fast print dep, using operator<< on instruction is too slow.
1235         dbgs() << "GVN: load "; Load->printAsOperand(dbgs());
1236         dbgs() << " is clobbered by " << *DepInst << '\n';);
1237     if (ORE->allowExtraAnalysis(DEBUG_TYPE))
1238       reportMayClobberedLoad(Load, DepInfo, DT, ORE);
1239 
1240     return std::nullopt;
1241   }
1242   assert(DepInfo.isDef() && "follows from above");
1243 
1244   // Loading the alloca -> undef.
1245   // Loading immediately after lifetime begin -> undef.
1246   if (isa<AllocaInst>(DepInst) || isLifetimeStart(DepInst))
1247     return AvailableValue::get(UndefValue::get(Load->getType()));
1248 
1249   if (Constant *InitVal =
1250           getInitialValueOfAllocation(DepInst, TLI, Load->getType()))
1251     return AvailableValue::get(InitVal);
1252 
1253   if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1254     // Reject loads and stores that are to the same address but are of
1255     // different types if we have to. If the stored value is convertable to
1256     // the loaded value, we can reuse it.
1257     if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), Load->getType(),
1258                                          DL))
1259       return std::nullopt;
1260 
1261     // Can't forward from non-atomic to atomic without violating memory model.
1262     if (S->isAtomic() < Load->isAtomic())
1263       return std::nullopt;
1264 
1265     return AvailableValue::get(S->getValueOperand());
1266   }
1267 
1268   if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1269     // If the types mismatch and we can't handle it, reject reuse of the load.
1270     // If the stored value is larger or equal to the loaded value, we can reuse
1271     // it.
1272     if (!canCoerceMustAliasedValueToLoad(LD, Load->getType(), DL))
1273       return std::nullopt;
1274 
1275     // Can't forward from non-atomic to atomic without violating memory model.
1276     if (LD->isAtomic() < Load->isAtomic())
1277       return std::nullopt;
1278 
1279     return AvailableValue::getLoad(LD);
1280   }
1281 
1282   // Check if load with Addr dependent from select can be converted to select
1283   // between load values. There must be no instructions between the found
1284   // loads and DepInst that may clobber the loads.
1285   if (auto *Sel = dyn_cast<SelectInst>(DepInst)) {
1286     assert(Sel->getType() == Load->getPointerOperandType());
1287     auto Loc = MemoryLocation::get(Load);
1288     Value *V1 =
1289         findDominatingValue(Loc.getWithNewPtr(Sel->getTrueValue()),
1290                             Load->getType(), DepInst, getAliasAnalysis());
1291     if (!V1)
1292       return std::nullopt;
1293     Value *V2 =
1294         findDominatingValue(Loc.getWithNewPtr(Sel->getFalseValue()),
1295                             Load->getType(), DepInst, getAliasAnalysis());
1296     if (!V2)
1297       return std::nullopt;
1298     return AvailableValue::getSelect(Sel, V1, V2);
1299   }
1300 
1301   // Unknown def - must be conservative
1302   LLVM_DEBUG(
1303       // fast print dep, using operator<< on instruction is too slow.
1304       dbgs() << "GVN: load "; Load->printAsOperand(dbgs());
1305       dbgs() << " has unknown def " << *DepInst << '\n';);
1306   return std::nullopt;
1307 }
1308 
1309 void GVNPass::AnalyzeLoadAvailability(LoadInst *Load, LoadDepVect &Deps,
1310                                       AvailValInBlkVect &ValuesPerBlock,
1311                                       UnavailBlkVect &UnavailableBlocks) {
1312   // Filter out useless results (non-locals, etc).  Keep track of the blocks
1313   // where we have a value available in repl, also keep track of whether we see
1314   // dependencies that produce an unknown value for the load (such as a call
1315   // that could potentially clobber the load).
1316   for (const auto &Dep : Deps) {
1317     BasicBlock *DepBB = Dep.getBB();
1318     MemDepResult DepInfo = Dep.getResult();
1319 
1320     if (DeadBlocks.count(DepBB)) {
1321       // Dead dependent mem-op disguise as a load evaluating the same value
1322       // as the load in question.
1323       ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
1324       continue;
1325     }
1326 
1327     if (!DepInfo.isLocal()) {
1328       UnavailableBlocks.push_back(DepBB);
1329       continue;
1330     }
1331 
1332     // The address being loaded in this non-local block may not be the same as
1333     // the pointer operand of the load if PHI translation occurs.  Make sure
1334     // to consider the right address.
1335     if (auto AV = AnalyzeLoadAvailability(Load, DepInfo, Dep.getAddress())) {
1336       // subtlety: because we know this was a non-local dependency, we know
1337       // it's safe to materialize anywhere between the instruction within
1338       // DepInfo and the end of it's block.
1339       ValuesPerBlock.push_back(
1340           AvailableValueInBlock::get(DepBB, std::move(*AV)));
1341     } else {
1342       UnavailableBlocks.push_back(DepBB);
1343     }
1344   }
1345 
1346   assert(Deps.size() == ValuesPerBlock.size() + UnavailableBlocks.size() &&
1347          "post condition violation");
1348 }
1349 
1350 /// Given the following code, v1 is partially available on some edges, but not
1351 /// available on the edge from PredBB. This function tries to find if there is
1352 /// another identical load in the other successor of PredBB.
1353 ///
1354 ///      v0 = load %addr
1355 ///      br %LoadBB
1356 ///
1357 ///   LoadBB:
1358 ///      v1 = load %addr
1359 ///      ...
1360 ///
1361 ///   PredBB:
1362 ///      ...
1363 ///      br %cond, label %LoadBB, label %SuccBB
1364 ///
1365 ///   SuccBB:
1366 ///      v2 = load %addr
1367 ///      ...
1368 ///
1369 LoadInst *GVNPass::findLoadToHoistIntoPred(BasicBlock *Pred, BasicBlock *LoadBB,
1370                                            LoadInst *Load) {
1371   // For simplicity we handle a Pred has 2 successors only.
1372   auto *Term = Pred->getTerminator();
1373   if (Term->getNumSuccessors() != 2 || Term->isSpecialTerminator())
1374     return nullptr;
1375   auto *SuccBB = Term->getSuccessor(0);
1376   if (SuccBB == LoadBB)
1377     SuccBB = Term->getSuccessor(1);
1378   if (!SuccBB->getSinglePredecessor())
1379     return nullptr;
1380 
1381   unsigned int NumInsts = MaxNumInsnsPerBlock;
1382   for (Instruction &Inst : *SuccBB) {
1383     if (Inst.isDebugOrPseudoInst())
1384       continue;
1385     if (--NumInsts == 0)
1386       return nullptr;
1387 
1388     if (!Inst.isIdenticalTo(Load))
1389       continue;
1390 
1391     MemDepResult Dep = MD->getDependency(&Inst);
1392     // If an identical load doesn't depends on any local instructions, it can
1393     // be safely moved to PredBB.
1394     // Also check for the implicit control flow instructions. See the comments
1395     // in PerformLoadPRE for details.
1396     if (Dep.isNonLocal() && !ICF->isDominatedByICFIFromSameBlock(&Inst))
1397       return cast<LoadInst>(&Inst);
1398 
1399     // Otherwise there is something in the same BB clobbers the memory, we can't
1400     // move this and later load to PredBB.
1401     return nullptr;
1402   }
1403 
1404   return nullptr;
1405 }
1406 
1407 void GVNPass::eliminatePartiallyRedundantLoad(
1408     LoadInst *Load, AvailValInBlkVect &ValuesPerBlock,
1409     MapVector<BasicBlock *, Value *> &AvailableLoads,
1410     MapVector<BasicBlock *, LoadInst *> *CriticalEdgePredAndLoad) {
1411   for (const auto &AvailableLoad : AvailableLoads) {
1412     BasicBlock *UnavailableBlock = AvailableLoad.first;
1413     Value *LoadPtr = AvailableLoad.second;
1414 
1415     auto *NewLoad =
1416         new LoadInst(Load->getType(), LoadPtr, Load->getName() + ".pre",
1417                      Load->isVolatile(), Load->getAlign(), Load->getOrdering(),
1418                      Load->getSyncScopeID(), UnavailableBlock->getTerminator());
1419     NewLoad->setDebugLoc(Load->getDebugLoc());
1420     if (MSSAU) {
1421       auto *NewAccess = MSSAU->createMemoryAccessInBB(
1422           NewLoad, nullptr, NewLoad->getParent(), MemorySSA::BeforeTerminator);
1423       if (auto *NewDef = dyn_cast<MemoryDef>(NewAccess))
1424         MSSAU->insertDef(NewDef, /*RenameUses=*/true);
1425       else
1426         MSSAU->insertUse(cast<MemoryUse>(NewAccess), /*RenameUses=*/true);
1427     }
1428 
1429     // Transfer the old load's AA tags to the new load.
1430     AAMDNodes Tags = Load->getAAMetadata();
1431     if (Tags)
1432       NewLoad->setAAMetadata(Tags);
1433 
1434     if (auto *MD = Load->getMetadata(LLVMContext::MD_invariant_load))
1435       NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD);
1436     if (auto *InvGroupMD = Load->getMetadata(LLVMContext::MD_invariant_group))
1437       NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
1438     if (auto *RangeMD = Load->getMetadata(LLVMContext::MD_range))
1439       NewLoad->setMetadata(LLVMContext::MD_range, RangeMD);
1440     if (auto *AccessMD = Load->getMetadata(LLVMContext::MD_access_group))
1441       if (LI->getLoopFor(Load->getParent()) == LI->getLoopFor(UnavailableBlock))
1442         NewLoad->setMetadata(LLVMContext::MD_access_group, AccessMD);
1443 
1444     // We do not propagate the old load's debug location, because the new
1445     // load now lives in a different BB, and we want to avoid a jumpy line
1446     // table.
1447     // FIXME: How do we retain source locations without causing poor debugging
1448     // behavior?
1449 
1450     // Add the newly created load.
1451     ValuesPerBlock.push_back(
1452         AvailableValueInBlock::get(UnavailableBlock, NewLoad));
1453     MD->invalidateCachedPointerInfo(LoadPtr);
1454     LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1455 
1456     // For PredBB in CriticalEdgePredAndLoad we need to replace the uses of old
1457     // load instruction with the new created load instruction.
1458     if (CriticalEdgePredAndLoad) {
1459       auto I = CriticalEdgePredAndLoad->find(UnavailableBlock);
1460       if (I != CriticalEdgePredAndLoad->end()) {
1461         ++NumPRELoadMoved2CEPred;
1462         ICF->insertInstructionTo(NewLoad, UnavailableBlock);
1463         LoadInst *OldLoad = I->second;
1464         combineMetadataForCSE(NewLoad, OldLoad, false);
1465         OldLoad->replaceAllUsesWith(NewLoad);
1466         replaceValuesPerBlockEntry(ValuesPerBlock, OldLoad, NewLoad);
1467         if (uint32_t ValNo = VN.lookup(OldLoad, false))
1468           removeFromLeaderTable(ValNo, OldLoad, OldLoad->getParent());
1469         VN.erase(OldLoad);
1470         removeInstruction(OldLoad);
1471       }
1472     }
1473   }
1474 
1475   // Perform PHI construction.
1476   Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this);
1477   // ConstructSSAForLoadSet is responsible for combining metadata.
1478   ICF->removeUsersOf(Load);
1479   Load->replaceAllUsesWith(V);
1480   if (isa<PHINode>(V))
1481     V->takeName(Load);
1482   if (Instruction *I = dyn_cast<Instruction>(V))
1483     I->setDebugLoc(Load->getDebugLoc());
1484   if (V->getType()->isPtrOrPtrVectorTy())
1485     MD->invalidateCachedPointerInfo(V);
1486   markInstructionForDeletion(Load);
1487   ORE->emit([&]() {
1488     return OptimizationRemark(DEBUG_TYPE, "LoadPRE", Load)
1489            << "load eliminated by PRE";
1490   });
1491 }
1492 
1493 bool GVNPass::PerformLoadPRE(LoadInst *Load, AvailValInBlkVect &ValuesPerBlock,
1494                              UnavailBlkVect &UnavailableBlocks) {
1495   // Okay, we have *some* definitions of the value.  This means that the value
1496   // is available in some of our (transitive) predecessors.  Lets think about
1497   // doing PRE of this load.  This will involve inserting a new load into the
1498   // predecessor when it's not available.  We could do this in general, but
1499   // prefer to not increase code size.  As such, we only do this when we know
1500   // that we only have to insert *one* load (which means we're basically moving
1501   // the load, not inserting a new one).
1502 
1503   SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(),
1504                                         UnavailableBlocks.end());
1505 
1506   // Let's find the first basic block with more than one predecessor.  Walk
1507   // backwards through predecessors if needed.
1508   BasicBlock *LoadBB = Load->getParent();
1509   BasicBlock *TmpBB = LoadBB;
1510 
1511   // Check that there is no implicit control flow instructions above our load in
1512   // its block. If there is an instruction that doesn't always pass the
1513   // execution to the following instruction, then moving through it may become
1514   // invalid. For example:
1515   //
1516   // int arr[LEN];
1517   // int index = ???;
1518   // ...
1519   // guard(0 <= index && index < LEN);
1520   // use(arr[index]);
1521   //
1522   // It is illegal to move the array access to any point above the guard,
1523   // because if the index is out of bounds we should deoptimize rather than
1524   // access the array.
1525   // Check that there is no guard in this block above our instruction.
1526   bool MustEnsureSafetyOfSpeculativeExecution =
1527       ICF->isDominatedByICFIFromSameBlock(Load);
1528 
1529   while (TmpBB->getSinglePredecessor()) {
1530     TmpBB = TmpBB->getSinglePredecessor();
1531     if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1532       return false;
1533     if (Blockers.count(TmpBB))
1534       return false;
1535 
1536     // If any of these blocks has more than one successor (i.e. if the edge we
1537     // just traversed was critical), then there are other paths through this
1538     // block along which the load may not be anticipated.  Hoisting the load
1539     // above this block would be adding the load to execution paths along
1540     // which it was not previously executed.
1541     if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1542       return false;
1543 
1544     // Check that there is no implicit control flow in a block above.
1545     MustEnsureSafetyOfSpeculativeExecution =
1546         MustEnsureSafetyOfSpeculativeExecution || ICF->hasICF(TmpBB);
1547   }
1548 
1549   assert(TmpBB);
1550   LoadBB = TmpBB;
1551 
1552   // Check to see how many predecessors have the loaded value fully
1553   // available.
1554   MapVector<BasicBlock *, Value *> PredLoads;
1555   DenseMap<BasicBlock *, AvailabilityState> FullyAvailableBlocks;
1556   for (const AvailableValueInBlock &AV : ValuesPerBlock)
1557     FullyAvailableBlocks[AV.BB] = AvailabilityState::Available;
1558   for (BasicBlock *UnavailableBB : UnavailableBlocks)
1559     FullyAvailableBlocks[UnavailableBB] = AvailabilityState::Unavailable;
1560 
1561   // The edge from Pred to LoadBB is a critical edge will be splitted.
1562   SmallVector<BasicBlock *, 4> CriticalEdgePredSplit;
1563   // The edge from Pred to LoadBB is a critical edge, another successor of Pred
1564   // contains a load can be moved to Pred. This data structure maps the Pred to
1565   // the movable load.
1566   MapVector<BasicBlock *, LoadInst *> CriticalEdgePredAndLoad;
1567   for (BasicBlock *Pred : predecessors(LoadBB)) {
1568     // If any predecessor block is an EH pad that does not allow non-PHI
1569     // instructions before the terminator, we can't PRE the load.
1570     if (Pred->getTerminator()->isEHPad()) {
1571       LLVM_DEBUG(
1572           dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
1573                  << Pred->getName() << "': " << *Load << '\n');
1574       return false;
1575     }
1576 
1577     if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1578       continue;
1579     }
1580 
1581     if (Pred->getTerminator()->getNumSuccessors() != 1) {
1582       if (isa<IndirectBrInst>(Pred->getTerminator())) {
1583         LLVM_DEBUG(
1584             dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1585                    << Pred->getName() << "': " << *Load << '\n');
1586         return false;
1587       }
1588 
1589       if (LoadBB->isEHPad()) {
1590         LLVM_DEBUG(
1591             dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
1592                    << Pred->getName() << "': " << *Load << '\n');
1593         return false;
1594       }
1595 
1596       // Do not split backedge as it will break the canonical loop form.
1597       if (!isLoadPRESplitBackedgeEnabled())
1598         if (DT->dominates(LoadBB, Pred)) {
1599           LLVM_DEBUG(
1600               dbgs()
1601               << "COULD NOT PRE LOAD BECAUSE OF A BACKEDGE CRITICAL EDGE '"
1602               << Pred->getName() << "': " << *Load << '\n');
1603           return false;
1604         }
1605 
1606       if (LoadInst *LI = findLoadToHoistIntoPred(Pred, LoadBB, Load))
1607         CriticalEdgePredAndLoad[Pred] = LI;
1608       else
1609         CriticalEdgePredSplit.push_back(Pred);
1610     } else {
1611       // Only add the predecessors that will not be split for now.
1612       PredLoads[Pred] = nullptr;
1613     }
1614   }
1615 
1616   // Decide whether PRE is profitable for this load.
1617   unsigned NumInsertPreds = PredLoads.size() + CriticalEdgePredSplit.size();
1618   unsigned NumUnavailablePreds = NumInsertPreds +
1619       CriticalEdgePredAndLoad.size();
1620   assert(NumUnavailablePreds != 0 &&
1621          "Fully available value should already be eliminated!");
1622   (void)NumUnavailablePreds;
1623 
1624   // If we need to insert new load in multiple predecessors, reject it.
1625   // FIXME: If we could restructure the CFG, we could make a common pred with
1626   // all the preds that don't have an available Load and insert a new load into
1627   // that one block.
1628   if (NumInsertPreds > 1)
1629       return false;
1630 
1631   // Now we know where we will insert load. We must ensure that it is safe
1632   // to speculatively execute the load at that points.
1633   if (MustEnsureSafetyOfSpeculativeExecution) {
1634     if (CriticalEdgePredSplit.size())
1635       if (!isSafeToSpeculativelyExecute(Load, LoadBB->getFirstNonPHI(), AC, DT))
1636         return false;
1637     for (auto &PL : PredLoads)
1638       if (!isSafeToSpeculativelyExecute(Load, PL.first->getTerminator(), AC,
1639                                         DT))
1640         return false;
1641     for (auto &CEP : CriticalEdgePredAndLoad)
1642       if (!isSafeToSpeculativelyExecute(Load, CEP.first->getTerminator(), AC,
1643                                         DT))
1644         return false;
1645   }
1646 
1647   // Split critical edges, and update the unavailable predecessors accordingly.
1648   for (BasicBlock *OrigPred : CriticalEdgePredSplit) {
1649     BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
1650     assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
1651     PredLoads[NewPred] = nullptr;
1652     LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
1653                       << LoadBB->getName() << '\n');
1654   }
1655 
1656   for (auto &CEP : CriticalEdgePredAndLoad)
1657     PredLoads[CEP.first] = nullptr;
1658 
1659   // Check if the load can safely be moved to all the unavailable predecessors.
1660   bool CanDoPRE = true;
1661   const DataLayout &DL = Load->getModule()->getDataLayout();
1662   SmallVector<Instruction*, 8> NewInsts;
1663   for (auto &PredLoad : PredLoads) {
1664     BasicBlock *UnavailablePred = PredLoad.first;
1665 
1666     // Do PHI translation to get its value in the predecessor if necessary.  The
1667     // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1668     // We do the translation for each edge we skipped by going from Load's block
1669     // to LoadBB, otherwise we might miss pieces needing translation.
1670 
1671     // If all preds have a single successor, then we know it is safe to insert
1672     // the load on the pred (?!?), so we can insert code to materialize the
1673     // pointer if it is not available.
1674     Value *LoadPtr = Load->getPointerOperand();
1675     BasicBlock *Cur = Load->getParent();
1676     while (Cur != LoadBB) {
1677       PHITransAddr Address(LoadPtr, DL, AC);
1678       LoadPtr = Address.translateWithInsertion(Cur, Cur->getSinglePredecessor(),
1679                                                *DT, NewInsts);
1680       if (!LoadPtr) {
1681         CanDoPRE = false;
1682         break;
1683       }
1684       Cur = Cur->getSinglePredecessor();
1685     }
1686 
1687     if (LoadPtr) {
1688       PHITransAddr Address(LoadPtr, DL, AC);
1689       LoadPtr = Address.translateWithInsertion(LoadBB, UnavailablePred, *DT,
1690                                                NewInsts);
1691     }
1692     // If we couldn't find or insert a computation of this phi translated value,
1693     // we fail PRE.
1694     if (!LoadPtr) {
1695       LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1696                         << *Load->getPointerOperand() << "\n");
1697       CanDoPRE = false;
1698       break;
1699     }
1700 
1701     PredLoad.second = LoadPtr;
1702   }
1703 
1704   if (!CanDoPRE) {
1705     while (!NewInsts.empty()) {
1706       // Erase instructions generated by the failed PHI translation before
1707       // trying to number them. PHI translation might insert instructions
1708       // in basic blocks other than the current one, and we delete them
1709       // directly, as markInstructionForDeletion only allows removing from the
1710       // current basic block.
1711       NewInsts.pop_back_val()->eraseFromParent();
1712     }
1713     // HINT: Don't revert the edge-splitting as following transformation may
1714     // also need to split these critical edges.
1715     return !CriticalEdgePredSplit.empty();
1716   }
1717 
1718   // Okay, we can eliminate this load by inserting a reload in the predecessor
1719   // and using PHI construction to get the value in the other predecessors, do
1720   // it.
1721   LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *Load << '\n');
1722   LLVM_DEBUG(if (!NewInsts.empty()) dbgs() << "INSERTED " << NewInsts.size()
1723                                            << " INSTS: " << *NewInsts.back()
1724                                            << '\n');
1725 
1726   // Assign value numbers to the new instructions.
1727   for (Instruction *I : NewInsts) {
1728     // Instructions that have been inserted in predecessor(s) to materialize
1729     // the load address do not retain their original debug locations. Doing
1730     // so could lead to confusing (but correct) source attributions.
1731     I->updateLocationAfterHoist();
1732 
1733     // FIXME: We really _ought_ to insert these value numbers into their
1734     // parent's availability map.  However, in doing so, we risk getting into
1735     // ordering issues.  If a block hasn't been processed yet, we would be
1736     // marking a value as AVAIL-IN, which isn't what we intend.
1737     VN.lookupOrAdd(I);
1738   }
1739 
1740   eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, PredLoads,
1741                                   &CriticalEdgePredAndLoad);
1742   ++NumPRELoad;
1743   return true;
1744 }
1745 
1746 bool GVNPass::performLoopLoadPRE(LoadInst *Load,
1747                                  AvailValInBlkVect &ValuesPerBlock,
1748                                  UnavailBlkVect &UnavailableBlocks) {
1749   const Loop *L = LI->getLoopFor(Load->getParent());
1750   // TODO: Generalize to other loop blocks that dominate the latch.
1751   if (!L || L->getHeader() != Load->getParent())
1752     return false;
1753 
1754   BasicBlock *Preheader = L->getLoopPreheader();
1755   BasicBlock *Latch = L->getLoopLatch();
1756   if (!Preheader || !Latch)
1757     return false;
1758 
1759   Value *LoadPtr = Load->getPointerOperand();
1760   // Must be available in preheader.
1761   if (!L->isLoopInvariant(LoadPtr))
1762     return false;
1763 
1764   // We plan to hoist the load to preheader without introducing a new fault.
1765   // In order to do it, we need to prove that we cannot side-exit the loop
1766   // once loop header is first entered before execution of the load.
1767   if (ICF->isDominatedByICFIFromSameBlock(Load))
1768     return false;
1769 
1770   BasicBlock *LoopBlock = nullptr;
1771   for (auto *Blocker : UnavailableBlocks) {
1772     // Blockers from outside the loop are handled in preheader.
1773     if (!L->contains(Blocker))
1774       continue;
1775 
1776     // Only allow one loop block. Loop header is not less frequently executed
1777     // than each loop block, and likely it is much more frequently executed. But
1778     // in case of multiple loop blocks, we need extra information (such as block
1779     // frequency info) to understand whether it is profitable to PRE into
1780     // multiple loop blocks.
1781     if (LoopBlock)
1782       return false;
1783 
1784     // Do not sink into inner loops. This may be non-profitable.
1785     if (L != LI->getLoopFor(Blocker))
1786       return false;
1787 
1788     // Blocks that dominate the latch execute on every single iteration, maybe
1789     // except the last one. So PREing into these blocks doesn't make much sense
1790     // in most cases. But the blocks that do not necessarily execute on each
1791     // iteration are sometimes much colder than the header, and this is when
1792     // PRE is potentially profitable.
1793     if (DT->dominates(Blocker, Latch))
1794       return false;
1795 
1796     // Make sure that the terminator itself doesn't clobber.
1797     if (Blocker->getTerminator()->mayWriteToMemory())
1798       return false;
1799 
1800     LoopBlock = Blocker;
1801   }
1802 
1803   if (!LoopBlock)
1804     return false;
1805 
1806   // Make sure the memory at this pointer cannot be freed, therefore we can
1807   // safely reload from it after clobber.
1808   if (LoadPtr->canBeFreed())
1809     return false;
1810 
1811   // TODO: Support critical edge splitting if blocker has more than 1 successor.
1812   MapVector<BasicBlock *, Value *> AvailableLoads;
1813   AvailableLoads[LoopBlock] = LoadPtr;
1814   AvailableLoads[Preheader] = LoadPtr;
1815 
1816   LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOOP LOAD: " << *Load << '\n');
1817   eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, AvailableLoads,
1818                                   /*CriticalEdgePredAndLoad*/ nullptr);
1819   ++NumPRELoopLoad;
1820   return true;
1821 }
1822 
1823 static void reportLoadElim(LoadInst *Load, Value *AvailableValue,
1824                            OptimizationRemarkEmitter *ORE) {
1825   using namespace ore;
1826 
1827   ORE->emit([&]() {
1828     return OptimizationRemark(DEBUG_TYPE, "LoadElim", Load)
1829            << "load of type " << NV("Type", Load->getType()) << " eliminated"
1830            << setExtraArgs() << " in favor of "
1831            << NV("InfavorOfValue", AvailableValue);
1832   });
1833 }
1834 
1835 /// Attempt to eliminate a load whose dependencies are
1836 /// non-local by performing PHI construction.
1837 bool GVNPass::processNonLocalLoad(LoadInst *Load) {
1838   // non-local speculations are not allowed under asan.
1839   if (Load->getParent()->getParent()->hasFnAttribute(
1840           Attribute::SanitizeAddress) ||
1841       Load->getParent()->getParent()->hasFnAttribute(
1842           Attribute::SanitizeHWAddress))
1843     return false;
1844 
1845   // Step 1: Find the non-local dependencies of the load.
1846   LoadDepVect Deps;
1847   MD->getNonLocalPointerDependency(Load, Deps);
1848 
1849   // If we had to process more than one hundred blocks to find the
1850   // dependencies, this load isn't worth worrying about.  Optimizing
1851   // it will be too expensive.
1852   unsigned NumDeps = Deps.size();
1853   if (NumDeps > MaxNumDeps)
1854     return false;
1855 
1856   // If we had a phi translation failure, we'll have a single entry which is a
1857   // clobber in the current block.  Reject this early.
1858   if (NumDeps == 1 &&
1859       !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1860     LLVM_DEBUG(dbgs() << "GVN: non-local load "; Load->printAsOperand(dbgs());
1861                dbgs() << " has unknown dependencies\n";);
1862     return false;
1863   }
1864 
1865   bool Changed = false;
1866   // If this load follows a GEP, see if we can PRE the indices before analyzing.
1867   if (GetElementPtrInst *GEP =
1868           dyn_cast<GetElementPtrInst>(Load->getOperand(0))) {
1869     for (Use &U : GEP->indices())
1870       if (Instruction *I = dyn_cast<Instruction>(U.get()))
1871         Changed |= performScalarPRE(I);
1872   }
1873 
1874   // Step 2: Analyze the availability of the load
1875   AvailValInBlkVect ValuesPerBlock;
1876   UnavailBlkVect UnavailableBlocks;
1877   AnalyzeLoadAvailability(Load, Deps, ValuesPerBlock, UnavailableBlocks);
1878 
1879   // If we have no predecessors that produce a known value for this load, exit
1880   // early.
1881   if (ValuesPerBlock.empty())
1882     return Changed;
1883 
1884   // Step 3: Eliminate fully redundancy.
1885   //
1886   // If all of the instructions we depend on produce a known value for this
1887   // load, then it is fully redundant and we can use PHI insertion to compute
1888   // its value.  Insert PHIs and remove the fully redundant value now.
1889   if (UnavailableBlocks.empty()) {
1890     LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *Load << '\n');
1891 
1892     // Perform PHI construction.
1893     Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this);
1894     // ConstructSSAForLoadSet is responsible for combining metadata.
1895     ICF->removeUsersOf(Load);
1896     Load->replaceAllUsesWith(V);
1897 
1898     if (isa<PHINode>(V))
1899       V->takeName(Load);
1900     if (Instruction *I = dyn_cast<Instruction>(V))
1901       // If instruction I has debug info, then we should not update it.
1902       // Also, if I has a null DebugLoc, then it is still potentially incorrect
1903       // to propagate Load's DebugLoc because Load may not post-dominate I.
1904       if (Load->getDebugLoc() && Load->getParent() == I->getParent())
1905         I->setDebugLoc(Load->getDebugLoc());
1906     if (V->getType()->isPtrOrPtrVectorTy())
1907       MD->invalidateCachedPointerInfo(V);
1908     markInstructionForDeletion(Load);
1909     ++NumGVNLoad;
1910     reportLoadElim(Load, V, ORE);
1911     return true;
1912   }
1913 
1914   // Step 4: Eliminate partial redundancy.
1915   if (!isPREEnabled() || !isLoadPREEnabled())
1916     return Changed;
1917   if (!isLoadInLoopPREEnabled() && LI->getLoopFor(Load->getParent()))
1918     return Changed;
1919 
1920   if (performLoopLoadPRE(Load, ValuesPerBlock, UnavailableBlocks) ||
1921       PerformLoadPRE(Load, ValuesPerBlock, UnavailableBlocks))
1922     return true;
1923 
1924   return Changed;
1925 }
1926 
1927 static bool impliesEquivalanceIfTrue(CmpInst* Cmp) {
1928   if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_EQ)
1929     return true;
1930 
1931   // Floating point comparisons can be equal, but not equivalent.  Cases:
1932   // NaNs for unordered operators
1933   // +0.0 vs 0.0 for all operators
1934   if (Cmp->getPredicate() == CmpInst::Predicate::FCMP_OEQ ||
1935       (Cmp->getPredicate() == CmpInst::Predicate::FCMP_UEQ &&
1936        Cmp->getFastMathFlags().noNaNs())) {
1937       Value *LHS = Cmp->getOperand(0);
1938       Value *RHS = Cmp->getOperand(1);
1939       // If we can prove either side non-zero, then equality must imply
1940       // equivalence.
1941       // FIXME: We should do this optimization if 'no signed zeros' is
1942       // applicable via an instruction-level fast-math-flag or some other
1943       // indicator that relaxed FP semantics are being used.
1944       if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero())
1945         return true;
1946       if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero())
1947         return true;
1948       // TODO: Handle vector floating point constants
1949   }
1950   return false;
1951 }
1952 
1953 static bool impliesEquivalanceIfFalse(CmpInst* Cmp) {
1954   if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_NE)
1955     return true;
1956 
1957   // Floating point comparisons can be equal, but not equivelent.  Cases:
1958   // NaNs for unordered operators
1959   // +0.0 vs 0.0 for all operators
1960   if ((Cmp->getPredicate() == CmpInst::Predicate::FCMP_ONE &&
1961        Cmp->getFastMathFlags().noNaNs()) ||
1962       Cmp->getPredicate() == CmpInst::Predicate::FCMP_UNE) {
1963       Value *LHS = Cmp->getOperand(0);
1964       Value *RHS = Cmp->getOperand(1);
1965       // If we can prove either side non-zero, then equality must imply
1966       // equivalence.
1967       // FIXME: We should do this optimization if 'no signed zeros' is
1968       // applicable via an instruction-level fast-math-flag or some other
1969       // indicator that relaxed FP semantics are being used.
1970       if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero())
1971         return true;
1972       if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero())
1973         return true;
1974       // TODO: Handle vector floating point constants
1975   }
1976   return false;
1977 }
1978 
1979 
1980 static bool hasUsersIn(Value *V, BasicBlock *BB) {
1981   return llvm::any_of(V->users(), [BB](User *U) {
1982     auto *I = dyn_cast<Instruction>(U);
1983     return I && I->getParent() == BB;
1984   });
1985 }
1986 
1987 bool GVNPass::processAssumeIntrinsic(AssumeInst *IntrinsicI) {
1988   Value *V = IntrinsicI->getArgOperand(0);
1989 
1990   if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
1991     if (Cond->isZero()) {
1992       Type *Int8Ty = Type::getInt8Ty(V->getContext());
1993       Type *PtrTy = PointerType::get(V->getContext(), 0);
1994       // Insert a new store to null instruction before the load to indicate that
1995       // this code is not reachable.  FIXME: We could insert unreachable
1996       // instruction directly because we can modify the CFG.
1997       auto *NewS = new StoreInst(PoisonValue::get(Int8Ty),
1998                                  Constant::getNullValue(PtrTy), IntrinsicI);
1999       if (MSSAU) {
2000         const MemoryUseOrDef *FirstNonDom = nullptr;
2001         const auto *AL =
2002             MSSAU->getMemorySSA()->getBlockAccesses(IntrinsicI->getParent());
2003 
2004         // If there are accesses in the current basic block, find the first one
2005         // that does not come before NewS. The new memory access is inserted
2006         // after the found access or before the terminator if no such access is
2007         // found.
2008         if (AL) {
2009           for (const auto &Acc : *AL) {
2010             if (auto *Current = dyn_cast<MemoryUseOrDef>(&Acc))
2011               if (!Current->getMemoryInst()->comesBefore(NewS)) {
2012                 FirstNonDom = Current;
2013                 break;
2014               }
2015           }
2016         }
2017 
2018         auto *NewDef =
2019             FirstNonDom ? MSSAU->createMemoryAccessBefore(
2020                               NewS, nullptr,
2021                               const_cast<MemoryUseOrDef *>(FirstNonDom))
2022                         : MSSAU->createMemoryAccessInBB(
2023                               NewS, nullptr,
2024                               NewS->getParent(), MemorySSA::BeforeTerminator);
2025 
2026         MSSAU->insertDef(cast<MemoryDef>(NewDef), /*RenameUses=*/false);
2027       }
2028     }
2029     if (isAssumeWithEmptyBundle(*IntrinsicI)) {
2030       markInstructionForDeletion(IntrinsicI);
2031       return true;
2032     }
2033     return false;
2034   }
2035 
2036   if (isa<Constant>(V)) {
2037     // If it's not false, and constant, it must evaluate to true. This means our
2038     // assume is assume(true), and thus, pointless, and we don't want to do
2039     // anything more here.
2040     return false;
2041   }
2042 
2043   Constant *True = ConstantInt::getTrue(V->getContext());
2044   bool Changed = false;
2045 
2046   for (BasicBlock *Successor : successors(IntrinsicI->getParent())) {
2047     BasicBlockEdge Edge(IntrinsicI->getParent(), Successor);
2048 
2049     // This property is only true in dominated successors, propagateEquality
2050     // will check dominance for us.
2051     Changed |= propagateEquality(V, True, Edge, false);
2052   }
2053 
2054   // We can replace assume value with true, which covers cases like this:
2055   // call void @llvm.assume(i1 %cmp)
2056   // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true
2057   ReplaceOperandsWithMap[V] = True;
2058 
2059   // Similarly, after assume(!NotV) we know that NotV == false.
2060   Value *NotV;
2061   if (match(V, m_Not(m_Value(NotV))))
2062     ReplaceOperandsWithMap[NotV] = ConstantInt::getFalse(V->getContext());
2063 
2064   // If we find an equality fact, canonicalize all dominated uses in this block
2065   // to one of the two values.  We heuristically choice the "oldest" of the
2066   // two where age is determined by value number. (Note that propagateEquality
2067   // above handles the cross block case.)
2068   //
2069   // Key case to cover are:
2070   // 1)
2071   // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen
2072   // call void @llvm.assume(i1 %cmp)
2073   // ret float %0 ; will change it to ret float 3.000000e+00
2074   // 2)
2075   // %load = load float, float* %addr
2076   // %cmp = fcmp oeq float %load, %0
2077   // call void @llvm.assume(i1 %cmp)
2078   // ret float %load ; will change it to ret float %0
2079   if (auto *CmpI = dyn_cast<CmpInst>(V)) {
2080     if (impliesEquivalanceIfTrue(CmpI)) {
2081       Value *CmpLHS = CmpI->getOperand(0);
2082       Value *CmpRHS = CmpI->getOperand(1);
2083       // Heuristically pick the better replacement -- the choice of heuristic
2084       // isn't terribly important here, but the fact we canonicalize on some
2085       // replacement is for exposing other simplifications.
2086       // TODO: pull this out as a helper function and reuse w/existing
2087       // (slightly different) logic.
2088       if (isa<Constant>(CmpLHS) && !isa<Constant>(CmpRHS))
2089         std::swap(CmpLHS, CmpRHS);
2090       if (!isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))
2091         std::swap(CmpLHS, CmpRHS);
2092       if ((isa<Argument>(CmpLHS) && isa<Argument>(CmpRHS)) ||
2093           (isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))) {
2094         // Move the 'oldest' value to the right-hand side, using the value
2095         // number as a proxy for age.
2096         uint32_t LVN = VN.lookupOrAdd(CmpLHS);
2097         uint32_t RVN = VN.lookupOrAdd(CmpRHS);
2098         if (LVN < RVN)
2099           std::swap(CmpLHS, CmpRHS);
2100       }
2101 
2102       // Handle degenerate case where we either haven't pruned a dead path or a
2103       // removed a trivial assume yet.
2104       if (isa<Constant>(CmpLHS) && isa<Constant>(CmpRHS))
2105         return Changed;
2106 
2107       LLVM_DEBUG(dbgs() << "Replacing dominated uses of "
2108                  << *CmpLHS << " with "
2109                  << *CmpRHS << " in block "
2110                  << IntrinsicI->getParent()->getName() << "\n");
2111 
2112 
2113       // Setup the replacement map - this handles uses within the same block
2114       if (hasUsersIn(CmpLHS, IntrinsicI->getParent()))
2115         ReplaceOperandsWithMap[CmpLHS] = CmpRHS;
2116 
2117       // NOTE: The non-block local cases are handled by the call to
2118       // propagateEquality above; this block is just about handling the block
2119       // local cases.  TODO: There's a bunch of logic in propagateEqualiy which
2120       // isn't duplicated for the block local case, can we share it somehow?
2121     }
2122   }
2123   return Changed;
2124 }
2125 
2126 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
2127   patchReplacementInstruction(I, Repl);
2128   I->replaceAllUsesWith(Repl);
2129 }
2130 
2131 /// Attempt to eliminate a load, first by eliminating it
2132 /// locally, and then attempting non-local elimination if that fails.
2133 bool GVNPass::processLoad(LoadInst *L) {
2134   if (!MD)
2135     return false;
2136 
2137   // This code hasn't been audited for ordered or volatile memory access
2138   if (!L->isUnordered())
2139     return false;
2140 
2141   if (L->use_empty()) {
2142     markInstructionForDeletion(L);
2143     return true;
2144   }
2145 
2146   // ... to a pointer that has been loaded from before...
2147   MemDepResult Dep = MD->getDependency(L);
2148 
2149   // If it is defined in another block, try harder.
2150   if (Dep.isNonLocal())
2151     return processNonLocalLoad(L);
2152 
2153   // Only handle the local case below
2154   if (!Dep.isLocal()) {
2155     // This might be a NonFuncLocal or an Unknown
2156     LLVM_DEBUG(
2157         // fast print dep, using operator<< on instruction is too slow.
2158         dbgs() << "GVN: load "; L->printAsOperand(dbgs());
2159         dbgs() << " has unknown dependence\n";);
2160     return false;
2161   }
2162 
2163   auto AV = AnalyzeLoadAvailability(L, Dep, L->getPointerOperand());
2164   if (!AV)
2165     return false;
2166 
2167   Value *AvailableValue = AV->MaterializeAdjustedValue(L, L, *this);
2168 
2169   // MaterializeAdjustedValue is responsible for combining metadata.
2170   ICF->removeUsersOf(L);
2171   L->replaceAllUsesWith(AvailableValue);
2172   markInstructionForDeletion(L);
2173   if (MSSAU)
2174     MSSAU->removeMemoryAccess(L);
2175   ++NumGVNLoad;
2176   reportLoadElim(L, AvailableValue, ORE);
2177   // Tell MDA to reexamine the reused pointer since we might have more
2178   // information after forwarding it.
2179   if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy())
2180     MD->invalidateCachedPointerInfo(AvailableValue);
2181   return true;
2182 }
2183 
2184 /// Return a pair the first field showing the value number of \p Exp and the
2185 /// second field showing whether it is a value number newly created.
2186 std::pair<uint32_t, bool>
2187 GVNPass::ValueTable::assignExpNewValueNum(Expression &Exp) {
2188   uint32_t &e = expressionNumbering[Exp];
2189   bool CreateNewValNum = !e;
2190   if (CreateNewValNum) {
2191     Expressions.push_back(Exp);
2192     if (ExprIdx.size() < nextValueNumber + 1)
2193       ExprIdx.resize(nextValueNumber * 2);
2194     e = nextValueNumber;
2195     ExprIdx[nextValueNumber++] = nextExprNumber++;
2196   }
2197   return {e, CreateNewValNum};
2198 }
2199 
2200 /// Return whether all the values related with the same \p num are
2201 /// defined in \p BB.
2202 bool GVNPass::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB,
2203                                          GVNPass &Gvn) {
2204   LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
2205   while (Vals && Vals->BB == BB)
2206     Vals = Vals->Next;
2207   return !Vals;
2208 }
2209 
2210 /// Wrap phiTranslateImpl to provide caching functionality.
2211 uint32_t GVNPass::ValueTable::phiTranslate(const BasicBlock *Pred,
2212                                            const BasicBlock *PhiBlock,
2213                                            uint32_t Num, GVNPass &Gvn) {
2214   auto FindRes = PhiTranslateTable.find({Num, Pred});
2215   if (FindRes != PhiTranslateTable.end())
2216     return FindRes->second;
2217   uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn);
2218   PhiTranslateTable.insert({{Num, Pred}, NewNum});
2219   return NewNum;
2220 }
2221 
2222 // Return true if the value number \p Num and NewNum have equal value.
2223 // Return false if the result is unknown.
2224 bool GVNPass::ValueTable::areCallValsEqual(uint32_t Num, uint32_t NewNum,
2225                                            const BasicBlock *Pred,
2226                                            const BasicBlock *PhiBlock,
2227                                            GVNPass &Gvn) {
2228   CallInst *Call = nullptr;
2229   LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
2230   while (Vals) {
2231     Call = dyn_cast<CallInst>(Vals->Val);
2232     if (Call && Call->getParent() == PhiBlock)
2233       break;
2234     Vals = Vals->Next;
2235   }
2236 
2237   if (AA->doesNotAccessMemory(Call))
2238     return true;
2239 
2240   if (!MD || !AA->onlyReadsMemory(Call))
2241     return false;
2242 
2243   MemDepResult local_dep = MD->getDependency(Call);
2244   if (!local_dep.isNonLocal())
2245     return false;
2246 
2247   const MemoryDependenceResults::NonLocalDepInfo &deps =
2248       MD->getNonLocalCallDependency(Call);
2249 
2250   // Check to see if the Call has no function local clobber.
2251   for (const NonLocalDepEntry &D : deps) {
2252     if (D.getResult().isNonFuncLocal())
2253       return true;
2254   }
2255   return false;
2256 }
2257 
2258 /// Translate value number \p Num using phis, so that it has the values of
2259 /// the phis in BB.
2260 uint32_t GVNPass::ValueTable::phiTranslateImpl(const BasicBlock *Pred,
2261                                                const BasicBlock *PhiBlock,
2262                                                uint32_t Num, GVNPass &Gvn) {
2263   if (PHINode *PN = NumberingPhi[Num]) {
2264     for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
2265       if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred)
2266         if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false))
2267           return TransVal;
2268     }
2269     return Num;
2270   }
2271 
2272   // If there is any value related with Num is defined in a BB other than
2273   // PhiBlock, it cannot depend on a phi in PhiBlock without going through
2274   // a backedge. We can do an early exit in that case to save compile time.
2275   if (!areAllValsInBB(Num, PhiBlock, Gvn))
2276     return Num;
2277 
2278   if (Num >= ExprIdx.size() || ExprIdx[Num] == 0)
2279     return Num;
2280   Expression Exp = Expressions[ExprIdx[Num]];
2281 
2282   for (unsigned i = 0; i < Exp.varargs.size(); i++) {
2283     // For InsertValue and ExtractValue, some varargs are index numbers
2284     // instead of value numbers. Those index numbers should not be
2285     // translated.
2286     if ((i > 1 && Exp.opcode == Instruction::InsertValue) ||
2287         (i > 0 && Exp.opcode == Instruction::ExtractValue) ||
2288         (i > 1 && Exp.opcode == Instruction::ShuffleVector))
2289       continue;
2290     Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn);
2291   }
2292 
2293   if (Exp.commutative) {
2294     assert(Exp.varargs.size() >= 2 && "Unsupported commutative instruction!");
2295     if (Exp.varargs[0] > Exp.varargs[1]) {
2296       std::swap(Exp.varargs[0], Exp.varargs[1]);
2297       uint32_t Opcode = Exp.opcode >> 8;
2298       if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)
2299         Exp.opcode = (Opcode << 8) |
2300                      CmpInst::getSwappedPredicate(
2301                          static_cast<CmpInst::Predicate>(Exp.opcode & 255));
2302     }
2303   }
2304 
2305   if (uint32_t NewNum = expressionNumbering[Exp]) {
2306     if (Exp.opcode == Instruction::Call && NewNum != Num)
2307       return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num;
2308     return NewNum;
2309   }
2310   return Num;
2311 }
2312 
2313 /// Erase stale entry from phiTranslate cache so phiTranslate can be computed
2314 /// again.
2315 void GVNPass::ValueTable::eraseTranslateCacheEntry(
2316     uint32_t Num, const BasicBlock &CurrBlock) {
2317   for (const BasicBlock *Pred : predecessors(&CurrBlock))
2318     PhiTranslateTable.erase({Num, Pred});
2319 }
2320 
2321 // In order to find a leader for a given value number at a
2322 // specific basic block, we first obtain the list of all Values for that number,
2323 // and then scan the list to find one whose block dominates the block in
2324 // question.  This is fast because dominator tree queries consist of only
2325 // a few comparisons of DFS numbers.
2326 Value *GVNPass::findLeader(const BasicBlock *BB, uint32_t num) {
2327   LeaderTableEntry Vals = LeaderTable[num];
2328   if (!Vals.Val) return nullptr;
2329 
2330   Value *Val = nullptr;
2331   if (DT->dominates(Vals.BB, BB)) {
2332     Val = Vals.Val;
2333     if (isa<Constant>(Val)) return Val;
2334   }
2335 
2336   LeaderTableEntry* Next = Vals.Next;
2337   while (Next) {
2338     if (DT->dominates(Next->BB, BB)) {
2339       if (isa<Constant>(Next->Val)) return Next->Val;
2340       if (!Val) Val = Next->Val;
2341     }
2342 
2343     Next = Next->Next;
2344   }
2345 
2346   return Val;
2347 }
2348 
2349 /// There is an edge from 'Src' to 'Dst'.  Return
2350 /// true if every path from the entry block to 'Dst' passes via this edge.  In
2351 /// particular 'Dst' must not be reachable via another edge from 'Src'.
2352 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
2353                                        DominatorTree *DT) {
2354   // While in theory it is interesting to consider the case in which Dst has
2355   // more than one predecessor, because Dst might be part of a loop which is
2356   // only reachable from Src, in practice it is pointless since at the time
2357   // GVN runs all such loops have preheaders, which means that Dst will have
2358   // been changed to have only one predecessor, namely Src.
2359   const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
2360   assert((!Pred || Pred == E.getStart()) &&
2361          "No edge between these basic blocks!");
2362   return Pred != nullptr;
2363 }
2364 
2365 void GVNPass::assignBlockRPONumber(Function &F) {
2366   BlockRPONumber.clear();
2367   uint32_t NextBlockNumber = 1;
2368   ReversePostOrderTraversal<Function *> RPOT(&F);
2369   for (BasicBlock *BB : RPOT)
2370     BlockRPONumber[BB] = NextBlockNumber++;
2371   InvalidBlockRPONumbers = false;
2372 }
2373 
2374 bool GVNPass::replaceOperandsForInBlockEquality(Instruction *Instr) const {
2375   bool Changed = false;
2376   for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) {
2377     Value *Operand = Instr->getOperand(OpNum);
2378     auto it = ReplaceOperandsWithMap.find(Operand);
2379     if (it != ReplaceOperandsWithMap.end()) {
2380       LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with "
2381                         << *it->second << " in instruction " << *Instr << '\n');
2382       Instr->setOperand(OpNum, it->second);
2383       Changed = true;
2384     }
2385   }
2386   return Changed;
2387 }
2388 
2389 /// The given values are known to be equal in every block
2390 /// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
2391 /// 'RHS' everywhere in the scope.  Returns whether a change was made.
2392 /// If DominatesByEdge is false, then it means that we will propagate the RHS
2393 /// value starting from the end of Root.Start.
2394 bool GVNPass::propagateEquality(Value *LHS, Value *RHS,
2395                                 const BasicBlockEdge &Root,
2396                                 bool DominatesByEdge) {
2397   SmallVector<std::pair<Value*, Value*>, 4> Worklist;
2398   Worklist.push_back(std::make_pair(LHS, RHS));
2399   bool Changed = false;
2400   // For speed, compute a conservative fast approximation to
2401   // DT->dominates(Root, Root.getEnd());
2402   const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
2403 
2404   while (!Worklist.empty()) {
2405     std::pair<Value*, Value*> Item = Worklist.pop_back_val();
2406     LHS = Item.first; RHS = Item.second;
2407 
2408     if (LHS == RHS)
2409       continue;
2410     assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
2411 
2412     // Don't try to propagate equalities between constants.
2413     if (isa<Constant>(LHS) && isa<Constant>(RHS))
2414       continue;
2415 
2416     // Prefer a constant on the right-hand side, or an Argument if no constants.
2417     if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
2418       std::swap(LHS, RHS);
2419     assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
2420 
2421     // If there is no obvious reason to prefer the left-hand side over the
2422     // right-hand side, ensure the longest lived term is on the right-hand side,
2423     // so the shortest lived term will be replaced by the longest lived.
2424     // This tends to expose more simplifications.
2425     uint32_t LVN = VN.lookupOrAdd(LHS);
2426     if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
2427         (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
2428       // Move the 'oldest' value to the right-hand side, using the value number
2429       // as a proxy for age.
2430       uint32_t RVN = VN.lookupOrAdd(RHS);
2431       if (LVN < RVN) {
2432         std::swap(LHS, RHS);
2433         LVN = RVN;
2434       }
2435     }
2436 
2437     // If value numbering later sees that an instruction in the scope is equal
2438     // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
2439     // the invariant that instructions only occur in the leader table for their
2440     // own value number (this is used by removeFromLeaderTable), do not do this
2441     // if RHS is an instruction (if an instruction in the scope is morphed into
2442     // LHS then it will be turned into RHS by the next GVN iteration anyway, so
2443     // using the leader table is about compiling faster, not optimizing better).
2444     // The leader table only tracks basic blocks, not edges. Only add to if we
2445     // have the simple case where the edge dominates the end.
2446     if (RootDominatesEnd && !isa<Instruction>(RHS))
2447       addToLeaderTable(LVN, RHS, Root.getEnd());
2448 
2449     // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
2450     // LHS always has at least one use that is not dominated by Root, this will
2451     // never do anything if LHS has only one use.
2452     if (!LHS->hasOneUse()) {
2453       unsigned NumReplacements =
2454           DominatesByEdge
2455               ? replaceDominatedUsesWith(LHS, RHS, *DT, Root)
2456               : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart());
2457 
2458       Changed |= NumReplacements > 0;
2459       NumGVNEqProp += NumReplacements;
2460       // Cached information for anything that uses LHS will be invalid.
2461       if (MD)
2462         MD->invalidateCachedPointerInfo(LHS);
2463     }
2464 
2465     // Now try to deduce additional equalities from this one. For example, if
2466     // the known equality was "(A != B)" == "false" then it follows that A and B
2467     // are equal in the scope. Only boolean equalities with an explicit true or
2468     // false RHS are currently supported.
2469     if (!RHS->getType()->isIntegerTy(1))
2470       // Not a boolean equality - bail out.
2471       continue;
2472     ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
2473     if (!CI)
2474       // RHS neither 'true' nor 'false' - bail out.
2475       continue;
2476     // Whether RHS equals 'true'.  Otherwise it equals 'false'.
2477     bool isKnownTrue = CI->isMinusOne();
2478     bool isKnownFalse = !isKnownTrue;
2479 
2480     // If "A && B" is known true then both A and B are known true.  If "A || B"
2481     // is known false then both A and B are known false.
2482     Value *A, *B;
2483     if ((isKnownTrue && match(LHS, m_LogicalAnd(m_Value(A), m_Value(B)))) ||
2484         (isKnownFalse && match(LHS, m_LogicalOr(m_Value(A), m_Value(B))))) {
2485       Worklist.push_back(std::make_pair(A, RHS));
2486       Worklist.push_back(std::make_pair(B, RHS));
2487       continue;
2488     }
2489 
2490     // If we are propagating an equality like "(A == B)" == "true" then also
2491     // propagate the equality A == B.  When propagating a comparison such as
2492     // "(A >= B)" == "true", replace all instances of "A < B" with "false".
2493     if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
2494       Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
2495 
2496       // If "A == B" is known true, or "A != B" is known false, then replace
2497       // A with B everywhere in the scope.  For floating point operations, we
2498       // have to be careful since equality does not always imply equivalance.
2499       if ((isKnownTrue && impliesEquivalanceIfTrue(Cmp)) ||
2500           (isKnownFalse && impliesEquivalanceIfFalse(Cmp)))
2501         Worklist.push_back(std::make_pair(Op0, Op1));
2502 
2503       // If "A >= B" is known true, replace "A < B" with false everywhere.
2504       CmpInst::Predicate NotPred = Cmp->getInversePredicate();
2505       Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
2506       // Since we don't have the instruction "A < B" immediately to hand, work
2507       // out the value number that it would have and use that to find an
2508       // appropriate instruction (if any).
2509       uint32_t NextNum = VN.getNextUnusedValueNumber();
2510       uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1);
2511       // If the number we were assigned was brand new then there is no point in
2512       // looking for an instruction realizing it: there cannot be one!
2513       if (Num < NextNum) {
2514         Value *NotCmp = findLeader(Root.getEnd(), Num);
2515         if (NotCmp && isa<Instruction>(NotCmp)) {
2516           unsigned NumReplacements =
2517               DominatesByEdge
2518                   ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root)
2519                   : replaceDominatedUsesWith(NotCmp, NotVal, *DT,
2520                                              Root.getStart());
2521           Changed |= NumReplacements > 0;
2522           NumGVNEqProp += NumReplacements;
2523           // Cached information for anything that uses NotCmp will be invalid.
2524           if (MD)
2525             MD->invalidateCachedPointerInfo(NotCmp);
2526         }
2527       }
2528       // Ensure that any instruction in scope that gets the "A < B" value number
2529       // is replaced with false.
2530       // The leader table only tracks basic blocks, not edges. Only add to if we
2531       // have the simple case where the edge dominates the end.
2532       if (RootDominatesEnd)
2533         addToLeaderTable(Num, NotVal, Root.getEnd());
2534 
2535       continue;
2536     }
2537   }
2538 
2539   return Changed;
2540 }
2541 
2542 /// When calculating availability, handle an instruction
2543 /// by inserting it into the appropriate sets
2544 bool GVNPass::processInstruction(Instruction *I) {
2545   // Ignore dbg info intrinsics.
2546   if (isa<DbgInfoIntrinsic>(I))
2547     return false;
2548 
2549   // If the instruction can be easily simplified then do so now in preference
2550   // to value numbering it.  Value numbering often exposes redundancies, for
2551   // example if it determines that %y is equal to %x then the instruction
2552   // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
2553   const DataLayout &DL = I->getModule()->getDataLayout();
2554   if (Value *V = simplifyInstruction(I, {DL, TLI, DT, AC})) {
2555     bool Changed = false;
2556     if (!I->use_empty()) {
2557       // Simplification can cause a special instruction to become not special.
2558       // For example, devirtualization to a willreturn function.
2559       ICF->removeUsersOf(I);
2560       I->replaceAllUsesWith(V);
2561       Changed = true;
2562     }
2563     if (isInstructionTriviallyDead(I, TLI)) {
2564       markInstructionForDeletion(I);
2565       Changed = true;
2566     }
2567     if (Changed) {
2568       if (MD && V->getType()->isPtrOrPtrVectorTy())
2569         MD->invalidateCachedPointerInfo(V);
2570       ++NumGVNSimpl;
2571       return true;
2572     }
2573   }
2574 
2575   if (auto *Assume = dyn_cast<AssumeInst>(I))
2576     return processAssumeIntrinsic(Assume);
2577 
2578   if (LoadInst *Load = dyn_cast<LoadInst>(I)) {
2579     if (processLoad(Load))
2580       return true;
2581 
2582     unsigned Num = VN.lookupOrAdd(Load);
2583     addToLeaderTable(Num, Load, Load->getParent());
2584     return false;
2585   }
2586 
2587   // For conditional branches, we can perform simple conditional propagation on
2588   // the condition value itself.
2589   if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
2590     if (!BI->isConditional())
2591       return false;
2592 
2593     if (isa<Constant>(BI->getCondition()))
2594       return processFoldableCondBr(BI);
2595 
2596     Value *BranchCond = BI->getCondition();
2597     BasicBlock *TrueSucc = BI->getSuccessor(0);
2598     BasicBlock *FalseSucc = BI->getSuccessor(1);
2599     // Avoid multiple edges early.
2600     if (TrueSucc == FalseSucc)
2601       return false;
2602 
2603     BasicBlock *Parent = BI->getParent();
2604     bool Changed = false;
2605 
2606     Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
2607     BasicBlockEdge TrueE(Parent, TrueSucc);
2608     Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true);
2609 
2610     Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
2611     BasicBlockEdge FalseE(Parent, FalseSucc);
2612     Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true);
2613 
2614     return Changed;
2615   }
2616 
2617   // For switches, propagate the case values into the case destinations.
2618   if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2619     Value *SwitchCond = SI->getCondition();
2620     BasicBlock *Parent = SI->getParent();
2621     bool Changed = false;
2622 
2623     // Remember how many outgoing edges there are to every successor.
2624     SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
2625     for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
2626       ++SwitchEdges[SI->getSuccessor(i)];
2627 
2628     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2629          i != e; ++i) {
2630       BasicBlock *Dst = i->getCaseSuccessor();
2631       // If there is only a single edge, propagate the case value into it.
2632       if (SwitchEdges.lookup(Dst) == 1) {
2633         BasicBlockEdge E(Parent, Dst);
2634         Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true);
2635       }
2636     }
2637     return Changed;
2638   }
2639 
2640   // Instructions with void type don't return a value, so there's
2641   // no point in trying to find redundancies in them.
2642   if (I->getType()->isVoidTy())
2643     return false;
2644 
2645   uint32_t NextNum = VN.getNextUnusedValueNumber();
2646   unsigned Num = VN.lookupOrAdd(I);
2647 
2648   // Allocations are always uniquely numbered, so we can save time and memory
2649   // by fast failing them.
2650   if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) {
2651     addToLeaderTable(Num, I, I->getParent());
2652     return false;
2653   }
2654 
2655   // If the number we were assigned was a brand new VN, then we don't
2656   // need to do a lookup to see if the number already exists
2657   // somewhere in the domtree: it can't!
2658   if (Num >= NextNum) {
2659     addToLeaderTable(Num, I, I->getParent());
2660     return false;
2661   }
2662 
2663   // Perform fast-path value-number based elimination of values inherited from
2664   // dominators.
2665   Value *Repl = findLeader(I->getParent(), Num);
2666   if (!Repl) {
2667     // Failure, just remember this instance for future use.
2668     addToLeaderTable(Num, I, I->getParent());
2669     return false;
2670   }
2671 
2672   if (Repl == I) {
2673     // If I was the result of a shortcut PRE, it might already be in the table
2674     // and the best replacement for itself. Nothing to do.
2675     return false;
2676   }
2677 
2678   // Remove it!
2679   patchAndReplaceAllUsesWith(I, Repl);
2680   if (MD && Repl->getType()->isPtrOrPtrVectorTy())
2681     MD->invalidateCachedPointerInfo(Repl);
2682   markInstructionForDeletion(I);
2683   return true;
2684 }
2685 
2686 /// runOnFunction - This is the main transformation entry point for a function.
2687 bool GVNPass::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT,
2688                       const TargetLibraryInfo &RunTLI, AAResults &RunAA,
2689                       MemoryDependenceResults *RunMD, LoopInfo &LI,
2690                       OptimizationRemarkEmitter *RunORE, MemorySSA *MSSA) {
2691   AC = &RunAC;
2692   DT = &RunDT;
2693   VN.setDomTree(DT);
2694   TLI = &RunTLI;
2695   VN.setAliasAnalysis(&RunAA);
2696   MD = RunMD;
2697   ImplicitControlFlowTracking ImplicitCFT;
2698   ICF = &ImplicitCFT;
2699   this->LI = &LI;
2700   VN.setMemDep(MD);
2701   ORE = RunORE;
2702   InvalidBlockRPONumbers = true;
2703   MemorySSAUpdater Updater(MSSA);
2704   MSSAU = MSSA ? &Updater : nullptr;
2705 
2706   bool Changed = false;
2707   bool ShouldContinue = true;
2708 
2709   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
2710   // Merge unconditional branches, allowing PRE to catch more
2711   // optimization opportunities.
2712   for (BasicBlock &BB : llvm::make_early_inc_range(F)) {
2713     bool removedBlock = MergeBlockIntoPredecessor(&BB, &DTU, &LI, MSSAU, MD);
2714     if (removedBlock)
2715       ++NumGVNBlocks;
2716 
2717     Changed |= removedBlock;
2718   }
2719 
2720   unsigned Iteration = 0;
2721   while (ShouldContinue) {
2722     LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2723     (void) Iteration;
2724     ShouldContinue = iterateOnFunction(F);
2725     Changed |= ShouldContinue;
2726     ++Iteration;
2727   }
2728 
2729   if (isPREEnabled()) {
2730     // Fabricate val-num for dead-code in order to suppress assertion in
2731     // performPRE().
2732     assignValNumForDeadCode();
2733     bool PREChanged = true;
2734     while (PREChanged) {
2735       PREChanged = performPRE(F);
2736       Changed |= PREChanged;
2737     }
2738   }
2739 
2740   // FIXME: Should perform GVN again after PRE does something.  PRE can move
2741   // computations into blocks where they become fully redundant.  Note that
2742   // we can't do this until PRE's critical edge splitting updates memdep.
2743   // Actually, when this happens, we should just fully integrate PRE into GVN.
2744 
2745   cleanupGlobalSets();
2746   // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
2747   // iteration.
2748   DeadBlocks.clear();
2749 
2750   if (MSSA && VerifyMemorySSA)
2751     MSSA->verifyMemorySSA();
2752 
2753   return Changed;
2754 }
2755 
2756 bool GVNPass::processBlock(BasicBlock *BB) {
2757   // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2758   // (and incrementing BI before processing an instruction).
2759   assert(InstrsToErase.empty() &&
2760          "We expect InstrsToErase to be empty across iterations");
2761   if (DeadBlocks.count(BB))
2762     return false;
2763 
2764   // Clearing map before every BB because it can be used only for single BB.
2765   ReplaceOperandsWithMap.clear();
2766   bool ChangedFunction = false;
2767 
2768   // Since we may not have visited the input blocks of the phis, we can't
2769   // use our normal hash approach for phis.  Instead, simply look for
2770   // obvious duplicates.  The first pass of GVN will tend to create
2771   // identical phis, and the second or later passes can eliminate them.
2772   SmallPtrSet<PHINode *, 8> PHINodesToRemove;
2773   ChangedFunction |= EliminateDuplicatePHINodes(BB, PHINodesToRemove);
2774   for (PHINode *PN : PHINodesToRemove) {
2775     VN.erase(PN);
2776     removeInstruction(PN);
2777   }
2778 
2779   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2780        BI != BE;) {
2781     if (!ReplaceOperandsWithMap.empty())
2782       ChangedFunction |= replaceOperandsForInBlockEquality(&*BI);
2783     ChangedFunction |= processInstruction(&*BI);
2784 
2785     if (InstrsToErase.empty()) {
2786       ++BI;
2787       continue;
2788     }
2789 
2790     // If we need some instructions deleted, do it now.
2791     NumGVNInstr += InstrsToErase.size();
2792 
2793     // Avoid iterator invalidation.
2794     bool AtStart = BI == BB->begin();
2795     if (!AtStart)
2796       --BI;
2797 
2798     for (auto *I : InstrsToErase) {
2799       assert(I->getParent() == BB && "Removing instruction from wrong block?");
2800       LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n');
2801       salvageKnowledge(I, AC);
2802       salvageDebugInfo(*I);
2803       removeInstruction(I);
2804     }
2805     InstrsToErase.clear();
2806 
2807     if (AtStart)
2808       BI = BB->begin();
2809     else
2810       ++BI;
2811   }
2812 
2813   return ChangedFunction;
2814 }
2815 
2816 // Instantiate an expression in a predecessor that lacked it.
2817 bool GVNPass::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
2818                                         BasicBlock *Curr, unsigned int ValNo) {
2819   // Because we are going top-down through the block, all value numbers
2820   // will be available in the predecessor by the time we need them.  Any
2821   // that weren't originally present will have been instantiated earlier
2822   // in this loop.
2823   bool success = true;
2824   for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
2825     Value *Op = Instr->getOperand(i);
2826     if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2827       continue;
2828     // This could be a newly inserted instruction, in which case, we won't
2829     // find a value number, and should give up before we hurt ourselves.
2830     // FIXME: Rewrite the infrastructure to let it easier to value number
2831     // and process newly inserted instructions.
2832     if (!VN.exists(Op)) {
2833       success = false;
2834       break;
2835     }
2836     uint32_t TValNo =
2837         VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this);
2838     if (Value *V = findLeader(Pred, TValNo)) {
2839       Instr->setOperand(i, V);
2840     } else {
2841       success = false;
2842       break;
2843     }
2844   }
2845 
2846   // Fail out if we encounter an operand that is not available in
2847   // the PRE predecessor.  This is typically because of loads which
2848   // are not value numbered precisely.
2849   if (!success)
2850     return false;
2851 
2852   Instr->insertBefore(Pred->getTerminator());
2853   Instr->setName(Instr->getName() + ".pre");
2854   Instr->setDebugLoc(Instr->getDebugLoc());
2855 
2856   ICF->insertInstructionTo(Instr, Pred);
2857 
2858   unsigned Num = VN.lookupOrAdd(Instr);
2859   VN.add(Instr, Num);
2860 
2861   // Update the availability map to include the new instruction.
2862   addToLeaderTable(Num, Instr, Pred);
2863   return true;
2864 }
2865 
2866 bool GVNPass::performScalarPRE(Instruction *CurInst) {
2867   if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() ||
2868       isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
2869       CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2870       isa<DbgInfoIntrinsic>(CurInst))
2871     return false;
2872 
2873   // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2874   // sinking the compare again, and it would force the code generator to
2875   // move the i1 from processor flags or predicate registers into a general
2876   // purpose register.
2877   if (isa<CmpInst>(CurInst))
2878     return false;
2879 
2880   // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from
2881   // sinking the addressing mode computation back to its uses. Extending the
2882   // GEP's live range increases the register pressure, and therefore it can
2883   // introduce unnecessary spills.
2884   //
2885   // This doesn't prevent Load PRE. PHI translation will make the GEP available
2886   // to the load by moving it to the predecessor block if necessary.
2887   if (isa<GetElementPtrInst>(CurInst))
2888     return false;
2889 
2890   if (auto *CallB = dyn_cast<CallBase>(CurInst)) {
2891     // We don't currently value number ANY inline asm calls.
2892     if (CallB->isInlineAsm())
2893       return false;
2894   }
2895 
2896   uint32_t ValNo = VN.lookup(CurInst);
2897 
2898   // Look for the predecessors for PRE opportunities.  We're
2899   // only trying to solve the basic diamond case, where
2900   // a value is computed in the successor and one predecessor,
2901   // but not the other.  We also explicitly disallow cases
2902   // where the successor is its own predecessor, because they're
2903   // more complicated to get right.
2904   unsigned NumWith = 0;
2905   unsigned NumWithout = 0;
2906   BasicBlock *PREPred = nullptr;
2907   BasicBlock *CurrentBlock = CurInst->getParent();
2908 
2909   // Update the RPO numbers for this function.
2910   if (InvalidBlockRPONumbers)
2911     assignBlockRPONumber(*CurrentBlock->getParent());
2912 
2913   SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap;
2914   for (BasicBlock *P : predecessors(CurrentBlock)) {
2915     // We're not interested in PRE where blocks with predecessors that are
2916     // not reachable.
2917     if (!DT->isReachableFromEntry(P)) {
2918       NumWithout = 2;
2919       break;
2920     }
2921     // It is not safe to do PRE when P->CurrentBlock is a loop backedge.
2922     assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) &&
2923            "Invalid BlockRPONumber map.");
2924     if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock]) {
2925       NumWithout = 2;
2926       break;
2927     }
2928 
2929     uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this);
2930     Value *predV = findLeader(P, TValNo);
2931     if (!predV) {
2932       predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
2933       PREPred = P;
2934       ++NumWithout;
2935     } else if (predV == CurInst) {
2936       /* CurInst dominates this predecessor. */
2937       NumWithout = 2;
2938       break;
2939     } else {
2940       predMap.push_back(std::make_pair(predV, P));
2941       ++NumWith;
2942     }
2943   }
2944 
2945   // Don't do PRE when it might increase code size, i.e. when
2946   // we would need to insert instructions in more than one pred.
2947   if (NumWithout > 1 || NumWith == 0)
2948     return false;
2949 
2950   // We may have a case where all predecessors have the instruction,
2951   // and we just need to insert a phi node. Otherwise, perform
2952   // insertion.
2953   Instruction *PREInstr = nullptr;
2954 
2955   if (NumWithout != 0) {
2956     if (!isSafeToSpeculativelyExecute(CurInst)) {
2957       // It is only valid to insert a new instruction if the current instruction
2958       // is always executed. An instruction with implicit control flow could
2959       // prevent us from doing it. If we cannot speculate the execution, then
2960       // PRE should be prohibited.
2961       if (ICF->isDominatedByICFIFromSameBlock(CurInst))
2962         return false;
2963     }
2964 
2965     // Don't do PRE across indirect branch.
2966     if (isa<IndirectBrInst>(PREPred->getTerminator()))
2967       return false;
2968 
2969     // We can't do PRE safely on a critical edge, so instead we schedule
2970     // the edge to be split and perform the PRE the next time we iterate
2971     // on the function.
2972     unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2973     if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2974       toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2975       return false;
2976     }
2977     // We need to insert somewhere, so let's give it a shot
2978     PREInstr = CurInst->clone();
2979     if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) {
2980       // If we failed insertion, make sure we remove the instruction.
2981 #ifndef NDEBUG
2982       verifyRemoved(PREInstr);
2983 #endif
2984       PREInstr->deleteValue();
2985       return false;
2986     }
2987   }
2988 
2989   // Either we should have filled in the PRE instruction, or we should
2990   // not have needed insertions.
2991   assert(PREInstr != nullptr || NumWithout == 0);
2992 
2993   ++NumGVNPRE;
2994 
2995   // Create a PHI to make the value available in this block.
2996   PHINode *Phi = PHINode::Create(CurInst->getType(), predMap.size(),
2997                                  CurInst->getName() + ".pre-phi");
2998   Phi->insertBefore(CurrentBlock->begin());
2999   for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
3000     if (Value *V = predMap[i].first) {
3001       // If we use an existing value in this phi, we have to patch the original
3002       // value because the phi will be used to replace a later value.
3003       patchReplacementInstruction(CurInst, V);
3004       Phi->addIncoming(V, predMap[i].second);
3005     } else
3006       Phi->addIncoming(PREInstr, PREPred);
3007   }
3008 
3009   VN.add(Phi, ValNo);
3010   // After creating a new PHI for ValNo, the phi translate result for ValNo will
3011   // be changed, so erase the related stale entries in phi translate cache.
3012   VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock);
3013   addToLeaderTable(ValNo, Phi, CurrentBlock);
3014   Phi->setDebugLoc(CurInst->getDebugLoc());
3015   CurInst->replaceAllUsesWith(Phi);
3016   if (MD && Phi->getType()->isPtrOrPtrVectorTy())
3017     MD->invalidateCachedPointerInfo(Phi);
3018   VN.erase(CurInst);
3019   removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
3020 
3021   LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
3022   removeInstruction(CurInst);
3023   ++NumGVNInstr;
3024 
3025   return true;
3026 }
3027 
3028 /// Perform a purely local form of PRE that looks for diamond
3029 /// control flow patterns and attempts to perform simple PRE at the join point.
3030 bool GVNPass::performPRE(Function &F) {
3031   bool Changed = false;
3032   for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
3033     // Nothing to PRE in the entry block.
3034     if (CurrentBlock == &F.getEntryBlock())
3035       continue;
3036 
3037     // Don't perform PRE on an EH pad.
3038     if (CurrentBlock->isEHPad())
3039       continue;
3040 
3041     for (BasicBlock::iterator BI = CurrentBlock->begin(),
3042                               BE = CurrentBlock->end();
3043          BI != BE;) {
3044       Instruction *CurInst = &*BI++;
3045       Changed |= performScalarPRE(CurInst);
3046     }
3047   }
3048 
3049   if (splitCriticalEdges())
3050     Changed = true;
3051 
3052   return Changed;
3053 }
3054 
3055 /// Split the critical edge connecting the given two blocks, and return
3056 /// the block inserted to the critical edge.
3057 BasicBlock *GVNPass::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
3058   // GVN does not require loop-simplify, do not try to preserve it if it is not
3059   // possible.
3060   BasicBlock *BB = SplitCriticalEdge(
3061       Pred, Succ,
3062       CriticalEdgeSplittingOptions(DT, LI, MSSAU).unsetPreserveLoopSimplify());
3063   if (BB) {
3064     if (MD)
3065       MD->invalidateCachedPredecessors();
3066     InvalidBlockRPONumbers = true;
3067   }
3068   return BB;
3069 }
3070 
3071 /// Split critical edges found during the previous
3072 /// iteration that may enable further optimization.
3073 bool GVNPass::splitCriticalEdges() {
3074   if (toSplit.empty())
3075     return false;
3076 
3077   bool Changed = false;
3078   do {
3079     std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val();
3080     Changed |= SplitCriticalEdge(Edge.first, Edge.second,
3081                                  CriticalEdgeSplittingOptions(DT, LI, MSSAU)) !=
3082                nullptr;
3083   } while (!toSplit.empty());
3084   if (Changed) {
3085     if (MD)
3086       MD->invalidateCachedPredecessors();
3087     InvalidBlockRPONumbers = true;
3088   }
3089   return Changed;
3090 }
3091 
3092 /// Executes one iteration of GVN
3093 bool GVNPass::iterateOnFunction(Function &F) {
3094   cleanupGlobalSets();
3095 
3096   // Top-down walk of the dominator tree
3097   bool Changed = false;
3098   // Needed for value numbering with phi construction to work.
3099   // RPOT walks the graph in its constructor and will not be invalidated during
3100   // processBlock.
3101   ReversePostOrderTraversal<Function *> RPOT(&F);
3102 
3103   for (BasicBlock *BB : RPOT)
3104     Changed |= processBlock(BB);
3105 
3106   return Changed;
3107 }
3108 
3109 void GVNPass::cleanupGlobalSets() {
3110   VN.clear();
3111   LeaderTable.clear();
3112   BlockRPONumber.clear();
3113   TableAllocator.Reset();
3114   ICF->clear();
3115   InvalidBlockRPONumbers = true;
3116 }
3117 
3118 void GVNPass::removeInstruction(Instruction *I) {
3119   if (MD) MD->removeInstruction(I);
3120   if (MSSAU)
3121     MSSAU->removeMemoryAccess(I);
3122 #ifndef NDEBUG
3123   verifyRemoved(I);
3124 #endif
3125   ICF->removeInstruction(I);
3126   I->eraseFromParent();
3127 }
3128 
3129 /// Verify that the specified instruction does not occur in our
3130 /// internal data structures.
3131 void GVNPass::verifyRemoved(const Instruction *Inst) const {
3132   VN.verifyRemoved(Inst);
3133 
3134   // Walk through the value number scope to make sure the instruction isn't
3135   // ferreted away in it.
3136   for (const auto &I : LeaderTable) {
3137     const LeaderTableEntry *Node = &I.second;
3138     assert(Node->Val != Inst && "Inst still in value numbering scope!");
3139 
3140     while (Node->Next) {
3141       Node = Node->Next;
3142       assert(Node->Val != Inst && "Inst still in value numbering scope!");
3143     }
3144   }
3145 }
3146 
3147 /// BB is declared dead, which implied other blocks become dead as well. This
3148 /// function is to add all these blocks to "DeadBlocks". For the dead blocks'
3149 /// live successors, update their phi nodes by replacing the operands
3150 /// corresponding to dead blocks with UndefVal.
3151 void GVNPass::addDeadBlock(BasicBlock *BB) {
3152   SmallVector<BasicBlock *, 4> NewDead;
3153   SmallSetVector<BasicBlock *, 4> DF;
3154 
3155   NewDead.push_back(BB);
3156   while (!NewDead.empty()) {
3157     BasicBlock *D = NewDead.pop_back_val();
3158     if (DeadBlocks.count(D))
3159       continue;
3160 
3161     // All blocks dominated by D are dead.
3162     SmallVector<BasicBlock *, 8> Dom;
3163     DT->getDescendants(D, Dom);
3164     DeadBlocks.insert(Dom.begin(), Dom.end());
3165 
3166     // Figure out the dominance-frontier(D).
3167     for (BasicBlock *B : Dom) {
3168       for (BasicBlock *S : successors(B)) {
3169         if (DeadBlocks.count(S))
3170           continue;
3171 
3172         bool AllPredDead = true;
3173         for (BasicBlock *P : predecessors(S))
3174           if (!DeadBlocks.count(P)) {
3175             AllPredDead = false;
3176             break;
3177           }
3178 
3179         if (!AllPredDead) {
3180           // S could be proved dead later on. That is why we don't update phi
3181           // operands at this moment.
3182           DF.insert(S);
3183         } else {
3184           // While S is not dominated by D, it is dead by now. This could take
3185           // place if S already have a dead predecessor before D is declared
3186           // dead.
3187           NewDead.push_back(S);
3188         }
3189       }
3190     }
3191   }
3192 
3193   // For the dead blocks' live successors, update their phi nodes by replacing
3194   // the operands corresponding to dead blocks with UndefVal.
3195   for (BasicBlock *B : DF) {
3196     if (DeadBlocks.count(B))
3197       continue;
3198 
3199     // First, split the critical edges. This might also create additional blocks
3200     // to preserve LoopSimplify form and adjust edges accordingly.
3201     SmallVector<BasicBlock *, 4> Preds(predecessors(B));
3202     for (BasicBlock *P : Preds) {
3203       if (!DeadBlocks.count(P))
3204         continue;
3205 
3206       if (llvm::is_contained(successors(P), B) &&
3207           isCriticalEdge(P->getTerminator(), B)) {
3208         if (BasicBlock *S = splitCriticalEdges(P, B))
3209           DeadBlocks.insert(P = S);
3210       }
3211     }
3212 
3213     // Now poison the incoming values from the dead predecessors.
3214     for (BasicBlock *P : predecessors(B)) {
3215       if (!DeadBlocks.count(P))
3216         continue;
3217       for (PHINode &Phi : B->phis()) {
3218         Phi.setIncomingValueForBlock(P, PoisonValue::get(Phi.getType()));
3219         if (MD)
3220           MD->invalidateCachedPointerInfo(&Phi);
3221       }
3222     }
3223   }
3224 }
3225 
3226 // If the given branch is recognized as a foldable branch (i.e. conditional
3227 // branch with constant condition), it will perform following analyses and
3228 // transformation.
3229 //  1) If the dead out-coming edge is a critical-edge, split it. Let
3230 //     R be the target of the dead out-coming edge.
3231 //  1) Identify the set of dead blocks implied by the branch's dead outcoming
3232 //     edge. The result of this step will be {X| X is dominated by R}
3233 //  2) Identify those blocks which haves at least one dead predecessor. The
3234 //     result of this step will be dominance-frontier(R).
3235 //  3) Update the PHIs in DF(R) by replacing the operands corresponding to
3236 //     dead blocks with "UndefVal" in an hope these PHIs will optimized away.
3237 //
3238 // Return true iff *NEW* dead code are found.
3239 bool GVNPass::processFoldableCondBr(BranchInst *BI) {
3240   if (!BI || BI->isUnconditional())
3241     return false;
3242 
3243   // If a branch has two identical successors, we cannot declare either dead.
3244   if (BI->getSuccessor(0) == BI->getSuccessor(1))
3245     return false;
3246 
3247   ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
3248   if (!Cond)
3249     return false;
3250 
3251   BasicBlock *DeadRoot =
3252       Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0);
3253   if (DeadBlocks.count(DeadRoot))
3254     return false;
3255 
3256   if (!DeadRoot->getSinglePredecessor())
3257     DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
3258 
3259   addDeadBlock(DeadRoot);
3260   return true;
3261 }
3262 
3263 // performPRE() will trigger assert if it comes across an instruction without
3264 // associated val-num. As it normally has far more live instructions than dead
3265 // instructions, it makes more sense just to "fabricate" a val-number for the
3266 // dead code than checking if instruction involved is dead or not.
3267 void GVNPass::assignValNumForDeadCode() {
3268   for (BasicBlock *BB : DeadBlocks) {
3269     for (Instruction &Inst : *BB) {
3270       unsigned ValNum = VN.lookupOrAdd(&Inst);
3271       addToLeaderTable(ValNum, &Inst, BB);
3272     }
3273   }
3274 }
3275 
3276 class llvm::gvn::GVNLegacyPass : public FunctionPass {
3277 public:
3278   static char ID; // Pass identification, replacement for typeid
3279 
3280   explicit GVNLegacyPass(bool NoMemDepAnalysis = !GVNEnableMemDep)
3281       : FunctionPass(ID), Impl(GVNOptions().setMemDep(!NoMemDepAnalysis)) {
3282     initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry());
3283   }
3284 
3285   bool runOnFunction(Function &F) override {
3286     if (skipFunction(F))
3287       return false;
3288 
3289     auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
3290     return Impl.runImpl(
3291         F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
3292         getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
3293         getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
3294         getAnalysis<AAResultsWrapperPass>().getAAResults(),
3295         Impl.isMemDepEnabled()
3296             ? &getAnalysis<MemoryDependenceWrapperPass>().getMemDep()
3297             : nullptr,
3298         getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
3299         &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(),
3300         MSSAWP ? &MSSAWP->getMSSA() : nullptr);
3301   }
3302 
3303   void getAnalysisUsage(AnalysisUsage &AU) const override {
3304     AU.addRequired<AssumptionCacheTracker>();
3305     AU.addRequired<DominatorTreeWrapperPass>();
3306     AU.addRequired<TargetLibraryInfoWrapperPass>();
3307     AU.addRequired<LoopInfoWrapperPass>();
3308     if (Impl.isMemDepEnabled())
3309       AU.addRequired<MemoryDependenceWrapperPass>();
3310     AU.addRequired<AAResultsWrapperPass>();
3311     AU.addPreserved<DominatorTreeWrapperPass>();
3312     AU.addPreserved<GlobalsAAWrapperPass>();
3313     AU.addPreserved<TargetLibraryInfoWrapperPass>();
3314     AU.addPreserved<LoopInfoWrapperPass>();
3315     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
3316     AU.addPreserved<MemorySSAWrapperPass>();
3317   }
3318 
3319 private:
3320   GVNPass Impl;
3321 };
3322 
3323 char GVNLegacyPass::ID = 0;
3324 
3325 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
3326 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3327 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
3328 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3329 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3330 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
3331 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
3332 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
3333 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
3334 
3335 // The public interface to this file...
3336 FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) {
3337   return new GVNLegacyPass(NoMemDepAnalysis);
3338 }
3339