1 //===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass hoists expressions from branches to a common dominator. It uses
10 // GVN (global value numbering) to discover expressions computing the same
11 // values. The primary goals of code-hoisting are:
12 // 1. To reduce the code size.
13 // 2. In some cases reduce critical path (by exposing more ILP).
14 //
15 // The algorithm factors out the reachability of values such that multiple
16 // queries to find reachability of values are fast. This is based on finding the
17 // ANTIC points in the CFG which do not change during hoisting. The ANTIC points
18 // are basically the dominance-frontiers in the inverse graph. So we introduce a
19 // data structure (CHI nodes) to keep track of values flowing out of a basic
20 // block. We only do this for values with multiple occurrences in the function
21 // as they are the potential hoistable candidates. This approach allows us to
22 // hoist instructions to a basic block with more than two successors, as well as
23 // deal with infinite loops in a trivial way.
24 //
25 // Limitations: This pass does not hoist fully redundant expressions because
26 // they are already handled by GVN-PRE. It is advisable to run gvn-hoist before
27 // and after gvn-pre because gvn-pre creates opportunities for more instructions
28 // to be hoisted.
29 //
30 // Hoisting may affect the performance in some cases. To mitigate that, hoisting
31 // is disabled in the following cases.
32 // 1. Scalars across calls.
33 // 2. geps when corresponding load/store cannot be hoisted.
34 //===----------------------------------------------------------------------===//
35 
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/DenseSet.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/ADT/iterator_range.h"
43 #include "llvm/Analysis/AliasAnalysis.h"
44 #include "llvm/Analysis/GlobalsModRef.h"
45 #include "llvm/Analysis/IteratedDominanceFrontier.h"
46 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
47 #include "llvm/Analysis/MemorySSA.h"
48 #include "llvm/Analysis/MemorySSAUpdater.h"
49 #include "llvm/Analysis/PostDominators.h"
50 #include "llvm/Analysis/ValueTracking.h"
51 #include "llvm/IR/Argument.h"
52 #include "llvm/IR/BasicBlock.h"
53 #include "llvm/IR/CFG.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/Dominators.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/Instruction.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/LLVMContext.h"
61 #include "llvm/IR/PassManager.h"
62 #include "llvm/IR/Use.h"
63 #include "llvm/IR/User.h"
64 #include "llvm/IR/Value.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Scalar/GVN.h"
70 #include "llvm/Transforms/Utils/Local.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <iterator>
74 #include <memory>
75 #include <utility>
76 #include <vector>
77 
78 using namespace llvm;
79 
80 #define DEBUG_TYPE "gvn-hoist"
81 
82 STATISTIC(NumHoisted, "Number of instructions hoisted");
83 STATISTIC(NumRemoved, "Number of instructions removed");
84 STATISTIC(NumLoadsHoisted, "Number of loads hoisted");
85 STATISTIC(NumLoadsRemoved, "Number of loads removed");
86 STATISTIC(NumStoresHoisted, "Number of stores hoisted");
87 STATISTIC(NumStoresRemoved, "Number of stores removed");
88 STATISTIC(NumCallsHoisted, "Number of calls hoisted");
89 STATISTIC(NumCallsRemoved, "Number of calls removed");
90 
91 static cl::opt<int>
92     MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1),
93                         cl::desc("Max number of instructions to hoist "
94                                  "(default unlimited = -1)"));
95 
96 static cl::opt<int> MaxNumberOfBBSInPath(
97     "gvn-hoist-max-bbs", cl::Hidden, cl::init(4),
98     cl::desc("Max number of basic blocks on the path between "
99              "hoisting locations (default = 4, unlimited = -1)"));
100 
101 static cl::opt<int> MaxDepthInBB(
102     "gvn-hoist-max-depth", cl::Hidden, cl::init(100),
103     cl::desc("Hoist instructions from the beginning of the BB up to the "
104              "maximum specified depth (default = 100, unlimited = -1)"));
105 
106 static cl::opt<int>
107     MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10),
108                    cl::desc("Maximum length of dependent chains to hoist "
109                             "(default = 10, unlimited = -1)"));
110 
111 namespace llvm {
112 
113 using BBSideEffectsSet = DenseMap<const BasicBlock *, bool>;
114 using SmallVecInsn = SmallVector<Instruction *, 4>;
115 using SmallVecImplInsn = SmallVectorImpl<Instruction *>;
116 
117 // Each element of a hoisting list contains the basic block where to hoist and
118 // a list of instructions to be hoisted.
119 using HoistingPointInfo = std::pair<BasicBlock *, SmallVecInsn>;
120 
121 using HoistingPointList = SmallVector<HoistingPointInfo, 4>;
122 
123 // A map from a pair of VNs to all the instructions with those VNs.
124 using VNType = std::pair<unsigned, uintptr_t>;
125 
126 using VNtoInsns = DenseMap<VNType, SmallVector<Instruction *, 4>>;
127 
128 // CHI keeps information about values flowing out of a basic block.  It is
129 // similar to PHI but in the inverse graph, and used for outgoing values on each
130 // edge. For conciseness, it is computed only for instructions with multiple
131 // occurrences in the CFG because they are the only hoistable candidates.
132 //     A (CHI[{V, B, I1}, {V, C, I2}]
133 //  /     \
134 // /       \
135 // B(I1)  C (I2)
136 // The Value number for both I1 and I2 is V, the CHI node will save the
137 // instruction as well as the edge where the value is flowing to.
138 struct CHIArg {
139   VNType VN;
140 
141   // Edge destination (shows the direction of flow), may not be where the I is.
142   BasicBlock *Dest;
143 
144   // The instruction (VN) which uses the values flowing out of CHI.
145   Instruction *I;
146 
147   bool operator==(const CHIArg &A) const { return VN == A.VN; }
148   bool operator!=(const CHIArg &A) const { return !(*this == A); }
149 };
150 
151 using CHIIt = SmallVectorImpl<CHIArg>::iterator;
152 using CHIArgs = iterator_range<CHIIt>;
153 using OutValuesType = DenseMap<BasicBlock *, SmallVector<CHIArg, 2>>;
154 using InValuesType =
155     DenseMap<BasicBlock *, SmallVector<std::pair<VNType, Instruction *>, 2>>;
156 
157 // An invalid value number Used when inserting a single value number into
158 // VNtoInsns.
159 enum : uintptr_t { InvalidVN = ~(uintptr_t)2 };
160 
161 // Records all scalar instructions candidate for code hoisting.
162 class InsnInfo {
163   VNtoInsns VNtoScalars;
164 
165 public:
166   // Inserts I and its value number in VNtoScalars.
167   void insert(Instruction *I, GVNPass::ValueTable &VN) {
168     // Scalar instruction.
169     unsigned V = VN.lookupOrAdd(I);
170     VNtoScalars[{V, InvalidVN}].push_back(I);
171   }
172 
173   const VNtoInsns &getVNTable() const { return VNtoScalars; }
174 };
175 
176 // Records all load instructions candidate for code hoisting.
177 class LoadInfo {
178   VNtoInsns VNtoLoads;
179 
180 public:
181   // Insert Load and the value number of its memory address in VNtoLoads.
182   void insert(LoadInst *Load, GVNPass::ValueTable &VN) {
183     if (Load->isSimple()) {
184       unsigned V = VN.lookupOrAdd(Load->getPointerOperand());
185       // With opaque pointers we may have loads from the same pointer with
186       // different result types, which should be disambiguated.
187       VNtoLoads[{V, (uintptr_t)Load->getType()}].push_back(Load);
188     }
189   }
190 
191   const VNtoInsns &getVNTable() const { return VNtoLoads; }
192 };
193 
194 // Records all store instructions candidate for code hoisting.
195 class StoreInfo {
196   VNtoInsns VNtoStores;
197 
198 public:
199   // Insert the Store and a hash number of the store address and the stored
200   // value in VNtoStores.
201   void insert(StoreInst *Store, GVNPass::ValueTable &VN) {
202     if (!Store->isSimple())
203       return;
204     // Hash the store address and the stored value.
205     Value *Ptr = Store->getPointerOperand();
206     Value *Val = Store->getValueOperand();
207     VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store);
208   }
209 
210   const VNtoInsns &getVNTable() const { return VNtoStores; }
211 };
212 
213 // Records all call instructions candidate for code hoisting.
214 class CallInfo {
215   VNtoInsns VNtoCallsScalars;
216   VNtoInsns VNtoCallsLoads;
217   VNtoInsns VNtoCallsStores;
218 
219 public:
220   // Insert Call and its value numbering in one of the VNtoCalls* containers.
221   void insert(CallInst *Call, GVNPass::ValueTable &VN) {
222     // A call that doesNotAccessMemory is handled as a Scalar,
223     // onlyReadsMemory will be handled as a Load instruction,
224     // all other calls will be handled as stores.
225     unsigned V = VN.lookupOrAdd(Call);
226     auto Entry = std::make_pair(V, InvalidVN);
227 
228     if (Call->doesNotAccessMemory())
229       VNtoCallsScalars[Entry].push_back(Call);
230     else if (Call->onlyReadsMemory())
231       VNtoCallsLoads[Entry].push_back(Call);
232     else
233       VNtoCallsStores[Entry].push_back(Call);
234   }
235 
236   const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; }
237   const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; }
238   const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; }
239 };
240 
241 static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) {
242   static const unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
243                                       LLVMContext::MD_alias_scope,
244                                       LLVMContext::MD_noalias,
245                                       LLVMContext::MD_range,
246                                       LLVMContext::MD_fpmath,
247                                       LLVMContext::MD_invariant_load,
248                                       LLVMContext::MD_invariant_group,
249                                       LLVMContext::MD_access_group};
250   combineMetadata(ReplInst, I, KnownIDs, true);
251 }
252 
253 // This pass hoists common computations across branches sharing common
254 // dominator. The primary goal is to reduce the code size, and in some
255 // cases reduce critical path (by exposing more ILP).
256 class GVNHoist {
257 public:
258   GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA,
259            MemoryDependenceResults *MD, MemorySSA *MSSA)
260       : DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA),
261         MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {
262     MSSA->ensureOptimizedUses();
263   }
264 
265   bool run(Function &F);
266 
267   // Copied from NewGVN.cpp
268   // This function provides global ranking of operations so that we can place
269   // them in a canonical order.  Note that rank alone is not necessarily enough
270   // for a complete ordering, as constants all have the same rank.  However,
271   // generally, we will simplify an operation with all constants so that it
272   // doesn't matter what order they appear in.
273   unsigned int rank(const Value *V) const;
274 
275 private:
276   GVNPass::ValueTable VN;
277   DominatorTree *DT;
278   PostDominatorTree *PDT;
279   AliasAnalysis *AA;
280   MemoryDependenceResults *MD;
281   MemorySSA *MSSA;
282   std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
283   DenseMap<const Value *, unsigned> DFSNumber;
284   BBSideEffectsSet BBSideEffects;
285   DenseSet<const BasicBlock *> HoistBarrier;
286   SmallVector<BasicBlock *, 32> IDFBlocks;
287   unsigned NumFuncArgs;
288   const bool HoistingGeps = false;
289 
290   enum InsKind { Unknown, Scalar, Load, Store };
291 
292   // Return true when there are exception handling in BB.
293   bool hasEH(const BasicBlock *BB);
294 
295   // Return true when I1 appears before I2 in the instructions of BB.
296   bool firstInBB(const Instruction *I1, const Instruction *I2) {
297     assert(I1->getParent() == I2->getParent());
298     unsigned I1DFS = DFSNumber.lookup(I1);
299     unsigned I2DFS = DFSNumber.lookup(I2);
300     assert(I1DFS && I2DFS);
301     return I1DFS < I2DFS;
302   }
303 
304   // Return true when there are memory uses of Def in BB.
305   bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def,
306                     const BasicBlock *BB);
307 
308   bool hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB,
309                    int &NBBsOnAllPaths);
310 
311   // Return true when there are exception handling or loads of memory Def
312   // between Def and NewPt.  This function is only called for stores: Def is
313   // the MemoryDef of the store to be hoisted.
314 
315   // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
316   // return true when the counter NBBsOnAllPaths reaces 0, except when it is
317   // initialized to -1 which is unlimited.
318   bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def,
319                           int &NBBsOnAllPaths);
320 
321   // Return true when there are exception handling between HoistPt and BB.
322   // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
323   // return true when the counter NBBsOnAllPaths reaches 0, except when it is
324   // initialized to -1 which is unlimited.
325   bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB,
326                    int &NBBsOnAllPaths);
327 
328   // Return true when it is safe to hoist a memory load or store U from OldPt
329   // to NewPt.
330   bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt,
331                        MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths);
332 
333   // Return true when it is safe to hoist scalar instructions from all blocks in
334   // WL to HoistBB.
335   bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB,
336                          int &NBBsOnAllPaths) {
337     return !hasEHOnPath(HoistBB, BB, NBBsOnAllPaths);
338   }
339 
340   // In the inverse CFG, the dominance frontier of basic block (BB) is the
341   // point where ANTIC needs to be computed for instructions which are going
342   // to be hoisted. Since this point does not change during gvn-hoist,
343   // we compute it only once (on demand).
344   // The ides is inspired from:
345   // "Partial Redundancy Elimination in SSA Form"
346   // ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW
347   // They use similar idea in the forward graph to find fully redundant and
348   // partially redundant expressions, here it is used in the inverse graph to
349   // find fully anticipable instructions at merge point (post-dominator in
350   // the inverse CFG).
351   // Returns the edge via which an instruction in BB will get the values from.
352 
353   // Returns true when the values are flowing out to each edge.
354   bool valueAnticipable(CHIArgs C, Instruction *TI) const;
355 
356   // Check if it is safe to hoist values tracked by CHI in the range
357   // [Begin, End) and accumulate them in Safe.
358   void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K,
359                    SmallVectorImpl<CHIArg> &Safe);
360 
361   using RenameStackType = DenseMap<VNType, SmallVector<Instruction *, 2>>;
362 
363   // Push all the VNs corresponding to BB into RenameStack.
364   void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs,
365                        RenameStackType &RenameStack);
366 
367   void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs,
368                    RenameStackType &RenameStack);
369 
370   // Walk the post-dominator tree top-down and use a stack for each value to
371   // store the last value you see. When you hit a CHI from a given edge, the
372   // value to use as the argument is at the top of the stack, add the value to
373   // CHI and pop.
374   void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) {
375     auto Root = PDT->getNode(nullptr);
376     if (!Root)
377       return;
378     // Depth first walk on PDom tree to fill the CHIargs at each PDF.
379     for (auto *Node : depth_first(Root)) {
380       BasicBlock *BB = Node->getBlock();
381       if (!BB)
382         continue;
383 
384       RenameStackType RenameStack;
385       // Collect all values in BB and push to stack.
386       fillRenameStack(BB, ValueBBs, RenameStack);
387 
388       // Fill outgoing values in each CHI corresponding to BB.
389       fillChiArgs(BB, CHIBBs, RenameStack);
390     }
391   }
392 
393   // Walk all the CHI-nodes to find ones which have a empty-entry and remove
394   // them Then collect all the instructions which are safe to hoist and see if
395   // they form a list of anticipable values. OutValues contains CHIs
396   // corresponding to each basic block.
397   void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K,
398                                HoistingPointList &HPL);
399 
400   // Compute insertion points for each values which can be fully anticipated at
401   // a dominator. HPL contains all such values.
402   void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL,
403                               InsKind K) {
404     // Sort VNs based on their rankings
405     std::vector<VNType> Ranks;
406     for (const auto &Entry : Map) {
407       Ranks.push_back(Entry.first);
408     }
409 
410     // TODO: Remove fully-redundant expressions.
411     // Get instruction from the Map, assume that all the Instructions
412     // with same VNs have same rank (this is an approximation).
413     llvm::sort(Ranks, [this, &Map](const VNType &r1, const VNType &r2) {
414       return (rank(*Map.lookup(r1).begin()) < rank(*Map.lookup(r2).begin()));
415     });
416 
417     // - Sort VNs according to their rank, and start with lowest ranked VN
418     // - Take a VN and for each instruction with same VN
419     //   - Find the dominance frontier in the inverse graph (PDF)
420     //   - Insert the chi-node at PDF
421     // - Remove the chi-nodes with missing entries
422     // - Remove values from CHI-nodes which do not truly flow out, e.g.,
423     //   modified along the path.
424     // - Collect the remaining values that are still anticipable
425     SmallVector<BasicBlock *, 2> IDFBlocks;
426     ReverseIDFCalculator IDFs(*PDT);
427     OutValuesType OutValue;
428     InValuesType InValue;
429     for (const auto &R : Ranks) {
430       const SmallVecInsn &V = Map.lookup(R);
431       if (V.size() < 2)
432         continue;
433       const VNType &VN = R;
434       SmallPtrSet<BasicBlock *, 2> VNBlocks;
435       for (const auto &I : V) {
436         BasicBlock *BBI = I->getParent();
437         if (!hasEH(BBI))
438           VNBlocks.insert(BBI);
439       }
440       // Compute the Post Dominance Frontiers of each basic block
441       // The dominance frontier of a live block X in the reverse
442       // control graph is the set of blocks upon which X is control
443       // dependent. The following sequence computes the set of blocks
444       // which currently have dead terminators that are control
445       // dependence sources of a block which is in NewLiveBlocks.
446       IDFs.setDefiningBlocks(VNBlocks);
447       IDFBlocks.clear();
448       IDFs.calculate(IDFBlocks);
449 
450       // Make a map of BB vs instructions to be hoisted.
451       for (unsigned i = 0; i < V.size(); ++i) {
452         InValue[V[i]->getParent()].push_back(std::make_pair(VN, V[i]));
453       }
454       // Insert empty CHI node for this VN. This is used to factor out
455       // basic blocks where the ANTIC can potentially change.
456       CHIArg EmptyChi = {VN, nullptr, nullptr};
457       for (auto *IDFBB : IDFBlocks) {
458         for (unsigned i = 0; i < V.size(); ++i) {
459           // Ignore spurious PDFs.
460           if (DT->properlyDominates(IDFBB, V[i]->getParent())) {
461             OutValue[IDFBB].push_back(EmptyChi);
462             LLVM_DEBUG(dbgs() << "\nInserting a CHI for BB: "
463                               << IDFBB->getName() << ", for Insn: " << *V[i]);
464           }
465         }
466       }
467     }
468 
469     // Insert CHI args at each PDF to iterate on factored graph of
470     // control dependence.
471     insertCHI(InValue, OutValue);
472     // Using the CHI args inserted at each PDF, find fully anticipable values.
473     findHoistableCandidates(OutValue, K, HPL);
474   }
475 
476   // Return true when all operands of Instr are available at insertion point
477   // HoistPt. When limiting the number of hoisted expressions, one could hoist
478   // a load without hoisting its access function. So before hoisting any
479   // expression, make sure that all its operands are available at insert point.
480   bool allOperandsAvailable(const Instruction *I,
481                             const BasicBlock *HoistPt) const;
482 
483   // Same as allOperandsAvailable with recursive check for GEP operands.
484   bool allGepOperandsAvailable(const Instruction *I,
485                                const BasicBlock *HoistPt) const;
486 
487   // Make all operands of the GEP available.
488   void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt,
489                          const SmallVecInsn &InstructionsToHoist,
490                          Instruction *Gep) const;
491 
492   void updateAlignment(Instruction *I, Instruction *Repl);
493 
494   // Remove all the instructions in Candidates and replace their usage with
495   // Repl. Returns the number of instructions removed.
496   unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl,
497                 MemoryUseOrDef *NewMemAcc);
498 
499   // Replace all Memory PHI usage with NewMemAcc.
500   void raMPHIuw(MemoryUseOrDef *NewMemAcc);
501 
502   // Remove all other instructions and replace them with Repl.
503   unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl,
504                             BasicBlock *DestBB, bool MoveAccess);
505 
506   // In the case Repl is a load or a store, we make all their GEPs
507   // available: GEPs are not hoisted by default to avoid the address
508   // computations to be hoisted without the associated load or store.
509   bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt,
510                                 const SmallVecInsn &InstructionsToHoist) const;
511 
512   std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL);
513 
514   // Hoist all expressions. Returns Number of scalars hoisted
515   // and number of non-scalars hoisted.
516   std::pair<unsigned, unsigned> hoistExpressions(Function &F);
517 };
518 
519 bool GVNHoist::run(Function &F) {
520   NumFuncArgs = F.arg_size();
521   VN.setDomTree(DT);
522   VN.setAliasAnalysis(AA);
523   VN.setMemDep(MD);
524   bool Res = false;
525   // Perform DFS Numbering of instructions.
526   unsigned BBI = 0;
527   for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) {
528     DFSNumber[BB] = ++BBI;
529     unsigned I = 0;
530     for (const auto &Inst : *BB)
531       DFSNumber[&Inst] = ++I;
532   }
533 
534   int ChainLength = 0;
535 
536   // FIXME: use lazy evaluation of VN to avoid the fix-point computation.
537   while (true) {
538     if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength)
539       return Res;
540 
541     auto HoistStat = hoistExpressions(F);
542     if (HoistStat.first + HoistStat.second == 0)
543       return Res;
544 
545     if (HoistStat.second > 0)
546       // To address a limitation of the current GVN, we need to rerun the
547       // hoisting after we hoisted loads or stores in order to be able to
548       // hoist all scalars dependent on the hoisted ld/st.
549       VN.clear();
550 
551     Res = true;
552   }
553 
554   return Res;
555 }
556 
557 unsigned int GVNHoist::rank(const Value *V) const {
558   // Prefer constants to undef to anything else
559   // Undef is a constant, have to check it first.
560   // Prefer smaller constants to constantexprs
561   if (isa<ConstantExpr>(V))
562     return 2;
563   if (isa<UndefValue>(V))
564     return 1;
565   if (isa<Constant>(V))
566     return 0;
567   else if (auto *A = dyn_cast<Argument>(V))
568     return 3 + A->getArgNo();
569 
570   // Need to shift the instruction DFS by number of arguments + 3 to account
571   // for the constant and argument ranking above.
572   auto Result = DFSNumber.lookup(V);
573   if (Result > 0)
574     return 4 + NumFuncArgs + Result;
575   // Unreachable or something else, just return a really large number.
576   return ~0;
577 }
578 
579 bool GVNHoist::hasEH(const BasicBlock *BB) {
580   auto It = BBSideEffects.find(BB);
581   if (It != BBSideEffects.end())
582     return It->second;
583 
584   if (BB->isEHPad() || BB->hasAddressTaken()) {
585     BBSideEffects[BB] = true;
586     return true;
587   }
588 
589   if (BB->getTerminator()->mayThrow()) {
590     BBSideEffects[BB] = true;
591     return true;
592   }
593 
594   BBSideEffects[BB] = false;
595   return false;
596 }
597 
598 bool GVNHoist::hasMemoryUse(const Instruction *NewPt, MemoryDef *Def,
599                             const BasicBlock *BB) {
600   const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
601   if (!Acc)
602     return false;
603 
604   Instruction *OldPt = Def->getMemoryInst();
605   const BasicBlock *OldBB = OldPt->getParent();
606   const BasicBlock *NewBB = NewPt->getParent();
607   bool ReachedNewPt = false;
608 
609   for (const MemoryAccess &MA : *Acc)
610     if (const MemoryUse *MU = dyn_cast<MemoryUse>(&MA)) {
611       Instruction *Insn = MU->getMemoryInst();
612 
613       // Do not check whether MU aliases Def when MU occurs after OldPt.
614       if (BB == OldBB && firstInBB(OldPt, Insn))
615         break;
616 
617       // Do not check whether MU aliases Def when MU occurs before NewPt.
618       if (BB == NewBB) {
619         if (!ReachedNewPt) {
620           if (firstInBB(Insn, NewPt))
621             continue;
622           ReachedNewPt = true;
623         }
624       }
625       if (MemorySSAUtil::defClobbersUseOrDef(Def, MU, *AA))
626         return true;
627     }
628 
629   return false;
630 }
631 
632 bool GVNHoist::hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB,
633                            int &NBBsOnAllPaths) {
634   // Stop walk once the limit is reached.
635   if (NBBsOnAllPaths == 0)
636     return true;
637 
638   // Impossible to hoist with exceptions on the path.
639   if (hasEH(BB))
640     return true;
641 
642   // No such instruction after HoistBarrier in a basic block was
643   // selected for hoisting so instructions selected within basic block with
644   // a hoist barrier can be hoisted.
645   if ((BB != SrcBB) && HoistBarrier.count(BB))
646     return true;
647 
648   return false;
649 }
650 
651 bool GVNHoist::hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def,
652                                   int &NBBsOnAllPaths) {
653   const BasicBlock *NewBB = NewPt->getParent();
654   const BasicBlock *OldBB = Def->getBlock();
655   assert(DT->dominates(NewBB, OldBB) && "invalid path");
656   assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) &&
657          "def does not dominate new hoisting point");
658 
659   // Walk all basic blocks reachable in depth-first iteration on the inverse
660   // CFG from OldBB to NewBB. These blocks are all the blocks that may be
661   // executed between the execution of NewBB and OldBB. Hoisting an expression
662   // from OldBB into NewBB has to be safe on all execution paths.
663   for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) {
664     const BasicBlock *BB = *I;
665     if (BB == NewBB) {
666       // Stop traversal when reaching HoistPt.
667       I.skipChildren();
668       continue;
669     }
670 
671     if (hasEHhelper(BB, OldBB, NBBsOnAllPaths))
672       return true;
673 
674     // Check that we do not move a store past loads.
675     if (hasMemoryUse(NewPt, Def, BB))
676       return true;
677 
678     // -1 is unlimited number of blocks on all paths.
679     if (NBBsOnAllPaths != -1)
680       --NBBsOnAllPaths;
681 
682     ++I;
683   }
684 
685   return false;
686 }
687 
688 bool GVNHoist::hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB,
689                            int &NBBsOnAllPaths) {
690   assert(DT->dominates(HoistPt, SrcBB) && "Invalid path");
691 
692   // Walk all basic blocks reachable in depth-first iteration on
693   // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the
694   // blocks that may be executed between the execution of NewHoistPt and
695   // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe
696   // on all execution paths.
697   for (auto I = idf_begin(SrcBB), E = idf_end(SrcBB); I != E;) {
698     const BasicBlock *BB = *I;
699     if (BB == HoistPt) {
700       // Stop traversal when reaching NewHoistPt.
701       I.skipChildren();
702       continue;
703     }
704 
705     if (hasEHhelper(BB, SrcBB, NBBsOnAllPaths))
706       return true;
707 
708     // -1 is unlimited number of blocks on all paths.
709     if (NBBsOnAllPaths != -1)
710       --NBBsOnAllPaths;
711 
712     ++I;
713   }
714 
715   return false;
716 }
717 
718 bool GVNHoist::safeToHoistLdSt(const Instruction *NewPt,
719                                const Instruction *OldPt, MemoryUseOrDef *U,
720                                GVNHoist::InsKind K, int &NBBsOnAllPaths) {
721   // In place hoisting is safe.
722   if (NewPt == OldPt)
723     return true;
724 
725   const BasicBlock *NewBB = NewPt->getParent();
726   const BasicBlock *OldBB = OldPt->getParent();
727   const BasicBlock *UBB = U->getBlock();
728 
729   // Check for dependences on the Memory SSA.
730   MemoryAccess *D = U->getDefiningAccess();
731   BasicBlock *DBB = D->getBlock();
732   if (DT->properlyDominates(NewBB, DBB))
733     // Cannot move the load or store to NewBB above its definition in DBB.
734     return false;
735 
736   if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D))
737     if (auto *UD = dyn_cast<MemoryUseOrDef>(D))
738       if (!firstInBB(UD->getMemoryInst(), NewPt))
739         // Cannot move the load or store to NewPt above its definition in D.
740         return false;
741 
742   // Check for unsafe hoistings due to side effects.
743   if (K == InsKind::Store) {
744     if (hasEHOrLoadsOnPath(NewPt, cast<MemoryDef>(U), NBBsOnAllPaths))
745       return false;
746   } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths))
747     return false;
748 
749   if (UBB == NewBB) {
750     if (DT->properlyDominates(DBB, NewBB))
751       return true;
752     assert(UBB == DBB);
753     assert(MSSA->locallyDominates(D, U));
754   }
755 
756   // No side effects: it is safe to hoist.
757   return true;
758 }
759 
760 bool GVNHoist::valueAnticipable(CHIArgs C, Instruction *TI) const {
761   if (TI->getNumSuccessors() > (unsigned)size(C))
762     return false; // Not enough args in this CHI.
763 
764   for (auto CHI : C) {
765     // Find if all the edges have values flowing out of BB.
766     if (!llvm::is_contained(successors(TI), CHI.Dest))
767       return false;
768   }
769   return true;
770 }
771 
772 void GVNHoist::checkSafety(CHIArgs C, BasicBlock *BB, GVNHoist::InsKind K,
773                            SmallVectorImpl<CHIArg> &Safe) {
774   int NumBBsOnAllPaths = MaxNumberOfBBSInPath;
775   const Instruction *T = BB->getTerminator();
776   for (auto CHI : C) {
777     Instruction *Insn = CHI.I;
778     if (!Insn) // No instruction was inserted in this CHI.
779       continue;
780     // If the Terminator is some kind of "exotic terminator" that produces a
781     // value (such as InvokeInst, CallBrInst, or CatchSwitchInst) which the CHI
782     // uses, it is not safe to hoist the use above the def.
783     if (!T->use_empty() && is_contained(Insn->operands(), cast<const Value>(T)))
784       continue;
785     if (K == InsKind::Scalar) {
786       if (safeToHoistScalar(BB, Insn->getParent(), NumBBsOnAllPaths))
787         Safe.push_back(CHI);
788     } else {
789       if (MemoryUseOrDef *UD = MSSA->getMemoryAccess(Insn))
790         if (safeToHoistLdSt(T, Insn, UD, K, NumBBsOnAllPaths))
791           Safe.push_back(CHI);
792     }
793   }
794 }
795 
796 void GVNHoist::fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs,
797                                GVNHoist::RenameStackType &RenameStack) {
798   auto it1 = ValueBBs.find(BB);
799   if (it1 != ValueBBs.end()) {
800     // Iterate in reverse order to keep lower ranked values on the top.
801     LLVM_DEBUG(dbgs() << "\nVisiting: " << BB->getName()
802                       << " for pushing instructions on stack";);
803     for (std::pair<VNType, Instruction *> &VI : reverse(it1->second)) {
804       // Get the value of instruction I
805       LLVM_DEBUG(dbgs() << "\nPushing on stack: " << *VI.second);
806       RenameStack[VI.first].push_back(VI.second);
807     }
808   }
809 }
810 
811 void GVNHoist::fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs,
812                            GVNHoist::RenameStackType &RenameStack) {
813   // For each *predecessor* (because Post-DOM) of BB check if it has a CHI
814   for (auto *Pred : predecessors(BB)) {
815     auto P = CHIBBs.find(Pred);
816     if (P == CHIBBs.end()) {
817       continue;
818     }
819     LLVM_DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName(););
820     // A CHI is found (BB -> Pred is an edge in the CFG)
821     // Pop the stack until Top(V) = Ve.
822     auto &VCHI = P->second;
823     for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) {
824       CHIArg &C = *It;
825       if (!C.Dest) {
826         auto si = RenameStack.find(C.VN);
827         // The Basic Block where CHI is must dominate the value we want to
828         // track in a CHI. In the PDom walk, there can be values in the
829         // stack which are not control dependent e.g., nested loop.
830         if (si != RenameStack.end() && si->second.size() &&
831             DT->properlyDominates(Pred, si->second.back()->getParent())) {
832           C.Dest = BB;                     // Assign the edge
833           C.I = si->second.pop_back_val(); // Assign the argument
834           LLVM_DEBUG(dbgs()
835                      << "\nCHI Inserted in BB: " << C.Dest->getName() << *C.I
836                      << ", VN: " << C.VN.first << ", " << C.VN.second);
837         }
838         // Move to next CHI of a different value
839         It = std::find_if(It, VCHI.end(), [It](CHIArg &A) { return A != *It; });
840       } else
841         ++It;
842     }
843   }
844 }
845 
846 void GVNHoist::findHoistableCandidates(OutValuesType &CHIBBs,
847                                        GVNHoist::InsKind K,
848                                        HoistingPointList &HPL) {
849   auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; };
850 
851   // CHIArgs now have the outgoing values, so check for anticipability and
852   // accumulate hoistable candidates in HPL.
853   for (std::pair<BasicBlock *, SmallVector<CHIArg, 2>> &A : CHIBBs) {
854     BasicBlock *BB = A.first;
855     SmallVectorImpl<CHIArg> &CHIs = A.second;
856     // Vector of PHIs contains PHIs for different instructions.
857     // Sort the args according to their VNs, such that identical
858     // instructions are together.
859     llvm::stable_sort(CHIs, cmpVN);
860     auto TI = BB->getTerminator();
861     auto B = CHIs.begin();
862     // [PreIt, PHIIt) form a range of CHIs which have identical VNs.
863     auto PHIIt = llvm::find_if(CHIs, [B](CHIArg &A) { return A != *B; });
864     auto PrevIt = CHIs.begin();
865     while (PrevIt != PHIIt) {
866       // Collect values which satisfy safety checks.
867       SmallVector<CHIArg, 2> Safe;
868       // We check for safety first because there might be multiple values in
869       // the same path, some of which are not safe to be hoisted, but overall
870       // each edge has at least one value which can be hoisted, making the
871       // value anticipable along that path.
872       checkSafety(make_range(PrevIt, PHIIt), BB, K, Safe);
873 
874       // List of safe values should be anticipable at TI.
875       if (valueAnticipable(make_range(Safe.begin(), Safe.end()), TI)) {
876         HPL.push_back({BB, SmallVecInsn()});
877         SmallVecInsn &V = HPL.back().second;
878         for (auto B : Safe)
879           V.push_back(B.I);
880       }
881 
882       // Check other VNs
883       PrevIt = PHIIt;
884       PHIIt = std::find_if(PrevIt, CHIs.end(),
885                            [PrevIt](CHIArg &A) { return A != *PrevIt; });
886     }
887   }
888 }
889 
890 bool GVNHoist::allOperandsAvailable(const Instruction *I,
891                                     const BasicBlock *HoistPt) const {
892   for (const Use &Op : I->operands())
893     if (const auto *Inst = dyn_cast<Instruction>(&Op))
894       if (!DT->dominates(Inst->getParent(), HoistPt))
895         return false;
896 
897   return true;
898 }
899 
900 bool GVNHoist::allGepOperandsAvailable(const Instruction *I,
901                                        const BasicBlock *HoistPt) const {
902   for (const Use &Op : I->operands())
903     if (const auto *Inst = dyn_cast<Instruction>(&Op))
904       if (!DT->dominates(Inst->getParent(), HoistPt)) {
905         if (const GetElementPtrInst *GepOp =
906                 dyn_cast<GetElementPtrInst>(Inst)) {
907           if (!allGepOperandsAvailable(GepOp, HoistPt))
908             return false;
909           // Gep is available if all operands of GepOp are available.
910         } else {
911           // Gep is not available if it has operands other than GEPs that are
912           // defined in blocks not dominating HoistPt.
913           return false;
914         }
915       }
916   return true;
917 }
918 
919 void GVNHoist::makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt,
920                                  const SmallVecInsn &InstructionsToHoist,
921                                  Instruction *Gep) const {
922   assert(allGepOperandsAvailable(Gep, HoistPt) && "GEP operands not available");
923 
924   Instruction *ClonedGep = Gep->clone();
925   for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i)
926     if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) {
927       // Check whether the operand is already available.
928       if (DT->dominates(Op->getParent(), HoistPt))
929         continue;
930 
931       // As a GEP can refer to other GEPs, recursively make all the operands
932       // of this GEP available at HoistPt.
933       if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op))
934         makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp);
935     }
936 
937   // Copy Gep and replace its uses in Repl with ClonedGep.
938   ClonedGep->insertBefore(HoistPt->getTerminator());
939 
940   // Conservatively discard any optimization hints, they may differ on the
941   // other paths.
942   ClonedGep->dropUnknownNonDebugMetadata();
943 
944   // If we have optimization hints which agree with each other along different
945   // paths, preserve them.
946   for (const Instruction *OtherInst : InstructionsToHoist) {
947     const GetElementPtrInst *OtherGep;
948     if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst))
949       OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand());
950     else
951       OtherGep = cast<GetElementPtrInst>(
952           cast<StoreInst>(OtherInst)->getPointerOperand());
953     ClonedGep->andIRFlags(OtherGep);
954   }
955 
956   // Replace uses of Gep with ClonedGep in Repl.
957   Repl->replaceUsesOfWith(Gep, ClonedGep);
958 }
959 
960 void GVNHoist::updateAlignment(Instruction *I, Instruction *Repl) {
961   if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) {
962     ReplacementLoad->setAlignment(
963         std::min(ReplacementLoad->getAlign(), cast<LoadInst>(I)->getAlign()));
964     ++NumLoadsRemoved;
965   } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) {
966     ReplacementStore->setAlignment(
967         std::min(ReplacementStore->getAlign(), cast<StoreInst>(I)->getAlign()));
968     ++NumStoresRemoved;
969   } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) {
970     ReplacementAlloca->setAlignment(std::max(ReplacementAlloca->getAlign(),
971                                              cast<AllocaInst>(I)->getAlign()));
972   } else if (isa<CallInst>(Repl)) {
973     ++NumCallsRemoved;
974   }
975 }
976 
977 unsigned GVNHoist::rauw(const SmallVecInsn &Candidates, Instruction *Repl,
978                         MemoryUseOrDef *NewMemAcc) {
979   unsigned NR = 0;
980   for (Instruction *I : Candidates) {
981     if (I != Repl) {
982       ++NR;
983       updateAlignment(I, Repl);
984       if (NewMemAcc) {
985         // Update the uses of the old MSSA access with NewMemAcc.
986         MemoryAccess *OldMA = MSSA->getMemoryAccess(I);
987         OldMA->replaceAllUsesWith(NewMemAcc);
988         MSSAUpdater->removeMemoryAccess(OldMA);
989       }
990 
991       Repl->andIRFlags(I);
992       combineKnownMetadata(Repl, I);
993       I->replaceAllUsesWith(Repl);
994       // Also invalidate the Alias Analysis cache.
995       MD->removeInstruction(I);
996       I->eraseFromParent();
997     }
998   }
999   return NR;
1000 }
1001 
1002 void GVNHoist::raMPHIuw(MemoryUseOrDef *NewMemAcc) {
1003   SmallPtrSet<MemoryPhi *, 4> UsePhis;
1004   for (User *U : NewMemAcc->users())
1005     if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U))
1006       UsePhis.insert(Phi);
1007 
1008   for (MemoryPhi *Phi : UsePhis) {
1009     auto In = Phi->incoming_values();
1010     if (llvm::all_of(In, [&](Use &U) { return U == NewMemAcc; })) {
1011       Phi->replaceAllUsesWith(NewMemAcc);
1012       MSSAUpdater->removeMemoryAccess(Phi);
1013     }
1014   }
1015 }
1016 
1017 unsigned GVNHoist::removeAndReplace(const SmallVecInsn &Candidates,
1018                                     Instruction *Repl, BasicBlock *DestBB,
1019                                     bool MoveAccess) {
1020   MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(Repl);
1021   if (MoveAccess && NewMemAcc) {
1022     // The definition of this ld/st will not change: ld/st hoisting is
1023     // legal when the ld/st is not moved past its current definition.
1024     MSSAUpdater->moveToPlace(NewMemAcc, DestBB, MemorySSA::BeforeTerminator);
1025   }
1026 
1027   // Replace all other instructions with Repl with memory access NewMemAcc.
1028   unsigned NR = rauw(Candidates, Repl, NewMemAcc);
1029 
1030   // Remove MemorySSA phi nodes with the same arguments.
1031   if (NewMemAcc)
1032     raMPHIuw(NewMemAcc);
1033   return NR;
1034 }
1035 
1036 bool GVNHoist::makeGepOperandsAvailable(
1037     Instruction *Repl, BasicBlock *HoistPt,
1038     const SmallVecInsn &InstructionsToHoist) const {
1039   // Check whether the GEP of a ld/st can be synthesized at HoistPt.
1040   GetElementPtrInst *Gep = nullptr;
1041   Instruction *Val = nullptr;
1042   if (auto *Ld = dyn_cast<LoadInst>(Repl)) {
1043     Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand());
1044   } else if (auto *St = dyn_cast<StoreInst>(Repl)) {
1045     Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand());
1046     Val = dyn_cast<Instruction>(St->getValueOperand());
1047     // Check that the stored value is available.
1048     if (Val) {
1049       if (isa<GetElementPtrInst>(Val)) {
1050         // Check whether we can compute the GEP at HoistPt.
1051         if (!allGepOperandsAvailable(Val, HoistPt))
1052           return false;
1053       } else if (!DT->dominates(Val->getParent(), HoistPt))
1054         return false;
1055     }
1056   }
1057 
1058   // Check whether we can compute the Gep at HoistPt.
1059   if (!Gep || !allGepOperandsAvailable(Gep, HoistPt))
1060     return false;
1061 
1062   makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep);
1063 
1064   if (Val && isa<GetElementPtrInst>(Val))
1065     makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val);
1066 
1067   return true;
1068 }
1069 
1070 std::pair<unsigned, unsigned> GVNHoist::hoist(HoistingPointList &HPL) {
1071   unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0;
1072   for (const HoistingPointInfo &HP : HPL) {
1073     // Find out whether we already have one of the instructions in HoistPt,
1074     // in which case we do not have to move it.
1075     BasicBlock *DestBB = HP.first;
1076     const SmallVecInsn &InstructionsToHoist = HP.second;
1077     Instruction *Repl = nullptr;
1078     for (Instruction *I : InstructionsToHoist)
1079       if (I->getParent() == DestBB)
1080         // If there are two instructions in HoistPt to be hoisted in place:
1081         // update Repl to be the first one, such that we can rename the uses
1082         // of the second based on the first.
1083         if (!Repl || firstInBB(I, Repl))
1084           Repl = I;
1085 
1086     // Keep track of whether we moved the instruction so we know whether we
1087     // should move the MemoryAccess.
1088     bool MoveAccess = true;
1089     if (Repl) {
1090       // Repl is already in HoistPt: it remains in place.
1091       assert(allOperandsAvailable(Repl, DestBB) &&
1092              "instruction depends on operands that are not available");
1093       MoveAccess = false;
1094     } else {
1095       // When we do not find Repl in HoistPt, select the first in the list
1096       // and move it to HoistPt.
1097       Repl = InstructionsToHoist.front();
1098 
1099       // We can move Repl in HoistPt only when all operands are available.
1100       // The order in which hoistings are done may influence the availability
1101       // of operands.
1102       if (!allOperandsAvailable(Repl, DestBB)) {
1103         // When HoistingGeps there is nothing more we can do to make the
1104         // operands available: just continue.
1105         if (HoistingGeps)
1106           continue;
1107 
1108         // When not HoistingGeps we need to copy the GEPs.
1109         if (!makeGepOperandsAvailable(Repl, DestBB, InstructionsToHoist))
1110           continue;
1111       }
1112 
1113       // Move the instruction at the end of HoistPt.
1114       Instruction *Last = DestBB->getTerminator();
1115       MD->removeInstruction(Repl);
1116       Repl->moveBefore(Last);
1117 
1118       DFSNumber[Repl] = DFSNumber[Last]++;
1119     }
1120 
1121     // Drop debug location as per debug info update guide.
1122     Repl->dropLocation();
1123     NR += removeAndReplace(InstructionsToHoist, Repl, DestBB, MoveAccess);
1124 
1125     if (isa<LoadInst>(Repl))
1126       ++NL;
1127     else if (isa<StoreInst>(Repl))
1128       ++NS;
1129     else if (isa<CallInst>(Repl))
1130       ++NC;
1131     else // Scalar
1132       ++NI;
1133   }
1134 
1135   if (MSSA && VerifyMemorySSA)
1136     MSSA->verifyMemorySSA();
1137 
1138   NumHoisted += NL + NS + NC + NI;
1139   NumRemoved += NR;
1140   NumLoadsHoisted += NL;
1141   NumStoresHoisted += NS;
1142   NumCallsHoisted += NC;
1143   return {NI, NL + NC + NS};
1144 }
1145 
1146 std::pair<unsigned, unsigned> GVNHoist::hoistExpressions(Function &F) {
1147   InsnInfo II;
1148   LoadInfo LI;
1149   StoreInfo SI;
1150   CallInfo CI;
1151   for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
1152     int InstructionNb = 0;
1153     for (Instruction &I1 : *BB) {
1154       // If I1 cannot guarantee progress, subsequent instructions
1155       // in BB cannot be hoisted anyways.
1156       if (!isGuaranteedToTransferExecutionToSuccessor(&I1)) {
1157         HoistBarrier.insert(BB);
1158         break;
1159       }
1160       // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting
1161       // deeper may increase the register pressure and compilation time.
1162       if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB)
1163         break;
1164 
1165       // Do not value number terminator instructions.
1166       if (I1.isTerminator())
1167         break;
1168 
1169       if (auto *Load = dyn_cast<LoadInst>(&I1))
1170         LI.insert(Load, VN);
1171       else if (auto *Store = dyn_cast<StoreInst>(&I1))
1172         SI.insert(Store, VN);
1173       else if (auto *Call = dyn_cast<CallInst>(&I1)) {
1174         if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) {
1175           if (isa<DbgInfoIntrinsic>(Intr) ||
1176               Intr->getIntrinsicID() == Intrinsic::assume ||
1177               Intr->getIntrinsicID() == Intrinsic::sideeffect)
1178             continue;
1179         }
1180         if (Call->mayHaveSideEffects())
1181           break;
1182 
1183         if (Call->isConvergent())
1184           break;
1185 
1186         CI.insert(Call, VN);
1187       } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1))
1188         // Do not hoist scalars past calls that may write to memory because
1189         // that could result in spills later. geps are handled separately.
1190         // TODO: We can relax this for targets like AArch64 as they have more
1191         // registers than X86.
1192         II.insert(&I1, VN);
1193     }
1194   }
1195 
1196   HoistingPointList HPL;
1197   computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar);
1198   computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load);
1199   computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store);
1200   computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar);
1201   computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load);
1202   computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store);
1203   return hoist(HPL);
1204 }
1205 
1206 } // end namespace llvm
1207 
1208 PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) {
1209   DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
1210   PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
1211   AliasAnalysis &AA = AM.getResult<AAManager>(F);
1212   MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F);
1213   MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
1214   GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA);
1215   if (!G.run(F))
1216     return PreservedAnalyses::all();
1217 
1218   PreservedAnalyses PA;
1219   PA.preserve<DominatorTreeAnalysis>();
1220   PA.preserve<MemorySSAAnalysis>();
1221   return PA;
1222 }
1223