1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BlockFrequencyInfo.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/Analysis/CFG.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/GlobalsModRef.h"
27 #include "llvm/Analysis/GuardUtils.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/LazyValueInfo.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/PostDominators.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugInfo.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/PassManager.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/ProfDataUtils.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Use.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/BlockFrequency.h"
62 #include "llvm/Support/BranchProbability.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/Cloning.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/SSAUpdater.h"
71 #include "llvm/Transforms/Utils/ValueMapper.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <iterator>
76 #include <memory>
77 #include <utility>
78 
79 using namespace llvm;
80 using namespace jumpthreading;
81 
82 #define DEBUG_TYPE "jump-threading"
83 
84 STATISTIC(NumThreads, "Number of jumps threaded");
85 STATISTIC(NumFolds,   "Number of terminators folded");
86 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
87 
88 static cl::opt<unsigned>
89 BBDuplicateThreshold("jump-threading-threshold",
90           cl::desc("Max block size to duplicate for jump threading"),
91           cl::init(6), cl::Hidden);
92 
93 static cl::opt<unsigned>
94 ImplicationSearchThreshold(
95   "jump-threading-implication-search-threshold",
96   cl::desc("The number of predecessors to search for a stronger "
97            "condition to use to thread over a weaker condition"),
98   cl::init(3), cl::Hidden);
99 
100 static cl::opt<unsigned> PhiDuplicateThreshold(
101     "jump-threading-phi-threshold",
102     cl::desc("Max PHIs in BB to duplicate for jump threading"), cl::init(76),
103     cl::Hidden);
104 
105 static cl::opt<bool> PrintLVIAfterJumpThreading(
106     "print-lvi-after-jump-threading",
107     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
108     cl::Hidden);
109 
110 static cl::opt<bool> ThreadAcrossLoopHeaders(
111     "jump-threading-across-loop-headers",
112     cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
113     cl::init(false), cl::Hidden);
114 
115 JumpThreadingPass::JumpThreadingPass(int T) {
116   DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
117 }
118 
119 // Update branch probability information according to conditional
120 // branch probability. This is usually made possible for cloned branches
121 // in inline instances by the context specific profile in the caller.
122 // For instance,
123 //
124 //  [Block PredBB]
125 //  [Branch PredBr]
126 //  if (t) {
127 //     Block A;
128 //  } else {
129 //     Block B;
130 //  }
131 //
132 //  [Block BB]
133 //  cond = PN([true, %A], [..., %B]); // PHI node
134 //  [Branch CondBr]
135 //  if (cond) {
136 //    ...  // P(cond == true) = 1%
137 //  }
138 //
139 //  Here we know that when block A is taken, cond must be true, which means
140 //      P(cond == true | A) = 1
141 //
142 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
143 //                               P(cond == true | B) * P(B)
144 //  we get:
145 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
146 //
147 //  which gives us:
148 //     P(A) is less than P(cond == true), i.e.
149 //     P(t == true) <= P(cond == true)
150 //
151 //  In other words, if we know P(cond == true) is unlikely, we know
152 //  that P(t == true) is also unlikely.
153 //
154 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
155   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
156   if (!CondBr)
157     return;
158 
159   uint64_t TrueWeight, FalseWeight;
160   if (!extractBranchWeights(*CondBr, TrueWeight, FalseWeight))
161     return;
162 
163   if (TrueWeight + FalseWeight == 0)
164     // Zero branch_weights do not give a hint for getting branch probabilities.
165     // Technically it would result in division by zero denominator, which is
166     // TrueWeight + FalseWeight.
167     return;
168 
169   // Returns the outgoing edge of the dominating predecessor block
170   // that leads to the PhiNode's incoming block:
171   auto GetPredOutEdge =
172       [](BasicBlock *IncomingBB,
173          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
174     auto *PredBB = IncomingBB;
175     auto *SuccBB = PhiBB;
176     SmallPtrSet<BasicBlock *, 16> Visited;
177     while (true) {
178       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
179       if (PredBr && PredBr->isConditional())
180         return {PredBB, SuccBB};
181       Visited.insert(PredBB);
182       auto *SinglePredBB = PredBB->getSinglePredecessor();
183       if (!SinglePredBB)
184         return {nullptr, nullptr};
185 
186       // Stop searching when SinglePredBB has been visited. It means we see
187       // an unreachable loop.
188       if (Visited.count(SinglePredBB))
189         return {nullptr, nullptr};
190 
191       SuccBB = PredBB;
192       PredBB = SinglePredBB;
193     }
194   };
195 
196   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
197     Value *PhiOpnd = PN->getIncomingValue(i);
198     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
199 
200     if (!CI || !CI->getType()->isIntegerTy(1))
201       continue;
202 
203     BranchProbability BP =
204         (CI->isOne() ? BranchProbability::getBranchProbability(
205                            TrueWeight, TrueWeight + FalseWeight)
206                      : BranchProbability::getBranchProbability(
207                            FalseWeight, TrueWeight + FalseWeight));
208 
209     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
210     if (!PredOutEdge.first)
211       return;
212 
213     BasicBlock *PredBB = PredOutEdge.first;
214     BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
215     if (!PredBr)
216       return;
217 
218     uint64_t PredTrueWeight, PredFalseWeight;
219     // FIXME: We currently only set the profile data when it is missing.
220     // With PGO, this can be used to refine even existing profile data with
221     // context information. This needs to be done after more performance
222     // testing.
223     if (extractBranchWeights(*PredBr, PredTrueWeight, PredFalseWeight))
224       continue;
225 
226     // We can not infer anything useful when BP >= 50%, because BP is the
227     // upper bound probability value.
228     if (BP >= BranchProbability(50, 100))
229       continue;
230 
231     SmallVector<uint32_t, 2> Weights;
232     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
233       Weights.push_back(BP.getNumerator());
234       Weights.push_back(BP.getCompl().getNumerator());
235     } else {
236       Weights.push_back(BP.getCompl().getNumerator());
237       Weights.push_back(BP.getNumerator());
238     }
239     PredBr->setMetadata(LLVMContext::MD_prof,
240                         MDBuilder(PredBr->getParent()->getContext())
241                             .createBranchWeights(Weights));
242   }
243 }
244 
245 PreservedAnalyses JumpThreadingPass::run(Function &F,
246                                          FunctionAnalysisManager &AM) {
247   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
248   // Jump Threading has no sense for the targets with divergent CF
249   if (TTI.hasBranchDivergence(&F))
250     return PreservedAnalyses::all();
251   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
252   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
253   auto &AA = AM.getResult<AAManager>(F);
254   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
255 
256   bool Changed =
257       runImpl(F, &AM, &TLI, &TTI, &LVI, &AA,
258               std::make_unique<DomTreeUpdater>(
259                   &DT, nullptr, DomTreeUpdater::UpdateStrategy::Lazy),
260               std::nullopt, std::nullopt);
261 
262   if (PrintLVIAfterJumpThreading) {
263     dbgs() << "LVI for function '" << F.getName() << "':\n";
264     LVI.printLVI(F, getDomTreeUpdater()->getDomTree(), dbgs());
265   }
266 
267   if (!Changed)
268     return PreservedAnalyses::all();
269 
270 
271   getDomTreeUpdater()->flush();
272 
273 #if defined(EXPENSIVE_CHECKS)
274   assert(getDomTreeUpdater()->getDomTree().verify(
275              DominatorTree::VerificationLevel::Full) &&
276          "DT broken after JumpThreading");
277   assert((!getDomTreeUpdater()->hasPostDomTree() ||
278           getDomTreeUpdater()->getPostDomTree().verify(
279               PostDominatorTree::VerificationLevel::Full)) &&
280          "PDT broken after JumpThreading");
281 #else
282   assert(getDomTreeUpdater()->getDomTree().verify(
283              DominatorTree::VerificationLevel::Fast) &&
284          "DT broken after JumpThreading");
285   assert((!getDomTreeUpdater()->hasPostDomTree() ||
286           getDomTreeUpdater()->getPostDomTree().verify(
287               PostDominatorTree::VerificationLevel::Fast)) &&
288          "PDT broken after JumpThreading");
289 #endif
290 
291   return getPreservedAnalysis();
292 }
293 
294 bool JumpThreadingPass::runImpl(Function &F_, FunctionAnalysisManager *FAM_,
295                                 TargetLibraryInfo *TLI_,
296                                 TargetTransformInfo *TTI_, LazyValueInfo *LVI_,
297                                 AliasAnalysis *AA_,
298                                 std::unique_ptr<DomTreeUpdater> DTU_,
299                                 std::optional<BlockFrequencyInfo *> BFI_,
300                                 std::optional<BranchProbabilityInfo *> BPI_) {
301   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F_.getName() << "'\n");
302   F = &F_;
303   FAM = FAM_;
304   TLI = TLI_;
305   TTI = TTI_;
306   LVI = LVI_;
307   AA = AA_;
308   DTU = std::move(DTU_);
309   BFI = BFI_;
310   BPI = BPI_;
311   auto *GuardDecl = F->getParent()->getFunction(
312       Intrinsic::getName(Intrinsic::experimental_guard));
313   HasGuards = GuardDecl && !GuardDecl->use_empty();
314 
315   // Reduce the number of instructions duplicated when optimizing strictly for
316   // size.
317   if (BBDuplicateThreshold.getNumOccurrences())
318     BBDupThreshold = BBDuplicateThreshold;
319   else if (F->hasFnAttribute(Attribute::MinSize))
320     BBDupThreshold = 3;
321   else
322     BBDupThreshold = DefaultBBDupThreshold;
323 
324   // JumpThreading must not processes blocks unreachable from entry. It's a
325   // waste of compute time and can potentially lead to hangs.
326   SmallPtrSet<BasicBlock *, 16> Unreachable;
327   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
328   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
329   DominatorTree &DT = DTU->getDomTree();
330   for (auto &BB : *F)
331     if (!DT.isReachableFromEntry(&BB))
332       Unreachable.insert(&BB);
333 
334   if (!ThreadAcrossLoopHeaders)
335     findLoopHeaders(*F);
336 
337   bool EverChanged = false;
338   bool Changed;
339   do {
340     Changed = false;
341     for (auto &BB : *F) {
342       if (Unreachable.count(&BB))
343         continue;
344       while (processBlock(&BB)) // Thread all of the branches we can over BB.
345         Changed = ChangedSinceLastAnalysisUpdate = true;
346 
347       // Jump threading may have introduced redundant debug values into BB
348       // which should be removed.
349       if (Changed)
350         RemoveRedundantDbgInstrs(&BB);
351 
352       // Stop processing BB if it's the entry or is now deleted. The following
353       // routines attempt to eliminate BB and locating a suitable replacement
354       // for the entry is non-trivial.
355       if (&BB == &F->getEntryBlock() || DTU->isBBPendingDeletion(&BB))
356         continue;
357 
358       if (pred_empty(&BB)) {
359         // When processBlock makes BB unreachable it doesn't bother to fix up
360         // the instructions in it. We must remove BB to prevent invalid IR.
361         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
362                           << "' with terminator: " << *BB.getTerminator()
363                           << '\n');
364         LoopHeaders.erase(&BB);
365         LVI->eraseBlock(&BB);
366         DeleteDeadBlock(&BB, DTU.get());
367         Changed = ChangedSinceLastAnalysisUpdate = true;
368         continue;
369       }
370 
371       // processBlock doesn't thread BBs with unconditional TIs. However, if BB
372       // is "almost empty", we attempt to merge BB with its sole successor.
373       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
374       if (BI && BI->isUnconditional()) {
375         BasicBlock *Succ = BI->getSuccessor(0);
376         if (
377             // The terminator must be the only non-phi instruction in BB.
378             BB.getFirstNonPHIOrDbg(true)->isTerminator() &&
379             // Don't alter Loop headers and latches to ensure another pass can
380             // detect and transform nested loops later.
381             !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
382             TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU.get())) {
383           RemoveRedundantDbgInstrs(Succ);
384           // BB is valid for cleanup here because we passed in DTU. F remains
385           // BB's parent until a DTU->getDomTree() event.
386           LVI->eraseBlock(&BB);
387           Changed = ChangedSinceLastAnalysisUpdate = true;
388         }
389       }
390     }
391     EverChanged |= Changed;
392   } while (Changed);
393 
394   LoopHeaders.clear();
395   return EverChanged;
396 }
397 
398 // Replace uses of Cond with ToVal when safe to do so. If all uses are
399 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
400 // because we may incorrectly replace uses when guards/assumes are uses of
401 // of `Cond` and we used the guards/assume to reason about the `Cond` value
402 // at the end of block. RAUW unconditionally replaces all uses
403 // including the guards/assumes themselves and the uses before the
404 // guard/assume.
405 static bool replaceFoldableUses(Instruction *Cond, Value *ToVal,
406                                 BasicBlock *KnownAtEndOfBB) {
407   bool Changed = false;
408   assert(Cond->getType() == ToVal->getType());
409   // We can unconditionally replace all uses in non-local blocks (i.e. uses
410   // strictly dominated by BB), since LVI information is true from the
411   // terminator of BB.
412   if (Cond->getParent() == KnownAtEndOfBB)
413     Changed |= replaceNonLocalUsesWith(Cond, ToVal);
414   for (Instruction &I : reverse(*KnownAtEndOfBB)) {
415     // Reached the Cond whose uses we are trying to replace, so there are no
416     // more uses.
417     if (&I == Cond)
418       break;
419     // We only replace uses in instructions that are guaranteed to reach the end
420     // of BB, where we know Cond is ToVal.
421     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
422       break;
423     Changed |= I.replaceUsesOfWith(Cond, ToVal);
424   }
425   if (Cond->use_empty() && !Cond->mayHaveSideEffects()) {
426     Cond->eraseFromParent();
427     Changed = true;
428   }
429   return Changed;
430 }
431 
432 /// Return the cost of duplicating a piece of this block from first non-phi
433 /// and before StopAt instruction to thread across it. Stop scanning the block
434 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
435 static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI,
436                                              BasicBlock *BB,
437                                              Instruction *StopAt,
438                                              unsigned Threshold) {
439   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
440 
441   // Do not duplicate the BB if it has a lot of PHI nodes.
442   // If a threadable chain is too long then the number of PHI nodes can add up,
443   // leading to a substantial increase in compile time when rewriting the SSA.
444   unsigned PhiCount = 0;
445   Instruction *FirstNonPHI = nullptr;
446   for (Instruction &I : *BB) {
447     if (!isa<PHINode>(&I)) {
448       FirstNonPHI = &I;
449       break;
450     }
451     if (++PhiCount > PhiDuplicateThreshold)
452       return ~0U;
453   }
454 
455   /// Ignore PHI nodes, these will be flattened when duplication happens.
456   BasicBlock::const_iterator I(FirstNonPHI);
457 
458   // FIXME: THREADING will delete values that are just used to compute the
459   // branch, so they shouldn't count against the duplication cost.
460 
461   unsigned Bonus = 0;
462   if (BB->getTerminator() == StopAt) {
463     // Threading through a switch statement is particularly profitable.  If this
464     // block ends in a switch, decrease its cost to make it more likely to
465     // happen.
466     if (isa<SwitchInst>(StopAt))
467       Bonus = 6;
468 
469     // The same holds for indirect branches, but slightly more so.
470     if (isa<IndirectBrInst>(StopAt))
471       Bonus = 8;
472   }
473 
474   // Bump the threshold up so the early exit from the loop doesn't skip the
475   // terminator-based Size adjustment at the end.
476   Threshold += Bonus;
477 
478   // Sum up the cost of each instruction until we get to the terminator.  Don't
479   // include the terminator because the copy won't include it.
480   unsigned Size = 0;
481   for (; &*I != StopAt; ++I) {
482 
483     // Stop scanning the block if we've reached the threshold.
484     if (Size > Threshold)
485       return Size;
486 
487     // Bail out if this instruction gives back a token type, it is not possible
488     // to duplicate it if it is used outside this BB.
489     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
490       return ~0U;
491 
492     // Blocks with NoDuplicate are modelled as having infinite cost, so they
493     // are never duplicated.
494     if (const CallInst *CI = dyn_cast<CallInst>(I))
495       if (CI->cannotDuplicate() || CI->isConvergent())
496         return ~0U;
497 
498     if (TTI->getInstructionCost(&*I, TargetTransformInfo::TCK_SizeAndLatency) ==
499         TargetTransformInfo::TCC_Free)
500       continue;
501 
502     // All other instructions count for at least one unit.
503     ++Size;
504 
505     // Calls are more expensive.  If they are non-intrinsic calls, we model them
506     // as having cost of 4.  If they are a non-vector intrinsic, we model them
507     // as having cost of 2 total, and if they are a vector intrinsic, we model
508     // them as having cost 1.
509     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
510       if (!isa<IntrinsicInst>(CI))
511         Size += 3;
512       else if (!CI->getType()->isVectorTy())
513         Size += 1;
514     }
515   }
516 
517   return Size > Bonus ? Size - Bonus : 0;
518 }
519 
520 /// findLoopHeaders - We do not want jump threading to turn proper loop
521 /// structures into irreducible loops.  Doing this breaks up the loop nesting
522 /// hierarchy and pessimizes later transformations.  To prevent this from
523 /// happening, we first have to find the loop headers.  Here we approximate this
524 /// by finding targets of backedges in the CFG.
525 ///
526 /// Note that there definitely are cases when we want to allow threading of
527 /// edges across a loop header.  For example, threading a jump from outside the
528 /// loop (the preheader) to an exit block of the loop is definitely profitable.
529 /// It is also almost always profitable to thread backedges from within the loop
530 /// to exit blocks, and is often profitable to thread backedges to other blocks
531 /// within the loop (forming a nested loop).  This simple analysis is not rich
532 /// enough to track all of these properties and keep it up-to-date as the CFG
533 /// mutates, so we don't allow any of these transformations.
534 void JumpThreadingPass::findLoopHeaders(Function &F) {
535   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
536   FindFunctionBackedges(F, Edges);
537 
538   for (const auto &Edge : Edges)
539     LoopHeaders.insert(Edge.second);
540 }
541 
542 /// getKnownConstant - Helper method to determine if we can thread over a
543 /// terminator with the given value as its condition, and if so what value to
544 /// use for that. What kind of value this is depends on whether we want an
545 /// integer or a block address, but an undef is always accepted.
546 /// Returns null if Val is null or not an appropriate constant.
547 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
548   if (!Val)
549     return nullptr;
550 
551   // Undef is "known" enough.
552   if (UndefValue *U = dyn_cast<UndefValue>(Val))
553     return U;
554 
555   if (Preference == WantBlockAddress)
556     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
557 
558   return dyn_cast<ConstantInt>(Val);
559 }
560 
561 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
562 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
563 /// in any of our predecessors.  If so, return the known list of value and pred
564 /// BB in the result vector.
565 ///
566 /// This returns true if there were any known values.
567 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
568     Value *V, BasicBlock *BB, PredValueInfo &Result,
569     ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
570     Instruction *CxtI) {
571   // This method walks up use-def chains recursively.  Because of this, we could
572   // get into an infinite loop going around loops in the use-def chain.  To
573   // prevent this, keep track of what (value, block) pairs we've already visited
574   // and terminate the search if we loop back to them
575   if (!RecursionSet.insert(V).second)
576     return false;
577 
578   // If V is a constant, then it is known in all predecessors.
579   if (Constant *KC = getKnownConstant(V, Preference)) {
580     for (BasicBlock *Pred : predecessors(BB))
581       Result.emplace_back(KC, Pred);
582 
583     return !Result.empty();
584   }
585 
586   // If V is a non-instruction value, or an instruction in a different block,
587   // then it can't be derived from a PHI.
588   Instruction *I = dyn_cast<Instruction>(V);
589   if (!I || I->getParent() != BB) {
590 
591     // Okay, if this is a live-in value, see if it has a known value at the any
592     // edge from our predecessors.
593     for (BasicBlock *P : predecessors(BB)) {
594       using namespace PatternMatch;
595       // If the value is known by LazyValueInfo to be a constant in a
596       // predecessor, use that information to try to thread this block.
597       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
598       // If I is a non-local compare-with-constant instruction, use more-rich
599       // 'getPredicateOnEdge' method. This would be able to handle value
600       // inequalities better, for example if the compare is "X < 4" and "X < 3"
601       // is known true but "X < 4" itself is not available.
602       CmpInst::Predicate Pred;
603       Value *Val;
604       Constant *Cst;
605       if (!PredCst && match(V, m_Cmp(Pred, m_Value(Val), m_Constant(Cst)))) {
606         auto Res = LVI->getPredicateOnEdge(Pred, Val, Cst, P, BB, CxtI);
607         if (Res != LazyValueInfo::Unknown)
608           PredCst = ConstantInt::getBool(V->getContext(), Res);
609       }
610       if (Constant *KC = getKnownConstant(PredCst, Preference))
611         Result.emplace_back(KC, P);
612     }
613 
614     return !Result.empty();
615   }
616 
617   /// If I is a PHI node, then we know the incoming values for any constants.
618   if (PHINode *PN = dyn_cast<PHINode>(I)) {
619     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
620       Value *InVal = PN->getIncomingValue(i);
621       if (Constant *KC = getKnownConstant(InVal, Preference)) {
622         Result.emplace_back(KC, PN->getIncomingBlock(i));
623       } else {
624         Constant *CI = LVI->getConstantOnEdge(InVal,
625                                               PN->getIncomingBlock(i),
626                                               BB, CxtI);
627         if (Constant *KC = getKnownConstant(CI, Preference))
628           Result.emplace_back(KC, PN->getIncomingBlock(i));
629       }
630     }
631 
632     return !Result.empty();
633   }
634 
635   // Handle Cast instructions.
636   if (CastInst *CI = dyn_cast<CastInst>(I)) {
637     Value *Source = CI->getOperand(0);
638     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
639                                         RecursionSet, CxtI);
640     if (Result.empty())
641       return false;
642 
643     // Convert the known values.
644     for (auto &R : Result)
645       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
646 
647     return true;
648   }
649 
650   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
651     Value *Source = FI->getOperand(0);
652     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
653                                         RecursionSet, CxtI);
654 
655     erase_if(Result, [](auto &Pair) {
656       return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
657     });
658 
659     return !Result.empty();
660   }
661 
662   // Handle some boolean conditions.
663   if (I->getType()->getPrimitiveSizeInBits() == 1) {
664     using namespace PatternMatch;
665     if (Preference != WantInteger)
666       return false;
667     // X | true -> true
668     // X & false -> false
669     Value *Op0, *Op1;
670     if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
671         match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
672       PredValueInfoTy LHSVals, RHSVals;
673 
674       computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger,
675                                           RecursionSet, CxtI);
676       computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger,
677                                           RecursionSet, CxtI);
678 
679       if (LHSVals.empty() && RHSVals.empty())
680         return false;
681 
682       ConstantInt *InterestingVal;
683       if (match(I, m_LogicalOr()))
684         InterestingVal = ConstantInt::getTrue(I->getContext());
685       else
686         InterestingVal = ConstantInt::getFalse(I->getContext());
687 
688       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
689 
690       // Scan for the sentinel.  If we find an undef, force it to the
691       // interesting value: x|undef -> true and x&undef -> false.
692       for (const auto &LHSVal : LHSVals)
693         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
694           Result.emplace_back(InterestingVal, LHSVal.second);
695           LHSKnownBBs.insert(LHSVal.second);
696         }
697       for (const auto &RHSVal : RHSVals)
698         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
699           // If we already inferred a value for this block on the LHS, don't
700           // re-add it.
701           if (!LHSKnownBBs.count(RHSVal.second))
702             Result.emplace_back(InterestingVal, RHSVal.second);
703         }
704 
705       return !Result.empty();
706     }
707 
708     // Handle the NOT form of XOR.
709     if (I->getOpcode() == Instruction::Xor &&
710         isa<ConstantInt>(I->getOperand(1)) &&
711         cast<ConstantInt>(I->getOperand(1))->isOne()) {
712       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
713                                           WantInteger, RecursionSet, CxtI);
714       if (Result.empty())
715         return false;
716 
717       // Invert the known values.
718       for (auto &R : Result)
719         R.first = ConstantExpr::getNot(R.first);
720 
721       return true;
722     }
723 
724   // Try to simplify some other binary operator values.
725   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
726     if (Preference != WantInteger)
727       return false;
728     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
729       const DataLayout &DL = BO->getModule()->getDataLayout();
730       PredValueInfoTy LHSVals;
731       computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
732                                           WantInteger, RecursionSet, CxtI);
733 
734       // Try to use constant folding to simplify the binary operator.
735       for (const auto &LHSVal : LHSVals) {
736         Constant *V = LHSVal.first;
737         Constant *Folded =
738             ConstantFoldBinaryOpOperands(BO->getOpcode(), V, CI, DL);
739 
740         if (Constant *KC = getKnownConstant(Folded, WantInteger))
741           Result.emplace_back(KC, LHSVal.second);
742       }
743     }
744 
745     return !Result.empty();
746   }
747 
748   // Handle compare with phi operand, where the PHI is defined in this block.
749   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
750     if (Preference != WantInteger)
751       return false;
752     Type *CmpType = Cmp->getType();
753     Value *CmpLHS = Cmp->getOperand(0);
754     Value *CmpRHS = Cmp->getOperand(1);
755     CmpInst::Predicate Pred = Cmp->getPredicate();
756 
757     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
758     if (!PN)
759       PN = dyn_cast<PHINode>(CmpRHS);
760     if (PN && PN->getParent() == BB) {
761       const DataLayout &DL = PN->getModule()->getDataLayout();
762       // We can do this simplification if any comparisons fold to true or false.
763       // See if any do.
764       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
765         BasicBlock *PredBB = PN->getIncomingBlock(i);
766         Value *LHS, *RHS;
767         if (PN == CmpLHS) {
768           LHS = PN->getIncomingValue(i);
769           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
770         } else {
771           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
772           RHS = PN->getIncomingValue(i);
773         }
774         Value *Res = simplifyCmpInst(Pred, LHS, RHS, {DL});
775         if (!Res) {
776           if (!isa<Constant>(RHS))
777             continue;
778 
779           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
780           auto LHSInst = dyn_cast<Instruction>(LHS);
781           if (LHSInst && LHSInst->getParent() == BB)
782             continue;
783 
784           LazyValueInfo::Tristate
785             ResT = LVI->getPredicateOnEdge(Pred, LHS,
786                                            cast<Constant>(RHS), PredBB, BB,
787                                            CxtI ? CxtI : Cmp);
788           if (ResT == LazyValueInfo::Unknown)
789             continue;
790           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
791         }
792 
793         if (Constant *KC = getKnownConstant(Res, WantInteger))
794           Result.emplace_back(KC, PredBB);
795       }
796 
797       return !Result.empty();
798     }
799 
800     // If comparing a live-in value against a constant, see if we know the
801     // live-in value on any predecessors.
802     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
803       Constant *CmpConst = cast<Constant>(CmpRHS);
804 
805       if (!isa<Instruction>(CmpLHS) ||
806           cast<Instruction>(CmpLHS)->getParent() != BB) {
807         for (BasicBlock *P : predecessors(BB)) {
808           // If the value is known by LazyValueInfo to be a constant in a
809           // predecessor, use that information to try to thread this block.
810           LazyValueInfo::Tristate Res =
811             LVI->getPredicateOnEdge(Pred, CmpLHS,
812                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
813           if (Res == LazyValueInfo::Unknown)
814             continue;
815 
816           Constant *ResC = ConstantInt::get(CmpType, Res);
817           Result.emplace_back(ResC, P);
818         }
819 
820         return !Result.empty();
821       }
822 
823       // InstCombine can fold some forms of constant range checks into
824       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
825       // x as a live-in.
826       {
827         using namespace PatternMatch;
828 
829         Value *AddLHS;
830         ConstantInt *AddConst;
831         if (isa<ConstantInt>(CmpConst) &&
832             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
833           if (!isa<Instruction>(AddLHS) ||
834               cast<Instruction>(AddLHS)->getParent() != BB) {
835             for (BasicBlock *P : predecessors(BB)) {
836               // If the value is known by LazyValueInfo to be a ConstantRange in
837               // a predecessor, use that information to try to thread this
838               // block.
839               ConstantRange CR = LVI->getConstantRangeOnEdge(
840                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
841               // Propagate the range through the addition.
842               CR = CR.add(AddConst->getValue());
843 
844               // Get the range where the compare returns true.
845               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
846                   Pred, cast<ConstantInt>(CmpConst)->getValue());
847 
848               Constant *ResC;
849               if (CmpRange.contains(CR))
850                 ResC = ConstantInt::getTrue(CmpType);
851               else if (CmpRange.inverse().contains(CR))
852                 ResC = ConstantInt::getFalse(CmpType);
853               else
854                 continue;
855 
856               Result.emplace_back(ResC, P);
857             }
858 
859             return !Result.empty();
860           }
861         }
862       }
863 
864       // Try to find a constant value for the LHS of a comparison,
865       // and evaluate it statically if we can.
866       PredValueInfoTy LHSVals;
867       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
868                                           WantInteger, RecursionSet, CxtI);
869 
870       for (const auto &LHSVal : LHSVals) {
871         Constant *V = LHSVal.first;
872         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
873         if (Constant *KC = getKnownConstant(Folded, WantInteger))
874           Result.emplace_back(KC, LHSVal.second);
875       }
876 
877       return !Result.empty();
878     }
879   }
880 
881   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
882     // Handle select instructions where at least one operand is a known constant
883     // and we can figure out the condition value for any predecessor block.
884     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
885     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
886     PredValueInfoTy Conds;
887     if ((TrueVal || FalseVal) &&
888         computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
889                                             WantInteger, RecursionSet, CxtI)) {
890       for (auto &C : Conds) {
891         Constant *Cond = C.first;
892 
893         // Figure out what value to use for the condition.
894         bool KnownCond;
895         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
896           // A known boolean.
897           KnownCond = CI->isOne();
898         } else {
899           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
900           // Either operand will do, so be sure to pick the one that's a known
901           // constant.
902           // FIXME: Do this more cleverly if both values are known constants?
903           KnownCond = (TrueVal != nullptr);
904         }
905 
906         // See if the select has a known constant value for this predecessor.
907         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
908           Result.emplace_back(Val, C.second);
909       }
910 
911       return !Result.empty();
912     }
913   }
914 
915   // If all else fails, see if LVI can figure out a constant value for us.
916   assert(CxtI->getParent() == BB && "CxtI should be in BB");
917   Constant *CI = LVI->getConstant(V, CxtI);
918   if (Constant *KC = getKnownConstant(CI, Preference)) {
919     for (BasicBlock *Pred : predecessors(BB))
920       Result.emplace_back(KC, Pred);
921   }
922 
923   return !Result.empty();
924 }
925 
926 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
927 /// in an undefined jump, decide which block is best to revector to.
928 ///
929 /// Since we can pick an arbitrary destination, we pick the successor with the
930 /// fewest predecessors.  This should reduce the in-degree of the others.
931 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) {
932   Instruction *BBTerm = BB->getTerminator();
933   unsigned MinSucc = 0;
934   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
935   // Compute the successor with the minimum number of predecessors.
936   unsigned MinNumPreds = pred_size(TestBB);
937   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
938     TestBB = BBTerm->getSuccessor(i);
939     unsigned NumPreds = pred_size(TestBB);
940     if (NumPreds < MinNumPreds) {
941       MinSucc = i;
942       MinNumPreds = NumPreds;
943     }
944   }
945 
946   return MinSucc;
947 }
948 
949 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
950   if (!BB->hasAddressTaken()) return false;
951 
952   // If the block has its address taken, it may be a tree of dead constants
953   // hanging off of it.  These shouldn't keep the block alive.
954   BlockAddress *BA = BlockAddress::get(BB);
955   BA->removeDeadConstantUsers();
956   return !BA->use_empty();
957 }
958 
959 /// processBlock - If there are any predecessors whose control can be threaded
960 /// through to a successor, transform them now.
961 bool JumpThreadingPass::processBlock(BasicBlock *BB) {
962   // If the block is trivially dead, just return and let the caller nuke it.
963   // This simplifies other transformations.
964   if (DTU->isBBPendingDeletion(BB) ||
965       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
966     return false;
967 
968   // If this block has a single predecessor, and if that pred has a single
969   // successor, merge the blocks.  This encourages recursive jump threading
970   // because now the condition in this block can be threaded through
971   // predecessors of our predecessor block.
972   if (maybeMergeBasicBlockIntoOnlyPred(BB))
973     return true;
974 
975   if (tryToUnfoldSelectInCurrBB(BB))
976     return true;
977 
978   // Look if we can propagate guards to predecessors.
979   if (HasGuards && processGuards(BB))
980     return true;
981 
982   // What kind of constant we're looking for.
983   ConstantPreference Preference = WantInteger;
984 
985   // Look to see if the terminator is a conditional branch, switch or indirect
986   // branch, if not we can't thread it.
987   Value *Condition;
988   Instruction *Terminator = BB->getTerminator();
989   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
990     // Can't thread an unconditional jump.
991     if (BI->isUnconditional()) return false;
992     Condition = BI->getCondition();
993   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
994     Condition = SI->getCondition();
995   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
996     // Can't thread indirect branch with no successors.
997     if (IB->getNumSuccessors() == 0) return false;
998     Condition = IB->getAddress()->stripPointerCasts();
999     Preference = WantBlockAddress;
1000   } else {
1001     return false; // Must be an invoke or callbr.
1002   }
1003 
1004   // Keep track if we constant folded the condition in this invocation.
1005   bool ConstantFolded = false;
1006 
1007   // Run constant folding to see if we can reduce the condition to a simple
1008   // constant.
1009   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1010     Value *SimpleVal =
1011         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1012     if (SimpleVal) {
1013       I->replaceAllUsesWith(SimpleVal);
1014       if (isInstructionTriviallyDead(I, TLI))
1015         I->eraseFromParent();
1016       Condition = SimpleVal;
1017       ConstantFolded = true;
1018     }
1019   }
1020 
1021   // If the terminator is branching on an undef or freeze undef, we can pick any
1022   // of the successors to branch to.  Let getBestDestForJumpOnUndef decide.
1023   auto *FI = dyn_cast<FreezeInst>(Condition);
1024   if (isa<UndefValue>(Condition) ||
1025       (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1026     unsigned BestSucc = getBestDestForJumpOnUndef(BB);
1027     std::vector<DominatorTree::UpdateType> Updates;
1028 
1029     // Fold the branch/switch.
1030     Instruction *BBTerm = BB->getTerminator();
1031     Updates.reserve(BBTerm->getNumSuccessors());
1032     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1033       if (i == BestSucc) continue;
1034       BasicBlock *Succ = BBTerm->getSuccessor(i);
1035       Succ->removePredecessor(BB, true);
1036       Updates.push_back({DominatorTree::Delete, BB, Succ});
1037     }
1038 
1039     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1040                       << "' folding undef terminator: " << *BBTerm << '\n');
1041     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1042     ++NumFolds;
1043     BBTerm->eraseFromParent();
1044     DTU->applyUpdatesPermissive(Updates);
1045     if (FI)
1046       FI->eraseFromParent();
1047     return true;
1048   }
1049 
1050   // If the terminator of this block is branching on a constant, simplify the
1051   // terminator to an unconditional branch.  This can occur due to threading in
1052   // other blocks.
1053   if (getKnownConstant(Condition, Preference)) {
1054     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1055                       << "' folding terminator: " << *BB->getTerminator()
1056                       << '\n');
1057     ++NumFolds;
1058     ConstantFoldTerminator(BB, true, nullptr, DTU.get());
1059     if (auto *BPI = getBPI())
1060       BPI->eraseBlock(BB);
1061     return true;
1062   }
1063 
1064   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1065 
1066   // All the rest of our checks depend on the condition being an instruction.
1067   if (!CondInst) {
1068     // FIXME: Unify this with code below.
1069     if (processThreadableEdges(Condition, BB, Preference, Terminator))
1070       return true;
1071     return ConstantFolded;
1072   }
1073 
1074   // Some of the following optimization can safely work on the unfrozen cond.
1075   Value *CondWithoutFreeze = CondInst;
1076   if (auto *FI = dyn_cast<FreezeInst>(CondInst))
1077     CondWithoutFreeze = FI->getOperand(0);
1078 
1079   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondWithoutFreeze)) {
1080     // If we're branching on a conditional, LVI might be able to determine
1081     // it's value at the branch instruction.  We only handle comparisons
1082     // against a constant at this time.
1083     if (Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1))) {
1084       LazyValueInfo::Tristate Ret =
1085           LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1086                               CondConst, BB->getTerminator(),
1087                               /*UseBlockValue=*/false);
1088       if (Ret != LazyValueInfo::Unknown) {
1089         // We can safely replace *some* uses of the CondInst if it has
1090         // exactly one value as returned by LVI. RAUW is incorrect in the
1091         // presence of guards and assumes, that have the `Cond` as the use. This
1092         // is because we use the guards/assume to reason about the `Cond` value
1093         // at the end of block, but RAUW unconditionally replaces all uses
1094         // including the guards/assumes themselves and the uses before the
1095         // guard/assume.
1096         auto *CI = Ret == LazyValueInfo::True ?
1097           ConstantInt::getTrue(CondCmp->getType()) :
1098           ConstantInt::getFalse(CondCmp->getType());
1099         if (replaceFoldableUses(CondCmp, CI, BB))
1100           return true;
1101       }
1102 
1103       // We did not manage to simplify this branch, try to see whether
1104       // CondCmp depends on a known phi-select pattern.
1105       if (tryToUnfoldSelect(CondCmp, BB))
1106         return true;
1107     }
1108   }
1109 
1110   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1111     if (tryToUnfoldSelect(SI, BB))
1112       return true;
1113 
1114   // Check for some cases that are worth simplifying.  Right now we want to look
1115   // for loads that are used by a switch or by the condition for the branch.  If
1116   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1117   // which can then be used to thread the values.
1118   Value *SimplifyValue = CondWithoutFreeze;
1119 
1120   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1121     if (isa<Constant>(CondCmp->getOperand(1)))
1122       SimplifyValue = CondCmp->getOperand(0);
1123 
1124   // TODO: There are other places where load PRE would be profitable, such as
1125   // more complex comparisons.
1126   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1127     if (simplifyPartiallyRedundantLoad(LoadI))
1128       return true;
1129 
1130   // Before threading, try to propagate profile data backwards:
1131   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1132     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1133       updatePredecessorProfileMetadata(PN, BB);
1134 
1135   // Handle a variety of cases where we are branching on something derived from
1136   // a PHI node in the current block.  If we can prove that any predecessors
1137   // compute a predictable value based on a PHI node, thread those predecessors.
1138   if (processThreadableEdges(CondInst, BB, Preference, Terminator))
1139     return true;
1140 
1141   // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1142   // the current block, see if we can simplify.
1143   PHINode *PN = dyn_cast<PHINode>(CondWithoutFreeze);
1144   if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1145     return processBranchOnPHI(PN);
1146 
1147   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1148   if (CondInst->getOpcode() == Instruction::Xor &&
1149       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1150     return processBranchOnXOR(cast<BinaryOperator>(CondInst));
1151 
1152   // Search for a stronger dominating condition that can be used to simplify a
1153   // conditional branch leaving BB.
1154   if (processImpliedCondition(BB))
1155     return true;
1156 
1157   return false;
1158 }
1159 
1160 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) {
1161   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1162   if (!BI || !BI->isConditional())
1163     return false;
1164 
1165   Value *Cond = BI->getCondition();
1166   // Assuming that predecessor's branch was taken, if pred's branch condition
1167   // (V) implies Cond, Cond can be either true, undef, or poison. In this case,
1168   // freeze(Cond) is either true or a nondeterministic value.
1169   // If freeze(Cond) has only one use, we can freely fold freeze(Cond) to true
1170   // without affecting other instructions.
1171   auto *FICond = dyn_cast<FreezeInst>(Cond);
1172   if (FICond && FICond->hasOneUse())
1173     Cond = FICond->getOperand(0);
1174   else
1175     FICond = nullptr;
1176 
1177   BasicBlock *CurrentBB = BB;
1178   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1179   unsigned Iter = 0;
1180 
1181   auto &DL = BB->getModule()->getDataLayout();
1182 
1183   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1184     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1185     if (!PBI || !PBI->isConditional())
1186       return false;
1187     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1188       return false;
1189 
1190     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1191     std::optional<bool> Implication =
1192         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1193 
1194     // If the branch condition of BB (which is Cond) and CurrentPred are
1195     // exactly the same freeze instruction, Cond can be folded into CondIsTrue.
1196     if (!Implication && FICond && isa<FreezeInst>(PBI->getCondition())) {
1197       if (cast<FreezeInst>(PBI->getCondition())->getOperand(0) ==
1198           FICond->getOperand(0))
1199         Implication = CondIsTrue;
1200     }
1201 
1202     if (Implication) {
1203       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1204       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1205       RemoveSucc->removePredecessor(BB);
1206       BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1207       UncondBI->setDebugLoc(BI->getDebugLoc());
1208       ++NumFolds;
1209       BI->eraseFromParent();
1210       if (FICond)
1211         FICond->eraseFromParent();
1212 
1213       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1214       if (auto *BPI = getBPI())
1215         BPI->eraseBlock(BB);
1216       return true;
1217     }
1218     CurrentBB = CurrentPred;
1219     CurrentPred = CurrentBB->getSinglePredecessor();
1220   }
1221 
1222   return false;
1223 }
1224 
1225 /// Return true if Op is an instruction defined in the given block.
1226 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1227   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1228     if (OpInst->getParent() == BB)
1229       return true;
1230   return false;
1231 }
1232 
1233 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1234 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1235 /// This is an important optimization that encourages jump threading, and needs
1236 /// to be run interlaced with other jump threading tasks.
1237 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1238   // Don't hack volatile and ordered loads.
1239   if (!LoadI->isUnordered()) return false;
1240 
1241   // If the load is defined in a block with exactly one predecessor, it can't be
1242   // partially redundant.
1243   BasicBlock *LoadBB = LoadI->getParent();
1244   if (LoadBB->getSinglePredecessor())
1245     return false;
1246 
1247   // If the load is defined in an EH pad, it can't be partially redundant,
1248   // because the edges between the invoke and the EH pad cannot have other
1249   // instructions between them.
1250   if (LoadBB->isEHPad())
1251     return false;
1252 
1253   Value *LoadedPtr = LoadI->getOperand(0);
1254 
1255   // If the loaded operand is defined in the LoadBB and its not a phi,
1256   // it can't be available in predecessors.
1257   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1258     return false;
1259 
1260   // Scan a few instructions up from the load, to see if it is obviously live at
1261   // the entry to its block.
1262   BasicBlock::iterator BBIt(LoadI);
1263   bool IsLoadCSE;
1264   if (Value *AvailableVal = FindAvailableLoadedValue(
1265           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1266     // If the value of the load is locally available within the block, just use
1267     // it.  This frequently occurs for reg2mem'd allocas.
1268 
1269     if (IsLoadCSE) {
1270       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1271       combineMetadataForCSE(NLoadI, LoadI, false);
1272       LVI->forgetValue(NLoadI);
1273     };
1274 
1275     // If the returned value is the load itself, replace with poison. This can
1276     // only happen in dead loops.
1277     if (AvailableVal == LoadI)
1278       AvailableVal = PoisonValue::get(LoadI->getType());
1279     if (AvailableVal->getType() != LoadI->getType())
1280       AvailableVal = CastInst::CreateBitOrPointerCast(
1281           AvailableVal, LoadI->getType(), "", LoadI);
1282     LoadI->replaceAllUsesWith(AvailableVal);
1283     LoadI->eraseFromParent();
1284     return true;
1285   }
1286 
1287   // Otherwise, if we scanned the whole block and got to the top of the block,
1288   // we know the block is locally transparent to the load.  If not, something
1289   // might clobber its value.
1290   if (BBIt != LoadBB->begin())
1291     return false;
1292 
1293   // If all of the loads and stores that feed the value have the same AA tags,
1294   // then we can propagate them onto any newly inserted loads.
1295   AAMDNodes AATags = LoadI->getAAMetadata();
1296 
1297   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1298 
1299   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1300 
1301   AvailablePredsTy AvailablePreds;
1302   BasicBlock *OneUnavailablePred = nullptr;
1303   SmallVector<LoadInst*, 8> CSELoads;
1304 
1305   // If we got here, the loaded value is transparent through to the start of the
1306   // block.  Check to see if it is available in any of the predecessor blocks.
1307   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1308     // If we already scanned this predecessor, skip it.
1309     if (!PredsScanned.insert(PredBB).second)
1310       continue;
1311 
1312     BBIt = PredBB->end();
1313     unsigned NumScanedInst = 0;
1314     Value *PredAvailable = nullptr;
1315     // NOTE: We don't CSE load that is volatile or anything stronger than
1316     // unordered, that should have been checked when we entered the function.
1317     assert(LoadI->isUnordered() &&
1318            "Attempting to CSE volatile or atomic loads");
1319     // If this is a load on a phi pointer, phi-translate it and search
1320     // for available load/store to the pointer in predecessors.
1321     Type *AccessTy = LoadI->getType();
1322     const auto &DL = LoadI->getModule()->getDataLayout();
1323     MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB),
1324                        LocationSize::precise(DL.getTypeStoreSize(AccessTy)),
1325                        AATags);
1326     PredAvailable = findAvailablePtrLoadStore(Loc, AccessTy, LoadI->isAtomic(),
1327                                               PredBB, BBIt, DefMaxInstsToScan,
1328                                               AA, &IsLoadCSE, &NumScanedInst);
1329 
1330     // If PredBB has a single predecessor, continue scanning through the
1331     // single predecessor.
1332     BasicBlock *SinglePredBB = PredBB;
1333     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1334            NumScanedInst < DefMaxInstsToScan) {
1335       SinglePredBB = SinglePredBB->getSinglePredecessor();
1336       if (SinglePredBB) {
1337         BBIt = SinglePredBB->end();
1338         PredAvailable = findAvailablePtrLoadStore(
1339             Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt,
1340             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1341             &NumScanedInst);
1342       }
1343     }
1344 
1345     if (!PredAvailable) {
1346       OneUnavailablePred = PredBB;
1347       continue;
1348     }
1349 
1350     if (IsLoadCSE)
1351       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1352 
1353     // If so, this load is partially redundant.  Remember this info so that we
1354     // can create a PHI node.
1355     AvailablePreds.emplace_back(PredBB, PredAvailable);
1356   }
1357 
1358   // If the loaded value isn't available in any predecessor, it isn't partially
1359   // redundant.
1360   if (AvailablePreds.empty()) return false;
1361 
1362   // Okay, the loaded value is available in at least one (and maybe all!)
1363   // predecessors.  If the value is unavailable in more than one unique
1364   // predecessor, we want to insert a merge block for those common predecessors.
1365   // This ensures that we only have to insert one reload, thus not increasing
1366   // code size.
1367   BasicBlock *UnavailablePred = nullptr;
1368 
1369   // If the value is unavailable in one of predecessors, we will end up
1370   // inserting a new instruction into them. It is only valid if all the
1371   // instructions before LoadI are guaranteed to pass execution to its
1372   // successor, or if LoadI is safe to speculate.
1373   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1374   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1375   // It requires domination tree analysis, so for this simple case it is an
1376   // overkill.
1377   if (PredsScanned.size() != AvailablePreds.size() &&
1378       !isSafeToSpeculativelyExecute(LoadI))
1379     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1380       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1381         return false;
1382 
1383   // If there is exactly one predecessor where the value is unavailable, the
1384   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1385   // unconditional branch, we know that it isn't a critical edge.
1386   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1387       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1388     UnavailablePred = OneUnavailablePred;
1389   } else if (PredsScanned.size() != AvailablePreds.size()) {
1390     // Otherwise, we had multiple unavailable predecessors or we had a critical
1391     // edge from the one.
1392     SmallVector<BasicBlock*, 8> PredsToSplit;
1393     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1394 
1395     for (const auto &AvailablePred : AvailablePreds)
1396       AvailablePredSet.insert(AvailablePred.first);
1397 
1398     // Add all the unavailable predecessors to the PredsToSplit list.
1399     for (BasicBlock *P : predecessors(LoadBB)) {
1400       // If the predecessor is an indirect goto, we can't split the edge.
1401       if (isa<IndirectBrInst>(P->getTerminator()))
1402         return false;
1403 
1404       if (!AvailablePredSet.count(P))
1405         PredsToSplit.push_back(P);
1406     }
1407 
1408     // Split them out to their own block.
1409     UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1410   }
1411 
1412   // If the value isn't available in all predecessors, then there will be
1413   // exactly one where it isn't available.  Insert a load on that edge and add
1414   // it to the AvailablePreds list.
1415   if (UnavailablePred) {
1416     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1417            "Can't handle critical edge here!");
1418     LoadInst *NewVal = new LoadInst(
1419         LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1420         LoadI->getName() + ".pr", false, LoadI->getAlign(),
1421         LoadI->getOrdering(), LoadI->getSyncScopeID(),
1422         UnavailablePred->getTerminator());
1423     NewVal->setDebugLoc(LoadI->getDebugLoc());
1424     if (AATags)
1425       NewVal->setAAMetadata(AATags);
1426 
1427     AvailablePreds.emplace_back(UnavailablePred, NewVal);
1428   }
1429 
1430   // Now we know that each predecessor of this block has a value in
1431   // AvailablePreds, sort them for efficient access as we're walking the preds.
1432   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1433 
1434   // Create a PHI node at the start of the block for the PRE'd load value.
1435   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1436   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1437                                 &LoadBB->front());
1438   PN->takeName(LoadI);
1439   PN->setDebugLoc(LoadI->getDebugLoc());
1440 
1441   // Insert new entries into the PHI for each predecessor.  A single block may
1442   // have multiple entries here.
1443   for (pred_iterator PI = PB; PI != PE; ++PI) {
1444     BasicBlock *P = *PI;
1445     AvailablePredsTy::iterator I =
1446         llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1447 
1448     assert(I != AvailablePreds.end() && I->first == P &&
1449            "Didn't find entry for predecessor!");
1450 
1451     // If we have an available predecessor but it requires casting, insert the
1452     // cast in the predecessor and use the cast. Note that we have to update the
1453     // AvailablePreds vector as we go so that all of the PHI entries for this
1454     // predecessor use the same bitcast.
1455     Value *&PredV = I->second;
1456     if (PredV->getType() != LoadI->getType())
1457       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1458                                                P->getTerminator());
1459 
1460     PN->addIncoming(PredV, I->first);
1461   }
1462 
1463   for (LoadInst *PredLoadI : CSELoads) {
1464     combineMetadataForCSE(PredLoadI, LoadI, true);
1465     LVI->forgetValue(PredLoadI);
1466   }
1467 
1468   LoadI->replaceAllUsesWith(PN);
1469   LoadI->eraseFromParent();
1470 
1471   return true;
1472 }
1473 
1474 /// findMostPopularDest - The specified list contains multiple possible
1475 /// threadable destinations.  Pick the one that occurs the most frequently in
1476 /// the list.
1477 static BasicBlock *
1478 findMostPopularDest(BasicBlock *BB,
1479                     const SmallVectorImpl<std::pair<BasicBlock *,
1480                                           BasicBlock *>> &PredToDestList) {
1481   assert(!PredToDestList.empty());
1482 
1483   // Determine popularity.  If there are multiple possible destinations, we
1484   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1485   // blocks with known and real destinations to threading undef.  We'll handle
1486   // them later if interesting.
1487   MapVector<BasicBlock *, unsigned> DestPopularity;
1488 
1489   // Populate DestPopularity with the successors in the order they appear in the
1490   // successor list.  This way, we ensure determinism by iterating it in the
1491   // same order in std::max_element below.  We map nullptr to 0 so that we can
1492   // return nullptr when PredToDestList contains nullptr only.
1493   DestPopularity[nullptr] = 0;
1494   for (auto *SuccBB : successors(BB))
1495     DestPopularity[SuccBB] = 0;
1496 
1497   for (const auto &PredToDest : PredToDestList)
1498     if (PredToDest.second)
1499       DestPopularity[PredToDest.second]++;
1500 
1501   // Find the most popular dest.
1502   auto MostPopular = std::max_element(
1503       DestPopularity.begin(), DestPopularity.end(), llvm::less_second());
1504 
1505   // Okay, we have finally picked the most popular destination.
1506   return MostPopular->first;
1507 }
1508 
1509 // Try to evaluate the value of V when the control flows from PredPredBB to
1510 // BB->getSinglePredecessor() and then on to BB.
1511 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB,
1512                                                        BasicBlock *PredPredBB,
1513                                                        Value *V) {
1514   BasicBlock *PredBB = BB->getSinglePredecessor();
1515   assert(PredBB && "Expected a single predecessor");
1516 
1517   if (Constant *Cst = dyn_cast<Constant>(V)) {
1518     return Cst;
1519   }
1520 
1521   // Consult LVI if V is not an instruction in BB or PredBB.
1522   Instruction *I = dyn_cast<Instruction>(V);
1523   if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1524     return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1525   }
1526 
1527   // Look into a PHI argument.
1528   if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1529     if (PHI->getParent() == PredBB)
1530       return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1531     return nullptr;
1532   }
1533 
1534   // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1535   if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1536     if (CondCmp->getParent() == BB) {
1537       Constant *Op0 =
1538           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
1539       Constant *Op1 =
1540           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
1541       if (Op0 && Op1) {
1542         return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
1543       }
1544     }
1545     return nullptr;
1546   }
1547 
1548   return nullptr;
1549 }
1550 
1551 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB,
1552                                                ConstantPreference Preference,
1553                                                Instruction *CxtI) {
1554   // If threading this would thread across a loop header, don't even try to
1555   // thread the edge.
1556   if (LoopHeaders.count(BB))
1557     return false;
1558 
1559   PredValueInfoTy PredValues;
1560   if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1561                                        CxtI)) {
1562     // We don't have known values in predecessors.  See if we can thread through
1563     // BB and its sole predecessor.
1564     return maybethreadThroughTwoBasicBlocks(BB, Cond);
1565   }
1566 
1567   assert(!PredValues.empty() &&
1568          "computeValueKnownInPredecessors returned true with no values");
1569 
1570   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1571              for (const auto &PredValue : PredValues) {
1572                dbgs() << "  BB '" << BB->getName()
1573                       << "': FOUND condition = " << *PredValue.first
1574                       << " for pred '" << PredValue.second->getName() << "'.\n";
1575   });
1576 
1577   // Decide what we want to thread through.  Convert our list of known values to
1578   // a list of known destinations for each pred.  This also discards duplicate
1579   // predecessors and keeps track of the undefined inputs (which are represented
1580   // as a null dest in the PredToDestList).
1581   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1582   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1583 
1584   BasicBlock *OnlyDest = nullptr;
1585   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1586   Constant *OnlyVal = nullptr;
1587   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1588 
1589   for (const auto &PredValue : PredValues) {
1590     BasicBlock *Pred = PredValue.second;
1591     if (!SeenPreds.insert(Pred).second)
1592       continue;  // Duplicate predecessor entry.
1593 
1594     Constant *Val = PredValue.first;
1595 
1596     BasicBlock *DestBB;
1597     if (isa<UndefValue>(Val))
1598       DestBB = nullptr;
1599     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1600       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1601       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1602     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1603       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1604       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1605     } else {
1606       assert(isa<IndirectBrInst>(BB->getTerminator())
1607               && "Unexpected terminator");
1608       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1609       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1610     }
1611 
1612     // If we have exactly one destination, remember it for efficiency below.
1613     if (PredToDestList.empty()) {
1614       OnlyDest = DestBB;
1615       OnlyVal = Val;
1616     } else {
1617       if (OnlyDest != DestBB)
1618         OnlyDest = MultipleDestSentinel;
1619       // It possible we have same destination, but different value, e.g. default
1620       // case in switchinst.
1621       if (Val != OnlyVal)
1622         OnlyVal = MultipleVal;
1623     }
1624 
1625     // If the predecessor ends with an indirect goto, we can't change its
1626     // destination.
1627     if (isa<IndirectBrInst>(Pred->getTerminator()))
1628       continue;
1629 
1630     PredToDestList.emplace_back(Pred, DestBB);
1631   }
1632 
1633   // If all edges were unthreadable, we fail.
1634   if (PredToDestList.empty())
1635     return false;
1636 
1637   // If all the predecessors go to a single known successor, we want to fold,
1638   // not thread. By doing so, we do not need to duplicate the current block and
1639   // also miss potential opportunities in case we dont/cant duplicate.
1640   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1641     if (BB->hasNPredecessors(PredToDestList.size())) {
1642       bool SeenFirstBranchToOnlyDest = false;
1643       std::vector <DominatorTree::UpdateType> Updates;
1644       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1645       for (BasicBlock *SuccBB : successors(BB)) {
1646         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1647           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1648         } else {
1649           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1650           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1651         }
1652       }
1653 
1654       // Finally update the terminator.
1655       Instruction *Term = BB->getTerminator();
1656       BranchInst::Create(OnlyDest, Term);
1657       ++NumFolds;
1658       Term->eraseFromParent();
1659       DTU->applyUpdatesPermissive(Updates);
1660       if (auto *BPI = getBPI())
1661         BPI->eraseBlock(BB);
1662 
1663       // If the condition is now dead due to the removal of the old terminator,
1664       // erase it.
1665       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1666         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1667           CondInst->eraseFromParent();
1668         // We can safely replace *some* uses of the CondInst if it has
1669         // exactly one value as returned by LVI. RAUW is incorrect in the
1670         // presence of guards and assumes, that have the `Cond` as the use. This
1671         // is because we use the guards/assume to reason about the `Cond` value
1672         // at the end of block, but RAUW unconditionally replaces all uses
1673         // including the guards/assumes themselves and the uses before the
1674         // guard/assume.
1675         else if (OnlyVal && OnlyVal != MultipleVal)
1676           replaceFoldableUses(CondInst, OnlyVal, BB);
1677       }
1678       return true;
1679     }
1680   }
1681 
1682   // Determine which is the most common successor.  If we have many inputs and
1683   // this block is a switch, we want to start by threading the batch that goes
1684   // to the most popular destination first.  If we only know about one
1685   // threadable destination (the common case) we can avoid this.
1686   BasicBlock *MostPopularDest = OnlyDest;
1687 
1688   if (MostPopularDest == MultipleDestSentinel) {
1689     // Remove any loop headers from the Dest list, threadEdge conservatively
1690     // won't process them, but we might have other destination that are eligible
1691     // and we still want to process.
1692     erase_if(PredToDestList,
1693              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1694                return LoopHeaders.contains(PredToDest.second);
1695              });
1696 
1697     if (PredToDestList.empty())
1698       return false;
1699 
1700     MostPopularDest = findMostPopularDest(BB, PredToDestList);
1701   }
1702 
1703   // Now that we know what the most popular destination is, factor all
1704   // predecessors that will jump to it into a single predecessor.
1705   SmallVector<BasicBlock*, 16> PredsToFactor;
1706   for (const auto &PredToDest : PredToDestList)
1707     if (PredToDest.second == MostPopularDest) {
1708       BasicBlock *Pred = PredToDest.first;
1709 
1710       // This predecessor may be a switch or something else that has multiple
1711       // edges to the block.  Factor each of these edges by listing them
1712       // according to # occurrences in PredsToFactor.
1713       for (BasicBlock *Succ : successors(Pred))
1714         if (Succ == BB)
1715           PredsToFactor.push_back(Pred);
1716     }
1717 
1718   // If the threadable edges are branching on an undefined value, we get to pick
1719   // the destination that these predecessors should get to.
1720   if (!MostPopularDest)
1721     MostPopularDest = BB->getTerminator()->
1722                             getSuccessor(getBestDestForJumpOnUndef(BB));
1723 
1724   // Ok, try to thread it!
1725   return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
1726 }
1727 
1728 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1729 /// a PHI node (or freeze PHI) in the current block.  See if there are any
1730 /// simplifications we can do based on inputs to the phi node.
1731 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) {
1732   BasicBlock *BB = PN->getParent();
1733 
1734   // TODO: We could make use of this to do it once for blocks with common PHI
1735   // values.
1736   SmallVector<BasicBlock*, 1> PredBBs;
1737   PredBBs.resize(1);
1738 
1739   // If any of the predecessor blocks end in an unconditional branch, we can
1740   // *duplicate* the conditional branch into that block in order to further
1741   // encourage jump threading and to eliminate cases where we have branch on a
1742   // phi of an icmp (branch on icmp is much better).
1743   // This is still beneficial when a frozen phi is used as the branch condition
1744   // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1745   // to br(icmp(freeze ...)).
1746   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1747     BasicBlock *PredBB = PN->getIncomingBlock(i);
1748     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1749       if (PredBr->isUnconditional()) {
1750         PredBBs[0] = PredBB;
1751         // Try to duplicate BB into PredBB.
1752         if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1753           return true;
1754       }
1755   }
1756 
1757   return false;
1758 }
1759 
1760 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1761 /// a xor instruction in the current block.  See if there are any
1762 /// simplifications we can do based on inputs to the xor.
1763 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) {
1764   BasicBlock *BB = BO->getParent();
1765 
1766   // If either the LHS or RHS of the xor is a constant, don't do this
1767   // optimization.
1768   if (isa<ConstantInt>(BO->getOperand(0)) ||
1769       isa<ConstantInt>(BO->getOperand(1)))
1770     return false;
1771 
1772   // If the first instruction in BB isn't a phi, we won't be able to infer
1773   // anything special about any particular predecessor.
1774   if (!isa<PHINode>(BB->front()))
1775     return false;
1776 
1777   // If this BB is a landing pad, we won't be able to split the edge into it.
1778   if (BB->isEHPad())
1779     return false;
1780 
1781   // If we have a xor as the branch input to this block, and we know that the
1782   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1783   // the condition into the predecessor and fix that value to true, saving some
1784   // logical ops on that path and encouraging other paths to simplify.
1785   //
1786   // This copies something like this:
1787   //
1788   //  BB:
1789   //    %X = phi i1 [1],  [%X']
1790   //    %Y = icmp eq i32 %A, %B
1791   //    %Z = xor i1 %X, %Y
1792   //    br i1 %Z, ...
1793   //
1794   // Into:
1795   //  BB':
1796   //    %Y = icmp ne i32 %A, %B
1797   //    br i1 %Y, ...
1798 
1799   PredValueInfoTy XorOpValues;
1800   bool isLHS = true;
1801   if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1802                                        WantInteger, BO)) {
1803     assert(XorOpValues.empty());
1804     if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1805                                          WantInteger, BO))
1806       return false;
1807     isLHS = false;
1808   }
1809 
1810   assert(!XorOpValues.empty() &&
1811          "computeValueKnownInPredecessors returned true with no values");
1812 
1813   // Scan the information to see which is most popular: true or false.  The
1814   // predecessors can be of the set true, false, or undef.
1815   unsigned NumTrue = 0, NumFalse = 0;
1816   for (const auto &XorOpValue : XorOpValues) {
1817     if (isa<UndefValue>(XorOpValue.first))
1818       // Ignore undefs for the count.
1819       continue;
1820     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1821       ++NumFalse;
1822     else
1823       ++NumTrue;
1824   }
1825 
1826   // Determine which value to split on, true, false, or undef if neither.
1827   ConstantInt *SplitVal = nullptr;
1828   if (NumTrue > NumFalse)
1829     SplitVal = ConstantInt::getTrue(BB->getContext());
1830   else if (NumTrue != 0 || NumFalse != 0)
1831     SplitVal = ConstantInt::getFalse(BB->getContext());
1832 
1833   // Collect all of the blocks that this can be folded into so that we can
1834   // factor this once and clone it once.
1835   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1836   for (const auto &XorOpValue : XorOpValues) {
1837     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1838       continue;
1839 
1840     BlocksToFoldInto.push_back(XorOpValue.second);
1841   }
1842 
1843   // If we inferred a value for all of the predecessors, then duplication won't
1844   // help us.  However, we can just replace the LHS or RHS with the constant.
1845   if (BlocksToFoldInto.size() ==
1846       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1847     if (!SplitVal) {
1848       // If all preds provide undef, just nuke the xor, because it is undef too.
1849       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1850       BO->eraseFromParent();
1851     } else if (SplitVal->isZero() && BO != BO->getOperand(isLHS)) {
1852       // If all preds provide 0, replace the xor with the other input.
1853       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1854       BO->eraseFromParent();
1855     } else {
1856       // If all preds provide 1, set the computed value to 1.
1857       BO->setOperand(!isLHS, SplitVal);
1858     }
1859 
1860     return true;
1861   }
1862 
1863   // If any of predecessors end with an indirect goto, we can't change its
1864   // destination.
1865   if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1866         return isa<IndirectBrInst>(Pred->getTerminator());
1867       }))
1868     return false;
1869 
1870   // Try to duplicate BB into PredBB.
1871   return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1872 }
1873 
1874 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1875 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1876 /// NewPred using the entries from OldPred (suitably mapped).
1877 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1878                                             BasicBlock *OldPred,
1879                                             BasicBlock *NewPred,
1880                                      DenseMap<Instruction*, Value*> &ValueMap) {
1881   for (PHINode &PN : PHIBB->phis()) {
1882     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1883     // DestBlock.
1884     Value *IV = PN.getIncomingValueForBlock(OldPred);
1885 
1886     // Remap the value if necessary.
1887     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1888       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1889       if (I != ValueMap.end())
1890         IV = I->second;
1891     }
1892 
1893     PN.addIncoming(IV, NewPred);
1894   }
1895 }
1896 
1897 /// Merge basic block BB into its sole predecessor if possible.
1898 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1899   BasicBlock *SinglePred = BB->getSinglePredecessor();
1900   if (!SinglePred)
1901     return false;
1902 
1903   const Instruction *TI = SinglePred->getTerminator();
1904   if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 ||
1905       SinglePred == BB || hasAddressTakenAndUsed(BB))
1906     return false;
1907 
1908   // If SinglePred was a loop header, BB becomes one.
1909   if (LoopHeaders.erase(SinglePred))
1910     LoopHeaders.insert(BB);
1911 
1912   LVI->eraseBlock(SinglePred);
1913   MergeBasicBlockIntoOnlyPred(BB, DTU.get());
1914 
1915   // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1916   // BB code within one basic block `BB`), we need to invalidate the LVI
1917   // information associated with BB, because the LVI information need not be
1918   // true for all of BB after the merge. For example,
1919   // Before the merge, LVI info and code is as follows:
1920   // SinglePred: <LVI info1 for %p val>
1921   // %y = use of %p
1922   // call @exit() // need not transfer execution to successor.
1923   // assume(%p) // from this point on %p is true
1924   // br label %BB
1925   // BB: <LVI info2 for %p val, i.e. %p is true>
1926   // %x = use of %p
1927   // br label exit
1928   //
1929   // Note that this LVI info for blocks BB and SinglPred is correct for %p
1930   // (info2 and info1 respectively). After the merge and the deletion of the
1931   // LVI info1 for SinglePred. We have the following code:
1932   // BB: <LVI info2 for %p val>
1933   // %y = use of %p
1934   // call @exit()
1935   // assume(%p)
1936   // %x = use of %p <-- LVI info2 is correct from here onwards.
1937   // br label exit
1938   // LVI info2 for BB is incorrect at the beginning of BB.
1939 
1940   // Invalidate LVI information for BB if the LVI is not provably true for
1941   // all of BB.
1942   if (!isGuaranteedToTransferExecutionToSuccessor(BB))
1943     LVI->eraseBlock(BB);
1944   return true;
1945 }
1946 
1947 /// Update the SSA form.  NewBB contains instructions that are copied from BB.
1948 /// ValueMapping maps old values in BB to new ones in NewBB.
1949 void JumpThreadingPass::updateSSA(
1950     BasicBlock *BB, BasicBlock *NewBB,
1951     DenseMap<Instruction *, Value *> &ValueMapping) {
1952   // If there were values defined in BB that are used outside the block, then we
1953   // now have to update all uses of the value to use either the original value,
1954   // the cloned value, or some PHI derived value.  This can require arbitrary
1955   // PHI insertion, of which we are prepared to do, clean these up now.
1956   SSAUpdater SSAUpdate;
1957   SmallVector<Use *, 16> UsesToRename;
1958   SmallVector<DbgValueInst *, 4> DbgValues;
1959 
1960   for (Instruction &I : *BB) {
1961     // Scan all uses of this instruction to see if it is used outside of its
1962     // block, and if so, record them in UsesToRename.
1963     for (Use &U : I.uses()) {
1964       Instruction *User = cast<Instruction>(U.getUser());
1965       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1966         if (UserPN->getIncomingBlock(U) == BB)
1967           continue;
1968       } else if (User->getParent() == BB)
1969         continue;
1970 
1971       UsesToRename.push_back(&U);
1972     }
1973 
1974     // Find debug values outside of the block
1975     findDbgValues(DbgValues, &I);
1976     DbgValues.erase(remove_if(DbgValues,
1977                               [&](const DbgValueInst *DbgVal) {
1978                                 return DbgVal->getParent() == BB;
1979                               }),
1980                     DbgValues.end());
1981 
1982     // If there are no uses outside the block, we're done with this instruction.
1983     if (UsesToRename.empty() && DbgValues.empty())
1984       continue;
1985     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1986 
1987     // We found a use of I outside of BB.  Rename all uses of I that are outside
1988     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1989     // with the two values we know.
1990     SSAUpdate.Initialize(I.getType(), I.getName());
1991     SSAUpdate.AddAvailableValue(BB, &I);
1992     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
1993 
1994     while (!UsesToRename.empty())
1995       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1996     if (!DbgValues.empty()) {
1997       SSAUpdate.UpdateDebugValues(&I, DbgValues);
1998       DbgValues.clear();
1999     }
2000 
2001     LLVM_DEBUG(dbgs() << "\n");
2002   }
2003 }
2004 
2005 /// Clone instructions in range [BI, BE) to NewBB.  For PHI nodes, we only clone
2006 /// arguments that come from PredBB.  Return the map from the variables in the
2007 /// source basic block to the variables in the newly created basic block.
2008 DenseMap<Instruction *, Value *>
2009 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI,
2010                                      BasicBlock::iterator BE, BasicBlock *NewBB,
2011                                      BasicBlock *PredBB) {
2012   // We are going to have to map operands from the source basic block to the new
2013   // copy of the block 'NewBB'.  If there are PHI nodes in the source basic
2014   // block, evaluate them to account for entry from PredBB.
2015   DenseMap<Instruction *, Value *> ValueMapping;
2016 
2017   // Retargets llvm.dbg.value to any renamed variables.
2018   auto RetargetDbgValueIfPossible = [&](Instruction *NewInst) -> bool {
2019     auto DbgInstruction = dyn_cast<DbgValueInst>(NewInst);
2020     if (!DbgInstruction)
2021       return false;
2022 
2023     SmallSet<std::pair<Value *, Value *>, 16> OperandsToRemap;
2024     for (auto DbgOperand : DbgInstruction->location_ops()) {
2025       auto DbgOperandInstruction = dyn_cast<Instruction>(DbgOperand);
2026       if (!DbgOperandInstruction)
2027         continue;
2028 
2029       auto I = ValueMapping.find(DbgOperandInstruction);
2030       if (I != ValueMapping.end()) {
2031         OperandsToRemap.insert(
2032             std::pair<Value *, Value *>(DbgOperand, I->second));
2033       }
2034     }
2035 
2036     for (auto &[OldOp, MappedOp] : OperandsToRemap)
2037       DbgInstruction->replaceVariableLocationOp(OldOp, MappedOp);
2038     return true;
2039   };
2040 
2041   // Clone the phi nodes of the source basic block into NewBB.  The resulting
2042   // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2043   // might need to rewrite the operand of the cloned phi.
2044   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2045     PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2046     NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2047     ValueMapping[PN] = NewPN;
2048   }
2049 
2050   // Clone noalias scope declarations in the threaded block. When threading a
2051   // loop exit, we would otherwise end up with two idential scope declarations
2052   // visible at the same time.
2053   SmallVector<MDNode *> NoAliasScopes;
2054   DenseMap<MDNode *, MDNode *> ClonedScopes;
2055   LLVMContext &Context = PredBB->getContext();
2056   identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
2057   cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
2058 
2059   // Clone the non-phi instructions of the source basic block into NewBB,
2060   // keeping track of the mapping and using it to remap operands in the cloned
2061   // instructions.
2062   for (; BI != BE; ++BI) {
2063     Instruction *New = BI->clone();
2064     New->setName(BI->getName());
2065     New->insertInto(NewBB, NewBB->end());
2066     ValueMapping[&*BI] = New;
2067     adaptNoAliasScopes(New, ClonedScopes, Context);
2068 
2069     if (RetargetDbgValueIfPossible(New))
2070       continue;
2071 
2072     // Remap operands to patch up intra-block references.
2073     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2074       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2075         DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
2076         if (I != ValueMapping.end())
2077           New->setOperand(i, I->second);
2078       }
2079   }
2080 
2081   return ValueMapping;
2082 }
2083 
2084 /// Attempt to thread through two successive basic blocks.
2085 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB,
2086                                                          Value *Cond) {
2087   // Consider:
2088   //
2089   // PredBB:
2090   //   %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2091   //   %tobool = icmp eq i32 %cond, 0
2092   //   br i1 %tobool, label %BB, label ...
2093   //
2094   // BB:
2095   //   %cmp = icmp eq i32* %var, null
2096   //   br i1 %cmp, label ..., label ...
2097   //
2098   // We don't know the value of %var at BB even if we know which incoming edge
2099   // we take to BB.  However, once we duplicate PredBB for each of its incoming
2100   // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2101   // PredBB.  Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2102 
2103   // Require that BB end with a Branch for simplicity.
2104   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2105   if (!CondBr)
2106     return false;
2107 
2108   // BB must have exactly one predecessor.
2109   BasicBlock *PredBB = BB->getSinglePredecessor();
2110   if (!PredBB)
2111     return false;
2112 
2113   // Require that PredBB end with a conditional Branch. If PredBB ends with an
2114   // unconditional branch, we should be merging PredBB and BB instead. For
2115   // simplicity, we don't deal with a switch.
2116   BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2117   if (!PredBBBranch || PredBBBranch->isUnconditional())
2118     return false;
2119 
2120   // If PredBB has exactly one incoming edge, we don't gain anything by copying
2121   // PredBB.
2122   if (PredBB->getSinglePredecessor())
2123     return false;
2124 
2125   // Don't thread through PredBB if it contains a successor edge to itself, in
2126   // which case we would infinite loop.  Suppose we are threading an edge from
2127   // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2128   // successor edge to itself.  If we allowed jump threading in this case, we
2129   // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread.  Since
2130   // PredBB.thread has a successor edge to PredBB, we would immediately come up
2131   // with another jump threading opportunity from PredBB.thread through PredBB
2132   // and BB to SuccBB.  This jump threading would repeatedly occur.  That is, we
2133   // would keep peeling one iteration from PredBB.
2134   if (llvm::is_contained(successors(PredBB), PredBB))
2135     return false;
2136 
2137   // Don't thread across a loop header.
2138   if (LoopHeaders.count(PredBB))
2139     return false;
2140 
2141   // Avoid complication with duplicating EH pads.
2142   if (PredBB->isEHPad())
2143     return false;
2144 
2145   // Find a predecessor that we can thread.  For simplicity, we only consider a
2146   // successor edge out of BB to which we thread exactly one incoming edge into
2147   // PredBB.
2148   unsigned ZeroCount = 0;
2149   unsigned OneCount = 0;
2150   BasicBlock *ZeroPred = nullptr;
2151   BasicBlock *OnePred = nullptr;
2152   for (BasicBlock *P : predecessors(PredBB)) {
2153     // If PredPred ends with IndirectBrInst, we can't handle it.
2154     if (isa<IndirectBrInst>(P->getTerminator()))
2155       continue;
2156     if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2157             evaluateOnPredecessorEdge(BB, P, Cond))) {
2158       if (CI->isZero()) {
2159         ZeroCount++;
2160         ZeroPred = P;
2161       } else if (CI->isOne()) {
2162         OneCount++;
2163         OnePred = P;
2164       }
2165     }
2166   }
2167 
2168   // Disregard complicated cases where we have to thread multiple edges.
2169   BasicBlock *PredPredBB;
2170   if (ZeroCount == 1) {
2171     PredPredBB = ZeroPred;
2172   } else if (OneCount == 1) {
2173     PredPredBB = OnePred;
2174   } else {
2175     return false;
2176   }
2177 
2178   BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2179 
2180   // If threading to the same block as we come from, we would infinite loop.
2181   if (SuccBB == BB) {
2182     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2183                       << "' - would thread to self!\n");
2184     return false;
2185   }
2186 
2187   // If threading this would thread across a loop header, don't thread the edge.
2188   // See the comments above findLoopHeaders for justifications and caveats.
2189   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2190     LLVM_DEBUG({
2191       bool BBIsHeader = LoopHeaders.count(BB);
2192       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2193       dbgs() << "  Not threading across "
2194              << (BBIsHeader ? "loop header BB '" : "block BB '")
2195              << BB->getName() << "' to dest "
2196              << (SuccIsHeader ? "loop header BB '" : "block BB '")
2197              << SuccBB->getName()
2198              << "' - it might create an irreducible loop!\n";
2199     });
2200     return false;
2201   }
2202 
2203   // Compute the cost of duplicating BB and PredBB.
2204   unsigned BBCost = getJumpThreadDuplicationCost(
2205       TTI, BB, BB->getTerminator(), BBDupThreshold);
2206   unsigned PredBBCost = getJumpThreadDuplicationCost(
2207       TTI, PredBB, PredBB->getTerminator(), BBDupThreshold);
2208 
2209   // Give up if costs are too high.  We need to check BBCost and PredBBCost
2210   // individually before checking their sum because getJumpThreadDuplicationCost
2211   // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2212   if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2213       BBCost + PredBBCost > BBDupThreshold) {
2214     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2215                       << "' - Cost is too high: " << PredBBCost
2216                       << " for PredBB, " << BBCost << "for BB\n");
2217     return false;
2218   }
2219 
2220   // Now we are ready to duplicate PredBB.
2221   threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2222   return true;
2223 }
2224 
2225 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2226                                                     BasicBlock *PredBB,
2227                                                     BasicBlock *BB,
2228                                                     BasicBlock *SuccBB) {
2229   LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
2230                     << BB->getName() << "'\n");
2231 
2232   // Build BPI/BFI before any changes are made to IR.
2233   bool HasProfile = doesBlockHaveProfileData(BB);
2234   auto *BFI = getOrCreateBFI(HasProfile);
2235   auto *BPI = getOrCreateBPI(BFI != nullptr);
2236 
2237   BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2238   BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2239 
2240   BasicBlock *NewBB =
2241       BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2242                          PredBB->getParent(), PredBB);
2243   NewBB->moveAfter(PredBB);
2244 
2245   // Set the block frequency of NewBB.
2246   if (BFI) {
2247     assert(BPI && "It's expected BPI to exist along with BFI");
2248     auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2249                      BPI->getEdgeProbability(PredPredBB, PredBB);
2250     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2251   }
2252 
2253   // We are going to have to map operands from the original BB block to the new
2254   // copy of the block 'NewBB'.  If there are PHI nodes in PredBB, evaluate them
2255   // to account for entry from PredPredBB.
2256   DenseMap<Instruction *, Value *> ValueMapping =
2257       cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
2258 
2259   // Copy the edge probabilities from PredBB to NewBB.
2260   if (BPI)
2261     BPI->copyEdgeProbabilities(PredBB, NewBB);
2262 
2263   // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2264   // This eliminates predecessors from PredPredBB, which requires us to simplify
2265   // any PHI nodes in PredBB.
2266   Instruction *PredPredTerm = PredPredBB->getTerminator();
2267   for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2268     if (PredPredTerm->getSuccessor(i) == PredBB) {
2269       PredBB->removePredecessor(PredPredBB, true);
2270       PredPredTerm->setSuccessor(i, NewBB);
2271     }
2272 
2273   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2274                                   ValueMapping);
2275   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2276                                   ValueMapping);
2277 
2278   DTU->applyUpdatesPermissive(
2279       {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2280        {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2281        {DominatorTree::Insert, PredPredBB, NewBB},
2282        {DominatorTree::Delete, PredPredBB, PredBB}});
2283 
2284   updateSSA(PredBB, NewBB, ValueMapping);
2285 
2286   // Clean up things like PHI nodes with single operands, dead instructions,
2287   // etc.
2288   SimplifyInstructionsInBlock(NewBB, TLI);
2289   SimplifyInstructionsInBlock(PredBB, TLI);
2290 
2291   SmallVector<BasicBlock *, 1> PredsToFactor;
2292   PredsToFactor.push_back(NewBB);
2293   threadEdge(BB, PredsToFactor, SuccBB);
2294 }
2295 
2296 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
2297 bool JumpThreadingPass::tryThreadEdge(
2298     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2299     BasicBlock *SuccBB) {
2300   // If threading to the same block as we come from, we would infinite loop.
2301   if (SuccBB == BB) {
2302     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2303                       << "' - would thread to self!\n");
2304     return false;
2305   }
2306 
2307   // If threading this would thread across a loop header, don't thread the edge.
2308   // See the comments above findLoopHeaders for justifications and caveats.
2309   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2310     LLVM_DEBUG({
2311       bool BBIsHeader = LoopHeaders.count(BB);
2312       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2313       dbgs() << "  Not threading across "
2314           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2315           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2316           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2317     });
2318     return false;
2319   }
2320 
2321   unsigned JumpThreadCost = getJumpThreadDuplicationCost(
2322       TTI, BB, BB->getTerminator(), BBDupThreshold);
2323   if (JumpThreadCost > BBDupThreshold) {
2324     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2325                       << "' - Cost is too high: " << JumpThreadCost << "\n");
2326     return false;
2327   }
2328 
2329   threadEdge(BB, PredBBs, SuccBB);
2330   return true;
2331 }
2332 
2333 /// threadEdge - We have decided that it is safe and profitable to factor the
2334 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2335 /// across BB.  Transform the IR to reflect this change.
2336 void JumpThreadingPass::threadEdge(BasicBlock *BB,
2337                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
2338                                    BasicBlock *SuccBB) {
2339   assert(SuccBB != BB && "Don't create an infinite loop");
2340 
2341   assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2342          "Don't thread across loop headers");
2343 
2344   // Build BPI/BFI before any changes are made to IR.
2345   bool HasProfile = doesBlockHaveProfileData(BB);
2346   auto *BFI = getOrCreateBFI(HasProfile);
2347   auto *BPI = getOrCreateBPI(BFI != nullptr);
2348 
2349   // And finally, do it!  Start by factoring the predecessors if needed.
2350   BasicBlock *PredBB;
2351   if (PredBBs.size() == 1)
2352     PredBB = PredBBs[0];
2353   else {
2354     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2355                       << " common predecessors.\n");
2356     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2357   }
2358 
2359   // And finally, do it!
2360   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
2361                     << "' to '" << SuccBB->getName()
2362                     << ", across block:\n    " << *BB << "\n");
2363 
2364   LVI->threadEdge(PredBB, BB, SuccBB);
2365 
2366   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2367                                          BB->getName()+".thread",
2368                                          BB->getParent(), BB);
2369   NewBB->moveAfter(PredBB);
2370 
2371   // Set the block frequency of NewBB.
2372   if (BFI) {
2373     assert(BPI && "It's expected BPI to exist along with BFI");
2374     auto NewBBFreq =
2375         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2376     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2377   }
2378 
2379   // Copy all the instructions from BB to NewBB except the terminator.
2380   DenseMap<Instruction *, Value *> ValueMapping =
2381       cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
2382 
2383   // We didn't copy the terminator from BB over to NewBB, because there is now
2384   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2385   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2386   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2387 
2388   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2389   // PHI nodes for NewBB now.
2390   addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2391 
2392   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2393   // eliminates predecessors from BB, which requires us to simplify any PHI
2394   // nodes in BB.
2395   Instruction *PredTerm = PredBB->getTerminator();
2396   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2397     if (PredTerm->getSuccessor(i) == BB) {
2398       BB->removePredecessor(PredBB, true);
2399       PredTerm->setSuccessor(i, NewBB);
2400     }
2401 
2402   // Enqueue required DT updates.
2403   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2404                                {DominatorTree::Insert, PredBB, NewBB},
2405                                {DominatorTree::Delete, PredBB, BB}});
2406 
2407   updateSSA(BB, NewBB, ValueMapping);
2408 
2409   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2410   // over the new instructions and zap any that are constants or dead.  This
2411   // frequently happens because of phi translation.
2412   SimplifyInstructionsInBlock(NewBB, TLI);
2413 
2414   // Update the edge weight from BB to SuccBB, which should be less than before.
2415   updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB, BFI, BPI, HasProfile);
2416 
2417   // Threaded an edge!
2418   ++NumThreads;
2419 }
2420 
2421 /// Create a new basic block that will be the predecessor of BB and successor of
2422 /// all blocks in Preds. When profile data is available, update the frequency of
2423 /// this new block.
2424 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
2425                                                ArrayRef<BasicBlock *> Preds,
2426                                                const char *Suffix) {
2427   SmallVector<BasicBlock *, 2> NewBBs;
2428 
2429   // Collect the frequencies of all predecessors of BB, which will be used to
2430   // update the edge weight of the result of splitting predecessors.
2431   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2432   auto *BFI = getBFI();
2433   if (BFI) {
2434     auto *BPI = getOrCreateBPI(true);
2435     for (auto *Pred : Preds)
2436       FreqMap.insert(std::make_pair(
2437           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2438   }
2439 
2440   // In the case when BB is a LandingPad block we create 2 new predecessors
2441   // instead of just one.
2442   if (BB->isLandingPad()) {
2443     std::string NewName = std::string(Suffix) + ".split-lp";
2444     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2445   } else {
2446     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2447   }
2448 
2449   std::vector<DominatorTree::UpdateType> Updates;
2450   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2451   for (auto *NewBB : NewBBs) {
2452     BlockFrequency NewBBFreq(0);
2453     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2454     for (auto *Pred : predecessors(NewBB)) {
2455       Updates.push_back({DominatorTree::Delete, Pred, BB});
2456       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2457       if (BFI) // Update frequencies between Pred -> NewBB.
2458         NewBBFreq += FreqMap.lookup(Pred);
2459     }
2460     if (BFI) // Apply the summed frequency to NewBB.
2461       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2462   }
2463 
2464   DTU->applyUpdatesPermissive(Updates);
2465   return NewBBs[0];
2466 }
2467 
2468 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2469   const Instruction *TI = BB->getTerminator();
2470   if (!TI || TI->getNumSuccessors() < 2)
2471     return false;
2472 
2473   return hasValidBranchWeightMD(*TI);
2474 }
2475 
2476 /// Update the block frequency of BB and branch weight and the metadata on the
2477 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2478 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2479 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2480                                                      BasicBlock *BB,
2481                                                      BasicBlock *NewBB,
2482                                                      BasicBlock *SuccBB,
2483                                                      BlockFrequencyInfo *BFI,
2484                                                      BranchProbabilityInfo *BPI,
2485                                                      bool HasProfile) {
2486   assert(((BFI && BPI) || (!BFI && !BFI)) &&
2487          "Both BFI & BPI should either be set or unset");
2488 
2489   if (!BFI) {
2490     assert(!HasProfile &&
2491            "It's expected to have BFI/BPI when profile info exists");
2492     return;
2493   }
2494 
2495   // As the edge from PredBB to BB is deleted, we have to update the block
2496   // frequency of BB.
2497   auto BBOrigFreq = BFI->getBlockFreq(BB);
2498   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2499   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2500   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2501   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2502 
2503   // Collect updated outgoing edges' frequencies from BB and use them to update
2504   // edge probabilities.
2505   SmallVector<uint64_t, 4> BBSuccFreq;
2506   for (BasicBlock *Succ : successors(BB)) {
2507     auto SuccFreq = (Succ == SuccBB)
2508                         ? BB2SuccBBFreq - NewBBFreq
2509                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2510     BBSuccFreq.push_back(SuccFreq.getFrequency());
2511   }
2512 
2513   uint64_t MaxBBSuccFreq =
2514       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2515 
2516   SmallVector<BranchProbability, 4> BBSuccProbs;
2517   if (MaxBBSuccFreq == 0)
2518     BBSuccProbs.assign(BBSuccFreq.size(),
2519                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2520   else {
2521     for (uint64_t Freq : BBSuccFreq)
2522       BBSuccProbs.push_back(
2523           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2524     // Normalize edge probabilities so that they sum up to one.
2525     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2526                                               BBSuccProbs.end());
2527   }
2528 
2529   // Update edge probabilities in BPI.
2530   BPI->setEdgeProbability(BB, BBSuccProbs);
2531 
2532   // Update the profile metadata as well.
2533   //
2534   // Don't do this if the profile of the transformed blocks was statically
2535   // estimated.  (This could occur despite the function having an entry
2536   // frequency in completely cold parts of the CFG.)
2537   //
2538   // In this case we don't want to suggest to subsequent passes that the
2539   // calculated weights are fully consistent.  Consider this graph:
2540   //
2541   //                 check_1
2542   //             50% /  |
2543   //             eq_1   | 50%
2544   //                 \  |
2545   //                 check_2
2546   //             50% /  |
2547   //             eq_2   | 50%
2548   //                 \  |
2549   //                 check_3
2550   //             50% /  |
2551   //             eq_3   | 50%
2552   //                 \  |
2553   //
2554   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2555   // the overall probabilities are inconsistent; the total probability that the
2556   // value is either 1, 2 or 3 is 150%.
2557   //
2558   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2559   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2560   // the loop exit edge.  Then based solely on static estimation we would assume
2561   // the loop was extremely hot.
2562   //
2563   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2564   // shouldn't make edges extremely likely or unlikely based solely on static
2565   // estimation.
2566   if (BBSuccProbs.size() >= 2 && HasProfile) {
2567     SmallVector<uint32_t, 4> Weights;
2568     for (auto Prob : BBSuccProbs)
2569       Weights.push_back(Prob.getNumerator());
2570 
2571     auto TI = BB->getTerminator();
2572     TI->setMetadata(
2573         LLVMContext::MD_prof,
2574         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2575   }
2576 }
2577 
2578 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2579 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2580 /// If we can duplicate the contents of BB up into PredBB do so now, this
2581 /// improves the odds that the branch will be on an analyzable instruction like
2582 /// a compare.
2583 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
2584     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2585   assert(!PredBBs.empty() && "Can't handle an empty set");
2586 
2587   // If BB is a loop header, then duplicating this block outside the loop would
2588   // cause us to transform this into an irreducible loop, don't do this.
2589   // See the comments above findLoopHeaders for justifications and caveats.
2590   if (LoopHeaders.count(BB)) {
2591     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2592                       << "' into predecessor block '" << PredBBs[0]->getName()
2593                       << "' - it might create an irreducible loop!\n");
2594     return false;
2595   }
2596 
2597   unsigned DuplicationCost = getJumpThreadDuplicationCost(
2598       TTI, BB, BB->getTerminator(), BBDupThreshold);
2599   if (DuplicationCost > BBDupThreshold) {
2600     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2601                       << "' - Cost is too high: " << DuplicationCost << "\n");
2602     return false;
2603   }
2604 
2605   // And finally, do it!  Start by factoring the predecessors if needed.
2606   std::vector<DominatorTree::UpdateType> Updates;
2607   BasicBlock *PredBB;
2608   if (PredBBs.size() == 1)
2609     PredBB = PredBBs[0];
2610   else {
2611     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2612                       << " common predecessors.\n");
2613     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2614   }
2615   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2616 
2617   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2618   // of PredBB.
2619   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2620                     << "' into end of '" << PredBB->getName()
2621                     << "' to eliminate branch on phi.  Cost: "
2622                     << DuplicationCost << " block is:" << *BB << "\n");
2623 
2624   // Unless PredBB ends with an unconditional branch, split the edge so that we
2625   // can just clone the bits from BB into the end of the new PredBB.
2626   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2627 
2628   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2629     BasicBlock *OldPredBB = PredBB;
2630     PredBB = SplitEdge(OldPredBB, BB);
2631     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2632     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2633     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2634     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2635   }
2636 
2637   // We are going to have to map operands from the original BB block into the
2638   // PredBB block.  Evaluate PHI nodes in BB.
2639   DenseMap<Instruction*, Value*> ValueMapping;
2640 
2641   BasicBlock::iterator BI = BB->begin();
2642   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2643     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2644   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2645   // mapping and using it to remap operands in the cloned instructions.
2646   for (; BI != BB->end(); ++BI) {
2647     Instruction *New = BI->clone();
2648     New->insertInto(PredBB, OldPredBranch->getIterator());
2649 
2650     // Remap operands to patch up intra-block references.
2651     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2652       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2653         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2654         if (I != ValueMapping.end())
2655           New->setOperand(i, I->second);
2656       }
2657 
2658     // If this instruction can be simplified after the operands are updated,
2659     // just use the simplified value instead.  This frequently happens due to
2660     // phi translation.
2661     if (Value *IV = simplifyInstruction(
2662             New,
2663             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2664       ValueMapping[&*BI] = IV;
2665       if (!New->mayHaveSideEffects()) {
2666         New->eraseFromParent();
2667         New = nullptr;
2668       }
2669     } else {
2670       ValueMapping[&*BI] = New;
2671     }
2672     if (New) {
2673       // Otherwise, insert the new instruction into the block.
2674       New->setName(BI->getName());
2675       // Update Dominance from simplified New instruction operands.
2676       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2677         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2678           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2679     }
2680   }
2681 
2682   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2683   // add entries to the PHI nodes for branch from PredBB now.
2684   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2685   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2686                                   ValueMapping);
2687   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2688                                   ValueMapping);
2689 
2690   updateSSA(BB, PredBB, ValueMapping);
2691 
2692   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2693   // that we nuked.
2694   BB->removePredecessor(PredBB, true);
2695 
2696   // Remove the unconditional branch at the end of the PredBB block.
2697   OldPredBranch->eraseFromParent();
2698   if (auto *BPI = getBPI())
2699     BPI->copyEdgeProbabilities(BB, PredBB);
2700   DTU->applyUpdatesPermissive(Updates);
2701 
2702   ++NumDupes;
2703   return true;
2704 }
2705 
2706 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2707 // a Select instruction in Pred. BB has other predecessors and SI is used in
2708 // a PHI node in BB. SI has no other use.
2709 // A new basic block, NewBB, is created and SI is converted to compare and
2710 // conditional branch. SI is erased from parent.
2711 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2712                                           SelectInst *SI, PHINode *SIUse,
2713                                           unsigned Idx) {
2714   // Expand the select.
2715   //
2716   // Pred --
2717   //  |    v
2718   //  |  NewBB
2719   //  |    |
2720   //  |-----
2721   //  v
2722   // BB
2723   BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2724   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2725                                          BB->getParent(), BB);
2726   // Move the unconditional branch to NewBB.
2727   PredTerm->removeFromParent();
2728   PredTerm->insertInto(NewBB, NewBB->end());
2729   // Create a conditional branch and update PHI nodes.
2730   auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2731   BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc());
2732   BI->copyMetadata(*SI, {LLVMContext::MD_prof});
2733   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2734   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2735 
2736   uint64_t TrueWeight = 1;
2737   uint64_t FalseWeight = 1;
2738   // Copy probabilities from 'SI' to created conditional branch in 'Pred'.
2739   if (extractBranchWeights(*SI, TrueWeight, FalseWeight) &&
2740       (TrueWeight + FalseWeight) != 0) {
2741     SmallVector<BranchProbability, 2> BP;
2742     BP.emplace_back(BranchProbability::getBranchProbability(
2743         TrueWeight, TrueWeight + FalseWeight));
2744     BP.emplace_back(BranchProbability::getBranchProbability(
2745         FalseWeight, TrueWeight + FalseWeight));
2746     // Update BPI if exists.
2747     if (auto *BPI = getBPI())
2748       BPI->setEdgeProbability(Pred, BP);
2749   }
2750   // Set the block frequency of NewBB.
2751   if (auto *BFI = getBFI()) {
2752     if ((TrueWeight + FalseWeight) == 0) {
2753       TrueWeight = 1;
2754       FalseWeight = 1;
2755     }
2756     BranchProbability PredToNewBBProb = BranchProbability::getBranchProbability(
2757         TrueWeight, TrueWeight + FalseWeight);
2758     auto NewBBFreq = BFI->getBlockFreq(Pred) * PredToNewBBProb;
2759     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2760   }
2761 
2762   // The select is now dead.
2763   SI->eraseFromParent();
2764   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2765                                {DominatorTree::Insert, Pred, NewBB}});
2766 
2767   // Update any other PHI nodes in BB.
2768   for (BasicBlock::iterator BI = BB->begin();
2769        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2770     if (Phi != SIUse)
2771       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2772 }
2773 
2774 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2775   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2776 
2777   if (!CondPHI || CondPHI->getParent() != BB)
2778     return false;
2779 
2780   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2781     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2782     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2783 
2784     // The second and third condition can be potentially relaxed. Currently
2785     // the conditions help to simplify the code and allow us to reuse existing
2786     // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2787     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2788       continue;
2789 
2790     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2791     if (!PredTerm || !PredTerm->isUnconditional())
2792       continue;
2793 
2794     unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2795     return true;
2796   }
2797   return false;
2798 }
2799 
2800 /// tryToUnfoldSelect - Look for blocks of the form
2801 /// bb1:
2802 ///   %a = select
2803 ///   br bb2
2804 ///
2805 /// bb2:
2806 ///   %p = phi [%a, %bb1] ...
2807 ///   %c = icmp %p
2808 ///   br i1 %c
2809 ///
2810 /// And expand the select into a branch structure if one of its arms allows %c
2811 /// to be folded. This later enables threading from bb1 over bb2.
2812 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2813   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2814   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2815   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2816 
2817   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2818       CondLHS->getParent() != BB)
2819     return false;
2820 
2821   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2822     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2823     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2824 
2825     // Look if one of the incoming values is a select in the corresponding
2826     // predecessor.
2827     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2828       continue;
2829 
2830     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2831     if (!PredTerm || !PredTerm->isUnconditional())
2832       continue;
2833 
2834     // Now check if one of the select values would allow us to constant fold the
2835     // terminator in BB. We don't do the transform if both sides fold, those
2836     // cases will be threaded in any case.
2837     LazyValueInfo::Tristate LHSFolds =
2838         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2839                                 CondRHS, Pred, BB, CondCmp);
2840     LazyValueInfo::Tristate RHSFolds =
2841         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2842                                 CondRHS, Pred, BB, CondCmp);
2843     if ((LHSFolds != LazyValueInfo::Unknown ||
2844          RHSFolds != LazyValueInfo::Unknown) &&
2845         LHSFolds != RHSFolds) {
2846       unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2847       return true;
2848     }
2849   }
2850   return false;
2851 }
2852 
2853 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2854 /// same BB in the form
2855 /// bb:
2856 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2857 ///   %s = select %p, trueval, falseval
2858 ///
2859 /// or
2860 ///
2861 /// bb:
2862 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2863 ///   %c = cmp %p, 0
2864 ///   %s = select %c, trueval, falseval
2865 ///
2866 /// And expand the select into a branch structure. This later enables
2867 /// jump-threading over bb in this pass.
2868 ///
2869 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2870 /// select if the associated PHI has at least one constant.  If the unfolded
2871 /// select is not jump-threaded, it will be folded again in the later
2872 /// optimizations.
2873 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2874   // This transform would reduce the quality of msan diagnostics.
2875   // Disable this transform under MemorySanitizer.
2876   if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2877     return false;
2878 
2879   // If threading this would thread across a loop header, don't thread the edge.
2880   // See the comments above findLoopHeaders for justifications and caveats.
2881   if (LoopHeaders.count(BB))
2882     return false;
2883 
2884   for (BasicBlock::iterator BI = BB->begin();
2885        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2886     // Look for a Phi having at least one constant incoming value.
2887     if (llvm::all_of(PN->incoming_values(),
2888                      [](Value *V) { return !isa<ConstantInt>(V); }))
2889       continue;
2890 
2891     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2892       using namespace PatternMatch;
2893 
2894       // Check if SI is in BB and use V as condition.
2895       if (SI->getParent() != BB)
2896         return false;
2897       Value *Cond = SI->getCondition();
2898       bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2899       return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr;
2900     };
2901 
2902     SelectInst *SI = nullptr;
2903     for (Use &U : PN->uses()) {
2904       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2905         // Look for a ICmp in BB that compares PN with a constant and is the
2906         // condition of a Select.
2907         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2908             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2909           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2910             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2911               SI = SelectI;
2912               break;
2913             }
2914       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2915         // Look for a Select in BB that uses PN as condition.
2916         if (isUnfoldCandidate(SelectI, U.get())) {
2917           SI = SelectI;
2918           break;
2919         }
2920       }
2921     }
2922 
2923     if (!SI)
2924       continue;
2925     // Expand the select.
2926     Value *Cond = SI->getCondition();
2927     if (!isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI))
2928       Cond = new FreezeInst(Cond, "cond.fr", SI);
2929     Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false);
2930     BasicBlock *SplitBB = SI->getParent();
2931     BasicBlock *NewBB = Term->getParent();
2932     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2933     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2934     NewPN->addIncoming(SI->getFalseValue(), BB);
2935     SI->replaceAllUsesWith(NewPN);
2936     SI->eraseFromParent();
2937     // NewBB and SplitBB are newly created blocks which require insertion.
2938     std::vector<DominatorTree::UpdateType> Updates;
2939     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2940     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2941     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2942     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2943     // BB's successors were moved to SplitBB, update DTU accordingly.
2944     for (auto *Succ : successors(SplitBB)) {
2945       Updates.push_back({DominatorTree::Delete, BB, Succ});
2946       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2947     }
2948     DTU->applyUpdatesPermissive(Updates);
2949     return true;
2950   }
2951   return false;
2952 }
2953 
2954 /// Try to propagate a guard from the current BB into one of its predecessors
2955 /// in case if another branch of execution implies that the condition of this
2956 /// guard is always true. Currently we only process the simplest case that
2957 /// looks like:
2958 ///
2959 /// Start:
2960 ///   %cond = ...
2961 ///   br i1 %cond, label %T1, label %F1
2962 /// T1:
2963 ///   br label %Merge
2964 /// F1:
2965 ///   br label %Merge
2966 /// Merge:
2967 ///   %condGuard = ...
2968 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2969 ///
2970 /// And cond either implies condGuard or !condGuard. In this case all the
2971 /// instructions before the guard can be duplicated in both branches, and the
2972 /// guard is then threaded to one of them.
2973 bool JumpThreadingPass::processGuards(BasicBlock *BB) {
2974   using namespace PatternMatch;
2975 
2976   // We only want to deal with two predecessors.
2977   BasicBlock *Pred1, *Pred2;
2978   auto PI = pred_begin(BB), PE = pred_end(BB);
2979   if (PI == PE)
2980     return false;
2981   Pred1 = *PI++;
2982   if (PI == PE)
2983     return false;
2984   Pred2 = *PI++;
2985   if (PI != PE)
2986     return false;
2987   if (Pred1 == Pred2)
2988     return false;
2989 
2990   // Try to thread one of the guards of the block.
2991   // TODO: Look up deeper than to immediate predecessor?
2992   auto *Parent = Pred1->getSinglePredecessor();
2993   if (!Parent || Parent != Pred2->getSinglePredecessor())
2994     return false;
2995 
2996   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2997     for (auto &I : *BB)
2998       if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
2999         return true;
3000 
3001   return false;
3002 }
3003 
3004 /// Try to propagate the guard from BB which is the lower block of a diamond
3005 /// to one of its branches, in case if diamond's condition implies guard's
3006 /// condition.
3007 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard,
3008                                     BranchInst *BI) {
3009   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
3010   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
3011   Value *GuardCond = Guard->getArgOperand(0);
3012   Value *BranchCond = BI->getCondition();
3013   BasicBlock *TrueDest = BI->getSuccessor(0);
3014   BasicBlock *FalseDest = BI->getSuccessor(1);
3015 
3016   auto &DL = BB->getModule()->getDataLayout();
3017   bool TrueDestIsSafe = false;
3018   bool FalseDestIsSafe = false;
3019 
3020   // True dest is safe if BranchCond => GuardCond.
3021   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
3022   if (Impl && *Impl)
3023     TrueDestIsSafe = true;
3024   else {
3025     // False dest is safe if !BranchCond => GuardCond.
3026     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
3027     if (Impl && *Impl)
3028       FalseDestIsSafe = true;
3029   }
3030 
3031   if (!TrueDestIsSafe && !FalseDestIsSafe)
3032     return false;
3033 
3034   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
3035   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
3036 
3037   ValueToValueMapTy UnguardedMapping, GuardedMapping;
3038   Instruction *AfterGuard = Guard->getNextNode();
3039   unsigned Cost =
3040       getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold);
3041   if (Cost > BBDupThreshold)
3042     return false;
3043   // Duplicate all instructions before the guard and the guard itself to the
3044   // branch where implication is not proved.
3045   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
3046       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
3047   assert(GuardedBlock && "Could not create the guarded block?");
3048   // Duplicate all instructions before the guard in the unguarded branch.
3049   // Since we have successfully duplicated the guarded block and this block
3050   // has fewer instructions, we expect it to succeed.
3051   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
3052       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
3053   assert(UnguardedBlock && "Could not create the unguarded block?");
3054   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
3055                     << GuardedBlock->getName() << "\n");
3056   // Some instructions before the guard may still have uses. For them, we need
3057   // to create Phi nodes merging their copies in both guarded and unguarded
3058   // branches. Those instructions that have no uses can be just removed.
3059   SmallVector<Instruction *, 4> ToRemove;
3060   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3061     if (!isa<PHINode>(&*BI))
3062       ToRemove.push_back(&*BI);
3063 
3064   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
3065   assert(InsertionPoint && "Empty block?");
3066   // Substitute with Phis & remove.
3067   for (auto *Inst : reverse(ToRemove)) {
3068     if (!Inst->use_empty()) {
3069       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3070       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3071       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3072       NewPN->insertBefore(InsertionPoint);
3073       Inst->replaceAllUsesWith(NewPN);
3074     }
3075     Inst->eraseFromParent();
3076   }
3077   return true;
3078 }
3079 
3080 PreservedAnalyses JumpThreadingPass::getPreservedAnalysis() const {
3081   PreservedAnalyses PA;
3082   PA.preserve<LazyValueAnalysis>();
3083   PA.preserve<DominatorTreeAnalysis>();
3084 
3085   // TODO: We would like to preserve BPI/BFI. Enable once all paths update them.
3086   // TODO: Would be nice to verify BPI/BFI consistency as well.
3087   return PA;
3088 }
3089 
3090 template <typename AnalysisT>
3091 typename AnalysisT::Result *JumpThreadingPass::runExternalAnalysis() {
3092   assert(FAM && "Can't run external analysis without FunctionAnalysisManager");
3093 
3094   // If there were no changes since last call to 'runExternalAnalysis' then all
3095   // analysis is either up to date or explicitly invalidated. Just go ahead and
3096   // run the "external" analysis.
3097   if (!ChangedSinceLastAnalysisUpdate) {
3098     assert(!DTU->hasPendingUpdates() &&
3099            "Lost update of 'ChangedSinceLastAnalysisUpdate'?");
3100     // Run the "external" analysis.
3101     return &FAM->getResult<AnalysisT>(*F);
3102   }
3103   ChangedSinceLastAnalysisUpdate = false;
3104 
3105   auto PA = getPreservedAnalysis();
3106   // TODO: This shouldn't be needed once 'getPreservedAnalysis' reports BPI/BFI
3107   // as preserved.
3108   PA.preserve<BranchProbabilityAnalysis>();
3109   PA.preserve<BlockFrequencyAnalysis>();
3110   // Report everything except explicitly preserved as invalid.
3111   FAM->invalidate(*F, PA);
3112   // Update DT/PDT.
3113   DTU->flush();
3114   // Make sure DT/PDT are valid before running "external" analysis.
3115   assert(DTU->getDomTree().verify(DominatorTree::VerificationLevel::Fast));
3116   assert((!DTU->hasPostDomTree() ||
3117           DTU->getPostDomTree().verify(
3118               PostDominatorTree::VerificationLevel::Fast)));
3119   // Run the "external" analysis.
3120   auto *Result = &FAM->getResult<AnalysisT>(*F);
3121   // Update analysis JumpThreading depends on and not explicitly preserved.
3122   TTI = &FAM->getResult<TargetIRAnalysis>(*F);
3123   TLI = &FAM->getResult<TargetLibraryAnalysis>(*F);
3124   AA = &FAM->getResult<AAManager>(*F);
3125 
3126   return Result;
3127 }
3128 
3129 BranchProbabilityInfo *JumpThreadingPass::getBPI() {
3130   if (!BPI) {
3131     assert(FAM && "Can't create BPI without FunctionAnalysisManager");
3132     BPI = FAM->getCachedResult<BranchProbabilityAnalysis>(*F);
3133   }
3134   return *BPI;
3135 }
3136 
3137 BlockFrequencyInfo *JumpThreadingPass::getBFI() {
3138   if (!BFI) {
3139     assert(FAM && "Can't create BFI without FunctionAnalysisManager");
3140     BFI = FAM->getCachedResult<BlockFrequencyAnalysis>(*F);
3141   }
3142   return *BFI;
3143 }
3144 
3145 // Important note on validity of BPI/BFI. JumpThreading tries to preserve
3146 // BPI/BFI as it goes. Thus if cached instance exists it will be updated.
3147 // Otherwise, new instance of BPI/BFI is created (up to date by definition).
3148 BranchProbabilityInfo *JumpThreadingPass::getOrCreateBPI(bool Force) {
3149   auto *Res = getBPI();
3150   if (Res)
3151     return Res;
3152 
3153   if (Force)
3154     BPI = runExternalAnalysis<BranchProbabilityAnalysis>();
3155 
3156   return *BPI;
3157 }
3158 
3159 BlockFrequencyInfo *JumpThreadingPass::getOrCreateBFI(bool Force) {
3160   auto *Res = getBFI();
3161   if (Res)
3162     return Res;
3163 
3164   if (Force)
3165     BFI = runExternalAnalysis<BlockFrequencyAnalysis>();
3166 
3167   return *BFI;
3168 }
3169